
12D SOLUTIONS PTY LTD

 ACN 101 351 991

 PO Box 351 Narrabeen NSW Australia 2101

 Australia Telephone (02) 9970 7117 Fax (02) 9970 7118

 International Telephone 61 2 9970 7117 Fax 61 2 9970 7118

email support@12d.com web page www.12d.com

12d A File Format

Version 14
November 2019

12d Model Reference Manual 12d A File Format Appendix

2

12d A File Format
This document is the 12d A File Fromat taken from the Reference Manual for the software product

12d Model.

Disclaimer
12d Model is supplied without any express or implied warranties whatsoever.

No warranty of fitness for a particular purpose is offered.

No liabilities in respect of engineering details and quantities produced by 12d Model are accepted.

Every effort has been taken to ensure that the advice given in this manual and the program 12d Model is
correct, however, no warranty is expressed or implied by 12d Solutions Pty Ltd.

Copyright
This manual is copyrighted and all rights reserved.

This manual may not, in whole or part, be copied or reproduced without the prior consent in writing from
12d Solutions Pty Ltd.

Copies of 12d Model software must not be released to any party, or used for bureau applications without
the written permission of 12D Solutions Pty Ltd.

Copyright (c) 1989-2019 by 12d Solutions Pty Ltd

Sydney, New South Wales, Australia.

ACN 101 351 991

All rights reserved.
3

12d Model Reference Manual 12d A File Format Appendix
4

Table of Contents
Preface .. 3

12d Archive File Format ... 5
General Comments about a 12da File .. 6
Attributes.. 8
Commands.. 9

Model .. 10
Colour ... 11
Style .. 11
Breakline... 11
Null ... 12
String... 13
Tin... 14
Super Tin... 24
Trimesh ... 26

12da Definition for each String Type... 30
Arc String.. 31
Circle String.. 32
Drainage String ... 33
Face String .. 36
Feature String.. 37
Interface String ... 38
Plot Frame String .. 39
Super String .. 40
Super Alignment String .. 56
Text String .. 71
2d String.. 72
3d String.. 73
4d String.. 74
Pipe String... 75
Polyline String .. 76
Alignment String... 77
Pipeline String... 79
LAS Cloud String ... 80
1

12d Model Reference Manual 12d A File Format
2

 Preface

Introduction
12d Model is an interactive graphics program designed to process survey data, quickly build terrain,
conceptual and detail design models.

Data is easily read in, triangulated and contoured to build an initial terrain model. Roads, platforms,
channels or other design features can be added interactively and a merged model containing the initial
terrain and the new design features formed to produce conceptual design models.

All Models can be examined in plan, section or perspective views. The number and type of views
displayed on the screen is totally user defined.

By using a mouse and flexible on-screen menus, 12d Model is easy to use and requires a minimum of
training.

To allow the interchanging of data between different survey and civil design packages, 12d Solutions
maintain and have publish a text format, called 12da (short for 12d Archive) for all the data stored in
12d Model. The 12d A format is documented as an Appendix in the 12d Model Reference manual.

This document is the 12d A File Format Appendix from the 12d Model Reference manual.
3

12d Model Reference Manual 12d A File Format Appendix
4

1 12d Archive File Format
The 12d Archive file format (called 12d ascii in 12d Model 10 and earlier) is a text file definition
from 12d Solutions which is used for reading and writing out string data from 12d Model. 12d
Archive files normally end in ’.12da’ and are often referred to as 12da files.

Unlike the earlier 12d Ascii files in 12d Model 9, from 12d Model 10 onwards the 12d Archive file
is a Unicode file.

This document is for the 12d Archive file format used in 12d Model 14.

For General Comments about 12da, see 1.1 General Comments about a 12da File

For the 12da definitions:

 Attributes 1.2 Attributes

Commands 1.3 Commands

Each string type 1.4 12da Definition for each String Type

Tin 1.3.7 Tin

Super Tin 1.3.8 Super Tin

For documentation on the 12d XML file format, see 1 12d XML File Format.
Page 5

12d Model Reference Manual
1.1 General Comments about a 12da File
Unicode - 12d Archive file is a Unicode file.

//

Anything written on a line after // is ignored. This is used to place comments in the file.

Blank lines

Unless they are part of a text string, blank lines are ignored.

Spaces

Unless enclosed in quotes ("), more than one consecutive space or tab is treated as one
space. Except when it is the delimiter after a //, an end of line (<enter>) is also considered a
space.

Spaces and special characters in text strings

Any text string that includes spaces and any characters other than a to z, A to Z or 0 to 9
(alphanumeric), must be enclosed in double quotes. In text strings, double quotes " and
backslash \ must be preceded by a \. For example, \" and \\ define a " and a \ respectively in a
text string.

Names of models, tins, super tins, styles, textstyles and colours

Models, tins, styles (linestyles), textstyles and colours can include the characters a to z, A to
Z, 0 to 9 (alphanumeric characters) and space. Leading and trailing spaces are ignored. The
names can be up to 255 characters in length.

The names for models, tins, super tins, styles, textstyles or colours can not be blank.

The names for models, tins, super tins, styles, textstyles and colours can contain upper and
lower alpha characters which are stored, but for comparisons, the model names, tin names,
super tin names, style names, textstyle names or colour names are case insensitive. For
example the model name "Fred" will be stored as "Fred" but "FRED" is considered to be the
same model name as "Fred".

Within a project, each model name must be unique amongst all the model names in the
project.

Similarly within a project, each colour name must be unique amongst all the colour names,
line styles must be unique amongst all the line styles in the project and text styles must be
unique amongst all the text styles in the project.

For tins and super tins, within a project the name of a tin or a super tin must be unique
amongst the combined list of tin names and super tin names.

String names

String names can include the characters a to z, A to Z, 0 to 9 (alphanumeric characters),
space, decimal point (.), plus (+), minus (-), comma (,), open and closed round brackets and
equals (=). Leading and trailing spaces are ignored. String names can be up to 255
characters in length. If the string name includes anything other than alphanumeric characters,
then the name must be enclosed in double quotes (").

String names can contain upper and lower alpha characters which are retained but case is
ignored when selecting by string name. That is, the string name Fred will be stored as Fred
but FRED is not considered to be a different string name.

String names do not have to be unique and can be blank.

Attribute names

Attribute names can include the characters a to z, A to Z, 0 to 9 (alphanumeric characters)
Page 6 General Comments about a 12da File

Chapter 1 12d Archive File Format
and space. Leading and trailing spaces are ignored. The names can be up to 255 characters
in length.

Attributes names can not be blank.

Attribute names are case sensitive. That is, the attribute name "Fred" is different to "FRED".

Continue to 1.2 Attributes or return to 1 12d Archive File Format.
Page 7General Comments about a 12da File

12d Model Reference Manual
1.2 Attributes
Many 12d Model objects (models and elements such as individual strings and tins) can have an
unlimited number of named attributes of type integer (numbers), real and text.

The attributes for an object are given in an attributes block which consists of the keyword
attributes followed by the definitions of the individual attributes enclosed in start and end curly
braces { and }. That is, an attributes_block is

 attributes {

 attribute_1

 attribute_2

 ...

 attribute_n

 }

where the attribute definitions for the individual attributes attribute_i consists of

attribute_type attribute_name attribute_value
where

 attribute_type is integer, real or text
 attribute_name is the unique attribute name for the object.

If the attribute name includes spaces then the text of the name must be enclosed in double
quote character (")

and

 attribute_value is the appropriate value of the integer, real or a text.

Within an object, the attribute names are case sensitive and must be unique. That is, for attribute
names, upper and lower case alphabet characters are considered to be different characters.

If the text for a text attribute includes spaces then the text must be enclosed in double quote
characters ("). It the text is blank, it is given as "".

An example of and attribute block defining four attributes named "pole id", "street", "pole height"
and "pole wires" is:

attributes {
 text "pole id" "QMR-37"

 text street "477 Boundary St"

 real "pole height" 5.25

 integer "pole wires" 3

}

Continue to 1.3 Commands or return to 1 12d Archive File Format.
Page 8 Attributes

Chapter 1 12d Archive File Format
1.3 Commands
Commands consist of a keyword followed by a space and then a value (a keyword and its
value is often referred to as a keyword pair). A value must always exist.

keyword value // a keyword pair

There can be more than on command keyword pair per line as long as each keyword pair is
separated by a space. In fact, the keyword can be on one line and the value on the next line.

Although the names of commands are only shown in lower case in these notes, commands are
case insensitive and all combinations of case are recognised as the same command. That
is model, MODEL and ModeL are all recognised as the command model.

For the definition of the commands in the 12da file see:

1.3.1 Model

1.3.2 Colour

1.3.3 Style

1.3.4 Breakline

1.3.5 Null

1.3.6 String

1.3.7 Tin

1.3.8 Super Tin

1.3.9 Trimesh

Or return to 1 12d Archive File Format.
Page 9Commands

12d Model Reference Manual
1.3.1 Model
There are two formats for the model command:

(a) model command when there are no attributes for the model

model model_name

All elements (strings, tins, plot frames etc) following until the next model keyword are
placed in the model model_name. This can be overridden for an element by a model
command inside the element definition.

The default model name used for elements when no model name has been specified is
data.

(b) model command when there are model attributes

If the model includes attributes, the following form of the model command must be used.

model {

 name model_name

 attributes_block

}

where the attributes_block is defined in 1.2 Attributes.

For example:

model {

 name "telegraph poles"

 attributes {
 text "pole id" "QMR-37"

 text "street" "477 Boundary St"

 real "pole height" 5.25

 integer "pole wires" 3

 }

}

Continue to 1.3.2 Colour or return to 1.3 Commands or 1 12d Archive File Format.
Page 10 Commands

Chapter 1 12d Archive File Format
1.3.2 Colour
The format of the colour command is:

colour colour_name

When reading a 12da file, there is a current colour, which has the default value of red, and
when a colour command is read, the current colour is set to colour_name.

When strings are read in a 12da file, they are given the current colour.

This can be overridden for a string by a string colour command inside the string command
defining that string. For the definition of the string command, see 1.3.6 String.

Continue to 1.3.3 Style or return to 1.3 Commands or 1 12d Archive File Format.

1.3.3 Style
The format of the style command is:

style linestyle_name

When reading a 12da file, there is a current linestyle, which has the default value of 1, and
when a style command is read, the current linestyle is set to linestyle_name.

When strings are read in a 12da file, they are given the current linestyle.

This can be overridden for a string by a string style command inside the string command defining
that string. For the definition of the string command, see 1.3.6 String.

Continue to 1.3.4 Breakline or return to 1.3 Commands or 1 12d Archive File Format.

1.3.4 Breakline
The format of the breakline command is:

breakline breakline_type

where breakline_type is point or line.

When reading a 12da file, there is a current breakline type, which has the default value of
point, and when a breakline command is read, the current breakline type is set to
breakline_type.

When strings are read in a 12da file, they are given the current breakline type.

This can be overridden for a string by a string breakline command inside the string command
defining that string. For the definition of the string command, see 1.3.6 String.

Continue to 1.3.5 Null or return to 1.3 Commands or 1 12d Archive File Format.
Page 11Commands

12d Model Reference Manual
1.3.5 Null
The format of the null command is:

null null_value

When reading a 12da file, there is a current null value, which has the default value of -999, and
when a null command is read, the current null value is set to null_value.

When strings are read in a 12da file and the string has z-values equal to null_value, then the z-
value is replaced by the 12d Model null value.

This can be overridden for a string by a null_value command inside the string command defining
that string. For the definition of the string command, see 1.3.6 String.

Continue to 1.3.6 String or return to 1.3 Commands or 1 12d Archive File Format.
Page 12 Commands

Chapter 1 12d Archive File Format
1.3.6 String
The format of the string command is:

string string_type {
 attributes_block

 string_command_1

 string_command_2

 ...
 string_command_n

}

The string_type is compulsory and must be followed by all the string information enclosed in
curly braces { and }.

So if a string type, or possibly information inside the string is not recognised, the 12da reader
has a chance of being able to jump over the string by looking for the end curly brace }.

Inside the braces are string commands as keyword pairs defining information for the string.

There can be more than one string command keyword pair per line as long as each keyword pair
is separated by a space. In fact, the keyword can be on one line and the value on the next line.

Any unrecognised string commands are ignored.

The string command keyword pairs include model, colour, style and breakline, which are all
optional inside the string definition. However if any of them exist inside a string definition, then
the string command keyword overrides the current value for model, colour, style or breakline
commands but the override is only for that particular string.

Not all string types can have an attributes_block.

For some string types (e.g. super string) there is more data required than just the string
command keyword pairs.

This extra data is contained is blocks consisting of a keyword followed by the required
information enclosed in the curly braces { and }. For example attributes for all string types and
(x,y,z) data for a super string.

For all string types, if there is not enough recognised information to define the string, the string is
ignored.

For the definition for each string type and the allowed string commands and extra data that is
required for that string type, see 1.4 12da Definition for each String Type.

Note: if the string does not have any attributes then the attributes_block can be left out entirely
(see 1.2 Attributes for the definition of attributes_block).

Continue to 1.3.7 Tin or return to 1.3 Commands or 1 12d Archive File Format.
Page 13Commands

12d Model Reference Manual
1.3.7 Tin
Tins (triangulated irregular networks) can be written out and read in from a 12da.

Each tin has text name, tin_name, of up to two hundred alphanumeric characters and spaces
and although the tin names are stored with upper or lower case alphabet characters, for
comparisons of the tin names, the names are considered to be case insensitive.

Within a project, the name of a tin or a super tin must be unique amongst the combined list of tin
names and super tin names.

There are two formats for a tin - one that lists all the triangles, including the nulled (invisible)
triangles in the tin, and the other that only lists the visible triangles that make up the tin.

See

1.3.7.1 All Triangles in the Tin - Visible and Invisible

1.3.7.2 Visible Triangles Only

1.3.7.1 All Triangles in the Tin - Visible and Invisible
This format writes out all the triangles in the tin, including the invisible and construction triangles.

This format take more disk space but cannot be misinterpreted because it includes all the points,
triangles and all the neighbouring triangles for each edge of a triangle.

It is also the best method for writing out large tins as it is much faster to read in and create a tin.

The keyword for the full format for a tin element is full_tin and it is defined by:

full_tin {
 name tin_name // MANDATORY name of the tin when created in 12d Model

 time_created text // optional - time tin first created

 time_updated text // optional - time tin last modified

// Attributes Block:

// The attributes style, faces, null_length, null_angle, null_combined_value

// and null_combined_angle are special attributes that has extra information used by

// 12d Model to create the tin. These special attributes should not be deleted.

//

// The attributes in this block and the Attributes block itself are optional.

// When a tin is read into 12d Model from a 12da file, the style is used

// as the Tin style.

 attributes {

 text "style" text // name of line style for the tin
Page 14 Commands

Chapter 1 12d Archive File Format
 integer "faces 0/1 // 0 non triangle data, 1 triangle data

 real "null_length" value // values for null by angle/length

 real "null_angle" value // angle in radians

 real "null_combined_length" value

 real "null_combined_angle" value // angle in radians

// any other attributes

 } // end of attributes block

// Points Block

//

//This gives the coordinates of the points that will be vertices of the triangles

// in the tin, including the first four points that are construction points

// that are on the four corners of a rectangle that surrounds the actual data.

//

// The points are implicitly numbered by the order in the list (starting at point 1).

//

// The Points Block is MANDATORY

 points { // x y z for each point in the tin

 x-value y-value -value // point 1

 " " " // point 2

 " " "

 } // end of points block

// Triangles Block

//

// This gives the triangles that make up the tin.

// Each triangle is given as a triplet of the point numbers that make up

// the triangle vertices (the point numbers are the implicit position of the points

// given in the Points Block.

// The order of the triangles is unimportant but the order of the points in the

// triangle is important.

// The vertices of each triangle must be listed in a clockwise order when looking at the tin

// from above.
Page 15Commands

12d Model Reference Manual
p1

p2

p3

Plan View

// The Triangles Block is MANDATORY

 triangles { // points making up each triangle

 T1-1 T1-2 T1-3 // point numbers of the 3 vertices of first triangle.

 T2-1 T2-2 T-33 // point numbers of the 3 vertices of second triangle.

 " "

 " "

 } // end of triangles block

// The first edge of triangle k is from Point Tk-1 to Point Tk-2.

// The second edge of triangle k is from Point Tk-2 to Tk-3.

// The third edge of triangle k is from Point Tk-3 to Tk-1.

// Note: Construction Triangles

// Any triangle that contains any of the first four points

//(construction points) is a construction triangle and is usually

// not displayed.

// Neighbours Block

//

// For each triangle, this gives for each edge the number of the triangle that is

// the neighbour of that edge of the triangle.

// The order of the entries in the neighbours block must match the order of the

// triangles in the Triangles Block. So there is exactly one entry for each triangle.

//

// The Neighbours Block is MANDATORY

 neighbours {

 t1_e1_nb_tr t1_e2_nb_tr t1_e3_nb_tr

 t2_e1_nb_tr t2_e2_nb_tr t2_e3_nb_tr

 " " "
Page 16 Commands

Chapter 1 12d Archive File Format
 tn_e1_nb_tr tn_e2_nb_tr tn_e3_nb_tr

 } // end of neighbour block

// where tk_e1_nb_tr tk_e2_nb_tr tk_e3_nb_tri are the triangle numbers from the

// Triangles block of the neighbouring triangle for each edge of the k’th triangle

// For each triangle, the order of the neighbouring triangles must match the order

// that the edges are defined for the triangle in the triangles block

// Note: the neighbour value of 0 is used for the outside triangles that contain

// exactly two of the points 1, 2, 3 or 4 and so have edges that have no neighbouring triangle

// Nulling Block

//

// Triangles can be visible or nulled (invisible)

// Whether a triangle is null or visible is individually given where:

// 1 means the triangle is null, and

// 2 means the triangle is visible.

// The order of the entries in the nulling block must be the same as the order of the

// triangles in the Triangles Block.

// The Nulling Block is MANDATORY

//

// Triangles can be visible or nulled (invisible)

 nulling {

 V1 V2 V3 ... V15 V16

 V17 Cv18 C19 ... V31 V32

 " " "

 Vn-2 Vn-1 Vn

 } // end of nulling block

// Base Colour

// The tin has a base colour that is the default colour for all triangles

 colour tin_base_colour // optional - base colour of the tin
Page 17Commands

12d Model Reference Manual
// Colours Block

//

// Triangles can be given colours other than the base colour by including

// a colours block. The colour for each triangle in then individually given

// (-1 means base colour). The order is the same as the order of the triangles in

// the Triangles Block.

//

// If all the triangles are the base colour, then simply omit the Colours Block

 colours {

 C1 C2 C3 // colour for each triangle given in triangle order

 C4 C5 C6 C7 // colour "-1" means use the base tin colour.

 " " "

 " " "

 } // end of colours block

// Input Block

//

// More information about how the tin was created by 12d Model.

// None of this information is needed when reading a tin into 12d Model.

// This block can be omitted

 input { // data for reconstructing tin from strings

 preserve_strings true/false // if true, preserve breaklines etc.

 remove_bubbles true/false //

 weed_tin true/false

 triangle_data true/false

 sort_tin true/false

 cell_method true/false

 models {

 "model_name_1" // name of the first model making up the tin

 "model_name_2" // name of the second model making up the tin

 " " "

 " " "

 } // end of models block
Page 18 Commands

Chapter 1 12d Archive File Format
 } // end of input block

} // end of tin 12a definition
Page 19Commands

12d Model Reference Manual
1.3.7.2 Visible Triangles Only
The format to write out only the visible triangles in a tin is a simple format for most software
packages to write. However because the null regions are not explicitly given, more processing
time is required to read the tin back in and construct all the null regions.

The keyword denoting the format where just the visible triangles of a tin element are written out
is tin and its definition is:

tin {

 name tin_name // MANDATORY name of the tin when created in 12d Model

 time_created text // optional - time tin first created

 time_updated text // optional - time tin last modified

// Attributes Block:

// The attributes style, faces, null_length, null_angle, null_combined_value

// and null_combined_angle are special attributes that has extra information used by

// 12d Model to create the tin. These special attributes should not be deleted.

//

// The attributes in this block and the Attributes block itself are optional.

// When a tin is read into 12d Model from a 12da file, the style is used

// as the Tin style.

 attributes {

 text "style" text // name of line style for the tin

 integer "faces 0/1 // 0 non triangle data, 1 triangle data

 real "null_length" value // values for null by angle/length

 real "null_angle" value // angle in radians

 real "null_combined_length" value

 real "null_combined_angle" value // angle in radians

// any other attributes

 } // end of attributes block

// Points Block

//
Page 20 Commands

Chapter 1 12d Archive File Format
// Coordinates of the points at the vertices of the triangles

// The points are implicitly numbered by the order in the list (starting at point 1).

//

// The Points Block is MANDATORY

 points { // x y z for each point in the tin

 x-value y-value -value // point 1

 " " " // point 2

 " " "

 } // end of points block

// Triangles Block

// This gives the triangles that make up the tin.

// Each triangle is given as a triplet of the point numbers that make up

// the triangle vertices (the point numbers are the implicit position of the points

// given in the Points Block.

// The order of the triangles is unimportant but the order of the points in the

// triangle is important.

// The vertices of each triangle must be listed in a clockwise order when looking at the tin

// from above.

p1

p2

p3

Plan View

// The Triangles Block is MANDATORY

 triangles { // points making up each triangle

 T1-1 T1-2 T1-3 // point numbers of the 3 vertices of first triangle.

 T2-1 T2-2 T-33 // point numbers of the 3 vertices of second triangle.

 " "

 " "

 } // end of triangles block
Page 21Commands

12d Model Reference Manual
// Base Colour

// The tin has a base colour that is the default colour for all triangles

 colour tin_base_colour // optional - base colour of the tin

// Colours Block

//

// Triangles can be given colours other than the base colour by including

// a colours block. The colour for each triangle in then individually given

// (-1 means base colour). The order is the same as the order of the triangles in

// the Triangles Block.

//

// If all the triangles are the base colour, then simply omit the Colours Block

 colours {

 C1 C2 C3 // colour for each triangle given in triangle order

 C4 C5 C6 C7 // colour "-1" means use the base tin colour.

 " " "

 " " "

 } // end of colours block

// Input Block

//

// More information about how the tin was created by 12d Model.

// None of this information is needed when reading a tin into 12d Model.

// This block can be omitted

 input { // data for reconstructing tin from strings

 preserve_strings true/false // if true, preserve breaklines etc.

 remove_bubbles true/false //

 weed_tin true/false

 triangle_data true/false

 sort_tin true/false

 cell_method true/false

 models {

 "model_name_1" // name of the first model making up the tin
Page 22 Commands

Chapter 1 12d Archive File Format
 "model_name_2" // name of the second model making up the tin

 " " "

 " " "

 } // end of models block

 } // end of input block

} // end of tin 12a definition

Continue to 1.3.8 Super Tin or return to 1.3 Commands or 1 12d Archive File Format.
Page 23Commands

12d Model Reference Manual
1.3.8 Super Tin
Super Tins, which consists of a number of tins (triangulated irregular networks), can be written
out and read in from a 12da.

Each super tin has text name, tin_name, of up to two hundred alphanumeric characters and
spaces and although the tin names are stored with upper or lower case alphabet characters, for
comparisons of the tin names, the names are considered to be case insensitive.

Within a project, the name of a tin or a super tin must be unique amongst the combined list of tin
names and super tin names.

super_tin {

 name tin_name // MANDATORY name of the super tin

 time_created text // optional - time super tin first created

 time_updated text // optional - time super tin last modified

// Attributes Block:

// This is mainly information used by 12d Model to create the super tin.

// The attributes in this block and the Attributes block itself are optional.

// When a super tin is read into 12d Model from a 12da file, the style is used

// as the Super Tin style.

 attributes {

text "style" text // name of line style for the tin

// any other attributes

 } // end of attributes block

// Super Tin Colour

// The super tin has a base colour

 colour tin_base_colour // optional - base colour of the super tin

// Tins Block

//

// This is the list of tins that make up the super tin.

// This block is MANDATORY
Page 24 Commands

Chapter 1 12d Archive File Format
 tins { // list of tins for the super tin

 "tin_name_1" // name of the first tin making up the super tin

 "tin_name_2" // name of the second tin making up the super tin

 " " "

 " " "

 } // end of tins block

} // end of super tin 12a definition

Note that the tins that make up the super tin must exist in the 12d Model project for the super tin
to be fully defined.

Continue to 1.3.9 Trimesh or return to 1.3 Commands or 1 12d Archive File Format.
Page 25Commands

12d Model Reference Manual
1.3.9 Trimesh
A trimesh is made up of 3D triangles and can be described by giving the list of m vertices in the
trimesh and the three vertices that make up each of the n triangular faces. The normal to each
triangle face points to the "outside" of the trimesh.

So the trimesh element contains a list of 3d points and a list of triangle faces where each triangle
face is given as a triple of indices of points from the point list.

The order of the points in the triangle triple is important and must be such that the direction of the
normal to each triangle points away from the inside of the trimesh.

That is, looking down the normal towards the triangle, the three points (p1, p2 and p3) in the
triple of the triangle face are in a counter clockwise order around the triangle.

p1

p3

p2 normal to the triangle which points away
from the inside of the trimesh

The 12da definition of a trimesh is:

primitive_3d {

 name primitive_3d_namer // name of the primitive_3d

 colour primitive_3d_name_colour // colour of the primitive_3d

 // the primitive_3d has a base colour that is the
 // default colour for the primitive

 time_created text // optional - time primitive first created

 time_updated text // optional - time primitive last modified

// Attributes Block:

// The attributes in this block and the Attributes block itself are optional.

 attributes {

// attributes

 } // end of attributes block

// Trimesh Block

// At a minimum, the trimesh block contains information on the vertices and faces that
Page 26 Commands

Chapter 1 12d Archive File Format
make up the trimesh.

 trimesh_3d {

// vertices_block

// faces_block

// edges_block // optional for checking only

// info_block // optional

 blend real_number // optional - blend value for the trimesh

// vertex_infos_block // optional

// vertex_flags_block // optional

// edge_infos_block // optional

// edge_flags_block // optional

// face_infos_block // optional

// face_flags_block // optional

 } // end of trimesh_3d block

//

// Vertices Block

// of the points at the vertices of the triangle faces that make up the trimesh.

// The vertices are implicitly numbered by the order in the list (starting at point 1).

//

 vertices { // x y z for each vertex in the trimesh

 x-value y-value -value // vertex 1

 " " " // vertex 2

 " " "

 } // end of vertices block

// The faces_block is MANDATORY and consists of the triangles//

// Each triangle in the trimesh is given as a triplet of the vertex that make up

// the triangle (the vertex numbers are the implicit position of the vertices

// given in the Vertices Block.

// The order of the faces in the faces block is important for many calculations, mesh
properties, geometric structures

//
Page 27Commands

12d Model Reference Manual
// The Faces Block is MANDATORY

 faces { // vertices making up each triangle

 T1-1 T1-2 T1-3 // vertex numbers of the 3 vertices of first triangle.

 T2-1 T2-2 T-33 // vertex numbers of the 3 vertices of second triangle.

 " "

 " "

 } // end of faces block

// The edges_block is OPTIONAL and consists of the edges//

// Each edge in the trimesh is given as a pair of the vertex that make up

// the edge (the vertex numbers are the implicit position of the vertices

// given in the Edges Block.

// The order of the edges in the edges block is important for many calculations, mesh
// properties, geometric structures. The correct order can only be formed inside
// 12d Model. For manual construction of the 12da file for trimesh, the user should

// leave out the edges_block.

//

// The Edges Block is OPTIONAL

 edges { // vertices making up each triangle

 T1-1 T1-2 / // vertex numbers of the 2 vertices of first edge.

 T2-1 T2-2 // vertex numbers of the 2 vertices of second edge.

 " "

 " "

 } // end of edges block

 } // end of trimesh_3d block

} // end of primitive_3d 12a definition

// Info block contain four field: flag, key, colour and name

 info { // vertices making up each triangle

 flag // integer, 12d Model internal use only.

 key // integer from 0 to 255, 12d Model internal use only.

 colour // 12d Model colour.

 name // string name.

 } // end of faces block
Page 28 Commands

Chapter 1 12d Archive File Format
// Info block of primitive_3d is OPTIONAL

// vertex_infos, edge_infos and face_infos block of primitive_3d are OPTIONAL and consists of
info_blocks

 vertex_infos { // making up info blocks

 flag-1 key-1 colour-1 name-1 // first info.

 flag-2 key-2 colour-2 name-2 // second info.

 " "

 " "

 } // end of vertex_infos block

// vertex_flags, edge_flags and face_flags block of primitive_3d are OPTIONAL and consists of
sequences of indexes for info block. The size of vertex_flags should equals the number of
vertices in the trimesh; and the same for edge_flags, face_flags. If the index is 0 it means there is
no information on the current vertex (edge, face).

 vertex_flags { // making up info blocks

 index-1 // info index of the first vertex.

 index-2 // info index of the second vertex.

 " "

 " "

 } // end of vertex_flags block

 // for example if the trimesh has two kinds of vertex info

 vertex_infos { // making up info blocks

 0 0 green "no name" // first info.

 0 1 blue "no name" // second info.

 " "

 " "

 } // end of vertex_infos block

// and 5 points.

 vertex_flags { // making up info blocks

 2 // info index of the first vertex.

 0 // info index of the second vertex.

 1 // info index of the third vertex.

 2 // info index of the fourth vertex.

 0 // info index of the fifth vertex.

 } // end of vertex_flags block

Then the trimesh has two blue points (number 1 and 4), one green point (number 3), and two
points without colour (number 2 and 5).

Continue to 1.4 12da Definition for each String Type or return to 1.3 Commands or 1 12d Archive
File Format.
Page 29Commands

12d Model Reference Manual
1.4 12da Definition for each String Type
For the 12da definition of each string type, see:

1.4.1 Arc String

1.4.2 Circle String

1.4.3 Drainage String

1.4.4 Face String

1.4.5 Feature String

1.4.6 Interface String

1.4.7 Plot Frame String

1.4.8 Super String

1.4.9 Super Alignment String

1.4.10 Text String

And for the superceded strings, see:

1.4.11 2d String

1.4.12 3d String

1.4.13 4d String

1.4.16 Alignment String

1.4.14 Pipe String

1.4.17 Pipeline String

1.4.15 Polyline String

Or return to 1 12d Archive File Format.
Page 30 12da Definition for each String Type

Chapter 1 12d Archive File Format
1.4.1 Arc String
string arc {

 model model_name name string_name

 colour colour_name style style_name

 chainage start_chainage interval value radius value

 xcentre value ycentre value zcentre value

 xstart value ystart value zstart value

 xend value yend value zend value

}

Continue to 1.4.2 Circle String or return to 1.4 12da Definition for each String Type or 1 12d
Archive File Format.
Page 3112da Definition for each String Type

12d Model Reference Manual
1.4.2 Circle String
string circle {

 model model_name name string_name

 colour colour_name style style_name

 chainage start_chainage interval value radius value

 zcentre value xcentre value ycentre value

}

Continue to 1.4.3 Drainage String or return to 1.4 12da Definition for each String Type or 1 12d
Archive File Format.
Page 32 12da Definition for each String Type

Chapter 1 12d Archive File Format
1.4.3 Drainage String
string drainage {

 chainage start_chainage

 model model_name name string_name

 colour colour_name style style_name

 breakline point or line

 attributes {

 text Tin finished_surface_tin

 text NSTin natural_surface_tin

 integer "_floating" 1|0 // 1 for floating, 0 not floating

 }

 outfall outfall_value // z-value at the outfall

 flow_direction 0|1 // 0 drainage line is defined from downstream
// to upstream

 data { // key word - geometry of the drainage string

 x-value y-value z-value radius bulge

 " " "

 " " "

 }

 pit { // pit/manhole - one pit record for each pit/manhole

// in the order along the string

 name text // pit name

 type text // pit type

 road_name text // road name

 road_chainage chainage // road chainage

 diameter value // pit diameter

 floating yes|no // is pit floating or not

 chainage pit_chainage // internal use only

 ip value // internal use only

 ratio value // internal use only

 x x-value // x-value of top of pit

 y y-value // y-value of top of pit

 z z-value // z-value of top of pit

 }

 pipe { // one pipe record for each pipe connecting pits/manholes

// in the order they occur along the string

 name text // pipe name

 type text // pipe type
Page 3312da Definition for each String Type

12d Model Reference Manual
 diameter value // pit diameter

 us_level value //

 ds_level value //

 us_hgl value //

 ds_hgl value //

 flow_velocity value //

 flow_volume value //

 }

 property_control {

 name text // lot name

 colour colour_name

 grade value // grade of pipe in units of "1v in"

 cover value // cover of the of pipe

 diameter value // diameter of the of pipe

 boundary value // boundary trap value

 chainage chainage // internal use only

 ip value // internal use only

 ratio value // internal use only

 x x-value // x value of where pipe connects to sewer

 y y-value // y value of where pipe connects to sewer

 z z-value // internal use only

 data { // key word - geometry of the property control

 x-value y-value z-value radius bulge

 " " "

 " " "

 }

 house_connection { // warning - house connections may change in future versions

 name text // house connection name

 hcb integer // user given integer

 colour colour_name

 grade value // grade of connection in units of "1v in"

 depth value

 diameter value

 side left or right

 length value

 type text // connection type

 material text // material type

 bush text // bush type
Page 34 12da Definition for each String Type

Chapter 1 12d Archive File Format
 level value

 adopted_level value

 chainage chainage // internal use only

 ip value // internal use only

 ratio value // internal use only

 x x-value // x value of where pipe connects to sewer

 y y-value // y value of where pipe connects to sewer

 z z-value // internal use only

 }

} // end of drainage-sewer data

Continue to 1.4.4 Face String or return to 1.4 12da Definition for each String Type or 1 12d
Archive File Format.
Page 3512da Definition for each String Type

12d Model Reference Manual
1.4.4 Face String
string face {

 model model_name name string_name

 colour colour_name style style_name

 chainage start_chainage breakline point or line

 hatch_angle value

 hatch_distance value

 hatch_colour colour

 edge_colour colour

 fill_mode 0 or 1

 edge_mode 0 or 1

 data { // keyword

 x-value y-value z-value

 " " "

 }

}

Continue to 1.4.5 Feature String or return to 1.4 12da Definition for each String Type or 1 12d
Archive File Format.
Page 36 12da Definition for each String Type

Chapter 1 12d Archive File Format
1.4.5 Feature String
string feature {

 model model_name name string_name

 colour colour_name style style_name

 chainage start_chainage interval value radius value

 zcentre value xcentre value ycentre value

}

Continue to 1.4.6 Interface String or return to 1.4 12da Definition for each String Type or 1 12d
Archive File Format.
Page 3712da Definition for each String Type

12d Model Reference Manual
1.4.6 Interface String
string interface {

 chainage start_chainage

 model model_name name string_name

 colour colour_name style style_name

 breakline point or line

 data { // keyword

 x-value y-value z-value mode

 " " " " // mode = -1 cut
 " " " " // 0 surface

 } // 1 fill

}

Continue to 1.4.7 Plot Frame String or return to 1.4 12da Definition for each String Type or 1 12d
Archive File Format.
Page 38 12da Definition for each String Type

Chapter 1 12d Archive File Format
1.4.7 Plot Frame String
Plot frames can be written out and read in from a 12da file.

string plot_frame {

 name frame_name

 title_file filename

 border 0 or 1

 viewport 0 or 1

 user_title_file 0 or 1

 title_1 text

 title_2 text

 plot_file filename

 text_size mm

 sheet_code text

 width value

 height value

 scale value

 rotation value

 xorigin value

 yorigin value

 left_margin mm

 right_margin mm

 top_margin mm

 bottom_margin mm

 plotter text

 colour colour

 textstyle textstyle_name

}

Continue to 1.4.8 Super String or return to 1.4 12da Definition for each String Type or 1 12d
Archive File Format.
Page 3912da Definition for each String Type

12d Model Reference Manual
1.4.8 Super String
Because the super string is so versatile, its 12da format looks complicated but it is very logical
and actually quite simple.

In its most primitive form, the super string is simply a set of (x,y) values as in a 2d string, or (x,y,z)
values as in a 3d string, or (x,y,z,radius,bulge_flag) as for a polyline string or even lines, arcs and
transitions (spirals and non-spiral transitions).

Additional blocks of information can extend the definition of the super string. For example, text,
pipe diameters and visibility.

Some of the properties of the super string extend what were constant properties for the entire
string in other string types. For example, breakline type for the string extends to tinability of
vertices and segments. One colour for the string extends to individual colours for each segment.

Other properties such as vertex id’s (point numbers), visibility and culvert data are entirely new.

For user attributes, the super string still has the standard user attributes defined for the entire
string, but user attributes for each vertex and segment are also supported.

The definition of a closed string has been refined for polyline and super strings. For other string
types, closing a string simply meant having the first vertex the same as the last vertex. Hence the
vertex was duplicated.

For a super string, being closed is a property of the string and no extra vertex is needed. That is,
the first and the last vertices are not the same for a closed super string and the super string
knows there is an additional segment from the last vertex back to the first vertex.

Hence in the 12da format, there is a closed flag for the super string:

 closed true or false

where true can be 1 or T or t or Y or y (or words starting with T, t, Y or y))
and false is 0 or F or f or N or n (or words starting with F, f, N or n.

Thus if a string has n vertices, then an open string has n-1 segments joining the vertices and a
closed string has n segments since there is an additional segment from the last to the first vertex.

With the additional data for vertices and segments in the super string, the data is in vertex or
segment order. So for a string with n vertices, there must be n bits of vertex data. For segments,
if the string is open then there only needs to be n-1 bits of segment data but for closed strings,
there must be n bits of data. For an open string, n bits of segment data can be specified and the
nth bit will be read in and stored. If the string is then closed, the nth bit of data will be used for the
extra segment.
Page 40 12da Definition for each String Type

Chapter 1 12d Archive File Format
Vertices and Segments Forming the Super String

first
second

vertex 3

vertex 4

vertex 5
vertex 6

vertex n-1

vertex n

vertex

first segment
(a straight)

second segment
(an arc)

segment 3
(a straight)

segment 4
(a transition)

segment 5
(an arc)

segment n-1
(a straight)

vertex

segment n
(only if the string is closed)

The full 12da definition of the super string is:

string super {

 chainage start_chainage

 model model_name name string_name

 colour colour_name style style_name

 breakline point or line

 closed true or false

 interval {

 chord_arc value // chord-to-arc tolerance for curves

 distance value // chainage interval to break the geometry up

 }

 block of info {

 }

 block of info {

 }

 block of info {
Page 4112da Definition for each String Type

12d Model Reference Manual
 }

}

The blocks of info can be broken up into four types.

(a) blocks defining the position of the vertices in x, y and z

data_2d or data_3d. See 1.4.8.1 Blocks Defining the Position of the Vertices in x, y and z.

(b) blocks defining the geometry of the segments

radius_data and major_data or geometry_data.

See 1.4.8.2 Blocks Defining the Geometry of the Segments.

(c) a superseded block defining vertices and segment geometry data

See 1.4.8.3 Block Defining Both the Vertices and Segments - Superceded.

(d) extra information for the vertices and/or segments

These include blocks for colour of each segment, vertex ids, round pipe diameters, culvert
widths and heights etc.

See 1.4.8.4 Other Blocks.

The definition for the blocks of each type now follows.

1.4.8.1 Blocks Defining the Position of the Vertices in x, y and z

For (x, y) Values with a Constant z

If there is only (x,y) values at each vertex (like a 2d string):

 data_2d { // keyword

 x-value y-value

 " "

 " "

 }

and if there is a non-null constant z for the string

 z value

Without any more information, the segments will default to being straight lines.

If some of the segments in the super string are not straights (arcs, transitions or offset transitions)
then either the radius_data and major_data blocks, OR the geometry_data block must also be
used.

For (x,y,z) Values

If there is (x,y,z) values at each vertex (like a 3d string):

 data_3d { // keyword

 x-value y-value z-value

 " " "

 " " "

 }

Without any more information, the segments will default to being straight lines.
Page 42 12da Definition for each String Type

Chapter 1 12d Archive File Format
If some of the segments in the super string are not straights (arcs, transitions or offset transitions)
then either the radius_data and major_data blocks, OR the geometry_data block must also be
used.

1.4.8.2 Blocks Defining the Geometry of the Segments
If the segments only includes arcs and straights, then the radius_data and major_data blocks can
be used. See 1.4.8.2.1 Straights and Arcs Only for the Segments

If the segments include transitions or offset transitions, then the geometry_data block must be
used. See 1.4.8.2.2 Straights, Arcs, Transitions and Offset Transitions for the Segments

1.4.8.2.1 Straights and Arcs Only for the Segments
If either data_2d or data_3d was used to defined the points at the ends of the segments and
some of the segments are arcs and there are no transitions, then the radius information for the
segments is given in the radius_data and major_data blocks.

There must be a value for each segment and if a segment is a straight, a radius of zero (0) is
used.

 radius_data { // keyword

 radius for first segment

 radius for second segment

 ...
 radius for last segment

 }

 major_data { // keyword

 bulge flag for first segment

 bulge flag for second segment

 ...
 bulge flag for last segment

 }

1.4.8.2.2 Straights, Arcs, Transitions and Offset Transitions for the
Segments

If either data_2d or data_3d was used to defined the points at the ends of the segments and
some of the segments are transitions, then the geometry for each segment must be given in a
geometry_data block.

 geometry_data {

 segment_info_1 {

 information on the first segment

 }

 segment_info_2 {

 information on the second segment
Page 4312da Definition for each String Type

12d Model Reference Manual
 }

 " "

 " "

 segment_info_n-1 { // the last segment if it is open

 information on the (n-1) segment

 }

 segment_info_n { // the last segment if it is closed

 information on the n-th segment

 }

 }

where the segment_info blocks are from the following:

1. straight

 See 1.4.8.2.2.1 Straight

2. arc

 See 1.4.8.2.2.2 Arc

3. transition with no offset

See 1.4.8.2.2.3 Spiral - spiral and non-spiral transitions without offsets

4. transitions with or without offsets

 See 1.4.8.2.2.4 Curve block - Transition and Offset Transitions

1.4.8.2.2.1 Straight

No parameters are needed for defining a straight segment. The straight block is simply:

 straight { // no parameters are needed for a straight

 }

1.4.8.2.2.2 Arc

There are four possibilities for an arc of a given radius placed between two vertices.

We use positive and negative radius, and a flag major which can be set to 1 (on) or off (0) to
differentiate between the four possibilities.

Arc with major 1 (on)

Arc with major 0 (off) (default)

Arcs with same radius but with major on or off

start
vertex

end
vertex

Arc with major 1 (on)

Arc with major 0 (off) (default)

Arcs with +ve radius

Arcs with -ve radius
Page 44 12da Definition for each String Type

Chapter 1 12d Archive File Format
So the arc block is:

 arc {

 radius value // radius of the arc (+ve is above the line connecting the vertices)

 major 0 or 1 // 0 is the smaller arc, 1 the larger arc).

 }

1.4.8.2.2.3 Spiral - spiral and non-spiral transitions without offsets

There can be a partial transition between adjacent vertices. The partial transition is defined by
the parameters

 l1 length of the full transition up to the start vertex

 r1 radius of the transition at the start vertex

 a1 angle in decimal degrees of the tangent to the transition at the start vertex

 l2 length of the full transition up to the end vertex

 r2 radius at the end vertex

 a2 angle in decimal degrees of the tangent to the transition at the end vertex

Since a radius can not be zero, a radius of infinity is denoted by zero.

The transition is said to be a leading transition if the absolute value of the radius is increasing
along the direction of the transition (the transition will tighten). Otherwise it is a trailing
transition.

If a leading transition is a full transition then r1 = 0 and l1 = 0. Similarly if a trailing transition is
a full transition then r2 = 0 and l2 = 0.

For a partial transition, if the coordinates of the start of the full transition are needed then they
can be calculated from l1,r1,a1, l2,r2,a2 and the coordinates of the start and end vertices.

Note that the radii can be positive or negative. If the radii’s are positive then a leading
transition will curl to the right (and will be above the line joining the start and end vertices).

l2 - l1 = the length of transition
from the start vertex to
the end vertex

start
vertex

end
vertex

partial transition segment between
the super alignment vertices

Example of a Leading Partial Transition with Positive Radii
i.e. radius increases along the transition

start of full transition
(radius of infinity
but will be denoted
as a radius of 0)

l1 = length of the
full transition before
the start vertex

r1 = radius at
start vertex

r2 = radius at
end vertex

l2 = length of the
full transition up to
end vertex

a2 = angle of the tangent
to the transition at end vertex

a1 = angle of the tangent
to the transition at start vertex

The parameters for the spiral block are:

spiral {

 type value // type can be clothoid, cubic parabola, westrail-cubic,
// cubic spiral, natural clothoid, bloss,

// bloss, sinusoidal, cosinusoidal

 leading 1 or 0 // 1 denotes a leading transition, 0 a trailing transition
Page 4512da Definition for each String Type

12d Model Reference Manual
 l1 value // length of the full transition at start vertex

 r1 value // radius at the start vertex

 a1 value // angle in decimal degrees of the tangent to the transition

// at the start vertex

 l2 value // length of the full transition at end vertex

 r2 value // radius at end vertex

 a2 value // angle in decimal degrees of the tangent to the transition

// at the end vertex

}

1.4.8.2.2.4 Curve block - Transition and Offset Transitions

The curve block can be used in place of the spiral block and covers transitions with both zero
not zero offsets.

An offset transition is a fixed perpendicular offset (offset_real) of a base transition where
the base transition is a Euler spiral (or a certain approximation to it) or some other specially
defined curve. The base transition has a start point where the absolute radius of the curve is
infinity and then has a continuously decreasing absolute radius as you continue along the
curve (this may be in a forward or reverse direction).

The base transition is defined by giving its starting point (xorigin, yorigin) where the radius
is infinity and the angle of the tangential line at the start point is
angle_decimal_degrees_real and the fact that the radius radius_real occurs at a given
curve length length_real along the base transition.

The offset transition is a fixed offset (offset_real) from the base transition and goes from a
start point that is specified by giving the length on the base transition where the start point
drops perpendicularly onto the base transition (start_length_real) and to the end point that is
specified by length on the base transition where the end point drops perpendicularly onto the
base transition (end_length_real). The offset can be positive or negative.

If you are travelling along the curve in a forward direction (increasing chainage) then the base
transition is said to be a leading transition if the absolute radius decreases as you go along
the curve, and a trailing transition if the absolute radius decreases.

The end radius can be positive or negative.

If you are travelling along the curve in a forward direction then for a leading transition, if the
end radius is positive then the curve curls to the right, and for a negative end radius, the
curve curls to the left.
Page 46 12da Definition for each String Type

Chapter 1 12d Archive File Format
start of base transition

(xorigin,yorigin)

(where the radius is infinity)

end of base transition
The radius at this point

length on the base transition of the
end of the offset transition dropped
onto the base transition (end_length_real)

length on the base transition of the
start of the offset transition dropped
onto the base transition (start_length_real)

offset transition

start of offset transition

end of offset
transition

offset of offset transition
from base transition
(offset_real)straight

is radius_real and the
curve length is length_real.

angle_decimal_degrees_real

Leading Offset Transition
with Negative Radius
and Positive Offset

dire
cti

on of

incre
asin

g

ch
ainag

e

Note: when the offset is zero, the offset transition is a standard transition which is then the
same as the curves in the spiral block.

The curve block covers both spiral and non-spiral transitions with a zero or non zero offset.

The parameters for the curve block are:

curve {
 type transition_type // any of the transitions supported in 12d Model

 leading 1 or 0 // 1 denotes a leading transition, 0 a trailing transition

 xorigin value // (xorigin,yorigin) is the origin of the base transition

 yorigin value // That is, where the radius is infinity

 radius value // radius is the radius at the end of the base transition
// If radius is positive, the curve goes to the right when
// travelling in decreasing absolute radius

 length value // length is the curve length to the end of the base transition

 start value // start is the curve length on the base transition where the
// end of the offset transition drops perpendicularly onto the
// base transition

 end value // end is the curve length on the base transition where the
// start of the offset transition drops perpendicularly onto the
// base transition

 angle value // angle in decimal degrees is the angle of the tangent of the
// base transition at the origin of the base transition.
// It is measured in decimal degrees in a counter clockwise
// direction from the positive x-axis

 offset value // offset is the perpendicular offset distance of the offset
// transition from the base transition.
Page 4712da Definition for each String Type

12d Model Reference Manual
// For a leading transition, a positive value offsets from the
// base transition to the right and a negative value offsets it
// to the left, as you travel in a forward direction.

 mvalue value // if the transition is a cubic parabola then mvalue is the
// mvalue for the cubic parabola. Otherwise mvalue is zero.

}

Notes

1. The spiral block covers both spiral and non-spiral transitions without offsets.

1. The cur ve block covers both spiral and non-spiral transitions with and without offsets.

2. The transitions/spirals supported by 12d Model are:

Clothoid - spiral approximation used by Australian road authorities and Queensland Rail.

Cubic parabola – special transition curve used by NSW railways. Not a spiral.

Westrail cubic – spiral approximating used by WA railways.

Cubic spiral – low level spiral approximation. Only ever used in surveying textbooks.

Natural Clothoid – the proper Euler spiral. Not used by any authority.

Bloss – special transition used by Deutsche Bahn. Not a spiral.

Sinusoidal - special transition. Not a spiral.

Cosinusoidal - special transition. Not a spiral.

1.4.8.3 Block Defining Both the Vertices and Segments - Superceded
For compatibility with the polyline, the data block gives the (x,y,z,radius,bulge) values at each
vertex of the string and so defines both the vertices and the geometry of the segments in the one
block.

 data { // keyword

 x-value y-value z-value radius bulge

 " " "

 " " "

 }

A radius of zero (0) is used to denote a straight segment.

This block is now superceded although it may still exist in older 12da files.
Page 48 12da Definition for each String Type

Chapter 1 12d Archive File Format
1.4.8.4 Other Blocks
See

1.4.8.4.1 Colour

1.4.8.4.2 Vertex Id’s (Point Numbers)

1.4.8.4.3 Pipe Diameters

1.4.8.4.4 Culvert Dimensions

1.4.8.4.5 Justification for Pipe or Culverts

1.4.8.4.6 Tinability

1.4.8.4.7 Visibility

1.4.8.4.8 Vertex Text and Vertex Annotation

1.4.8.4.9 Segment Text and Segment Annotation

1.4.8.4.10 Symbols

1.4.8.4.11 Vertex Attributes

1.4.8.4.12 Segment Attributes

1.4.8.4.1 Colour

There can be one colour for the entire super string which is given by the colour command at
the beginning of the string definitions (before the blocks of information) or the colour varies for
each segment of the super string and is specified in a colour_data block.

 colour_data { // keyword

 colour for first segment

 colour for second segment

 ...
 colour for last segment

 }

1.4.8.4.2 Vertex Id’s (Point Numbers)
Each vertex can have a vertex id (point number). This is not the order number of the vertex in the
string but is a separate id which is usually different for every vertex in every string. The vertex id
can be alphanumeric.

 point_data { // keyword

 vertex id or first vertex // alphanumeric

 vertex id for second vertex

 ...
 vertex id for last vertex

 }

1.4.8.4.3 Pipe Diameters
There can be one pipe diameter value for the entire super string or the pipe diameter varies for
each segment of the super string.

 diameter_value value

or

 diameter_data { // keyword
Page 4912da Definition for each String Type

12d Model Reference Manual
 pipe diameter for first segment

 pipe diameter for second segment

 ...
 pipe diameter for last segment

 }

1.4.8.4.4 Culvert Dimensions

There can be one culvert width and height for the entire super string or the culvert width and
height vary for each segment of the super string.

 culvert_value {

 width value
 height value
 }

or

 culvert_data { properties {width value // width and height for first segment
 height value
 }

 properties {width value // width and height for second segment
 height value
 }

 ...
 properties {width value // width and height for last segment
 height value
 }

 }

Note that one super string cannot have both pipe diameters and culvert dimensions.

1.4.8.4.5 Justification for Pipe or Culverts

There can be only one justification for the pipe or culvert for the entire super string.

 justify justification // bottom or invert
// top or obvert
// centre (default)

1.4.8.4.6 Tinability
For a super string, the concept of breakline has been extended to a property called tinable which
can be set independently for each vertex and each segment of the super string.

If a vertex is tinable, then the vertex is used in triangulations. If the vertex is not tinable, then the
vertex is ignored when triangulating.

If a segment is tinable, then the segment is used as a side of a triangle during triangulation. This
may not be possible if there are crossing tinable segments.

 vertex_tinable_data { // keyword
Page 50 12da Definition for each String Type

Chapter 1 12d Archive File Format
 tinable flag for first vertex // 1 for tinable

 tinable flag for second vertex // 0 for not tinable

 ...
 tinable flag for last vertex

 segment_tinable_data { // keyword

 tinable flag for first segment // 1 for tinable

 tinable flag for second segment // 0 for not tinable

 ...
 tinable flag for last segment

 }

Note that even if a segment is set to tinable, is can only be used if both its end vertices are also
tinable.

1.4.8.4.7 Visibility
For a super string, the concept of visibility and invisibility for vertices and segments has been
introduced.

 vertex_visible_data { // keyword

 visibility flag for first vertex // 1 for visible

 visibility flag for second vertex // 0 for invisible

 ...
 visibility flag for last vertex

 }

 segment_visible_data { // keyword

 visibility flag for first segment // 1 for visible

 visibility flag for second segment // 0 for invisible

 ...
 visibility flag for last segment

 }

1.4.8.4.8 Vertex Text and Vertex Annotation
There can be the same piece of text for every vertex in the super string or a different text for each
vertex of the super string. How the text is drawn is specified by vertex annotation values. Note
that in vertex annotations, all vertices must be either worldsize or all vertices papersize. That is,
worldsize and papersize can not be mixed - the first one found is used for all vertices.

 vertex_text_value text

or

 vertex_text_data { // keyword

 text for first vertex // text string, enclose

 text for second vertex // by " " if there are any
Page 5112da Definition for each String Type

12d Model Reference Manual
 ... // spaces in the text string

 text for last vertex

 }

 vertex_annotate_value { // keyword

 angle value offset value raise value

 textstyle textstyle_name slant degrees xfactor value

worldsize value or papersize value or screensize value

 justify "top|middle|bottom-left|centre|right"

colour colour_name

 }
or

 vertex_annotate_data { // keyword

 properties { angle value offset value raise value

 textstyle textstyle slant degrees xfactor value

 worldsize value or papersize value or screensize value

 justify "top|middle|bottom-left|centre|right"

 colour colour_name

 }

 properties { text properties second vertex

 }

 properties { ...

 }

 properties { text properties for last vertex

 }

 }

1.4.8.4.9 Segment Text and Segment Annotation
There can be the same piece of text for every segment in the super string or a different text for
each segment of the super string. How the text is drawn is specified by segment annotation
values. Note that in segment annotations, all segments must be either worldsize or all segments
papersize. That is, worldsize and papersize can not be mixed - the first one found is used for all
segments. However, vertex text and segment text do not both have to be papersize or worldsize.

 segment_text_value text

or

 segment_text_data { // keyword

 text for first segment // text string, enclose

 text for second segment // by " " if there are any

 ... // spaces in the text string

 text for last segment
Page 52 12da Definition for each String Type

Chapter 1 12d Archive File Format
 }

 segment_annotate_value { // keyword

 angle value offset value raise value

 textstyle textstyle slant degrees xfactor value

worldsize value or papersize value or screensize value

 justify "top|middle|bottom-left|centre|right"

colour colour_name

 }
or

 segment_annotate_data { // keyword

 properties { angle value offset value raise value

 textstyle textstyle slant degrees xfactor value

worldsize value or papersize value or screensize value

 justify "top|middle|bottom-left|centre|right"

 colour colour_name

 }

 properties { text properties second segment

 }

 properties { ...

 }

 properties { text properties for last segment

 }

 }

1.4.8.4.10 Symbols
There can be the same symbol (defined as a linestyle) for every vertex in the super string or a
different symbol for each vertex of the super string. If a symbol does not have a colour, then it
uses the string colour or the segment colour.

 symbol_value { // keyword

 style linestyle_name colour colour_name size value

 rotation value // in dms

offset value raise value

 }
or

 symbol_data { // keyword

 properties { style linestyle_name colour colour_name size value

 style linestyle colour colour size value
Page 5312da Definition for each String Type

12d Model Reference Manual
 rotation value // in dms

offset value raise value

 }

 properties { symbol and properties for second vertex

 }

 properties { ...

 }

 properties { symbol and properties for last vertex

 }

 }

1.4.8.4.11 Vertex Attributes
Each vertex can have one or more user defined named attributes.

 vertex_attribute_data { // key word

 attributes { attribute_type attribute_name attribute_value

 attribute_type attribute_name attribute_value

 ...
 attribute_type attribute_name attribute_value

 }

 attributes { named attributes for second vertex

 }

 attributes { ...

 }

 attributes { named attributes for last vertex

 }

 }

1.4.8.4.12 Segment Attributes
Each segment can have one or more user defined named attributes.

 segment_attribute_data { // keyword

 attributes { attribute_type attribute_name attribute_value

 attribute_type attribute_name attribute_value

 ...
 attribute_type attribute_name attribute_value

 }

 attributes { named attributes for second segment

 }

 attributes { ...
Page 54 12da Definition for each String Type

Chapter 1 12d Archive File Format
 }

 attributes { named attributes for last segment

 }

 }
Continue to 1.4.9 Super Alignment String or return to 1.4 12da Definition for each String Type or
1 12d Archive File Format.
Page 5512da Definition for each String Type

12d Model Reference Manual
1.4.9 Super Alignment String
In an alignment string, only the intersection point method (IP’s) could be used to construct the
horizontal and vertical geometry. The IP definition is actually a constructive definition and the
tangents points and segments between the tangent points (lines, arcs, transitions etc.) are
calculated from the IP definition. For an alignment string, only the IP definitions are included in
the 12da file.

For a super alignment, the horizontal and vertical geometry are also defined separately and
with construction definitions but the construction definition can be much more complex than just
IP’s. For example, an arc could be defined as being tangential to two offset elements, or
constrained to go through a given point.

If the horizontal construction methods are consistent then the horizontal geometry can be solved,
and the horizontal geometry expressed in terms of consecutive segments (lines, arcs,
transitions) that are easily understood and drawn.

Similarly if the vertical construction methods are consistent then the vertical geometry can be
solved, and the vertical geometry expressed in terms of consecutive segments (lines, arcs,
parabolas) that are easily understood and drawn.

Unlike the alignment, the super alignment stores both the construction methods (the parts)
and the resulting vertices and segments (lines, arcs, transitions etc.) that make up the
horizontal and vertical geometry (the data).

For many applications such as uploading to survey data collectors or machine control devices,
only the horizontal data and the vertical data are required, not the construction methods (i.e.
the horizontal and vertical parts). When reading the 12da of a super alignment, only the
horizontal and vertical data needs to be read in and the constructive methods (the horizontal
and vertical parts) can be skipped over.

Vertices and Segments Forming the
Horizontal Data for a Super Alignment

first
second

vertex 3

vertex 4

vertex 5
vertex 6

vertex n-1

vertex n

vertex

first segment
(a straight)

second segment
(an arc)

segment 3
(a straight)

segment 4
(a transition)

segment 5
(an arc)

segment n-1
(a straight)

vertex

segment n
(only if the string is closed)
Page 56 12da Definition for each String Type

Chapter 1 12d Archive File Format
Notes

1. Just using the horizontal and vertical data is valid as long as the super alignment
geometry is consistent and solves, and the horizontal and vertical parts can be then
created.

There are flags in the 12da of the super alignment to say that the horizontal and vertical
geometry is consistent and solves.

2. Segments meeting at a common vertex do not have to be tangential although for most road
and rail applications, they should be.

The full 12da definition of the super alignment is:

string super_alignment {
//

 name string_name

 chainage start_chainage

 colour colour_name

 style style_name

 breakline point or line

 closed true or false

 spiral_type transition_type // the spiral_types are clothoid,
// cubic parabola, westrail-cubic,
// cubic spiral,
// natural clothoid, bloss, sinusoidal
// and cosinusoidal. Note that some
// spiral_type’s are non-spiral
// transitions

 valid_horizontal true or false // if true then the horizontal geometry
// is consistent and solves

 valid_vertical true or false // if true then the horizontal geometry
// is consistent and solves

 block of info {

 }

 block of info {

 }

 block of info {

 }

} // end of super alignment

where the block of info can be one of more of:

 attributes, horizontal_parts, horizontal_data, vertical_parts, vertical_data.
Page 5712da Definition for each String Type

12d Model Reference Manual
The attributes block has been described in the earlier section 1.2 Attributes.

The structure of the blocks horizontal_parts, horizontal_data which define the horizontal
geometry, and vertical_parts and vertical_data which define the vertical geometry will now be
described in more detail.

For information on horizontal geometry, go to 1.4.9.1 Horizontal Geometry

 vertical geometry 1.4.9.2 Vertical Geometry

1.4.9.1 Horizontal Geometry
The horizontal geometry is described by two blocks - the horizontal_parts block and the
horizontal_data block.

The horizontal_parts block contains the methods to construct the horizontal geometry such as
float (fillet) an arc of a certain radius between two given lines or create a transition (spiral or non-
spiral transition) between a line and an arc.

If the horizontal construction methods are consistent, then they can be solved to form a string
made up of lines, arcs and transitions. The horizontal_data block is simply a list of the vertices
and segments (lines, arcs etc.) that make up the solved geometry.

If the geometry in the horizontal_parts can be solved and produces a valid horizontal_data
block, then the flag valid_horizontal in the super_alignment block is set to true.

 valid_horizontal true or false //true if the horizontal geometry can be solved
 // and hence create a valid horizontal_data

 horizontal_parts {/ // methods for creating the horizontal geometry

 }
 horizontal_data { // the horizontal segments that make up the

// solved geometry

 }

For information on horizontal_parts, go to the section 1.4.9.1.1 Horizontal_parts

 horizontal_data 1.4.9.1.3 Horizontal_data
Page 58 12da Definition for each String Type

Chapter 1 12d Archive File Format
1.4.9.1.1 Horizontal_parts
The horizontal_parts block describes the methods used to construct the horizontal geometry of
the super alignment. The parts that make up the horizontal geometry are defined in chainage
order from the start to the end of the super alignment.

 horizontal_parts { // methods for creating the horizontal geometry

 blocks defining the sequential parts

 making up the horizontal geometry

 }

Apart from the special case of parts defined by horizontal intersection points and their
accompanying transitions and arcs, the other parts in the horizontal_parts block are not
documented.

1.4.9.1.2 Horizontal_parts for defined by IP Method Only
For a horizontal intersection point (HIP) with no transitions or arc defined at that HIP, the part is
defined by:

 ip {
 id value // part id - a number that is unique for each horizontal and

// vertical part, and the value of part id is a multiple of 100

 x value // x coordinate of the horizontal intersection point

 y value // y coordinate of the horizontal intersection point

 }

For a horizontal intersection point (HIP) with an arc but no transitions defined at that HIP, the part
is defined by

 arc {
 id value // part id - a number that is unique for each horizontal and

// vertical part, and the value of part id is a multiple of 100

 r value // radius of the arc at the HIP

 x value // x coordinate of the HIP

 y value // y coordinate of the HIP

 }

For a horizontal intersection point (HIP) with an arc and transitions defined at that HIP, the part is
defined by

 spiral {
 id value // part id - a number that is unique for each horizontal and

// vertical part, and the value of part id is a multiple of 100

 r value // radius of the arc at the HIP

 l1 value // length of the leading transition at the HIP

 l2 value // length of the trailing transition at the HIP

 x value // x coordinate of the HIP

 y value // y coordinate of the HIP
Page 5912da Definition for each String Type

12d Model Reference Manual
 }
Note that the transition used in the spiral block is given by spiral_type in the super_alignment
block.

Hence a super alignment with horizontal geometry defined by IP methods only would consist of a
horizontal_parts section with only the above ip, arc and spiral blocks in it.

horizontal_parts {

 ip_spiral_arc {

values // values defining the ip_spiral_arc
block

"

values

 }

 ip_spiral_arc {

values // values defining the ip_spiral_arc
block

"

values

}

For example,
Page 60 12da Definition for each String Type

Chapter 1 12d Archive File Format
HIP with arc and
leading and trailing
transitions

horizontal_parts {
 ip {
 id 100
 x 42606.66161172
 y 37239.28824481
 }

 ip {
 id 200
 x 43134.36832349
 y 37330.26705997
 }

 spiral {
 id 300
 r 50
 l1 30
 l2 40
 x 43336.6595
 y 37469.2563
 }

 arc {
 id 400
 r 75
 x 43481.15324268
 y 37331.6431906
 }

 ip {
 id 500
 x 43627.02308964
 y 37544.94343852
 }
}

1st HIP
HIP only

2nd HIP
HIP only

3rd HIP

4th HIP
HIP with arc only

5th HIP
HIP only

Horizontal Parts with IP Methods Only

Plan View of Super Alignment

Super Alignment Being Edited

Unique Part id
incrementing by 100
Page 6112da Definition for each String Type

12d Model Reference Manual
1.4.9.1.3 Horizontal_data
The horizontal_data block contains the solved horizontal geometry of the super alignment.

The solved horizontal geometry is made up of a series of (x,y) vertices given in a data_2d block
followed by a geometry_data block specifying the geometry of the segments between adjacent
vertices. The segment can be a straight line, an arc, a transition (e.g. a spiral) a partial transition,
an offset transition or a partial offset transition.

If the horizontal geometry has n vertices, then there will be (n-1) segments for an open super
alignment or n segments if the super alignment is closed.

The format of the horizontal_data block is:

horizontal_data {

 name ""

 chainage value

 breakline line or point

 colour colour

 style linestyle

 closed 0 or 1 // 0 if the string is open, 1 if it is closed

 interval {

 chord_arc value // chord-to-arc tolerance for curves

 distance value // chainage interval to break the geometry up

 }

 data_2d {

 x1-value y1-value // coordinates of the first vertex

 x2-value y2-value // coordinates of the second vertex

 " "

 " "

 xn-value yn-value // coordinates of the n-th vertex

 }

 geometry_data {
 segment_info_1 {

 information on the first segment

 }

 segment_info_2 {

 information on the second segment

 }

 " "

 " "

 segment_info_n-1 { // the last segment if it is open
Page 62 12da Definition for each String Type

Chapter 1 12d Archive File Format
 information on the (n-1) segment

 }

 segment_info_n { // the last segment if it is closed

 information on the n-th segment

 }

 }
where the segment_info blocks are the same as for the geometry_data block in a super string.
See 1.4.8.2 Blocks Defining the Geometry of the Segments.
Page 6312da Definition for each String Type

12d Model Reference Manual
1.4.9.2 Vertical Geometry
The vertical geometry is described by two blocks - the vertical_parts block and the vertical_data
block.

The vertical_parts block contains the methods to construct the vertical geometry such as float
(fit) a parabola of a certain length between two given lines.

If the vertical construction methods are consistent, then they can be solved to form a string made
up of lines, parabolas and arcs. The vertical_data block is simply a list of the vertices and
segments (lines, parabolas and arcs) that make up the solved geometry.

If the geometry in the vertical_parts can be solved and produces a valid vertical_data block,
then the flag valid_vertical in the super_alignment block is set to true.

 valid_vertical true or false/ //true if the vertical geometry can be solved and
// hence create a valid vertical_data

 vertical_parts { // methods for creating the vertical geometry

 }
 vertical_data { // the vertical geometry

 }

For information on vertical_parts, go to the section 1.4.9.2.1 Vertical_parts

vertical_data 1.4.9.2.3 Vertical_data

1.4.9.2.1 Vertical_parts
The vertical_parts block describes the methods used to construct the vertical geometry of the
super alignment. The parts that make up the vertical geometry are defined in chainage order
from the start to the end of the super alignment.

 vertical_parts { // methods for creating the vertical geometry

 blocks defining the sequential parts

 making up the vertical geometry

 }

 Apart from the special case of parts defined by vertical intersection points and their
accompanying parabolas and arcs, the other parts in the vertical_parts block are undocumented.
Page 64 12da Definition for each String Type

Chapter 1 12d Archive File Format
1.4.9.2.2 Vertical_parts When Defined by IP Method Only
For a vertical intersection point (VIP) with no parabola or arc defined at that VIP, the part is
defined by:

 ip {
 id value // part id - a number that is unique for each horizontal and

// vertical part, and the value of part id is a multiple of 100

 x value // chainage coordinate of the VIP

 y value // height coordinate of the VIP

 }

For a vertical intersection point (VIP) with a parabola defined by a k value at that VIP, the part is
defined by

 kvalue {
 id value // part id - a number that is unique for each horizontal and

// vertical part, and the value of part id is a multiple of 100

 k value // k-value of the parabola at the VIP

 x value // chainage coordinate of the VIP

 y value // height coordinate of the VIP

 }

For a vertical intersection point (VIP) with a parabola defined by length at that VIP, the part is
defined by

 length {
 id value // part id - a number that is unique for each horizontal and

// vertical part, and the value of part id is a multiple of 100

 l value // length of the parabola at the VIP

 x value // chainage coordinate of the VIP

 y value // height coordinate of the VIP

 }

For a vertical intersection point (VIP) with a parabola defined by an effective radius at that VIP,
the part is defined by

 radius {
 id value // part id - a number that is unique for each horizontal and

// vertical part, and the value of part id is a multiple of 100

 r value // effective radius of the parabola at the VIP

 x value // chainage coordinate of the VIP

 y value // height coordinate of the VIP

 }

For a vertical intersection point (VIP) with an asymmetric parabola defined by the start and end
lengths at that VIP, the part is defined by
Page 6512da Definition for each String Type

12d Model Reference Manual
 length {
 id value // part id - a number that is unique for each horizontal and

// vertical part,
// and the value of part id is a multiple of 100

 l1 value // start length of the asymmetric parabola at the VIP

 l2 value // end length of the asymmetric parabola at the VIP

 x value // chainage coordinate of the VIP

 y value // height coordinate of the VIP

 }

For a vertical intersection point (VIP) with an arc defined by a radius at that VIP, the part is
defined by

 arc {
 id value // part id - a number that is unique for each horizontal and

// vertical part,
// and the value of part id is a multiple of 100

 r value // radius of the arc at the VIP

 x value // chainage coordinate of the VIP

 y value // height coordinate of the VIP

 }

Hence a super alignment with vertical geometry defined by IP methods only would consist of a
vertical_parts section with only the above ip, parabola and arc blocks in it.

vertical_parts {

 ip_parabola_arc {

values // values defining the ip_parabola_arc block

"

values

 }

 ip_parabola_arc {

values // values defining the ip_parabola_arc block

"

values

 }

}

For example,
Page 66 12da Definition for each String Type

Chapter 1 12d Archive File Format
vertical_parts {
 ip {
 id 600
 x -50.8459652
 y 159.79764161
 }
 kvalue {
 id 700
 k 1.25
 x 38.4627
 y 179.2126
 }
 length {
 id 800
 l 50
 x 172.61694837
 y 154.72967932
 }
 asymmetric {
 id 900
 l1 25
 l2 75
 x 270.0182
 y 208.1493
 }
 arc {
 id 1000
 r 1000
 x 424.2402
 y 196.5637
 }
 radius {
 id 1100
 r 200
 x 526.7263
 y 201.5302
 }
 ip {
 id 1200
 x 637.69216273
 y 198.71894484
 }
}

1st VIP
VIP only

2nd VIP
Parabola defined

5th VIP
Arc with radius

Vertical Parts with IP Methods Only

Section View of Super Alignment

Vertical Geometry Being Edited

by k value

3rd VIP
Parabola defined
by length

4th VIP
Asymmetric parabola defined
by two lengths

7th VIP
VIP only

6th VIP
Parabola defined
by effective radius

Unique Part id
incrementing by 100
Page 6712da Definition for each String Type

12d Model Reference Manual
1.4.9.2.3 Vertical_data
The vertical_data block contains the solved vertical geometry of the super alignment.

The solved vertical geometry is made up of a series of (chainage,height) vertices given in a
data_2d block followed by a geometry_data block specifying the geometry of the segments
between adjacent vertices. The segment can be a straight line, a parabola or an arc.

If the vertical geometry has n vertices, then there will be (n-1) segments for an open super
alignment or n segments if the super alignment is closed.

The format of the vertical_data block is:

vertical_data {

 name ""

 chainage value

 breakline line or point

 colour colour

 style linestyle

 closed 0 or 1 // 0 if the string is open, 1 if it is closed

 interval {

 chord_arc value // chord-to-arc tolerance for curves

 distance value // chainage interval to break the geometry up

 }

 data_2d {

 ch1-value ht1-value // coordinates of the first vertex

 ch2-value ht2-value // coordinates of the second vertex

 " "

 " "

 chn-value htn-value // coordinates of the n-th vertex

 }

 geometry_data {

 segment_info_1 {

 information on the first segment

 }

 segment_info_2 {

 information on the second segment

 }

 " "

 " "

 segment_info_n-1 { // the last segment if it is open

 information on the (n-1) segment

 }
Page 68 12da Definition for each String Type

Chapter 1 12d Archive File Format
 segment_info_n { // the last segment if it is closed

 information on the n-th segment

 }

 }

where the segment_info blocks are from the following:

(a) Straight

No parameters are needed for defining a straight segment. The straight block is simply:

 straight { // no parameters are needed for a straight

 }

(b) Arc

Since vertical geometry can’t go backwards in chainage value, the majors arcs can not be
used and hence there are only possibilities for an arc of a given radius placed between two
vertices.

We use positive and negative radius to differentiate between the four possibilities.

only arc with major 0 (off) is allowed

Arcs with same absolute radius

start
vertex

end
vertex

only the arc with major 0 (off) is allowed

Arc with +ve radius

Arc with -ve radius

So the arc block is:

 arc {

 radius value // radius of the arc (+ve is above the line connecting vertices)

 major value // this is ignored since only minor arcs are used

 }

(c) Parabola

There can be a parabola between adjacent vertices. The parabola is defined by giving the
coordinates of the vertical intersection point for the parabola

 chainage chainage of the VIP of the parabola

 height height of the VIP of the parabola
Page 6912da Definition for each String Type

12d Model Reference Manual
(chainage,height)

start
vertex

end
vertex

Vertical intersection point given by

Example of a Parabola

The parameters for the parabola block are:

 parabola {

 chainage value // chainage of the VIP of the parabola

 height value // height of the VIP of the parabola

 }

Continue to 1.4.10 Text String or return to 1.4 12da Definition for each String Type or 1 12d
Archive File Format.
Page 70 12da Definition for each String Type

Chapter 1 12d Archive File Format
1.4.10 Text String
string text {

 x value y value z value

 model model_name name string_name colour colour_name

 text text_value

 angle value offset value raise value

 textstyle textstyle_name slant degrees xfactor value

 worldsize value or papersize value or screensize value

 justify "top|middle|bottom-left|centre|right"

}

The string types in the following sections have been superceded.

Continue to 1.4.11 2d String or return to 1.4 12da Definition for each String Type or 1 12d Archive
File Format.
Page 7112da Definition for each String Type

12d Model Reference Manual
1.4.11 2d String
The 2d string has been superceded and has been replaced by the super string (see 1.4.8 Super
String).

string 2d {

 z value chainage start_chainage

 model model_name name string_name

 colour colour_name style style_name

 breakline point or line

 data { // keyword

 x-value y-value

 " "

 " "

 }

}

Continue to 1.4.12 3d String or return to 1.4 12da Definition for each String Type or 1 12d Archive
File Format.
Page 72 12da Definition for each String Type

Chapter 1 12d Archive File Format
1.4.12 3d String
The 3d string has been superceded and has been replaced by the super string (see 1.4.8 Super
String).

string 3d {

 chainage start_chainage

 model model_name name string_name

 colour colour_name style style_name

 breakline point or line

 data { // keyword

 x-value y-value z-value

 " " "

 " " "

 }

}

Continue to 1.4.13 4d String or return to 1.4 12da Definition for each String Type or 1 12d Archive
File Format.
Page 7312da Definition for each String Type

12d Model Reference Manual
1.4.13 4d String
The 4d string has been superceded and has been replaced by the super string (see 1.4.8 Super
String).

string 4d {

 angle value offset value raise value

 worldsize value or papersize value or screensize value

 chainage start_chainage

 model model_name name string_name

 colour colour_name style style_name

 breakline point or line

 textstyle text slant degrees xfactor value

 justify "top|middle|bottom-left|centre|right"

 data { // keyword

 x-value y-value z-value text // text can not be blank

 " " " " // use "" for no text.

 " " " "

 }

}

Continue to 1.4.14 Pipe String or return to 1.4 12da Definition for each String Type or 1 12d
Archive File Format.
Page 74 12da Definition for each String Type

Chapter 1 12d Archive File Format
1.4.14 Pipe String
The pipe string has been superceded and has been replaced by the super string (see 1.4.8
Super String).

string pipe {

 diameter value chainage start_chainage

 model model_name name string_name

 colour colour_name style style_name

 breakline point or line

 data { // keyword

 x-value y-value z-value

 " " "

 " " "

 }

}

Continue to 1.4.15 Polyline String or return to 1.4 12da Definition for each String Type or 1 12d
Archive File Format.
Page 7512da Definition for each String Type

12d Model Reference Manual
1.4.15 Polyline String
The polyline string has been superceded and has been replaced by the super string (see 1.4.8
Super String).

The definition of a closed string has been refined for polyline and super strings. For other string
types, closing a string simply meant having the first vertex the same as the last vertex. Hence the
vertex was duplicated.

For a polyline string, being closed is a property of the string and no extra vertex is needed - the
first and the last vertices are not the same and the polyline string knows there is an additional
segment from the last vertex back to the first vertex.

In the 12da format, there is a new closed flag for the polyline string:

 closed true or false

where true can be 1 or T or t or Y or y (or words starting with T, t, Y or y))
and false is 0 or F or f or N or n (or words starting with F, f, N or n.

string polyline {

 chainage start_chainage

 model model_name name string_name

 colour colour_name style style_name

 breakline point or line

 closed true or false

 data { // keyword

 x-value y-value z-value radius bulge_flag

 " " "

 " " "

 }

}

Continue to 1.4.16 Alignment String or return to 1.4 12da Definition for each String Type or 1 12d
Archive File Format.
Page 76 12da Definition for each String Type

Chapter 1 12d Archive File Format
1.4.16 Alignment String
The alignment string has been superceded and has been replaced by the super alignment (see
1.4.9 Super Alignment String).

In an alignment string the horizontal and vertical geometry are given separately and both can
only be defined by the intersection point method (IP’s).

For the horizontal geometry, the (x,y) position of the horizontal intersection points (HIPs) are
given in the order that they appear in the string, plus the circular radius and left and right
transition lengths on each HIP.

Hence a horizontal intersection point is given by either

x-value y-value radius // circular curve, no transition

or

x-value y-value radius spil1 left-transition-length spil2 right-transition-length

radius, left-transition-length, right-transition-length can be zero (meaning they don't exist).

For the vertical geometry, the (chainage,height) position of the vertical intersection points (VIPs)
are given in increasing chainage order, plus either the radius of the circular arc or the length of
the parabolic curve on each VIP.

Hence for a vertical intersection point is given by either

ch_value z-value length parabola

 or

ch_value z-value radius circle

where

the word parabola is optional. length and radius can be zero, meaning that the parabola or arc
doesn't exist.

string alignment {

 model model_name name string_name

 colour colour_name style style_name

 chainage start_chainage interval value

 draw_mode value // 1 to draw crosses at HIPs and VIPs, 0 don’t draw

 spiral_type text // spiral_type covers both spiral and non-spiral transitions.
// For an alignment string, the supported transition types
// are clothoid, cubic parabola, westrail-cubic, cubic spiral
// More transition are supported in the super alignment
//

 hipdata { // some hips must exist and precede the VIP data

 x-value y-value radius // or

 x-value y-value radius spil1 left-transition-length spil2 right-transition-length

 " " " " " " "

 }

 vipdata { // vips optional

 ch_value z-value parabolic-length // or

 ch_value z-value parabolic-length parabola // or

 ch_value z-value radius circle
Page 7712da Definition for each String Type

12d Model Reference Manual
 " " " "

 }

}

Continue to 1.4.17 Pipeline String or return to 1.4 12da Definition for each String Type or 1 12d
Archive File Format.
Page 78 12da Definition for each String Type

Chapter 1 12d Archive File Format
1.4.17 Pipeline String
The pipeline string has been superceded and has been replaced by the super alignment (see
1.4.9 Super Alignment String).

This is the same as an alignment string except that it has the additional keywords

diameter, which gives the diameter of the pipeline in world units
and

length of the typical pipe making up the pipeline (used for deflections).

string pipeline {

 model model_name name string_name

 colour colour_name style style_name

 diameter diameter length pipe-length

 chainage start_chainage interval value

 spiral_type text // spiral_type covers both spiral and non-spiral transitions
// supported by 12d. For an alignment string, the
// supported transition types are clothoid, cubic parabola,
// westrail-cubic, cubic spiral. Other transition types
// are supported in the super alignment

 hipdata { // some hips must exist and precede vips

 x-value y-value radius // or

 x-value y-value radius spil1 left-transition-length spil2 right-transition-length

 " " " " " " "

 }

 vipdata { // vips optional

 ch-value z-value parabolic-length // or

 ch-value z-value parabolic-length parabola // or

 ch-value z-value radius circle

 " " " "

 }

}

Return to 1.4 12da Definition for each String Type or 1 12d Archive File Format.
Page 7912da Definition for each String Type

12d Model Reference Manual
1.4.18 LAS Cloud String
string las_cloud_data {

 name // name

 colour // colour

 time_created text // optional - time first created

 time_updated text // optional - time last modified

 data_block or ref_data_block

}

The data block contains:

<data>

 category_block

 format_block

 range_block

 points_block

</data>

The category block contains categories tag and a list of boolean value (true or false).

categories {

 boolean_value boolean_value ... boolean_value

}

The range block contains four integer values.

range {

 xmin xmin_value

 xmax xmax_value

 ymin ymin_value

 ymax ymax_value

}

The format block is.

format format_name

Where format_name must come from the list

v10_p0 v10_p1

v11_p0 v11_p1

v12_p0 v12_p1 v12_p2 v12_p3

v13_p0 v13_p1 v13_p2 v13_p3

v14_p0 v14_p1 v14_p2 v14_p3 v14_p4 v14_p5 v14_p6 v14_p7 v14_p8 v14_p9 v14_p10

The points block must match the format given in the format block. For each format type vX_pY
where X comes from the set: 10 11 12 13 14 and Y comes from the set 0 1 2 3 4 5 6 7 8 9 10;
there are two choice of points data: points_vX_pY and compact_points_vX_pY.

points_vX_pY {

 point_pY
Page 80 12da Definition for each String Type

Chapter 1 12d Archive File Format
 point_pY

 ...

 ...

 point_yY

}

compact_points_vX_pY {

 compact_point_pY

 compact_point_pY

 ...

 ...

 compact_point_yY

}

The point_p0 block is.

p {

 x x_coordinate

 y y_coordinate

 z z_coordinate

 i intensity \\ integer between 0 and 65535

 rn return_number \\ integer between 0 and 7

 rc return_count \\ integer between 0 and 7

 sd scan_direction \\ integer between 0 and 1

 fe flight_line_edge \\ integer between 0 and 1

 cl classification \\ integer between 0 and 255

 sr scan_rank_angle \\ integer between -128 and 127

 ud user_data \\ integer between 0 and 255

 id point_source_id \\ integer between 0 and 65535

}

The compact_point_p0 block is the same as point_p0 but without any inner tag.

p {

 x_coordinate

 y_coordinate

 z_coordinate

 intensity \\ integer between 0 and 65535

 return_number \\ integer between 0 and 7

 return_count \\ integer between 0 and 7

 scan_direction \\ integer between 0 and 1

 flight_line_edge \\ integer between 0 and 1

 classification \\ integer between 0 and 255

 scan_rank_angle \\ integer between -128 and 127
Page 8112da Definition for each String Type

12d Model Reference Manual
 user_data \\ integer between 0 and 255

 point_source_id \\ integer between 0 and 65535

}

The point_p1 block is the same as point_p0 but with a time at the end.

p {

 x x_coordinate

 y y_coordinate

 z z_coordinate

 i intensity \\ integer between 0 and 65535

 rn return_number \\ integer between 0 and 7

 rc return_count \\ integer between 0 and 7

 sd scan_direction \\ integer between 0 and 1

 fe flight_line_edge \\ integer between 0 and 1

 cl classification \\ integer between 0 and 255

 sr scan_rank_angle \\ integer between -128 and 127

 ud user_data \\ integer between 0 and 255

 id point_source_id \\ integer between 0 and 65535

 t gps_time \\ real number

}

The compact_point_p1 block is the same as point_p1 but without any inner tag.

p {

 x_coordinate

 y_coordinate

 z_coordinate

 intensity \\ integer between 0 and 65535

 return_number \\ integer between 0 and 7

 return_count \\ integer between 0 and 7

 scan_direction \\ integer between 0 and 1

 flight_line_edge \\ integer between 0 and 1

 classification \\ integer between 0 and 255

 scan_rank_angle \\ integer between -128 and 127

 user_data \\ integer between 0 and 255

 point_source_id \\ integer between 0 and 65535

 gps_time \\ real number

}

The point_p2 block is the same as point_p0 but with a colour (64bit integer) at the end.

p {

 x x_coordinate
Page 82 12da Definition for each String Type

Chapter 1 12d Archive File Format
 y y_coordinate

 z z_coordinate

 i intensity \\ integer between 0 and 65535

 rn return_number \\ integer between 0 and 7

 rc return_count \\ integer between 0 and 7

 sd scan_direction \\ integer between 0 and 1

 fe flight_line_edge \\ integer between 0 and 1

 cl classification \\ integer between 0 and 255

 sr scan_rank_angle \\ integer between -128 and 127

 ud user_data \\ integer between 0 and 255

 id point_source_id \\ integer between 0 and 65535

 c las_colour \\ 64 bit integer

}

The compact_point_p2 block is the same as point_p2 but without any inner tag.

p {

 x_coordinate

 y_coordinate

 z_coordinate

 intensity \\ integer between 0 and 65535

 return_number \\ integer between 0 and 7

 return_count \\ integer between 0 and 7

 scan_direction \\ integer between 0 and 1

 flight_line_edge \\ integer between 0 and 1

 classification \\ integer between 0 and 255

 scan_rank_angle \\ integer between -128 and 127

 user_data \\ integer between 0 and 255

 point_source_id \\ integer between 0 and 65535

 las_colour \\ 64 bit integer

}

The point_p3 block is the same as point_p1 but with a colour (64bit integer) at the end.

p {

 x x_coordinate

 y y_coordinate

 z z_coordinate

 i intensity \\ integer between 0 and 65535

 rn return_number \\ integer between 0 and 7

 rc return_count \\ integer between 0 and 7

 sd scan_direction \\ integer between 0 and 1

 fe flight_line_edge \\ integer between 0 and 1
Page 8312da Definition for each String Type

12d Model Reference Manual
 cl classification \\ integer between 0 and 255

 sr scan_rank_angle \\ integer between -128 and 127

 ud user_data \\ integer between 0 and 255

 id point_source_id \\ integer between 0 and 65535

 t gps_time \\ real number

 c las_colour \\ 64 bit integer

}

The compact_point_p3 block is the same as point_p3 but without any inner tag.

p {

 x_coordinate

 y_coordinate

 z_coordinate

 intensity \\ integer between 0 and 65535

 return_number \\ integer between 0 and 7

 return_count \\ integer between 0 and 7

 scan_direction \\ integer between 0 and 1

 flight_line_edge \\ integer between 0 and 1

 classification \\ integer between 0 and 255

 scan_rank_angle \\ integer between -128 and 127

 user_data \\ integer between 0 and 255

 point_source_id \\ integer between 0 and 65535

 gps_time \\ real number

 las_colour \\ 64 bit integer

}

The point_p4 block is the same as point_p1 but with a wave data at the end (not yet
implemented).

The compact_point_p4 block is the same as point_p4 but without any inner tag.

The point_p5 block is the same as point_p3 but with a wave data at the end (not yet
implemented).

The compact_point_p5 block is the same as point_p5 but without any inner tag.

The point_p6 block is.

p {

 x x_coordinate

 y y_coordinate

 z z_coordinate

 i intensity \\ integer between 0 and 65535

 rn return_number \\ integer between 0 and 15

 rc return_count \\ integer between 0 and 15
Page 84 12da Definition for each String Type

Chapter 1 12d Archive File Format
 cf classification_flags \\ integer between 0 and 15

 sc scanner_channel \\ integer between 0 and 3

 sd scan_direction \\ integer between 0 and 1

 fe flight_line_edge \\ integer between 0 and 1

 cl classification \\ integer between 0 and 255

 ud user_data \\ integer between 0 and 255

 sr scan_rank_angle \\ integer between -128 and 127

 id point_source_id \\ integer between 0 and 65535

 t gps_time \\ real number

}

The compact_point_p6 block is the same as point_p6 but without any inner tag.

p {

 x_coordinate

 y_coordinate

 z_coordinate

 intensity \\ integer between 0 and 65535

 return_number \\ integer between 0 and 15

 return_count \\ integer between 0 and 15

 classification_flags \\ integer between 0 and 15

 scanner_channel \\ integer between 0 and 3

 scan_direction \\ integer between 0 and 1

 flight_line_edge \\ integer between 0 and 1

 classification \\ integer between 0 and 255

 user_data \\ integer between 0 and 255

 scan_rank_angle \\ integer between -128 and 127

 point_source_id \\ integer between 0 and 65535

 gps_time \\ real number

}

The point_p7 block is the same with point_p6 with a las colour (64bit integer) at the end.

p {

 x x_coordinate

 y y_coordinate

 z z_coordinate

 i intensity \\ integer between 0 and 65535

 rn return_number \\ integer between 0 and 15

 rc return_count \\ integer between 0 and 15

 cf classification_flags \\ integer between 0 and 15

 sc scanner_channel \\ integer between 0 and 3

 sd scan_direction \\ integer between 0 and 1
Page 8512da Definition for each String Type

12d Model Reference Manual
 fe flight_line_edge \\ integer between 0 and 1

 cl classification \\ integer between 0 and 255

 ud user_data \\ integer between 0 and 255

 sr scan_rank_angle \\ integer between -128 and 127

 id point_source_id \\ integer between 0 and 65535

 t gps_time \\ real number

 c las_colour \\ 64bit integer

}

The compact_point_p7 block is the same as point_p7 but without any inner tag.

p {

 x_coordinate

 y_coordinate

 z_coordinate

 intensity \\ integer between 0 and 65535

 return_number \\ integer between 0 and 15

 return_count \\ integer between 0 and 15

 classification_flags \\ integer between 0 and 15

 scanner_channel \\ integer between 0 and 3

 scan_direction \\ integer between 0 and 1

 flight_line_edge \\ integer between 0 and 1

 classification \\ integer between 0 and 255

 user_data \\ integer between 0 and 255

 scan_rank_angle \\ integer between -128 and 127

 point_source_id \\ integer between 0 and 65535

 gps_time \\ real number

 las_colour \\ 64bit integer

}

The point_p8 block is the same with point_p7 with a near infrared (integer between 0 and 255) at
the end.

p {

 x x_coordinate

 y y_coordinate

 z z_coordinate

 i intensity \\ integer between 0 and 65535

 rn return_number \\ integer between 0 and 15

 rc return_count \\ integer between 0 and 15

 cf classification_flags \\ integer between 0 and 15

 sc scanner_channel \\ integer between 0 and 3

 sd scan_direction \\ integer between 0 and 1
Page 86 12da Definition for each String Type

Chapter 1 12d Archive File Format
 fe flight_line_edge \\ integer between 0 and 1

 cl classification \\ integer between 0 and 255

 ud user_data \\ integer between 0 and 255

 sr scan_rank_angle \\ integer between -128 and 127

 id point_source_id \\ integer between 0 and 65535

 t gps_time \\ real number

 c las_colour \\ 64bit integer

 ir near_infrared \\ integer between 0 and 255

}

The compact_point_p8 block is the same as point_p8 but without any inner tag.

p {

 x_coordinate

 y_coordinate

 z_coordinate

 intensity \\ integer between 0 and 65535

 return_number \\ integer between 0 and 15

 return_count \\ integer between 0 and 15

 classification_flags \\ integer between 0 and 15

 scanner_channel \\ integer between 0 and 3

 scan_direction \\ integer between 0 and 1

 flight_line_edge \\ integer between 0 and 1

 classification \\ integer between 0 and 255

 user_data \\ integer between 0 and 255

 scan_rank_angle \\ integer between -128 and 127

 point_source_id \\ integer between 0 and 65535

 gps_time \\ real number

 las_colour \\ 64bit integer

 near_infrared \\ integer between 0 and 255

}

The point_p9 block is the same as point_p6 but with a wave data at the end (not yet
implemented).

The compact_point_p9 block is the same as point_p9 but without any inner tag.

The point_p10 block is the same as point_p8 but with a wave data at the end (not yet
implemented).

The compact_point_p10 block is the same as point_p10 but without any inner tag.

The ref_data block contains:

ref_data {

 category_block // same as category in data block

 file_name las_ref_file_name
Page 8712da Definition for each String Type

12d Model Reference Manual
 range_block // same as range in data block

}

Return to 1.4 12da Definition for each String Type or 1 12d Archive File Format.
Page 88 12da Definition for each String Type

	12d A File Format
	Preface
	1 12d Archive File Format
	1.1 General Comments about a 12da File
	1.2 Attributes
	1.3 Commands
	1.3.1 Model
	1.3.2 Colour
	1.3.3 Style
	1.3.4 Breakline
	1.3.5 Null
	1.3.6 String
	1.3.7 Tin
	1.3.7.1 All Triangles in the Tin - Visible and Invisible
	1.3.7.2 Visible Triangles Only

	1.3.8 Super Tin
	1.3.9 Trimesh

	1.4 12da Definition for each String Type
	1.4.1 Arc String
	1.4.2 Circle String
	1.4.3 Drainage String
	1.4.4 Face String
	1.4.5 Feature String
	1.4.6 Interface String
	1.4.7 Plot Frame String
	1.4.8 Super String
	1.4.8.1 Blocks Defining the Position of the Vertices in x, y and z
	1.4.8.2 Blocks Defining the Geometry of the Segments
	1.4.8.2.1 Straights and Arcs Only for the Segments
	1.4.8.2.2 Straights, Arcs, Transitions and Offset Transitions for the Segments
	1.4.8.2.2.1 Straight
	1.4.8.2.2.2 Arc
	1.4.8.2.2.3 Spiral - spiral and non-spiral transitions without offsets
	1.4.8.2.2.4 Curve block - Transition and Offset Transitions

	1.4.8.3 Block Defining Both the Vertices and Segments - Superceded
	1.4.8.4 Other Blocks
	1.4.8.4.1 Colour
	1.4.8.4.2 Vertex Id’s (Point Numbers)
	1.4.8.4.3 Pipe Diameters
	1.4.8.4.4 Culvert Dimensions
	1.4.8.4.5 Justification for Pipe or Culverts
	1.4.8.4.6 Tinability
	1.4.8.4.7 Visibility
	1.4.8.4.8 Vertex Text and Vertex Annotation
	1.4.8.4.9 Segment Text and Segment Annotation
	1.4.8.4.10 Symbols
	1.4.8.4.11 Vertex Attributes
	1.4.8.4.12 Segment Attributes

	1.4.9 Super Alignment String
	1.4.9.1 Horizontal Geometry
	1.4.9.1.1 Horizontal_parts
	1.4.9.1.2 Horizontal_parts for defined by IP Method Only
	1.4.9.1.3 Horizontal_data

	1.4.9.2 Vertical Geometry
	1.4.9.2.1 Vertical_parts
	1.4.9.2.2 Vertical_parts When Defined by IP Method Only
	1.4.9.2.3 Vertical_data

	1.4.10 Text String
	1.4.11 2d String
	1.4.12 3d String
	1.4.13 4d String
	1.4.14 Pipe String
	1.4.15 Polyline String
	1.4.16 Alignment String
	1.4.17 Pipeline String
	1.4.18 LAS Cloud String

