12d Model Reference Manual

This book is the reference manual for the software product 12d Model.

First Release Dates of Software and Manual

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>V2.0</td>
<td>July 1990</td>
</tr>
<tr>
<td>V3.0</td>
<td>October 1995</td>
</tr>
<tr>
<td>V4.0</td>
<td>April 1999</td>
</tr>
<tr>
<td>V5.0</td>
<td>December 2000</td>
</tr>
<tr>
<td>V6.0</td>
<td>September 2002</td>
</tr>
<tr>
<td>V7.0</td>
<td>January 2005</td>
</tr>
<tr>
<td>V8.0</td>
<td>March 2007</td>
</tr>
<tr>
<td>V9.0</td>
<td>May 2009</td>
</tr>
<tr>
<td>V10.0</td>
<td>April 2012</td>
</tr>
<tr>
<td>V11.0</td>
<td>October 2014</td>
</tr>
</tbody>
</table>

Disclaimer

12d Model is supplied without any express or implied warranties whatsoever.
No warranty of fitness for a particular purpose is offered.
No liabilities in respect of engineering details and quantities produced by 12d Model are accepted.
Every effort has been taken to ensure that the advice given in this manual and the program 12d Model is correct, however, no warranty is expressed or implied by 12d Solutions Pty Ltd.

Copyright

This manual is copyrighted and all rights reserved.

This manual may not, in whole or part, be copied or reproduced without the prior consent in writing from 12D Solutions Pty Ltd.

Copies of 12d Model software must not be released to any party, or used for bureau applications without the written permission of 12D Solutions Pty Ltd.

Copyright (c) 1989-2015 by 12d Solutions Pty Ltd
Sydney, New South Wales, Australia.
ACN 101 351 991
All rights reserved.
1 Preface ... 73
 1.1 Introduction ... 73
 1.2 Reference Manual in PDF Form .. 73
 1.3 Getting Started Manuals and Data .. 74
 1.3.1 Training Courses .. 74
 1.3.2 Using the Practise and Small Versions of 12d Model .. 74
2 Installation of 12d Model 11 Release Version ... 75
 2.1 12d Model 11 - 32 bit or 64 bit Version .. 76
 2.2 Installing the Release Version of 12d Model 11 ... 77
 2.3 12d Model 11 Not Authorising ... 109
 2.4 Possible Problems When Authorizing the Release Version ... 110
 2.5 Licence Expiry Warning ... 113
 2.6 Dongle Missing .. 114
3 Installation of 12d Model 10 Practice Version .. 115
 3.1 Installing the Practise Version of 12d Model 10 ... 116
 3.2 Folders and Icons Created by Installing 12d Model Practise .. 126
 3.3 Authorizing the Practise Version of 12d Model 10 .. 128
 3.4 Possible Problems When Authorizing the Practise Version .. 132
4 Tools and Concepts .. 133
 4.1 The Mouse ... 134
 4.2 The Keyboard ... 135
 4.3 Screen Layout ... 136
 4.3.1 Main Menu ... 138
 4.3.2 Creating Floating Menus from the Main Menu .. 139
 4.3.3 Floating Menus ... 140
 4.3.3.1 Moving a Menu ... 142
 4.3.3.2 Dumping a Menu or Panel .. 142
 4.3.3.3 Deleting a Menu .. 143
 4.3.4 12d Model Menu ... 144
 4.3.5 Toolbars and Controlbars ... 145
 4.3.5.1 Toolbars ... 145
 4.3.5.2 ControlBars .. 146
 4.3.5.3 Snaps (H) Toolbar .. 148
 4.3.6 Panels .. 149
 4.3.6.1 Data Entry in a Panel .. 153
 4.3.6.2 Panel System Menu ... 156
 4.3.6.3 Moving a Panel ... 157
 4.3.6.4 Minimizing and Maximizing a Panel ... 157
 4.3.6.5 Dumping a Panel, Creating a Screen Layout File or Default File 157
 4.3.6.6 Panel Defaults - ddx Files .. 157
 4.3.6.7 Defaults Reset - Deleting a ddx File ... 159
 4.3.6.8 Duplicating a Panel ... 159
 4.3.6.9 Resizing of Panels .. 160
 4.3.6.10 Deleting a Panel ... 161
 4.3.6.11 OK Panel .. 161
 4.3.6.12 Yes-No Panel .. 161
 4.3.6.13 Yes-No-Cancel Panel .. 161
 4.3.6.14 Yes-No-All-Cancel Panel .. 161
 4.3.7 Views ... 162
 4.3.7.1 View Buttons .. 163
 4.3.7.2 Plan/Section/Perspective View Menu .. 164
 4.3.7.3 View System Menu ... 165
 4.3.7.4 Dumping a View .. 166
 4.3.7.5 Moving a View .. 167
 4.3.7.6 Resizing a View ... 167
 4.3.7.7 Minimizing and Maximizing a View ... 167
 4.3.7.8 Deleting a View .. 167
4.27 No Information Available .. 353
4.26 No Option Available .. 353
4.25 Miscellaneous Panels ... 352
4.24 Defaults .. 351
4.23 Plotters .. 349
4.21 Measures .. 335
4.20 Emailing from File Boxes .. 333
4.22 Colours ... 341
4.21 Measures .. 335
4.20 Emailing from File Boxes .. 333
4.22 Colours ... 341
4.21 Measures .. 335
4.20 Emailing from File Boxes .. 333
4.22 Colours ... 341
4.21 Measures .. 335
4.20 Emailing from File Boxes .. 333
4.22 Colours ... 341
4.21 Measures .. 335
4.20 Emailing from File Boxes .. 333
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>410</td>
</tr>
<tr>
<td>411</td>
</tr>
<tr>
<td>412</td>
</tr>
<tr>
<td>413</td>
</tr>
<tr>
<td>414</td>
</tr>
<tr>
<td>415</td>
</tr>
<tr>
<td>416</td>
</tr>
<tr>
<td>417</td>
</tr>
<tr>
<td>418</td>
</tr>
<tr>
<td>419</td>
</tr>
<tr>
<td>420</td>
</tr>
<tr>
<td>421</td>
</tr>
<tr>
<td>422</td>
</tr>
<tr>
<td>423</td>
</tr>
<tr>
<td>424</td>
</tr>
<tr>
<td>425</td>
</tr>
<tr>
<td>426</td>
</tr>
<tr>
<td>427</td>
</tr>
<tr>
<td>428</td>
</tr>
<tr>
<td>429</td>
</tr>
<tr>
<td>430</td>
</tr>
<tr>
<td>431</td>
</tr>
<tr>
<td>432</td>
</tr>
<tr>
<td>433</td>
</tr>
<tr>
<td>434</td>
</tr>
<tr>
<td>435</td>
</tr>
<tr>
<td>436</td>
</tr>
<tr>
<td>437</td>
</tr>
<tr>
<td>438</td>
</tr>
<tr>
<td>439</td>
</tr>
<tr>
<td>440</td>
</tr>
<tr>
<td>441</td>
</tr>
<tr>
<td>442</td>
</tr>
<tr>
<td>443</td>
</tr>
<tr>
<td>444</td>
</tr>
<tr>
<td>445</td>
</tr>
<tr>
<td>446</td>
</tr>
<tr>
<td>447</td>
</tr>
<tr>
<td>448</td>
</tr>
<tr>
<td>449</td>
</tr>
<tr>
<td>450</td>
</tr>
<tr>
<td>451</td>
</tr>
<tr>
<td>452</td>
</tr>
<tr>
<td>453</td>
</tr>
<tr>
<td>454</td>
</tr>
<tr>
<td>455</td>
</tr>
<tr>
<td>456</td>
</tr>
<tr>
<td>457</td>
</tr>
<tr>
<td>458</td>
</tr>
<tr>
<td>459</td>
</tr>
<tr>
<td>460</td>
</tr>
<tr>
<td>461</td>
</tr>
<tr>
<td>462</td>
</tr>
<tr>
<td>463</td>
</tr>
<tr>
<td>464</td>
</tr>
<tr>
<td>465</td>
</tr>
<tr>
<td>466</td>
</tr>
<tr>
<td>467</td>
</tr>
<tr>
<td>468</td>
</tr>
<tr>
<td>469</td>
</tr>
<tr>
<td>470</td>
</tr>
<tr>
<td>471</td>
</tr>
<tr>
<td>472</td>
</tr>
<tr>
<td>473</td>
</tr>
<tr>
<td>474</td>
</tr>
<tr>
<td>475</td>
</tr>
<tr>
<td>476</td>
</tr>
<tr>
<td>477</td>
</tr>
<tr>
<td>478</td>
</tr>
<tr>
<td>479</td>
</tr>
<tr>
<td>480</td>
</tr>
<tr>
<td>481</td>
</tr>
<tr>
<td>482</td>
</tr>
<tr>
<td>483</td>
</tr>
<tr>
<td>484</td>
</tr>
<tr>
<td>485</td>
</tr>
<tr>
<td>486</td>
</tr>
<tr>
<td>487</td>
</tr>
<tr>
<td>488</td>
</tr>
<tr>
<td>489</td>
</tr>
<tr>
<td>490</td>
</tr>
<tr>
<td>491</td>
</tr>
<tr>
<td>492</td>
</tr>
<tr>
<td>493</td>
</tr>
<tr>
<td>494</td>
</tr>
<tr>
<td>495</td>
</tr>
<tr>
<td>496</td>
</tr>
<tr>
<td>497</td>
</tr>
</tbody>
</table>
7.6 Management

7.6.1 Defaults

7.6.2 Details Editor

7.6.3 env.4d

7.6.4 Env Configuration

7.6.5 Dongles

7.6.6 Projections

7.6.7 N values

7.6.8 7 Parameters

7.6.9 Project Workspace

7.6.10 Tags

7.6.11 Tree

7.6.12 Managers

7.6.13 Sharing

7.6.14 Forest File

7.6.15 Trash Bin
8.1 Data Input ..695
 8.1.1 Input Null Value ..698
 8.1.2 12d Input ..699
 8.1.2.1 12d Archive Input ..700
 8.1.2.2 12da Library ..703
 8.1.2.3 12d XML Data ...705
 8.1.2.4 12d XML to 12da files ...707
 8.1.2.5 12d XML to 12da file ...708
 8.1.3 Import 2D PDF ...709
 8.1.4 ArcView SHP Input ...715
 8.1.5 Input X Y Z Text Files ..719
 8.1.5.1 X Y Z S Input ..720
 8.1.5.2 X Y Z S Point Id File Format ...723
 8.1.5.3 X Y Z and Attributes User Format Input ..727
 8.1.6 BCC Epson Input ..731
 8.1.7 CivilCad Input ..733
 8.1.8 DEM Input ..736
 8.1.9 Input DGN Binary Files ...737
 8.1.9.1 Input DGN V8 ...738
 8.1.9.2 DGN V7 Binary Input ..739
 8.1.10 DWG/DXF Input ..742
 8.1.11 FBX Input ...745
 8.1.12 Genio Input ...746
8.2 Data Output.. 843

8.2.17 Export OBJ .. 909
8.2.16 Export DAE ... 908
8.2.15 KML Output .. 905
8.2.14 TP Stakeout Strings Output ... 904
8.2.13 TP Stakeout Triangles Output.. 903
8.2.12 Geocomp.. 901
8.2.11 CivilCAD ... 899
8.2.9 LandXML Output .. 893
8.2.8 Genio Output.. 888
8.2.6 Output DGN Binary Files .. 871
8.2.5 Output X Y Z Text Files .. 859
8.2.4 ArcView SHP Output .. 857
8.2.3 Write 3D PDF .. 855
8.2.2 12d Output ... 846
8.2.1 Output Null Value.. 845

8.1.23 Old Inputs .. 834
8.1.20 TOT Input .. 829
8.1.19 SDR Map Input.. 827
8.1.18 Wavefront OBJ Input ... 826
8.1.17 Mapinfo Input .. 822
8.1.16 LandXML Input........ ... 821
8.1.15 LandXML Input... 820
8.1.14 Keays Input .. 817
8.1.13.1 Geocomp File Format .. 754
8.1.13 Geocomp Input .. 752
8.1.12 Geocomp.. 750

8.1.11 CivilCAD ... 719
8.1.10 Output MapInfo MID/MIF Files .. 695
8.1.9 Mapinfo Output ... 693
8.1.8.1 User X Y Z and Attributes Input - Pre V9 .. 839
8.1.8.4 User X Y Z and Attributes Input - Pre V9 .. 839
8.1.8.3 DXF Input ... 837
8.1.8.2 12D HP Plot File .. 836
8.1.8.1 Genio from 12d V7 .. 835
8.1.8 Wavefront OBJ Input ... 826
8.1.7.2 AutoCAD Output Map File Create/Edit ... 885
8.1.7.1 DWG/DXF/DXB Output .. 880
8.1.7.1 E57 Cloud Input .. 817
8.1.7.2 Write Mapinfo Tab/Mif Files For ... 896
8.1.7.1 Write Mapinfo Tab/Mif Files For ... 896
8.1.6.2 DGN V8 Output Map File Create/Edit ... 873
8.1.6.1 Output DGN V7 .. 872
8.1.5 User X Y Z Chainage and Offset Output ... 863
8.1.5.4 User X Y Z and Attributes Output .. 867
8.1.5.3 User X Y Z S Output .. 861
8.1.5.2 User X Y Z S Output... 860
8.1.5.1 X Y Z S Output ... 859
8.1.5 Write 3D PDF .. 855
8.1.4 ArcView SHP Output .. 857
8.1.3.1 How to View the Generated 3D PDF.. 855
8.1.3.2 12D Archive Output .. 847
8.1.3.1 12d XML Data .. 850
8.1.3.2 12D XML Project Data .. 852
8.1.3.1 12d Archive Output .. 847
8.1.3 Write 3D PDF .. 855
8.1.2 12d Output ... 846
8.1.1 Read SRTM Files... 818
8.1.1 Old Inputs .. 834
8.1.1 Geocomp.. 752
8.1.1.1 12d XML Project Data .. 852
8.1.1.2 12d XML Data .. 850
8.1.1.1 12d XML Project Data .. 852
8.1.1.2 12d XML Data .. 850
8.1.1.1 12d XML Project Data .. 852
8.1.1.2 12d XML Data .. 850
8.2.18 Export STL ... 911
8.2.19 IFC Output .. 912
8.2.19.1 IFCs ... 913
8.2.19.2 Project Units .. 932
8.2.19.3 Extra Project Details ... 934
8.2.19.4 Defining and Assigning Spatial Structures ... 938
8.2.19.5 IFC 2x3 Writer .. 945
8.2.19.6 Products ... 947
8.2.20 Old Outputs .. 951
8.2.20.1 DXF 12-14 Output ... 952
8.2.20.2 DXF Output .. 955
8.2.20.3 Genio V3.1 Output .. 957
8.2.20.4 Eagle Output ... 959
8.2.20.5 Eagle Binary Output .. 961
 8.3 Layouts ... 963
 8.3.1 Layout Input ... 964
 8.3.2 Layout Input Files ... 965
 8.3.3 Layout Output ... 967
 8.3.4 Convert slf to slx Format ... 968
 8.3.4.1 SLF Conversion ... 968
 8.3.4.2 Convert a Folder of Screen Layout Files .. 969
8.4 ADAC ... 970
8.5 Digitizer .. 971
 8.5.1 Digitizer Definitions .. 972
 8.5.2 Setups .. 973
 8.5.2.1 Digitizer Selection ... 974
 8.5.2.2 Register Plan ... 976
 8.5.2.3 Resume Plan .. 978
 8.5.3 Defaults .. 979
 8.5.3.1 Capture Defaults ... 980
 8.5.3.2 Bell .. 981
 8.5.3.3 Tolerance .. 982
 8.5.3.4 Stream .. 983
 8.5.4 Capture .. 984
 8.5.4.1 2d ... 985
 8.5.4.2 3d ... 986
 8.5.4.3 4d ... 988
 8.5.4.4 Arc ... 990
 8.5.4.5 Circle .. 991
 8.5.4.6 Text ... 992
 8.5.5 Buttons .. 993
 8.5.6 Summary ... 994
 8.5.7 Digitizer Definitions File .. 995
 8.5.7.1 Available Digitizer Commands ... 996
8.6 GIS .. 997
 8.6.1 Edit GIS Servers .. 999
 8.6.7 GIS Download .. 1007
 8.6.10 GIS Download Wizard ... 1016
 8.6.14 GIS Add Strings ... 1021
 8.6.15 GIS Update Strings .. 1022
 8.6.16 GIS Delete Strings ... 1023
 8.6.17 Find GIS Strings .. 1024
 8.6.18 GIS Assign Attributes ... 1026
 8.6.19 Attribute Map File ... 1027
 8.6.20 Manage FDO ... 1030
 8.6.20.1 GIS Schema Viewer ... 1030
 8.6.20.2 Create FDO Schema .. 1031
 8.6.20.3 Create GIS Feature .. 1033
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.11.1 Templates Input</td>
</tr>
<tr>
<td>8.11.1.1 Templates</td>
</tr>
<tr>
<td>8.11.1.2 One Template</td>
</tr>
<tr>
<td>8.11.1.3 All Templates</td>
</tr>
<tr>
<td>8.11.4 Symbols</td>
</tr>
<tr>
<td>8.11.5 Tablen</td>
</tr>
<tr>
<td>8.11.6 Vertex Text Data</td>
</tr>
<tr>
<td>8.11.7 Segment Text Data</td>
</tr>
<tr>
<td>8.11.8 Pipes</td>
</tr>
<tr>
<td>8.11.9 Boundaries</td>
</tr>
<tr>
<td>8.11.10 Visualization</td>
</tr>
<tr>
<td>8.11.11 Attributes</td>
</tr>
<tr>
<td>8.12 Textstyle Input</td>
</tr>
<tr>
<td>8.13 Edit a File</td>
</tr>
<tr>
<td>8.6.21 WMS</td>
</tr>
<tr>
<td>8.6.21.1 Download from a WMS</td>
</tr>
<tr>
<td>8.6.21.2 WMS Wizard</td>
</tr>
<tr>
<td>8.6.22.1 Edit a WMS Image</td>
</tr>
<tr>
<td>8.6.22.2 Delete a WMS Image</td>
</tr>
<tr>
<td>8.7 Label Map Files</td>
</tr>
<tr>
<td>8.7.1 Create/Edit Label Map File</td>
</tr>
<tr>
<td>8.7.1.1 Header</td>
</tr>
<tr>
<td>8.7.1.2 Vertex Text Data</td>
</tr>
<tr>
<td>8.7.1.3 Vertex Index Text Data</td>
</tr>
<tr>
<td>8.7.1.4 Point Id Text Data</td>
</tr>
<tr>
<td>8.7.1.5 Height Text Data</td>
</tr>
<tr>
<td>8.7.1.6 Name Text Data</td>
</tr>
<tr>
<td>8.7.1.7 Symbol Data</td>
</tr>
<tr>
<td>8.7.1.8 Vertex Attribute Text Data</td>
</tr>
<tr>
<td>8.7.1.9 Segment Attribute Text Data</td>
</tr>
<tr>
<td>8.7.1.10 Element Attribute Text Data</td>
</tr>
<tr>
<td>8.7.2 Apply a Label Map File</td>
</tr>
<tr>
<td>8.7.3 Convert .lmf Files to .label_mapfile</td>
</tr>
<tr>
<td>8.7.4 Create/Edit Pre-V10 Label Map File</td>
</tr>
<tr>
<td>8.8 Map Files</td>
</tr>
<tr>
<td>8.8.1 Create/Edit a Map File</td>
</tr>
<tr>
<td>8.8.1.1 Basic</td>
</tr>
<tr>
<td>8.8.1.2 Fills</td>
</tr>
<tr>
<td>8.8.1.3 Symbols</td>
</tr>
<tr>
<td>8.8.1.4 Symbols</td>
</tr>
<tr>
<td>8.8.1.5 Tablen</td>
</tr>
<tr>
<td>8.8.1.6 Vertex Text Data</td>
</tr>
<tr>
<td>8.8.1.7 Segment Text Data</td>
</tr>
<tr>
<td>8.8.1.8 Pipes</td>
</tr>
<tr>
<td>8.8.1.9 Boundaries</td>
</tr>
<tr>
<td>8.8.1.10 Visualization</td>
</tr>
<tr>
<td>8.8.1.11 Attributes</td>
</tr>
<tr>
<td>8.8.2 Comment and Active Column in Grids</td>
</tr>
<tr>
<td>8.8.3 Map File substitution by Attributes</td>
</tr>
<tr>
<td>8.8.4 Map File Logging</td>
</tr>
<tr>
<td>8.8.5 Apply Map File</td>
</tr>
<tr>
<td>8.8.6 Convert .mf Files to .mapfile</td>
</tr>
<tr>
<td>8.8.7 Create/Edit .mf File</td>
</tr>
<tr>
<td>8.9 Range Files</td>
</tr>
<tr>
<td>8.9.1 Percent Slope Range File</td>
</tr>
<tr>
<td>8.9.2 Degrees Slope Range File</td>
</tr>
<tr>
<td>8.9.3 1v in Slope Range File</td>
</tr>
<tr>
<td>8.9.4 Depth Range File</td>
</tr>
<tr>
<td>8.9.5 Aspect Range File</td>
</tr>
<tr>
<td>8.9.6 Height Range File</td>
</tr>
<tr>
<td>8.9.7 Area Range File</td>
</tr>
<tr>
<td>8.9.8 Creating Ranges in a Range File</td>
</tr>
<tr>
<td>8.10 Screen Dump</td>
</tr>
<tr>
<td>8.11 Templates</td>
</tr>
<tr>
<td>8.11.1 Templates Input</td>
</tr>
<tr>
<td>8.11.2 Templates Output</td>
</tr>
<tr>
<td>8.11.3 One Template</td>
</tr>
<tr>
<td>8.11.4 All Templates</td>
</tr>
<tr>
<td>8.12 Textstyle Input</td>
</tr>
<tr>
<td>8.13 Edit a File</td>
</tr>
</tbody>
</table>
9.1.1 Plan View Settings ... 1182
 9.1.1.1 Drawing Engine ... 1184
 9.1.1.2 Plan Toggle .. 1185
 9.1.1.3 Culling Plan View .. 1186
 9.1.1.4 Face Flags for View ... 1187
 9.1.1.5 Linestyles for Plan View ... 1188
 9.1.1.6 Rotate Plan View ... 1189
 9.1.1.7 Sewer Annotations for Plan View 1190
 9.1.1.8 Plan Plotting Scale ... 1191
 9.1.1.9 Text ... 1192
 9.1.1.10 Tins ... 1197
 9.1.1.11 Vertices .. 1203
 9.1.1.12 Vertex/Segment UID’s ... 1203
 9.1.1.13 Point/Vertex Ids .. 1203
 9.1.1.14 Vertex Indices ... 1204
 9.1.1.15 Z Values ... 1204
 9.1.1.16 Names .. 1204
 9.1.1.17 Attributes ... 1205
 9.1.1.18 Arc Centres for Plan View ... 1205
 9.1.1.19 Work Plane ... 1206
 9.1.1.20 Draw Rasters for Plan View ... 1208
 9.1.1.21 Clouds .. 1209
 9.1.1.22 Grid on View ... 1210
 9.1.1.23 View Background Colour .. 1212
 9.1.1.24 View Drawing Filter ... 1213
 9.1.2 Zoom ... 1214
 9.1.2.1 Dynamic Zoom ... 1214
 9.1.2.2 Zoom Box ... 1214
 9.1.2.3 Zoom Ops menu .. 1215
 9.1.3 Pan .. 1219
 9.1.3.1 Dynamic Pan ... 1219
 9.1.4 Plan Utilities ... 1226
 9.1.4.1 Autosync Plan View Locked to a Plan View 1226
 9.1.4.2 New View Settings .. 1227
 9.1.4.3 View Dump ... 1229
 9.1.4.4 Quick Plan Plot .. 1230
 9.1.4.5 Quick Sheet Plot ... 1232
 9.1.4.6 Plot Frames .. 1234
 9.1.4.7 Create Raster from Plan View 1235
 9.1.4.8 View Info ... 1237
 9.2 Perspective View Menu .. 1239
 9.2.1 Perspective View Settings .. 1240
 9.2.1.1 Drawing Engine ... 1241
 9.2.1.2 Perspective Toggle ... 1242
 9.2.1.3 Culling .. 1243
 9.2.1.4 Face Flags for View ... 1244
 9.2.1.5 Hide View .. 1245
 9.2.1.6 Clipping Planes for View 1247
 9.2.1.7 Perspective View Exaggeration 1249
 9.2.1.8 Tins ... 1250
 9.2.1.9 Shade ... 1252
 9.2.2 Eye/Target ... 1253
 9.2.3 Joy for View .. 1255
 9.2.4 Orbit ... 1257
 9.2.5 Plan Camera ... 1259
 9.2.6 Perspective Utilities .. 1261
 9.2.6.1 String Drive .. 1261
 9.2.6.2 String Walk .. 1266
9.2.6.3 String Movie ... 1271
9.2.6.4 Tin Shade .. 1277
9.2.6.5 Dump ... 1278
9.2.6.6 Perspective Plot ... 1278
9.3 Section View Menu .. 1280
 9.3.1 Section View Settings ... 1282
 9.3.1.1 Section View Toggle ... 1283
 9.3.1.2 Corridor .. 1284
 9.3.1.3 Draw Tolerance ... 1286
 9.3.1.4 Drainage HGL .. 1287
 9.3.1.5 Extend ... 1288
 9.3.1.6 Geometry Annotation ... 1289
 9.3.1.7 Grade Annotation .. 1291
 9.3.1.8 Section View Exaggeration ... 1292
 9.3.2 Profile .. 1293
 9.3.2.1 One String .. 1295
 9.3.2.2 Many Strings .. 1295
 9.3.2.3 Model Strings .. 1295
 9.3.2.4 2 Points .. 1296
 9.3.2.5 Perpendicular to CL .. 1298
 9.3.2.6 One Substring .. 1299
 9.3.2.7 Many substrings ... 1299
 9.3.2.8 Super alignment ... 1299
 9.3.3 Regenerate ... 1301
 9.3.4 Section Plotting .. 1302
 9.3.4.1 Section Plot .. 1303
 9.3.4.2 Long Plot .. 1305
 9.3.4.3 X Plot ... 1305
 9.3.4.4 Drainage/Sewer Plot ... 1305
 9.3.4.5 Melbourne Water Plot .. 1305
 9.3.4.6 Pipeline Plot .. 1305
 9.3.5 Section Utilities .. 1306
 9.3.5.1 New View Settings .. 1307
 9.3.5.2 Report ... 1308
 9.3.5.3 VG Edit .. 1309
 9.3.5.4 View Dump ... 1310
 9.4 Options Common to All Views .. 1311
 9.4.1 Model Ops ... 1312
 9.4.1.1 Models ... 1313
 9.4.1.2 Add Model .. 1314
 9.4.1.3 Add All Models .. 1316
 9.4.1.4 Remove Model ... 1317
 9.4.1.5 Remove All Models .. 1318
 9.4.1.6 Add Tin Models .. 1318
 9.4.1.7 Remove Tin Models .. 1319
 9.4.1.8 Add Tagged Models .. 1320
 9.4.1.9 Remove Tagged Models .. 1321
 9.4.1.10 Model Order ... 1322
 9.4.1.11 Models to Front .. 1324
 9.4.1.12 Models to Back .. 1325
 9.4.1.13 Calc Extents ... 1326
 9.4.2 Redraw ... 1327
 9.4.3 Fit .. 1327
 9.4.4 Previous ... 1327
 9.4.5 Clone ... 1328
 9.4.6 Properties ... 1329
 9.4.7 Delete .. 1331
 9.5 View Buttons ... 1332
10 ADAC

10.1 ADAC.XML Overview ...1368
10.1.1 ADAC XML Structure ...1368
10.1.2 ADAC Assets ..1372
10.1.3 ADAC Geometry Element ...1373
10.1.4 Guidelines from an Authority Requesting ADAC.XML..1374
10.2 12d Approach to ADAC XML ..1377
10.3 12d ADAC Workflow ..1378
10.4 12d ADAC Menu ..1381
10.4.1 Create Header ..1382
10.4.2 Create ADAC Asset ...1383
10.4.3 Edit ADAC Header/Asset ...1386
10.4.3.1 ADAC Header Editor ...1387
10.4.3.2 ADAC Asset Editor ...1389
10.4.3.3 Common Features of ADAC Editors ..1391
10.4.4 Validate ...1400
10.4.5 Report ...1403
10.4.6 Write ADAC XML File ...1405
10.4.7 Import ADAC XML File ...1406
10.4.8 ADAC Utilities ..1409
10.4.8.1 ADAC Strings to Map File ...1410
10.4.8.2 XSD to Map File ...1413
10.4.8.3 XSD to Model ...1415
10.4.8.4 Sync Geometry ...1417
10.4.8.5 Create/Edit User Attributes to ADAC File ..1418
10.4.8.6 Apply User Attributes to ADAC Elements ...1421
10.4.8.7 ADAC XML File Editor ...1422
10.4.9 User ADAC ..1424
10.4.9.1 Setting Up a New ADAC Project ..1425
10.4.9.2 Data Prep ..1429
10.4.9.3 User ADAC Utilities ..1451
10.4.9.4 12d 4.1 Chains ..1469
10.4.9.5 Client Specific ADAC Design & Survey Menus ...1473
10.5 ADAC Design and Survey Chains ..1474
10.5.1 Survey to ADAC Chains ...1475
10.5.1.1 ADAC Survey Base Chain pvf File ..1475
10.5.1.2 ADAC Survey Base Chain ...1477
10.5.2 Design to ADAC Chains ...1485
10.5.2.1 ADAC Design Base Chain pvf File ..1485
10.5.2.2 ADAC Design Base Chain ...1487
10.6 Setting Up for ADAC ..1496
10.6.1 Setting Up Map Files for ADAC ...1497
10.6.1.1 Know What ADAC XML Is ...1498
10.6.1.2 Know What Your Client Wants in the ADAC XML File ..1500
10.6.1.3 How the ADAC Map File is Used ..1501
10.6.1.4 Creating the ADAC Attributes for Map Files ..1504
10.6.1.5 Notes On Creating the ADAC Attribute Structure ...1509
10.6.1.6 Setting Up the Map File Selection Criteria ...1509
11 Edit ... 1541
 11.1 Undo and Redo for Editors ... 1542
 11.2 Undo and Redo for other Options ... 1543
 11.2.1 Undo ... 1544
 11.2.2 Redo .. 1545
 11.2.3 Undo List ... 1546
 11.2.4 Clear all Undos .. 1547
 11.2.5 Some Restrictions on Undo and Redo .. 1548

12 View ... 1549
 12.1 New ... 1550
 12.2 Toolbars .. 1551
 12.3 Views ... 1551
 12.4 View Info .. 1552
 12.5 View Information Table ... 1554
 12.6 Create ... 1556
 12.7 Dump .. 1559
 12.8 Rename .. 1560
 12.9 Delete ... 1561
 12.10 Models Save/Restore ... 1562
 12.11 Models Transfer .. 1563
 12.12 Send Tins/Rasters to Back .. 1564
 12.13 Visualisation ... 1565
 12.13.1 Tin Render Settings ... 1566
 12.13.2 Tin Height Render Settings ... 1570
 12.13.3 Render Drape .. 1572
 12.13.4 Texture Map Edit .. 1574
 12.13.5 Billboards ... 1575
 12.13.5.1 Create and Place Billboard ... 1576
 12.13.5.2 Add and Remove Billboard from Super String 1578
 12.13.5.3 12D - Billboard Signs Create .. 1580
 12.13.5.4 Create Forest .. 1582
 12.13.5.5 Trees/Shrubs as Faces and Billboards .. 1583
 12.13.5.6 Create Billboards from EXIF JPEG Files 1585
 12.13.6 Extrusions ... 1587
 12.13.6.1 String Extrude .. 1592
 12.13.6.2 Change Library Extrude ... 1594
 12.13.6.3 Roadside Furniture ... 1596
 12.13.6.4 Create Group Extrusions ... 1598
 12.13.6.5 Tutorial to Create Group Extrusions 1599
 12.13.9 Meshes ... 1600
 12.13.9.1 Mesh Library .. 1600
 12.13.9.2 Find Anchors ... 1603
 12.13.9.3 Place a Mesh ... 1605
 12.13.9.4 Convert to 12dMesh Format .. 1607
 12.13.10 Timelines .. 1608
 12.13.10.1 Timeline Editor ... 1608
 12.13.30.1 Edit a Timeline .. 1643
 12.13.30.2 Play a Timeline .. 1643
Models

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>1672</td>
</tr>
<tr>
<td>13.2</td>
<td>1675</td>
</tr>
<tr>
<td>13.3</td>
<td>1676</td>
</tr>
<tr>
<td>13.4</td>
<td>1678</td>
</tr>
<tr>
<td>13.5</td>
<td>1680</td>
</tr>
<tr>
<td>13.6</td>
<td>1681</td>
</tr>
<tr>
<td>13.7</td>
<td>1682</td>
</tr>
<tr>
<td>13.8</td>
<td>1684</td>
</tr>
<tr>
<td>13.8.1</td>
<td>1685</td>
</tr>
<tr>
<td>13.8.2</td>
<td>1686</td>
</tr>
<tr>
<td>13.8.2.1</td>
<td>1686</td>
</tr>
<tr>
<td>13.8.2.2</td>
<td>1686</td>
</tr>
<tr>
<td>13.8.2.3</td>
<td>1687</td>
</tr>
<tr>
<td>13.8.3</td>
<td>1688</td>
</tr>
<tr>
<td>13.8.4</td>
<td>1691</td>
</tr>
<tr>
<td>13.8.4.1</td>
<td>1691</td>
</tr>
<tr>
<td>13.8.4.2</td>
<td>1691</td>
</tr>
<tr>
<td>13.8.4.3</td>
<td>1692</td>
</tr>
<tr>
<td>13.8.5</td>
<td>1693</td>
</tr>
<tr>
<td>13.8.5.1</td>
<td>1693</td>
</tr>
<tr>
<td>13.8.5.2</td>
<td>1693</td>
</tr>
<tr>
<td>13.8.6</td>
<td>1695</td>
</tr>
<tr>
<td>13.9</td>
<td>1696</td>
</tr>
<tr>
<td>13.9.1</td>
<td>1697</td>
</tr>
<tr>
<td>13.9.2</td>
<td>1699</td>
</tr>
<tr>
<td>13.9.3</td>
<td>1702</td>
</tr>
<tr>
<td>13.9.4</td>
<td>1704</td>
</tr>
<tr>
<td>13.10</td>
<td>1706</td>
</tr>
<tr>
<td>13.11</td>
<td>1707</td>
</tr>
<tr>
<td>13.11.1</td>
<td>1708</td>
</tr>
<tr>
<td>13.11.2</td>
<td>1709</td>
</tr>
<tr>
<td>13.11.3</td>
<td>1710</td>
</tr>
</tbody>
</table>

Strings

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>1711</td>
</tr>
<tr>
<td>14.1.1</td>
<td>1714</td>
</tr>
<tr>
<td>14.1.2</td>
<td>1716</td>
</tr>
<tr>
<td>14.1.3</td>
<td>1719</td>
</tr>
<tr>
<td>14.1.4</td>
<td>1722</td>
</tr>
<tr>
<td>14.1.4.1</td>
<td>1725</td>
</tr>
<tr>
<td>14.1.4.2</td>
<td>1726</td>
</tr>
<tr>
<td>14.1.4.3</td>
<td>1728</td>
</tr>
<tr>
<td>14.1.4.4</td>
<td>1729</td>
</tr>
<tr>
<td>14.1.4.5</td>
<td>1731</td>
</tr>
<tr>
<td>14.1.4.5</td>
<td>1733</td>
</tr>
</tbody>
</table>
14.2 Super Alignments .. 1769

14.2.1 Create Super Alignment .. 1770

14.2.2 Super Alignment Tools .. 1794

14.2.2.1 Super Alignment Info ... 1795

14.2.2.2 Super Alignment Report .. 1795

14.2.2.3 Resolve a Super Alignment .. 1796

14.2.2.4 Dereference Super Alignments .. 1797

14.2.2.5 Reverse Super Alignment .. 1798

14.2.2.6 Parallel a Super Alignment .. 1799

14.2.2.7 Translate Super Alignment ... 1801

14.2.2.8 Rotate Super Alignment .. 1802

14.2.2.9 Scale Super Alignment ... 1802

14.2.2.10 Split a Super Alignment ... 1803

14.2.2.11 Joining Two Super Alignments .. 1804

14.2.2.12 Copy Vertical Geometry ... 1805

14.2.2.13 Convert Fixed/Floating Elements to IPs .. 1805

14.2.2.14 Change the Styles for Selected Super Alignments .. 1807

14.2.2.15 Explode the Super Alignments Labelling ... 1807

14.2.2.16 Constrain the Movement of Super Alignment Points 1808

14.2.2.17 Equality Query .. 1809

14.2.2.18 Chainage Query ... 1810

14.2.2.19 Reverse Calc Parts .. 1810

14.2.2.20 Validate Super Alignment .. 1811

14.2.3 Super Alignment Style .. 1813

14.2.4 Super Alignment Info Styles .. 1818

14.2.5 Design Standards ... 1819

14.2.6 Design Templates ... 1823

14.2.7 Import Legacy Design ... 1827

14.2.8 Define Design Parameters - from V9 ... 1829

14.2.9 SA Element Parts Viewer ... 1830

14.2.10 Super to SA Element Convert .. 1832

14.2.11 Super Alignment IP Tabulation .. 1834

14.3 Trimesh .. 1837

14.3.1 Create Trimesh .. 1838

14.3.2 Trimeshes from 12d Objects .. 1839

14.3.3 Trimeshes from Wavefront OBJ File ... 1841

14.3.4 Trimeshes from FBX File ... 1842

14.3.5 Create Trimesh Snippet ... 1843

14.3.6 Create Trimesh Vis ... 1844

14.3.7 Trimeshes from Tin .. 1845

14.3.8 Trimeshes from Polygon .. 1846
14.3.9 Trimesh Tools .. 1848
14.3.9.1 Trimesh Flip Faces .. 1848
14.4 Editor .. 1849
14.4.1 Super String Edit - Common Information .. 1850
14.4.1.1 nd edit menu ... 1850
14.4.1.2 Delete ... 1851
14.4.1.3 Move .. 1852
14.4.1.4 Insert ... 1853
14.4.1.5 Between ... 1854
14.4.1.6 Extend .. 1854
14.4.1.7 Open/Close ... 1856
14.4.1.8 Properties .. 1857
14.4.1.9 Info .. 1858
14.4.1.10 Undo/Redo .. 1859
14.4.1.11 "?" Help .. 1859
14.4.1.12 Finish .. 1860
14.4.1.13 Quit ... 1860
14.4.1.14 Typed input ... 1861
14.4.2 Edit 2d .. 1862
14.4.2.1 2d - Append .. 1862
14.4.2.2 2d - Height ... 1863
14.4.2.3 2d - Height (Nav) .. 1864
14.4.2.4 2d Properties .. 1865
14.4.3 Edit 3d .. 1866
14.4.3.1 3d - Append .. 1866
14.4.3.2 3d - Extend and Extend ht ... 1867
14.4.3.3 3d - Height ... 1868
14.4.3.4 3d - Height (Nav) .. 1869
14.4.3.5 3d Properties .. 1869
14.4.4 Edit 4d .. 1871
14.4.4.1 4d - Append +Text .. 1871
14.4.4.2 4d - Height ... 1873
14.4.4.3 4d - Height (Nav) .. 1873
14.4.4.4 4d - Text (Nav) ... 1874
14.4.4.5 4d - Text Info ... 1876
14.4.4.6 4d Properties .. 1877
14.4.5 Arc Edit .. 1879
14.4.5.1 Height .. 1879
14.4.5.2 Typed Radius .. 1880
14.4.5.3 Sweep Angle ... 1880
14.4.5.4 Chainage Interval .. 1880
14.4.5.5 Move End .. 1881
14.4.5.6 Radius ... 1881
14.4.5.7 Move .. 1881
14.4.5.8 Properties .. 1882
14.4.6 Circle Edit ... 1883
14.4.6.1 Height .. 1883
14.4.6.2 Typed Radius .. 1883
14.4.6.3 Radius ... 1884
14.4.6.4 Chainage Interval .. 1884
14.4.6.5 Move ... 1884
14.4.6.6 Properties .. 1885
14.4.7 Feature Edit .. 1886
14.4.8 Edit Pipe .. 1887
14.4.8.1 Pipe Justification ... 1887
14.4.8.2 Super Pipe String Properties .. 1888
14.4.9 Edit Polyline .. 1889
14.4.9.1 Add/Remove Toolbar .. 1889
14.4.9.2 Change Toolbar ... 1890
14.4.9.3 Utilities Toolbar .. 1891
14.4.9.4 Radius .. 1892
14.4.9.5 Properties toolbar .. 1893
14.4.10 Edit Super .. 1894
14.4.10.1 Add/Remove Toolbar.. 1894
14.4.10.2 Change Toolbar ... 1896
14.4.10.3 Utilities Toolbar ... 1896
14.4.10.4 Vertex Toolbar ... 1897
14.4.10.5 Segment Toolbar ... 1909
14.4.11 Edit Super Alignment ... 1922
14.4.11.1 SA - Add/Remove IPs Toolbar .. 1923
14.4.11.2 SA - Move/Edt Toolbar ... 1930
14.4.11.3 SA - Change Icon ... 1943
14.4.11.4 SA - Part Editors Toolbar .. 1944
14.4.11.5 SA - Super Alignment Properties Icon .. 1962
14.4.11.6 SA - Undo and Redo Icons .. 1977
14.4.11.7 SA - Info Icon .. 1977
14.4.11.8 SA - Recalc Icon ... 1979
14.4.11.9 SA - Error Checker Icon ... 1979
14.4.11.10 SA - Clear Toolbar ... 1980
14.4.11.11 SA - Help Icon .. 1981
14.4.11.12 SA - Finish Toolbar .. 1982
14.4.12 Text Edit .. 1983
14.4.12.1 Position .. 1983
14.4.12.2 Text .. 1983
14.4.12.3 Text ht ... 1984
14.4.12.4 Angle .. 1984
14.4.12.5 Properties ... 1984
14.5 Points Edit .. 1886
14.5.1 Append Point ... 1887
14.5.2 Between Point .. 1888
14.5.3 Delete Point ... 1890
14.5.4 Extend Point ... 1890
14.5.5 Extend Height .. 1991
14.5.6 Height ... 1892
14.5.7 Insert Point .. 1993
14.5.8 Move Point ... 1994
14.5.9 Add 3 Point Curve .. 1995
14.5.10 Delete 3 Point Curve ... 1996
14.5.11 Edit Vertex ... 1997
14.6 Strings Edit .. 1999
14.6.1 Change ... 2000
14.6.2 Clip .. 2001
14.6.3 Close .. 2003
14.6.4 Delete ... 2004
14.6.5 Duplicate ... 2005
14.6.6 Join .. 2006
14.6.7 Join Many .. 2008
14.6.8 Link Clip ... 2010
14.6.9 Open .. 2012
14.6.10 Parallel .. 2013
14.6.11 Reverse ... 2015
14.6.12 Split ... 2016
14.6.13 Translate .. 2018
14.6.14 Textdata Info ... 2020
14.6.15 Arc to Chords ... 2021
14.6.16 Segment Strings ... 2022
14.7 Cogo
14.7.1 Create Ops ... 229
 14.7.1.1 Create Point ... 229
 14.7.1.2 Create Line .. 230
 14.7.1.3 Create Point Between Points 230
 14.7.1.4 Locate Offset ... 230
 14.7.1.5 Locate Deflection .. 231
 14.7.1.6 Divide - Number ... 231
 14.7.1.7 Divide - Distance ... 232
 14.7.1.8 Perpendicular ... 232
 14.7.1.9 Projection ... 232
 14.7.1.10 Locate Chainage .. 233
14.7.2 Intersect Ops .. 234
 14.7.2.1 Intersect ... 234
 14.7.2.2 Intersect Offset ... 234
 14.7.2.3 Bearings Intersect .. 235
 14.7.2.4 Two Points, Two Distances 235
14.7.3 Vector ... 237
 14.7.3.1 Locate ... 237
 14.7.3.2 Radiation ... 237
 14.7.3.3 Traverse .. 238
14.7.4 Parallel ... 239
14.7.5 Fillet Ops ... 240
 14.7.5.1 Fillet Item Item Item Radius 240
 14.7.5.2 Fillet Item Item Point ... 241
 14.7.5.3 Fillet Three Points ... 241
 14.7.6 Fillet Ops (T) ... 242
 14.7.7 Fillet Ops (TJ) ... 243
 14.7.8 Tangent ... 244
14.8 Texts Edit ... 245
 14.8.1 Change Text Colour .. 246
 14.8.2 Change Text Height ... 247
 14.8.3 Change Text Style .. 248
 14.8.4 Change Text Angle ... 249
 14.8.5 Change Text Justify ... 250
 14.8.6 Change Combine ... 251
14.9 Convert ... 253
14.10 Grids ... 255
 14.10.1 Create Grids .. 256
 14.10.2 Edit Grid String .. 258
 14.10.3 Edit Grid Tin .. 260
 14.10.4 Grid Conversions .. 262
 14.10.5 Shift Grid String Range ... 263
 14.10.6 Shift Grid Tin Range ... 265
14.11 Inquire ... 267
 14.11.1 String Information .. 268
14.12 Properties ... 272
 14.12.1 Multi String Properties ... 273
 14.12.2 Single String ... 275
 14.12.3 Vertex ... 276
 14.12.4 Segment .. 277
 14.12.5 Segment (all) .. 278
 14.12.6 Vertex (all) ... 286
 14.12.7 Vertex/Segment ... 294
 14.12.8 Attributes ... 295
 14.12.9 Super Strings ... 297
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.13</td>
<td>Label</td>
<td>2134</td>
</tr>
<tr>
<td>14.13.1</td>
<td>Label Chainages</td>
<td>2135</td>
</tr>
<tr>
<td>14.13.2</td>
<td>Chainages (function)</td>
<td>2139</td>
</tr>
<tr>
<td>14.13.3</td>
<td>Label Cut/Fill</td>
<td>2140</td>
</tr>
<tr>
<td>14.13.3.1</td>
<td>Tadpoles</td>
<td>2140</td>
</tr>
<tr>
<td>14.13.3.2</td>
<td>Ticks</td>
<td>2142</td>
</tr>
<tr>
<td>14.13.3.3</td>
<td>User Symbols</td>
<td>2142</td>
</tr>
<tr>
<td>14.13.3.4</td>
<td>From File</td>
<td>2143</td>
</tr>
<tr>
<td>14.13.4</td>
<td>Label Names</td>
<td>2144</td>
</tr>
<tr>
<td>14.13.5</td>
<td>Label Vertices</td>
<td>2145</td>
</tr>
<tr>
<td>14.14</td>
<td>Rasters</td>
<td>2147</td>
</tr>
<tr>
<td>14.14.1</td>
<td>Create a Raster</td>
<td>2148</td>
</tr>
<tr>
<td>14.14.2</td>
<td>Create Rasters from ECW Files</td>
<td>2154</td>
</tr>
<tr>
<td>14.14.3</td>
<td>Create Rasters from TAB Files</td>
<td>2156</td>
</tr>
<tr>
<td>14.14.4</td>
<td>Create Plan Images from JPEG Files</td>
<td>2158</td>
</tr>
<tr>
<td>14.14.5</td>
<td>Edit a Raster</td>
<td>2159</td>
</tr>
<tr>
<td>14.14.6</td>
<td>Set a Boundary for a Raster</td>
<td>2161</td>
</tr>
<tr>
<td>14.14.7</td>
<td>Reset the Boundary for a Raster</td>
<td>2162</td>
</tr>
<tr>
<td>14.14.8</td>
<td>ECW Tools - Not Supported</td>
<td>2163</td>
</tr>
<tr>
<td>14.14.8.1</td>
<td>Change ECWs Projection</td>
<td>2163</td>
</tr>
<tr>
<td>14.14.8.2</td>
<td>Translate ECWs</td>
<td>2163</td>
</tr>
<tr>
<td>14.15</td>
<td>Point Clouds</td>
<td>2165</td>
</tr>
<tr>
<td>14.15.1</td>
<td>Categories</td>
<td>2166</td>
</tr>
<tr>
<td>14.15.1.1</td>
<td>Set LAS Categories</td>
<td>2167</td>
</tr>
<tr>
<td>14.15.1.2</td>
<td>Global Set LAS Categories</td>
<td>2169</td>
</tr>
<tr>
<td>14.15.1.3</td>
<td>Setting Point Cloud Categories by TIN</td>
<td>2171</td>
</tr>
<tr>
<td>14.15.1.4</td>
<td>Setting LAS File Categories by TIN</td>
<td>2172</td>
</tr>
<tr>
<td>14.15.1.5</td>
<td>Copying Point Cloud Files by Categories</td>
<td>2174</td>
</tr>
<tr>
<td>14.15.1.6</td>
<td>Copying LAS Files by Categories</td>
<td>2176</td>
</tr>
<tr>
<td>14.15.2</td>
<td>Delete Points</td>
<td>2178</td>
</tr>
<tr>
<td>14.15.2.1</td>
<td>Deleting Point Cloud Points by TIN</td>
<td>2179</td>
</tr>
<tr>
<td>14.15.2.2</td>
<td>Deleting LAS File Points by TIN</td>
<td>2180</td>
</tr>
<tr>
<td>14.15.3</td>
<td>Cartographic Transform</td>
<td>2181</td>
</tr>
<tr>
<td>14.15.4</td>
<td>Limiting Cloud Drawing on View</td>
<td>2183</td>
</tr>
<tr>
<td>14.15.5</td>
<td>Point Cloud Pinning</td>
<td>2184</td>
</tr>
<tr>
<td>14.16</td>
<td>WMS</td>
<td>2185</td>
</tr>
<tr>
<td>14.17</td>
<td>Utilities</td>
<td>2186</td>
</tr>
<tr>
<td>14.17.1</td>
<td>Chainage</td>
<td>2187</td>
</tr>
<tr>
<td>14.17.2</td>
<td>Depth String</td>
<td>2188</td>
</tr>
<tr>
<td>14.17.3</td>
<td>Linear Regression</td>
<td>2190</td>
</tr>
<tr>
<td>14.17.4</td>
<td>Loop Removal</td>
<td>2191</td>
</tr>
<tr>
<td>14.17.5</td>
<td>Strings from Sections</td>
<td>2192</td>
</tr>
<tr>
<td>14.17.6</td>
<td>Developments</td>
<td>2193</td>
</tr>
<tr>
<td>14.17.7</td>
<td>On Grade</td>
<td>2196</td>
</tr>
</tbody>
</table>
14.18 User ..2199
14.19 Delete ..2201
14.20 Old String Create and Editors ...2202
14.20.1 Old ..2203
 14.20.1.1 Alignments ..2203
 14.20.1.2 Create - 2d (pre V8) ..2217
 14.20.1.3 Create - 3d (pre V8) ..2220
 14.20.1.4 Create - 4d (Pre V8) ..2223
 14.20.1.5 Create - Pipe (Pre V8) ...2226
 14.20.1.6 Create - Polyline (Pre V8) ..2229
14.20.2 Alignment Edit ..2231
 14.20.2.1 Alignment Append ...2232
 14.20.2.2 Alignment Move ...2233
 14.20.2.3 Alignment Insert ..2236
 14.20.2.4 Alignment Between ...2237
 14.20.2.5 Alignment Delete ..2237
 14.20.2.6 Alignment Extend ..2238
 14.20.2.7 Alignment Height ..2239
 14.20.2.8 Alignment Curves ..2240
 14.20.2.9 Alignment Parabolas ...2243
 14.20.2.10 Alignment Utilities ...2244
 14.20.2.11 Finish ...2250
14.20.3 2d Edit - Old ..2251
 14.20.3.1 Append ...2251
 14.20.3.2 Move ..2252
 14.20.3.3 Insert ...2253
 14.20.3.4 Between ..2253
 14.20.3.5 Delete ...2253
 14.20.3.6 Extend ...2254
 14.20.3.7 Height ...2255
 14.20.3.8 Open ..2255
 14.20.3.9 Close ...2255
 14.20.3.10 Properties ..2255
14.20.4 3d Edit - Old ..2257
 14.20.4.1 Append ...2257
 14.20.4.2 Height ...2257
 14.20.4.3 Properties ..2258
14.20.5 4d Edit - Old ..2259
 14.20.5.1 Append ...2259
 14.20.5.2 Text ..2259
 14.20.5.3 Text ht ...2260
 14.20.5.4 Angle ...2260
 14.20.5.5 Utilities ...2260
14.20.6 Pipe Edit - Old ...2262
 14.20.6.1 Diameter ...2262
 14.20.6.2 Properties ...2262
14.20.7 Polyline Edit - Old ...2264
 14.20.7.1 Append ...2264
 14.20.7.2 Extend ..2265
 14.20.7.3 Radius ...2265
 14.20.7.4 Utilities ...2266
14.20.8 Super Edit - Old ...2268
 14.20.8.1 Append ...2268
 14.20.8.2 Extend ..2269
 14.20.8.3 Vertex ..2269
 14.20.8.4 Segment ..2280
15 CAD ... 2293

15.1 Controlbars .. 2294
15.1.1 CAD Controlbar ... 2295
15.1.2 Symbol Controlbar .. 2296
15.1.3 Text Controlbar .. 2298
15.1.4 Pipe Controlbar .. 2300
15.1.5 Attributes Controlbar ... 2301
15.1.6 Search Bar .. 2302

15.2 CAD Options ... 2303

15.3 CAD Dimension .. 2305
15.3.1 Dimension Association .. 2307
15.3.2 Continuous Mode ... 2308
15.3.3 Baseline Mode .. 2310
15.3.4 Zero Offset Mode ... 2312
15.3.5 Dimension - Create Same As .. 2313
15.3.6 Linear Dimension Commands .. 2314
15.3.6.1 Linear .. 2316
15.3.6.2 Aligned ... 2318
15.3.6.3 Horizontal ... 2319
15.3.6.4 Vertical .. 2321
15.3.6.5 Rotated .. 2323
15.3.6.6 Aligned Segment ... 2325
15.3.6.7 Horizontal Segment ... 2326
15.3.6.8 Vertical Segment ... 2328
15.3.6.9 Rotated Segment ... 2330
15.3.7 Length ... 2332
15.3.8 Drop Segment ... 2336
15.3.9 Drop String .. 2339
15.3.10 Area ... 2340
15.3.11 Jogged radius .. 2341
15.3.12 Diameter ... 2342
15.3.13 Radius .. 2344
15.3.14 Angle 2 Lines .. 2345
15.3.15 Angle 3 points ... 2348
15.3.16 Angle Arc .. 2350
15.3.17 Arc Length by Centre, 2 Points ... 2351
15.3.18 Dimension Utilities .. 2353
15.3.18.1 Dimension Edit ... 2354
15.3.18.2 Dimension Styles ... 2356
15.3.18.3 Change Style of Dimension ... 2364
15.3.18.4 Change Text Format ... 2365
15.3.18.5 Create Many Segment Lengths .. 2366

15.4 CAD Leader .. 2368
15.4.1 Leader Association ... 2370
15.4.2 Hook Angle .. 2371
15.4.3 Leader - Create Same As .. 2372
15.4.4 Text Leader ... 2373
15.4.5 Information Leader ... 2375
15.4.5.1 Label ... 2377
15.4.5.2 Area .. 2378
15.4.5.3 String Length ... 2380
15.4.5.4 String Length 3D ... 2381
15.4.5.5 Segment Length ... 2382
15.4.5.6 Segment Length 3D ... 2383
15.4.5.7 Segment Bearing .. 2384
15.4.5.8 Bearing & Segment Length ... 2385
15.4.5.9 Segment Radius ... 2386
15.8 CAD Multipick Rotate ... 2486
15.8.3 CAD Multipick Move... 2485
15.8.2 CAD Multipick Copy ... 2484
15.8.1 Selecting with Multipick ... 2478

15.6.6 Table to CSV ... 2467
15.6.5 Table Styles .. 2458
15.6.4 Table Edit ... 2435
15.6.3 Create Table from a CSV File ... 2433
15.6.2 Create Table from a Super Alignment.. 2430
15.6.1 Leader Edit.. 2409
15.4.6 Leader Utilities .. 2408
15.4.6.1 Leader Edit... 2411
15.4.6.2 Leader Styles... 2409
15.4.6.3 Change Style of Leader.. 2418
15.4.5.19 Tin Depth ... 2398
15.4.5.20 Grade (%)... 2400
15.4.5.21 Grade 1 n - Slope... 2401
15.4.5.22 Centroid XY .. 2402
15.4.5.23 Medial Centre XY .. 2404
15.4.5.24 Trimesh Volume .. 2406
15.4.5.25 Trimesh Surface Area .. 2407
15.4.5.17 String Z .. 2395
15.4.5.18 Tin Z ... 2396
15.4.5.15 String XYZ .. 2393
15.4.5.16 String XY ... 2394
15.4.5.14 Vertex XY ... 2392
15.4.5.13 Vertex XYZ ... 2391
15.4.5.12 Segment Text .. 2390
15.4.5.11 Vertex Text .. 2389
15.4.5.10 String name ... 2388

15.5.9.1 An Excerpt from a draft_text.xml File... 2426
15.5.9 Defaults File for Text Formats ... 2425
15.5.8 Typing t or T to Change the Text Format.. 2424
15.5.7 Multiple Text Formats ... 2423
15.5.6 Dynamic Text Format ... 2423
15.5.5 Number of Decimals ... 2422
15.5.4 Round Off.. 2422
15.5.3 Units Factor ... 2421
15.5.2 Pre and Post Text .. 2421
15.5.1 Angle Brackets <> ... 2420

15.6.4.6.3 Change Style of Leader.. 2418
15.6.4.6.2 Leader Styles... 2411
15.6.4.6.1 Leader Edit... 2409
15.6.4.5 Recalc... 2452
15.6.4.4 Fit ... 2449
15.6.4.3 Text and Values Edit... 2443
15.6.4.2 Column and Row Edits ... 2437
15.6.4.1 Move ... 2436
15.6.4 Table Edit .. 2435
15.6.3 Create Table from a CSV File .. 2433
15.6.2 Create Table from a Super Alignment.. 2430
15.6.1 Create Table.. 2428

15.4.5.17 String Z .. 2395
15.4.5.16 String XY ... 2394
15.4.5.15 String XYZ .. 2393
15.4.5.14 Vertex XY ... 2392
15.4.5.13 Vertex XYZ ... 2391
15.4.5.12 Segment Text .. 2390
15.4.5.11 Vertex Text .. 2389

15.5.5.6 Dynamic Text Format ... 2423
15.5.5.5 Number of Decimals ... 2422
15.5.5.4 Table Styles - Data Style Node.. 2455
15.5.5.3 Table Styles - Header Style Node.. 2463
15.5.5.2 Table Styles - Title Style Node... 2461
15.5.5.1 Table Styles - Name Node... 2460
15.5.4 Table Styles - Data Style Node.. 2465
15.5.3 Table Styles - Header Style Node... 2463
15.5.2 Table Styles - Title Style Node.. 2461
15.5.1 Table Styles - Name Node.. 2460

15.4.5 Text Format for Dimensions and Leaders .. 2419
15.5.4.6 Leader Utilities .. 2408
15.5.4.5 Recalc... 2452
15.5.4.4 Fit.. 2449
15.5.4.3 Text and Values Edit... 2443
15.5.4.2 Column and Row Edits .. 2437
15.5.4.1 Move... 2436
15.5.4 Table Edit ... 2435
15.5.3 Create Table from a CSV File ... 2433
15.5.2 Create Table from a Super Alignment.. 2430
15.5.1 Create Table.. 2427

15.4.4.7 Content.. 2457
15.4.4.6 Properties and Associations.. 2453
15.4.4.5 Recalc... 2452
15.4.4.4 Fit ... 2449
15.4.4.3 Text and Values Edit... 2443
15.4.4.2 Column and Row Edits ... 2437
15.4.4.1 Move... 2436
15.4.4 Table Edit .. 2435
15.4.3 Create Table from a Super Alignment.. 2430
15.4.2 Create Table from a CSV File ... 2433
15.4.1 Create Table.. 2427

15.4.5.14 Vertex XY ... 2392
15.4.5.13 Vertex XYZ ... 2391
15.4.5.12 Segment Text .. 2390
15.4.5.11 Vertex Text .. 2389
15.4.5.10 String name ... 2388
15.4.4.7 Content.. 2457
15.4.4.6 Properties and Associations.. 2453
15.4.4.5 Recalc... 2452
15.4.4.4 Fit ... 2449
15.4.4.3 Text and Values Edit... 2443
15.4.4.2 Column and Row Edits ... 2437
15.4.4.1 Move... 2436
15.4.4 Table Edit.. 2435
15.4.3 Create Table from a Super Alignment.. 2430
15.4.2 Create Table from a CSV File ... 2433
15.4.1 Create Table.. 2427

15.7 Style XML Files for Dimensions, Leaders & Tables 2468
15.7.1 Create & Editing Dimensions, Leader & Table Styles.................................. 2469
15.7.1.1 [Create] for Dimension, Leader and Table Styles.................................. 2470
15.7.1.2 [Edit] for Dimension, Leader and Table Styles.................................... 2471

15.8 CAD Multipick... 2477
15.8.1 Selecting with Multipick .. 2478
15.8.2 CAD Multipick Copy.. 2484
15.8.3 CAD Multipick Move... 2485
15.8.4 CAD Multipick Rotate .. 2486
15.12 CAD Circle ... 2576
15.11 CAD Line ... 2556
15.10 CAD Intersection ... 2541
15.9 CAD Point... 2495
15.9.12.11 Centre and circumference .. 2596
15.9.12.10 Centre and point.. 2594
15.9.12.9 Centre and radius .. 2592
15.9.12.8 Point, radius and bearing ... 2590
15.9.12.7 2 point and radius... 2588
15.9.12.6 2 points... 2587
15.9.12.5 2 directed tangents and radius... 2585
15.9.12.4 2 tangents and radius... 2583
15.9.12.3 3 directed tangents .. 2581
15.9.12.1 3 Points .. 2577
15.9.11 Tape baseline ... 2571
15.9.11.7 Traverse edit .. 2570
15.9.11.6 Traverse append... 2566
15.9.11.5 Traverse .. 2562
15.9.11.3 Line string .. 2560
15.9.11.1 2 Points .. 2557
15.9.10 2 points and 2 distances ... 2550
15.9.10.3 2 points and 2 bearings .. 2547
15.9.10.2 2 offset segments ... 2544
15.9.10.1 2 segments ... 2542
15.9.9 Chainage offset ... 2512
15.9.11.10 Chainage offset extended ... 2513
15.9.11.9 Deflection ... 2514
15.9.11.8 Tape baseline ... 2518
15.9.13 Angle ... 2520
15.9.14 Projection ... 2521
15.9.15 Between Points ... 2523
15.9.16 Between points 3d... 2526
15.9.17 Radiation .. 2529
15.9.18 Divide segment by number ... 2534
15.9.19 Divide segment by chainage length ... 2536
15.9.20 Divide string by number ... 2538
15.9.21 Divide string by chainage length ... 2539
15.9.22 String IPs ... 2540
15.10 CAD Intersection .. 2541
15.10.1 2 segments... 2542
15.10.2 2 offset segments .. 2544
15.10.3 2 points and 2 bearings .. 2547
15.10.4 2 points and 2 distances .. 2550
15.10.5 2 points with bearing and distance ... 2553
15.11 CAD Line .. 2556
15.11.1 2 Points ... 2557
15.11.2 Tangent ... 2558
15.11.3 Line string ... 2560
15.11.4 Perpendicular .. 2561
15.11.5 Traverse .. 2562
15.11.6 Traverse append .. 2566
15.11.7 Traverse edit .. 2570
15.11.8 Tape baseline ... 2571
15.11.9 Tape baseline absolute .. 2573
15.12 CAD Circle .. 2576
15.12.1 3 Points ... 2577
15.12.2 3 tangents ... 2579
15.12.3 3 directed tangents .. 2581
15.12.4 2 tangents and radius.. 2583
15.12.5 2 directed tangents and radius .. 2585
15.12.6 2 points.. 2587
15.12.7 2 point and radius.. 2588
15.12.8 Point, radius and bearing ... 2590
15.12.9 Centre and radius ... 2592
15.12.10 Centre and point ... 2594
15.12.11 Centre and circumference .. 2596
15.13 CAD Arc
15.13.1 3 points ... 2599
15.13.2 3 tangents ... 2601
15.13.3 3 directed tangents .. 2603
15.13.4 2 tangents and radius ... 2605
15.13.5 2 directed tangents and radius 2607
15.13.6 2 points and radius .. 2609
15.13.7 2 points and arc length ... 2610
15.13.8 2 points and end bearing .. 2611
15.13.9 Centre and end points ... 2613
15.13.10 Centre, radius and end points 2615
15.13.11 Centre, start point and sweep angle 2617
15.13.12 Start point, radius and bearing 2619
15.13.13 Start point, radius and chord 2621
15.13.14 Start point, radius, chord length and bearing 2623
15.13.15 Fillet ... 2625
15.13.16 Fillet by start point ... 2627

15.14 CAD Polygon... 2629
15.14.1 Rectangle from 2 points .. 2630
15.14.2 Rectangle with width and height 2632
15.14.3 Rectangle from 3 points ... 2634
15.14.4 Parallelogram ... 2636
15.14.5 Polygon inscribed (in a circle) 2638
15.14.6 Polygon Circumscribed About a Circle 2640
15.14.7 Free Hand Polygon ... 2642
15.14.8 Create Boundary Polygon 2643

15.15 CAD Text ... 2644
15.15.1 Create Text .. 2645
15.15.2 Edit Text ... 2650
15.15.3 CAD Text Commands .. 2661
15.15.4 Simple Text Edit ... 2662
15.15.5 Simple Text Create .. 2665
15.15.6 Text Create .. 2666
15.15.7 Create Text on Vertex of Super String 2667
15.15.8 Text Create on Segment of Super Strings 2668
15.15.9 Rotate Text around Vertex 2670
15.15.10 Rotate Text about the Justification Point 2672
15.15.11 Move the Text Justification Point 2674
15.15.12 Move the Text Vertex Point 2676
15.15.13 Height of Text ... 2678
15.15.14 Change Text .. 2680
15.15.15 Style of Text ... 2682
15.15.16 Text Colour .. 2684
15.15.17 Reset Text Justification Point 2686
15.15.18 Label Perpendicular Offset 2687
15.15.19 All Text Edits .. 2689
15.15.20 Text Delete ... 2691

15.16 CAD Symbol ... 2692
15.16.1 Create Symbol ... 2693
15.16.2 Edit Symbol .. 2696
15.16.3 Symbol Delete ... 2707
15.16.3.1 Cad Symbol Commands 2707
15.16.4 Simple Symbol Edit .. 2709
15.16.5 Simple Symbol Create ... 2712
15.16.6 Create Symbol .. 2713
15.16.7 Create Symbol at the Vertex of a Super String 2715
15.16.8 Rotate Symbol about the Justification Point 2718
15.16.9 Move the Symbol Justification Point 2720
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.17</td>
<td>CAD Hole</td>
<td>2731</td>
</tr>
<tr>
<td>15.17.1</td>
<td>Add Holes</td>
<td>2732</td>
</tr>
<tr>
<td>15.17.2</td>
<td>Remove Holes</td>
<td>2734</td>
</tr>
<tr>
<td>15.18</td>
<td>CAD Fill</td>
<td>2735</td>
</tr>
<tr>
<td>15.18.1</td>
<td>Solid Fill</td>
<td>2736</td>
</tr>
<tr>
<td>15.18.2</td>
<td>Solid Fill Many Strings</td>
<td>2738</td>
</tr>
<tr>
<td>15.19</td>
<td>CAD Image</td>
<td>2740</td>
</tr>
<tr>
<td>15.19.1</td>
<td>Move Image</td>
<td>2741</td>
</tr>
<tr>
<td>15.19.2</td>
<td>Rotate Image</td>
<td>2743</td>
</tr>
<tr>
<td>15.19.3</td>
<td>Scale Image</td>
<td>2744</td>
</tr>
<tr>
<td>15.19.4</td>
<td>Change Width</td>
<td>2745</td>
</tr>
<tr>
<td>15.19.5</td>
<td>Change Height</td>
<td>2747</td>
</tr>
<tr>
<td>15.19.6</td>
<td>Insert Image</td>
<td>2749</td>
</tr>
<tr>
<td>15.19.7</td>
<td>Insert JPEG(s)</td>
<td>2751</td>
</tr>
<tr>
<td>15.19.8</td>
<td>Insert Many</td>
<td>2752</td>
</tr>
<tr>
<td>15.19.9</td>
<td>Delete Image</td>
<td>2754</td>
</tr>
<tr>
<td>15.20</td>
<td>CAD Modify</td>
<td>2755</td>
</tr>
<tr>
<td>15.20.1</td>
<td>CAD Move</td>
<td>2756</td>
</tr>
<tr>
<td>15.20.2</td>
<td>CAD Copy</td>
<td>2757</td>
</tr>
<tr>
<td>15.20.3</td>
<td>CAD Array</td>
<td>2759</td>
</tr>
<tr>
<td>15.20.4</td>
<td>CAD Rotate</td>
<td>2761</td>
</tr>
<tr>
<td>15.20.5</td>
<td>CAD Mirror</td>
<td>2763</td>
</tr>
<tr>
<td>15.20.6</td>
<td>CAD Mirror X Axis</td>
<td>2765</td>
</tr>
<tr>
<td>15.20.7</td>
<td>CAD Mirror Y Axis</td>
<td>2767</td>
</tr>
<tr>
<td>15.20.8</td>
<td>CAD Scale</td>
<td>2769</td>
</tr>
<tr>
<td>15.20.9</td>
<td>CAD Scale Dynamic</td>
<td>2771</td>
</tr>
<tr>
<td>15.21</td>
<td>CAD Vertex</td>
<td>2774</td>
</tr>
<tr>
<td>15.21.1</td>
<td>Move a Vertex while Keeping its Height</td>
<td>2776</td>
</tr>
<tr>
<td>15.21.2</td>
<td>Move a Vertex and Modify its Height</td>
<td>2777</td>
</tr>
<tr>
<td>15.21.3</td>
<td>Extend a Vertex while Keeping its Height</td>
<td>2778</td>
</tr>
<tr>
<td>15.21.4</td>
<td>Extend Segment and Extrapolating Heights</td>
<td>2780</td>
</tr>
<tr>
<td>15.21.5</td>
<td>Extend Segment by Length and Keeping Height</td>
<td>2782</td>
</tr>
<tr>
<td>15.21.6</td>
<td>Extend Segment by Length and Extrapolating Heights</td>
<td>2784</td>
</tr>
<tr>
<td>15.21.7</td>
<td>Append a Vertex</td>
<td>2786</td>
</tr>
<tr>
<td>15.21.8</td>
<td>New Vertex on a Segment (Between Two Vertices)</td>
<td>2788</td>
</tr>
<tr>
<td>15.21.9</td>
<td>Insert a Vertex</td>
<td>2789</td>
</tr>
<tr>
<td>15.21.10</td>
<td>Change Height of a Vertex</td>
<td>2790</td>
</tr>
<tr>
<td>15.21.11</td>
<td>Edit ID</td>
<td>2792</td>
</tr>
<tr>
<td>15.22</td>
<td>CAD Segment</td>
<td>2794</td>
</tr>
<tr>
<td>15.22.1</td>
<td>Colour</td>
<td>2795</td>
</tr>
<tr>
<td>15.22.2</td>
<td>Radius</td>
<td>2796</td>
</tr>
<tr>
<td>15.22.3</td>
<td>Insert 3-points curve</td>
<td>2797</td>
</tr>
<tr>
<td>15.22.4</td>
<td>Remove 3-points curve</td>
<td>2798</td>
</tr>
<tr>
<td>15.23</td>
<td>CAD Edit Strings</td>
<td>2799</td>
</tr>
<tr>
<td>15.23.1</td>
<td>Close String</td>
<td>2800</td>
</tr>
<tr>
<td>15.23.2</td>
<td>Open String</td>
<td>2801</td>
</tr>
<tr>
<td>15.23.3</td>
<td>Reverse a String</td>
<td>2802</td>
</tr>
<tr>
<td>15.23.4</td>
<td>Copy a String</td>
<td>2803</td>
</tr>
<tr>
<td>15.23.5</td>
<td>Parallel a String</td>
<td>2804</td>
</tr>
<tr>
<td>15.23.6</td>
<td>Trim a String</td>
<td>2806</td>
</tr>
<tr>
<td>15.23.7</td>
<td>Extend a String</td>
<td>2808</td>
</tr>
<tr>
<td>15.23.8</td>
<td>Extend String by Chainage Length</td>
<td>2810</td>
</tr>
</tbody>
</table>
16 Tins ...2861
16.1 Tins ...2862
 16.1.1 Project Tins...2863
 16.1.2 Removed Tins..2864
16.2 Tin Info ...2865
16.3 Check Breaklines, Duplicate Vertices, Identicals...2866
16.4 Check Breaklines - Old ..2869
16.5 Create ..2871
 16.5.1 Triangulate Data ...2872
 16.5.2 Create Super Tin™ ..2875
 16.5.3 Function ..2878
 16.5.4 Quick Tin...2879
16.6 Edit...2880
 16.6.1 Edit a Tin ...2881
 16.6.2 Edit Super Tin..2883
 16.6.3 Recale Super Tin ...2885
 16.6.4 Edit Tin Function ..2886
 16.6.5 Retriangulate ..2887
 16.6.6 Style ..2888
 16.6.7 Render Settings ..2889
 16.6.8 Add Breaklines ..2890
 16.6.9 Flip Triangles ..2891
16.7 Boundary...2892
16.8 Colour ...2894
 16.8.1 Colour of Tin ..2895
 16.8.2 Colour Within Polygon ...2896
 16.8.3 Reset ..2898
 16.8.4 Tin Height Colour ..2899
 16.8.5 Tins Depths Colour ..2901
16.14.13 Translate/Copy ... 3010
16.14.14 Weed .. 3011
16.14.15 Z Differences from Tins ... 3012
16.14.16 Z Differences from String to Tin 3013
16.14.17 Grid of Min / Max of Tins .. 3014
16.15 Sections .. 3016
16.15.1 Long Sections ... 3017
16.15.2 Mesh .. 3018
16.15.3 Polygon Sections ... 3020
16.15.4 X-Sections .. 3022
16.16 Sharing ... 3024
16.16.1 Share Tins ... 3025
16.16.2 Add Shared Tins .. 3027
16.16.3 Remove Shared Tins .. 3030
16.16.4 Synchronize Shared Tins .. 3032
16.17 Delete .. 3034
16.17.1 Delete a Tin ... 3035
16.17.2 Delete All Tins ... 3036
17 Survey ... 3037
17.1 12d Field .. 3039
17.2 Network .. 3040
17.2.1 Creating a Least-Square Network 3041
17.2.2 ePlan .. 3042
17.3 Setup .. 3043
17.4 Download Raw ... 3044
17.5 Convert Raw ... 3046
17.6 Create Survey Function ... 3047
17.6.1 Field File ... 3048
17.6.2 Typed Entry ... 3061
17.7 Edit Survey Function .. 3062
17.7.1 Function .. 3063
17.7.2 Field Data ... 3064
17.7.3 Field Data by String .. 3065
17.7.4 Coding ... 3065
17.7.4.1 Change .. 3066
17.7.4.2 Quick Change ... 3067
17.7.4.3 Quick Multi Coding .. 3068
17.10 Conversions ... 3211
 17.10.1 Australian Conversions ... 3212
 17.10.2 Cartographic .. 3214
 17.10.3 NZ Conversions .. 3217
 17.10.4 AGD66/84 <--> GDA94 ... 3218
 17.10.5 NZ49 <--> NZ2000 .. 3224
 17.10.6 General Transformations .. 3229
 17.10.7 IGN72 <--> RGNC1991 .. 3333
 17.10.8 MGRS <--> UTM ... 3334

17.11 Geodetic Measures and Entry 3235
 17.11.1 Projection Bearing/Distance Entry 3235
 17.11.2 E,N from Ellipsoid Distance and Plane Bearing 3238
 17.11.3 Plane Bearing and Distance Measure 3239
 17.11.4 Projection Bearing and Distance Measure 3239
 17.11.5 GDA94/AGD66-84 Bearing and Distance Measure 3240
 17.11.6 Longitude, Latitude from Grid Coordinates 3243
 17.11.7 GDA94/AGD66-84 Point Scale Factor 3243
 17.11.8 Non-Projection to Projection Coordinates 3245
 17.11.9 Projection to Non-Projection Coordinates 3247
 17.11.10 Bearing/Distance Label 3249
 17.11.11 Projection Bearing/Distance Label 3255
 17.11.12 Geodetic Reporting ... 3261
 17.11.13 Solar Reduction ... 3262
 17.11.14 Star Reduction ... 3265

17.12 Traverse Spreadsheet ... 3267
 17.12.1 TSS Parameters .. 3268
 17.12.2 TSS Create .. 3269
 17.12.3 TSS Edit .. 3271
 17.12.3.1 Traverse Spreadsheets 3271
 17.12.4 TSS Utilities ... 3276
 17.12.5 Lot Check .. 3277
 17.12.6 NZ TSS Report .. 3281
 17.12.7 Standard TSS Report ... 3283
 17.12.8 TSS Drafting .. 3285
 17.12.9 TSS Radiation Table Drafting 3286
 17.12.10 Landonline XML Read 3287
 17.12.11 Landonline XML Write 3288

17.13 Conformance ... 3289
 17.13.1 Batter slope report ... 3289
 17.13.2 Pavement report .. 3301

17.14 Extras .. 3313
 17.14.1 AusGeoid98 *.dat -> xyz 3314
 17.14.2 Plane Bearing/Distance Entry 3315
 17.14.3 Bearing/Distance Entry for Traverse/Radiation 3317
 17.14.4 Catenary Measurement ... 3319
 17.14.5 Create Control Stations .. 3322
 17.14.6 Check Control Model .. 3323
 17.14.7 Linear Regression ... 3324
 17.14.8 Survey Function to Field File 3325
 17.14.9 On Grade .. 3326

17.15 Leica .. 3328
 17.15.1 Leica GSI .. 3328
 17.15.2 Leica 1100 .. 3328
 17.15.3 Write TP Stakeout Binary Triangles (TSC Format) 3329
 17.15.4 Write TP Stakeout 3DP String 3330
 17.15.5 TP Alignment .. 3330
 17.15.6 Leica 1200 .. 3332
 17.15.7 Create Leica 1200 String Files 3332
17.15.8 Create Leica 1200 String Files (Old).. 3334
17.15.9 Create Leica 1200 Triangle Files.. 3334
17.15.10 Create Leica 1200 Road Files... 3335
17.15.11 Create Leica 1200 Tunnel Files... 3337
17.15.12 Leica GradeSmart 3D... 3339
17.16 Topcon... 3339
17.16.1 Create Topcon LN3 String Files.. 3339
17.16.2 Read Topcon LN3 Strings Files... 3340
17.16.3 Create Topcon TN3 Triangle Files... 3341
17.16.4 Read Topcon TN3 Triangle Files... 3342
17.16.5 Create RD3 Road File.. 3342
17.16.6 Read Topcon RD3 Road File.. 3343
17.16.7 Create Topcon PT3 Points Files.. 3343
17.16.8 Read Topcon PT3 Points Files... 3344
17.17 Trimble... 3345
17.17.1 Write TTM File... 3345
17.17.2 Trimble Link Points.. 3346
17.17.3 Trimble Link Triangles... 3348
17.17.4 Trimble Link Roads... 3348
17.17.5 SCS900 CSV to XYZ ID Code... 3350
17.18 Setout... 3351
17.18.1 Create Centre Points for Curves of Strings... 3351
17.18.2 Create X Y Text for Centre Points of Alignments... 3352
17.18.3 Setout Lip Line.. 3354
17.18.4 Create Setout Points... 3355
17.18.5 Create Setout Points Using Super String.. 3356
17.19 Upload.. 3365
17.19.1 Create Unique Coordinates.. 3365
17.19.2 Create Triangle Upload File.. 3366
17.19.3 Create Points Upload File.. 3368
17.19.4 Create Road Upload File.. 3370
17.19.5 Create Points Upload File (New)... 3381
17.19.6 Create Road Upload File (New).. 3383
17.19.7 Create Paveset Upload File... 3387
17.19.8 Survey Data Upload... 3388
17.20 TP Stakeout/Setout... 3389

18 12d Field... 3407
18.1 12d Field Overview... 3408
18.2 12d Field.. 3409
18.2.1 Setout... 3410
18.2.1.1 TPS.. 3410
18.2.1.2 GPS.. 3412
18.2.1.3 Configure GPS Simulator.. 3412
18.2.1.4 12d Field - Setout (TPS Simulator).. 3414
18.2.1.5 12d Field - Setout (GPS Simulator).. 3414
18.2.1.6 12d Field - GPS Status... 3415
18.2.1.7 Options.. 3421
18.2.1.8 Common Measurement Buttons... 3422
18.2.2 GPS Localisation... 3492
18.2.3 12dField Setout FLD File To Strings... 3495
18.2.4 12d Pickup.. 3496
18.2.5 12d Pickup Codes... 3498
18.2.5.1 Pickup Editor... 3499
18.2.5.2 Pickup Favourites... 3534
18.2.5.3 Mapfile to 12d Pickup Codes.. 3537
18.2.5.4 ADAC XSD to 12d Pickup Codes... 3538
18.2.5.5 12d Pickup Codes to Macro... 3539
18.2.5.6 Filter Linestyles/Symbols via Mapfile.. 3540
19 ePlan ...3543
19.1 ePlan.XML Overview ...3544
19.1.1 ePlan XML Structure ..3544
19.2 12d Approach to ePlan XML ..3545
19.3 12d ePlan Workflow ..3546
19.4 12d ePlan Menu ..3547
19.4.1 Create NSW ePlan Network ...3548
19.4.2 Edit ES for NSW ePlan Network ..3550
19.4.2.1 Points ...3551
19.4.2.2 Observations ...3564
19.4.2.3 Blocks ..3570
19.4.2.4 Boundaries ..3572
19.4.2.5 Parcels ..3577
19.4.2.6 Occupations ..3585
19.4.2.7 Properties ..3587
19.4.2.8 Network ..3591
19.4.2.9 Settings ..3592
19.4.2.10 Info ..3597
19.4.2.11 I/O ..3599
20 Design ..3601
20.1 Templates in 12d Model ...3603
20.1.1 Simple Templates ..3603
20.1.1.1 Design X Sections ..3604
20.1.1.2 Design Strings ..3605
20.1.2 12d Model Templates ..3607
20.2 Templates ..3609
20.2.1 Templates ...3610
20.2.1.1 Project Templates ..3610
20.2.1.2 Removed Templates ...3610
20.2.2 Create/Edit Templates ...3611
20.2.2.1 Fixed Template ...3613
20.2.2.2 Decisions Template ...3615
20.2.2.3 Variable Cut or Fill Template ..3616
20.2.2.4 Final Cut/Fill Template ..3618
20.2.3 Copy Template ..3619
20.2.4 Rename Template ..3620
20.2.5 Template Utilities ..3621
20.2.5.1 Add Templates ...3621
20.2.5.2 Input Templates ...3623
20.2.5.3 Output Templates ..3623
20.2.5.4 Remove Templates ...3624
20.2.5.5 Save Templates ..3626
20.2.6 Delete Templates ..3628
20.2.6.1 Delete a Template ...3628
20.2.6.2 Delete All Templates ..3628
20.3 Apply Functions ..3630
20.3.1 Apply Template Function ..3632
20.3.1.1 Views ..3640
20.3.2 Apply MTF Function ..3642
20.3.3 Apply MTF Manager - Create/Update ...3660
20.3.5 Kerb Return Function ..3666
20.3.6 String Modifiers Function ..3669
20.3.7 Interface Function ..3670
20.3.8 Amend VG ..3672
20.3.9 Apply Defaults ..3675
20.4 MTF .. 3678
 20.4.1 Create MTF .. 3679
 20.4.1.1 MTF Edit .. 3680
 20.4.2 Edit MTF ... 3681
 20.4.3 Snippets... 3683
 20.4.3.1 Edit Snippet ... 3684
 20.4.3.2 Create Trimesh Snippet ... 3689
 20.4.3.3 Edit Snippet File ... 3690
 20.4.3.4 Compile Snippet ... 3691
 20.4.3.5 12d Supplied Snippets ... 3692
 20.4.4 Rename MTF .. 3729
 20.4.5 Apply MTF .. 3730
 20.4.6 Edit by String .. 3731
 20.4.7 Copy MTF ... 3732
 20.4.8 Delete MTF .. 3733
 20.4.9 Create File ... 3734
 20.4.10 Edit MTF File .. 3735
20.5 Boxing... 3736
 20.5.1 Create Boxing Definitions ... 3737
 20.5.2 Edit Boxing Definitions .. 3738
 20.5.3 Rename Boxing File ... 3739
 20.5.4 Boxing Many Function .. 3740
 20.5.5 Apply Boxing ... 3749
 20.5.6 Apply Boxing Many ... 3750
 20.5.7 Copy Boxing ... 3752
 20.5.8 Delete a Boxing File ... 3753
 20.5.9 Create Definitions Text File .. 3754
 20.5.10 Edit Definitions Text File .. 3755
20.6 Estate Lots.. 3756
 20.6.2 Create Lots ... 3757
 20.6.2.1 Create Lot ... 3758
 20.6.2.2 Create Lot from Picking ... 3765
 20.6.2.3 Create Lot from Picking Segments ... 3767
 20.6.2.4 Create Lot from Polygon ... 3769
 20.6.2.5 Read Geocomp Lots File .. 3770
 20.6.3 Edit Lots ... 3771
 20.6.3.1 Adjust Area .. 3771
 20.6.3.2 Subdivide Area .. 3778
 20.6.4 Filter Lots ... 3784
 20.6.5 Number Lots ... 3785
 20.6.5.1 Create Lot Numbers ... 3786
 20.6.5.2 Change Lot Numbers ... 3786
 20.6.6 Label Lots .. 3788
 20.6.6.1 Create Lot Annotation ... 3788
 20.6.6.2 String Bearing Distance Labelling ... 3790
 20.6.7 Delete Lot Attributes and Text ... 3791
 20.6.8 Setout Lots ... 3792
 20.6.8.1 Create Lot Point Numbers .. 3792
 20.6.8.2 Drape Points .. 3793
 20.6.9 Report Lots ... 3795
 20.6.10 Lot Utilities .. 3796
 20.6.10.1 Colour Lots by Range File ... 3796
 20.6.10.2 Remove Lot Colour ... 3797
 20.6.10.3 Reverse Bearing .. 3797
 20.6.10.4 Short Line/Arc Table ... 3798
 20.6.10.5 Short Line/Arc Report .. 3798
 20.6.10.6 Short Segment Utilities .. 3798
20.7 Pads ... 3799
20.7.1 Balance a Pad ... 3800
20.7.2 Dynamic Pad Interface .. 3802
20.7.3 Allotment Pad Create ... 3804
20.7.4 Allotment Pad Edit .. 3807
20.7.5 Dynamic Pad/Pond Interface ... 3809
20.8 Roads .. 3811
 20.8.1 Create Roads ... 3812
 20.8.1.1 Create Roads - Enhanced .. 3815
 20.8.1.2 V10 Create Roads .. 3824
 20.8.2 Design Checker ... 3835
 20.8.3 Stopping Distance .. 3836
 20.8.4 Trarr ... 3837
 20.8.4.1 Trarr Output .. 3837
 20.8.4.2 Trarr input ... 3839
 20.8.5 Vehicle Path ... 3840
 20.8.6 ARNDT Editor .. 3848
 20.8.7 Mass Haul ... 3859
 20.8.7.1 Mass Haul Analyser ... 3859
 20.8.8 Common Buttons .. 3871
 20.8.8.1 Selecting The Right Report File Type 3871
 20.8.8.2 Graph Box Operation ... 3872
 20.8.9 Traffic Islands .. 3875
 20.8.9.1 Create Traffic Island .. 3877
 20.8.9.2 Traffic Island Profile/Tin .. 3880
 20.8.10 Guide Post Placement .. 3883
 20.8.11 String by Xfall and Grade ... 3885
 20.8.11.1 Xfall Types .. 3887
 20.8.11.2 Sign Convention for Heights, Offsets and Xfalls in Create by Xfall and Grade3953
 20.8.12 More Roads ... 3959
 20.8.12.1 Drape Alignment ... 3959
 20.8.12.2 Line Marking ... 3959
 20.8.12.3 Road Polygons ... 3960
 20.8.12.4 Road Widening with Minimum and Maximum Crossfall 3960
 20.8.12.5 Create Roundabout ... 3961
 20.8.12.6 Kerb Special Chainage File 3962
 20.8.12.7 Special Chainage File .. 3964
 20.8.12.8 Table Drain - Intersection of Slopes from Two Strings 3966
 20.8.12.9 Intersection MTF Update .. 3967
 20.8.12.10 Kret Convert to Computators 3967
 20.8.12.11 Subgrade Intersect Function 3969
 20.8.12.12 X Segment function ... 3972
20.9 Components ... 3974
 20.9.1 Component Library .. 3975
 20.9.1.1 Settings Node .. 3976
 20.9.1.2 Folder Nodes ... 3977
 20.9.1.3 Components Node ... 3978
 20.9.1.4 New Component ... 3980
 20.9.2 Component Types ... 3982
 20.9.2.1 Minor Intersection .. 3982
 20.9.3 Placement Parameters .. 3984
 20.9.4 Carriageway Node .. 3984
 20.9.5 Left Turn - Approach / Departure 3988
 20.9.6 Approach / Departure =>Left Turn =>Kerb Return Node 3995
 20.9.6.1 Fillet Kerb Return ... 3995
 20.9.6.2 Two Centred Kerb Return ... 3995
 20.9.6.3 Three Centred Kerb Return .. 3996
20.9.7 Approach / Departure => Median / Right Turn Node .. 3997
 20.9.7.1 Nose Types... 3998
 20.9.7.2 Roundabout .. 4001
20.9.8 Placement Parameters .. 4003
20.9.9 Centre Node ... 4004
20.9.10 Approach / Departure Node ... 4005
20.9.11 Approach / Departure => Kerb Node .. 4007
 20.9.11.1 Common Fields ... 4007
 20.9.11.2 Arc / Three Tangents / Arc .. 4007
 20.9.11.3 Three Tangents / Locked Arc / Three Tangents 4008
 20.9.11.4 Three Tangents / Arc / Three Tangents .. 4008
 20.9.11.5 Fillet .. 4009
 20.9.11.6 Two Centre Curve ... 4009
 20.9.11.7 Three Centre Curve .. 4009
 20.9.11.8 Bus Bay ... 4012
 20.9.11.9 Culdesac .. 4015
 20.9.11.10 HAMMERHEAD ... 4017
 20.9.11.11 Parking Bays .. 4025
 20.9.12 Standard Bay .. 4027
20.9.13 Separation .. 4029
 20.9.13.1 Placing Parking Bays ... 4029
 20.9.13.2 Left Turn .. 4030
20.9.14 Placement Parameters .. 4031
20.9.15 Left Turn .. 4032
 20.9.15.1 Left Turn => Kerb Return .. 4032
 20.9.15.2 Median Island .. 4033
20.9.16 Median Island Piece ... 4035
 20.9.16.1 Nose Types .. 4036
 20.9.17.1 Placing Median Islands .. 4038
 20.9.17.2 Entry Ramp ... 4040
20.9.18 Entry Ramp Node .. 4041
20.9.19 Placement Parameters .. 4042
20.9.20 Shoulder Node .. 4043
20.9.21 Merging Lane Node ... 4044
20.9.22 Connection .. 4045
 20.9.22.1 Roundabout Mode .. 4045
 20.9.22.2 No Strings Mode ... 4045
 20.9.22.3 Exit Ramp .. 4046
20.9.23 Exit Ramp Node .. 4048
20.9.24 Placement Parameters .. 4049
20.9.25 Shoulder Node .. 4050
20.9.26 Diverging Lane Node ... 4051
20.9.27 Connection Node ... 4052
 20.9.27.1 Roundabout Connection .. 4052
 20.9.27.2 CHR Intersection .. 4053
20.9.28 Predefined Values Node .. 4055
20.9.29 Major Road Node ... 4056
 20.9.30.1 Fillet Kerb Return .. 4058
 20.9.30.2 Two Centred Kerb Return .. 4058
 20.9.30.3 Three Centred Kerb Return .. 4059
20.9.31 Minor Road Node ... 4060
 20.9.31.1 Fillet Kerb Return .. 4060
 20.9.31.2 Two Centred Kerb Return .. 4060
 20.9.31.3 Three Centred Kerb Return .. 4061
20.9.32 Place a Component .. 4063
 20.9.32.1 Editing Components .. 4065
 20.9.33.1 Editing a Placed Component ... 4067
20.9.34 Edit a Placed Component .. 4069
20.10 Sight Lines ... 4074
 20.10.1 Sight Lines.. 4075
 20.10.2 Sight Distance Enhanced.. 4077
 20.10.3 Viewshed All... 4082
 20.10.4 Shadow Analysis.. 4086
 20.10.5 Sun in Driver Eyes... 4090
 20.10.6 Sun Exposure.. 4091
 20.10.7 Sight Distance - Tin Only...................................... 4092
 20.10.8 Viewshed - Tin Only.. 4098
 20.10.9 Dynamic Viewshed - Tin Only............................... 4101

20.11 Track ... 4103
 20.11.1 Calc CL Panel.. 4104
 20.11.2 Track Turnouts.. 4105
 20.11.2.1 Turnout Place... 4105
 20.11.2.2 Turnouts Create/ Edit..................................... 4106
 20.11.2.3 Read Turnouts... 4107
 20.11.2.4 Write Turnouts File... 4107
 20.11.3 Copy VC... 4109
 20.11.4 Rail Slew Calculator.. 4110
 20.11.5 Calculate Cant.. 4111
 20.11.6 Light Rail Stopping Distance................................. 4112
 20.11.7 Track Plot.. 4113
 20.11.7.1 Plot Rails Panel... 4113
 20.11.7.2 Rail Create Profile Panel................................. 4114
 20.11.7.3 Structure Gauge Panel...................................... 4115
 20.11.8 Track Label.. 4117
 20.11.8.1 Super Alignment Labels................................. 4117
 20.11.8.2 Super Alignment Style Extras Create/Edit.......... 4117
 20.11.9 Help... 4119

20.12 Tunnels and Structures... 4120
 20.12.1 Creating/Editing a Tunnel Definition File................ 4121
 20.12.2 Create Tunnel.. 4127
 20.12.3 Create Combined Tunnel...................................... 4129
 20.12.4 Conform Tunnel.. 4132
 20.12.5 Conform Plot Tunnel.. 4134
 20.12.6 Plot Settings... 4136
 20.12.6.1 Tunnel Plot Settings.. 4137
 20.12.6.2 Tunnel Plot Name Mappings............................... 4138
 20.12.6.3 Tunnel Table Styles... 4139
 20.12.7 Trimesh from Tunnel Points................................... 4140
 20.12.8 Tunnel Filter Data... 4142
 20.12.9 Tunnel Offset Points... 4145
 20.12.10 Definition of the PRO and PRA definition files........ 4146

20.13 Overlay... 4148
 20.13.1 Overlay Design.. 4149

20.14 X-Sections... 4156
 20.14.1 Colour Sections by XFall Range.............................. 4157
 20.14.2 Construction Tables... 4158
 20.14.3 Cut/Fill Polygons from Sections............................. 4160
 20.14.4 Name Cross Sections by Chainage.......................... 4162
 20.14.5 Polygons from Sections.. 4163
 20.14.6 Read X-Section Data.. 4164
 20.14.7 Sort X-Sections in a Model..................................... 4166
 20.14.8 Strings from Sections.. 4167
21 Advanced Design .. 4189

21.1 The Modifiers and Templates File - MTF... 4190
21.1.1 MTF Links, Points, Sections, Strings and Trimeshes... 4192
 21.1.1.1 MTF Links, Points and Strings .. 4193
 21.1.1.2 MTF Links and Layers... 4196
 21.1.1.3 MTF Shapes and Trimeshes... 4197
21.1.2 Calculating Link Values ... 4198
 21.1.2.1 Calculating Width, Height, Xfall or Slope from Original Definitions.............. 4198
 21.1.2.2 Modify X, Hold Y in MTF Modifiers... 4199
 21.1.2.3 New Value Usage... 4200
21.1.2.4 MTF String Modifiers ... 4462
21.1.2.5 MTF Auto Recalc .. 4453
21.1.2.6 MTF Special Chainages ... 4459
 21.1.2.6.1 MTF Boxing File... 4450
 21.1.2.6.2 Left Side and Right Side Boxing .. 4451
 21.1.2.6.3 MTF Boxing ... 4451
21.1.2.7 Debug .. 4444
21.1.2.8 Pause ... 4446
21.1.2.9 Comment .. 4447
21.1.2.10 Region .. 4448
21.1.2.11 Common Fields and Buttons on Hinge Modifier Panels 4217
21.1.2.12 New Island Create (Function) .. 4181
21.1.2.13 Traffic Island Profile and Triangulation Creation................................. 4184
21.2 MTF Edit ... 4202
21.2.1 MTF Hinge Modifiers ... 4203
 21.2.1.1 Create Hinge Commands .. 4207
 21.2.1.2 Offset.. 4208
 21.2.1.3 Height... 4210
 21.2.1.4 Offset to String ... 4212
 21.2.1.5 Height to String .. 4213
 21.2.1.6 Coord to String ... 4214
 21.2.1.7 Height to Tin ... 4215
 21.2.1.8 No Hinge ... 4216
 21.2.1.9 Comment .. 4217
 21.2.1.10 Region .. 4217
 21.2.1.11 Common Fields and Buttons on Hinge Modifier Panels 4219
21.2.2 Left and Right MTF Modifiers ... 4221
 21.2.2.1 Create MTF Commands .. 4225
 21.2.2.2 Fixed Link Modifiers .. 4236
 21.2.2.3 Template Modifiers .. 4408
 21.2.2.4 Interval .. 4426
 21.2.2.5 MTF Create .. 4433
 21.2.2.6 Snippet .. 4443
 21.2.2.7 Debug .. 4444
 21.2.2.8 Pause ... 4446
 21.2.2.9 Comment .. 4447
 21.2.2.10 Region .. 4448
21.2.3 MTF Boxing .. 4449
 21.2.3.1 MTF Boxing File... 4450
 21.2.3.2 Left Side and Right Side Boxing .. 4451
21.2.4 MTF Recalc ... 4453
21.2.5 MTF Auto Recalc .. 4453
21.2.6 MTF More ... 4454
 21.2.6.1 MTF Templates ... 4455
 21.2.6.2 MTF Shift ... 4457
 21.2.6.3 MTF Special Chainages .. 4459
 21.2.6.4 MTF String Modifiers .. 4462
21.2.6.5 String Modifiers Commands ... 4465
21.2.6.6 MTF Hinge Widening Treatment ... 4472
21.2.6.7 MTF Remove Loops ... 4473
21.2.6.8 MTF Stripping .. 4474
21.2.6.9 MTF Super/Widening .. 4476
21.2.7 MTF Settings .. 4482
 21.2.7.1 MTF Setting Design layer name .. 4483
 21.2.7.2 MTF Setting Default Chainage Type .. 4483
 21.2.7.3 MTF Setting Shape Formation Toggle .. 4484
 21.2.7.4 MTF Setting Show Extra Start/End ... 4484
 21.2.7.5 MTF Setting Extra Start/End value .. 4485
 21.2.7.6 MTF Setting Show Extra Start/End column .. 4485
 21.2.7.7 MTF Setting Show Absolute Column .. 4485
 21.2.7.8 MTF Setting Show Interval Column .. 4486
 21.2.7.9 MTF Setting Hinge Link Name ... 4486
 21.2.7.10 MTF Width ... 4487
21.2.8 MTF Save ... 4488
 21.2.8.1 MTF Save ... 4489
 21.3 Options Not Yet Re-documented for V11 .. 4490
 21.3.0.1 Insert Cut Links from a Template ... 4490
 21.3.0.2 Cut Link - Remove ... 4491
 21.3.0.3 Cut Link - Modifier Width or Height .. 4497
 21.3.0.4 Cut Link - Modify Slope ... 4497
 21.3.0.5 Cut Link - from Link .. 4497
 21.3.0.6 Cut Link - to String ... 4497
 21.3.0.7 Cut Link - to Tin .. 4500
 21.3.0.8 Cut Link - to Two Heights ... 4507
 21.3.0.9 Cut Link - to 2 Strings ... 4510
 21.3.10.1 Insert Fill Links from a Template ... 4512
 21.3.10.11 Fill Link - Remove .. 4517
 21.3.10.12 Fill Link - Modify Width or Height .. 4519
 21.3.10.13 Fill Link - Modify Slope .. 4520
 21.3.10.14 Fill Link - from Link .. 4521
 21.3.10.15 Fill Link - to String .. 4522
 21.3.10.16 Fill Link - to Tin .. 4524
 21.3.10.17 Fill Link - to Two Heights ... 4528
 21.3.10.18 Fill Link - to Two Strings ... 4531
21.4 Smart Chainages ... 4548
 21.4.1 Extension Value .. 4552
 21.4.2 Typed ... 4553
 21.4.3 Start of Reference String ... 4553
 21.4.4 End of Reference String .. 4553
 21.4.5 Start of Other String ... 4554
 21.4.6 End of Other String ... 4555
 21.4.7 Lowest Dropped Chainage of Other String ... 4556
 21.4.8 Highest Dropped Chainage of Other String ... 4557
 21.4.9 Named Part on Reference String .. 4558
 21.4.10 Named Part on Other String ... 4559
 21.4.11 Named Position on Reference String ... 4560
 21.4.12 Named Position on Other String .. 4561
 21.4.13 Cut Reference with Other String .. 4562
 21.4.14 Intersection of Two Strings .. 4563
 21.4.15 Lowest Dropped Chainage of Modifier String 4564
 21.4.16 Highest Dropped Chainage of Modifier String 4565
 21.4.17 Relative to Self End ... 4566
 21.4.18 Relative to Self Start ... 4566
 21.4.19 Relative to Alias Start .. 4567
 21.4.20 Relative to Alias End ... 4567
 21.4.21 Relative to Previous Start ... 4568
21.5 Defining and Using Snippets ... 4572
21.5.1 What are MTF Snippets? .. 4573
21.5.2 Creating a Snippet .. 4574
21.5.3 An Example of a Snippet .. 4575
21.5.4 Editing a Snippet File .. 4577
21.5.5 How To Select a Snippet in an MTF ... 4578
21.5.6 Comments in Snippets ... 4581
21.5.7 Start and End Modes for a Snippet ... 4582
21.5.8 Snippet Parameters and Commands ... 4584
21.5.8.1 Common Definitions for Snippet Parameters .. 4585
21.5.8.2 Snippet Parameter of Type REAL .. 4586
21.5.8.3 Snippet Parameter of Type INTEGER .. 4587
21.5.8.4 Snippet Parameter of Type TEXT ... 4588
21.5.8.5 Snippet Parameter of Type SELECT .. 4589
21.5.8.6 Snippet Parameter of Type CHOICE .. 4590
21.5.8.7 Snippet Parameter of Type CHOICE2 ... 4591
21.5.8.8 Snippet Parameter of Type TICK ... 4593
21.5.8.9 Snippet Parameter of Type COLOUR .. 4594
21.5.8.10 Snippet Parameter of Type NAME .. 4595
21.5.8.11 Snippet Parameters for Models ... 4596
21.5.8.12 Snippet Parameters for Tins .. 4600
21.5.8.13 Snippet Parameter of Type LAYER .. 4604
21.5.8.14 Snippet Parameter of Type NAMED_GRADE ... 4605
21.5.8.15 Snippet Command INFO .. 4606
21.5.8.16 Snippet Command DISPLAY .. 4607
21.5.8.17 Snippet Command INCREMENT ... 4609
21.5.8.18 Optional Parameters in Snippets ... 4611
21.5.9 Automatic Parameters in Snippets .. 4612
21.5.9.1 _AUTO_LR ... 4613
21.5.9.2 _SCH ... 4613
21.5.9.3 _ECH ... 4613
21.5.9.4 _CL_REF ... 4613
21.5.9.5 _CL_REF1 ... 4613
21.5.9.6 _CL_REF2 ... 4614
21.5.9.7 _CL_REF3 ... 4614
21.5.9.8 _CL_REF4 ... 4614
21.5.9.9 _NULL .. 4614
21.5.9.10 _AUTO_0I, _AUTO_11, ..., _AUTO_9R, _AUTO_AS, _AUTO_BT, ..., _AUTO_HZ 4614
21.5.9.11 _AUTO_05, _AUTO_16, _AUTO_27, ..., _AUTO_49, _AUTO_AN, _AUTO_BO, ..., _AUTO_MZ 4615
21.5.9.12 _INS_05, _INS_LR, _INS_0I... 4616
21.5.9.13 _INS_SIDE_05 .. 4616
21.5.9.14 _SIDE_FX ... 4618
21.5.9.15 _AUTO_LAYER_LR .. 4619
21.5.9.16 _APPLY_TIN ... 4620
21.5.9.17 _APPLY_DESIGN_MODEL .. 4620
21.5.9.18 _HINGE ... 4620
21.5.9.19 _SIDE .. 4620
21.5.9.20 _SILENT_NG ... 4620
21.5.9.21 _PROJECT_ATTRIBUTE ... 4621
21.5.9.22 Substrings of parameters ... 4621
21.5.10 Arithmetic in Snippets .. 4622
21.5.12 Snippet Directives ... 4623
21.5.12.1 Deprecated C Preprocessor from V10 4625
21.5.12.2 Snippet Directives for V11 Onwards 4627
21.5.12.3 Flow control ... 4628
21.5.12.4 Abbreviations ... 4632
21.5.12.5 Comparisons of Data Types .. 4633
21.5.12.6 Tokens and Tokens vs Tokens ... 4635
21.5.12.7 Tokens vs Strings .. 4652
21.5.12.8 Tokens vs Doubles .. 4654
21.5.12.9 Tokens vs Integers .. 4675
21.5.12.10 Values Defined and Value vs Value 4682
21.5.12.11 Values vs Strings ... 4687
21.5.12.12 Values vs Doubles ... 4689
21.5.12.13 Values vs Integers .. 4706
21.5.13 Snippet Variables ... 4718
21.5.13.1 Defining Link Variables .. 4718
21.5.13.2 Defining General Variables ... 4719
21.5.13.3 Snippet Helper Functions ... 4720
21.5.13.4 Using Variables in Other Variables 4721
21.5.13.5 Using Variables in Commands 4722
21.5.14 Order of Snippet Processing ... 4723
21.5.15 Debugging Snippets .. 4729
21.5.15.1 Print Messages and Log Lines to the Output Window 4730
21.5.15.2 Intermediate Parsing Results ... 4732
21.5.15.3 Temporary MTF Snippet File .. 4733
21.5.16 Compiling Snippets .. 4735
21.5.17 Tips and Tricks ... 4736
21.5.18 Major Warning - You Will be Caught by This 4737
21.6 What is Boxing? ... 4738
21.6.1 Representing Cross Sections in 12d Model 4739
21.6.2 Applying Boxing ... 4741
21.6.2.1 Scenario 1 - Design Generated by One Apply MTF 4742
21.6.2.2 Scenario 2 - More than One Apply MTF Needed to Generate the Design4744
21.6.2.3 Scenario 3 - Design Provided as Strings Only 4745
21.6.2.4 Scenario 4 - Design Sections Already Exist 4746
21.7 Full Definition of Boxing .. 4748
21.7.1 Terminology Used in Boxing Commands 4749
21.7.2 Edit Boxing File ... 4752
21.7.2.1 Boxing Rules Panel ... 4753
21.7.2.2 Commands for Boxing Rules Grid 4757
21.7.2.3 Defining Relative Offset for Boxing Commands 4830
21.8 Full Definition of Template Decisions 4835
21.8.1 Decisions Template Commands .. 4838
21.8.2 Template Decisions - Fixed Xfall 4840
21.8.3 Template Decisions - Fixed Slope 4842
21.8.4 Template Decisions - Tin Width ... 4844
21.8.5 Template Decisions - String Offset 4846
21.8.6 Template Decisions - Tin Decision 4848
21.8.7 Template Decisions - Batter Decision 4850
21.8.8 Template Decisions - Batter ... 4853
21.8.9 Template Decisions - Label ... 4857
21.8.10 Template Decisions - Goto ... 4858
21.8.11 Template Decisions - Undo ... 4859
21.8.12 Template Decisions - Continue Cut Fill 4860
21.8.13 Template Decisions - Comment .. 4861
21.8.14 Template Decisions - Region .. 4861
21.8.15 Template Decisions - End ... 4862
21.10 Text Format of Files ... 5018
21.10.1 Text Format of the MTF File .. 5019
 21.10.1.1 MTF Templates File Format ... 5021
 21.10.1.2 MTF Specials File Format ... 5024
 21.10.1.3 MTF Hinge Modifier File Format 5025
 21.10.1.4 MTF MTF Modifiers File Format 5028
 21.10.1.5 Start and End Chainages in the Modifier File Format ... 5030
 21.10.1.6 MTF Fixed Link Modifiers File Format 5033
 21.10.1.7 Decision File Format .. 5043
 21.10.1.8 Cut and Fill Variable Link Modifiers File Format 5044
 21.10.1.9 Final Link Modifiers File Format 5053
 21.10.1.10 Snippets File Format .. 5056
 21.10.1.11 A Template Modifier File Example 5057
 21.10.1.12 MTF Stripping File Format .. 5059
 21.10.1.13 MTF Boxing File Format .. 5060
 21.10.1.14 MTF Width File Format .. 5062
 21.10.1.15 MTF String Modifiers File Format 5063
 21.10.1.16 Substitutions in the Modifiers and Templates File 5065
21.10.2 Text Format of the Boxing File .. 5069

21.9 Placing Parts for Super Alignments .. 4867
21.9.1 Fixed, Floating and Free, and Solving 4869
21.9.2 Types of Horizontal Parts .. 4872
 21.9.2.1 Horizontal IPs .. 4872
 21.9.2.2 Horizontal Lines - Fixed .. 4872
 21.9.2.3 Horizontal Lines - Floating .. 4872
 21.9.2.4 Horizontal Lines - Free .. 4872
 21.9.2.5 Horizontal Arcs - Fixed .. 4872
 21.9.2.6 Horizontal Arcs - Floating .. 4872
 21.9.2.7 Horizontal Arcs - Free .. 4873
 21.9.2.8 Horizontal Transitions - Floating 4873
 21.9.2.9 Horizontal Transitions - Free 4873
 21.9.2.10 Horizontal Transitions - Compound 4873
21.9.3 Types of Vertical Parts .. 4874
 21.9.3.1 Vertical IPs ... 4874
 21.9.3.2 Vertical Lines - Fixed .. 4874
 21.9.3.3 Vertical Lines - Floating .. 4874
 21.9.3.4 Vertical Lines - Free .. 4874
 21.9.3.5 Vertical Parabolas - Fixed .. 4874
 21.9.3.6 Vertical Parabolas - Floating .. 4875
 21.9.3.7 Vertical Parabolas - Free .. 4875
 21.9.3.8 Vertical Arcs - Fixed ... 4875
 21.9.3.9 Vertical Arcs - Floating .. 4875
 21.9.3.10 Vertical Arcs - Free ... 4875
21.9.4 Definitions of Super Alignment Horizontal Parts 4876
 21.9.4.1 Horizontal IPs .. 4876
 21.9.4.2 Horizontal Lines .. 4882
 21.9.4.3 Horizontal Arcs .. 4895
 21.9.4.4 Horizontal Transitions .. 4921
 21.9.4.5 Horizontal Computators .. 4946
21.9.5 Definitions of Super Alignment Vertical Parts 4947
 21.9.5.1 Vertical IPs ... 4947
 21.9.5.2 Vertical Lines ... 4957
 21.9.5.3 Vertical Parabolas ... 4969
 21.9.5.4 Vertical Parabolas ... 4993
 21.9.5.5 Vertical Arcs ... 5005
 21.9.5.6 Vertical Computators .. 5017
21.10 Text Format of Files ... 5018
21.10.1 Text Format of the MTF File .. 5019
 21.10.1.1 MTF Templates File Format .. 5021
 21.10.1.2 MTF Specials File Format ... 5024
 21.10.1.3 MTF Hinge Modifier File Format 5025
 21.10.1.4 MTF MTF Modifiers File Format 5028
 21.10.1.5 Start and End Chainages in the Modifier File Format ... 5030
 21.10.1.6 MTF Fixed Link Modifiers File Format 5033
 21.10.1.7 Decision File Format .. 5043
 21.10.1.8 Cut and Fill Variable Link Modifiers File Format 5044
 21.10.1.9 Final Link Modifiers File Format 5053
 21.10.1.10 Snippets File Format .. 5056
 21.10.1.11 A Template Modifier File Example 5057
 21.10.1.12 MTF Stripping File Format .. 5059
 21.10.1.13 MTF Boxing File Format .. 5060
 21.10.1.14 MTF Width File Format .. 5062
 21.10.1.15 MTF String Modifiers File Format 5063
 21.10.1.16 Substitutions in the Modifiers and Templates File 5065
21.10.2 Text Format of the Boxing File .. 5069
21.10.2.1 Text Format - Boxing Copy ...5070
21.10.2.2 Text Format - Boxing Copy with Height Adjustment5071
21.10.2.3 Text Format - Boxing Vertex ...5071
21.10.2.4 Text Format - Boxing Line ...5071
21.10.2.5 Text Format - Boxing Xfall ..5072
21.10.2.6 Text Format - Boxing Xfall1 ..5073
21.10.2.7 Text Format - Boxing Intersect ...5073
21.10.2.8 Text Format - Boxing Xfall Point ...5073
21.10.2.9 Text Format - Boxing End ...5073
21.10.2.10 Text Format - Boxing Right_Xfall ...5074
21.10.2.11 Text Format - Boxing Right_slope ..5075
21.10.2.12 Text Format - Boxing Right_copy ...5075
21.10.2.13 Text Format - Boxing Left_Xfall ...5075
21.10.2.14 Text Format - Boxing Left_slope ...5075
21.10.2.15 Text Format - Boxing Left_copy ..5076
21.10.2.16 Text Format - Boxing Definitions Example5077

21.11 Superseded MTF Commands ...5079
21.11.0.1 Fixed Link - Modify Width or Height - Superseded5079
21.11.0.2 Fixed Link - Modify Xfall - Superseded ...5081
21.11.0.3 Fixed Link - Modify Xfall by CRC Formula - Superseded5083
21.11.0.4 Fixed Link - From Link - Superseded ..5085
21.11.0.5 Fixed Link - to String - Superseded ...5088
21.11.0.6 Fixed Link - to Tin - Superseded ..5095
21.11.0.7 Fixed Link - to RL - Superseded ..5100
21.11.0.8 Fixed Link - to Two Strings - Superseded5105
21.11.0.9 Fixed Link - Absolute - Superseded ...5110
21.11.0.10 Fixed Link - to Two Points - Superseded5110

22 Drainage and Sewer ..5111
22.1 Drainage Strings ..5113
22.1.1 Pipes ...5114
22.1.1.1 Type ...5114
22.1.1.2 Size (diameter, width, top width and natural channel shapes (dynamic only)) 5114
22.1.1.3 Inverts Levels ...5114
22.1.1.4 Wall Thickness ...5114
22.1.1.5 Minimum cover limit ..5114
22.1.1.6 Length ..5114
22.1.1.7 Grade ..5114

22.2 Networks and Junctions ..5115
22.3 Drainage Definitions - Manholes and Pipes ..5116
22.3.1 Drainage Definitions - Manhole Types ..5117
22.3.1.1 Manhole Editor Commands ...5117
22.3.1.2 Manhole Level Modes ...5117
22.3.1.3 Manhole Drainage Network Editor Commands5118
22.3.1.4 Manhole Drainage Analysis Inlet Capacity Commands5120
22.3.2 Drainage Definitions - Pipe Types ..5125
22.3.2.1 Pipe Drainage Network Editor Commands5125

22.4 Defaults ...5127
22.4.1 Tin (fs) ..5128
22.4.2 Manholes (Maintenance Holes) ...5129
22.4.3 Pipes ...5130
22.4.4 Property Controls ...5131
22.4.5 House Connections ..5132

House Connection Types ...5133
22.5 Create ...5136
22.5.1 Create Drainage String ...5137
22.6 String Editor ...5138
22.6.1 Create from Strings ..5140
22.6.2 Create from Points and Lines ... 5142
22.6.3 Create Culvert Change ... 5145
22.6.4 Create Drainage Spaced Along String ... 5146
22.6.5 Create/Read Drainage Template ... 5148
22.6.6 Create drainage.4d .. 5149
22.6.7 Create Hydrographs from Peaks ... 5150
22.6.8 Drainage IO Defaults ... 5151
22.7 Drainage Network Editor ... 5152
22.7.1 Global Tab ... 5154
 22.7.1.1 Main tab ... 5154
22.7.2 Pit Connection Points .. 5156
 22.7.2.1 Utility Models tab ... 5157
 22.7.2.2 Display tab .. 5157
 22.7.2.3 Notes tab ... 5158
22.7.3 Defaults tab ... 5160
 22.7.3.1 Catchment subtab ... 5160
 22.7.3.2 Pits subtab ... 5160
 22.7.3.3 Pipes subtab .. 5161
22.7.4 Catchment tab .. 5163
22.7.5 Pit tab ... 5164
 22.7.5.1 Setout subtab ... 5165
 22.7.5.2 Bypass subtab .. 5166
 22.7.5.3 Bypass Shape subtab ... 5167
 22.7.5.4 Basin subtab ... 5168
 22.7.5.5 Inflow subtab ... 5169
 22.7.5.6 Notes subtab ... 5170
22.7.6 Pipe tab .. 5171
 22.7.6.1 Design subtab ... 5171
 22.7.6.2 Channels subtab .. 5172
 22.7.6.3 Notes subtab ... 5173
 22.7.6.4 Set Catchments .. 5174
 22.7.6.5 Regrade Pipes ... 5174
 22.7.6.6 Set Pit Details ... 5174
 22.7.6.7 Set Pit Names ... 5175
 22.7.6.8 Plot ... 5175
 22.7.6.9 Import/Export ... 5175
 22.7.6.10 String Editor ... 5175
 22.7.6.11 Set Catchments .. 5175
22.7.7 Drainage Network Design ... 5177
22.7.8 Flood Extents Tab ... 5178
22.7.9 Dynamic Settings Tab ... 5179
22.7.10 Drainage Edit .. 5180
 22.7.10.1 Edits ... 5180
 22.7.10.2 Advanced Edits ... 5184
 22.7.10.3 Manhole (Maintenance Hole) .. 5185
 22.7.10.4 Pipe ... 5190
 22.7.10.5 Property Controls ... 5194
 22.7.10.6 House Connections ... 5198
 22.7.10.7 Utilities .. 5205
 22.7.10.8 Z Float .. 5206
22.7.11 Utility String Editor ... 5207
22.7.12 Rainfall File ppf Editor ... 5210
 22.7.12.1 Rainfall Temporal Patterns ... 5213
 22.7.12.2 Horton Losses ... 5214
 22.7.12.3 SCS NZ Losses (Initial Abstraction and Curve Numbers) 5214
22.7.13 String split/join ... 5215
22.7.14 Adjust Pit Locations .. 5216
22.7.15 Dynamic Culvert Design .. 5218
22.7.16 Extract Sewer Property Controls ... 5221
22.8 Reports ... 5222
 22.8.1 Drainage Network Quantities ... 5223
 22.8.2 Network Report ... 5227
 22.8.3 Excavation Quantities ... 5228
 22.8.4 Pit Schedules ... 5230
 22.8.5 Property Controls .. 5233
 22.8.6 Barwon Quantities .. 5234
 22.8.7 Barwon House Connections ... 5235
 22.8.8 Barwon Design Checks ... 5236
 22.8.9 Barwon Services Report ... 5237
22.9 Drainage Plots .. 5238
 22.9.1 Set Current Storm ... 5240
 22.9.2 Drainage Longsections .. 5240
 22.9.2.1 Drainage Longsection Plot Parameter File .. 5243
 22.9.3 Melbourne Water .. 5289
 22.9.3.1 Melbourne Water Plot Parameter File .. 5291
 22.9.4 Plot Annotations .. 5309
 22.9.5 Long Plot Cut Labels and Manholes ... 5310
22.10 More Drainage ... 5311
 22.10.0.1 Training Course Notes ... 5312
 22.10.1 Drainage FAQ ... 5313
 22.10.2 Creating Drainage Strings ... 5314
 22.10.3 Set Drainage Flow Direction ... 5315
 22.10.4 Create Network from Import ... 5316
 22.10.5 Place Points .. 5317
 22.10.6 Drainage Pit and Pipe Locks ... 5319
 22.10.7 Delete All Attributes in a Model .. 5321
 22.10.8 Write Inlet Curves to Model ... 5322
 22.10.9 Creating a drainage-4d file from the Drains database dump 5323
 22.10.10 Editing a drainage-4d file ... 5325
 22.10.11 Drainage IO Defaults .. 5326
 22.10.11.1 Set zero chainage to downstream end of line (Reversing the strings). 5326
 22.10.12 Importing and Exporting ... 5327
 22.10.12.1 Spreadsheet clipboard ... 5327
 22.10.12.2 12d to spreadsheet transfers ... 5327
 22.10.12.3 “12d drainage spreadsheet” Format ... 5332
 22.10.12.4 12d Drainage Variable Names ... 5334
 22.10.13 Quick Check Lists for Drainage Design Software 5335
 22.10.13.1 Drains Version 2+ Requirements and Notes 5335
 22.10.14 Running Drains - Version 2+ Requirements and Notes 5336
 22.10.15 PCdrain Requirements ... 5347
 22.10.15.1 PCdrain Requirements ... 5347
 22.10.15.2 12d to PCdrain .. 5349
 22.10.15.3 PCdrain to 12d .. 5349
 22.10.15.4 RAT2000 Requirements .. 5350
23.0 Running RAT2000 .. 5352
 23.1 12d to RAT2000 ... 5352
 23.2 Updating an existing RAT2000 file .. 5353
 23.3 RAT2000 Results to update 12d .. 5354
 23.3.0.1 XP SWMM Program Requirements ... 5355
 23.3.1 Running RATHGL/RAT2000 and XP-SWMM 5356
 23.4 xpstorm and xpswmm bypass requirements 5356
 23.5 12d to the XP Programs ... 5359
 23.6 XP Programs to 12d ... 5361
 23.6.1 Running Micro Drainage - WinDes .. 5364
 23.7 Micro Drainage - WinDes Requirements .. 5364
 23.8 Global/default variable mapping ... 5365
21. Network Editor - Hydraulics ...5477
21.1 Grate Levels...5477
21.2 Outlet and Tailwater Conditions ...5477
21.3 Culvert Hydraulics and Tailwater ..5477
21.1 12d System Path ... 5706
21.10 Mapping non 12d and historical water level data ... 5702
21.9 How to for Rivers ... 5698
21.9.1 Manual Override settings ... 5699
21.9.2 Boundary Strings are broken. How do I stop this? .. 5700
21.10 Mapping non 12d and historical water level data ... 5702
21.10.1 River Mapper ... 5703
1.0 Rivers Rename and Move Cross Sections ... 5705
1.1 12d System Path .. 5706
1.1.1 FAQ Rivers ... 5707
22 Pipeline ... 5709
22.1 Create .. 5710
22.2 Editor ... 5712
22.3 Pipeline Editor ... 5713
22.3.1 Append .. 5714
22.3.1.1 HIPs ... 5714
22.3.1.2 VIPs ... 5714
22.3.2 Move ... 5715
22.3.3 Insert ... 5715
22.3.4 Between .. 5715
22.3.5 Delete .. 5715
22.3.6 Extend .. 5715
22.3.7 Height .. 5715
22.3.8 Curves .. 5715
22.3.9 Parabolas ... 5716
22.3.10 Utilities ... 5716
22.3.11 Utilities 2 ... 5716
22.3.12 Diameter .. 5717
22.3.13 Length .. 5717
22.3.14 Info .. 5717
22.3.15 Quit and Finish ... 5717
22.4 Defaults ... 5718
22.4.1 Depth to Tin ... 5718
22.5 Plots ...5719
22.5.1 Longsections ..5719
22.6 Reports ..5720
22.6.1 Deflection ..5720
22.6.2 Crest/Sag Points ...5721
23 Volumes ..5723
23.1 Definition of Cut and Fill ...5724
23.2 End Area and Exact Volumes ..5725
23.2.1 Theory of End Area Volumes ..5727
23.2.1.1 Average End Area Formula ..5729
23.2.1.2 Two Section Prismoidal Formula ..5729
23.2.2 Theory of Exact Volumes ..5730
23.3 End Area ...5732
23.3.1 End Area - Tin to Height ...5733
23.3.2 End Area - Tin to Tin ...5735
23.3.3 End Area - String Tin to Height ..5738
23.3.4 End Area - String Tin to Tin ...5742
23.3.5 End Area - Sections to Height ...5746
23.3.6 End Area - Sections to Sections ..5749
23.3.7 End Area - Tin to Sections ...5752
23.3.8 End Area - Material Section to Section ...5755
23.4 Exact ...5758
23.4.1 Exact - Between Heights ..5760
23.4.2 Exact - Removal Calcs ...5762
23.4.3 Exact - Storage Calcs ...5764
23.4.4 Exact - Tin to Height ..5766
23.4.5 Exact - Tin to Height 2 ...5768
23.4.6 Exact - Tin to Height Curve ...5770
23.4.7 Exact - Tin to Tin ...5771
23.4.8 Exact - Tin to Tin 2 ...5774
23.4.9 Exact - Balanced Volumes ..5776
23.5 Trimesh ..5777
23.5.1 Trimesh Volume and Area Report ...5778
23.5.2 Trimesh Volume Along a String ..5780
23.6 Grid Cell ..5782
23.7 Stockpile ..5785
23.8 Tin to Tin by Height Range ..5787
23.9 Create Cut/Fill Text Within Polygon ..5789
24 Drafting ..5791
24.1 Bearing/Distance Labelling ..5792
24.2 Line Marking ..5794
24.3 Create Titleblock ..5794
24.4 Create Crosses at String Points ...5795
24.5 Create Cut/Fill Symbols ..5796
24.6 Create World Grid ..5798
24.7 Create/Edit Dimensions ...5801
24.8 Chainage/Offset Label Inquire ...5802
24.9 Display Colours, Textstyles and Linestyles ...5804
24.10 Draw Symbols for Alignment String ..5805
24.11 Polygon Hatching ..5806
24.12 Translate Strings ..5808
24.13 North Point Insertion ..5809
24.14 Quarter Points ..5809
24.15 Scalebar ...5811
24.16 Text and Tables ..5812
 24.16.1 Defaults - Text ...5813
25 Plots .. 5847

25.1 Plot and PPF Editors .. 5848
25.2 Plot Binary PPFs ... 5849
25.3 Edit Binary PPFs ... 5849
25.4 Plot Sheet .. 5850
25.5 Plot Frames ... 5855
25.6 Long Plot Manager ... 5881
25.7 Plotting Setups ... 5888
25.8 Old Plotting .. 5902
26.3.9.3 Boxes/Centreline Labels - Centreline ... 6040
26.3.10 Graph Area.. 6046
26.3.11 Corridors - X Section .. 6048
26.3.12 Grades ... 6049
26.3.13 X-Section Points ... 6051
 26.3.13.1 X Section Points - Offsets .. 6053
 26.3.13.2 X Section Points - Heights .. 6055
 26.3.13.3 X Section Points - Labels .. 6057
 26.3.13.4 X Section Points - Symbols .. 6059
26.3.14 Hatching Cut/Fill ... 6061
26.3.15 Cut/Fill Area Labels ... 6062
26.3.16 Cuts .. 6064
26.3.17 Paired Cuts - X Sections ... 6065
 26.3.17.1 Paired Cuts - Lines and Symbols .. 6068
 26.3.17.2 Paired Cuts - Labels .. 6070
 26.3.17.3 Paired Cuts - Start Offset .. 6072
 26.3.17.4 Paired Cuts - End Offset .. 6074
26.3.18 Paired Points ... 6076
 26.3.18.1 Paired Points - Lines and Symbols ... 6079
 26.3.18.2 Paired Points - Labels .. 6081
 26.3.18.3 Paired Points - Start Offset .. 6083
 26.3.18.4 Paired Points - End Offset .. 6085
26.3.19 PPFs To Include ... 6087
26.3.20 Buttons at the Bottom of X-Plot Panel ... 6087
26.4 Long Plot PPF Editor .. 6088
 26.4.1 General Information on Long Section Plots ... 6090
 26.4.2 Section Long Plot - Front Page ... 6092
 26.4.3 Notes - Long Section ... 6094
 26.4.4 Plot to models - Long Section ... 6094
 26.4.5 Title Block - Long Section .. 6094
 26.4.6 Plot Sheet Layout - Long Section .. 6095
 26.4.7 Pagination ... 6097
 26.4.8 Boxes ... 6098
 26.4.8.1 Boxes - Title Area ... 6101
 26.4.8.2 Boxes - Values Area .. 6102
 26.4.8.3 Boxes - Outside Linework .. 6104
 26.4.8.4 Boxes - Inside Linework ... 6106
 26.4.8.5 Boxes - Chainage Titles/Values .. 6108
 26.4.8.6 Boxes - Primary String Titles/Heights .. 6110
 26.4.8.7 Boxes - Tin Titles/Heights/Depths ... 6111
 26.4.8.8 Boxes - Offset String Chainages ... 6121
 26.4.8.9 Boxes - Super Elevation Diagram ... 6122
 26.4.8.10 Boxes - Volume Cut/Fill ... 6129
 26.4.8.11 Boxes - X,Y .. 6134
 26.4.9 Chainage/Staggering ... 6138
 26.4.9.1 Chainage/Staggering - Staggering ... 6139
 26.4.10 Uprights ... 6140
 26.4.11 Datum Area .. 6142
 26.4.11.1 Datum Area - Offset String Datum Labels ... 6143
 26.4.12 Graph Area .. 6144
 26.4.13 Corridors - Long Section .. 6145
 26.4.14 Bubbles .. 6146
 26.4.14.1 Bubbles - Text ... 6147
 26.4.14.2 Bubbles - Label ... 6148
 26.4.15 Quick Horizontal Geometry .. 6149
 26.4.16 Extensive Horizontal Geometry ... 6150
 26.4.16.1 Extensive Horizontal Geometry - Left Hand Labels 6152
 26.4.16.2 Extensive Horizontal Geometry - Arrow Type 6153
26.5 Drainage Long Plot PPF Editor ... 6189
26.5.1 General Information on Drainage Long Section Plots 6191
26.5.2 Drainage Plot - Front Page ... 6193
26.5.3 Notes - Drainage Long Plot ... 6195
26.5.4 Plot to Models - Drainage Long Plot ... 6195
26.5.5 Title Block - Drainage Long Plot ... 6195
26.5.6 Plot Sheet Layout .. 6196
26.5.6.1 Plot Sheet Layout - Margins ... 6197
26.5.6.2 Plot Sheet Layout - Other Parameters ... 6198
26.5.7 Boxes .. 6199
26.5.7.1 Boxes - Title Area ... 6200
26.5.7.2 Boxes - Values Area ... 6200
26.5.7.3 Boxes - Chainage ... 6201
26.5.7.4 Boxes - Road Centre Line Chainage ... 6202
26.5.7.5 Boxes - Natural Surface ... 6203
26.5.7.6 Boxes - Finished Surface .. 6204
26.5.7.7 Boxes - Invert Levels ... 6205
26.5.7.8 Boxes - HGL .. 6206
26.5.7.9 Boxes - Depths ... 6207
26.5.7.10 Boxes - Outer linework .. 6208
26.5.8 Chainages/Uprights ... 6209
26.5.8.1 Chainages/Uprights - Services .. 6210
26.5.8.2 Chainages/Uprights - Finished Surface/Top of MH Values 6212
26.5.8.3 Chainages/Uprights - Stagging .. 6213
26.5.9 Datum Area .. 6215
26.5.9.1 Datum Area - Name ... 6215
26.5.9.2 Datum Area - Values .. 6216
26.5.10 Arrows ... 6217
26.5.10.1 Arrows - Grades ... 6219
26.5.10.2 Arrows - Diameters .. 6221
26.8.1 Drainage Plan Plot - Front Page ... 6279
26.8.2 Notes - Drainage Plan Plot .. 6280
26.8.3 Pipes ... 6281
26.8.4 Maintenance Holes .. 6286
 26.8.4.1 Maintenance Holes - MH Name Labels .. 6289
 26.8.4.2 Maintenance Holes - MH diameter Labels .. 6290
 26.8.4.3 Maintenance Holes - MH depth Labels .. 6292
 26.8.4.4 Maintenance Holes - MH Chainage Labels .. 6293
 26.8.4.5 Maintenance Holes - MH Attribute Labels .. 6295
 26.8.4.6 Maintenance Holes - MH Setout Points .. 6296
26.8.5 House Connections .. 6297
 26.8.5.1 House Connections - HC Name and Type Labels 6299
 26.8.5.2 House Connections - HC IL Labels ... 6300
 26.8.5.3 House Connections - HC Chainage Labels .. 6301
 26.8.5.4 House Connections - HC Additional Text Labels 6302
26.8.6 Bubbles .. 6303
26.8.7 Flow Arrows ... 6304
26.8.8 Buttons at Bottom of Panel ... 6304
26.9 Plot Frame and PPF Editor .. 6305
 26.9.1 Plot Frame - Front Page .. 6306
 26.9.2 Notes - Plot Frame ... 6307
 26.9.3 Plot to Models - Plot Frame .. 6307
 26.9.4 Plot Frame Title Block ... 6307
 26.9.5 Buttons at Bottom of Plot Frame PPF Editor .. 6307
26.10 Convert Ascii PPF to Binary ... 6308
26.11 Copy Title Data.. 6309

27 Reports .. 6311
 27.1 Edit .. 6312
 27.2 Strings .. 6313
 27.2.1 Coordinates or Bearing-Distance Report .. 6314
 27.2.2 Crest/Sag Points Report ... 6316
 27.2.3 Names Report ... 6317
 27.2.4 Super Alignment Report ... 6318
 27.2.5 Chainage Equalities Report .. 6324
 27.2.6 Report for Super Strings ... 6325
 27.2.7 More Strings Reports .. 6326
 27.3 Functions ... 6327
 27.4 Length and Area .. 6329
 27.5 Set-Out Reports .. 6330
 27.5.1 Old Setout Report .. 6331
 27.5.2 Setout Report .. 6333
 27.5.3 Radial Report ... 6335
 27.6 Services ... 6337
 27.7 Quantities .. 6339
 27.8 X-Fall and Offset Report ... 6341
 27.9 Report Utilities .. 6342
 27.9.1 Report Templates .. 6343
 27.9.2 XML Translate .. 6344
 27.10 QA Reports .. 6345
 27.10.1 Check As built String vs Design String ... 6346
 27.10.2 Check Asbuilt String vs Wall Tin ... 6348
 27.10.3 Check Points Above a Tin .. 6350
 27.10.4 Check Points vs Tin .. 6352
 27.10.5 Check Survey Points vs Design Points (Old) 6354
 27.10.6 Check Survey Points vs Design Points (3) ... 6356
 27.10.7 Compare Named Strings ... 6360
 27.11 More Reports .. 6362
 27.11.1 Report for 4d Strings .. 6363
28 Utilities .. 6375

28.1 Snaps .. 6376
 28.1.1 Snaps .. 6377
 28.1.2 Snaps (Vert) and H Toolbar .. 6378
 28.1.3 Snaps Cogo ... 6379
 28.1.4 Select accept button ... 6380
 28.1.5 Snaps New .. 6381

28.2 Attributes .. 6382
 28.2.1 Attribute Definitions Editor .. 6383
 28.2.2 Custom Attribute Editor .. 6384

28.3 Chains .. 6385
 28.3.1 Create/Edit a Chain ... 6387
 28.3.1.1 Inserting a Chain Command .. 6390
 28.3.1.2 Record Icon and the Recorder Toolbar .. 6427
 28.3.2 Interactive Mode ... 6429
 28.3.2.1 Interactive Toolbar and Chain Interactive Mode 6430
 28.3.2.2 Commands Interactive Mode ... 6431
 28.3.3 Edit a Chain ... 6432
 28.3.4 Chain Parameters .. 6433
 28.3.4.1 Creating and Modifying Parameters Outside the Recording Process 6434
 28.3.4.2 Record Option Parameters Panel .. 6436
 28.3.4.3 How to Create Chain Parameters .. 6438
 28.3.5 Creating/Editing Parameter Value Files .. 6441
 28.3.5.1 Creating a Chain Parameters Value File .. 6442
 28.3.5.2 Editing a Chain Parameters Value File .. 6443
 28.3.5.3 Copy a PVF ... 6447
 28.3.5.4 Running Chains from User Menus and Toolbars 6457
 28.3.5.5 Chain Parameters as Macro (12dPL’s) Arguments 6459
 28.3.6 Copy a Chain ... 6460
 28.3.7 Chain Conversion .. 6461
 28.3.8 Rename a Chain .. 6462
 28.3.9 Run a Chain .. 6463
 28.3.10 Delete a Chain ... 6465

28.4 Functions ... 6466
 28.4.1 Editor ... 6467
 28.4.2 Lock .. 6468
 28.4.3 Order .. 6469
 28.4.4 Recalc ... 6470
 28.4.5 Rename .. 6471
 28.4.6 Change all Tins ... 6472
 28.4.7 Add .. 6473
 28.4.8 Save .. 6474
 28.4.8.1 Save a Function ... 6474
 28.4.8.2 Save All Functions ... 6474
 28.4.9 Attributes .. 6475
 28.4.10 Delete .. 6476
 28.4.10.1 Delete a Function .. 6476

27.11.2 Alignment - Strings Cut ... 6364
27.11.3 Report Z Differences from Alignment to Tin ... 6365
27.11.4 Alignment Report .. 6366
27.11.5 Alignment Table - IP’s, TC’s .. 6367
27.11.6 Alignment Table - Elements .. 6368
27.11.7 Total of Plan Area by String Colour .. 6369
27.11.8 Report Z Differences From X-Sections to a Tin ... 6370
27.11.9 Quarter Points Report ... 6371
27.11.10 Report Minimums Z-Value on a Cross Section ... 6372
27.11.11 Report Rough Areas ... 6373
27.11.12 X-Sections Report .. 6374
28.4.10.2 Delete Many Functions ... 6476
28.4.10.3 Delete All Functions .. 6478
28.5 Macros ... 6479
28.5.1 Compile .. 6480
28.5.2 Compile and Run ... 6481
28.5.3 Create .. 6483
28.5.4 Edit ... 6484
28.5.5 Run ... 6485
28.5.6 Create Prototype File .. 6486
28.5.7 Version .. 6487
28.5.8 Kill ... 6488
28.6 Measure ... 6490
28.6.1 Angle by 3 Points ... 6491
28.6.2 Bearing and Distance .. 6492
28.6.3 Plan Area .. 6494
28.6.4 Surface Area .. 6495
28.6.5 Value .. 6496
28.6.6 String .. 6497
28.6.7 String Dynamic ... 6498
28.6.8 X Fall by Strings ... 6499
28.6.9 X Fall by Strings (Advanced) .. 6501
28.7 Recalc ... 6503
28.7.1 Auto ... 6504
 28.7.1.1 Auto .. 6504
 28.7.1.2 Auto all .. 6504
28.7.2 Editor .. 6506
 28.7.2.1 Edit Function from String ... 6506
28.7.3 Edit Data from String ... 6507
28.7.4 Recalc .. 6508
 28.7.4.1 Recalc Function from String 6508
28.7.5 Recalc All .. 6509
28.7.6 Edit Chain .. 6510
28.7.7 Run Chain .. 6511
28.8 Fence ... 6512
 28.8.1 Fence ... 6513
 28.8.2 Fence Stem .. 6515
 28.8.3 Multi Fence .. 6517
 28.8.4 Multi Fence Stem .. 6519
28.9 Utilities A-G .. 6521
 28.9.1 Coordinate Transformations - Helmert and Affine 6523
 28.9.1.1 Selecting Control and Observed Points for the Helmert and Affine Transformations 6525
 28.9.1.2 Affine and Helmert Transformations Applied to Rasters 6527
 28.9.2 Add VIP to SA From File .. 6529
 28.9.3 2D Affine .. 6530
 28.9.4 2D Affine - Orthogonal .. 6533
 28.9.5 Archive Models ... 6536
 28.9.6 Cartographic Projections ... 6538
 28.9.7 Change ... 6539
 28.9.8 Change String Chainage .. 6541
 28.9.9 Check/Clash ... 6542
 28.9.9.1 Clash Detection ... 6543
 28.9.9.2 Check Polygon ... 6550
 28.9.9.3 Check Strings .. 6551
 28.9.9.4 Strings Clash in 3d ... 6553
 28.9.10 Classify Conduits .. 6555
 28.9.11 Clear String Names ... 6557
 28.9.12 Convert ... 6558
 28.9.12.1 Convert ... 6559
29.3.4 Create Points for Centre of Circles ... 6648
29.3.5 XXX Create Control Stations .. 6650
29.3.6 XXX Create 2d String from Two Points ... 6651
29.3.7 XXX Create 3 Point 2d Strings ... 6652
29.3.8 XXX Drop Bubbles .. 6653
29.3.9 XXX Drop Points onto Alignment .. 6654
29.3.10 XXX Drop z-value onto Centreline .. 6655
29.3.11 Extrapolate Point .. 6656
29.3.12 XXX Create VicRoad Pipe .. 6658
29.3.13 XXX Fencing Models .. 6659
29.3.14 Length in 3d ... 6660
29.3.15 XXX Head to Tail Closest Points .. 6661
29.3.16 XXX Label Alignment .. 6662
29.3.17 XXX Label Alignment Radius .. 6663
29.3.18 XXX Label Sewer Plan (old) .. 6664
29.3.19 XXX Name Strings by Nearby Text .. 6665
29.3.20 XXX Name Strings by Model Name .. 6666
29.3.21 XXX Name Section Strings by Picking Text .. 6667
29.3.22 XXX Overlay Optimiser ... 6668
29.3.23 XXX Read EEBY Sections ... 6669
29.3.24 XXX Read USGS DEM Data ... 6670
29.3.25 Remove Null VIP Points .. 6671
29.3.26 XXX Remove Tinability ... 6672
29.3.27 XXX Restore Fenced Model .. 6673
29.3.28 XXX Scale Text Values .. 6674
29.3.29 XXX Scale String Names .. 6675
29.3.30 XXX Set String Names by Number ... 6676
29.3.31 XXX String Operations .. 6677
29.3.32 Set Contour Levels from String Names .. 6678
29.3.33 Set Contour Names From Contour Levels ... 6679
29.3.34 XXX Sort XYZs Data File .. 6680
29.3.35 String Clipboard ... 6681
29.3.36 Total Length of Strings .. 6683
29.3.37 XXX Super String Dimension Occurrences .. 6684
29.3.38 XXX Transform V4 to V3.2 .. 6685
29.3.39 XXX Section Move .. 6686
29.3.40 XXX Output XYZ and Chainage .. 6687
29.4 Beta .. 6688
29.4.1 XXX Alignment Labels .. 6689
29.4.2 XXX Table of Alignment Labels ... 6690
29.4.3 Airfield Runway Calculator .. 6691
29.4.4 XXX Catchment Definer ... 6692
29.4.5 XXX Check Duplicate Point Numbers ... 6693
29.4.6 XXX Create Culvert .. 6694
29.4.7 XXX Liquid Measure .. 6695
29.4.8 XXX Make Cuts Through Strings .. 6696
29.4.9 XXX Plot Symbol and Title Block Creation (old) .. 6697
29.4.10 XXX Read SDRMap Feature Code .. 6698
29.4.11 XXX Read SDRMap Symbols ... 6699
29.4.12 XXX Reformat CivilCAD Ascii 5 file .. 6700
29.4.13 XXX Remove Super String Tinability ... 6701
29.4.14 XXX Triangulate by Selection Set ... 6702
29.4.15 XXX Update Z Values from Points ... 6703
29.5 Console .. 6703
29.6 Polygon ... 6704
29.6.1 Create Polygon by Picking Sides .. 6705
29.6.2 Colour Polygons by Range File ... 6707
29.6.3 Remove Polygon Colour ... 6708
29.7 Undocumented User Menus ... 6709
29.8 Obsolete Options .. 6710
 29.8.1 Triangulate a Model List .. 6711
 29.8.2 Triangulate a Model ... 6712
 29.8.3 MicroStation/ArcView/MapInfo Map File 6713
 29.8.4 Old Head to Tail Strings .. 6714
 29.8.5 String Movie CL for View ... 6715
 29.8.6 String Report ... 6716
 29.8.7 Write Binary XYZ File For ... 6717
 29.8.8 Write BIPS File For ... 6718
 29.8.9 Write Title Block File .. 6719
 29.8.10 Old Clip String ... 6720
29.9 Drainage Options ... 6721
 29.9.1 Downhill Strings .. 6722
 29.9.2 Raindrop/Teardrop ... 6725
 29.9.3 Aquaplaning Risk Assessment .. 6727
 29.9.4 Extract Sewer Controls .. 6732
 29.9.5 Convert to Points and Lines .. 6733

30 Window .. 6735

31 Help ... 6737
 31.1 12d Model Help ... 6738
 31.2 12d Model Macro Manual .. 6739
 31.3 12d on the Web ... 6740
 31.4 About 12d Model .. 6741
 31.5 Email Info to 12d .. 6744
 31.6 Dongles Administration .. 6746
 31.7 Check for Updates ... 6747
 31.8 Microsoft 7 .. 6748

32 Save and Exit .. 6751
 32.1 Save and Exit from Main Menu ... 6752
 32.2 Save/Exit from Floating 12d Model Menu 6752

Appendices .. 6755

33 BIM ... 6756
 33.1 What is BIM ? ... 6756
 33.2 The 12d Approach to BIM .. 6758
 33.3 The UK Government and BIM ... 6760
 33.4 Common Terms in BIM .. 6761
 33.5 What is Wrong with Local Coordinates ? 6764
 33.5.1 An Exact Position for Everything on the Earth 6765
 33.5.2 Map (Cartographic) Projections - Eastings and Northings ... 6766
 33.5.3 Why Isn’t MGA Used on a Small Building Site ? 6767

34 12d Archive File Format ... 6769
 34.1 General Comments about a 12da File .. 6770
 34.2 Attributes .. 6771
 34.3 Commands .. 6772
 34.3.1 Model .. 6773
 34.3.2 Colour .. 6774
 34.3.3 Style ... 6774
 34.3.4 Breakline .. 6774
 34.3.5 Null .. 6775
 34.3.6 String ... 6776
 34.3.7 Tin .. 6777
 34.3.8 Super Tin .. 6780
 34.4 12da Definition for each String Type ... 6781
 34.4.1 Arc String ... 6782
 34.4.2 Circle String .. 6783
34.4.3 Drainage String ... 6784
34.4.4 Face String .. 6786
34.4.5 Feature String ... 6787
34.4.6 Interface String ... 6788
34.4.7 Plot Frame String ... 6789
34.4.8 Super String .. 6790
34.4.9 Super Alignment String .. 6801
34.4.10 Text String .. 6815
34.4.11 2d String ... 6816
34.4.12 3d String ... 6817
34.4.13 4d String ... 6818
34.4.14 Pipe String .. 6819
34.4.15 Polyl ine String .. 6820
34.4.16 Alignment String ... 6821
34.4.17 Pipeline String .. 6822

35 12d XML File Format .. 6823
35.1 General Information about XML .. 6824
35.2 General Information about a 12d XML File 6826
35.3 Regularly Used Keyword Blocks .. 6827
 35.3.1 Name ... 6827
 35.3.2 Colour ... 6827
 35.3.3 Line Style ... 6828
 35.3.4 Chainage ... 6828
 35.3.5 Weight ... 6828
 35.3.6 Interval .. 6828
 35.3.7 Time Created .. 6829
 35.3.8 Time Updated ... 6829
 35.3.9 Breakline ... 6829
 35.3.10 Null .. 6830
 35.3.11 Radius ... 6830
 35.3.12 data_2d ... 6830
 35.3.13 data_3d ... 6831
 35.3.14 radius_data and major_data ... 6831
 35.3.15 Available Transition Types .. 6833
35.4 Attributes ... 6834
35.5 Model .. 6836
35.6 Elements Contained in Models ... 6837
 35.6.1 Tin .. 6838
 35.6.2 Super Tin .. 6841
 35.6.3 String Header Block ... 6843
 35.6.4 Text Information ... 6843
 35.6.4.1 Vertex Annotation Information .. 6845
 35.6.4.2 Segment Annotation Information 6846
 35.6.5 Arc String ... 6847
 35.6.6 Circle String ... 6849
 35.6.7 Drainage String ... 6850
 35.6.8 Feature String ... 6855
 35.6.9 Plot Frame String ... 6856
 35.6.10 Super String ... 6859
 35.6.10.1 Defining the Coordinates of the Vertices 6862
 35.6.10.2 Geometry of the Horizontal Segments 6863
 35.6.10.3 Colour .. 6868
 35.6.10.4 String, Vertex and Segment Attributes 6869
 35.6.10.5 Vertex Id’s (Point Id’s) ... 6872
 35.6.10.6 Symbols at Vertices ... 6873
 35.6.10.7 Tinability ... 6875
 35.6.10.8 Round or Box (Culvert) Pipes 6876
 35.6.10.9 Vertex Text and Vertex Annotation 6878
36 12d Survey Guide ... 6907
36.1 Guide to Survey Reduction in 12d Model... 6907
36.2 Guide to Survey Coding in 12d Model... 6909
36.3 Field Coding... 6910
 36.3.1 Stringing in the Field ... 6911
 36.3.2 Offsets ... 6913
 36.3.3 Start New String ... 6914
 36.3.4 Close String .. 6915
 36.3.5 Rectangle ... 6916
 36.3.6 Rectangle by 2 Points ... 6917
 36.3.7 Feature .. 6918
 36.3.8 Joining Strings .. 6919
 36.3.9 Arcs Through Points ... 6920
36.4 Field Templates... 6921
 36.4.1 Forward Direction .. 6923
 36.4.2 Reverse Direction ... 6924
 36.4.3 Zig-Zag .. 6925
 36.4.4 Skipping Field Template Points .. 6926
 36.4.5 Insert Template Points or Insert Multiple Codes 6927
 36.4.6 Delete Template Points ... 6928
36.5 Shape field coding... 6929
36.6 Traverse coding... 6931
36.7 Field Coding for Leica Instruments ... 6932
36.8 Field Coding for Non Leica Instruments ... 6933
 36.8.1 Blocks and the Block (Command) Delimiter 6934
 36.8.2 Comments in a Block ... 6937
 36.8.3 Feature Code Blocks ... 6938
 36.8.4 Control Code Blocks ... 6941
 36.8.5 Feature coding for traverse extraction .. 6950
 (Non-Leica instruments).. 6950
36.9 Data Collector Definitions ... 6951
36.10 The 12d Field File Format .. 6971
 36.10.1 Point Description ... 6972
 36.10.2 Measurements and Named Measurements 6973
 36.10.3 Existing Station Co-ordinates ... 6974
 36.10.4 Full Description of 12d Field File Op Codes 6976
 36.10.5 Summary of 12d Field File Op Codes .. 6992
36.11 Batch Typed Entry .. 6994

37 12d and Survey Instruments.. 6997
37.1 12d and Leica TPS Instruments ... 6998
 37.1.1 Feature Codes and String Numbers ... 6999
 37.1.2 Leica Field Codes .. 7001
 37.1.3 Full Description of Leica Field Codes .. 7002
 37.1.4 Summary of Leica Field Codes ... 7016
 37.1.5 Examples of Leica Screens ... 7018
 37.1.6 Setup of Leica 1100 instrument for Detail Pickup and use with 12d 7022
 37.1.6.1 Setting up the Instrument ... 7022
 37.1.6.2 Setting up files .. 7031
37.2 Sokkia Instruments (SDR Files) ... 7057
 37.2.1 Coding For SDR Files ... 7058
 37.2.1.1 Special Notes for SDRmap Users ... 7059
 37.2.1.2 Example of Sokkia SDR File ... 7074
37.3 12d and the Trimble Total Station ACU ... 7078
 37.3.1 Coding .. 7079
 37.3.2 Sending Raw file to 12d .. 7081
 37.3.3 Creating and Setting Data Collector Type 7083
 37.3.4 Convert Raw File .. 7086
 37.3.5 Creating Point Upload File .. 7088
 37.3.6 Create Roads Upload File ... 7095
 37.3.7 Create Tin Upload File ... 7100
37.4 12d and Trimble GPS Controllers .. 7105
37.5 12d and Geodimeter Instruments .. 7106
 37.5.1 12d UDS’s ... 7107
 37.5.2 Using 12d Field Ops Codes on the Geodimeter 7109
 37.5.3 Example of Geodimeter File ... 7110
37.6 12d and Topcon Instruments ... 7120
38 Geodetics Summary .. 7125
 38.1 Shape Of The Earth ... 7126
 38.2 Geodetic Coordinates ... 7128
 38.3 Map (Cartographic) Projections ... 7130
 38.4 Terminology .. 7131
 38.4.1 Ellipsoid Distance ... 7132
 38.4.2 Bearings and Distances - Plane and Grid 7133
 38.4.3 Plane Bearing, Projection Bearing ... 7134
 38.4.4 Australian Grid Bearing, Ellipsoid Bearing 7134
 38.4.5 Plane Distance ... 7134
 38.4.6 Australian Grid Distance ... 7135
 38.4.7 Datum ... 7136
 38.4.8 Zone ... 7136
 38.4.9 Arc-to-Chord Correction (t-T correction) 7137
 38.4.10 Point Scale Factor ... 7138
 38.4.11 Line Scale Factor ... 7138
 38.4.12 Combined Point Scale Factor ... 7138
 38.4.13 Azimuth and Convergence .. 7139
 38.5 Converting Between AMG, ISG and MGA .. 7141
39 Setting Up & Configuring 12d .. 7143
 39.1 Folder Structure Installed by 12d Model .. 7144
 39.2 Files for Setting Up 12d ... 7145
 39.2.1 Setup Files Only Used for a New Project 7146
 39.2.2 Setup Files Only Used for an Existing Project 7147
 39.2.3 Setup Files Used for New and Existing Projects 7148
 39.2.4 Folders Searched for Setup Files 7150
 39.2.5 Searching Order for Setup Files 7153
 39.2.6 Writing Out Setup Files ... 7155
 39.2.7 Some Special Setup Files ... 7157
 39.2.7.1 Set Ups File (setups.4d) ... 7158
 39.2.7.2 Colours File (colours.4d) .. 7160
 39.2.7.3 Defaults File (defaults.4d) .. 7162
 39.2.7.4 Sheet Sizes File (sheets.4d) .. 7164
 39.2.7.5 Transitions and Spirals File ... 7165
40 Line Styles, Symbols, Textstyles & Patterns ... 7223
 40.1 Line Styles .. 7224
 40.1.1 Defining Line Styles .. 7227
 40.1.2 Linestyl.4d ... 7229
 40.1.3 Line Style Definitions .. 7230
 40.1.3.1 Linestyles, Paperstyles and Worldstyles ... 7230
 40.1.3.2 Twopptstyles .. 7234
 40.1.3.3 Threeptstyles ... 7239
 40.1.3.4 Groupstyles ... 7242
 40.1.3.5 Description of the draw_commands for Linestyles 7243
 40.2 Symbols .. 7246
 40.2.1 Defining Symbols .. 7248
 40.2.2 Symbol.4d ... 7249
 40.2.3 Symbol Definition ... 7250
 40.2.3.1 set_up_commands for symbols ... 7251
 40.2.3.2 Description of the draw_commands for Symbols 7253
 40.3 Textstyles and Fonts .. 7256
 40.3.1 Textstyles Definitions File .. 7257
 40.3.2 Fonts Definitions File ... 7261
 40.4 Patterns .. 7263
 40.4.1 Patterns.4d ... 7265
 40.4.2 12d Patterns Definitions File .. 7266

41 Functions Keys, Menus, Toolbars .. 7277
 41.1 User Defined Function Keys .. 7277
 41.2 User Defined Menus .. 7283
 41.2.1 Full Definition of User Menus ... 7285
 41.2.2 Using SLIB and SUSER_LIB in User Menus .. 7289
 41.2.3 Placing User Defined Menus on User and Other 12d Menus 7290
 41.2.4 Names for User Defined Menus .. 7292
 41.2.5 Example of a User Defined Menu .. 7293
 41.3 User Defined Toolbars ... 7294
 41.3.1 Full Definition of Toolbars .. 7295
 41.3.1.1 Icons for Toolbars .. 7295
 41.3.1.2 Command for Toolbars ... 7295
 41.3.1.3 Flyout for Toolbars ... 7296

42 Special File Formats ... 7299
 42.1 Default File Ending .. 7299
 42.2 Special 12d Solutions File Formats .. 7302
 42.2.1 Eagle Map File .. 7303
 42.2.2 Template File ... 7304
 42.2.3 Screen Layout File ... 7307
 42.2.4 Map File for 12d Model V4.0 ... 7310
 42.2.5 12d Patterns File .. 7312
43 Plotters and Plotting ..7337
 43.1 12d Model Plotters ...7314
 43.2 Defining Plotters - Plotters.4d ..7316
 43.2.1 Plotter Set Up Commands ...7318
 43.2.1.1 Plotter Engines ...7321
 43.2.1.2 Definition and Example of a .tbl File ..7323
 43.2.1.3 Definition and Example of a .amf File ...7324
 43.2.2 Some Plotters in the Default Plotters.4d File ...7325
 43.2.3 Example of a Plotters.4d File ..7326
 43.3 Mapping 12d Colours to Pens and RGBs ..7328
 43.3.1 Pen Mapping in Colours.4d ..7329
 43.3.2 Plotter Mapping File ...7330
 43.3.2.1 Definition of a Plotter Mapping File ...7331
 43.3.2.2 Initialisation of the Plotter Mapping File ..7332
 43.4 Sending Plots to a Plotter ...7333
 43.5 Sheet Sizes ...7334
 43.6 Text Units in Plots ...7335

44 Text Plot Parameters ...7337
 44.1 Plot Frame Plot Parameter File ..7337
 44.2 Cross Section Plot Parameter File ...7340
 44.2.1 Plot Sheet Layout ..7341
 44.2.2 Boxes and Datum Area ..7346
 44.2.3 Centre Line Case ..7347
 44.2.4 Boxes Case ...7355
 44.2.6 Graph Area ..7371
 44.2.7 Grade Labelling ..7374
 44.2.8 Labelling Points of the X-Sections ..7376
 44.2.9 Labelling Cuts of X-Sections Through Strings in a Model7380
 44.2.10 Hatching Cut and Fill Areas ...7385
 44.2.11 Extra Models of X-Sections ..7386
 44.2.12 Sorting X-Sections by Chainage ..7387
 44.2.13 Title Block Information ..7388
 44.2.14 Parameters that Modify Fields In the Cross Plot Panel ...7389
 44.2.15 Generating Cross Section Plots Without a View ..7390
 44.2.16 Example of a Cross Section Plot Parameter File ..7391
 44.3 Long Section Plot Parameter File ...7396
 44.3.4 Boxes Area ...7402
 44.3.5 Chainage Selection and Staggering ..7423
 44.3.6 Uprights ...7425
 44.3.7 Datum Area ..7427
 44.3.8 Graph Area ..7428
 44.3.9 Bubbles Definitions ..7431
 44.3.10 Quick Horizontal Geometry Labelling ...7433
 44.3.11 Extensive Horizontal Geometry Labelling ...7434
 44.3.12 Quick Vertical Geometry Labelling ..7438
 44.3.13 Extensive Vertical Geometry Labelling ..7439
 44.3.14 Labelling Chainages and Heights in the Graph Area ..7443
 44.3.15 Labelling With Symbols ...7445
 44.3.16 Hatching Cut and Fill Areas ...7446
 44.3.17 Labelling Cuts of Design Through Strings in a Model ..7447
 44.3.18 Labelling the Primary String Name on the Plot ...7452
 44.3.19 Labelling the Scale on the Plot ..7453
 44.3.20 Title Block Information ..7455
 44.3.21 Parameters that Modify Fields In the Long Plot Panel ...7456
 44.3.22 Generating Long Section Plots Without a View ...7457
 44.3.23 Example of a Long Section Plot Parameter File ..7458
 44.4 Pipeline Plot Parameter File ...7465
 44.4.0.1 Plot Sheet Layout ..7465
44.4.0.2 Chainages, Staggering and Uprights .. 7467
44.4.0.3 Boxes Area ... 7469
44.4.0.4 Below Datum Area .. 7472
44.4.0.5 Graph Area ... 7473
44.4.0.6 Arrow 4 Area .. 7473
44.4.0.7 Top Area .. 7474
44.4.0.8 Change of Direction At Intersection Points .. 7474
44.4.0.9 Hatching Cut and Fill Areas ... 7475
44.4.0.10 Labelling Cuts of Pipeline Through Strings in a Model 7476
44.4.0.11 Parameters for Labelling Where the Pipeline Cuts Strings in a Model 7477
44.4.0.12 Title Block Information ... 7480
44.4.0.13 Parameters that Modify Fields In the Plot Pipeline Network Panel 7481
44.5 #Include in Plot Parameter Files .. 7482

45 Glossary .. 7483

Index ... 7489
1 Preface

1.1 Introduction

12d Model is an object oriented, interactive graphics program designed to process survey data, quickly build terrain, conceptual and detail design models. It is used in constructing the design, doing quality check and collecting as-constructed data.

So 12d Model is used in all stages of the civil planning, design and construction.

Data is easily read in, triangulated and contoured to build an initial terrain model. Roads, platforms, channels or other design features can be added interactively and a merged model containing the initial terrain and the new design features formed to produce conceptual design models.

All Models can be examined in plan, section or perspective views. The number and type of views displayed on the screen is totally user defined.

By using a mouse and flexible on-screen menus, 12d Model is easy to use and requires a minimum of training.

This document is the 12d Model Reference manual.

1.2 Reference Manual in PDF Form

12d Model 11 has a Help available from within 12d Model for most panels and menus.

However, because Microsoft’s Help system only allows individual topics to be printed, the entire 12d Model Reference manual has also been supplied as a PDF file. The PDF file can be used to print out large sections of the manual. Adobe’s PDF format can be read by Adobe Acrobat or the free Acrobat Reader.

The PDF file for the 12d Model Reference manual is called

12dm_ref.pdf

and is in the folder on the 12d Model Installation DVD called

Documentation\Reference_Manual

If you do not have an Acrobat Reader installed, it is available on the 12d Model Installation DVD under Install.
1.3 Getting Started Manuals and Data

12d Model is supplied with a very comprehensive on-line Reference manual which describes the function of each menu option in detail. However it is a Reference manual and makes no attempt to describe how to use 12d for production surveying and civil engineering work.

The 12d Model installation DVD also contains two (2) Training manuals:
- Getting Started for Design manual
- Getting Started for Surveying manual

The Getting Started for Design manual is available as a printed manual and as a PDF file on the 12d Model Installation DVD.

The Getting Started for Surveying has the first seven chapters in common with the Getting Started for Design manual (installing 12d Model, on-line help and basic modelling) but then diverts to cover topics from the direction of a Surveying whereas the Getting Started for Design manual continues on with alignment design techniques.

The Getting Started for Surveying manual is available as a printed manual and as a PDF file on the 12d Model Installation DVD.

As well as the Getting Started manuals, there are videos on a DVD which also work through all the material in the Getting Started manuals.

The Getting Started tutorials assumes that a series of files are already on your hard disk. These tutorial files are automatically installed from the DVD during installation of the 12d Model software.

1.3.1 Training Courses

There is a wide range of 12d Model Training Courses given by official 12d Model training centres.

Each training course usually has its own set of training files, manual in pdf form and videos going through the training course. This material is distributed on DVDs.

1.3.2 Using the Practise and Small Versions of 12d Model

The Practise version of 12d Model is limited to a maximum of 5,000 points. Following the procedures as stated in the training manuals may create projects with more than 5,000 points.

Where appropriate, the text will suggest how to vary the input for each instruction so that the example feature can be completed within the limits of the 12d Model Practise version.

The number of points used at any time in the Practise and small release versions can be displayed by the option

Projects => Check points

The easiest way to reduce the current point count is to delete any unwanted models with

Models => Delete

The installed icon on your desktop for running the practise version of 12d with these training files is labelled 12d 11 Practise Training.

Please Note: Projects created by Practise versions of 12d Model cannot be accessed by Release versions of 12d Model and vice-versa.
2 Installation of 12d Model 11 Release Version

The 12d Model 11 Installation DVD can be used to install the Release and Practise versions of 12d Model 11.

The Practise version is limited to a maximum of 5,000 points and creates projects that cannot be accessed by the Release versions of 12d Model and vice-versa. However the Practise version can be used free of charge by 12d Solutions customers and registered Practise Users.

These notes are for installing the Release version of 12d Model 11. There are separate notes for installing the Practise version.

For a new installation of the Release version of 12d Model 11, the user is provided with
(a) one 12d Model dongle
(b) one 12d Model 11 Installation DVD
(c) an email with the 12d Model 11 authorization file nodes.12d11n attached, or a folder with the 12d Model 11 authorization file nodes.12d11n or nodes.4d in it.

Please check that you have all three items before commencing the installation.

For existing 12d Model 11 users, the user is provided with
(a) one 12d Model 11 Installation DVD
(b) an email with the 12d Model 11 authorization file nodes.12d11n attached, or a folder with the 12d Model 11 authorization file nodes.12d11n or nodes.4d in it.

For existing users, the dongle you already have for 12d Model 11 will work with the new version of 12d Model 11 once you have the new nodes file for 12d Model 11. If 12d Model 11 is already running on your computer, please uninstall it before installing a new version of 12d Model 11.

Important Note on Nodes.12d11n and Nodes.4d

The 12d Model 11 nodes.12d11n file will normally be emailed to you.

During the installation of 12d Model 11, an association is created for files ending in .12d11n so after the installation, opening the nodes.12d11n will automatically copy it to the required area (normally C:\12d\11.00) and rename it to nodes.4d.

If you do not have the nodes.12d11n attached to an email but instead have it in a folder, clicking on the nodes.12d11n file after installing 12d Model 11 will also automatically copy it to the required area (normally C:\12d\11.00) and rename it to nodes.4d. Or if the 12d Model 11 icon is clicked on, the Project Selection panel will be brought up and clicking on the Nodes button will allow the nodes.12d11n or nodes.4d file to be selected and then processed.

Please do not change the name of the created nodes.4d file. 12d Model will only search for an authorization file called nodes.4d.

Extra Notes for All Installations

1. A three-button mouse is essential.

2. The 12d Model Installation DVD contains extra information other than just the installation version of 12d Model. For example, documentation, source to macros and plot parameter files.

The extra data can be copied from the 12d Model Installation DVD but the copied files may only have a “read only” attribute set. This means that the files can not be edited or modified in any way.

To change the attribute so that a file can be modified, select the file in Explorer, bring up the Properties sheet and under the General tab sheet change the “read only” box so that it is not ticked on.

Selecting OK or Apply will then modify the attribute of the file.
2.1 12d Model 11 - 32 bit or 64 bit Version?

Microsoft has a 32 bit Windows and a 64 bit Windows operating system. So when installing 12d Model 11, you need to select either the 64 bit 12d installation or the 32 bit installation.

In 64 bit Windows, Microsoft have allowed for both 32 bit and 64 bit versions of the same software to coexist on the same computer, so you could install both the 32 bit and the 64 bit version of 12d Model 11.

The 64 bit 12d Model 11 only runs on 64 bit Windows and supports any of the 12d Model point sizes from 5K through to 5M and 250M.

The 32 bit 12d Model 11 runs on both 32-bit and 64 bit Windows and supports any of the 12d Model point sizes from 5K through to 5M.

So if you require 12d Model 11 for 250M then you must run 64 bit 12d Model 11 on 64 bit Windows.
2.2 Installing the Release Version of 12d Model 11

These notes are for installing the Release version of 12d Model 11. There are separate notes for installing the Practise version.

A. Disk Space required for installing 12d Model 11

Approximately 2 Gigabytes of disc space will be required for the installation to succeed. Before installing from the DVD

For Windows 2000, XP, Vista, Windows 7:

It is usually best to reboot the PC before installing 12d Model from the DVD and have no other applications running.

Your login must have Administrator privileges.

B. Do not attach the 12d dongle before installing dongle drivers

USB dongles must NOT be attached to the computer before the dongle drivers are installed.

C. Using the email with the nodes.12d11n file attached to it

The 12d Model 11 nodes.12d11n file will normally be emailed to you.

During the installation of 12d Model 11, an association is created for files ending in .12d11n so after the installation, opening the nodes.12d11n will automatically copy it to the required area (normally C:\12d\11.00) and rename it to nodes.4d.

If you do not have the nodes.12d11n attached to an email but instead have it in a folder, clicking on the nodes.12d11n file after installing 12d Model 11 will also automatically copy it to the required area (normally C:\12d\11.00) and rename it to nodes.4d. Or if the 12d Model 11 icon is clicked on, the Project Selection panel will be brought up and clicking on the Nodes button will allow the nodes.12d11n or nodes.4d file to be selected and then processed.

D. Starting the Installation of 12d Model 11

Insert the 12d Model 11 Installation DVD into the DVD drive.

On inserting the DVD, the 12d Model Installation program automatically begins.

If it doesn’t, simply double click on the program Launch.exe on the DVD.

Depending on the Windows operating system and your settings, you may be asked to allow Launch.exe to run. If so, click on Run Launch.exe.
E. Installing

The 12d Model Release screen will appear.

For running 12d Model 11 on 32 bit Windows:
If you are running 12d Model on 32 bit Windows, then you need to install the 12d Model 32 bit 12d.exe and 32 bit dongle drivers. So go down the options on the left hand side of the screen.

Note- the 32 bit 12d.exe will run point versions up to 5M. The 250M version of 12d Model is only available as the 64 bit 12d Model and it only runs on a Windows 64 bit operating system.

For running 12d Model 11 on 64 bit Windows:
If you are running 12d Model on 64 bit Windows, then you need to install the 12d Model 64 bit 12d.exe and 64 bit dongle drivers. So go down the options on the right hand side of the screen. The 64 bit 12d.exe runs all point versions up to and including 250M.

For each installation, **Installation Notes** in pdf format can be viewed by clicking on **Notes** under the **Installation notes** heading. If **Videos** also appears then a video to guide you through the installation process can be viewed by clicking on **Videos** under the **Installation notes** heading.

NOTE - If the correct dongle drivers and the Camtasia codec are already installed on your computer then you can proceed to [Step 4, Installing 12d Model 11 Release Program files](#)
Step 1. Install the Wibu or Codemeter Drivers

You need to have System Administrator rights to install the drivers.

Installing Dongle Drivers:

On the 12d Model Release screen, under Install Dongle Drivers, click on Drivers to bring up the Dongle Drivers panel:

Depending on the Windows operating system and your privileges (you need Administrator rights to install the drivers), the User Account Control panel may appear and you will be asked Do you want the following program to make changes to your computer? If so, click on Yes.

The Dongle Drivers panel will then appear.

If you only have one type of dongle Wibu (green USB, translucent green USB) or Codemeter (variety of colours and sizes) then you only need to install the drivers for those dongles.

If you have both Codemeter and Wibu dongles then both sets of drivers must be installed.

(a) If you have both Wibu and Codemeter ticked on then clicking on Install will first install the Wibu drivers and then continue on to installing the Codemeter drivers.

Go to Installing the Wibu Drivers:

(b) If you have only Wibu ticked on then clicking on Install will install the Wibu drivers.

Go to Installing the Wibu Drivers:

(c) If you have only Codemeter ticked on then clicking on Install will install the Codemeter drivers.

Go to Installing the Codemeter Drivers:
Installing the Wibu Drivers:

The script to install the Wibu dongle drivers begins.

WIBU-KEY Setup

Welcome to WIBU-KEY Software Setup

select Next to continue

WIBU-KEY Setup

Language Selection

tick your language and then select Next to continue
WIBU-KEY Setup

Installation folder

Setup will install the WIBU-KEY Tools in the following folder:

To install to this folder, click **Next**.

To install to a different folder, click **Browse** and select another folder.

You can choose not to install the WIBU-KEY tools by clicking **Cancel** to exit Setup.

Select **Next** to continue.

WIBU-KEY Setup

Installation folder doesn’t exist

The specified folder does not exist. Should Setup create the folder?

[Yes] [No]

Click **Yes** to continue.

WIBU-KEY Setup

Component Selection
Installing the Release Version of 12d Model 11

For a standard install, nothing needs to be ticked on (the WibuKey components are for monitoring a Wibu network dongle).

make sure nothing is ticked and then select Next to continue

WIBU-KEY Setup

Tasks to be Performed

select Next to continue

WIBU-KEY Setup

Tasks done
select Next to continue

WIBU-KEY Setup

Setup Complete

leave Yes, I want to view the Readme text now unticked and select Finish
The WIBU dongle drivers have now been installed

If both Wibu and Codemeter were ticked on then the installation of the Codemeter drivers will then begin. See Installing the Codemeter Drivers.

Otherwise the 12d Model Dongle Setup screen will appear.

The 12d Model Release screen will then reappear.

Continue to Step 2. Check the dongle.
Installing the Codemeter Drivers:

The script to install the **Codemeter** dongle drivers begins.

Codemeter Setup

Select **Next** to continue

End-User License Agreement

Read the License Agreement and if you are happy with it, **tick** I accept the terms in the License Agreement and then select **Next** to continue

Codemeter Runtime Kit Setup
Installing the Release Version of 12d Model 11

Installation Scope

- **Codemeter Runtime Kit Setup**

 - **User name:**
 - **Organization:**

 - **Install just for you (丽江):**
 CodeMeter Runtime Kit v5.10b will be installed in a per-user folder and be available just for your user account. You do not need local Administrator privileges.

 - **Install for all users of this machine:**
 CodeMeter Runtime Kit v5.10b will be installed in a per-machine folder by default and be available for all users. You can change the default installation folder. You must have local Administrator privileges.

 - Enter your **User name** and **Organisation**.

 - **tick** either **Install just for you** or **Install for all users of this machine** and then select **Next** to continue

Custom Setup

- **Codemeter Runtime Kit Setup**

 - **Click the icons in the tree below to change the way features will be installed.**

 - **Select **Next** to continue**
Ready to Install

Codemeter Runtime Kit Setup

Select **Install** to continue

Installing

Codemeter Runtime Kit Setup

Completed the CodeMeter Runtime Kit v5.10b Setup Wizard

Click the Finish button to exit the Setup Wizard.
Completed Codemeter Runtime Kit Setup

Select **Finish** to end

The **Codemeter** dongle drivers have now been installed and the **12d Model Dongle Setup** screen will appear.

![12d Model Dongle Setup](image)

Click **OK**

The **12d Model Release** screen will then reappear.

Continue to [Step 2. Check the dongle](#).
Step 2. Check the dongle

NOT YET UPDATED FOR V11

The 12d Model dongle (Wibu or Codemeter) can now be attached to the computer.

For USB dongles:

Warning: you must have System Administrations rights the first time you attach a USB dongle to any USB port:

When a USB dongle is attached for the first time to any USB port, Windows will detect that it is new hardware and needs to load the dongle drivers for that USB port - this will require System Administration rights.

Since the dongle drivers have already been loaded onto your computer, when the USB dongle is attached to a new USB port, it will be recognised as new hardware.

![Found New Hardware](image)

and Windows should automatically install the correct dongle driver.

![Found New Hardware](image)

IMPORTANT NOTE IF THE WIBU DONGLE IS NOT RECOGNISED:

If the WIBU dongle is not recognised and you get the **Found New Hardware** screen
please go to the section on how to find the Wibu drivers

NOTE - even though your dongle is working on one USB port, if you try and attach the dongle to a new USB port, the dongle drivers will need to be installed for the new USB port. You will need System Administration rights to install the dongle drivers on the **new** USB port. The dongle must be attached to the USB port at all times, otherwise 12d Model will stop running.
On the 12d Model Release screen, click on Check:
The dongle checking program begins.

Installation

Installation message

Tick **Local** and select **Next**
The computer/network will be checked for 12d dongles and also for your System Date.

Check Report
The correct dongle number should be displayed and also a check on the date in the computer is correct.

select **Finish**

This completes the dongle *Check*.

The *12d Model Release* screen will then appear.

Continue to **Step 3. Install Camtasia Codec**.
Step 3. Install Camtasia Codec

The Camtasia Codec is used for displaying the images on the 12d Model Training CDs and DVDs.

You need to have System Administrator rights to install the Camtasia Codec.

On the 12d Model Release screen, under Install Camtasia codec, click on Camtasia Codec:
The Camtasia Codec installation begins.

Installation

![TechSmith Screen Capture Codec Installation](image)

Select **Install** to continue with the installation

Installation Complete

![TSCC Installation Complete](image)

Select **OK**.

This completes the installation of the Camtasia Codec.

The 12d Model Release screen will then appear.

Continue to Step 4. Installing 12d Model 11 Release Program files.
Step 4. Installing 12d Model 11 Release Program files

For running 12d Model 11 on 32 bit Windows:
If you are running 12d Model on 32 bit Windows, then you need to install the 12d Model 32 bit 12d.exe and 32 bit dongle drivers. So go down the options on the left hand side of the screen.

Note- the 32 bit 12d.exe will run point versions up to 5M. The 250M version of 12d Model is only available as the 64 bit 12d Model and it only runs on a Windows 64 bit operating system.

For running 12d Model 11 on 64 bit Windows:
If you are running 12d Model on 64 bit Windows, then you need to install the 12d Model 64 bit 12d.exe and 64 bit dongle drivers. So go down the options on the right hand side of the screen. The 64 bit 12d.exe runs all point versions up to and including 250M.

So if you are installing on 32 bit Windows, then select the 12d Model 11 under Installing 12d Model 11 under the left hand column.
If you are installing on 64 bit Windows, then select the 12d Model 11 under Installing 12d Model 11 under the right hand column.
The **12d Model 11** installation begins.

Note - the following screens are for the 64 bit install but the 32 bit install is identical except the words **64 bit** are replaced by **32 bit**.

Select **Next** to continue with the installation.
If you agree with the License conditions, click on *I have read and accept the terms of the Software License Agreement*.

Select **Next** to continue with the installation.

Select Components

Select **Next** to continue with the installation.
Installation Location

Continue with the default installation folder for the software:

- for 64 bit version: `c:\Program Files\12d\12dmodel\11.0`
- for 32 bit version: `c:\Program Files (x86)\12d\12dmodel\11.0`

or click on Browse to browse to another folder for the installation

Select Next to continue with the installation

User Area

Continue with the default folder for the User Area for the software:

`c:\12d\11.0`

or click on Browse to browse to another folder for the User Area.

Select Next to continue with the installation
Ready to Install

Select **Install** to begin the actual installation

The software will be copied and installed onto the computer.
The Microsoft C++ Redistributables will be installed (32 and 64 for 64-bit install)

Setup Complete

End of installation. Select **Finish** to complete the installation

The 12d Model Release screen will then appear.
Select **Exit** at the bottom right hand corner of the screen to end the installation.

This completes the installation of the **12d Model** software.

12d Model will not function without an authorisation file called **nodes.4d**.

So the next step is to install and test the **nodes** file.

See [Folders Created by the Installation](#)
[Icons Created by the Installation](#)

Or go to **Step 5. Installing the Nodes.4d file**.
Folders Created by the Installation

(a) For 32 bit 12d Model on Windows 32 bit operating systems
The 12d Model installation loads the 12d Model software into the folder
C:\Program Files\12d\12dmodel\11.00

OR

(b) For 64 bit 12d Model on Windows 64 bit operating systems:
The 12d Model installation loads the 12d Model software into the folder
C:\Program Files\12d\12dmodel\11.00

OR

(c) For 32 bit 12d Model 32 bit (for versions up to 5M) on Windows 64 bit operating systems:
The 12d Model installation loads the 12d Model software into the folder
C:\Program Files (x86)\12d\12dmodel\11.00

12d Model users normally only have read access to the Program Files and/or Program Files (x86) areas.
The 12d Model installation on either 32 bit or 64 bit Windows, also creates an area C:\12d\11.00 which during the installation is given read/write access for the user.

The folder 12d\11.00 contains the training data used with the Getting Started for Design and Getting Started for Surveying manuals and the subfolders User and User_Lib are created for future user customisations of 12d Model.
12d Model user areas
Icons Created by the Installation

The installation loads the appropriate components and creates the **12d Model 11** icon

![icon for 12d Model 32 bit exe](image1) ![icon for 12d Model 64 bit exe](image2)

The **12d Model 11 - 32** and **12d Model 11 - 64** icons fire up **12d Model** and attach to the folder `12d\11.00`.

Continue to [Step 5. Installing the Nodes.4d file](#).
Step 5. Installing the *Nodes.4d* file

12d Model will not function without an authorisation file called *nodes.4d*.

The information inside *nodes.4d* controls:

(a) which dongles are authorised to run *12d Model*

(b) what version of *12d Model* will run for a dongle

(c) what modules are authorised to run for a dongle

To authorise your *12d Model*, two files *nodes.12d11n* and *nodes.4d* will have been emailed to you by your local *12d Model* Reseller.

Installing *12d Model* sets up a Windows file association so that a *nodes.12d11n* file is recognised by *12d Model* and automatically installs a *nodes.4d* file in the correct location.

In the email, double click on the files *nodes.12d11n*, click on *Open it* and then click on *OK*.
The **Accept Nodes** panel then appears.

Select **Replace**, **Append** or **Prepend** and then click **Install**.

12d Model saves the **nodes.4d** file to the folder **C:\12d\11.00**.
Note - if you don’t have one or both of the files nodes.4d or nodes.12d11n attached to an email but instead have either of the files in a folder accessible from your computer, then you can do the following:

If there is a nodes.12d11n file, double click on that file and the Accept Nodes panel should appear and you continue with the instructions above.

If that doesn’t work or you only have a nodes.4d file, start up 12d Model and click on the Nodes button at the bottom of the Project Selection panel. This will also bring up the Accept Nodes panel and you can browse for the nodes.4d or nodes.12d11n file in the New nodes file panel field. You can then continue with the instructions above.

Step 6. Installing 12d Model Context Sensitive Help for Vista and Win 7

12d Model has a context sensitive reference help system which can be accessed directly from most menus and panels:

(a) For most menus in 12d Model, when the menu is on the screen and has the Windows focus, simply press F1 and the 12d Help will open automatically at that menu

(b) For most panels in 12d Model, when the panel is on the screen and has the Windows focus, simply press F1 and the 12d Help will open automatically at that panel

(c) Most panels in 12d Model have a Help button on them and clicking on the Help button opens the 12d Help at that panel

(d) By clicking on the option Help =>12d Model

The 12d Model context sensitive help uses Microsoft’s WinHlp.

For Vista and Win 7, Microsoft no longer ships the WinHlp.exe executable and Microsoft will no longer allow it to be installed by the 12d Model installation DVD.

So if you are running Vista or Win 7, you need to download and install WinHlp.exe from Microsoft’s website to access the 12d Model Help files. The link to the area for the download is

Or if you have 12d Model up and running, the link is available on the menu

Help =>Microsoft 7

Note: the entire 12d Model Reference manual is available in pdf format on the Documentation tab of the 12d Model 11 Installation DVD.

CONGRATULATIONS - 12d Model has now been successfully installed and you have finished with these notes.

If 12d Model did not install correctly, please continue to the next section, 2.3 12d Model 11 Not Authorising, of these notes.
2.3 12d Model 11 Not Authorising

If there is an error with the installation, then the Error Authorizing Release Version panel appears with possibly error message in the panel message area.

If there is no error message on the panel or it is still not obvious what the problem is, please check the list of possible errors in the next section 2.4 Possible Problems When Authorizing the Release Version.

For example, in the above panel, the DONGLE UNKNOWN shows that no 12d dongle has been detected.
2.4 Possible Problems When Authorizing the Release Version

NOT YET UPDATED FOR V11

1. The *12d dongle number* does not come up in the *Dongle* field of the *Error Authorizing Release Version* panel.

 ![Image of Error Authorizing Release Version panel]

 Please check that

 (a) the *12d dongle* is firmly attached to the computer.

 If not, please attach the dongle and retry starting up *12d Model* and accessing a project.

 (b) if it is a parallel dongle, the dongle is before any Rainbow dongles. For example, before any AutoCAD dongle.

 (c) your computer has the latest dongle drivers installed. These can be obtained from *Updates* section of the web site www.12d.com.

 If the dongle number still does not come up in the *Error Authorizing Release Version* panel, please click on the *Email info* button to bring up the *Email Information on 12d Model to 12D Solutions* panel. Fill in the panel and click on *Email* to send the information to 12D Solutions and then contact 12D Solutions or your local distributor.

 Special Note If Using a Network Dongle
Chapter 2 Installation of 12d Model 11 Release Version

If you are using a network dongle, then your env.4d needs to be modified so that 12d Model will correctly search for the Network dongle. In that case there will be information in the Wibu Key section of the Error Authorizing Release Version panel.

If the Wibu Key section is blank then a network dongle cannot be accessed.

Please see the notes on Installing a Network Dongle under the Documentation tab of the 12d Model 11 Installation DVD on how to set up the env.4d file correctly for accessing a network dongle.

2. Check if there is a recent nodes.4d or nodes.12d11n file in the correct area on your computer, which by default is in the folder C:\12d\11.00.

The nodes.4d file found is displayed in the Authorization field.

If it is blank then no nodes.4d has been found.

If you do not have a nodes.4d or nodes.12d11n file, contact your local distributor.

3. The Client field in the Error Authorizing Release Version panel has NO CLIENT FOUND.
If the **Client** field has a valid *Client Name* in it then that indicates that a **12d Model 11 nodes.4d** file is being read and has a valid Client line in it.

4. **Client** and **Dongle** fields look correct but you now get an **error -206**

 This error now indicates that there is no line, or no valid line, in the **nodes.4d** file for the dongle number given in the **Dongle** field.

 If you do not have the correct **nodes.4d** file, contact your local distributor.

5. Check that the date on your computer is correct.

 If the date is not correct then be very careful. Having an incorrect date in your computer can
corrupt computer files and *12d Model* projects.

6. If the date on your computer is correct then you need to check that it is between the start and end dates given in the line in the *nodes.4d* file for your dongle.

![Image of nodes.4d file]

If there is no valid date line in your *nodes.4d* file for your dongle, then contact your local distributor for a new *nodes.4d* file.

7. *12d Model* still can’t access a project.
 Please contact your local Reseller.

2.5 Licence Expiry Warning

The *nodes.4d* file that controls *12d Model*, only validates *12d Model* to run for a certain period of time.

If when running *12d Model*, the Licence Expiry Warning panel appears:

![Licence Expiry Warning panel]

it simply means that the *nodes.4d* file needs to be updated.
Please contract your *12d Model Distributor* to obtain a new *nodes.4d*.
2.6 Dongle Missing

If when running **12d Model**, the **Dongle Missing** panel appears:

![Dongle Missing Panel](image)

it simply means that the **12d** dongle can no longer be seen by **12d Model**.

Please check that your **12d** dongle is still attached to your computer, or if you are using a network dongle, that your network is still active.

Even if you can not see the dongle, **12d Model** will allow to save your current work do nothing is lost.
3 Installation of 12d Model 10 Practice Version

The Practise version is limited to a maximum of 5,000 points and creates projects that cannot be accessed by the Release versions of 12d Model and vice-versa. However the Practise version can be used free of charge by 12d Solutions customers and registered Practise Users.

These notes are for installing the Practise version of 12d Model 10. There are separate notes for installing the Release version.

The Practise version must be Registered with 12d Solutions once it is installed on a computer. A new Registration is required for each computer that the Practise version is run on.

The 12d Model 10 Installation CD can be used to install the Practise versions of 12d Model 10. Or

The file 12dModel 10 Practise.exe can be downloaded from the web site www.12d.com. The file 12dModel 10 Practise.exe is a self-extracting file for installing the Practise version of 12d Model.

Extra Notes for All Installations

1. A three-button mouse is essential.
2. The 12d Model Installation CD contains extra information other than just the installation version of 12d Model. For example, extra documentation, course notes and source code to macros.

 The extra data can be copied from the 12d Model Installation CD but the copied files may only have a “read only” attribute set. This means that the files can not be edited or modified in any way.

 To change the attribute so that a file can be modified, select the file in Explorer, bring up the Properties sheet and under the General tab sheet change the “read only” box so that it is not ticked on.

 Selecting OK or Apply will then modify the attribute of the file.
3.1 Installing the Practise Version of 12d Model 10

These notes are for installing the Practise version of 12d Model 10. There are separate notes for installing the Release version.

A. Disk Space required for installing 12d Model 10

Approximately 200 megabytes of disc space will be required for the installation to succeed. After installation this can be reduced to a minimum of 60 megabytes.

B. Before installing from the DVD or the Web

For Windows 2000, XP, Vista, Windows 7:

Reboot the PC before installing 12d Model from the DVD or the Web.

Your login must have Administrator privileges.

C. Installing 12d Model from the Web

The self-extracting file 12dModel 10 Practise.exe can be downloaded from the web site www.12d.com and used to install the Practise version of 12d Model.

After downloading 12dModel 10 Practise.exe, double-click on 12dModel 10 Practise.exe and the installation software will be automatically extracted from the file and fires up the Install 12d Model Practise screen.

Please go to section Step 3. Dialogues from the 12d Model 10 Practise InstallShield Wizard;

D. Installing Using the 12d Model 10 Installation DVD

Insert the 12d Model 10 Installation DVD into the CD drive.

On inserting the CD, the 12d Model Setup program automatically begins.

If it doesn’t, simply double click on the program Launch.exe from the DVD.

The 12d Model Release front screen will appear.
Click on the **12d Practise** tab

The **12d Model Practise** screen will appear.
E. 12d Model Practise Screen

The 12d Model Practise screen:

Note - when installing from the web, the tabs with 12d Release, 12d Practise, Other Software and Documentation will not appear. The extra tabs only appear if you are installing from the 12d Model Installation DVD.

The Steps on the 12d Practise tab of the 12d Model Installation DVD will lead you through the installation of the Practise version of 12d Model.

A video to guide you through the installation process can be viewed by clicking on Videos under the Installation notes heading. Or the Installation Notes in pdf format can be viewed by clicking on Notes under the Installation notes heading.

NOTE - If the Camtasia codec is already installed on your computer then you can proceed to Install 12d Model 10 Practise.
Step 1. Install Camtasia Codec

Install the Camtasia Codec that is used for displaying some of the videos on the 12d Model Training CDs and DVDs.

Note - you need Administrator rights to install the Camtasia Codec.

Click on Camtasia codec:

Installation

<table>
<thead>
<tr>
<th>Installation message</th>
</tr>
</thead>
<tbody>
<tr>
<td>This program will install the TechSmith Screen Capture Codec (TSCC) on your system.</td>
</tr>
<tr>
<td>TSCC is part of TechSmith's Camtasia Screen Camcorder and video production toolkit. TSCC installation is required to play media files created with TSCC by Camtasia.</td>
</tr>
<tr>
<td>TSCC is a unique video codec optimized for recording screen activity. It offers perfect "lossless" quality, fast compression speeds, and exceptional compression of typical desktop application activity.</td>
</tr>
<tr>
<td>Please visit our web site for more information about Camtasia and other multimedia and productivity tools from TechSmith Corporation.</td>
</tr>
<tr>
<td>www.techsmith.com</td>
</tr>
</tbody>
</table>

Select Install to continue with the installation

Installation Complete

<table>
<thead>
<tr>
<th>TSCC Installation Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation of the TechSmith Screen Capture Codec is complete.</td>
</tr>
</tbody>
</table>

Select OK.

This completes the installation of the Camtasia Codec.

The 12d Model Practice screen will then appear.
Step 2. Install 12d Model 10 Practise From DVD

Installing the 12d Model Practise software and Training area:

Note - you need Administrator rights to install **12d Model 10 Practise**.

Click on **12d Model 10 Practise**:

The installation will then start.
Step 3. Dialogues from the 12d Model 10 Practise InstallShield Wizard:

Welcome

Welcome message

Select Next to continue with the installation

Warning for commercial competitors

12d Solutions warning

The 12d Model Practise version and all documentation are supplied by 12d Solutions Pty Limited for the use of 12d Model Customers and genuine prospects only. The use of the 12d Model practise versions by commercial competitors to 12d Model is strictly prohibited.

Select Next to continue if you are a 12d Model Customers or a genuine prospect

Software License Agreement

12d Solutions license agreement
If you agree with the License conditions, click on *I accept the terms in the license agreement*

Select **Next** to continue with the installation

Customer Information

Fill in *User Name* and *Organisation*, tick who can use the computer

Select **Next** to continue with the installation

Destination Folder
continue with the default installation area for the software `c:\Program Files\` or click on Change to browse to another area for installation

select **Next** to continue with the installation

Setup Type

select **Complete**

select **Next** to continue with the installation

Ready to Install
Begin the installation
select **Install** to continue the installation

The software will be copied onto the computer and installed.

Setup Complete **End of installation**

Select **Finish** to complete the installation
The **12d Model Practise** screen will then appear.

![Image of 12d Model Practise screen]

Select **Exit** at the bottom right hand corner of the screen to end the installation.

For **Practise** versions, the software needs to be authorised by emailing information about your computer to 12d Solutions.

The form for the required information is automatically created when an unauthorised **12d Model Practise version** is **started up**. The form can be emailed to **12d Solutions** from the **12d Model Practise** software.
3.2 Folders and Icons Created by Installing 12d Model Practise

Folders Created by the Installation

(a) For 12d Model Practise on Windows 32-bit operating systems:
the 12d Model Practise installation loads the **12d Model Practise software** into the folder
C:\Program Files\12d Practise\12dmodel\10.00

OR

(b) For 12d Model Practise on Windows 64-bit operating systems:
the 12d Model Practise installation loads the **12d Model Practise software** into the folder
C:\Program Files (x86)\12d Practise\12dmodel\10.00

12d Model Practise users normally only have **read** access to the Program Files and/or Program Files (x86) areas.

The 12d Model installation also creates an area
C:\12d Practise \10.00
which during the installation is given read/write access for the user.

The folder 12d Practise\10.00 contains the training data used with the **Getting Started for Design and Getting Started for Surveying** manuals and the subfolders **User** and **User_Lib** are created for future user customisations of 12d Model.
Icon Created by the Installation

The installation loads the appropriate components and creates the **12d Model 10 Practise** icon.

The **12d Model 10 Practise** icon fires up **12d Model Practise** and attaches to the folder **12d Practise\10.00**.
3.3 Authorizing the Practise Version of 12d Model 10

Warning

The 12d Model Practise version and all documentation is supplied by 12d Solutions Pty Ltd for the use of 12d Model Customers and genuine prospects only. The use of the 12d Model Practise version by commercial competitors to 12d Model is strictly prohibited.

The Practise version is limited to a maximum of 5,000 points and creates projects that cannot be accessed by the Release versions of 12d Model and vice-versa. However, the Practise version can be used free of charge by 12d Solutions customers and registered Practise Users.

The Practise version needs to be Registered with 12d Solutions once it is installed on a computer and a new Registration is required for each computer the Practise version is run on.

The installation creates the **12d Model 10 Practise** icon:

![12d Model Practise Icon](image)

Next fire up **12d Model Practise** by double clicking on the **12d Model 10 Practise** icon.
This will bring up the Project Selection panel with an **Authorize** button it.
Click on **Authorize** to display the **Authorize Request Form** panel.
Fill in the details (all those in black type must be filled in) and then either
(a) click on the Email button to send the information to 12d Solutions Pty Ltd
or if this fails
(b) click on the Save button. A file called 12d_auth.12d10r is then written out to the folder
My Documents. Please email this file (as an attachment) to authorize@12d.com
Then click on the Finish to exit 12d Model.

On receiving your request, 12d Solutions will generate an authorization code and send an email
back to you with an attachment called 12d_auth.12d10c

When you receive the email with the file 12d_auth.12d10c attached to it, double click on the
attached file 12d_auth.12d10c, click on Open it and finally click on OK.
12d Model Practise will then start up and validate the `12d_auth.12d10c` file, and if it is valid, save the authorization code away as the file `practise.4d` in the folder `c:\12d Practise\10.00` and then bring up the Accept Code panel with the `practise.4d updated` message.

Click on OK and 12d Model Practise will open and display the project Road.

Note: if you already have a `practise.4d` file in the folder then the Accept Code panel will be brought up, stating that the `practise.4d` file already exists, and asking to overwrite it.
Click on **Yes** and the new authorization code will be saved away as the file **practise.4d** in the folder

`c:\12d Practise\10.00`

The **Accept Code** panel then comes up with the **practise.4d updated** message.

Click on **OK** and 12d Model Practise will open and display the project **Road**.

To exit 12d Model Practise, click on **Project => Exit**
3.4 Possible Problems When Authorizing the Practise Version

1. The date on your computer is not the correct date.

2. The computer you are authorizing is not the same one that the Authorisation Request Form was generated for.

 The 12d_auth.12d10c and the generated practise.4d file are only valid for the computer that the Authorisation Request Form was generated on. If you want the Practise version to run on another computer, you need to generate a new Authorisation Request Form on that computer and send it to 12d Solutions.

3. If you change your network card after generating the Authorisation Request Form then the authorization will stop working. A new Authorisation Request Form needs to sent to 12d Solutions.

4. If the file 12d_auth.12d10c does not appear as an attachment then your email system can’t handle MIME attachment. Please contact 12d Solutions at authorize@12d.com
4 Tools and Concepts

The chapter contains information about the definitions and behaviour of general items used in 12d Model such use of the mouse, keyboard, how information is displayed on the screen, picking items, etc.

See

4.1 The Mouse
4.2 The Keyboard
4.3 Screen Layout
4.4 Ascii, Ansi and Unicode
4.5 Data Types
4.6 Text Definitions
4.7 Symbol Definitions
4.8 Tick Box
4.9 Picking Strings
4.10 X Y Z and Ch Ht Typed Input Box
4.11 Tentative Typed Inputs
4.12 Picking Point Ids (Point Numbers, Vertex ids)
4.13 Snaps
4.14 Text Grips
4.15 Symbol Grips
4.16 Last Expression
4.17 Bearings and Angles
4.18 Precision
4.19 Panel Fields
4.20 Emailing from File Boxes
4.21 Measures
4.22 Colours
4.24 Defaults
4.24 Defaults
4.25 Miscellaneous Panels
4.25 Miscellaneous Panels
4.26 No Option Available
4.27 No Information Available
4.28 Options on Toolbars
4.29 Drag and Drop

For documentation on the first item, continue to the next section 4.1 The Mouse.
4.1 The Mouse

The mouse is used extensively in 12d Model.

12d Model can be operated with either a two or a three button mouse but a three button mouse is preferred.

In this manual the buttons will be denoted by

- LB = the left button
- MB = the middle button
- RB = the right-button

12d Model monitors the mouse being pushed down and when it is subsequently released as separate events. Unless otherwise specified in the manual, clicking a button will mean pressing the button down and releasing it again. The position of the mouse is normally taken as being when the button is released.

In screen messages, the effect of pressing each button on the mouse is shown by enclosing the effect for each button in square brackets ([]) in left-to-right button order. That is

[left button effect] [middle button effect] [right button effect]

Empty brackets, [], indicate that pressing the button has no effect at that time.

NOTE: If the Middle button is also a wheel, then the wheel can be used in some 12d Model operations such as zoom.

Please continue to the next section 4.2 The Keyboard or return to 4 Tools and Concepts.
4.2 The Keyboard

For clarity, the characters and special keys on the keyboard will be enclosed in the angle brackets < >. For example, the delete key is .

When two or more keys are to pressed down together, they will be shown in angle brackets separated by a plus sign (+). For example, <ctrl> + <d> means that the control key and d are pressed down together.

In 12d Model, the escape key (normally labelled Esc on the keyboard and denoted by <esc> in this manual) is used to stop drawing in a view or to break out of computer intensive options (escape or abort the option) but still remain in 12d Model. Options which can be terminated by <esc> are noted in the manual.

Please continue to the next section 4.3 Screen Layout or return to 4 Tools and Concepts.
4.3 Screen Layout

Inside the 12d Model screen are six distinct areas (main menu, top Toolbar area, side toolbar area, view area, output window and status bar) which create and control nine associated objects (panels, toolbars, control bars, floating menus, Plan views, Section views, Perspective views and Perspective OpenGL views displayed on the screen.

The main areas and their purposes are:

(a) **Main Menu**

The **Main Menu** is at the top of the 12d Model screen and is a standard Microsoft type menu. Options are selected in the standard Microsoft way and bring up 12d Model panels and floating menus. See 4.3.1 Main Menu.

(b) **Views Area**

The **Views Area** displays the 12d Model drawing views for seeing and examining the data. There is no limit to the number of Plan, Section or perspective, Perspective OpenGL and views that can be created, overlapped or iconised (the Perspective Hide view has been superseded by the Perspective OpenGL view). See 4.3.7 Views.

(c) **Output Window**

The **Output Window** displays 12d Model system and error messages, and intelligent log lines. The Output Window can be turned on/off from the Main menu. See 4.3.9 Output Window.

(d) **Background Tasks Window**

The **Background Tasks** window displays messages from tasks started by 12d Model as background tasks. The Background Tasks window can be turned on/off from the Main menu. See 4.3.10 Background Tasks Window.

(e) **Status Bar**

The **Status Bar** displays message prompts and the x, y and z coordinates of the cursor when it is in a drawing view. The Status Bar can be turned on/off from the Main menu. See 4.3.8 Status Bar.

(f) **Top Toolbar area**

The **Top Toolbar area** is below the Main Menu and contains the CAD control bar, Text control bar and the snaps toolbar.

(g) **Side Toolbar area**

The **Side Toolbar area** is on the far left side and the CAD Toolbar and other Toolbars defined in Toolbars.4d
Please continue to the next section 4.3.1 Main Menu.
4.3.1 Main Menu

At the top of the 12d Model window is the Main menu, a standard Microsoft type menu.

Options can be selected in the standard Microsoft way and bring up 12d Model panels (dialogues) or create floating menus.

The Main menu can be moved around, or docked on any of the four sides of the window.

If the Window is not wide enough, the Main Menu will automatically wrap around onto two or more lines.

Options can be selected from the Main Menu or from the walk rights on option on the Main Menu.

Or most menus on the Main Menu can be torn off to create floating menus that can be placed anywhere on the screen.

Continue to the next section 4.3.2 Creating Floating Menus from the Main Menu.
4.3.2 Creating Floating Menus from the Main Menu

As well as the standard Microsoft type menu, 12d Model has the concept of floating (tear away) menus.

The presence of a floating menu on the Main Menu is indicated by a menu item enclosed in square brackets []. Selecting a menu item in square brackets will create a floating menu of that name.

For example, selecting [Project] from the top menu Project creates the floating menu called Projects.

A floating menu can be moved around the screen, even outside the 12d Model window, and will stay up until the [X] button is selected on the top right hand side of the floating menu.

A floating menu created from the Main Menu usually contains the same items and walk-right menus as the Main Menu but has the distinct advantage that it doesn't disappear when the cursor is moved to select other menus from the Main Menu. It stays on the screen as a menu in its own right.

Continue to the next section 4.3.2 Creating Floating Menus from the Main Menu.
4.3.3 Floating Menus

Floating menus or tear away menus consist of a menu title area and a series of options, called menu buttons, lined up under the menu title.

For example, the Projects menu looks like

An option on the menu is invoked (or selected) by clicking LB whilst over the option. If no option exists, a No Option panel is placed on the screen. The panel will remain until the OK or [X] button is selected.

The icon \(\rightarrow \) on a menu-option indicates that there is a walk-right menu attached to that button. The walk-right menu only appears as the cursor moves over the \(\rightarrow \). The walk-right menu can consist of further menu options and walk-rights.

If a walk-right menu is showing and the user wanders back into the menu where the walk-right originated, the walk-right menu will collapse back to the \(\rightarrow \).

When a walk right menu is showing on a floating menu, holding LB down in the menu title area and then moving the cursor will tear the sub menu from the main menu and create a new floating menu of the walk right menu.
For the description on:

- Moving a menu go to 4.3.1 Moving a Menu
- Dumping a menu 4.3.2 Dumping a Menu or Panel
- Deleting a menu 4.3.3 Deleting a Menu
4.3.3.1 Moving a Menu

A menu can be moved (dragged) by **holding down LB** anywhere in the menu title area (except on the [X] button) and then moving the cursor with LB still depressed. The menu moves with the cursor to indicate where the new menu position will be. The menu is finally positioned when LB is released.

When an expanded walk-right menu is moved, a **copy** of the walk-right menu will be moved and placed on the screen as a new floating menu. The original menu still contains the walk-right menu.

Continue to the next section **4.3.3.2 Dumping a Menu or Panel** or go back to **4.3.2 Creating Floating Menus from the Main Menu**.

4.3.3.2 Dumping a Menu or Panel

The menu or panel can be written out to disk in a variety of images formats, as a screen layout file (SLX), and for a panel, as a defaults file (DDX). This is called dumping the menu or panel.

The **Dump** option is invoked by clicking the middle mouse button (MB) anywhere in the menu/panel title area. The **Menu/Panel Dump** panel is then displayed.

Note: If a screen layout file is created and added to the **layout.4d** file (by selecting **layout.4d** as the file name and selecting **Append**), then the menu/panel will appear whenever a project is opened. See **layout.4d**.

![Menu/Panel Dump](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format</td>
<td>choice box</td>
<td>screen layout file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>File</td>
<td>file box</td>
<td></td>
<td>name of the disk file to write the image or screen layout information to.</td>
<td></td>
</tr>
<tr>
<td>Dump</td>
<td>button</td>
<td></td>
<td>dump the menu information to disk.</td>
<td></td>
</tr>
</tbody>
</table>
4.3.3.3 Deleting a Menu

A floating menu is deleted by selecting the [X] button in the menu-title area.

Please continue to the next section 4.3.4 12d Model Menu.
4.3.4 12d Model Menu

A floating 12d Model menu is available by selected 12d Model Menu on the Projects menu. Selecting 12d Model Menu again will remove the 12d Model menu.

All of the options going across the Main Menu are available by going down the 12d Model menu. Please continue to the next section 4.3.5 Toolbars and Controlbars.
4.3.5 Toolbars and Controlbars

See

4.3.5.1 Toolbars
4.3.5.2 ControlBars
4.3.5.3 Snaps (H) Toolbar

4.3.5.1 Toolbars

Options can be grouped together on toolbars. Toolbars are made up entirely of icons and each icon can have a 12d Model option attached to it.

Toolbars have unique names which are displayed on the top of the toolbar when it is not docked. Toolbars can also have one level of Flyouts of other toolbars and when a flyout exists, there is a small arrow on the bottom right of the icon to indicate a flyout exist. The tool tip for the icon gives the name of the flyout toolbar. The actual icon itself is the icon of the first item on the flyout toolbar.

For example, the CAD toolbar is entirely made up of flyout toolbars.

To display and select from a flyout toolbar, hold down LB whilst over the icon on a toolbar with a flyout menu and the flyout menu will appear. Whilst still holding down LB, move along the flyout toolbar to the appropriate option and then release LB. The option attached to the highlighted icon will then be selected.

Note - if LB is released whilst a icon with a flyout toolbar is highlighted, the first option on the flyout Toolbar is selected.

All the toolbars in 12d Model are defined in a file with the default name toolbars.4d or user_toolbars.4d. For the definition of toolbars, see the section 41.3 User Defined Toolbars in the Appendix 41 Functions Keys, Menus, Toolbars.

The list of all defined toolbars is given by selecting View => Toolbars from the main menu which
brings up the **Customize toolbars** panel. A toolbar is shown with a tick if it is already on the screen.

Ticking **on** a toolbar in the list brings up the toolbar in the top left hand corner of the screen. The toolbar can then be moved or docked.

Ticking **off** a toolbar in the list, or clicking on X in the top right hand corner when the toolbar is not docked, removes the toolbar from the screen.

Important Note - the toolbars are not active whilst the **Customize toolbars** panel is on the screen. Close the **Customize toolbars** panel as soon as you finished with it.

What toolbars are on the screen and their position is recorded with the project so that when a project is exited and later started again, the final position of the toolbars is restored.

Also at any time, a workspace file can be read in and define a new setup and position of toolbars. For more information on using workspace files, please go to the section **7.6.9 Project Workspace**.

For links to the options on each **Toolbar**, go to **4.28 Options on Toolbars**.

Continue to the next section **4.3.5.2 ControlBars** or return to **4.3.5 Toolbars and Controlbars**.

4.3.5.2 ControlBars

ControlBars can have icons on them but they also have controls such as a model box on them.

ControlBars are not user defined and there are six of them in **12d Model** - the **CAD ControlBar**, **Symbol ControlBar**, **Text ControlBar**, **Pipe ControlBar**, **Attributes ControlBar** and **Search bar**.

This default position of the controlbars is on the top left hand side of the screen under the main menu.
Although not toolbars, the Controlbars do appear in the Toolbars list in the Customize toolbars panel and can be turned on/off and docked just like toolbars.

Important Note - the toolbars are not active whilst the Customize panel is on the screen. Close the Customize toolbars panel as soon as you finished with it.

The ControlBars CAD, Symbol, Text, Pipe and Attributes are used by CAD toolbars and the Strings Create options. Strings created by the CAD toolbars and Strings Create options use values in the ControlBars to define string properties such as name, model, colour, pipe justification and size.

Like toolbars, the type and position on the screen of ControlBars is recorded with the Project so that when a Project is exited and then started later, the final position of the ControlBars is restored.

Also at any time, a workspace file can be read in and define a new setup and position of the ControlBars. For more information on using workspace files, please go to the section 7.6.9 Project Workspace.

The Search bar is also a ControlBar and allows quick access to any option in 12d Model.

The ControlBars CAD, Symbol, Text, Pipe, Attributes and Search bar will be described in detail in the section 15.1 Controlbars.

Continue to the next section 4.3.5.3 Snaps (H) Toolbar or return to 4.3.5 Toolbars and Controlbars.
4.3.5.3 Snaps (H) Toolbar

The **H Toolbar** (the **Snaps** toolbar) which has the default position at the top left hand side of the **12d Model** screen, under the CAD ControlBar.

Snaps are documented in the section **4.13 Snaps** or return to **4.3.5 Toolbars and Controlbars**.
4.3.6 Panels

After a menu option has been selected, extra information is often required before the operation represented by the menu option can begin.

For example, before the contour option can proceed, the required contour interval must be supplied.

In 12d Model, an object called a panel is used to collect and validate any extra information required to run the option.

For example, the Model Information panel is

A Panel consists of various types of areas.

Panel title area
Contains the title (name) of the panel, the buttons to minimize and restore the panel, and the [X] button. In the example above, the panel title is **Tin: Contour, Smooth and Label**.

Panel fields (also known as Panel Boxes)
Depending on the panel, these areas are for entering and/or displaying information for the panel.

The user can type answers into some fields or the program may display special information in the fields (output only fields).

Often the areas are for collecting/displaying special 12d Model information. There is often an icon at the far right of the panel field/panel box which may contain a pop-up list of values to choose from.

In the example, **Model for contours** is an input field and is a Model box.
If the panel field is optional, then the description text is greyed out - entering data into the field will cause the text to be redrawn in black.

Panel Tabs

Clicking on a Panel Tab displays a whole new page of panel fields. Panels tabs are often needed because there are too many panel fields to fit on the panel at the same time, or to group some fields together.

For example, clicking on Major Contours in the Tin: Contour, Smooth and Label panel will display panel fields to collect information to define the Major Contours.

![Panel Fields Example](image)

Panel Grids

Many panels have grids to collect information that is best displayed and entered in columns.
For information on grids in panels, see 4.19.6 Grids in Panels.

Panel Trees
Panels have trees to better order the information that is to be displayed and collected.

Message area
Each panel has its own area where 12d Model displays messages for the option.

Messages are used for a variety of purposes including
indicating the next step in a complex option
reporting errors
giving progress in time consuming operations
informing that an option has completed successfully.

Most messages are sent to the panel message area but a few are displayed in the Status Bar.

Panel buttons

Buttons are used on the panel to select things or control the processing of the panel. Almost every panel has minimize and restore button, and a Finish and [X] buttons which when selected will end the option and remove the panel from the screen. All panels also has a Help button which brings up on-line help about the panel.

The minimize, restore, Finish, [X] and Help buttons will not be documented for each panel.

Continue to the next section 4.3.6.1 Data Entry in a Panel or return to 4.3.6 Panels.
4.3.6.1 Data Entry in a Panel

To help save the user time, many panel fields have default answers. However, any panel field value can be replaced by typing in new information (typed input) or when available, by selecting an answer from the panel field pop-up or using special name completion characters.

All panel fields are validated before the option runs and any error messages displayed in the panel message area.

Typed input

To type information into a panel field, move the cursor to the position for the information, left click to get focus in the panel field and then start typing. The information will go into the field starting at the input-position indicator (a upright bar in the panel field).

The input-position indicator can be moved by

- clicking LB when the cursor is at the new position for input
- using the keys ->, <-, home and end

The backspace key, <backspace>, will delete one character before the input-position indicator and the delete key, , will delete one character after the input-position indicator.

The user can move to any field in the panel by using the mouse. The <tab> key will move the cursor to the next panel field or button and <shift>+<tab> will move the cursor to the previous panel field or button.

Note - the entire field is used as the answer, not just up to the input-position indicator. The input-position indicator indicates where the characters will go when typing, not the end of the data.

Pop-Up Lists and Menus

The panel field pop-up list or menu, or panel field pop-up, is raised by clicking LB on the [+] or other choice icons at the right of the panel field.

A panel field pop-up consists of a list of choices which may be displayed as either a menu or a list.

For a pop-up list, an answer is chosen from the list by double clicking LB over the required answer. This answer is then displayed in the panel field and the pop-up list disappears.
For a pop-up menu, an answer is chosen from the pop-up menu by clicking LB over the required answer. This answer is then displayed in the panel field and the pop-up menu disappears.

The pop-up list or menu can also be removed without a selection by clicking LB on the [X] on the pop-up list or menu, by clicking LB again on the icon or [+] for the panel field, or by simply typing into any visible part of the panel field that the pop-up is for (some of the field may be obscured by the pop-up itself).

The pop-up lists and menus and the choice icons are described in more detail in the section on Special Panel Fields.

Name completion

To help speed data entry a process called name completion is available in most panel fields. `<ctrl> + <d>` is the special key combination used for name completion and how it works will now be described.

If one or more characters have been typed into a panel field and the `<ctrl> + <d>` combination is pressed, then 12d Model checks to see how many answers in the available pop-up start with the same typed characters. If a unique match exists, then it will be placed into the panel field. If more that one match exists, a pop-up menu with all the matches will be presented for the user to select from.

Name mapping

When typing a string name into a Name Box panel field, a name mapping file can be used to fill out information such as colour, model etc. for given string names.

The name mapping works in two ways. After typing part or all of a string name,

(a) if `<enter>` is entered, the name map file is searched for a match in the first column of the Basic node (the Key column).

If a match is found, the name, colour, model, style etc. from the other columns in the Basic node are used to fill out the panel fields.

The key can contain wild cards and/or characters.

Other nodes of the name mapping file may also fill out other information such as pipe type and pipe diameter (Pipe node).

(b) if `<ctrl> + <d>` is entered, the second column of the Basic node of name mapping file (the Name column) is searched for a list of completions which is written to the field if it is unique or displayed in a pop-up if there is more than one match. If a * is found in the Name column, the first column is used for matching. When an entry is selected from the completion list, the name, colour, model, style etc. from the columns in the Basic node of the name mapping file are used to fill out the panel fields.

If a name mapping file exists, then the name panel field will include the entries from the first column of the Basic tab of the name mapping file. If an item is selected from the list, then the name, colour, model, style etc. from the columns in the name mapping file are used to fill out the panel fields.

The name mapping file is pointed to by the environment variable NAME_MAPPINGS_4D or is if the environment variable is not set, the default name is names.4d.

During a 12d Model session, the name mapping file can be changed by the Name Settings tab on the option Utilities=>Defaults. Note that this new name mapping file is not saved with the project.

Validation

After the panel field information is entered, an `<enter>` key requests that the panel field
information be validated. Any error message will be displayed in the panel's message area. If there is no error, the cursor will move onto the next panel field. If an error occurs, the cursor will remain in the invalid panel field.

New panels or menus can be fired up before completing panels or menus already on the screen. This gives the user full control over the work flow, rather than being locked in by fixed sequences in a program.

Continue to the next section 4.3.6.2 Panel System Menu or return to 4.3.6 Panels.
4.3.6.2 Panel System Menu

The Panel System menu is brought up by clicking LB on the windows icon on the left hand corner of the panel title area.

The Panel System menu has options to move, minimize, close, dump (write out an image of the panel), create defaults (ddx) file (ddx), reset a defaults (ddx) file and duplicate the panel.

For the option
- **Move**, go to 4.3.6.3 Moving a Panel
- **Minimize/Maximize**, go to 4.3.6.4 Minimizing and Maximizing a Panel
- **Dump**, go to 4.3.6.5 Dumping a Panel, Creating a Screen Layout File or Default File
- **Close**, go to 4.3.6.10 Deleting a Panel
- **Defaults**, go to 4.3.6.6 Panel Defaults - ddx Files
- **Defaults Reset**, go to 4.3.6.7 Defaults Reset - Deleting a ddx File
- **Duplicate**, go to 4.3.6.8 Duplicating a Panel

Also for
- **Special panel fields**, go to 4.19.2 Pre*Postfix in Panel Fields
- **Expressions in panel fields**, go to 4.19.1 Expressions in Panel Fields
- **Resizing a panel**, go to 4.3.6.9 Resizing of Panels
- **OK panel**, go to 4.3.6.11 OK Panel
- **Yes-No panel**, go to 4.3.6.12 Yes-No Panel
- **Yes-No-cancel panel**, go to 4.3.6.13 Yes-No-Cancel Panel
- **Yes-No-All-cancel panel**, go to 4.3.6.14 Yes-No-All-Cancel Panel

TODO: Replace-Cancel
TODO: Append-Replace-Cancel

Continue to the next section 4.3.6.3 Moving a Panel or return to 4.3.6 Panels.
4.3.6.3 Moving a Panel

A panel can be moved (dragged) by holding down LB anywhere in the menu title area (except over the windows icon on the left and the minimize, restore and [X] buttons on the right) and then moving the cursor with the LB still depressed.

The panel (or panel outline) moves with the cursor to indicate where the new panel position will be, and the panel is finally positioned when LB is released.

Move can also be started by selecting Move from the Panel System menu and then holding down LB in the menu title area and continuing as described above.

Continue to the next section 4.3.6.4 Minimizing and Maximizing a Panel or return to 4.3.6 Panels.

4.3.6.4 Minimizing and Maximizing a Panel

The panel can be minimized (iconized)/restored and maximized using the standard Windows minimize/restore and maximize buttons on the top right hand corner of the panel.

A panel can also be minimized by selecting Minimize from the Panel System menu.

Continue to the next section 4.3.6.5 Dumping a Panel, Creating a Screen Layout File or Default File or return to 4.3.6 Panels.

4.3.6.5 Dumping a Panel, Creating a Screen Layout File or Default File

The panel can be written out to disk in a variety of images formats, or as a screen layout (slx) file or a default (ddx) file. This is called dumping the panel.

The Dump option is selected by clicking MB in the panel title area, or by selecting Dump from the Panel System menu which is invoked by clicking the left mouse button (LB) on the Windows icon on the left of the panel title area.

The Menu/Panel Dump panel is then displayed and for its description, go to 4.3.3.2 Dumping a Menu or Panel.

Continue to the next section 4.3.6.6 Panel Defaults - ddx Files or return to 4.3.6 Panels.

4.3.6.6 Panel Defaults - ddx Files

When a panel is opened, 12d Model may set some default values.

However for most panels the user can supply the values to be used for all the panel fields each time a panel is opened. This information is stored in a defaults file for a panel. The defaults file has the file ending .ddx (or a pre-12d Model 11 format, .ddf).

If no defaults file exists for a panel, then the 12d Model defaults are used for the panel.

To set user defined defaults for a panel, simply open the panel, fill in the default values that are required, and then bring up the Panel System menu (by clicking LB in the top left had corner of the panel) and select Defaults.
A panel comes up asking what folder to write the \textit{ddx} file for the panel to.

Clicking on \textit{Write} writes out the \textit{ddx} file for the panel.

When a \textit{12d Model} panel starts up, the standard paths are searched for a defaults file to use to set the default values for the panel fields.

If no defaults file is found for the panel, the \textit{12d Model} system defaults are used.

\textbf{Note} - for \textit{12d Model 10} and above, the defaults file has an xml structure and is written to a file ending in \textit{.ddx}. An earlier format ended in \textit{.ddf}. If both a \textit{.ddx} and a \textit{.ddf} file exists for the panel, then the \textit{.ddx} file is used.
4.3.6.7 Defaults Reset - Deleting a ddx File

If user defined defaults are no longer required for a panel, simply bring up the panel and then the Panel System menu by clicking LB in the top left hand corner of the panel.
Select Defaults Reset and the default ddx file for the panel is deleted.

4.3.6.8 Duplicating a Panel

After filling in all the fields of a panel, it is often useful to have a copy of the panel with almost all the same panel field values.

For example, when calculating the volume from a tin to a height using end area, it is normal to run the option with a number of different angles for the sections, and maybe different distances between the sections.

To create a new panel with all the same values in the panel fields, bring up the Panel System menu for the panel and select Duplicate.
4.3.6.9 Resizing of Panels

Most panels can be resized.

If a panel can be resized then there is an Resize motif (three lines) in the bottom right corner and dragging from that corner will resize the panel.

How the panel can be resized will depend on what items are in the panel. For example, the Tin Colour panel can only be made wider but cannot be made smaller or taller.

When a screen layout file (SLX) or a panel defaults file (DDX) is written out for a resized panel, or a resized panel recorded in a Chain, the resized panel size is recorded.

Continue to the next section 4.3.6.10 Deleting a Panel or return to 4.3.6 Panels.
4.3.6.10 Deleting a Panel

There are three methods available for deleting a panel. Picking the \([X]\) button in the panel title area, using the \textbf{finish} button or by selecting \textbf{Close} from the \textit{Panel System} menu.

Continue to the next section 4.3.6.11 \textit{OK Panel} or return to 4.3.6 Panels.

4.3.6.11 OK Panel

The \textbf{OK} panel requires the selecting of the button \textbf{OK}.

Continue to the next section 4.3.6.12 \textit{Yes-No Panel} or return to 4.3.6 Panels.

4.3.6.12 Yes-No Panel

The \textbf{yes no} panel requires the selecting of the button \textbf{yes} or \textbf{no}.

Continue to the next section 4.3.6.13 \textit{Yes-No-Cancel Panel} or return to 4.3.6 Panels.

4.3.6.13 Yes-No-Cancel Panel

The \textbf{yes no cancel} panel requires the selecting of the button \textbf{yes}, \textbf{no} or \textbf{cancel}.

Continue to the next section 4.3.6.14 \textit{Yes-No-All-Cancel Panel} or return to 4.3.6 Panels.

4.3.6.14 Yes-No-All-Cancel Panel

The \textbf{yes no all cancel} panel requires the selecting of the button \textbf{yes}, \textbf{no}, \textbf{all} or \textbf{cancel}.

The next major section 4.3.7 \textit{Views} or return to 4.3.6 Panels.
4.3.7 Views

Views are the screen drawing areas for 12d Model and come in four flavours - plan, section, perspective and opengl perspective.

Views can be created and deleted as required by the user and there is no limit to the number of views on the screen. Views can be overlapped and minimized.

Each view has a unique name of up to two hundred characters. The view type and name are displayed on the top left corner of the view in what is called the view-title area.

For information on:
View buttons, go to 4.3.7.1 View Buttons
View menu 4.3.7.2 Plan/Section/Perspective View Menu
View system menu 4.3.7.3 View System Menu
View dump 4.3.7.4 Dumping a View
Moving a view 4.3.7.5 Moving a View
Resizing a view 4.3.7.6 Resizing a View
Minimising/maximizing a view 4.3.7.7 Minimizing and Maximizing a View
Deleting a view 4.3.7.8 Deleting a View
4.3.7.1 View Buttons

On the row under the view type and name, are a number of options called view buttons. The view buttons act like menu items and are activated by clicking LB when the cursor is above the button.

For the function of each View Button see
9.5.1 Plan View Buttons
9.5.2 Perspective View Buttons
9.5.3 Section View Buttons

Continue to the next section 4.3.7.2 Plan/Section/Perspective View Menu or return to 4.3.7 Views.
4.3.7.2 Plan/Section/Perspective View Menu

If LB is clicked on the Menu icon in the view buttons area, or RB is clicked in the View Title area or the View Buttons area, a new menu called the Plan/Section/Perspective View menu appears (or just View menu for short).

To remove the Plan/Section/Perspective View menu, select [X] on the View menu or click RB again in the View Title area or the View Button area.

Because of the differences between plan, perspective and section views, the options on the View menu vary for each view type.

The View menus are discussed in the section 9 Menus on Views.

Continue to the next section 4.3.7.3 View System Menu or return to 4.3.7 Views.
4.3.7.3 View System Menu

The view system menu is brought up by clicking LB on the windows icon on the left hand corner of the view title area.

The View system menu has options to move, resize, minimize, maximize, close (delete) and dump the view.

For information on Moving a view, go to 4.3.7.5 Moving a View
Resizing a view 4.3.7.6 Resizing a View
Minimizing/maximizing a view 4.3.7.7 Minimizing and Maximizing a View
Closing a view 4.3.7.8 Deleting a View
Dumping a view image 4.3.7.4 Dumping a View

Continue to the next section 4.3.7.4 Dumping a View or return to 4.3.7 Views.
4.3.7.4 Dumping a View

An image of the view can be written out to disk in either bmp, tif, postscript format or as a screen layout (slx) file. This is called dumping the view.

The Dump option is selected from the View System menu which is invoked by clicking the left mouse button (LB) on the Windows icon on the left of the view-title area. The View Dump panel is then displayed.

The fields and buttons have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td>current view</td>
<td>available views</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>picked from</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Include title</td>
<td>tick box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Format</td>
<td>choice box</td>
<td>JPEG</td>
<td>BMP, GIF, JPEG,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JPEG 2000, PNG, TGA</td>
<td></td>
</tr>
<tr>
<td>File</td>
<td>file box</td>
<td>.jpg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dump</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The view to dump out in the specified format.

If ticked, the view title area is included in the dump.

The format to dump the view out in.

The file to dump the view images out to.

Dump in the given format the image of the view given in the View field to the file given in the File field.

Continue to the next section 4.3.7.5 Moving a View or return to 4.3.7 Views.
4.3.7.5 Moving a View

A View can be moved (dragged) by holding down LB anywhere in the view-title area (except over the windows icon on the left and the minimize, restore and [X] buttons on the right) and then moving the cursor with the LB still depressed. Or Move can be selected from the View System menu.

The View moves with the cursor to indicate where the new view position will be. The view is finally positioned when LB is released.

Continue to the next section 4.3.7.2 Plan/Section/Perspective View Menu or return to 4.3.7 Views.

4.3.7.6 Resizing a View

A View can be resized using the standard Windows resize methods of holding down LB on the view border and moving the mouse to the new position for the view border, and then releasing LB.

Continue to the next section 4.3.7.7 Minimizing and Maximizing a View or return to 4.3.7 Views.

4.3.7.7 Minimizing and Maximizing a View

A View can be minimized (iconised), restored and maximized using the standard Windows minimize/restore and maximize buttons on the top right hand corner of the view, or by selecting Minimize or Maximize from the View System menu.

Continue to the next section 4.3.7.8 Deleting a View or return to 4.3.7 Views.

4.3.7.8 Deleting a View

Picking the [X] button in the view-title area or selecting Close from the View System menu will delete the view.

If the environment variable Prompt on close is set on, then a prompt will be displayed to confirm that the view is to be closed/deleted.

![Perspective OpenGL 2 dialog box](image)

Please continue to the next major section 4.3.8 Status Bar or return to 4.3.7 Views.
4.3.8 Status Bar

The Status Bar is used to display many of the messages generated by 12d Model options (each panel also has its own special message area) and the dynamic coordinate position of the cursor as it moves around in any view on the screen.

The messages are displayed on the left hand side of the Status Bar and the view coordinates on the right hand side of the Status Bar.

The coordinate values displayed depends on the view type. For example, the world coordinate (x,y) position of the cursor is displayed when inside plan views, and the (chainage,height,x,y) position when in a section view.

The Status Bar can be toggled on/off by the option View => Status Bar on the Main menu.

Please continue to the next section 4.3.9 Output Window.
4.3.9 Output Window

The **Output Window** displays *12d Model* system and error messages.

By default the **Output Window** is in **Auto-Hide** mode and appears as a tab at the bottom left of the screen and flashes if there are any messages that need to be reviewed.

When in **Auto-Hide** mode, as you move your cursor over the Output Window tab the Output Window appears.

Auto-Hide mode can be turned off by moving over the Output Window area and pressing RB to bring up the **Output Window** menu. Click on **Auto-Hide** to remove the tick and **Auto-Hide** is no longer on.

When **Auto-Hide** is turned off, the Output Window stays open.

The **Output Window** menu includes the options:

- **Clear** - clears the Output Window,
- **Copy to clipboard** - copy any selected text in the Output Window to the Clipboard.
- **Hide** - removes the Output Window.
- **Float** - makes the Output Window a floating window that can be docked on any of the sides of the 12d Model screen.
- **Convert to window** - turns the Output Window into a normal Window which then appears on your desktop. It may be moved by clicking LB in the Output Window heading area,
then dragging the cursor to another part of your desktop and releasing the LB to pin it down.

When the Output Window is a normal Window or a floating window, clicking on \texttt{x} at the top right of the window will remove the Output Window.

The Output Window can be made taller or shorter by moving the bar at the top of the Output Window.

The Output Window can be removed by \texttt{Hide} but also unticking the Output Window on the Window Main Menu will remove the Output Window.

If an \textit{error message} is sent to the Output Window and the Output Window it is removed (\textbf{turned off}) then the Output Window is \textbf{automatically toggled on} to indicate an error has occurred.

Once the Output Window is removed and no error messages have been sent to it, the only way to turn it back on is to click on \textbf{Output Window} on the \textbf{Window} Main Menu.

Message lines which are intelligent log lines are begun with a green exclamation mark!

Please continue to the next section 4.3.10 \textit{Background Tasks Window}.

4.3.10 Background Tasks Window

12d Model uses multi-cores and background processes to make things faster for the user.

The **Background Task** window displays messages from tasks running in the background.

By default the **Background tasks** window is in **Auto-Hide** mode and appears as a tab at the bottom left of the screen and flashes if there are any messages from a background task that need to be reviewed.

When in **Auto-Hide** mode, as you move your cursor over the **Background Task** tab the **Background tasks** window appears.

Auto-Hide mode can be turned off by moving over the Background Tasks window area and pressing RB to bring up the **Background Tasks** menu. Click on **Auto-Hide** to remove the tick and **Auto-Hide** is no longer on.

When **Auto-Hide** is turned off, the Background Tasks window stays open.

The **Background Tasks** menu includes the options:

- **Hide** - removes the Background Tasks window.
- **Float** - makes the Background Tasks window a floating window that can be docked on any of the sides of the 12d Model screen.

When the **Background Tasks** window is a normal window or a floating window, clicking on x at the top right of the window will remove the Background Tasks window.

The Background Tasks window can be made taller or shorter by moving the bar at the top of the Background Tasks window.

The Background Tasks window can be removed by **Hide** but also unticking the Background Tasks on the **Window** Main Menu will remove the **Background Tasks** window.

If a message is sent to the Background Tasks window and the Background Tasks window is removed (turned off) then the Background Tasks window is automatically toggled on to indicate that there is a background task message.
Once the Background Tasks window is removed and no messages have been sent to it, the only way to turn it back on is to click on Background Tasks window on the Window Main Menu.

Message lines which are intelligent log lines are begun with a green exclamation mark.

Please continue to the next section 4.4 Ascii, Ansi and Unicode.
4.4 Ascii, Ansi and Unicode

From 12d Model 10 onwards, text is stored in the 12d Model database as Unicode (UTF-16 Unicode) and the default format for all output files produced by 12d Model is for them to be Unicode files.

But what does that mean?

Computers can only understand numbers (only zeros and ones actually), so a common code is needed for the numerical representation of characters such as ‘a’ or ‘1’ or some action such as TAB and a number of common codes have evolved over time.

The common code is not only needed for text in a file or text on a Web page, but also for the names of the files and folders on a computer disc or an internet site.

See

4.4.1 ASCII Character Set
4.4.2 ANSI Character Set
4.4.3 Unicode Character Set
4.4.4 Unicode Encoding: UTF-8
4.4.5 Unicode Encoding: UTF-16
4.4.6 Endian and BOM
4.4.7 Writing out Files from 12d Model
4.4.1 ASCII Character Set

The ASCII (American Standard Code for Information Exchange) was first published in 1963 and was adopted by the American National Standards Institute (ANSI) during the 1960s and has been in common use since then.

The ASCII definition used 7 bits to define characters and some non character codes such as tab, back space and line feed (new line). The seven bits means that only a maximum of 127 codes are allowed.

An examples of the ASCII codes are:

2 is the ASCII code for start of text (STX)
8 is the ASCII code for back space (BS)
9 is the ASCII code for horizontal tab (TAB)
10 is the ASCII code for line feed, new line (NL)
27 is the ASCII code for escape (ESC)
32 is the ASCII code for a space (" ")
36 is the ASCII code for a dollar sign $
40 is the ASCII code for a left parenthesis (
41 is the ASCII code for a right parenthesis)
48 is the ASCII code for the digit zero 0
49 is the ASCII code for the digit zero 1
65 is the ASCII code for the Latin capital letter A A
97 is the ASCII code for the Latin small letter a a
126 is the ASCII code for a tilde ~
127 is not used

Even with the newer standards, the 7-bit ASCII table continues to be the backbone of modern computing and data storage. Is is so ubiquitous that the terms "text file" and "ascii file" have come to mean the same thing for most computer users.

The ASCII standard was good, as long as you were only working in US English.

Go to the next section 4.4.2 ANSI Character Set or back to 4.4 Ascii, Ansi and Unicode.
4.4.2 ANSI Character Set

The ANSI standard extended the ASCII character set. In the ANSI standard, the first 128 characters where the same as for ASCII but from character 128 onwards, there were different ways depending on where you lived. These different ways were called code pages.

For example, in Israel DOS used a codepage called 862 while Greek users used code page 737.

The ANSI set of 218 characters (also known as Windows-1252) was the standard for core fonts supplied with US versions of Microsoft Windows up to and including Windows 95 and Windows NT 4 (character 218 was the euro currency symbol was added during this time).

ANSI characters 32 to 127 correspond to those in the 7-bit ASCII character set.

Some of the extra ANSI codes are:

- 163 is the ANSI code for a currency Pound sign
- 165 is the ANSI code for a currency Yen sign

If you use a version of Windows that is designed for a non-Latin alphabet such Arabic, Cyrillic, Greek or Thai to view a document that has been typed using the ANSI character set, then in the codepage for the characters from these languages may replace some of those in the 128-255 range and so the document will look different.

There are similar problems when transferring ANSI documents to DOS or Macintosh computers, because DOS and MacRoman arrange characters differently in the 128-255 range.

Go to the next section 4.4.3 Unicode Character Set or back to 4.4 Ascii, Ansi and Unicode.
4.4.3 Unicode Character Set

Today people want to transfer information around the world in emails and on Web sites but the ASCII and ANSI character sets can not work with a variety of Latin and non-Latin alphabets in the one document.

The solution is to move to a system that assigns a unique number to each character in each of the major languages of the world. Such as system has been developed and is known as Unicode and it is intended to be used on all computer systems, not just Windows.

The Unicode Standard covers more than 110,000 characters covering 100 scripts, a set of code charts for visual reference, an encoding methodology and set of standard character encodings, an enumeration of character properties such as upper and lower case, a set of reference data computer files, and a number of related items such as character properties, rules for normalisation, decomposition, collation rendering and bidirectional display order (for the correct display of text containing both right-to-left scripts such as Arabic and Hebrew and left-to-right scripts such as English). As of 2012, the most recent version is Unicode 6.1

Unicode’s success at unifying character sets has led to its widespread use in computer software and the standard has been implemented in XML, Java, Microsoft .NET Framework and modern operating systems.

To make it Unicode compatible with ASCII, the first 128 characters where the same as for ASCII but from character 128 onwards they are totally different.

All the Unicode characters can be covered with 32 bits but to use a 32-bit representation in a file means that a standard ASCII file would be four times as large when written out in Unicode.

So to save on disk space, and the size of files for emailing etc, there are a number of different mapping methods, or character encodings, for writing Unicode characters to a file.

The Unicode standard defines two mapping methods: the Unicode Transformation Format (UTF) encodings, and the Universal Characters Set (UCS) encodings. An encoding maps the range of Unicode characters (or possibly a subset) to sequences of values in some fixed-size range.

Note: Even though software stores Unicode characters, the computer system still needs the graphics for the character sets to be able to correctly display the Unicode characters.

Go to the next section 4.4.4 Unicode Encoding: UTF-8 or back to 4.4 Ascii, Ansi and Unicode.
4.4.4 Unicode Encoding: UTF-8

One of the most common character encodings is UTF-8.

In UTF-8 encoding, only 8-bits are used for any ASCII characters from 0 to 127. For characters 128 and above, it uses between 16, 24 and up to 48 bits.

And because the representation of the first 128 characters are the same in Unicode and ASCII, US English text looks exactly the same in UTF-8 as it did in ASCII.

So why can’t a standard ASCII text editor, or a program requiring plain ASCII text have problems with a Unicode file just containing ASCII characters?

The main reason is that in many Unicode files, a special character called a BOM (see 4.4.6 Endian and BOM) is often placed at the beginning of the file, and the BOM would not be recognised by a program only expecting ASCII and would generate an error, or show up as blank spaces or strange-looking characters.

Go to the next section 4.4.5 Unicode Encoding: UTF-16 or back to 4.4 Ascii, Ansi and Unicode.
4.4.5 Unicode Encoding: UTF-16

In UTF-16 encoding, 16-bits are the basic unit and depending on the Unicode character, UTF-16 encoding may require one or two 16-bit code units. Using the two 16-bit code units, UTF-16 is capable of encoding up to 1,112,064 numbers.

The basic unit of computers is a byte which consists of 8-bits. Because the UTF-16 encoding uses 16-bit and so is made up of two bytes and the order of the bytes may depend on the endianness (byte order) of the computer architecture.

To assist in recognizing the byte order of code units, UTF-16 allows a Byte Order Mark (BOM - see 4.4.6 Endian and BOM), a code with a special value to precede the first actual coded value. Because the fundamental unit in UTF-16 is 16 bits, storing a text file only containing ASCII text will take twice as much disk space as the ASCII version.

Microsoft has used UTF-16 for internal storage for Windows NT and its descendents including Windows 2000, Windows XP, Windows Vista and Windows 7.

Go to the next section 4.4.6 Endian and BOM or back to 4.4 Ascii, Ansi and Unicode.
4.4.6 Endian and BOM

From early computing, the fundamental unit of storage was a byte consisting of 8-bits (a bit is a one or a zero). When computers started using 16-bits, this could be stored as two bytes but there was a choice of the order of storing the two bytes. Two different approaches arose and are referred to the endian or endianness.

Big endian stores the most significant byte first and the least significant byte second. Similar to a number written on paper. **Little endian** stores the least significant byte first and the most significant byte second.

The **byte order mark** (BOM) is a Unicode character used to signal endianness (byte order) of a text file or character stream.

A BOM is essential when the basic unit of an encoding consists of two bytes such as in UTF-16. Beyond its specific use as a byte-order indicator, the BOM character may also indicate which of the Unicode encoding has been used because the values of the bits in the BOM will be different for the different Unicode encodings.

So although a BOM is not strictly necessary for UTF-8 when it only contains ASCII data, it still alerts the software that it is UTF-8.

Some common programs from Microsoft, such as Notepad and Visual C++, add BOMs to UTF-8 files by Default. Google Docs adds a BOM when a Microsoft Word document is downloaded as a .txt file.

When a BOM is used, it should appear at the start of the text.

Go to the next section 4.4.7 Writing out Files from 12d Model or back to 4.4 Ascii, Ansi and Unicode.
4.4.7 Writing out Files from 12d Model

When a file box is used in a 12d Model panel, clicking LB of the Folder icon will bring up the folder pop-up and on the pop-up is the choice for writing out the file in ANSI, or UTF-8 rather than the default of Unicode (UTF-16).

For more information on the File Box, see 4.19.8 File Box.

Continue to the next section 4.5 Data Types (or return to 4.4 Ascii, Ansi and Unicode).
4.5 Data Types

12d Model was designed from the ground up as an object based system and programmed in C++, the most widely used Object Oriented programming language.

As objects, strings know what type of string they are and behave accordingly without user intervention. As a simple example, when selecting a string for editing, the string knows what type of string it is and brings up the appropriate editor.

A more complicated example is a super alignment with computations. Such a string can be constructed from references to other string, automatic fillets, automatic draping on tins etc. and if any of this auxiliary information changes, the super alignment will change as well.

See

4.5.1 Strings
4.5.2 General String Properties
4.5.3 Models
4.5.4 Tins
4.5.5 Trimeshes
4.5.6 Templates
4.5.7 Projects
4.5.8 Attributes or Meta Data
4.5.1 Strings

12d Model uses the string object as one of its basic modelling elements.

In its simplest form, a 12d Model string is an ordered series of vertices or points, joined by a segment.

However a 12d Model string can also be much more complex including referencing to other objects and complicated construction methods. The string object can also have an almost unlimited number of user defined attributes for the whole string, for each vertex and for each segment joining vertices.

However, as an object, the 12d Model string shields the user from its full complexity and only displays the relevant information and properties as required for a particular context.

So starting with the basics, a 12d Model string is an ordered series of vertices or points.

Apart from the first and last vertex in a string, each vertex in a string has a unique previous vertex (predecessor) and a unique next vertex (successor). The previous and next vertices for a vertex are called its string neighbours.

The objects joining a vertex with its neighbours are called string links or segments. Segments may be straight lines or plan arcs, or transition elements such as spirals. The segments can be visible or invisible.

The string has an implied direction starting from the first vertex of the string and then proceeding to the successor vertices in the string.

The ordering along a string allows each vertex to be given a vertex index where the first vertex has vertex index 1. Note that if additional vertices are inserted or vertices deleted then the vertex indices will change. Also note that for super strings, a vertex may have a point id (also called a vertex id and sometimes a point number) which is not the same thing as the vertex index.

A string which has the same first and last vertex is called a closed string otherwise a string is said to be open.

Strings are very useful in the modelling of terrain and design surfaces and when using strings, for some applications they need to have a particular properties.

For example, a contour displayed on maps is actually a string with the special property that all the vertices have exactly the same height (z value). And if the height of one vertex of the contour is modified, then all the vertices of the contour string must also be modified to have exactly the same height or the string is no longer a contour. So a contour string is a special type of string that knows how to behave when the z-value of the string is modified. This is why strings are objects - they intrinsically know how to behave.

To make it easier to refer to particular sets of properties that some strings must have, 12d Model defines a number of different types of strings. Using the string type is a convenient short hand for saying the string has certain well defined properties.
Super string

A super string is a general purpose string.

Each vertex can have tinability, a symbol with its own size and rotation, z-value, text and an unlimited number of user definable attributes.

Segments can be lines, arcs or transitions (for example spirals). Each segment (link) has visibility, colour and breakline flags (segment tinability) and values for diameter or width and height (box culvert), radius, text and an unlimited number of user definable attributes.

2d, 3d, 4d, polyline and pipe strings are special cases of the super string.

2d or contour super string

The z-value of a 2d super string is the same at every vertex in the string. Consequently the entire string has a height (the string height) rather than having to refer to the height at each vertex. By changing the string height, the heights of all the vertices are modified. The height of a single vertex of a 2d string can not be changed to a height that is different to the string height.

So if a 2d string is selected by the string editor, as an object the 2d string can signal the object editor that it has a string height and that the editors height command can only work on the string height and won’t allow the individual vertex heights to be modified.

3d super string

The z-value can vary for each vertex in the string.

So if a 3d super string is selected by the string editor, as an object the 3d string can signal the object editor that each vertex has an individual height, and that the editors height command must select an individual vertex and modify that vertex’s height.

4d super string

A 4d super string has (x,y,z) values at each vertex plus vertex text defined at each string vertex. Useful when a description is needed at each vertex. For example, design sections are created as 4d strings and the vertex text records the name of the string that goes through that vertex.
alignment string

An alignment string is a more complicated string object which defines the string by specifying the horizontal and the vertical geometry for the string.

The horizontal geometry of the string is a a series of horizontal intersection points (HIP’s) with plan arcs and leading (left) and trailing (right) transitions defined for each HIP. This defines the plan geometry of the alignment string.

The vertical geometry of the alignment string is defined as a series of vertical intersection points (VIP’s) defined by horizontal chainage along the string and height. Each VIP can have a parabolic or circular curve on it.

Alignment strings are used for defining entities such as the centre line or a simple road or railway.

The alignment string has been superseded by the super alignment string which not only has IP methods but also fixed and floating definitions of elements.

super alignment string

A super alignment string is also specified by defining the horizontal and the vertical geometry for the string but neither of the geometries is restricted to just intersection (IP) points. The horizontal geometry can be made up of almost any combination of straights, arcs, transitions, partial transitions, horizontal IP’s. Similarly the vertical geometry is made up of combinations of straights, arcs and parabolas.

In the super alignment object, the elements of the horizontal and vertical geometries can be defined by referencing to other strings, offsets, intersections etc. and if these items change, the super alignment object knows how to re-calculate itself.

arc string

An arc string is an arc in a plan projection but with a linearly varying z-value on the circumference. So the arc string is actually a 3d helix. The centre point of the arc is for display purposes only.

circle string

A circle string is a plan circle a constant z-value around the circumference. Hence the circle string is always parallel to the (x,y) plane. The centre point of the circle is for display purposes only.

control station

control stations are used in the survey reduction option where a name of a station can be given in the 12d survey field file and the coordinates of the station can given by the control station of that name in the specified model of control points. In 12d Model, a Control station is represented by a one vertex 4d or super string and the name of the control station is the name of the one vertex string. Usually the point id for the vertex of the super string, or the text for the 4d string, is also the Control station name.

drainage and sewer string

Special string made up of straights, arcs and manholes.

feature string

A feature string is a plan circle with a z-value at the centre point but only null values on the circumference.
If a feature string is given a \textit{world} line style, then the style is centred on the centre point of the feature string and scaled up to the radius of the feature string.

If a feature string is given a \textit{screen} or \textit{paper} line style, then the style is wrapped around the circumference of the feature string.

\textbf{interface string}

An interface string is a special string constructed from a string and a surface. Each vertex of the interface string records whether the corresponding vertex on the original string was above or below the surface.

\textbf{pipe super string}

A pipe string is a 3d string with a diameter.

\textbf{pipeline string}

A pipeline string is an alignment string with a diameter.

\textbf{polyline super string}

A polyline string is similar to a 3d string except that there can be straights or arcs joining the string vertices.

\textbf{text string}

A text string has an (x,y) position and contains characters and information about how the characters are displayed (textstyle, units, height, offset, raise, justification, angle, slant and x factor). For more information on angle, offset and raise, go to the section \ref{text-definitions}.

Super strings can also have text defined on its vertices and segments, and 4d strings can have text defined on each vertex.

Go to the next section \ref{general-string-properties} or back to \ref{data-types}.
4.5.2 General String Properties

See Name and Model
Breakline Type
Tinable
Linestyle and Colour
String Chainage

Name and Model

Strings have a text name of up to two hundred alphanumeric characters, spaces and dots (.). The string name does not have to be unique and can be blank. When strings are created, they are stored in models. A string is in one and only one model. Models are discussed in the next section.

Breakline Type

When triangulating data, if all the vertices and all the segments of a string are to be preserved as the sides of triangles and hence are part of the triangulation the string is called a breakline or line string. Note - all the segments of all the breaklines can only be preserved with there are no crossing segments amongst any of the breakline strings
If all the vertices are included in the triangulation but none of the segments are, then the string is called a point string.
For triangulation purposes, each of the super string types 2d, 3d, 4d and polyline can be used as either breaklines (line strings) or point strings.

Line strings are useful in describing terrain features such as ridge lines and creek beds or design features such as the edge of a building platform. Point strings can represent information such as spot heights.

Alignments, arcs, circles, pipelines, interfaces, drainage and sewer strings can only be breakline strings. Feature strings can only be point strings with a z-value at the centre of the circle.

Tinable

For a super string, the concept of breakline has been extended to a property called tinable which can be set independently for each vertex and each segment of the super string.
If a vertex is tinable, then the vertex is included in triangulations. If the vertex is not tinable, then the vertex is ignored when triangulating.
If a segment is tinable, then the segment is used as a side of a triangle during triangulation. That is, the segment is used as a breakline. This may not be possible if there are crossing tinable segments.
Note that for a segment to be used as a side of a triangle, then its end vertices must also be tinable.
So a breakline string is one where all the vertices and all the segments are tinable.
A point string is one where all the vertices are tinable and all the segments are not tinable.

Linestyle and Colour

All strings (except text) can be given a user defined linestyle or simply style. The style describes how the string is drawn on the screen and on plots. The default style is 1.
A style can also be continuous or just at the vertices of a string, regardless of the breakline type
of the string. A breakline string (line string) with default style 1 will be drawn with solid lines between the nodes, and a non breakline string (point string) with default style will be drawn with crosses at the string nodes with no visible lines between the nodes.

Strings have a default colour but how that colour is used depends on the breakline type and style of the string. For example, a line string with default style 1 is drawn with the string's links in the string colour and for a point string with default style 1, crosses are drawn at each string point in the string colour. However, styles can have their own colours which override the default colour of the string. Interface strings have two colours (red and green) which are used to represent cut and fill information.

Hence super strings with default styles appear on the screen as

point string (non breakline string)

Each string link is considered to be an invisible line. String values are not defined along the invisible string links.

line string (breakline string)

Each string link is considered to be a solid line. String values are defined along the string links by linear interpolation between the end points of the string link.

String Chainage

Every vertex along a string has a chainage value. This chainage is calculated by taking the start chainage defined for the first vertex of the string, and adding to it the plan distance along the string from the start vertex to the selected vertex on the string.

Go to the next section 4.5.3 Models or back to 4.5 Data Types.
4.5.3 Models

Within a 12d Model project, information is collected in units called MODELS. Models contain strings, tins, super tins, grid tins, trimeshes and plot frames. (see the next section).

Each model has a unique user-defined text name of up to two hundred alphanumeric characters and spaces.

For convenience, model names should reflect the nature of the information in the model. For example, a model containing terrain data could be called terrain. design could be another model containing design data.

Each model has minimum and maximum x, y and z values which define a bounding box which encloses all the data in the model (the model bounding box). The size of the model bounding box is automatically updated as new data is added to the model, but not adjusted as data is deleted. A re-calculation of the model bounding box is performed by the calc extents buttons on the model and view information panels.

There is an option to list all the models available in a 12d Model session (the model list). The model list is also used in various pop-ups and walk-right menus.

Displaying Models

The screen display areas in 12d Model are the views. Models are displayed in views by “adding” the model to the view. Similarly, when a model is “removed” from a view, it is no longer displayed in that view.

There are options in the 12d Model menu and on each view to add and remove models from views.

Go to the next section 4.5.4 Tins or back to 4.5 Data Types.
4.5.4 Tins

To form a continuous 2.5D surface representing the data in a model, a process called triangulation is used.

Note: a 2.5D surface has only one z-value for any (x,y) value in the surface.)

Triangulation creates in 2D, a web of connected, non-overlapping triangles, whose nodes are the (x,y) vertices from 12d Model strings. Because the data points are normally irregularly spaced in plan, the triangulation is referred to as a TIN - a Triangulated Irregular Network.

If more than two vertices have the same (x,y) location, then only one of the z-values can be used for that triangle node.

Plan View of a Tin

For the interface strings and the old 2d, 3d, 4d strings, all non null points are included in the triangulation. For super strings, only vertices that are tinable are included in a triangulation.

To allow the triangulation to accurately represent features such as ridge lines and creek beds, the segments of breakline strings (line strings) are preserved as edges of triangles in the tin.

For a super string, only segments that are tinable and whose end vertices are also tinable, are included as break lines.

Each tin is given a unique user-defined name of up to two hundred alphanumeric characters and spaces.

There is a default colour for the triangles (faces) in a tin but individual faces can be also be given a different colour to the default colour.

Individual triangles in a tin can also be nulled. That is, turned off so they are effectively not there. However the nulled triangles are not deleted and are still stored in the tin and they can be un-
nulled at any time.

A tin has a **surface area** which is the sum of the area of each of the triangles in the tin.

Unlike strings, tins can be in more than one model, or even no model at all. However, to be **displayed** in a view or used for **profiling** on a section view, tins need to be in at least one model. It is suggested that each tin be in its own model called “tin tin_name”. This makes it easy to know the model a tin is in, and also to see which models contain tins and obtain lists of all tins when using <ctrl> + <d> for name completion.

There is an option to list all the tins available in a **12d Model** session (the tin list) which also displays the models the tin is in as a walk-right. The tin list is also used in various pop-ups and walk-right menus.

Tins can be “added” and “removed” from models with options in the **12d Model Triangles** menu. If a tin is to be displayed in a view, it must be “added” to a model that is being displayed in that view.

For safety, they are **not** deleted when any model containing them is cleaned or deleted. Tins can only be **deleted** by using the Triangles=>Delete options.

WARNING

Tins are stored with copies of the points that were triangulated so if the original points are modified, the triangulation will not reflect this change until a **Recalc** of the triangulation is done.

Go to the next section 4.5.5 Trimeshes or back to 4.5 Data Types.
4.5.5 Trimeshes

To model a continuous 3D surface, trimeshes are used.
A trimesh is a web of connected 3D triangles, where none of the triangles intersect each other.

A trimesh can have a name of up to two hundred alphanumeric characters and spaces. The trimesh name can be blank.

There is a default colour for the triangles (faces) in a trimesh but individual faces can be also be given a different colour to the default colour.

A trimesh has a surface area which is the sum of the area of each of the triangles in the trimesh.
A trimesh is closed if for each side of a triangle in the trimesh, there is another triangle in the trimesh butting up to it. A closed trimesh can have a volume.
If a trimesh is not closed then it is said to be open. An open trimesh does not have a volume.
When taking a section through a trimesh, the outline of the trimesh is shown and if the trimesh is closed, then the trimesh is colour filled.

A trimesh is a generalisation of a tin and unlike a tin, a trimesh can fold under itself.
There are numerous tools in 12d Model for generating trimeshes for representing pavement layers, gutters, tunnels etc as 3D objects.
Go to the next section 4.5.6 Templates or back to 4.5 Data Types.
4.5.6 Templates

Templates are used as a quick and easy method for defining design details along a string for use in conceptual and detail designs, and visualizations. Templates are stored with each project but can be written out and read in using a readable file format.

Go to the next section 4.5.7 Projects or back to 4.5 Data Types.
4.5.7 Projects

In 12d Model, information is organised into projects.

When 12d Model begins, the user specifies the name of the project to work on. A project name can be up to two hundred alphanumeric characters and spaces.

All the information created for that project is kept together in a special folder called the project area.

The project area contains all the models, templates and tins associated with the project. Copies of models and tins created in other projects can be added to another project from within 12d Model.

External data files can be read into the project (imported) using special input options. Similarly, output options are provided to write data out for use in other software packages (exported).

Go to the next section 4.5.8 Attributes or Meta Data or back to 4.5 Data Types.
4.5.8 Attributes or Meta Data

Extra data can be attached to the Project, Models, Strings, Tins and other Elements as attributes, including user defined attributes. Attributes are also called meta data.

Super strings can not only have attributes defined for the entire string (string attributes) but can also have attributes defined for each vertex (vertex attributes) and for each segment (segment attributes).

An attribute has a name and can store either an integer (32 bit), a real (64-bit double precision), a text, a 64-bit integer, an uid (which is just a number), or it can be a special attribute called a group attribute that can store other attributes.

Hence attributes in 12d Model can be grouped into a hierarchy or tree.

That is, there are attributes at the Top level (the first level), and amongst the top level attributes can be group attributes that contain zero or more other attributes. Attributes in a first level group attribute are said to be in the second level.

Similarly an attribute in the second level can be a group attribute and hence contain other attributes which are said to be in the third level.

So attributes form a tree structure much like a folder structure for files.

Within a group, all the attributes must have unique names.

See
- Attribute Pathname
- Accessing Attribute Values
- Attribute Data Panel
- Comparing Attribute Data
- Accessing Attribute Values
Attribute Pathname

The **pathname** of an attribute is the list of attribute names that you must go through, starting at the top level, until you get to the attribute. That is, the path name is the path through the attribute structure that you must go through until you reach the attribute.

The attribute names that you pass through at each level are unique so the pathname to an attribute is unique is a unique and is written by listing the attribute names you pass through at each level separating each name by a `/`:

```
first_level_att_name / second_level_att_name/ .../attribute_name
```

For example, if the first level contains the attributes

```
sun, moon and earth
```

and `earth` is a group attribute containing the attributes

```
asia, africa, lee, america europe and australia
```

and `australia` is a group attribute containing the attributes

```
brisbane, melbourne, perth and sydney
```

and `sydney` is a group attribute containing

```
fred, joe, mary, sam and lee
```

then the path name to `lee` in the group `sydney` is

```
earth/australia/sydney/lee
```

Note that there is also a `lee` in the second level but there is only one `lee` at each level so there is no problem. The pathname to the first `lee` is:

```
earth/lee
```

In 12d Model options where attribute names are required in an input field, the full **pathname** of the attribute must be given to uniquely identify the attribute.
Attribute Data Panel

In many options when attributes are to be defined, the **Attribute Data** panel is displayed. The **Attribute Data** panel can create and edit attributes.

When no attributes exist for an object, the **Attribute Data** panel just shows the **Top** of the attribute tree. New attributes for the top level can be added in the right hand side grid.

Sub nodes (the lower levels of the attribute tree) of an attribute node are created by simply highlighting the attribute node and then clicking on the **Insert** icon. Attributes for the subnode are then entered into the right hand grid and the **Set** button clicked to save the subnode and its attributes.

![Attribute Data Panel Diagram](image.png)

Insert to create a subnode of the highlighted attribute node

Delete the highlighted attribute node and its subnodes

Set the values in the displayed grid

Clear the entire attribute tree

Enter attributes for this level into the above grid and then click on **Set** to store the attributes.

Note - If Set is not clicked then the entered data will be lost.
The buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

create a new attribute node (subnode) beneath the highlighted attribute node
Delete button
delete the highlighted attribute node

Copy button
copy the highlighted attribute node into the attribute buffer

Paste button
paste the attribute buffer to the highlighted attribute node

Same As button
paste the attribute buffer to the highlighted attribute node

Set button
set the values given in the current grid in the attribute tree

Clear button
clears out the entire attribute tree
Comparing Attribute Data

Two Attribute Datas are the same if each Attribute Data has exactly the same groups, and each group has exactly the same attributes in them, and each identical attribute has exactly the same value.

For example, the two attribute data shown above have exactly the same attribute group "flower" and the group "flower" has exactly the same attributes "type" and "colour", the attribute data are not the same because the value of "colour" is "red" for one attribute data, and "white" for the other attribute data.

Accessing Attribute Values

In some options, in particular in the Map File, the actual value of a given attribute (the column called Data in the Attribute Data panel), is specified by putting a $ in front of the attribute path name.

That is

$earth/australia/sydney/lee

refers to the actual value of the attribute given by the path name earth/australia/sydney/lee.

For example, see 8.8.3 Map File Substitution by Attributes.

Please continue to the next section 4.6 Text Definitions.
4.6 Text Definitions

Text can occur as a text string, or on vertices and segments of a super string. The Text itself consists of one or more lines of text but the display position of the text is not as straightforward as simply placing a vertex.

The text display position of is defined by
(a) an initial start position - usually a vertex or a segment
(b) the direction for the text - the invisible line that the text runs along
(c) the text justification point and the offset, raise and angle defined with respect to the justification point. Note that the definition of the justification point and the offset, raise and angle depend on whether the text is vertex text or segment text.
(d) the justification (top left etc) for the text about the justification point

Apart from text display positioning, text also has a
(e) textstyle
(f) text units for text height, offset and raise value
(g) height (size)
(h) width factor (w or x factor)
(i) slant
(j) colour
(k) weight
(l) underline, strikeout and italic
(m) border and border type
(n) whiteout

There are also special ways of defining characters which are not available on the keyboard. For example the degree character and the squared and cube characters.

Instead of having separate variables on each panel for all of these text definition values, a Textstyle Data has been introduced to hold all the Text variables.

Apart from saving a massive amount of room on panels, another major benefit of the Textstyle Data is that in the future, extra variables can be added to the Textstyle Data structure and the variables are then available everywhere a Textstyle Data is used.

The Textstyle Data or Textstyle Info panels are usually brought up to enter Text setup data. For information on those panels, see 4.6.12 Textstyle Data and Textstyle Info.

For definitions on textstyle data values, see
4.6.1 Justification Point and Offset, Raise, Angle
4.6.2 Text Justification
4.6.3 Textstyle
4.6.4 Text Units
4.6.5 Text Height
4.6.6 Text Width Factor or X Factor
4.6.7 Text Slant
4.6.8 Weight, Underline, Strikeout, Italic, Outline
4.6.9 Border and Border Style
4.6.10 Whiteout
4.6.11 Special Text Characters
4.6.1 Justification Point and Offset, Raise, Angle

Vertex Text

Vertex text refers to the text of a *text string* or text at a super string vertex (vertices are displayed by toggling on *Vertices* for a plan view).

For vertex text, the text *justification point* and the *direction of the text* are defined by:

(a) the direction of the text is given as a *counter clockwise angle* of rotation (measured from the x-axis) about the vertex

(b) the justification point is given as an *offset* from the vertex along the line through the vertex with the direction of the text, and a perpendicular distance (called the *raise*) from that offset point to the justification point.

The vertex and justification point only coincide if the offset and raise values are both zero.

All text on a 4d string must have the same height, colour, angle, offset and raise.

What parts of the text on a super string vertex can be independently modified depends on the settings for the super string.

Note that these definitions are relative to the vertex and if the vertex moves, then the text moves with it.

Segment Text

Segment text is a special type of text that can only be placed on the *segment* of a super string. Unlike text at a vertex, the segment for segment text has a direction and mostly the text is required to be parallel, or related to the segment direction.

For segment text, the text *justification point* and the *direction of the text* are defined by:

(a) the direction of the text is given as a *counter clockwise angle* of rotation, measured from the segment, about the centre of the segment

(b) the justification point is given as an *offset* from the centre of the segment along the line through the centre of the segment with the direction of the text, and a perpendicular distance (called the *raise*) from that offset point to the justification point.
The direction of the text is parallel to the segment if the angle is zero.
Note that these definitions are relative to the segment and if the vertex segment in any way, then the text also moves with it.

Please continue to the next section 4.6.2 Text Justification or return to 4.6 Text Definitions.
4.6.2 Text Justification

There are nine ways that any text can be positioned relative to the justification point, and sixteen ways for numbers with a decimal point.

For standard text, the justification is defined in terms of the rectangular box surrounding the text, and this box depends on the height of the text, the text font, and the actual characters in the text (especially for proportional fonts).

In term of the text box, the nine justifications are formed by dividing the bottom and sides of the box in half and calling bottom points left x, centre x and right x, and the side points bottom y, middle y and top y. The nine justifications are:

As an example, for the text Fred

For numbers with a decimal point, the position of the decimal point gives an addition point on the bottom called decimal x and on the side called decimal y.

So there are sixteen possible justification for numbers.
Sixteen Number Justifications

Please continue to the next section 4.6.3 Textstyle or return to 4.6 Text Definitions.
4.6.3 Textstyle

The available text styles for a 12d Model project are defined by textstyles definition file (see the section 40.3 Textstyles and Fonts in the Appendix 40 Linestyles, Symbols, Textstyles &Patterns). The text style is selected from the pop-up list displayed when clicking on the Text style button.

Please continue to the next section 4.6.4 Text Units or return to 4.6 Text Definitions.
4.6.4 Text Units

Text occurs in 12d Model in three ways -

- user defined text strings
- automatic text such as grid values, x-section and long-section plot annotation.
- text within linestyles.

The most difficult thing about text is that because of the different uses of text, there needs to be more than one systems of units to define text heights.

The height of text for a given textstyle is defined to be the height of a capital A. However, in 12d Model, there are three methods of defining the units for measuring this height.

- world units - the units used for data
- screen units - pixels (the screen is 1000 pixels wide)
- plot paper units - millimetres.

World Units

World units are the units of user data. For most users, the base unit for user data is metres. However 12d Model is a dimensionless system and the base unit is totally dependent on the user.

The height of world text when displayed in a view depends upon on the text height and the scale of the view.

When plotted, the height that world text appears on a plot sheet is the same as for any data defined in world units - the height depends on the **scale** used for the plot.

Text heights that are only given in world units have (w) after them.

For some text, the choice of units is either world or pixels. The text parameters then have a (u) after them.

Screen Units - pixels

When screen units (pixels) are used, the text is a fixed height on the screen. If the user zooms in on text given in pixels, the text remains the same height.

To have a height on a plot, screen unit text needs a height defined in millimetres.

For some screen text, both a pixel and a millimetre height is supplied when the text is defined.

For text with only a pixel height, there is a plotting multiplication parameter called **pixels-to-millimetres** which is used to convert pixel heights to plot paper heights. The value of pixels-to-millimetres is set using the plots=>pixels to mm option and is stored for the project.

Text heights that are only given in pixels have (pix) or (p) after them.

For some text, the choice of units is either world or pixels. These text parameters then have a (u) after them.

Plot Paper Units - millimetres

Text defined in plot paper units (millimetres) has a well defined height on a plot sheet. When a view scale is set for a plan view, then paper text will draw at the correct size for that scale.

Text heights that are only given in millimetres have (mm) after them.

Please continue to the next section 4.6.5 Text Height or return to 4.6 Text Definitions.
4.6.5 Text Height

The height of text is defined to be the height measured from the line that the text sits on to the top of the upper case characters such as F.

Text descenders are not included in the definition of height.

Please continue to the next section 4.6.6 Text Width Factor or X Factor or return to 4.6 Text Definitions.
4.6.6 Text Width Factor or X Factor

In a text font, each character has a defined width which may depend on the character.

For a non-proportional font such as Courier New, all the characters in the font have the same width.

For a proportional font such as Arial, the width varies for each character.

The character width is actually defined as part of the font and is not available to 12d text but the character widths are multiplied by a width factor (x factor) which is set for each text string.

Please continue to the next section 4.6.7 Text Slant or return to 4.6 Text Definitions.
4.6.7 Text Slant

A *slant* angle of between 0 and 45 degrees can be defined for a text string.

For non-zero slant angles, the text characters are slanted by the given angle measured in a clockwise direction from the vertical (a bearing).

Currently the text *slant* angle can only be set by the *Slant* field in the **Textstyle Data** panel field. The value is in degrees in the format ddd.mmssfff.

Please continue to the next section 4.6.8 *Weight, Underline, Strikeout, Italic, Outline* or return to 4.6 *Text Definitions*.
4.6.8 Weight, Underline, Strikeout, Italic, Outline

For *True Type Fonts* only:

![Text with various styles]

strikeout
underlined
italic

Please continue to the next section 4.6.9 Border and Border Style or return to 4.6 Text Definitions.
4.6.9 Border and Border Style

Text can have a border around the text with one of the border styles Rectangle, Bevel, Capsule and Circle.

Please continue to the next section 4.6.10 Whiteout or return to 4.6 Text Definitions.
4.6.10 Whiteout

The border around the text an be colour filled before the text is drawn. This is called Whiteout. In the Select Colour pop up there is one special colour on the bottom of the menu called \[\text{View colour}\].

If \[\text{View colour}\] is selected, then the fill colour automatically changes to whatever the background colour of the view that the text is on.

Although the whiteout colour fills the border around the text, the border does not have to be drawn.

Please continue to the next section 4.6.11 Special Text Characters or return to 4.6 Text Definitions.
4.6.11 Special Text Characters

There are special text characters that do not appear on the standard keyboard but can still be entered into text strings, vertex text and segment text with textstyles using **true type fonts**.

The special characters are entered by holding down the Alt key and typing in certain numbers on the **number pad** whilst the Alt key is still being held down). The character will appear when the Alt key is released.

Some commonly used special characters and their Alt codes are

- Squared character 2 Alt 0178
- Cubed character 3 Alt 0179
- Middle dot character · Alt 0183
- Large diameter character Ø Alt 0216
- Small diameter character ø Alt 0248
- Degree character ° Alt 0176
- Copyright character © Alt 0169
- Registered character ® Alt 0174
- British Pound character £ Alt 0163
- Japanese Yen character ¥ Alt 0165

The Alt values come from the character map for Windows. This can be quickly viewed by run charmap.

NOTE - these values may depend on the true typed font used in the textstyle.

Please continue to the next section 4.6.12 Textstyle Data and Textstyle Info or return to 4.6 Text Definitions.
4.6.12 Textstyle Data and Textstyle Info

Text_info

There is a *textstyle info* panel field for defining the text parameters. Clicking on the textstyle info icon on the Text Controlbar or on a panel, brings up the Select Textdata pop-up menu which lists the textstyle favourites. By clicking on [Edit], the Textstyle Info panel is brought up and all the definitions for the text style can be modified and written to the textstyle info panel field by clicking on Set.

Textstyle favourites are defined in the Browse option Projects=>Browse=>Textstyle data favourites and documented in the section 7.9.7 Textstyle Data Favourites.

Note that there is a Textstyle Data panel that is identical to the Textstyle Info panel except that it doesn’t have the Colour field. The Textstyle Data panel is brought up by clicking on the A on the Text Controlbar.

For information about the Create/Edit Textstyle panel, see 7.9.6 Textstyles.
For information about the Create/Edit Textstyle panel, see 7.9.6 Textstyles.
For information on the definitions of the fields in the Textstyle Data and Textstyle Info panels, go to the section 4.6 Text Definitions

Please continue to the next section 4.7 Symbol Definitions.
4.7 Symbol Definitions

Symbols are often on a one vertex super string but they can be placed on any vertex of a super string.

The displayed symbol is defined by:

(a) an initial start position
(b) the actual symbol
(c) the **x offset** and **y offset** of the **symbol justification point** from coordinates of the vertex. The vertex and justification point only coincide if the x offset and y offset values are both zero.
(d) the rotation **angle of the symbol** is given as a **counter clockwise angle of rotation** (measured from the positive x-axis) about the symbol justification point.

The fields and buttons used in this panel have the following functions.

The **Symbol Information** panel is usually brought up to enter symbol information (see 4.7.1 Symbol Data).

Note that these definitions are relative to the vertex and if the vertex moves, then the symbol moves with it.

What parts of the symbols on the vertices of the same super string can be independently modified depends on the settings for the super string. For example, all symbol angles may have to be the same.

The **Symbol Information** panel is usually brought up to enter symbol information (see 4.7.1 Symbol Data).
Symbol Definitions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favourites</td>
<td></td>
<td>not yet implemented.</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Symbol box</td>
<td>available symbols</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the name of the symbol. This field can not be blank.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>select colour menu</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the colour of the symbol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>measures menu</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the size of the symbol. This field can not be blank.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotation</td>
<td>measures menu</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the angle of rotation of the symbol. The angle is measured in a counterclockwise direction from the positive x-axis. The units for angle are degrees minutes and seconds and it is entered in 4.17.1 HP Notation. If blank then the rotation is 0.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset x/y</td>
<td>measures menu</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the x/y-distance to offset the symbol from each vertex of the string. If blank the value is 0.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>set the values to be those in the panel.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sameas</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>another string can be selected and the information about it automatically put in the panel fields.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>clear all the values in the panel fields.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.7.1 Symbol Data

There is a Symbol Information panel for defining symbol parameters.

Clicking on the Symbol info icon on the Symbol Controlbar or on a panel, brings up the Select Symbol Data pop-up menu. By clicking on [Edit], the Symbol Information panel is brought up and all the definitions for the symbol can be modified and written to the Symbol Info panel field by clicking on Set.

For information on the Symbol Information panel and the definitions for symbols, go to 4.7 Symbol Definitions.

Please continue to the next section 4.8 Tick Box.
4.8 Tick Box

Many items require a mode to be either on or off.

In 12d Model, there is a special box with a **tick** to indicate that the setting is **on** and **nothing** to indicate that the setting is **off**.

In a **tick** box, the tick is changed to the nothing state by clicking LB in the box surrounding the tick or clicking LB on the **item name** field for the tick box.

Please continue to the next section **4.9 Picking Strings**.
4.9 Picking Strings

In many 12d Model options, the user is required to "pick" the string to be used in the option, or to get information about a string.

After any option requiring a pick is selected, a message regarding the function of the mouse buttons is written to the screen message area.

`<option> [picks][fast][menu]`

There are three picking method available in 12d Model:

(a) fast pick where the pick and the accept occur as one operation

(b) fast accept where the if there is only one item satisfying the snap conditions then it is automatically accepted but if there is more than one, the tentative pick mechanism is used

(c) tentative picks with a separate pick and accept mechanism

Fast pick will be documented first, followed by fast accept and tentative pick (pick and accept).

See

- 4.9.1 Fast Pick
- 4.9.2 Fast Accept
- 4.9.3 Tentative Pick

Go to the next section 4.9.1 Fast Pick or back to 4.9 Picking Strings.
4.9.1 Fast Pick

To fast pick a string, simply move the cursor near the string and click MB or type <Enter>. The nearest string to the cursor satisfying the snap conditions is selected.

Fast pick is used when the F snap is on.

Various snap modes can be set for the fast pick. The available snaps are point (vertex), line, grid, tin and cursor. One or more snaps can be set simultaneously. The snaps are described in more detail in the section 4.13 Snaps.

Go to the next section 4.9.2 Fast Accept or back to 4.9 Picking Strings.
4.9.2 Fast Accept

To fast accept a string, simply move the cursor near the string and click LB or type <Enter>. If there is only one string satisfying the snap conditions, then it is automatically accepted.

If there is more than one string satisfying the snap conditions, the nearest string to the cursor satisfying the snap conditions highlighted and an information menu containing information about the selected string is displayed.

If the correct string has been tentatively picked, click MB or type <enter> accepts the string. If the incorrect string is tentatively picked, click LB and the next closest string satisfying the snap conditions will be highlighted. See the section 4.9.3 Tentative Pick for more information on tentative picking.

Fast accept is used when the A snap is on.

Various snap modes can be set for the fast pick. The available snaps are point (vertex), line, grid, tin and cursor. One or more snaps can be set simultaneously. The snaps are described in more detail in the next major section 4.13 Snaps.

Go to the next section 4.9.3 Tentative Pick or back to 4.9 Picking Strings.
4.9.3 Tentative Pick

To **tentatively pick** (or tentatively select) a string, move the cursor near the string and **click LB**. The nearest string to the cursor satisfying the snap conditions (see the next section on Snaps) is highlighted and an information menu containing information about the selected string is displayed (the information varies for each string type—see the section [14.11.1 String Information](#)).

If **M** snap is on, all the strings satisfying the search criteria are listed in a grid (the selection grid) as well as the Information panel.

When the selection grid is displayed, any other string in the grid can be made the considered string by simply clicking on the row containing the string in the grid. The new string will highlight and the snap position displayed.
The information menu disappears if the cursor is moved slightly.

The string name, the string model and the mouse button functions are also displayed in the Status Bar when the picked string is highlighted:

```
<option> [selects][accepts][menu] "model->string name"
```

If the correct string has been tentatively picked, click MB or type <enter> to accept the string. If the information menu was still up, it disappears when the string is accepted.

Note - if the information menu does not appear when a string is highlighted, then the information snap may be set to off. See the section 4.13 Snaps.

Tentative Picking and Repicking

If M snap is off, and one string is tentatively picked (and highlighted) but another string was intended to be picked, click LB again without moving the cursor and the next nearest string to the current cursor position will be selected, highlighted and an information menu put up for it. Any strings already rejected during the pick will be ignored. Continuing to click LB again without moving the cursor will sequentially pick the next nearest string and ignore the earlier rejected strings.

To allow all strings to be eligible for picking again, simply move the cursor a small distance (the reset distance - default five pixels) and start picking again. This will automatically reset the rejection list.

When M snap is on, all strings are shown in the selection grid and any one can be picked without the need to keep clicking LB.

Pick Ops Menu

Options to allow all strings to be eligible for picking again, to cancel the pick operation and to accept a picked string are all available from the Pick Ops menu.

The Pick Ops menu appears whenever RB is clicked whilst in the pick option. The Pick Ops menu is
To allow all strings to be eligible for picking again, select **Restart** from the **Pick Ops** menu. This has the same effect as moving the cursor to the reset distance.

To cancel the pick without selecting any string, select **Cancel** from the **Pick Ops** menu.

Selecting **Accept** from the **Pick Ops** menu, accepts the current picked string. This is the same as clicking MB without calling up the **Pick Ops** menu.

The **Find by name** option allows the user to specify a string name to restrict the pick by. This option is also available in the snap option and will be described there.

Selecting **Info** will redisplay the information menu for the string.

If **Vertex/HIP/VIP number** is selected, the **enter vertex/hip/vip number** box is displayed.

Typing the number into the box terminated by <enter> will move the pick position to that vertex or IP point.

If **Chainage** is selected, the **Enter Chainage** box is displayed.

Typing a chainage into the box terminated by <enter> will move the pick position to that chainage on the tentatively selected string.
If -(n) vertices or +(n) vertices is selected, the **Enter relative vertex index** box is displayed.

Typing a positive/negative number into the box terminated by <enter> will move the pick vertex to that many vertices after/before the selected position on the tentatively selected string.

The left and right arrow keys (<-, ->) can also be used to move the pick position to the previous or following vertex respectively.

When selecting **Snaps Cad**, the **Snaps Cad Menu** appears on the screen. The **Snaps Cad Menu** can also be accessed by walking right on **Snaps Cad**. For more information please go to 4.28.4 **Snaps Cad**

To remove the **Pick Ops** menu without selecting an option, either select the [X] button from the **Pick Ops** menu title area or simply click RB again whilst the cursor is in a view.

Various snap modes can be set for the pick. The available snaps are point, line, grid, tin and cursor. One or more snaps can be set simultaneously. The snaps are described in more detail in the next section.

Go to the next section 4.9.4 **Picking with Direction** or back to 4.9 **Picking Strings**.
4.9.4 Picking with Direction

Picking a string is one operation where 12d Model is monitoring the cursor position when button LB (or MB for fast pick) is pushed down and also the cursor position when button LB (MB) is subsequently released.

The pick position is taken as the cursor position when button LB (MB) is released, but the difference between the down and up positions for button LB (MB) defines a direction vector or sense to the pick. This direction is called the picking direction or picking sense.

The picking direction is used in a number of 12d Model options.

For example, in the information panel displayed for any picking operation, if the picking direction is the same as the string direction, a +ve is displayed at the bottom of the panel. If the directions are opposite, then a -ve is displayed in the panel.

Important Note
If a string was picked with direction, then to automatically reset the rejection list, the cursor must be move fifty (50) pixels rather than the five required for a non-directional pick.

Go to the next section 4.9.5 Summarising the 12d Model Picking Mechanisms or back to 4.9 Picking Strings.
4.9.5 Summarising the 12d Model Picking Mechanisms

Tentative picking - pick and accept as separate operations

- **LB** - left button: select the next nearest string.
 - moving the cursor more than five pixels resets the rejection list for a non-directional pick.
 - moving the cursor more than fifty (50) pixels resets the rejection list for a directional pick.

- **MB** - middle button: accept the current selected (highlighted) string - ends the pick.

- **RB** - right button: brings up the *Pick Ops* menu.

- **Typing <Enter>** - ends: same as MB: accepts the current selected (highlighted) string - ends the pick.

Fast accepting - pick and accept in one operation if there is only one item satisfies the snap conditions or a tentative pick if more than one item.

- **LB** - left button: select the next nearest string. If there is only one item possible then it is automatically accepted. Otherwise it is the same as for a tentative pick.
 - moving the cursor more than five pixels resets the rejection list for a non-directional pick.
 - moving the cursor more than fifty (50) pixels resets the rejection list for a directional pick.

- **MB** - middle button: accept the current selected (highlighted) string - ends the pick.

- **RB** - right button: brings up the *Pick Ops* menu.

- **Typing <Enter>** - ends: same as MB: accepts the current selected (highlighted) string - ends the pick.

Fast picking - pick and accept in one operation

- **MB** - middle button: pick and accepts the nearest string.
 - or

- **Typing <Enter>** - ends: same as MB: pick and accepts the nearest string - ends the pick.

Please continue to the next section **4.10 X Y Z and Ch Ht Typed Input Box** (or back to **4.9 Picking Strings**).
4.10 X Y Z and Ch Ht Typed Input Box

Many 12d Model options use a cursor select (picking) in a view to pick strings, obtain information about a string, get an x, y and z coordinates for a new vertex etc.

In most cases, typed input can also be used to enter the information instead of using the cursor select. For example, an exact values for the x, y (and possibly z) co-ordinates could be typed in or a chainage and a height typed in rather than picking a position on a view.

Typed input is available in 12d Model whenever a cursor select is used.

To use typed input, simply begin typing the values. As soon as a character is typed, a special typed-input box appears on the screen and the typed characters are automatically placed in it.

Alternatively, instead of clicking LB to select a string, click RB to bring up the Pick Ops menu and then select Typed Input from the Pick Ops. This will also bring up the typed input box.

Depending on the view type that the cursor is over, the typed input box will be either an Enter X Y Z or an Enter Ch Ht box. If the focus is on a Plan or Perspective view, then an Enter X Y Z box comes up. If the focus is on a Section view, then an Enter Ch Ht box appears. These are also called the XYZ typed input box and the Chainage Height typed input box respectively.

The x, y (and possibly z) co-ordinate values or chainage height required by the box are simply typed in, each value being separated by one or more spaces.

An <enter> terminates the typed input and sends the entered values to the option. The typed-input box then disappears.

If the user wishes to abort the typed input and return to mouse input, simply select the [X] button on the typed input box, or type <enter> with no values in the typed input box.

The Enter X Y Z/Ch Ht box can be moved (dragged) to a new position on the screen in the standard way.

The default mode for the Enter X Y Z box is to receive absolute x, y and z values.

However, by typing special character codes before the values, the Enter X Y Z box can be used to enter data in a variety of formats including relative co-ordinates and bearing-distance combinations.

The full list of typed input codes now follows (the text will be given in lower case, but it can be typed in either upper or lower case).

- `s actual x actual y actual z`
- `x y z`
- `a x y z`
- `s relative x relative y relative z`
- `r x y z`
- `s bearing in degrees-minutes-seconds distance actual z`
- `bd ddd.mmssfff distance`

where `ddd.mmssfff` is the bearing expressed in degrees, minutes and seconds as

`ddd` whole degrees
The default mode for the **Enter Ch Ht** box is to receive *chainage* and *height* values. However, by typing special character codes before the values, the **Enter Ch Ht** box can be used to enter data in a variety of formats including grade distance and slope distance.

The full list of typed input codes now follows (the text will be given in lower case, but it can be typed in either upper or lower case).

- **s** actual chainage actual height
- or
- **a** chainage height
- **r** chainage height
- **s** slope and distance
- **sd** slope distance
 where slope is 1 vertical in slope horizontal units
- **s** grade and distance
- **gd** grade distance
 where grade is 1/slope as a percentage

Please continue to the next section **4.11 Tentative Typed Inputs**.
4.11 Tentative Typed Inputs

If the string has been *tentatively* selected (by clicking LB and highlighting the string but not yet accepting it), then further typed inputs are available which then work for the *highlighted* string only.

The *Tentative typed inputs* are:

- **CH** (chainage) go to the given chainage
- **V** (vertex-index) go to the vertex number vertex-index
- **P** (point-id) go to vertex with the given point-id (vertex-id)
- **+** go to the next vertex
- **->** (right arrow) go to the next vertex
- **+number** go forward number vertices
- **-** go back to the previous vertex
- **<-** (left arrow) go back to the previous vertex
- **-number** go backward number vertices
- **HP** (number) go to horizontal IP number number
- **VP** (number) go to vertical IP number number

When a string is *tentatively* selected, the above *typed input* options are also available as *menu items* from the Pick-Ops menu. This has been documented in the section Pick Ops Menu.

Warning - If M snap is on and the selection grid is displayed, the tentative typed inputs will not work. Either turn M snap off, or move the cursor so the selection grid disappears before typing, or use RB to bring up the Pick Ops menu and select the required command from there.

Please continue to the next section 4.12 Picking Point Ids (Point Numbers, Vertex ids).
4.12 Picking Point Ids (Point Numbers, Vertex ids)

When a 12d Model option uses a cursor select (picking) in a plan view to pick strings, then typed input can be used to select a point id (point number, vertex id) which exists in any model on the view (note that a point id can be numeric or alphanumeric).

When over the plan view, instead of clicking LB to select a string, simply type:

- number to select a numeric point id
- Ptext to select an alphanumeric point id of name text.

This will bring up the Enter X Y Z box and the typed information will go into the box. Type <enter> and the view will then be searched for the given point number.

If the point id exists, then a large cross will be drawn over the vertex on the view and the string containing the point id will be highlighted.

Note that if a string is tentatively selected (i.e. highlight but not yet accepted), then

- Vn will select the nth vertex of the tentatively selected string (vertex index of n)

Please continue to the next section 4.13 Snaps.
4.13 Snaps

In most 12d Model options, the mouse is used to pick data from a string displayed on the screen.

Unfortunately different options usually require different data so an easy method is needed to help select from all the strings on the screen, a specific string or part of a string.

In 12d Model, Snaps are used as part of the string picking mechanism (discussed in the previous sections) to help filter out what data is interactively selected on a view.

Using the 12d snaps it is possible to

- restrict any string picks to selected string names and/or models
- set modes which are used to determine what parts of strings are used for picking
- set the search distance for picking vertices (point snap tolerance)
- set the search distance for picking (snap tolerance)
- give the name of a tin to be used to set z-values at a (x,y) position
- set whether the user is prompted for a new height (z-value) after every point edit
- turn on/off the information menu when picking
- turn on/off the selection grid when picking

Go to the next section 4.13.1 Point and Line Snaps or back to 4.13 Snaps.
4.13.1 Point and Line Snaps

When trying to interactively pick a string in 12d Model, the user moves the cursor near the string in a view and clicks LB (or the MB for a fast pick). 12d Model then makes a search of all the strings on the view to make a selection.

The help restrict the search, only strings that are partially or totally within an x and y distance called the **snap tolerance** of the cursor are eligible for picking. That is, only strings that have part, or all, of them within the **snap box** can be selected.

For strings inside the snap box, 12d Model has two snap modes, **point** and **line**, to specify which parts of the strings can be selected.

If **point** snap is set on, the vertices (points) of a string can be selected. If only **point** snap is on, then the string containing the **closest vertex** to the cursor is selected.

If **line** snap is set on, then the position on the string that is determined by dropping the cursor perpendicularly onto the string, can be selected. Note that there is usually no string vertex at the perpendicular position (line snap position). If only **line** snap is on, then the string containing the closest perpendicular position to the cursor is selected.

Since in general it is rare for a vertex of a string to be closer to the cursor than the line snap position, then with only the above definitions and **point** and **line** snap both on, the line snap position usually wins. Hence to pick a vertex, line snap would have to be turned off. Since this can lead to line snap being regularly toggled on and off, another distance called the **point snap tolerance** has been introduced to give vertices **priority** over line snaps when both snaps are on.
When *point snap* is set on, any vertex of a string that is within an x and y distance called the *point snap tolerance* of the cursor when LB is clicked, is considered for selection *before* any other type of snap is considered. That is, any vertices in the *point snap box* are selected before any line snap positions.

In the area between the point snap box and the snap box, vertices and line snap positions are treated equally and the closest one to the cursor is selected.

The other types of snaps are not as complicated and will be discussed in the following sections.

Go to the next section 4.13.2 Setting Snaps or back to 4.13 Snaps.
4.13.2 Setting Snaps

Snaps can be toggled on and off from the H toolbar (also know as the Snaps toolbar), or the snap settings can be set from the Snaps menu or the V menu under Utilities on the Main menu.

Snaps toolbar

The menu Utilities => Snaps is:

The Snaps (Vert) option brings up a Snaps toggle menu similar to the H (Snaps) toolbar except that the Snaps (Vert) runs vertically rather than horizontally. Either can be used to toggle the snaps on and off.

The Snaps (Vertical) menu

The option Utilities=> Snaps =>Snaps option brings up a menu that provides tick boxes to turn the various snap modes on or off plus it is used to set the snap tolerance value, the point snap tolerance value, the tin for tin snaps and string and/or model names for restricting the snaps.

Any combination of snap modes and names can be set.

The Snaps menu is
The snaps point, line, grid, cursor, tin and info are all set on or off using the tick boxes.

The snap tolerance is displayed on the Tolerance line of the menu.

The point snap tolerance is displayed on the Pt tolerance line of the menu.

When a select with snap is made, the type of snap is given in the Information panel and also graphically displayed by changing the shape of the snap cursor. The shape of the snap cursor is

- **a diamond** for a point snap
- **square** for a line snap
- **circle** for a cursor snap
- **circle** for a grid snap
- **squiggles under a line** for a tin snap.

Each of these snaps/settings will now be discussed.

See
- [Point Snap - P and Diamond](#)
- [Line Snap - L and Square](#)
- [Text Snap - X and Diamond](#)
- [Grid Snap - G and Circle](#)
- [Cursor Snap - C and Circle](#)
- [Height - H and Enter Height Box](#)
- [Tin Snap - T and Squiggles under a Line](#)
- [Name - Snap Name Panel](#)
- [Model - Snap Model Panel](#)
- [Snap Tolerance](#)
- [Point Snap Tolerance](#)
- [Info Snap - I](#)
- [Data Tip or Data Tool Tip - D](#)
- [Fast Pick Snap - F](#)
- [Fast Accept - A](#)
Display Many Snap - M

Point Snap - P and Diamond

When Point (or vertex) snap is set on, any vertex of a string within the point snap box around the cursor when LB is clicked, is considered for selection before any other type of snap is considered. Centres of circles, centres of arcs and arc end points are considered to be vertices.

If the selection is made by a Point snap, then the cursor is shown as a diamond and Point snap = is displayed on the Information panel. Note that the entire string is highlighted, not just the selected vertex.

Note that if there are no vertices within the point snap box then any vertices within the snap box of the cursor are considered for selecting. If the tick box is on (a tick), snapping to vertices is used.

If the P is highlighted in the Snaps toolbar then Point snap is on. Otherwise it is off.

If the Point tick box is on (a tick) in the Snaps menu, snapping to vertices is used. If the tick box is off (a cross or nothing), no Point snaps are used.

Line Snap - L and Square

When Line snap is set on, the cursor only needs to be within the tolerance distance of any visible segment of a string when LB is clicked, and that string is considered for selection. Also arcs and circles are considered for selection.

If the selection is made by a Line snap, then the cursor is shown as a square and Line snap = is written on the Information panel. The entire string is highlighted.

Note that if a non-zero point snap tolerance is given and point snap is set on, then any vertices that are closer than the point snap tolerance to the cursor will be considered for snapping before any line snap is considered.

If the L is highlighted in the Snaps toolbar then Line snap is on. Otherwise it is off.

If the Line tick box is on (a tick) in the Snaps menu, dropping perpendicular to strings is used. If the tick box is off (a cross or nothing), dropping perpendicular to strings is not used.

Text Snap - X and Diamond

When Text snap is set on, the cursor only needs to be within the tolerance distance of the bounding box of a text string when LB is clicked, and that text string is considered for selection.

If the selection is made by a Text snap, then the cursor is shown as a diamond and Text snap = is written on the Information panel. The text string is highlighted.
If the X is highlighted in the Snaps toolbar then Text snap is on. Otherwise it is off.
If the Text tick box is on (a tick) in the Snaps menu, Text snap is used.
If the tick box is off (a cross or nothing), Text snap is not used.

Grid Snap - G and Circle
When Grid snap is set on, the cursor will snap to the intersection of any grid lines that are displayed in a view.
If the selection is made by a Grid snap, then the cursor is shown as a circle and Grid snap = is displayed on the Information panel.

Grid snap is normally used when creating new vertices, or moving vertices so they have only coordinates that are grid intersection points.
If the G is highlighted in the Snaps toolbar then Grid snap is on. Otherwise it is off.
If the Grid tick box is on (a tick) in the Snaps menu, snapping to grid intersections is used.
If the tick box is off (a cross or nothing), no grid intersection snaps are used.

Cursor Snap - C and Circle
If Cursor snap is set on and the other snaps are either not set on or have failed, the cursor position is used for the (x,y) and possibly the z value of the pick.
If the selection is made by a Cursor snap, then the cursor is shown as a circle (like grid snap) and Cursor snap = is displayed on the Information panel.

If the C is highlighted in the Snaps toolbar then Cursor snap is on. Otherwise it is off.
If the Cursor tick box is on (a tick) in the Snaps menu, snapping to the cursor position is used.
If the tick box is off (a cross or nothing), no Cursor snaps are used.
Height - H and Enter Height Box

If Height snap is set, then when creating and/or editing strings, the z-value for the snap position is displayed in an Enter Height box.

The z-value may be the z-value from a selected vertex when a Point snap, or a dropped position on a string when a Line snap, or a value from a tin when Tin snap is on, or nothing if it is a Cursor snap.

If the H is highlighted in the Snaps toolbar then Height snap is on. Otherwise it is off.

If the Height tick box is on (a tick) in the Snaps menu, the z-value for the snap position is used. If the tick box is off (a cross or nothing), no Height snaps are used.

Tin Snap - T and Squiggles under a Line

Tin snap means that when an (x,y) point is selected, the z-value for the point is taken to be the z-value on the tin at the same (x,y) position.

Tin snap is used in conjunction with the other snaps - the other snaps control what the (x,y) location, and the z-value is then taken from the tin for that (x,y) location. So for example, the (x,y) location may be via a Point snap (and hence a Diamond cursor) and then the Tin snap squiggles is show below the Diamond cursor.

To use Tin snap, the name of the tin to snap to must first be given. Then, snapping to that tin is controlled by the state of the Tin snap.

If the T is highlighted in the Snaps toolbar then Tin snap is on. Otherwise it is off.

If the Tin tick box is on (a tick) in the Snaps menu, snapping to the tin is used. If the tick box is off (a cross or nothing), no Tin snap is used.

The name of the tin to snap to is set by selecting the Tin " " item on the Snaps menu to bring up the Snap Tin panel and selecting the Set button.
When a Tin name is set by the panel, Tin snap is automatically set to on.

Name - Snap Name Panel

The user can restrict the snap to only strings of a specific name. The name of the strings to restrict the snap to is set by selecting the Name " " item on the Snaps menu to bring up the Snap Name panel.

When 12d Model creates a new project, line and point snap are set to on and all other snaps set off.

The user can restrict the snap to only strings of a specific name. The name of the string to restrict the snap to is set by selecting the Name " " item on the Snaps menu to bring up the Snap Name panel.

The user can restrict the snap to strings that only have a given name by selecting the Name option on the Snaps menu. This brings up the Snap Name panel.

The string name used to restrict the snap is entered into the Name field. The value are then set by selecting the Set button.

The string Name is then written to the Snaps menu.

Note - if there is no string name displayed in the Snaps menu then there is no restriction on the string names.

WARNING - if selecting does not appear to be working, check that there is no string name set by mistake.

Model - Snap Model Panel

The user can restrict the snap to only strings from a specific model. The name of the model to restrict the snap to is set by selecting the Model " " item on the Snaps menu to bring up the Snap
Model panel.
The user can restrict the snap to strings that are only in a given model by selecting the Model option on the Snaps menu. This brings up the Snap Model panel. The model name used to restrict the snap is entered into the Model field. The values are then set by selecting the Set button.

The Model name is then written to the Snaps menu.

Note - if there is no model name displayed in the Snaps menu then there is no restriction on the models searched.

WARNING - if selecting does not appear to be working, check that there is no model set by mistake.

Snap Tolerance
Snap Tolerance is not a toggle/tick box but an item on the Snaps menu.
The Snap Tolerance value is the distance to be used for considering data when snaps are on. The snap tolerance distance is given in screen units (pixels). There are about one thousand pixels per screen width, hence a snap tolerance of say 50 means that the snap distance about a point, line etc. is one twentieth of the screen width.

Snap tolerance is given in terms of screen units rather than world units because it is a distance on the screen, independent of any coordinate system being used in a view.

The current snap tolerance value is displayed as Tolerance on the Snap menu.
The Snap tolerance is modified by selecting the Tolerance item on the Snaps menu to bring up the Snap Tolerance panel.

To change the Snap Tolerance, type a new value into the Tolerance panel field and then click LB on the Set button.
The new Snap Tolerance is then written to the Snaps menu.
Point Snap Tolerance

Point Snap Tolerance is not a toggle/tick box but an item on the Snaps menu. The Point Snap Tolerance value is the distance to be used for considering vertices over anything else when Point snap is on.

The Point Snap Tolerance distance is given in screen units (pixels). There are about one thousand pixels per screen width, hence a point snap tolerance of say 10 means that the point snap distance about a vertex is one hundredth of the screen width.

The Point Snap Tolerance is given in terms of screen units rather than world units because it is a distance on the screen, independent of any coordinate system being used in a view.

The current point snap tolerance value is displayed as Pt tolerance on the Snap menu.

The Point snap tolerance is modified by selecting the Pt tolerance item on the Snaps menu to bring up the Point Snap Tolerance panel.

To change the Point Snap Tolerance, type a new value into the Tolerance panel field and then click LB on the Set button.

The new Point Snap Tolerance to be used to restrict the point snap is then written to the Snaps menu.

Info Snap - I

If Info Snap is set, then the Information panel comes up whenever a string is picked.
If the I is highlighted in the Snaps toolbar then Info snap is on. Otherwise it is off.
If the Info tick box is on (a tick) in the Snaps menu, then Info snap is on.
If the tick box is off (a cross or nothing), Info snap is off.

Data Tip or Data Tool Tip - D
If Data Tip Snap is set, then the Data Tipping for strings occurs. That is when the cursor is near a string, information about the string is displayed beside the cursor.
When Data tooltips are turned on (D snap) and a string matches a row in the Names.4d file with a comment, then the comment is displayed at the top of the Data Tool tip.

If the D is highlighted in the Snaps toolbar then Data Tips snap is on. Otherwise it is off.
If the Data tip tick box is on (a tick) in the Snaps menu, then Data tool tips are displayed.
If the tick box is off (a cross or nothing), **Data tool tips** are not displayed.

Fast Pick Snap - F

If **Fast Pick Snap** is set, then **fast picking** is allowed. That is, clicking MB will pick the nearest string to the cursor that satisfies the snap conditions. See [4.9.1 Fast Pick](#).

If the F is highlighted in the **Snaps** toolbar then **Fast Pick Snap** is on and hence Fast Picking is enabled. Otherwise it is off.

If the **Fast pick** tick box is on (a tick) in the **Snaps** menu, then **Fast Snap** is on.

If the tick box is off (a cross or nothing), **Fast Pick Snap**, and hence Fast Picking, is off.

Fast Accept - A

If **Fast Accept Snap** is set, then **fast accepting** is allowed. That is, if when picking and there is only one string that satisfies the snap conditions then that string is automatically accepted. See [4.9.2 Fast Accept](#).

If the A is highlighted in the **Snaps** toolbar then **Fast Accept Snap** is on and hence Fast Accepting is enabled. Otherwise it is off.

If the **Fast accept** tick box is on (a tick) in the **Snaps** menu, then **Fast Accept Snap** is on.

If the tick box is off (a cross or nothing), **Fast Accept Snap**, and hence Fast Accepting, is off.

Display Many Snap - M

If **Display Many Snap** is set, then when selecting a string, all the strings satisfying the search criteria are listed in a grid (the selection grid - **Many** strings listed, not just the one). If not set, the selection grid is not displayed. See [4.9.3 Tentative Pick](#).

If the M is highlighted in the **Snaps** toolbar then **Display Many Snap** is on and hence all strings satisfying the selection criteria are displayed. Otherwise it is off.

If the **Display many** tick box is on (a tick) in the **Snaps** menu, then **Display Many Snap** is on.

If the tick box is off (a cross or nothing), **Display Many Snap** is off.
NOTE: Segment snap (S) is currently under development.

When 12d Model creates a new project, line and point snap are set to on and all other snaps set off. Snap tolerance is set to 50 and Point Snap Tolerance set to 10.

When an existing project is saved, the snap settings, snap tolerance and positions of any snaps menus on the screen, are also saved.

Please continue to the next section 4.14 Text Grips (or back to 4.13 Snaps).
4.14 Text Grips

When text is selected for editing, **grips** are displayed for quick editing. Vertex text has four grips and segment text three grips.

Note - see the section [4.6 Text Definitions](#) for the definitions of vertex and segment text, text justification point, text height, text angle, text offset and text raise.

Go to the next section [4.14.1 Vertex Text](#) or back to [4.14 Text Grips](#).
4.14.1 Vertex Text

When vertex text is selected for editing, four grips are displayed for:
(a) modifying the text height (diamond)
(b) rotating the text around the text justification point (circle)
(c) moving the text justification point (square)
(d) moving the string vertex (X)

There are two modes for the grips:
The grips for modifying text height (diamond) and rotating the text (circle) are joined to the justification point to form a right angle (J mode).

Grips on the Justification Point for Vertex Text - J Mode

OR

The grips for modifying text height (diamond) and rotating the text (circle) are joined to the text vertex to form a right angle (V mode).

Grips on the Vertex for Vertex Text - V Mode
The main difference between the J and the M modes is that in J mode, the rotation is about the
text justification point, and in V mode the rotation is about the text vertex.
The appropriate grip is then selected for quick editing.

Go to the next section 4.14.2 Segment Text or back to 4.14 Text Grips.
4.14.2 Segment Text

When segment text is selected for editing, three grips are displayed for
(a) modifying the text height (diamond)
(b) rotating the text around the text justification point (circle)
(c) moving the text justification point (square)

For segment text, the grips for modifying text height (diamond) and rotating the text (circle) are joined to the justification point to form a right angle (S mode).

Grips on the Justification Point for Segment Text - S Mode

The appropriate grip is then selected for quick editing.

Note - there is no equivalent of the Vertex grip for segment text because the segment text is locked to the centre point of the segment rather than a vertex.

See the section 4.6 Text Definitions for the definitions of vertex and segment text, text justification point, text height, text angle, text offset and text raise.
4.14.3 Height or Size Grip (diamond):

J Mode

In J mode: if the **Height grip** is selected, a circle is drawn from the text justification point to the Height grip and this represents the height of the text. As the cursor is moved, the distance from the cursor to the text justification point is taken as the circle radius and the text height.

![Modifying Height - J Mode](image)

V Mode

In V mode: if the **Height grip** is selected, a circle is drawn from the text vertex to the Height grip and this represents the height of the text. As the cursor is moved, the distance from the cursor to the text vertex is taken as the circle radius and the text height.

![Modifying Height - V Mode](image)

S Mode

In S mode: if the **Height grip** is selected, a circle is drawn from the text justification point to the Height grip and this represents the height of the text. As the cursor is moved, the distance from the cursor to the text justification point is taken as the circle radius and the text height.
In J, V and S mode, the text height is dynamically displayed as part of the Enter height prompt in the screen message area.

The text height is set when the cursor position is accepted.

When the text is being dynamically sized, pressing the `d` key brings up the Enter distance typed input box with the current dynamic text height in it.

An exact text height can be typed into the Enter distance Typed Input box and accepted by pressing <Enter>.

If instead of typing `d`, the <space bar> is pressed, the Enter distance Typed Input box is displayed with a space in it. The required height can be typed into the box and accepted by pressing <Enter>.

If instead of typing `d`, any character other than `t`, `p`, `c` or `n` is typed (for example the beginning of the exact height required), the Enter distance Typed Input box is displayed with the typed characters in it. The height is accepted by pressing <Enter>.

For more information on typing `t`, `p`, `c` or `n`, go to the section 4.14.7 Typing t, p, c or n

To return to dynamic sizing without entering a distance into the Enter distance input box, simply select the X on the top of the input box. The box will disappear and dynamic sizing will resume.
4.14.4 *Rotate Grip (circle):*

J Mode

In J mode: if the *Rotate grip* is selected, a line from the text justification point to the cursor position is taken as the text angle. As the cursor is moved, the angle from the cursor to the text justification point defines the text angle.

V Mode

In V mode: if the *Rotate grip* is selected, a line from the text vertex to the cursor position is taken as the text angle. As the cursor is moved, the angle from the cursor to the text vertex defines the text angle.

S Mode

In S mode: if the *Rotate grip* is selected, a line from the text justification point to the cursor position is taken as the text angle. As the cursor is moved, the angle from the cursor to the text justification point defines the text angle.
Text Grips

In J, V and S mode, the angle of the text is displayed as part of the *Enter angle* prompt in the screen message area.

The text angle is set when the cursor position is accepted.

When the angle is being dynamically changed, pressing the `d` key brings up the *Enter angle* typed input box with the current dynamic text angle in it.

An exact text angle can be typed into the *Enter angle Typed Input* box and accepted by pressing the <enter key>.

If instead of typing `d`, the <space bar> is pressed (shown as `[]`), the *Enter angle Typed Input* box is displayed with a space in it. The required angle can be typed into the box and accepted by pressing the <enter key>.

If instead of typing `d`, any character other than `t`, `p`, `c` or `n` is typed (for example the beginning of the exact angle required), the *Enter angle Typed Input* box is displayed with the typed characters in it. The angle is accepted by pressing the <enter key>.

For more information on typing `t`, `p`, `c` or `n`, go to the section 4.14.7 Typing t, p, c or n.

To return to dynamic angling without entering an angle into the *Enter angle* input box, simply select the X on the top of the input box. The box will disappear and dynamic angling will resume.
4.14.5 **Justification Grip (square):**

In J, V and S Mode: if the Justification grip is selected, the cursor position is taken as the text justification point. As the cursor is moved, the text justification point moves with it.

In J, V and S mode, the (x,y) position of the text is displayed in the screen message area.
The text justification point is set when the cursor position is accepted.

An **exact** coordinate can be entered by hitting the <space bar> or by starting to type a coordinate. This brings up the **Enter X Y Z** typed input box. The *x and y coordinates* are typed in, separated by a space, and the <enter> key pressed.

![Input Box](image)

To return to dynamic moving without entering a coordinate, simply select the **X** on the top of the input box. The box will disappear and dynamic moving will resume.

Go to the next section 4.14.6 Vertex Grip (X): - for Vertex Text Only or back to 4.14 Text Grips.
4.14.6 Vertex Grip (X): - for Vertex Text Only

In J and V mode: if the Vertex grip is selected, the cursor position is taken as the text vertex. As the cursor is moved, the text vertex moves with it.

Note - the Vertex can not be selected when it is in locked mode.

In both J and V mode, the (x,y) position of the text is displayed in the screen message area.

The text vertex is set when the cursor position is accepted.

An exact coordinate can be entered by hitting the <space bar> or by starting to type a coordinate. This brings up the Enter X Y Z typed input box. The x and y coordinates are typed in, separated by a space, and the <enter> key pressed.

To return to dynamic moving without entering a coordinate, simply select the X on the top of the input box. The box will disappear and dynamic moving will resume.
Go to the next section 4.14.7 Typing t, p, c or n or back to 4.14 Text Grips.
4.14.7 Typing t, p, c or n

After selecting the **Height** grip (diamond) or the **Rotate** grip (circle), the screen message area shows that there are the typed option **t, p, c, n, ()** and **d** available.

Modifying Height

Type **t**: snap cursor tangential to a selected string - go to **Snap Tangential - Typing t**
Type **p**: snap cursor perpendicular to a selected string - go to **Snap Perpendicular - Typing p**
Type **c**: return to cursor movement - go to **Cursor Mode - Typing c**
Type **n**: return to cursor movement - go to **Negative Angle - Typing n**
Type **<space bar>**: bring up typed input box for value - go to **Hitting Space Bar**
Type **d**: bring up dynamic value - go to **Display Dynamic Value - Typing d**

Snap Tangential - Typing t

Snap Tangential - Rotation Grip (Circle)

After selecting the **Rotation** grip (circle), typing **t** puts the string select into tangential mode and when a string is tentatively picked, the snap point moves to make the line from the snap point to the text justification point in J mode (or vertex in V-mode) tangential to the selected string.
Snap Tangential - Height Grip (Square)

After selecting the **Height** grip (diamond), typing `t` puts the string select into tangential mode and when a string is tentatively picked, the snap point moves to make the line from the snap point to the text justification point in J mode (or vertex in V-mode) tangential to the selected string.

Rotation Tangential Snap - J Mode
Rotation Tangential Snap - V Mode

Height Tangential Snap - J Mode
Before the accept button is selected, p can be typed to toggle to perpendicular snap mode, c to return to using the cursor position or d to bring up the dynamic value.

Snap Perpendicular - Typing p

Snap Perpendicular - Rotation grip (Circle)

After selecting the Rotation grip (circle), typing p puts the string select into perpendicular mode and when a string is tentatively picked, the snap point moves to make the line from the snap point to the text justification point in J mode (or vertex in V-mode) perpendicular to the selected string.
Rotation Perpendicular Snap - J Mode

Snap Perpendicular - Height grip (Square)
After selecting the **Height** grip (diamond), typing p puts the string select into perpendicular mode and when a string is tentatively picked, the snap point moves to make the line from the snap point to the text justification point in J mode (or vertex in V-mode) perpendicular to the selected string.

Height Perpendicular Snap - J Mode
Before the accept button is selected, \textbf{t} can be typed to toggle to tangential snap mode, \textbf{c} to return to using the cursor position or \textbf{d} to bring up the dynamic value.

Cursor Mode - Typing c

If in either Tangential or Perpendicular mode, typing \textbf{c} return to cursor mode.

Negative Angle - Typing n

Adds 180 degrees to the current angle.

Hitting Space Bar

Brings up the \textbf{Enter angle} (modifying angle) or \textbf{Enter distance} (modifying height) Typed input box with no value in it.

Display Dynamic Value - Typing d

Brings up the \textbf{Enter angle} (modifying angle) or \textbf{Enter distance} (modifying height) Typed input box with the \textit{dynamic} value in it.
Please continue to the next section 4.15 Symbol Grips.
4.15 Symbol Grips

When a symbol is selected for editing, four grips are displayed for quick editing.

Note - see the section 4.7 Symbol Definitions for the definitions of symbol justification point, symbol angle, x offset and y offset.

When a symbol is selected for editing, four grips are displayed for:
(a) modifying the symbol height (diamond)
(b) rotating the symbol around the symbol justification point (circle)
(c) moving the symbol justification point (square)
(d) moving the string vertex (X)

There are two modes for the grips:

The grips for modifying symbol height (diamond) and rotating the symbol (circle) are joined to the justification point to form a right angle (J mode).

Screen Message Area

J indicates J mode

Grips on the Justification Point for a Symbol- J Mode

OR

The grips for modifying symbol height (diamond) and rotating the symbol (circle) are joined to the symbol vertex to form a right angle (V mode).
Grips on the Vertex for a Symbol - V Mode

The appropriate grip is then selected for quick editing.
4.15.1 **Height or Size Grip (diamond):**

J Mode

In J mode: if the **Height grip** is selected, a circle is drawn from the symbol justification point to the Height grip and this represents the height of the symbol. As the cursor is moved, the distance from the cursor to the symbol justification point is taken as the circle radius and the symbol height.

V Mode

In V mode: if the **Height grip** is selected, a circle is drawn from the symbol vertex to the Height grip and this represents the height of the symbol. As the cursor is moved, the distance from the cursor to the symbol vertex is taken as the circle radius and the symbol height.
In J and V mode, the symbol height is dynamically displayed as part of the Enter height prompt in the screen message area.

Screen Message Area

![Dynamic Height Value](image)

The symbol height is set when the cursor position is accepted.

When the symbol is being dynamically sized, pressing the d key brings up the Enter distance typed input box with the current dynamic symbol height in it.

An exact symbol height can be typed into the Enter distance Typed Input box and accepted by pressing the <enter key>.

If instead of typing d, the <space bar> is pressed, the Enter distance Typed Input box is displayed with a space in it. The required height can be typed into the box and accepted by pressing the <enter key>.
If instead of typing d, any character other than t, p, c or n is typed (for example the beginning of the exact height required), the Enter distance Typed Input box is displayed with the typed characters in it. The height is accepted by pressing the <enter key>.

For more information on typing t, p, c or n, go to the section 4.14.7 Typing t, p, c or n.

To return to dynamic sizing without entering a distance into the Enter distance input box, simply select the X on the top of the input box. The box will disappear and dynamic sizing will resume.
4.15.2 Rotate Grip (circle):

J Mode

In J mode: if the **Rotate grip** is selected, a line from the symbol justification point to the cursor position is taken as the symbol angle. As the cursor is moved, the angle from the cursor to the symbol justification point defines the symbol angle.

![Diagram showing J Mode rotation](image)

Modifying Angle - J Mode

V Mode

In V mode: if the **Rotate grip** is selected, a line from the symbol vertex to the cursor position is taken as the symbol angle. As the cursor is moved, the angle from the cursor to the symbol vertex defines the symbol angle.

![Diagram showing V Mode rotation](image)
In J and V mode, the angle of the symbol is displayed as part of the Enter angle prompt in the screen message area. The symbol angle is set when the cursor position is accepted.

When the angle is being dynamically changed, pressing the d key brings up the Enter angle typed input box with the current dynamic symbol angle in it.

An exact symbol angle can be typed into the Enter angle Typed Input box and accepted by pressing the <enter key>. If instead of typing d, the <space bar> is pressed (shown as ()), the Enter angle Typed Input box is displayed with a space in it. The required angle can be typed into the box and accepted by pressing the <enter key>. If instead of typing d, any character other than t, p, c or n is typed (for example the beginning of the exact angle required), the Enter angle Typed Input box is displayed with the typed characters in it. The angle is accepted by pressing the <enter key>. For more information on typing t, p, c or n, go to the section 4.14.7 Typing t, p, c or n.

To return to dynamic angling without entering an angle into the Enter angle input box, simply select the X on the top of the input box. The box will disappear and dynamic angling will resume.
4.15.3 **Justification Grip (square):**

In J and V Mode: if the Justification grip is selected, the cursor position is taken as the symbol justification point. As the cursor is moved, the symbol justification point moves with it.

In J and V mode, the (x,y) position of the symbol is displayed in the screen message area.

The symbol justification point is set when the cursor position is accepted.
An exact coordinate can be entered by hitting the <space bar> or by starting to type a coordinate. This brings up the Enter X Y Z typed input box. The x and y coordinates are typed in, separated by a space, and the <enter> key pressed.

To return to dynamic moving without entering a coordinate, simply select the X on the top of the input box. The box will disappear and dynamic moving will resume.
4.15.4 Vertex Grip (X):

In J and V mode: if the Vertex grip is selected, the cursor position is taken as the symbol vertex. As the cursor is moved, the symbol vertex moves with it.

Note - the Vertex can not be selected when it is in locked mode.

In both J and V mode, the (x,y) position of the symbol is displayed in the screen message area.

The symbol vertex is set when the cursor position is accepted.
An **exact** coordinate can be entered by hitting the <space bar> or by starting to type a coordinate. This brings up the **Enter X Y Z** typed input box. The *x and y coordinates* are typed in, separated by a space, and the <enter> key pressed.

To return to dynamic moving without entering a coordinate, simply select the **X** on the top of the input box. The box will disappear and dynamic moving will resume.
4.15.5 Typing t, p, c or n

After selecting the **Height** grip (diamond) or the **Rotate** grip (circle), the screen message area shows that there are the typed option **t**, **p**, **c**, **n**, () and **d** available.

Type t: snap cursor tangential to a selected string - go to **Snap Tangential - Typing t**
Type p: snap cursor perpendicular to a selected string - go to **Snap Perpendicular - Typing p**
Type c: return to cursor movement - go to **Cursor Mode - Typing c**
Type n: return to cursor movement - go to **Negative Angle - Typing n**
Type <space bar>: bring up typed input box for value - go to **Hitting Space Bar**
Type d: bring up dynamic value - go to **Display Dynamic Value - Typing d**

Snap Tangential - Typing t

Snap Tangential - Rotation Grip (Circle)

After selecting the **Rotation** grip (circle), typing **t** puts the string select into tangential mode and when a string is tentatively picked, the snap point moves to make the line from the snap point to the symbol justification point in J mode (or to the vertex in V-mode) **tangential** to the selected string.
Chapter 4 Tools and Concepts

Symbol Grips

Snap Tangential - Height Grip (Square)
After selecting the **Height** grip (diamond), typing t puts the string select into tangential mode and when a string is tentatively picked, the snap point moves to make the line from the snap point to the symbol justification point (J mode)/vertex (V-mode) tangential to the selected string.

Rotation Tangential Snap - J Mode

Rotation Tangential Snap - V Mode

Height Tangential Snap - J Mode
Before the accept button is selected, p can be typed to toggle to perpendicular snap mode, c to return to using the cursor position or d to bring up the dynamic value.

Snap Perpendicular - Typing p

Snap Perpendicular - Rotation grip (Circle)

After selecting the Rotation grip (circle), typing p puts the string select into perpendicular mode and when a string is tentatively picked, the snap point moves to make the line from the snap point to the symbol justification point in J mode (or the vertex in V-mode) perpendicular to the selected string.

Snap Perpendicular - Height Grip (Square)
After selecting the **Height** grip (diamond), typing **p** puts the string select into perpendicular mode and when a string is tentatively picked, the snap point moves to make the line from the snap point to the symbol justification point in J mode (or vertex in V-mode) perpendicular to the selected string.

Before the accept button is selected, **t** can be typed to toggle to tangential snap mode, **c** to return to using the cursor position or **d** to bring up the dynamic value.

Cursor Mode - Typing c

If in either Tangential or Perpendicular mode, typing **c** return to cursor mode.
Negative Angle - Typing n

Adds 180 degrees to the current angle.

Hitting Space Bar

Brings up the Enter angle (modifying angle) or Enter distance (modifying height) Typed input box with no value in it.

Display Dynamic Value - Typing d

Brings up the Enter angle (modifying angle) or Enter distance (modifying height) Typed input box with the dynamic value in it.

Please continue to the next section 4.19.1 Expressions in Panel Fields.
4.16 Last Expression

Brings up the last expression or real value typed into the box. For example, if 3*4 is typed and <Enter> pressed, 12 will be displayed. The Last Expression pop-up will bring back the 3*4.

Please continue to the next section 4.17 Bearings and Angles.
4.17 Bearings and Angles

4.17.1 HP Notation

Many panels and options take angles or bearings as input. The 12d Model default for most angles or bearings is in degrees, minutes and second (dms).

To save typing, this is written in **HP Notation** in the form

\[\text{ddd.mmssfff} \]

where \(\text{ddd.mmssfff} \) is the angle or bearing expressed in degrees, minutes and seconds as

- ddd whole degrees
- . separator between degrees and minutes
- mm whole minutes
- ss whole seconds
- fff fractions of seconds (as many as required)

Notes

1. The decimal point \(. \) indicates where the degrees stops and the minutes begin.
2. If there is only whole degrees, the \(.\text{mmssfff} \) can be omitted. However, if there are any minutes, seconds or fractions of seconds, there must be **two digits** of whole minutes.
3. If there are no seconds or fractions of seconds, then the \(\text{ssfff} \) can be omitted. However, if there are any seconds or fractions of seconds, there must be **two digits** of whole seconds.
4. There are as many digits of fractions of seconds as required (possibly none).

For example

- 35 is 35 degrees
- 35.09 is 35 degrees and nine minutes
- 35.0901 is 35 degrees, nine minutes and one second
- 35.090107 is 35 degrees, nine minutes and 1.07 seconds

4.17.2 Decimal Degrees for Angles

At times, angles or bearings are given as decimal degrees rather than in **4.17.1 HP Notation**.

For decimal degrees, positions after the decimal point represent decimal degrees.

Please continue to the next section **4.18 Precision**.
4.18 Precision

Double precision variables are used throughout 12d Model for all coordinate values and calculations.

Although this increases the time taken for calculations, it is more than offset by the increase in the accuracy of the data and the results of any calculations.

Because of the accuracy of double precision variables (fourteen significant figures), there is no practical restriction on the coordinate area covered by projects.

The default number of decimal places for displaying values in the information menu is three (3). This number of decimal places is controlled by the display precision field in the System Settings tab of the Defaults panel (option Utilities=>Defaults).

The default number of decimal places for displaying values in boxes and panels is four (4). This number of decimal places is controlled by the box precision field in the System Settings tab of the Defaults panel (option Utilities=>Defaults).

Go to the next section 4.19 Panel Fields.
4.19 Panel Fields

For general information about Panels, see 4.3.6 Panels.

For more particular information, see

4.19.1 Expressions in Panel Fields
4.19.2 Pre*Postfix in Panel Fields
4.19.3 Data Source
4.19.4 Data Target
4.19.5 Pop-Up Lists and Menus
4.19.6 Grids in Panels
4.19.7 Scrolling Panel Tables
4.19.8 File Box
4.19.9 Model Panel Field
4.19.11 String Select Panel Field
4.19.12 MB for Same As Pick for Panel Fields
4.19.1 Expressions in Panel Fields

See

4.19.1.1 Expressions in Real Value Fields
4.19.1.2 Expressions in Bearing, Angle Panel Fields
4.19.1.3 Expressions in Integer Value Fields

4.19.1.1 Expressions in Real Value Fields

See

4.19.1.1.1 Mathematical Expressions in Real Value Fields
4.19.1.1.2 If Else in Real Value Fields

4.19.1.1.1 Mathematical Expressions in Real Value Fields
A Real panel field is a panel field that can only take real numbers. That is, numbers that have a decimal point. For example 0.1, 1 and -2.3.
Whenever a real value such as height or width is required in a Real panel field other than an Angle or Bearing panel field, mathematical expressions can be typed in and then evaluated by 12d Model when <enter> is pressed. See the section 4.19.1.2 Expressions in Bearing, Angle Panel Fields for what is allowed in angle/bearing panel fields.

Expressions can be made up from the operators

* multiply
/ divide
+ addition
- subtraction

where * and / take precedence over + and -.

Nested brackets "(" and ")" are supported to any level.
The following functions are also supported

sin
cos
tan
sqrt
square
null

Note that for the trigonometric functions, the angle is in degrees, minutes and seconds (see section on Angles and Bearings) and is either a cartesian angle or a bearing depending on the setting of the Angle mode in the System Settings tab of Utilities=>Defaults.

For example, cos(90) is 0 for a Cartesian angle of 90 or 1 for a bearing of 90 degrees.

Examples of expressions are:

10.0 + 19.7
sin(90.30)
(10 + sin(45))/3.0

After the expression has been evaluated, it is still possible to bring back the last expression, make modifications to the expression and then re-evaluate it.

To get the last expression, simply click on the [+1] button at the end of the field to bring up the measures menu and select Last expression from it. The last expression is then returned to the panel field ready for modifications.

Warning
Only limited expressions are supported for bearing/angle boxes. See the section 4.19.1.2
Expressions in Bearing, Angle Panel Fields for what is allowed in the Angle and Bearing panel fields.

Go to the next section 4.19.1.2 Expressions in Bearing, Angle Panel Fields or return to 4.19.1 Expressions in Panel Fields.

4.19.1.1.2 If Else in Real Value Fields
There is an if else conditional expression that can be used in Real fields:

\[
\text{if (logical_expression) value}_1 \text{ else value}_2
\]

which has the meaning

\[
\text{if logical_expression is true then use value}_1 \text{ otherwise use value}_2.
\]

where \text{value}_1 and \text{value}_2 are expressions that evaluate to a real value.

One restriction is that the \text{logical_expression} must be enclosed in round brackets. For example,

\[
\text{if (3*4<13) 3 else 4}
\]

This may not seem to be of much use except that it works nicely with Snippets. For example, you can then have in a Real field

\[
\text{if ($VAL1< 0) -1*VAL1 else $VAL1}
\]

where $VAL1 is a snippet parameter.

For more information on snippets, see 21.5 Defining and Using Snippets.

Important Note
Note that \text{value}_1 or \text{value}_2 can be an if else conditional expressions so you can have nested conditional expressions. That is

\[
\text{if (logical_expression) conditional_expression}_1 \text{ else conditional_expression}_2
\]

For example

\[
\text{if ($VAL1 < 0) if (3*4<13) 3 else 4 else $VAL1}
\]

will be parsed as

\[
\text{if ($VAL1 < 0) (if (3*4<13) 3 else 4) else $VAL1}
\]

Hint: if something doesn’t seem to work, put more round brackets in.

Go to the next section 4.19.1.2 Expressions in Bearing, Angle Panel Fields or return to 4.19.1.1 Expressions in Real Value Fields or 4.19.1 Expressions in Panel Fields.
4.19.1.2 Expressions in Bearing, Angle Panel Fields

Bearing and **Angle** panel fields are panel fields that can only take angles.

Because bearings (angles) and numbers **cannot** be used interchangeably in mathematical expressions, only a limited number of expressions can be supported in a **Bearing** or **Angle** panel field.

Bearings (angles) can be added or subtracted from other bearings (angles) but a number cannot be added or subtracted from a bearing (angle). So the addition and subtraction of bearings (angles) is supported but addition/subtraction of a bearing (angle) and a number is invalid.

Bearings (angles) cannot be multiplied or divided by another bearing (angle) but a bearing (angle) can be multiplied or divided by a number. However because the input of a bearing (angle) in degrees, minutes and seconds looks like a decimal number (see the previous section 4.17 **Bearings and Angles**), a rule must be made to distinguish between bearings (angles) and numbers for multiplication and division. In 12d Model, the bearing (angle) is on the left of the number it is being multiple or divided by.

So in a bearing (angle) panel field and grid, the following is supported:

(a) add or subtract bearings (angles) i.e. bearing + bearing or bearing - bearing is allowed

(b) type bearing*number + bearing *number - note that the number is on the right of the *

(c) type bearing *number - bearing *number - note that the number is on the right of the *

(d) type bearing /number + bearing *number - note that the number is on the right side of the /

(e) type bearing /number + bearing *number - note that the number is on the right side of the /

Because a user often wishes to add or subtract 90 degrees from a bearing or angle, the Page Down/Page Up keys have a special meaning when the focus is on the bearing (angle) panel field. For a bearing (or angle) panel field (but **not for a grid**):

(f) Page up - subtracts 90 degrees to the bearing/angle

(g) Ctrl + page up - subtracts 15 degrees to the bearing/angle

(h) Shift + page up - subtracts 10 degrees to the bearing/angle

(i) Shift + Ctrl + page up - subtracts 6 degrees to the bearing/angle

(j) Page down - adds 90 degrees to the bearing/angle

(k) Ctrl + page down - adds 15 degrees to the bearing/angle

(l) Shift + page down - adds 10 degrees to the bearing/angle

(m) Shift + Ctrl + page down - adds 6 degrees to the bearing/angle

Go to the next section 4.19.1.3 **Expressions in Integer Value Fields** or return to 4.19.1 **Expressions in Panel Fields**.

4.19.1.3 Expressions in Integer Value Fields

An **Integer** panel field is a panel field that can only take integer number. For example 0, 1 and -2.

The arithmetic operations plus (+), subtraction (-), divide (/) and multiplication (*) are now allowed in an **Integer** panel field.

The calculations are all done as real arithmetic and the result is rounded to an integer value at the **end** of all the calculations and not along the way.

Go to the next section 4.19.2 **Pre*Postfix in Panel Fields** or return to 4.19.1 **Expressions in Panel Fields**.
4.19.2 Pre*Postfix in Panel Fields

In many options in 12d Model, text needs to added to the beginning (prefix) of name and also added to the end (postfix) of a name. For example, the

Instead of needing a panel field for the prefixed text and another for the postfixed text, 12d Model often used a special shorthand notation called pre*postfix to combine the two into one text field.

When the word pre*postfix is used on a panel field, it has the special meaning that for any text type into the panel field, any text before the * is considered to be text for prefixing, and any text after the * is taken to be text for postfixing. Note that spaces are significant.

Hence "E * m" means that "E " is prefix text and " m" is postfix text.

If prefix text only is required, just give the text since the * is not required at the end of the text. For example "E " or "E *" will prefix the text "E ".

If postfix text only is required then the text must be preceded by a *. For example "* m" will postfix the text " m".

For example, if a panel field had

Pre*postfix for models new * data

then "new " would be added to the beginning of the model names and " data" would be added to the end of the model names.

Go to the next section 4.19.3 Data Source or return to 4.19 Panel Fields.
4.19.3 Data Source

Many options contain the panel field **Data source** which may have one or more of the selection choices:

- string, model, view, multi-pick strings, rectangle, parallelogram, polygon, lasso, model list, filter, favourites

Depending on the Data Source choice, the panel fields after the Data Source icons will be changed to suite the Data Source choice.

For example, for the choice **Model**, the next field will be **Model**.

See 4.19.3.1 Select Existing String
See 4.19.3.2 Select Existing Model
See 4.19.3.3 Select Existing View
See 4.19.3.4 Select Many Strings
See 4.19.3.5 Select Using a User Drawn Rectangle
See 4.19.3.6 Select Using a User Drawn Parallelogram
4.19.3.1 Select Existing String

After clicking on the Select String icon, a String Select is started and the Select String panel field called String is placed under the Data Source icons.

When a string is selected, its model and name of the string is displayed in the String Select information field.

To select a different string, the Select icon for the String Select panel field (to the right of the string name field) must be used as the Data Source Select String icon is now inactive.

Continue to 4.19.3.2 Select Existing Model or return to 4.19.3 Data Source

4.19.3.2 Select Existing Model

After clicking on the Select Model icon, a Model panel field is placed under the Data Source icons.

A model name can be typed into the panel field or a model selected from the Model icon from the Model panel field (to the right of the model name field).

To select a different model, the Model icon for the Model panel field must be used as the Data Source Select Model icon is now inactive.

Continue to 4.19.3.3 Select Existing View or return to 4.19.3 Data Source
4.19.3.3 Select Existing View

After clicking on the Select View icon, a View panel field is placed under the Data Source icons.

A view name can be typed into the panel field or a view selected from the View icon from the View panel field (to the right of the view name field).

To select a different view, the View icon for the View panel field must be used as the Data Source Select View icon is now inactive.

Continue to 4.19.3.4 Select Many Strings or return to 4.19.3 Data Source

4.19.3.4 Select Many Strings

After clicking on the Select Many Strings icon, the panel fields for the Select Many Strings are placed under the Data Source icons.

The Select Many Strings panel fields consists of a grid to display the model and string name of selected strings, a Pick button to start selecting strings and a Clear button to deselect the currently selected strings.

To begin selecting strings, click on the Pick button. Strings are then selected and accepted and this continues until RB is pushed and Cancel selected from the Pick Ops menu. As each string is selected it is highlighted and the selected strings stay highlighted after they are selected.

To pick more strings, simply click on Pick and start selecting again. The new strings are added to the bottom of the String name grid and all the new strings also remain highlighted.

To clear all the selected string, simply click on Clear.

The Data Source Select Many Strings icon is made inactive after the option is first selected.

Continue to 4.19.3.5 Select Using a User Drawn Rectangle or return to 4.19.3 Data Source
4.19.3.5 Select Using a User Drawn Rectangle

After clicking on the Draw Rectangle icon, the panels fields for selecting by drawing a rectangle are placed under the Data Source icons and the rectangle drawing process is automatically started.

First the position of one corner of the rectangle is selected by clicking LB on a plan view and then a rectangle parallel to the x and y axis is drawn to the current cursor position. The rectangle is completed by clicking LB at a second position.

Strings are selected by using the rectangle and the Rectangle mode which is:

- if Process only selected vertices is ticked on, Rectangle mode choices are:
 - Vertices inside or Vertices outside
- if Process only selected vertices is not ticked, Rectangle mode choices are:
 - String inside, String outside, String crossing, String inside/crossing

Any strings/vertices satisfying the Rectangle mode will be highlighted when the rectangle is completed.

- If Process only selected vertices or Rectangle mode is modified, the new strings/vertices satisfying the new parameters are highlighted.
- If Use log lines is ticked, log lines for the selected data are written to the output window.

To draw a new rectangle, click on the Rectangle button and draw a new rectangle.

The Data Source Draw Rectangle icon is made inactive after the option is first selected.

Continue to 4.19.3.6 Select Using a User Drawn Parallelogram or return to 4.19.3 Data Source
4.19.3.6 Select Using a User Drawn Parallelogram

After clicking on the Draw Parallelogram icon, the panels fields for selecting by drawing a parallelogram are placed under the Data Source icons and the parallelogram drawing process is automatically started.

First two positions defining one side of the parallelogram by clicking LB at each position. A parallelogram is then drawn to the current cursor position. The parallelogram is completed by clicking LB at a third position.

Strings are selected by using the parallelogram and the Parallelogram mode which is:

- if Process only selected vertices is ticked on, Parallelogram mode choices are:
 - Vertices inside or Vertices outside

- if Process only selected vertices is not ticked, Parallelogram mode choices are:
 - String inside, String outside, String crossing, String inside/crossing, String outside/crossing

Any strings/vertices satisfying the Parallelogram mode will be highlighted when the parallelogram is completed.

If Process only selected vertices or Parallelogram mode is modified, the new strings/vertices satisfying the new parameters are highlighted.

If Use log lines is ticked, log lines for the selected data are written to the output window.

To draw a new parallelogram, click on the Parallelogram button and draw a new parallelogram.

The Data Source Draw Parallelogram icon is made inactive after the option is first selected.

Continue to 4.19.3.7 Select Using a User Drawn Trapezoid or return to 4.19.3 Data Source
4.19.3.7 Select Using a User Drawn Trapezoid

After clicking on the **Draw Trapezoid** icon, the panel fields for selecting by drawing a trapezoid are placed under the Data Source icons and the trapezoid drawing process is automatically started.

Four positions representing the four vertices of the trapezoid by clicking LB at each of the positions. The trapezoid is completed after the fourth position is selected.

Strings are selected by using the trapezoid and the Trapezoid mode which is:

- **if Process only selected vertices** is ticked on, **Trapezoid mode** choices are:
 - Vertices inside or Vertices outside
- **if Process only selected vertices** is not ticked, **Trapezoid mode** choices are:
 - String inside, String outside, String crossing, String inside/crossing, String outside/crossing

Any strings/vertices satisfying the **Trapezoid mode** will be highlighted when the trapezoid is completed.

- **If Process only selected vertices** or **Trapezoid mode** is modified, the new strings/vertices satisfying the new parameters are highlighted.
- **If Use log lines** is ticked, log lines for the selected data are written to the output window.

To draw a new trapezoid, click on the **Trapezoid** button and draw a new trapezoid.

The Data Source Draw Trapezoid icon is made inactive after the option is first selected.

Continue to 4.19.3.8 Select an Existing Polygon or return to 4.19.3 Data Source
4.19.3.8 Select an Existing Polygon

After clicking on the Select Polygon icon, the panel fields for selecting by selecting a polygon are placed under the Data Source icons.

A polygon is then selected by clicking on the Select polygon button on the right of the Polygon panel field, and then selecting a polygon.

Note: a polygon is just a closed string. If an open string is selected then a closed string is automatically created by joining the first and the last vertices of the string.

if Process only selected vertices is ticked on, Polygon mode choices are:

- Vertices inside
- Vertices outside

if Process only selected vertices is not ticked, Polygon mode choices are:

- String inside
- String outside
- String crossing
- String inside/crossing
- String outside/crossing

Any strings/vertices satisfying the Polygon mode will be highlighted when the polygon is selected.

If Process only selected vertices or Polygon mode is modified, the new strings/vertices satisfying the new parameters are highlighted.

If Use log lines is ticked, log lines for the selected data are written to the output window.

To select a new polygon, click on the Select polygon button on the right of the Polygon panel field and select a new polygon.

The Data Source Select Polygon icon is made inactive after the option is first selected.
4.19.3.9 Select Using a User Drawn Lasso

After clicking on the **Draw Lasso** icon, the panel fields for selecting by drawing a lasso are placed under the Data Source icons.

The lasso drawing process is started by clicking on the **Lasso** button.

A lasso is then defined by clicking down on the LB and whilst holding the LB down, moving the cursor around to define a freehand lasso. The lasso is completed by letting the LB up and then clicking and releasing MB.

Strings are selected by using the lasso and the Lasso mode which is:

if Process only selected vertices is ticked on, **Lasso mode** choices are:

- Vertices inside or Vertices outside

if Process only selected vertices is not ticked, **Lasso mode** choices are:

- String inside, String outside, String crossing, String inside/crossing, String outside/crossing

Any strings/vertices satisfying the **Lasso mode** will be highlighted when the lasso is completed.

If Process only selected vertices or **Lasso mode** is modified, the new strings/vertices satisfying the new parameters are highlighted.

If Use log lines is ticked, log lines for the selected data are written to the output window.

To draw a new lasso, click on the **Lasso** button and draw a new lasso.

The Data Source Draw Lasso icon is made inactive after the option is first selected.

Continue to 4.19.3.10 Select many models or return to 4.19.3 Data Source
4.19.3.10 Select many models

After clicking on the Select Many Models icon, the Select Many Models grid is placed under the Data Source icons.

To begin selecting models, type the model name into the a field of the grid, or click RB in the grid and select from the Select Model pop-up (if a pop-up with Browse comes up, select Browse to bring up the Select Model pop-up).

Pressing the <Enter> key will add another blank row to the grid. Or clicking RB on the numbers on the left of the grid will bring up a menu to insert, delete, clear, cut, copy and paste rows. The buttons on the right hand side of the grid will also allow for rows to be moved up or down, delete rows and insert blank rows.

The Data Source Select Many Model icon is made inactive after the option is first selected.

Continue to 4.19.3.11 Select Filter or return to 4.19.3 Data Source
4.19.3.11 Select Filter

After clicking on the Select Filter icon, the Process only selected vertices tick box, the Select Filter tabs, Filter Select button and User log lines tick box are placed under the Data Source icons.

The option works by selecting the data that satisfies EVERY filter tab. That is, the data satisfies ALL the values in ALL the filter tabs.

So all the filter tabs work together to define the selected data.

For each filter tab required, the user clicks on the tab and fills in the required fields in the filter tabs that are to be satisfied by the selected strings.

When all the required filter tabs filled in, click on the Filter Select button to select the data that satisfies all the filter tabs.

If Process only selected vertices is ticked, only the vertices of the strings that satisfy the filters are used. are selected are

If Use log lines is ticked, log lines for the selected data are written to the output window.

The full set of filter tabs are:

See 4.19.3.11.1 View Filter 4.19.3.11.2 Model Filter 4.19.3.11.4 String Info Filter
See 4.19.3.11.5 Point ID’s Filter4.19.3.11.6 Polygons Filter4.19.3.11.7 Extents Filter
See 4.19.3.11.8 Plan Length Filter4.19.3.11.9 String ID’s Filter
See 4.19.3.11.10 Time Filter4.19.3.11.11 Model Attributes Filter
See 4.19.3.11.12 Function Filter4.19.3.11.13 Element Attributes Filter 4.19.3.11.14 Vertex Attributes Filter 4.19.3.11.15 Segment Attributes Filter
See 4.19.3.11.16 Vertex Count Filter4.19.3.11.17 Tags Filter4.19.3.11.18 Name Masks Filter
See 4.19.3.11.19 Vertex UID’s Filter4.19.3.11.20 Segment UID’s Filter
4.19.3.11.1 View Filter

A view name can be typed into the panel field or a view selected from the View icon from the View panel field (to the right of the view name field).

Continue to 4.19.3.11.2 Model Filter or return to 4.19.3.11 Select Filter or 4.19.3 Data Source

4.19.3.11.2 Model Filter

A model name can be typed into the panel field or a model selected from the Model icon from the Model panel field (to the right of the model name field).

Continue to 4.19.3.11.3 Models Filter or return to 4.19.3.11 Select Filter or 4.19.3 Data Source

4.19.3.11.3 Models Filter

The names of one or models can be typed into the Model grid, or by clicking RB in the grid and selecting from the Select Model pop-up (if a pop-up with Browse comes up, select Browse to bring up the Select Model pop-up).

Continue to 4.19.3.11.4 String Info Filter or return to 4.19.3.11 Select Filter or 4.19.3 Data Source
4.19.3.11.4 String Info Filter

Strings can be selected by setting on or more properties in the String Info tab.

Types

- **Type** - the type of string

Name - the name of the string

Colour - the colour of the string

Pt-line - the breakline type of the string

Style - the linestyle of the string

Weight - the weight of the string

If a field is left blank, then it is not used in the selection process.

Continue to [4.19.3.11.5 Point ID's Filter](#) or return to [4.19.3.11 Select Filter](#) or [4.19.3 Data Source](#)
4.19.3.11.5 Point ID’s Filter

Minimum - if non-blank, then if a string vertex has a Point Id, then this is the minimum value that it can be. The Point Id can be text so the ascii sort sequence is used for comparisons.

Maximum - if non-blank, then if a string vertex has a Point Id, then this is the maximum value that it can be. The Point Id can be text so the ascii sort sequence is used to comparisons.

If a field is left blank, then it is not used in the selection process.

Continue to 4.19.3.11.6 Polygons Filter or return to 4.19.3.11 Select Filter or 4.19.3 Data Source
4.19.3.11.6 Polygons Filter

A polygon is selected/created to restrict the selection of strings by the choice given in the **Polygon mode** field.

Clicking LB on the Select Polygon icon on the right hand side of the **Polygon** field allows the user to select a polygon.

Clicking RB on the Select Polygon icon on the right hand side of the **Polygon** field brings up the Polygon Choice Box for the user to select a method of creating/selecting a polygon.

Clicking MB does nothing.

The strings selected are then restricted to those using the polygon and satisfying the **Polygon mode**: String inside - strings totally inside the polygon String outside - strings totally outside the polygon String crossing - strings crossing the polygon String inside/crossing - strings totally inside or crossing the polygon String outside/crossing - strings totally outside or crossing the polygon

Continue to 4.19.3.11.7 Extents Filter or return to 4.19.3.11 Select Filter or 4.19.3 Data Source
4.19.3.11.7 Extents Filter

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum X</td>
<td>If non-blank, all the string’s X coordinates must be at least this value.</td>
</tr>
<tr>
<td>Minimum Y</td>
<td>If non-blank, all the string’s Y coordinates must be at least this value.</td>
</tr>
<tr>
<td>Minimum Z</td>
<td>If non-blank, all the string’s Z coordinates must be at least this value.</td>
</tr>
<tr>
<td>Maximum X</td>
<td>If non-blank, none of the string’s X coordinates can be greater than this value.</td>
</tr>
<tr>
<td>Maximum Y</td>
<td>If non-blank, none of the string’s Y coordinates can be greater than this value.</td>
</tr>
<tr>
<td>Maximum Z</td>
<td>If non-blank, none of the string’s Z coordinates can be greater than this value.</td>
</tr>
</tbody>
</table>

If a field is left blank, then it is not used in the selection process.

Continue to [4.19.3.11.8 Plan Length Filter](#) or return to [4.19.3.11 Select Filter](#) or [4.19.3 Data Source](#)

4.19.3.11.8 Plan Length Filter

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>If non-blank, the string’s plan length (2d length) must be at least this value.</td>
</tr>
<tr>
<td>Maximum</td>
<td>If non-blank, the string’s plan length (2d length) can’t be greater than this value.</td>
</tr>
</tbody>
</table>

If a field is left blank, then it is not used in the selection process.

Continue to [4.19.3.11.9 String ID’s Filter](#) or return to [4.19.3.11 Select Filter](#) or [4.19.3 Data Source](#)

4.19.3.11.9 String ID’s Filter

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start ID</td>
<td>If non-blank, the string’s ID must be at least this value.</td>
</tr>
<tr>
<td>End ID</td>
<td>If non-blank, the string’s ID can’t be greater than this value.</td>
</tr>
</tbody>
</table>

If a field is left blank, then it is not used in the selection process.

Continue to [4.19.3.11.10 Function Filter](#) or return to [4.19.3.11 Select Filter](#) or [4.19.3 Data Source](#)
4.19.3.11.10 Function Filter

<table>
<thead>
<tr>
<th>Extents</th>
<th>Plan length</th>
<th>ID's</th>
<th>Function</th>
<th>Time</th>
<th>Model Attributes</th>
<th>Element Attributes</th>
<th>Vertex Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Function Tab

- **Name** - if non-blank, the string must be part of a function with this name.
- **Start ID** - if non-blank, the string's ID must be at least this value.
- **End ID** - if non-blank, the string's ID can't be greater than this value.

If a field is left blank, then it is not used in the selection process.

Continue to [4.19.3.11.11 Time Filter](#) or return to [4.19.3.11 Select Filter](#) or [4.19.3 Data Source](#)

4.19.3.11.11 Time Filter

<table>
<thead>
<tr>
<th>Extents</th>
<th>Plan length</th>
<th>ID's</th>
<th>Function</th>
<th>Time</th>
<th>Model Attributes</th>
<th>Element Attributes</th>
<th>Vertex Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time Tab

- **Start create time** - if non-blank, the string's time of creation must be at least this time.
- **End create time** - if non-blank, the string's time of creation can't be greater than this time.
- **Start update time** - if non-blank, the time the string was last updated must be at least this time.
- **End update time** - if non-blank, the time the string was last updated can't be greater than this time.

If a field is left blank, then it is not used in the selection process.

Continue to [4.19.3.11.12 Model Attributes Filter](#) or return to [4.19.3.11 Select Filter](#) or [4.19.3 Data Source](#)
4.19.3.12 Model Attributes Filter

<table>
<thead>
<tr>
<th>Extents</th>
<th>Plan length</th>
<th>ID's</th>
<th>Function</th>
<th>Time</th>
<th>Model Attributes</th>
<th>Element Attributes</th>
<th>Vertex Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Model Attributes Tab

Continue to 4.19.3.11.13 Element Attributes Filter or return to 4.19.3.11 Select Filter or 4.19.3 Data Source

4.19.3.11.13 Element Attributes Filter

<table>
<thead>
<tr>
<th>Time</th>
<th>Model Attributes</th>
<th>Element Attributes</th>
<th>Vertex Attributes</th>
<th>Segment Attributes</th>
<th>Vertex Count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Element Attributes Tab

Continue to 4.19.3.11.14 Vertex Attributes Filter or return to 4.19.3.11 Select Filter or 4.19.3 Data Source

4.19.3.11.14 Vertex Attributes Filter

<table>
<thead>
<tr>
<th>Time</th>
<th>Model Attributes</th>
<th>Element Attributes</th>
<th>Vertex Attributes</th>
<th>Segment Attributes</th>
<th>Vertex Count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vertex Attributes Tab

Continue to 4.19.3.11.15 Segment Attributes Filter or return to 4.19.3.11 Select Filter or 4.19.3 Data Source
4.19.3.11.15 Segment Attributes Filter

Segment Attributes Tab

Continue to 4.19.3.11.16 Vertex Count Filter or return to 4.19.3.11 Select Filter or 4.19.3 Data Source

4.19.3.11.16 Vertex Count Filter

Vertex Count Tab

Minimum - if non-blank and the string have vertices, then the number of vertices must be at least this value.

Maximum - if non-blank and the string have vertices, then the number of vertices can’t be greater than this value.

Continue to 4.19.3.11.17 Tags Filter or return to 4.19.3.11 Select Filter or 4.19.3 Data Source

4.19.3.11.17 Tags Filter

Tags Tab

Continue to 4.19.3.11.18 Name Masks Filter or return to 4.19.3.11 Select Filter or 4.19.3 Data Source
4.19.3.11.18 Name Masks Filter

The Name Masks are used to restrict the strings by comparing the string name with the masks in the Name Mask column.

The order of the Names Masks is important.

The string name is first compared to the first Name Mask and if the string satisfies the Name Mask, then the string satisfies the Name Masks Tab and no more tests are done for that string.

If the string does not satisfy the first Name Mask, then the string is then compared to the second Name Mask.

This process is repeated until either the string matches a Name Mask and is selected, or the string matches no Name Mask and so is not selected.

The Name Masks can include the wild card character "*" which stands for zero or characters, and the wild character "?" which stands for just one character.

If Not is ticked, then strings are selected if they don't satisfy that Name Mask.

Name Masks Tab

- include all strings starting with "Fence"
- include all strings starting with "Bound" then any two characters and then "y"
 - So only include the "Fence" strings and "Bound??y" strings

- include all strings starting with "Prj A Road"
- exclude all strings starting with "Prj A"
 - include all other strings
 - So only include the "Prj A Road**" strings from "Prj A",
 - and all other strings not starting with "Prj A"

Continue to 4.19.3.11.19 Vertex UID's Filter or return to 4.19.3.11 Select Filter or 4.19.3 Data Source
4.19.3.11.19 Vertex UID’s Filter

Minimum - if non-blank, then if a string has vertices, then this is the minimum value that the UID of the vertex can be.

Maximum - if non-blank, then if a string has vertices, then this is the maximum value that the UID of the vertex can be.

If a field is left blank, then it is not used in the selection process.

Continue to 4.19.3.11.20 Segment UID’s Filter or return to 4.19.3.11 Select Filter or 4.19.3 Data Source

4.19.3.11.20 Segment UID’s Filter

Minimum - if non-blank, then if a string has segments, then this is the minimum value that the UID of the segment can be.

Maximum - if non-blank, then if a string has segments, then this is the maximum value that the UID of the segment can be.

If a field is left blank, then it is not used in the selection process.

Continue to 4.19.3.12 Favourites or return to 4.19.3.11 Select Filter or 4.19.3 Data Source
4.19.3.12 Favourites

After clicking on the Select Favourites icon, the Folder *.sbf pop-up is raised showing any local source box favourites files (*.sbf) and with options to look in Lib, User Lib, Customer Lib (if it exists) or to Browse for a sbf file.

If a sbf file is selected, then the values in it will be used to set up the Data Source Selection.

To write out an sbf file that saves all the parameters for the current Source Box Selection, click on [Create]. This will bring up the Source Box Favourites Create panel.

To create a sbf file, simply type the name for the sbf file into the Favourite file panel field and then click on Create.

In the documentation for a panel with a data source, only the panel for Data Source type Model will be shown.

Go to the next section 4.19.4 Data Target or return to 4.19.3 Data Source or 4.19 Panel Fields.
4.19.4 Data Target

Many options contain the panel field **Data target** which may have one or more of the selection choices:

- **move to original model(s)/replace** // process the original data and leave in models
- **move to one model** // move the processed data to one model
- **move to many models** // move processed data to models with the same
 // names as the original models except the model
 // names are pre/postfixed by given text.

- **copy to original model(s)/replace** // process copies of the data and leave in models
- **copy to one model** // process copies of the data and place in one model
- **copy to many models** // process copies of the data and place in models with
 // the same names as the original models except the
 // model names are pre/postfixed by given text.

Depending on the choice, the next panel field will be changed to suite the choice of target.

For example, for the choice **Copy to one model**, the next field will be **Copy to model**.
In the documentation for a panel with a data target, only the panel for **Data Target type Copy to Model** will be shown.

Go to the next section 4.19.5 Pop-Up Lists and Menus or return to 4.19 Panel Fields.
4.19.5 Pop-Up Lists and Menus

If there are choices available to select from for the panel field, there is a [+] or another special
icon displayed at the right hand side of the panel field.
For example, icons that may be used in place of the + are:

<table>
<thead>
<tr>
<th>File/Folder</th>
<th>Tin</th>
<th>Textstyle Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Choice</td>
<td>Line Weight</td>
</tr>
<tr>
<td>Colour when none selected</td>
<td>Selected Colour</td>
<td>View</td>
</tr>
<tr>
<td>Line Style</td>
<td>Polygon</td>
<td>Symbol</td>
</tr>
<tr>
<td>Project</td>
<td>XYZ</td>
<td>X</td>
</tr>
<tr>
<td>Y</td>
<td>Z</td>
<td>Chainage</td>
</tr>
<tr>
<td>String Name</td>
<td>Select</td>
<td>Angle</td>
</tr>
<tr>
<td>Date/Time</td>
<td>Function</td>
<td>Typed Input</td>
</tr>
<tr>
<td>ID</td>
<td>Plotter/Printer</td>
<td>Same As</td>
</tr>
</tbody>
</table>

Clicking LB on the one of the above icons or a [+] brings up a the panel field pop-up list or pop-up menu.
A panel field pop-up consists of a list of choices which may be displayed as either a menu or a list.
Panel Fields

Pop-up menu from clicking on the choice icon for the Format field

Pop-up list from clicking on the folder icon for the File field

Pop-up list from clicking on colour icon for the Colour field
For a **pop-up list**, an answer is chosen from the list by **double** clicking LB over the required answer. This answer is then displayed in the panel field and the pop-up list disappears.

At the bottom of some **pop-up lists** is a:

(a) **[Sameas]** button. If **[Sameas]** is selected then an object with the require property is selected using the mouse and the value from the selected item is written to the panel field.

(b) **[Browse]** button. The meaning of **[Browse]** is different for each pop up list.

For some options, more than one selection from a list can be made. In that case, simply use the standard Microsoft methods for multiple selections and then click on **Select**.

For a **pop-up menu**, an answer is chosen from the pop-up menu by clicking LB over the required answer. This answer is then displayed in the panel field and the pop-up menu disappears.

If there are more items to be displayed in a pop-up menu than the number **Popup length** in the panel **Defaults**, the list of choices will have a scroll bar.

The pop-up list or menu can also be removed without a selection by clicking LB on the [X] on the pop-up list or menu, by clicking LB again on the choice icon or [+] for the panel field, or by simply typing into any visible part of the panel field that the pop-up is for (some of the field may be obscured by the pop-up itself).

Go to the next section **4.19.6 Grids in Panels** or return to **4.19 Panel Fields**.
4.19.6 Grids in Panels

Many 12d Model panels include grids or lists of information which hold an unlimited number of lines or rows. The grids may have more than one column but the number of columns is usually fixed for that grid.

Each column of the grid normally has a column header such as Type and Alias in the example of the Left MTF MTF Modifiers panel.

The grid in a panel has only a limited size and so can only display a certain number of rows of the grid. and once the number of rows in the panel exceeds that number, a vertical scroll bar is created on the right hand side of the grid so you can scroll the rows up or down to see the extra rows.

Similarly the grid in a panel can only display a certain number of columns of the grid and once the number of columns in the panel exceeds that number, a horizontal scroll bar is created on the bottom of the grid so you can scroll the columns left and right to see the extra columns.

The numbers on the left hand side of the grid indicate the row (line) number of the information being displayed and clicking LB on the row number will highlight the row. Additional rows can be highlighted at the same time by using the standard Microsoft key combinations on the row numbers. For example, <Ctrl>+LB on a row number to add that row to the highlighted rows.

The row numbers are also buttons and when clicked with RB, the Edit Row n panel is displayed. For example

The row that the Edit Row n panel was raised on is called the current row.

The options on the Edit Row n panel have the following functions:
Panel Fields

Insert above insert a blank line above the row the current row. The current row and all following rows are pushed down
Insert below insert a blank line below the current row. All the rows below the inserted blank row are pushed down
clear clear the highlighted rows
copy copy the current line into the next line; all following lines are pushed down
delete delete the highlighted rows
up move each of the highlighted rows up one row.
down move each of the highlighted rows down one row

Also, when rows are highlighted, pressing <Delete> will delete the highlighted rows.

There are also icons on the right hand side of the panel that can move highlighted rows up and down, delete highlighted rows, and insert blank lines above and below a selected row.

Plus for some grids, Regions can be defined and there are icons on the right hand side of the grid to go back to the previous region, go forward to the next region, and to go to a region selected from a region pop up list. See 4.19.6.0.1 Regions in Some Grids

Some grids have an **Active** column, which may contain Tick boxes, or Yes/No Choice boxes. If the Active column for a command is ticked on, or yes, then the row is used. If the Active column for a command is not ticked, or no, then the row is not used.

Some grids have a **Comment** column, which may contain text.
4.19.6.0.1 Regions in Some Grids

In some grids there is a **Region** command (or rule).

A **Region** in a grid is a special command that has the property that a Region can be **collapsed**. And **collapsing** a Region means that all the rows after the Region command until the next Region command, are hidden in the grid. The row of the **Region** command is coloured light blue.

Regions must have a unique name within the grid.

A **Region** can have a secondary name called a **Bookmark**. If no Bookmark is given then when the grid is saved, the **Bookmark** is given the same name as the Region.

All grids that have **Regions** also have a command in the Grid for **creating a Region**.

For example, for the **Left/Right MTF Modifiers** Grid, the panel to create a Region is **Modify Region**

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region description</td>
<td>text box</td>
<td>name for the Region.</td>
<td></td>
</tr>
<tr>
<td>Bookmark name</td>
<td>text box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

if not blank, this is a secondary name, often a shorter name, that is used in the **Region** pop up rather than using the **Region description**.
If blank, then when the grid is saved, the Bookmark name is set to be the same as the Region description.

Collapse

Tick box

If ticked, all the commands in the grid until the next Region command are collapsed into this Region command.

If not ticked, the commands in the grid until the next Region command are not collapsed.

Once one or more Regions have been created in the grid, there are icons **Regions**, **Previous region** and **Next region**, on the right hand side of the grid that can then be used.

Clicking on the **Regions** icon will bring up a list of all the Bookmarks in the grid, and clicking on a Bookmark in the list will take you to that Region/Bookmark.

Previous region will take you from the highlighted row to the Region before the highlighted row.

Next region will take you from the highlighted row to the next Region after the highlighted row.

Go back to the previous Region

Go to the next Region

Bring up a pop up list of Regions. Selecting one takes you to the region.

Go to the next section 4.19.7 Scrolling Panel Tables or return to 4.19 Panel Fields.
4.19.7 Scrolling Panel Tables

Scrolling Panel Tables have been mainly replaced by 4.19.6 Grids in Panels.

Some 12d Model panels include tables or lists of information which hold an unlimited number of lines or rows. The tables may have more than one column but the number of columns is fixed for that table.

Such tables are displayed and edited in a scrolling panel table.

For example, the Fixed Template panel can contain an unlimited number of lines (rows) defining fixed links for the template.

```
<table>
<thead>
<tr>
<th>Width</th>
<th>Height</th>
<th>X-fail</th>
<th>Name</th>
<th>Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>+</td>
<td>-3</td>
<td>kerb</td>
<td>cyan</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>-4</td>
<td>shoulder</td>
<td>magenta</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>-5</td>
<td>verge</td>
<td>blue</td>
</tr>
</tbody>
</table>
```

Normally a set number of lines of the table are displayed in the scrolling panel table and once the number of lines exceeds the set number, the up and down arrows on the right hand side of the scrolling panel table are needed to scroll the lines up or down to see the extra information.

Each column of the panel table normally has a column header such as width and height in the above example of the Fixed Template scrolling panel table.

The numbers on the left hand side of the scrolling panel table indicate the line (row) numbers of the information being displayed and the line numbers are also buttons which when selected, bring up the Edit Line n panels. For example

```
Edit Line 1

Clear  Copy  Delete  Insert  Up  Down
```

The options on the Edit Line n panel have the following functions:

- clear: clear the current line
- copy: copy the current line into the next line; all following lines are pushed down
- delete: delete the current line
- insert: insert a blank line; the current line and all following lines are pushed down
- up: swap the current line with the preceding line
- down: swap the current line with the following line

Also, when the number on the left is selected, typing will delete the line

<insert> will insert a line.
Go to the next section 4.19.8 File Box or return to 4.19 Panel Fields.
4.19.8 File Box

12d Model panels frequently include a field for entering a file name. This type of panel field is called a file panel field or box, or simply file box.

When RB is clicked on the [+] at the right of the panel field to bring up the list of available files, the pop-up menu can contain several different types of items:

(a) list of local files satisfying the file ending for the file box
(b) [Lib] button
(c) [User lib] button
(d) [Browse] button
(e) [Open] button for some special files which have an internal 12d Model editor
(f) [Open file]
(g) [Edit file]
(h) [Unicode format]
(i) [Ansi format]
(j) [UTF-8 format]
(k) [Explore]
(l) [Delete file]

For example,

The special menu items under the list of local files satisfying the selection criteria (usually file endings) have the following meanings:
[Lib]
the walk-right lists all files satisfying the file box ending, in the library pointed to by the
environment variable LIB_4D (see Appendix A)

[User Lib]
the walk-right lists all the files satisfying the file box ending, in the user library pointed to by
the environment variable USER_LIB_4D (see Appendix A)

[Browse]
selecting Browse brings up the Microsoft File Browser which can be used to search for a file
with a specified ending in the local or other folders. Note that the appearance of the
Browser dialog depends on the version of Windows you are using. If a file is selected via
the Open button in the current 'browsing' folder, the file name is loaded. If the file is
selected from another folder, the full path and name for the file is loaded and the 'browsing'
folder is updated to the file's folder.

[Browse reset]
selecting Browse reset sets the 'browsing' directory back to the working directory of the
project, and then starts [Browse]. CAUTION: selecting Cancel will make the current file
invalid if the file is not in the working folder or the file does not have a full path specified.

[Browse 12d Synergy]
selecting Browse 12d Synergy browses 12d Synergy folders. You need to have 12d Synergy
installed for this to appear.

[12d Synergy]
walking right on 12d Synergy brings up a menu containing options to Browse 12d Synergy
for files or Add files to 12d Synergy folders. You need to have 12d Synergy installed for
this to appear.

[Relative]
selecting Relative will take a full path name in the file box and convert it to a relative
pathing. Note that this is only possible if the file is on the same disk as the Project. The
path to the file in the file box will be updated so that it is relative to project's working folder.

[Open]
selecting Open will bring up the special 12d Model editor for the file. If not a special
12d Model file, the standard Windows File Associations will be used to open the file. So if
the file is an Adobe PDF file, and a PDF 'Viewer' is installed, then the PDF file will be
opened in that viewer. Note that in earlier versions of 12d Model, this was known as [Edit].

[Open with]
selecting Open with will bring up the Windows Open with program selector to allow the user to choose which program to open the selected file with. If there is one or more than one program associated with a file type, the dialog gives you the choice. Note that the appearance of the Open dialog depends on the version of Windows you are using.

[Edit file]
selecting edit file when there is a file name already in the file box, will edit the file using the editor pointed to by the EDITOR_4D environment variable.

[Unicode format]
selecting Unicode format sets the output format of currently selected file to the Unicode format with UTF-16 encoding.

Unicode allows for most languages of the world to be used concurrently. The resulting file will be marked with the Unicode BOM (byte order mark - see 4.4.6 Endian and BOM) so that other programs know this file is in Unicode format with UTF-16 encoding (see 4.4 Ascii, Ansi and Unicode and 4.4.5 Unicode Encoding: UTF-16).

Note 12d Model is Unicode enabled to the UTF-16 level and allows the use of non-Latin alphabets supported by UTF-16. Not all programs can work with Unicode files so if the file being outputted is to be used by another program, you need to check if UTF-16 files can be read by the intended software.

[Ansi format]
selecting Ansi format sets the output format of currently selected file to the 'Ansi' format (see 4.4 Ascii, Ansi and Unicode). The resulting file will not be marked with any BOM (byte order mark - see 4.4.6 Endian and BOM). Writing Unicode information to an Ansi file may result in the lost of information.

[UTF-8 format]
selecting UTF-8 format sets the output format of currently selected file to the 'UTF-8' format which is a special Unicode format (see 4.4 Ascii, Ansi and Unicode and 4.4.4 Unicode Encoding: UTF-8). The resulting file will also marked with the UTF-8 BOM (byte order mark - see 4.4.6 Endian and BOM) so that other programs know this file is in UTF-8 format.

Note 12d Model is Unicode enabled to the UTF-16 level and allows the use of non-Latin alphabets supported by UTF-16. Not all programs can work with Unicode files so if the file being outputted is to be used by another program, you need to check if UTF-8 files can be read by the intended software.

[Explore]
selecting Explore opens a new Windows Explorer window to the currently 'browsed' folder.

[Delete file]
selecting Delete file will prompt the user to send the currently file to the Windows Recycle Bin if it exists for the drive that the file is on. Note this depends on which drive the file resides. Many network drives do not support Recycle Bins and so a deleted file is lost. It is up to the user to implement good backup procedures to avoid permanent loss of files.

[Email]
selecting Email emails the file given in the File Box. See .

[Logging off/on]
Toggle between Logging on and Logging off. This is only used for Map files and when Logging on is set, then entries are made a log lines in the Output Window that show what tabs in the Map File were used in creating and attributing the string.
Note that certain 'types' of File Box many have additional [...] fields.

Go to the next section 4.19.9 Model Panel Field or return to 4.19 Panel Fields.
4.19.9 Model Panel Field

See

4.19.9.1 [Options] on Model Box Pop Up
4.19.9.2 Adding Model to Views in Model Panel Field

4.19.9.1 [Options] on Model Box Pop Up

When you have a Model field with a model name of an existing model in it, the Select Model pop up for the Model icon at the end of the Model field has an [Options] at the bottom of the pop up with a walk right list of options that apply to the model in the Model field.

Note that the model must exist so if the Model field in a panel is one that creates the model, then using [Options] will only make sense after the panel has been run and the model has been created.

Warning

The options on [Options] apply to the model in the Model field, NOT the model highlighted in the Select Model pop up.

Clean - cleans the model given in the Model field.

String Info - brings up the String Information Table panel and runs it for the model given in the Model field.

Model Info - brings up the Model Information panel and runs it for the model given in the Model field.

Write to 12da - brings up the Write 12d Solutions Archive Data panel with the model given in the...
Model field set as the Data Source.
Add to View - adds the model given in the Model field to the view selected from the Add to View walk right list.

Go to the next section 4.19.9.2 Adding Model to Views in Model Panel Field or return to 4.19.9 Model Panel Field or 4.19 Panel Fields.

4.19.9.2 Adding Model to Views in Model Panel Field

12d Model panels frequently include a field for entering the name of a model. These fields are called model panel fields or simply model fields.

Because models are often required to be displayed on views and hence, need to be added to a view, there is a short-hand method for adding models to views when using a model field.

After the model name is entered into the model field, the name of the view that the model is to be added to is typed in, preceded by a comma. If the model is to be added to more than one view, simply type in each of the view names separated by commas.

For example, to add the model fred to the views 1, 3, and 5, type

fred,1,3,5

into the model field.

Alternatively, the view names can be enclosed in round brackets.

For example,

fred (1,3,5)

Go to the next section 4.19.11 String Select Panel Field or return to 4.19.9 Model Panel Field or 4.19 Panel Fields.
4.19.10 Tin Panel Field

See

4.19.10.1 [Options] on Tin Box Pop Up

4.19.10.1 [Options] on Tin Box Pop Up

When you have a Tin field with a tin name of an existing tin in it, the Select Tin pop up for the Tin icon at the end of the Tin field has an [Options] at the bottom of the pop up with a walk right list of options that apply to the tin in the Tin field.

Note that the tin must exist so if the Tin field in a panel is one that creates the tin, then using [Options] will only make sense after the panel has been run and the tin has been created.

Warning

The options on [Options] apply to the tin in the Tin field, NOT the tin highlighted in the Select Tin pop up.

Tin Info - brings up the Tin Information panel and runs it for the tin given in the Tin field.

Retriangulate - runs retriangulate for the tin given in the Tin field.

Edit - brings up the Retriangulate Tin panel with the tin given in the Tin field set as the Tin and the information for that tin loaded into the panel.

Return to 4.19.9 Model Panel Field or 4.19 Panel Fields.
4.19.11 String Select Panel Field

There is a special panel field called a **string select** panel field which is used for selecting a string and recording the string and model name in the panel field. The string select panel field consists of

(a) a description of what the field is for
(b) a string information area where the model and string name of a selected string are displayed and
(c) the **string select** icon which is clicked on to start selecting a string.

Clicking LB on the **String Select** icon will start the string selection process.
Clicking MB on the **String Select** icon does nothing.
Clicking RB on the **String Select** icon brings up the Choice menu which has options to

(a) Select a string (same as clicking LB on the **String Select icon**)
(b) Edit the string that has already been selected for the String Select field. The string to be edited will have its model name and string name shown in the string information area.
(c) Show the Properties panel for the string that has already been selected for the String Select field.
(d) Delete the string that has already been selected for the String Select field. The string to be deleted will have its model name and string name shown in the string information area.
(e) Clear the String Select panel of the string that had already been selected.
If a String Select operation has been started, it can be cancelled by clicking RB to bring up the Pick Ops menu and selecting Cancel from the menu.

Go to the next section 4.19.12 MB for Same As Pick for Panel Fields or return to 4.19 Panel Fields.
4.19.12 MB for Same As Pick for Panel Fields

For most panel fields/input boxes, clicking the middle mouse button (MB) in the field will activate a Same As pick which allows the user to get information from other objects.

(a) For a View panel field:

After clicking MB in the View panel field, you then select a string, plot frame etc. from a view and the name of the View that the string is on will be written to the View field.

When a view name is selected this way, <Enter> must be pressed for the View field to validate and perform any other actions that the View field automatically does if the view name was selected from the View icon popup.

(b) For most panel field, other than a View panel field:

After clicking MB in the panel field, you then select a string, plot frame etc. from a view and the same value as the panel field type will be extracted from the selected item and piped into the panel field.

For example, for a Model field, the model that the selected item is in will be piped into the Model field.

When a panel field value is selected this way, <Enter> must be pressed for the panel field to validate and perform any other actions that the panel field automatically does when the panel field value was selected from the panel field icon popup.

MB Same As Pick works for most panel fields including Views, Models, Colours, Justify, Text styles, Text units, Names, Plotter (from plot frames), Sheet size (from plot frames), Line styles.

Go to the next section 4.20 Emailing from File Boxes or return to 4.19 Panel Fields.
4.20 Emailing from File Boxes

When a File box has a file name in it and the file exists (this usually means the option has to be run first), clicking on the File icon at the end of the field will bring up the Folder pop-up and at the bottom there is now an [Email] choice.

If you have Outlook 2002 and above (or another MAPI registered application), clicking on [Email] will create an email with that file as an attachment ready for you to give the email address and any extra information you would like to put in the email.
This will work with Outlook 2002 and above, and should also work with other MAPI registered applications.

In the above example, the 12d Archive File was written out as a zipped 12da file (a 12daz file). Zipping the 12da file can result in files a twentieth of the size of the original 12da file (i.e. 5% of the original), which makes it much better for emailing around.

Also, when you receive a 12daz or a 12da file as an attachment to an email, you can drag and drop it onto an open 12d project and it will automatically open the Read 12d Solutions Archive Data panel with the dropped file name already filled in as the File to read.

Important Note
The file must already exist before the [Email] on the pop up can be used so usually the Panel option must be run first to create the file, and then go back and click on the File icon to bring up the pop up for the file to be emailed.

Please continue to the next section 4.21 Measures.
4.21 Measures

Whenever a real value is required in a box (e.g. height, width), the pop-up menu on the [+] button includes a measures menu.

The Measures menu allows the user to pick a selected measure value from existing strings, and the picked value is displayed and piped into the panel field.

For example, the x, y, or z coordinate of a point or the plan distance between two points.

If default values already exist for the pop-up menu, the options on the measures menu will be added to the bottom of the default list.

The measures functions support dynamic measures to give the user more visual feedback. This includes the drawing of a rubber line in the case of Point to Point and String to Point measures, or a cross in the case of At Point.

The measures and their dynamic aspect can be easily explored via the option

Utilities=>Measure=>Value

The walk-right Measure menus are documented in the next four sections.

The stand alone Measures menus is

For the option At point, go to 4.21.1 Measure At Point
Point to point 4.21.2 Measure Point to Point
String from point 4.21.3 Measure String from Point
String to point 4.21.4 Measure String to Point
Last expression 4.16 Last Expression

If information on measures is not required, please continue to the next section 4.16 Last Expression.
4.21.1 Measure At Point

The **At Point** measures calculate and display the picked measure at a selected point.

For example, **X** gets the x-coordinate of a selected point.

Bearing gets the instantaneous bearing of a selected point.

The dynamic aspect of the **at point** measures is as follows:

after the desired **at point** option is picked and the string for the **at point** measure is tentatively selected but not yet accepted, and if the cursor is moved around, then the cursor position is dynamically dropped perpendicularly onto the highlighted string and a cross displayed on the string at the dropped point, and the picked measure value is dynamically displayed in the panel field.

For example, if the x measure was picked from the **Measure Point** menu and a string highlighted but not yet accepted, then as the cursor is moved around the screen, the cursor position is dropped perpendicularly onto the highlighted string and displayed as a cross and the x-coordinate of the cross is displayed in the panel field.
4.21.2 Measure Point to Point

The **Point to Point** measures calculate and display the picked measure between two selected points.

For example, **Length** gets the plan distance between two selected points. **X-fall %** gets the % cross fall of the line joining two selected points.

The dynamic aspect of the **point to point** measures is as follows:

- After the desired **point to point** measure is picked, and the first point for the **point to point** measure is selected, then a rubber line is dynamically drawn between the selected point and the current cursor position and the picked measure value is dynamically displayed in the panel field.

- Further, if the selected string for the **second** point is tentatively selected but not yet accepted, and if the cursor is moved around, then the cursor position is dynamically dropped perpendicularly onto the highlighted string and the picked measure value to the second string is dynamically displayed in the panel field.

For example, if the length measure was picked from the Measure **Point to Point** menu and the first point selected, then a rubber line is dynamically drawn between the selected point and the cursor position and the plan length from the selected point to the current cursor position is dynamically displayed in the panel field.

If a string is selected for the second point but not yet accepted, the cursor position is dynamically dropped onto the highlighted string and the plan distance from the first point to the dropped point is dynamically displayed in the panel field.
4.21.3 Measure String from Point

The **String from Point** measures calculate the picked measure *from the selected string* by taking the current cursor position and dropping it perpendicularly onto the selected string and using the dropped point on the string to get the measure value.

For example,

- **X** gets the x-coordinate from the string of the cursor dropped onto the selected string.
- **Z** gets the z-coordinate from the string of the cursor dropped onto the selected string.
- **Bearing** gets the instantaneous bearing from the string of the cursor dropped onto the selected string.

The dynamic aspect of the *string from point* measures is as follows:

after the desired *string from point* measure is picked and the string for the *string from point* measure is selected, then as the cursor is moved around, a rubber line is dynamically drawn between the cursor and the cursor position dropped perpendicularly onto the selected string, and the picked measure value of the dropped cursor position is dynamically displayed in the panel field.

For example, if the **z** measure was picked from the **Measure String from Point** menu and a string selected, then as the cursor is moved around the screen, the cursor position is dropped perpendicularly onto the selected string. The perpendicular line is dynamically redrawn and the z-coordinate of the dropped point on the string is dynamically displayed in the panel field.
4.21.4 Measure String to Point

The String to Point measures are similar to the point to point measures and calculate the picked measure from a point and the point dropped perpendicularly onto the selected string.

For example, **Length** gets the plan distance between the point and the point dropped perpendicularly on a selected string.

Bearing gets the bearing of line joining the point and the point dropped perpendicularly onto a selected string.

The dynamic aspect of the string to point measures is as follows:

- After the desired string to point measure is picked, and a string selected, then a line is dynamically drawn between the cursor position and the cursor position dropped perpendicularly onto the selected string. The string to point value is dynamically displayed in the panel field as the cursor is moved around.

- Further, if the cursor position is on a string which has been selected but not accepted and the cursor is moved around, then the cursor is constrained to remain on the tentatively selected string. It is dynamically dropped perpendicularly onto the original string and the measure value to the dropped point displayed in the panel field.

Hence the selected point is constrained to remain on the tentatively picked string and the measure dynamically calculated and displayed.
For example, if the length measure was picked from the Measure String to Point menu and the first string selected, then a line is dynamically drawn perpendicularly between the selected string and the current cursor position and the plan length from the string to the current cursor position is dynamically displayed in the panel field.

If a string is tentatively selected (picked but not yet accepted), the cursor position is dynamically dropped onto the first string and the plan distance measured perpendicularly from the point to the first string is dynamically displayed in the panel field.

The string to point measures where point 1 is constrained to be on a tentatively selected string.

Please continue to the next section 4.16 Last Expression.
Please continue to the next section 4.22 Colours.
4.22 Colours

See

4.22.1 Colours on the Screen
4.22.2 Colours on a Plot

4.22.1 Colours on the Screen

For 12d Model elements, there is a palette of up to 10,240 colours that can be used for displaying elements and parts of elements on a view. Each of the colours has a unique number, the colour number, and it is the colour numbers that are saved in the 12d Model database.

How each colour number appears when drawn on a view is defined by giving the values of the intensities of red, green, and blue (rgb) for the colour number.

When a panel requests a colour using a colour box, clicking on the colour icon will bring up the Select Colour choice box to choose a colour.

What the rgb is for a colour number, its text name that is shown in the Select Colour choice box and other properties are defined in the colours.4d file.

The colours.4d file is read in whenever a project is opened so it is only possible to use a new colours.4d file by restating a project. A default colours.4d file is distributed with 12d Model and is in the set_ups folder.
Note: for viewing, creating and editing a *colours.4d* file, see 4.22.3 Editing Colours.4d and for the actual definition of the *colours.4d* on disk, see 39.2.7.2 Colours File (colours.4d).

Colour Box Panel Field

Either colour numbers or the unique colour name associated with the colour number, can be typed in any Colour box in a panel field. The Colour box converts a colour name to its colour number for storing in the *12d Model* database.

Limiting the Number of Colour Shown in Select Colours

When a large number of colours have been defined, the Select Colour pop-up list can get unwieldy so there is a default parameter, Display colours which gives the number of colours to use in a pop-up. Display colours is on the System Settings tab of the Defaults panel which brought up by Project=>Management=>Defaults. See 7.6.1 Defaults.

Hence it is possible to have thousands of defined colour numbers but still have only a selected number displayed in the Colour pop-ups.

The order that the colours are selected from the *colours.4d* file for the pop-up is not by the colour number but the Pop-up number order which can be completely different. This means that the user can add extra colours after the standard 2000 *12d Model* colours number and have the new colours coming up in the Colours pop-up even thought it is restricted on how many colours. The Pop-up number is given in the *colours.4d* file.

Order in the Select Colours Pip-Up

Finally the order that the colours are sorted in the Colours pop-up can be by pop-up number or alphabetically by colour name. See 4.22.3.1 Colours Sort Order in Select Colour Pop-Up.

Note:

In *12da* files, colours are written out by their colour names, not by colour numbers. So when reading in a 12da file, the colour name in the 12da file gets mapped to the colour number that matches it in the *12d Model* project that the 12da file is being read into.

For viewing, creating and editing a *colours.4d* file, see 4.22.3 Editing Colours.4d and for the actual definition of the *colours.4d* on disk, see 39.2.7.2 Colours File (colours.4d).

For more information on panel file pop-ups, see 4.19.5 Pop-Up Lists and Menus.

Continue to the next section 4.22.2 Colours on a Plot or return to 4.22 Colours.
4.22.2 Colours on a Plot

How a colour is drawn on a view is one thing, but how it appears on a plot can be completely different. And how the colours appears on one plot may be different for another plot. For example, all the strings on a view are in colour and you produce a coloured plot but you may also want to produce a and black and white plot of exactly the same data.

These cases are covered by defining different 12d Model plotters where plotter has a unique name, a plot engine to say what type of device it is being plotted to, and colour to pen mappings to specify what the rgb and thickness is used for a pen.

All the 12d Model plotters are defined in the plotters.4d file.

The plotters.4d file is read in whenever a project is opened so it is only possible to use a new plotters.4d by restating a project. A default plotters.4d is distributed with 12d Model and is in the set_ups folder.

For more information 12d Model plotters and plotters.4d, see 43.1 12d Model Plotters.

For more information on creating and editing a colours.4d file, see 4.22.3 Editing Colours.4d and for the actual definition of the colours.4d on disk, see 39.2.7.2 Colours File (colours.4d).

Return to 4.22 Colours.
4.22.3 Editing Colours.4d

For each colour number, the red, green, blue (rgb) for each colour number, an alternate text name, pop-up number and pen number are defined in the colours.4d file. Up to 10,240 colours can be defined. See 39.2.7.2 Colours File (colours.4d).

A default file is distributed with 12d Model and resides in the set_ups folder.

To view, add or modify the definitions for the colour numbers in colours.4d, use the Edit Colours panel which is brought up by clicking on the [Edit] section of the Select Colours pop-up for a colour box, or by the option Plots =>Plotting setups =>Pen mapping.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid Cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour No.</td>
<td>integer</td>
<td>number of the colour. A unique integer value between 0 and 10,239.</td>
<td></td>
</tr>
<tr>
<td>Pop-up No.</td>
<td>integer</td>
<td>a unique integer - positive, 0 or negative.</td>
<td></td>
</tr>
<tr>
<td>Colour Name</td>
<td>text</td>
<td>text name for the colour. The colour names must all be unique within the Colours.4d file.</td>
<td></td>
</tr>
<tr>
<td>Legacy Name</td>
<td>text</td>
<td>Colour names are restricted to having alphanumeric characters and decimal points (.). Upper and lower case characters can be used but colour names are case insensitive for uniqueness checks. So Red is considered the same as RED.</td>
<td></td>
</tr>
</tbody>
</table>
whenever a colour name is searched for, the Legacy Name column will also be searched for if there is no match with the Colour Name column.

The Legacy Name was introduced so that some 12d Model colours can be given new names without upsetting the colour number that went with the original name.

<table>
<thead>
<tr>
<th>Colour No.</th>
<th>Pop-up No.</th>
<th>Colour Name</th>
<th>Legacy Name</th>
<th>Colour Group</th>
<th>Red</th>
<th>Green</th>
<th>Blue</th>
<th>Pen No.</th>
<th>Comment</th>
<th>Colour Group</th>
<th>Pen No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>-7007</td>
<td>pen 025</td>
<td>Black Pen mm weight</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>403</td>
<td>Plots bla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>-7006</td>
<td>pen 025a</td>
<td>Black Pen mm weight</td>
<td>0</td>
<td>255</td>
<td>255</td>
<td>404</td>
<td>Plots bla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>-7005</td>
<td>pen 035</td>
<td>Black Pen mm weight</td>
<td>255</td>
<td>255</td>
<td>0</td>
<td>405</td>
<td>Plots bla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>-7004</td>
<td>pen 035a</td>
<td>Black Pen mm weight</td>
<td>0</td>
<td>255</td>
<td>0</td>
<td>406</td>
<td>Plots bla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>-7003</td>
<td>pen 050</td>
<td>Black Pen mm weight</td>
<td>255</td>
<td>127</td>
<td>0</td>
<td>407</td>
<td>Plots bla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>-7002</td>
<td>pen 070</td>
<td>Black Pen mm weight</td>
<td>0</td>
<td>255</td>
<td>255</td>
<td>408</td>
<td>Plots bla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>-7001</td>
<td>pen 300</td>
<td>Black Pen mm weight</td>
<td>150</td>
<td>90</td>
<td>0</td>
<td>409</td>
<td>Plots bla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>-6050</td>
<td>vis grass0</td>
<td>grass</td>
<td>52</td>
<td>80</td>
<td>8</td>
<td>501</td>
<td>Plots bla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>-6051</td>
<td>vis grass1</td>
<td>grass1</td>
<td>74</td>
<td>105</td>
<td>11</td>
<td>502</td>
<td>Plots bla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>-6058</td>
<td>vis grass2</td>
<td>grass2</td>
<td>96</td>
<td>130</td>
<td>14</td>
<td>503</td>
<td>Plots bla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>-6057</td>
<td>vis grass3</td>
<td>grass3</td>
<td>118</td>
<td>155</td>
<td>17</td>
<td>538</td>
<td>Plots bla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>-6056</td>
<td>vis grass4</td>
<td>grass4</td>
<td>140</td>
<td>180</td>
<td>20</td>
<td>539</td>
<td>Plots bla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>-6055</td>
<td>vis grass5</td>
<td>grass5</td>
<td>162</td>
<td>205</td>
<td>23</td>
<td>540</td>
<td>Plots bla</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Colour Name - that is used for this colour number

Legacy Name - that can also be used for this colour number

Colour Group - text

group for the colour. This is not currently used.

Red/Green/Blue - integer

amount of red/green/blue in the colour when it is displayed on a view. The value is between 0 and 255.

Pen No. - text box

the default pen number to map the colour to.

Comment - text box

optional comment.

Buttons

Sort - button

sort the table with respect to the column given in the adjacent field.

Picker - button

if a row of the table is highlighted, selecting Picker brings up the Color Picker to interactive define the RGB for new colours.
Write button

write the table out to a colours.4d file.

WARNING

Do not change the colour numbers and definitions for colour numbers 0 to 2000 - they are restricted for 12d Solutions use only.

In the 12d Model database, only the colour number is saved so if the rgb of any colour numbers are changed then the display of colours in existing projects may change.

Please continue to the next section 4.22.3.1 Colours Sort Order in Select Colour Pop-Up or return to 4.22 Colours.
4.22.3.1 Colours Sort Order in Select Colour Pop-Up

There is an environment variable \texttt{SORT_COLOURS_BY_POPUP_NUM_4D} that controls the display order of the colours in the Select Colour popup that you get when you click on a Colour icon:

If \texttt{SORT_COLOURS_BY_POPUP_NUM_4D} is 1, the colours in the Select Colour popup are sorted by the Pop-up Number given for the colours in the Colours.4d file.

If \texttt{SORT_COLOURS_BY_POPUP_NUM_4D} is 0, the colours in the Select Colour popup are sorted alphabetically.

\textbf{Note} - Remember that the number of colours shown in the Select Colour popup is controlled by the Display colours value in the Defaults panel.

To edit the Colours.4d file to edit the popup number, click on [Edit] in the Select Colour popup. You can then edit the Pop-Up Number column and after any changes are made and write out the new Colours.4d file.
Note - The sort order used when displaying the **Colours.4d** file has no effect on the order in the **Select Colour** popup.

To see the **Colours.4d** file sorted in different ways, click on the **Sort Order** choice pop-up, select the required sort order and then click on the **Sort** button.

You need to do a **Project Restart** for any changes in **Colours.4d** to take effect.

Please continue to the next section 4.23 **Plotters** or return to 4.22.3 **Editing Colours.4d** or 4.22 **Colours**.
4.23 Plotters

When creating a plot, 12d Model has a variety of options about where the potting data goes to. The user can:

(a) drive the plotters directly using Windows printer drivers or raster plotter drivers
(b) plot indirectly by creating a computer disk file (the plot file) in a variety of formats containing the relevant plotter instructions for producing the plot. The formats include pdf, XPS, DWG and DGN.
(c) plot indirectly to a 12d Model model

In all of these cases, there are plotter mapping files that control how the colours appear on the plot and with what weights. For example, for some plots, you may want all the colours to be mapped to black and shades of grey rather than actual colours. There are plotter mapping files that are installed with 12d Model and users can define their own.

The choice of the device to plot to and the plotter mapping file go together to define a Plotter and in plotting options, the choice of plotters that is available is shown in the Select Plotter pop-up menu. The default 12d Model list is

From the list you will see that there can be a number of Plotters using the same output type (e.g. windows or pdf) but there are different entries in the list depending on a particular plotting
mapping file (pmf) is being used.

For example:

Full Scale >PDF black

The 12d standard **colour numbers 1-15 & 316** plot with **0.25mm black pens**.

The "pen" (400 series) colour numbers plot with **black pens of specific weights**.

All "ppf" (900 series) colour numbers plot with black/grey scale pens of specific weights.

Full Scale >PDF black string weight

If the string has no weight then it is the same as **Full Scale >PDF black** but if the string has a weight then the string weight is used.

So if a non standard weight is required for a particular string then you set the weight for that string. Otherwise do not give the string a weight.

When the plot file is created, it can be passed to a user specified program or batch file which can automatically direct the plot file to a plotter. See 43.4 Sending Plots to a Plotter.

For more information on plotters and defining plotters, see 43 Plotters and Plotting.

The file *plotters.4d* is described in 43.2 Defining Plotters - Plotters.4d.

The *plotter mapping file* is described in 43.3.2 Plotter Mapping File.

Please continue to the next section 4.24 Defaults.
4.24 Defaults

4.24.1 Defaults

Many options in 12d Model require settings which are almost always the same. To save repetitious typing, 12d Model provides a number of user defined defaults that are used throughout 12d Model.

For example, the chord to arc tolerance, point cross size and highlight cross size and colour.

Certain default values are read in from a file when a new project is created. These defaults can also be modified inside 12d Model using the Defaults panels.

The layout of the file used to define the default values for a new project is given in the appendix Set Ups.

User defaults can also be set for entire panels - see the section 4.3.6.6 Panel Defaults - ddx Files.

Go to the next section 4.24.2 Default Panel Values or return to 4.24 Defaults.

4.24.2 Default Panel Values

When a panel is opened, 12d Model may set some default values.

However for most panels the user can supply the values to be used for all the panel fields each time a panel is opened. This information is stored in a defaults file for a panel.

For more information on the panel default files and how to create them, go to the section 4.3.6.6 Panel Defaults - ddx Files.

Go to the next section 4.24.3 Default File Ending or return to 4.24 Defaults.

4.24.3 Default File Ending

In any panel pop-up requiring a file name, default file endings are used to restrict the names of the files selected from the current folder to be displayed in the pop-up.

The list of special file endings is given in the section 42.1 Default File Ending in the appendix 42 Special File Formats.

Return to 4.24 Defaults or continue to the next section 4.25 Miscellaneous Panels.
4.25 Miscellaneous Panels

The value is entered into the typed-input box, terminated with <enter>. The Enter Value typed-input box then disappears.

The length is entered into the typed-input box, terminated with <enter>. The New Length typed-input box then disappears.

The radius is entered into the typed-input box, terminated with <enter>. The New Radius typed-input box then disappears.
4.26 No Option Available

12d Model consists of a base module of varying point sizes and optional modules.

If a module has not been purchased and any options included in that option are selected then a No licence available message will be displayed.

The missing module can be purchased by contacting your 12d Model distributor or 12d Solutions Pty Ltd.

4.27 No Information Available

There is no information available on this panel or menu.
4.28 Options on Toolbars

For general information Toolbars and Controlbars, go to 4.3.5 Toolbars and Controlbars

Each Toolbars is described in detail in:

- **Cad**
- **Cad Arcs**
- **Cad Circles**
- **Cad Controlbar**
- **Cad Delete**
- **Cad Fills**
- **Cad Holes**
- **Cad Images**
- **Cad Intersect**
- **Cad Lines**
- **Cad Modify**
- **Cad Points**
- **Cad Polygons**
- **Cad Segment**
- **Cad String**
- **Cad Symbols**
- **Cad Text**
- **Design**
- **Cad Vertex**
- **H**
- **Measure edits**
- **Menu Bar**
- **Road**
- **Search bar**
- **Snaps Cad**
- **Snaps Cad Arcs**
- **Snaps Cad Circles**
- **Snaps Cad Intersect**
- **Snaps Cad Lines**
- **Snaps Cad Points**
- **Strings Edits**
- **Super alignment tools**
- **Survey reductions**
- **Symbol Controlbar**
- **Text Controlbar**
- **Tin Utility**
- **Track**
- **Visualisation**

Turns off the area for docking toolbars on left hand side of 12d Model window.
4.28.1 Design Toolbar

Position of option on menu: various

The Design Toolbar is:

For Template Create/Edit, go to
- Create MTF File 20.4.1 Create MTF
- Apply Templates Function 20.3.2 Apply MTF Function
- Apply Kerb Return Function 20.3.5 Kerb Return Function
- Interface Function 20.3.7 Interface Function
- Create Boxing File 20.5.1 Create Boxing Definitions
- Boxing Many 20.5.4 Boxing Many Function
- Apply Templates Defaults 20.3.1 Apply Template Function
- Create / Edit Chain 28.3.1 Create/Edit a Chain
- Boxing Many 20.5.4 Boxing Many Function
- Chain Parameters Editor 28.3.5 Creating/Editing Parameter Value Files
- Tag Tree 7.6.10 Tags
4.28.2 Measure Edits Toolbar

Position of option on menu: various

The Measure Edits toolbar is:

![Measure Edits Toolbar]

Options on Toolbar
- string inquire
- measure bearing/distance
- measure value
- measure plan area
- measure surface area
- measure xfall
- measure angle by 3 points
- multi string properties
- measure menu

For **String inquire**, go to: [14.11 Inquire]
- Measure bearing/distance: [28.6.2 Bearing and Distance]
- Measure value: [28.6.5 Value]
- Measure plan area: [28.6.3 Plan Area]
- Measure surface area: [28.6.4 Surface Area]
- Measure xfall: [28.6.8 X Fall by Strings]
- Measure angle: [28.6.1 Angle by 3 Points]
- Match properties: [14.12.1 Multi String Properties]
- Measure menu: [28.6 Measure]
4.28.3 Road Toolbar

Position of option on menu: various

The Road toolbar is:

![Road Toolbar Image]

Options on Toolbar

- pad create
- pad edit
- dynamic pad pond
- subgrade batter intersection
- section segment removal
- special chainage file
- kret special chainage file
- set out points
- label chainage/offset
- dimension create/edit
- traffic island create
- traffic island function
- road widening
- convert alignment
- overlay design
- create roads set up
- create roads
- create roads kret convert
- computator kerb return

For Pad Create, go to 20.7.3 Allotment Pad Create
For Pad Edit, go to 20.7.4 Allotment Pad Edit
Dynamic Pad Pond 20.7.5 Dynamic Pad/Pond Interface
Subgrade Batter Intersection 20.8.12.11 Subgrade Intersect Function
Section Segment Removal 20.8.12.12 X Segment function
Special Chainage File 20.8.12.7 Special Chainage File
Kret Special Chainage File 20.8.12.6 Kerb Special Chainage File
Setout Points 17.18.5 Create Setout Points Using Super String
Label chainage/offset 24.8 Chainage/Offset Label Inquire
Dimension Create/edit 24.7 Create/Edit Dimensions
<table>
<thead>
<tr>
<th>Traffic Island Create</th>
<th>20.8.9.1 Create Traffic Island</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Island Function</td>
<td>20.17.2.1 New Island Create (Function)</td>
</tr>
<tr>
<td>Road Widening</td>
<td>20.8.12.4 Road Widening with Minimum and Maximum</td>
</tr>
<tr>
<td>Crossfall</td>
<td></td>
</tr>
<tr>
<td>Convert Alignment</td>
<td>14.2.10 Super to SA Element Convert</td>
</tr>
<tr>
<td>Overlay Design</td>
<td>20.13.1 Overlay Design</td>
</tr>
<tr>
<td>Create Roads Setup</td>
<td>20.8.12.2 Create Roads - Setup</td>
</tr>
<tr>
<td>Create Roads</td>
<td>20.8.12.1 Create Roads - Manager</td>
</tr>
<tr>
<td>Create Roads Kret Convert</td>
<td>20.8.12.3 Create Roads - Kreturns Convert</td>
</tr>
<tr>
<td>Computator Kerb Return</td>
<td>20.8.12.10 Kret Convert to Computators</td>
</tr>
</tbody>
</table>
4.28.4 Snaps Cad

Position of option on menu: various

The Snaps Cad Menu can be accessed the following ways:
(a) by selecting Snaps Cad from the Pick Ops menu
(b) by walking right on Snaps Cad on the Pick Ops menu
(c) From the toolbar, as long as Snaps Cad is ticked in the Customize toolbars panel (View => Toolbars).

When you unpin the Snaps Cad toolbar, it will then appear on the screen as a floating toolbar.

The Snaps Cad Menu walk-right menu is:

For the option Point, go to 4.28.5 Snaps Cad Point
Intersection 4.28.5.1 Snaps Cad Intersection
Line 4.28.5.2 Snaps Cad Line
Circle 4.28.5.3 Snaps Cad Circle
Arc 4.28.5.4 Snaps Cad Arc

Note: Snap Cads work in a very similar pattern to the normal Cad options. However, they create virtual points and segments which can be used by either Cad or Snap Cad options. Snap Cad
options don’t create any points or strings.
4.28.5 Snaps Cad Point

This section of documentation is a work in progress and will be updated in subsequent releases.

For the option *Point*, go to

- **Point**
- **Mid-segment**
- **Centre**
- **Mid-point**
- **Chainage**
- **Bearing and distance**
- **Offset**
- **Chainage offset**
- **Chainage offset extended**
- **Deflection**
- **Drop perpendicular**
- **Angle**
- **Projection**
- **Between points**
- **Between points 3d**

...at a user selected position
...at middle of a selected segment
...at the centre point of an arc
...at the middle of the two selected points
...at the position of a chainage along a selected string
...a given bearing and distance from a selected position
...at the offset position of a point on a selected string
...at the offset position of a chainage along a selected string
...at the offset position of a chainage along a selected string which can be extended
...a given distance at right angles to a selected string
...dropped perpendicularly onto a selected string
...a given distance at a given angle to a selected string
...projected a chainage distance along a selected string
Point
On selecting **Point**, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d **Model** application window.

The user can select a position with the mouse and on accepting that point (Middle mouse button or enter) the virtual point is created at the selected position and ready to be used by the calling option.

The snap mode will influence the mouse selection. For example if cursor snap is on, the user can choose a position not yet defined. If point snap is on and the selection snaps to an existing point, the option will place another point at that location.

The user can also activate the selection menu used with the mouse (right button) that allows various positioning options.

Mid- segment
This option creates a virtual point in the middle of a selected line or arc segment.

On selecting **Mid- segment**, the user is prompted to select a segment and a virtual point is created at the mid point of the segment.

Centre
This option creates a virtual point at the centre of a selected segment.

On selecting **Centre** the user is prompted to select a segment and a virtual point is created at the centre of the segment.

Mid point
This option creates a virtual point in the middle of two selected positions.

On selecting **Mid point**, the user is prompted to select the first position and then the second position. A virtual point is created at the mid point of the two selected positions.

Chainage
This option creates a virtual point at the position of a user specified chainage of an existing string.

On selecting **Chainage**, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d **Model** application window.

STEP 1:
The user selects a valid string (left mouse button) and accepts that string (Middle mouse button or enter).
STEP 2:
The user enters a chainage value where a point should be placed followed by the enter key. This chainage is with respect to the selected string.

STEP 3:
A virtual point is created at the positioned on the string at the given chainage.
Bearing and distance

This option calculates a virtual point that is located at a given bearing and distance from a start position.

On selecting Bearing and distance, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
A start position is selected and accepted.

STEP 2:
A bearing is selected with the mouse or entered in via the keyboard. For typed entry, simply start
typing or press the space bar to bring up the bearing entry box. The value is entered into the input box followed by the Enter key.

The line drawn represents the bearing value and changes with movement of the mouse. If the user wants to see what the current value of the bearing is, simply press the D key (dynamic value). This puts the value into the input box where it can be accepted to create the point or the input box can be closed and the rubber banding (graphically changing) of the bearing continued.

Note: The Page up and page down keys can be used when the input angle box comes up to add or subtract intervals of 90 degrees.

This option also allows the definition of the bearing by the selection of the 2nd point perpendicular or tangential to a selected segment. For this, the line snap should be on. The user selects the segment (line or arc) and then by pressing P for perpendicular or T for tangential a solution is shown. As there is often two solutions with respect to arcs, the user can move the mouse to change from one solution to the next. The example shown below is the perpendicular case.
STEP 3:
A distance is selected and accepted with the mouse or entered in via the keyboard. For typed entry, simply start typing or press the space bar to bring up the distance entry box. The value is entered into the input box followed by the enter key.

The circle drawn represents the distance value and changes with movement of the mouse. If the user wants to see what the current value of the distance is, simply press the D key (dynamic value). This puts the value into the input box where it can be accepted to create the point or the input box can be closed and the rubber banding (graphically changing) of the circle continued.

This option also allows the definition of the distance by the selection of the 2nd point perpendicular or tangential to a selected segment. For this, the line snap should be on. The user selects the segment (line or arc) and then by pressing P for perpendicular or T for tangential a solution is shown. As there is often two solutions with respect to arcs, the user can move the
mouse to change from one solution to the next. The example shown below is the perpendicular case.

![Diagram showing perpendicular distance creation](image)

The perpendicular distance shown below by the purple line will be used at the defined bearing to create the point.

STEP 4:

A virtual point is created using the information supplied. By entry into the input boxes:
Or by using the perpendicular/tangential tools:

Offset

This option creates a virtual point that is located by reference to a string, a control point, a chainage distance along the string from the control point and an offset to the selected string.

After selection and acceptance of a string, a control point is selected and accepted. This point is dropped perpendicular onto the string. The distance along the string is measured from this dropped point. Positive distances are in the direction that the string was picked. Finally a offset to the string can be specified for the placement of the new virtual point.

On selecting Offset, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The user selects and accepts a string with direction. This defines what side the offset applies to.

STEP 2:
The user picks and accepts a control point to be dropped onto the selected string.

STEP 3:
A distance along from the dropped point is specified. Positive distances are in the direction of the string selection pick. The value is entered into the input box followed by the Enter key.
STEP 4:
An offset relative to the selected string (and direction) is specified in the input box followed by the Enter key.

STEP 5:
A virtual point is created using the information supplied.

Chainage offset
This option creates a virtual point that is located perpendicular to the reference string with a defined offset.

STEP 1:
The user selects the reference string with direction.
STEP 2:
The user specifies a chainage on the reference string.

STEP 3:
The user specifies an offset distance from the reference string.
A virtual point is created using the information supplied.

Chainage offset extended
Is similar to chainage offset except the specified chainage can be extended beyond the start and end chainages of the selected string.

Deflection
This option creates a virtual point that is located by reference to a string, a control point, a distance along the string from the control point, a deflection angle and deflection distance.

After selection of a string, a control point is selected. This point is dropped perpendicular onto the string. A distance along the string can be entered to move the measure point. Positive distances are in the direction that the string was picked. A deflection angle is specified which is a clockwise angle from the measure point. The deflection distance is the distance from the measure point to the point which is to be created.

On selecting **Deflection**, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The user selects and accepts a string with direction.

STEP 2:
The user picks and accepts a control point to be dropped onto the selected string.
STEP 3:
A distance along from the dropped point is specified. Positive distances are in the direction of the string selection pick. The value is entered into the input box followed by the Enter key.

STEP 4:
A deflection angle is specified. This angle is clockwise, relative to the direction of the string selection pick. The value is entered into the input box followed by the enter key.

Note: The Page up and page down keys can be used when the input angle box comes up to add or subtract intervals of 90 degrees.
STEP 5:
A deflection distance is supplied. Positive is in the direction of the string selection pick. The value is entered into the input box followed by the Enter key.

STEP 6:
A virtual point is created using the information supplied.
Drop perpendicular

This option creates a virtual point by dropping from a user selected position perpendicularly onto a user selected string.

On selecting Drop perpendicular, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:

The user selects a string and accepts (with direction) to have the point dropped onto.

STEP 2:

The user picks and accepts a position to drop onto the nominated string.
STEP 3:
A virtual point is created at the perpendicular drop point.

Angle
This option creates a virtual point that is located by projecting a selected position back to a string by a specified angle.

STEP 1:
User selects and accepts a string to have the point projected onto.

STEP 2:
User specifies an angle for the projection.

STEP 3:
User selects a position on the screen to be projected back to the string.
STEP 4:
A virtual point is created, which form the nominated angle with the selected position on **STEP 3**.

Projection
This option creates a virtual point that is located by firstly dropping a point onto a string and then giving a distance along the string from the dropped point.

On selecting **Projection**, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the **12d Model** application window.

STEP 1:
The user selects and accepts a string (with direction) to have the point dropped onto

STEP 2:
The user picks and accepts a position to drop onto the nominated string
STEP 3:
The user is prompted for the distance along the string. Positive distances are in the direction that the string was picked. A value is entered into the input box followed by the Enter key.

STEP 4:
The virtual point is created the nominated distance along the string from the dropped point.
Between Points
This option creates a virtual point that is on the line between two selected positions and a given distance from the first point.

On selecting Between points, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The user selects a start point. Specification of a position can be done by the direct input of the xyz coordinate of the point by pressing the space bar to bring up the enter XYZ panel or by typing of the value to bring up the XYZ panel. The user can also select a point with the mouse and accepts that point (Middle mouse button or enter).

STEP 2:
The user picks a 2nd point and accepts that point (Middle mouse button or enter) to define the reference line.
STEP 3:
A distance from the 1st point to create the point is given either by selection with the mouse or by typing a value. To type a value, simply start typing and the input box for the distance will appear. Alternatively you can press the space bar to bring up the input box. Enter the value and then the enter key.

The circle drawn represents the distance value and changes with movement of the mouse. If the user wants to see what the current value of the distance is, simply press the D key (dynamic value). This puts the value into the input box where it can be accepted to create the point or the input box can be closed and the rubber banding (graphically changing) of the circle continued.

STEP 4:
A virtual point is created on the segment specified by the selection of the 1st and 2nd points, at the nominated distance. Negative distances can be entered as in this example.
Between points 3d

This option creates a virtual point that is on the line between two selected positions and a given distance from the first point. The z-value of the string is interpolated from the two selected positions.

On selecting Between points 3d, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:

The user selects a start point. Specification of a position can be done by the direct input of the xyz coordinate of the point by pressing the space bar to bring up the enter XYZ panel or by typing of the value to bring up the XYZ panel. The user can also select a point with the mouse and accepts that point (Middle mouse button or Enter).

STEP 2:

The user picks a 2nd point and accepts that point (Middle mouse button or <Enter>) to define the reference line.
STEP 3:
A distance from the 1st point to create the point is given either by selection with the mouse or by typing a value. To type a value, simply start typing and the input box for the distance will appear. Alternatively you can press the space bar to bring up the input box. Enter the value and then the enter key.

The circle drawn represents the distance value and changes with movement of the mouse. If the user wants to see what the current value of the distance is, simply press the D key (dynamic value). This puts the value into the input box where it can be accepted to create the point or the input box can be closed and the rubber banding (graphically changing) of the circle continued.

STEP 4:
A virtual point is created on the segment specified by the selection of the 1st and 2nd points, at the nominated distance. Negative distances can be entered as in this example.
4.28.5.1 Snaps Cad Intersection

This section of documentation is a work in progress and will be updated in subsequent releases.

![Snaps Cad Intersection](image)

for the option 2 segments, go to the section

2 segments
2 offset segments
2 points and 2 bearings
2 points and 2 distances
2 points with bearing and distance

2 segments

This option creates a virtual point at the intersection of the projections of two line or arc segments.

On selecting 2 segments, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The 1st segment is selected and accepted.

![Segment Selection](image)

STEP 2:
The 2nd segment is selected and accepted.
STEP 3:
A virtual point is created at the intersection of the two segments (if a solution exists). Note that the 2nd segment in this case has been projected to enable a solution to be calculated.

2 offset segments
This option creates a virtual point at the intersection of the offsets of two selected segments.

On selecting 2 offset segments, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The 1st segment is selected and accepted with direction. This sets the positive direction of the offset to the right of the direction of pick.
STEP 2:
The offset is given by into an offset input box. The positive direction is at 90 degrees to the direction of pick for the segment. The value is entered into the input box followed by the Enter key.

STEP 3:
The 2nd segment is selected with direction and accepted. This sets the positive direction of the offset to the right of the direction of pick.
STEP 4:
The offset is given by into an offset input box. The positive direction is at 90 degrees to the
direction of pick for the segment. The value is entered into the input box followed by the Enter
key.

STEP 5:
A virtual point is created at the intersection of the projected lines offset to the segments (if a
solution exists).
2 points and 2 bearings

This option creates a virtual point by using two points and two bearings.

On selecting **2 points and 2 bearings**, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the **12d Model** application window.

STEP 1:
The 1st point is selected and accepted.

STEP 2:
A bearing from the 1st point to create the point is given either by selection with the mouse or by typing a value. To type a value, simply start typing and the input box for the bearing will appear. Alternatively you can press the space bar to bring up the input box. The value is entered into the input box followed by the Enter key.

The line drawn represents the bearing value and changes with movement of the mouse. If the user wants to see what the current value of the bearing is, simply press the D key (dynamic value). This puts the value into the input box where it can be accepted to create the point or the input box can be closed and the rubber banding (graphically changing) of the line continued.

Note: The Page up and page down keys can be used when the input angle box comes up to add or subtract intervals of 90 degrees.
This option also allows the definition of the bearing by the selection of the 2nd point perpendicular or tangential to a selected segment. For this, the line snap should be on. The user selects the segment (line or arc) and then by pressing \texttt{P} for perpendicular or \texttt{T} for tangential a solution is shown. As there is often two solutions with respect to arcs, the user can move the mouse to change from one solution to the next.

\textbf{STEP 3:}

The 2nd point to create the point from is selected and accepted.

\textbf{STEP 4:}

A bearing from the 2nd point to create the point is given using the optional outlined in \textbf{STEP 2} above.
STEP 5:
The virtual point created if there is a valid solution.

2 points and 2 distances
This option creates a virtual point using two points and two distances.
On selecting 2 points and 2 distances, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The 1st point is selected and accepted.
STEP 2:
A distance from the 1st point to create the point is given either by selection with the mouse or by typing a value. To type a value, simply start typing and the input box for the distance will appear. Alternatively you can press the space bar to bring up the input box. The value is entered into the input box followed by the enter key.

The circle drawn represents the distance value and changes with movement of the mouse. If the user wants to see what the current value of the distance is, simply press the D key (dynamic value). This puts the value into the input box where it can be accepted to create the point or the input box can be closed and the rubber banding (graphically changing) of the circle continued.

This option also allows the definition of the distance by the selection of the 2nd point perpendicular or tangential to a selected segment. For this, the line snap should be on. The user selects the segment (line or arc) and then by pressing P for perpendicular or T for tangential a solution is shown. As there is often two solutions with respect to arcs, the user can move the mouse to change from one solution to the next. The example shown below is the perpendicular case.

STEP 3:
The 2nd point to create the point from is selected.
STEP 4:
A distance from the 2nd point to create the point is given using the optional outlined in STEP 2 above.

STEP 5:
As there is two solutions, the user can select the correct one depending on the method of construction. This can be done by the direct entry of distances or by use of the mouse.

1. Distance entry. After the entry of the 1st distance, the 2nd point is selected. Following the selection of the 2nd point, the 2nd radius is shown (rubber banding). The user can select one of the two solutions by choosing with a LB mouse click over the approximate position of the required solution. The solution chosen is the closest solution to the selected point. The final radius can then be entered via the keyboard by simply starting typing which brings up the radius entry panel automatically. This panel can also be activated by pressing the space bar.

2. Use of the mouse. The 1st point is selected and the radius entered by using the mouse or by direct entry from the keyboard. The 2nd point is then selected and the 2nd radius is displayed
(rubber banding). A solution can be chosen by selecting with a LB mouse click over the required solution. The final solution will be the closest one to the selection. MB to accept the intersection and create the point.

STEP 6:
The virtual point is created if there is a valid solution.

2 points with bearing and distance
This option creates a virtual point from a given point and a bearing, and a second point and a distance.

On selecting 2 points with bearing and distance, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The 1st point is selected and accepted.
STEP 2:
A bearing from the 1st point to create the point is given either by selection with the mouse or by typing a value. To type a value, simply start typing and the input box for the bearing will appear. Alternatively you can press the space bar to bring up the input box. The value is entered into the input box followed by the Enter key.

The line drawn represents the bearing value and changes with movement of the mouse. If the user wants to see what the current value of the bearing is, simply press the D key (dynamic value). This puts the value into the input box where it can be accepted to create the point or the input box can be closed and the rubber banding (graphically changing) of the line continued.

Note: The Page up and page down keys can be used when the input angle box comes up to add or subtract intervals of 90 degrees.

STEP 3:
The 2nd point to create the point from is selected and accepted.
STEP 4:

A distance from the 2nd point to create the point is given either by selection with the mouse or by typing a value. To type a value, simply start typing and the input box for the distance will appear. Alternatively you can press the space bar to bring up the input box. The value is entered into the input box followed by the Enter key.

The circle drawn represents the distance value and changes with movement of the mouse. If the user wants to see what the current value of the distance is, simply press the D key (dynamic value). This puts the value into the input box where it can be accepted to create the point or the input box can be closed and the rubber banding (graphically changing) of the circle continued.

This option also allows the definition of the distance by the selection of the 2nd point perpendicular or tangential to a selected segment. For this, the line snap should be on. The user selects the segment (line or arc) and then by pressing P for perpendicular or T for tangential a solution is shown. As there is often two solutions with respect to arcs, the user can move the mouse to change from one solution to the next. The example shown below is the perpendicular case.

A line is drawn between the two possible solutions.
STEP 5:
As there is two solutions, the user can select the correct one with the mouse.

4.28.5.2 Snaps Cad Line
This section of documentation is a work in progress and will be updated in subsequent releases.

For the option, 2 Points go to
- 2 Points
- Tangent
- Perpendicular

2 Points
This option creates a virtual line segment.

On selecting 2 points, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

The user can select a position with the mouse and on accepting that point (Middle mouse button or enter) the point is created at the selected position.

The snap mode will influence the mouse selection. For example if cursor snap is on, the user can choose a position not yet defined. If point snap is on and the selection snaps to an existing point, the option will place another point at that location.

The user can also activate the selection menu used with the mouse (right button) that allows various positioning options.

Specification of a position can also be done by the direct input of the xyz coordinate of the point by pressing the space bar to bring up the enter XYZ panel. **NOTE:** The z value will default to the value entered into the Cad Control Bar whether or not it is specified in the XYZ box. If no height value exists in the Cad Control Bar
The 2nd virtual point is selected in the same way as the 1st virtual point. The line is created after successful selection and acceptance of the 2nd virtual point.

Tangent

This option creates the virtual tangential line between two elements.

NOTE: When Selecting an arc or circle, the selection must be a line snap with direction. If a point is selected on the arc/circle the line will be draw between the selected points and not the tangent.

On selecting **Tangent**, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d **Model** application window.

STEP 1:
A start position of the reference line is selected and accepted.

STEP 2:
The user selects and accepts the arc/circle segment with direction. The direction is required because there are two possible solutions. In this case, the direction was anti clockwise.

STEP 3:
After accepting the segment, a line is draw from the 1st selected point to the tangent point. Note that in this example, the arc is produced around so that a solution can be found.
Perpendicular

This option creates a virtual line by selecting a reference string and a reference point to create a line from the reference point perpendicular to the reference string.

On selecting Perpendicular, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
A reference string is selected and accepted.

STEP 2:
A line is drawn from the current mouse position perpendicular to the reference string

STEP 3:
After the final position is accepted, a virtual line is created which starts from the selected position and perpendicular to the reference string.
4.28.5.3 Snaps Cad Circle

This section of documentation is a work in progress and will be updated in subsequent releases.

For the option 3 points, go to

- 3 points
- 3 tangents
- 3 directed tangents
- 2 tangents and radius
- 2 directed tangents and radius
- 2 points
- 2 point and radius
- Point, radius and bearing
- Centre and radius
- Centre and point
- Centre and circumference

3 points

This option creates a virtual circle through three selected points.

On selecting 3 points, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:

The 1st point is selected with the mouse or entered in via the keyboard. To specify the 1st point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter the 1st point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the Enter key.
STEP 2:
The 2nd point is selected and accepted.
After the 2nd point is accepted a circle will be displayed ‘rubber banding’ to the various solutions according to the position of the cursor. This will continue until the 3rd point is selected and accepted.

STEP 3:
The 3rd point is selected and accepted.

STEP 4:
A virtual circle is constructed through the three selected points
3 tangents

This option creates a virtual circle that is tangential to three selected segments.

On selecting 3 tangents, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The 1st tangent is selected with the mouse (Left Button) and accepted (Middle Button).

STEP 2:
The 2nd tangent is selected and accepted.

STEP 3:
The 3rd tangent is selected and accepted.

STEP 4:
A virtual circle is constructed that touches each of the three selected tangents.
3 directed tangents

This option creates a virtual circle that is tangential to three selected segments. The segments are selected in order and with direction and the circle is to the right of the direction of the selected segments.

On selecting 3 directed tangents the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
Select and accept the 1st tangent.

Note: For this option the direction of the selected tangents is important. The circle will be constructed to the right of a tangent. A user may reverse the direction of a tangent by selecting the tangent with direction. For further notes on picking tangents with direction, see Picking with Direction.

Note: The Vertex indices can be displayed by toggling the option on the Toggle Menu.

STEP 2:
The 2nd tangent is selected and accepted.

STEP 3:
The 3rd tangent is selected and accepted.

STEP 4:
If a solution exists, a virtual circle is constructed using the given information.
2 tangents and radius

This option creates a virtual circle with a given radius that is tangential to two selecting segments.

On selecting 2 tangents and radius, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:

Select the 1st tangent with the mouse (Left Button) and accept it (Middle Button).

STEP 2:

Select the 2nd tangent and accept it.

STEP 3:

After the 2nd tangent is accepted, the Radius Input box will appear. Type the radius value into the Input box and press the Enter key. The browse button on the Input box can be used to define the radius by measuring existing elements.
STEP 4:
If a solution exists, a virtual circle is fitted touching the two selected tangents using the given radius.

2 directed tangents and radius

This option creates a virtual circle with a given radius that is tangential to two selected segments that are picked with direction.

On selecting 2 directed tangents and radius, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
Select and accept the 1st tangent.

Note: For this option the direction of the selected tangents is important. The circle will be constructed to the right of a tangent. A user may reverse the direction of a tangent by selecting the tangent with direction. For further notes on picking tangents with direction, see Picking with Direction.

Note: The Vertex indices can be displayed by toggling the option on the Toggle Menu.

STEP 2:
The 2nd tangent is selected and accepted.
STEP 3:
After the 2nd tangent is accepted, the Radius Input box will appear. Type the radius value into the Input box and press the enter key. The browse button on the Input box can be used to define the arc radius by measuring existing elements.

STEP 4:
If a solution exists, a virtual circle is constructed using the given information.

2 points
This option creates a virtual circle by selecting two points that define the diameter of the circle.

On selecting 2 points, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The 1st point is selected with the mouse or entered in via the keyboard. To specify the 1st point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter the 1st point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key.

After the 1st point is accepted a circle will be displayed ‘rubber banding’ to the various solutions according to the position of the cursor (cursor position taken as the other end of a diameter). This will continue until the 2nd point is selected and accepted.
STEP 2:
The 2nd point is selected and accepted.

STEP 3:
The virtual circle is constructed through the two selected points. The two points define the diameter.

2 point and radius
This option creates a virtual circle of a given radius that goes through two selected points.

On selecting 2 point and radius, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The 1st point is selected with the mouse or entered in via the keyboard. To specify the 1st point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter the 1st point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key.

After the 1st point is accepted a circle will be displayed ‘rubber banding’ to the various solutions according to the position of the cursor. This will continue until the 2nd point is selected and accepted.
STEP 2:
The 2nd point is selected and accepted.

STEP 3:
After the 2nd point is accepted, the Radius Input box will appear. The radius value is entered into the input box followed by the Enter key.

STEP 4:
If a solution exists, the virtual circle is fitted through the two selected points using the given radius.
Point, radius and bearing

This option creates a virtual circle of a given radius, a selected point on the circle and the bearing of the tangent to the circle at that point.

On selecting **Point, radius and bearing**, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the *12d Model* application window.

STEP 1:

The 1st point is selected with the mouse or entered in via the keyboard. To specify the 1st point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter a 1st point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the Enter key.

STEP 2:

After the 1st point is accepted, the **Enter radius** input box will appear. Type the radius value into the Input box and press the enter key. The browse button on the Input box can be used to define the arc radius by measuring existing elements.

STEP 3:

After the radius has been entered, the **Enter bearing** input box will appear. Type the bearing into the Input box and press the enter key. The browse button on the Input box can be used to define the bearing by measuring existing elements.

Note: The Page Up and Page Down keys can be used when the Enter Bearing input box comes up to add or subtract intervals of 90 degrees.

STEP 4:

If a solution exists, a virtual circle is fitted from the given bearing at the selected point using the
selected radius.

Centre and radius

This option creates a virtual circle of a given radius and a selected centre point

On selecting Centre and radius, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
A centre point is selected with the mouse or entered in via the keyboard. To specify a centre point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter a centre point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the Enter key.

STEP 2:
After the centre point is accepted a circle will be displayed ‘rubber banding’ to the various solutions according to the position of the cursor. This will continue until a radius value is entered.

A radius value is selected with the mouse or entered in via the keyboard.

To specify a radius value with the mouse, a point must be selected (Left Button) and accepted (Middle Button). This option also allows the definition of the radius by the selection of the 2nd point perpendicular or tangential to a selected segment. For this, the line snap should be on. The user selects the segment (line or arc) and then by pressing P for perpendicular or T for tangential a solution is shown. As there is often two solutions with respect to arcs, the user can move the mouse to change from one solution to the next.

To enter a radius value with the keyboard, simply start typing or press the space bar to bring up the Radius Input box. Type the radius value into the Radius Input box and press the enter key. The browse button on the Input box can be used to define the arc radius by measuring existing elements.
STEP 3:

The virtual circle is constructed through the centre point using the specified radius.

Centre and point

This option creates a virtual circle by selecting a centre point and then using the cursor to select a second point that is on the circle.

On selecting *Centre and point*, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:

A centre point is selected with the mouse or entered in via the keyboard. To specify a centre point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter a centre point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the Enter key.

STEP 2:

After the centre point is accepted a circle will be displayed ‘rubber banding’ to the various solutions according to the position of the cursor. This will continue until a radius value is entered.

A radius value is selected with the mouse or entered in via the keyboard.

To specify a radius value with the mouse, a point must be selected (Left Button) and accepted (Middle Button). This option also allows the definition of the radius by the selection of the 2nd point perpendicular or tangential to a selected segment. For this, the line snap should be on. The user selects the segment (line or arc) and then by pressing P for perpendicular or T for tangential a solution is shown. As there is often two solutions with respect to arcs, the user can move the
mouse to change from one solution to the next.
To enter a radius value with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the point into the Input box and press the Enter key.

STEP 3:

A virtual circle is constructed using the two points defined by the user.

Centre and circumference

This option creates a virtual circle by selecting the centre point and giving a circumference value. On selecting *Centre and circumference*, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:

A centre point is selected with the mouse or entered in via the keyboard. To specify a centre point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter a centre point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the Enter key.

STEP 2:

After the centre point is accepted, the *Circumference* Input box will appear. Type the circumference length into the Input box and press the enter key. The browse button on the Input box can be used to define the arc radius by measuring existing elements.
STEP 3:
A virtual circle is constructed using the centre point and the given circumference.

4.28.5.4 Snaps Cad Arc
This section of documentation is a work in progress and will be updated in subsequent releases.

For the option 3 points, go to
- 3 Points
- 3 Tangents
- 3 directed tangents
- 3 directed tangents
- 2 tangents and radius
- 2 tangents and radius
- 2 directed tangents and radius
- 2 directed tangents and radius
- 2 points and radius
- 2 points and radius
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 points and arc length</td>
<td>2 points and arc length</td>
</tr>
<tr>
<td>2 points and end bearing</td>
<td>2 points and end bearing</td>
</tr>
<tr>
<td>Centre and end points</td>
<td>Centre and end points</td>
</tr>
<tr>
<td>Centre, radius and end points</td>
<td>Centre, radius and end points</td>
</tr>
<tr>
<td>Centre, start point and sweep angle</td>
<td>Centre, start point and sweep angle</td>
</tr>
<tr>
<td>Start point, radius and bearing</td>
<td>Start point, radius and bearing</td>
</tr>
<tr>
<td>Start point, radius and chord</td>
<td>Start point, radius and chord</td>
</tr>
<tr>
<td>Start point, radius, chord length and bearing</td>
<td>Start point, radius, chord length and bearing</td>
</tr>
</tbody>
</table>

3 Points

This option creates a virtual arc through three selected points and the first and third points are the start and end of the arc.

On selecting 3 points, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:

The 1st point is selected with the mouse or entered in via the keyboard. To specify the 1st point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter the 1st point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the Enter key.

STEP 2:

The 2nd point is selected and accepted.

After the 2nd point is accepted an arc will be displayed ‘rubber banding’ to the various solutions according to the position of the cursor. This will continue until the 3rd point is selected and accepted.

STEP 3:

The 3rd point is selected and accepted.
3 Tangents
This option creates a virtual arc that is tangential to three selected segments. The first and third segments are the start and end of the arc.

On selecting 3 tangents, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The 1st tangent is selected with the mouse (Left Button) and accepted (Middle Button).

STEP 2:
The 2nd tangent is selected and accepted.

STEP 3:
The 3rd tangent is selected and accepted.

STEP 4:
The virtual arc is constructed touching the three selected tangents.

3 directed tangents

This option creates a virtual arc that is tangential to three selected segments. The segments are selected in order and with direction and the arc is to the right of the direction of the selected segments. The first and third segments are the start and end of the arc.

On selecting 3 directed tangents, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
Select and accept the 1st tangent.

Note: For this option the direction of the selected tangents is important. The arc will be constructed to the right of the tangent. A user may reverse the direction of the tangent by selecting a tangent with direction. For further notes on picking tangents with direction, see Picking with Direction.

Note: The Vertex indices can be displayed by toggling the option on the Toggle Menu.

STEP 2:
The 2nd tangent is selected and accepted.
STEP 3:
The 3rd tangent is selected and accepted.

STEP 4:
If a solution exists, a virtual arc is constructed using the given information.

2 tangents and radius
This option creates a virtual arc with a given radius that is tangential to two selecting segments. This is the same as a fillet.

On selecting 2 tangents and radius, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The 1st tangent is selected with the mouse (Left Button) and accepted (Middle Button).
STEP 2:
The 2nd tangent is selected and accepted.

STEP 3:
After the start point is accepted, the Radius Input box will appear. Type the radius value into the Input box and press the enter key. The browse button on the Input box can be used to define the arc radius by measuring existing elements.

STEP 4:
If a solution exists, the virtual arc is fitted through the two selected tangents using the given radius.

2 directed tangents and radius
This option creates a virtual arc with a given radius that is tangential to two selected segments that are picked with direction.

On selecting 2 directed tangents and radius, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
Select and accept the 1st tangent.

Note: For this option the direction of the selected tangents is important. The arc will be constructed to the right of a tangent. A user may reverse the direction of a tangent by selecting the tangent with direction. For further notes on picking tangents with direction, see Picking with Direction.

Note: The Vertex indices can be displayed by toggling the option on the Toggle Menu.
STEP 2:
The 2nd tangent is selected and accepted.

STEP 3:
After the start point is accepted, the Radius Input box will appear. Type the radius value into the Input box and press the Enter key. The browse button on the Input box can be used to define the arc radius by measuring existing elements.

STEP 4:
If a solution exists, the virtual arc is fitted through the two selected tangents using the given radius.

2 points and radius
This option creates a virtual arc of a given radius that starts and ends on two selected points. On selecting 2 points and radius, the user is prompted for the relevant data in the screen message
Options on Toolbars

box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The 1st point is selected with the mouse or entered in via the keyboard. To specify the 1st point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter the 1st point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the Enter key.

![Image](image1.png)

STEP 2:
After the start point is accepted, the Radius Input box will appear. Type the radius value into the Input box and press the enter key. The browse button on the Input box can be used to define the arc radius by measuring existing elements.

![Image](image2.png)

STEP 3:
The 2nd point is selected and accepted.

STEP 4:
If a solution exists, an arc is constructed using the given information.

![Image](image3.png)

2 points and arc length
This option creates a virtual arc of a given arc length that starts and ends on two selected points. On selecting **2 points and arc length**, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The 1st point is selected with the mouse or entered in via the keyboard. To specify the 1st point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter
the 1st point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the Enter key.

STEP 2:
After the start point is accepted, the Arc length Input box will appear. Type the arc length value into the Input box and press the enter key. The browse button on the Input box can be used to define the arc length by measuring existing elements.

STEP 3:
The 2nd point is selected and accepted.

STEP 4:
If a solution exists, an arc is constructed using the given information.

2 points and end bearing
This option creates a virtual arc that starts and end on two selected points and has a given bearing of the tangent at the end point (the end bearing).

On selecting 2 points and end bearing, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The 1st point is selected with the mouse or entered in via the keyboard. To specify the 1st point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter the 1st point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the Enter key.
STEP 2:
The 2nd point is selected and accepted.

STEP 3:
After the 2nd point is accepted, the Enter bearing input box will appear. Type the bearing into the Input box and press the enter key. The browse button on the input box can be used to define the bearing by measuring existing elements.

Note: The Page Up and Page Down keys can be used when the Enter Bearing input box comes up to add or subtract intervals of 90 degrees.

STEP 4:
If a solution exists, the arc is fitted through the two selected points with the end point of the given bearing.
Centre and end points

This option creates a virtual arc by selecting in order, the centre point and the start and end points. The radius of the arc is the distance between the centre and the start point.

On selecting Centre and end points, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:

A centre point is selected with the mouse or entered in via the keyboard. To specify a centre point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter a centre point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the Enter key.

After the centre point is accepted a circle will be displayed ‘rubber banding’ to the various solutions according to the position of the cursor. This will continue until the start point is selected and accepted.

STEP 2:

Select and accept the start point. This point defines the radius and the start of the arc.

STEP 3:

The end point of the arc is specified.

STEP 4:

The virtual arc is constructed using the given information.
Centre, radius and end points

This option allows the creation of a virtual arc given a centre point, radius, start and end points. This option creates an arc of a given radius by selecting in the centre point and the start and end positions.

On selecting Centre, radius and end points the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:

A centre point is selected with the mouse or entered in via the keyboard. To specify a centre point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter a centre point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the Enter key.

After the centre point is accepted a circle will be displayed ‘rubber banding’ to the various solutions according to the position of the cursor. This will continue until the start point is selected and accepted.

STEP 2:

A radius value is selected with the mouse or entered in via the keyboard. To specify a radius value with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter radius value with the keyboard, simply start typing or press the space bar to bring up the Radius Input box. Type the radius value into the Radius Input box and press the Enter key. The browse button on the Input box can be used to define the arc distance by measuring existing elements.
STEP 3:
A start point defines the start of the sweep angle to define where to start the arc. It can be selected with the mouse or entered in via the keyboard. To specify a start point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter a start point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the Enter key.

STEP 4:
The end point of the arc is specified. The start and end points define the sweep angle to define the arc. The rubber banding of the arc will use the cursor position as the end position until a end point is selected and accepted. It can be selected with the mouse or entered in via the keyboard. To specify a start point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter a start point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key. The end point does not have to be on the arc itself. It is used to define the sweep angle.

STEP 5:
The arc is constructed using the given information.

Centre, start point and sweep angle
This option creates a virtual arc by selecting a centre point and a start points and giving a sweep angle. The radius of the arc is the distance between the centre and start point.

On selecting Centre, start point and sweep angle, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.
STEP 1:
A centre point is selected with the mouse or entered in via the keyboard. To specify a centre point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter a centre point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the Enter key.

After the 1st point is accepted a circle will be displayed ‘rubber banding’ to the various solutions according to the position of the cursor. This will continue until the 2nd point is selected and accepted.

STEP 2:
The 2nd point is selected with the mouse or entered in via the keyboard. This point defines the radius as well as the start point of the arc. To specify the 2nd point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter the 2nd point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the Enter key.

STEP 3:
After the 2nd point is accepted, the **Sweep Angle** input box will appear. Type the sweep angle value into the input box and press the enter key. The browse button on the Input box can be used to define the arc radius by measuring existing elements.

Note: The Page up and page down keys can be used when the input angle box comes up to add or subtract intervals of 90 degrees.

STEP 4:
The virtual arc is created using the information supplied
Start point, radius and bearing

This option creates a virtual arc of a given radius, starting at a selected point and bearing of the tangent at the start point and going for a given arc length.

On selecting the Start point, radius and bearing option, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:

A start point is selected with the mouse or entered in via the keyboard. To specify a start point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter a start point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the Enter key.

STEP 2:

After the start point is accepted, the Arc Radius Input box will appear. Type the radius value into the Input box and press the enter key. The browse button on the Input box can be used to define the arc radius by measuring existing elements.

STEP 3:

After the radius has been entered, the Arc Length Input box will appear. Type the arc length into the Input box and press the enter key. The browse button on the Input box can be used to define the arc distance by measuring existing elements.
STEP 4:
After the arc length is accepted, the Bearing Input box will appear. Type the bearing into the Input box and press the enter key. The browse button on the Input box can be used to define the bearing by measuring existing elements.

Note: The Page Up and Page Down keys can be used when the Bearing Input box comes up to add or subtract intervals of 90 degrees.

STEP 5:
The virtual arc is created with the given information.

Start point, radius and chord
This option creates a virtual arc of a given radius, starting from a selected point and with a given chord bearing at the start point and a given arc length.

On selecting Start point, radius and chord, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The start point is selected with the mouse or entered in via the keyboard. To specify the start point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter the start point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the Enter key.
STEP 2:
After the start point is accepted, the **Arc Radius** Input box will appear. Type the radius value into the Input box and press the enter key. The browse button on the Input box can be used to define the arc radius by measuring existing elements.

STEP 3:
After the arc radius is entered, the **Arc Length** Input box will appear. Type the arc length into the Input box and press the enter key. The browse button on the Input box can be used to define the arc distance by measuring existing elements.

STEP 4:
After the arc length is entered, the **Chord Bearing** Input box will appear. Type the bearing into the Input box and press the enter key. The browse button on the Input box can be used to define the bearing by measuring existing elements.

Note: The Page Up and Page Down keys can be used when the Chord Bearing Input box comes up to add or subtract intervals of 90 degrees.
STEP 5:
A virtual arc is created with the given information.

Start point, radius, chord length and bearing
This option creates a virtual arc of a given radius, starting from a selected point, with a given bearing of the tangent at the start point and a given chord length from the start point.

On selecting Start point, radius, chord length and bearing, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
A start point is selected with the mouse or entered in via the keyboard. To specify a start point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter a start point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key.

STEP 2:
After the start point is accepted, the Arc Radius Input box will appear. Type the radius value into the Input box and press the enter key. The browse button on the Input box can be used to define the arc radius by measuring existing elements.

STEP 3:
After the radius has been entered, the Chord Length Input box will appear. Type the chord length into the Input box and press the enter key. The browse button on the Input box can be used to define the chord length by measuring existing elements.
STEP 4:
After the chord length has been entered, the Bearing Input box will appear. Type the bearing of the start tangent into the Input box and press the enter key. The browse button on the Input box can be used to define the bearing by measuring existing elements.

Note: The Page Up and Page Down keys can be used when the Bearing Input box comes up to add or subtract intervals of 90 degrees.

STEP 5:
The virtual arc is created with the given information.
4.28.6 String Edits Toolbar

Position of option on menu: various

The String edits toolbar is:

![String Edits Toolbar](image)

Options on Toolbar

- edit string
- edit vertex
- edit segment properties
- edit vertex properties
- change strings

For the option *Edit string*, go to

- 14.4 Editor
- 14.5.11 Edit Vertex
- 14.12.4 Segment
- 14.12.3 Vertex
- 14.6.1 Change
4.28.7 Super Alignment Tools Toolbar

Position of option on menu: various

The Super Alignment Tool toolbar is:

![Super Alignment Tools toolbar]

Options on Toolbar

- edit super alignment
- create super alignment
- resolve super alignment
- fixed/floating to IPs
- dereference a super alignment
- reverse super alignment
- parallel a super alignment
- translate super alignment
- rotate super alignment
- scale super alignment
- split a super alignment
- join a super alignment
- copy vertical super alignment
- change super alignment style
- explode super alignment labels
- move super alignment point settings
- define road design parameters
- super alignment style create/edit
- alignment/super alignment table
- super alignment IP tabulation
- help

For edit super alignment go to

- create super alignment
- resolve super alignment
- fixed/floating to IPs
- dereference a super alignment
- reverse super alignment
- parallel a super alignment
- translate super alignment
- rotate super alignment

Related sections:

- 14.4.11 Edit Super Alignment
- 14.2.1 Create Super Alignment
- 14.2.3 Resolve a Super Alignment
- 14.2.13 Convert Fixed/Floating Elements to IPs
- 14.2.4 Dereference Super Alignments
- 14.2.5 Reverse Super Alignment
- 14.2.6 Parallel a Super Alignment
- 14.2.7 Translate Super Alignment
- 14.2.8 Rotate Super Alignment
<table>
<thead>
<tr>
<th>Options on Toolbars</th>
<th>14.2.2.9 Scale Super Alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>scale super alignment</td>
<td>14.2.2.10 Split a Super Alignment</td>
</tr>
<tr>
<td>split a super alignment</td>
<td>14.2.2.11 Joining Two Super Alignments</td>
</tr>
<tr>
<td>join a super alignment</td>
<td>14.2.2.12 Copy Vertical Geometry</td>
</tr>
<tr>
<td>copy vertical super alignment</td>
<td>14.2.2.13 Change the Styles for Selected Super Alignments</td>
</tr>
<tr>
<td>change super alignment style</td>
<td>14.2.2.14 Explode the Super Alignments Labelling</td>
</tr>
<tr>
<td>Alignment Points</td>
<td>14.2.2.15 Constrain the Movement of Super Alignments</td>
</tr>
<tr>
<td>explode super alignment labels</td>
<td>14.2.2.16 Define Design Parameters - from V9</td>
</tr>
<tr>
<td>move super alignment point settings</td>
<td>14.2.3 Super Alignment Style</td>
</tr>
<tr>
<td>define road design parameters</td>
<td>24.16.14 Alignment & Super Alignment Table</td>
</tr>
<tr>
<td>super alignment style create/edit</td>
<td>14.2.11 Super Alignment IP Tabulation</td>
</tr>
<tr>
<td>alignment/super alignment table</td>
<td>14.2.9 SA Element Parts Viewer</td>
</tr>
<tr>
<td>super alignment IP tabulation</td>
<td></td>
</tr>
</tbody>
</table>
4.28.8 Survey Reductions Toolbar

Position of option on menu: various

The Survey Reductions toolbar is:

![Survey Reductions Toolbar]

Options on Toolbar

- survey menu
- create control stations
- bearing/distance entry
- traverse adjustment
- horizontal least squares adjustment
- level nets adjustment
- set up data collector
- download survey data
- convert raw survey file to 12d field file
- survey data reduction function
- quick change code
- join surveyed strings
- insert target height
- start new survey strings
- auto order survey shots
- order by survey point ids
- reset order to original order
- edit survey data
- edit survey field data by string
- lock a function
- edit a text file

For the option *Survey menu*, go to:

- 17 Survey
- 14.1.12 Create - Control Stations
- 17.14.2 Plane Bearing/Distance Entry
- 17.9.6 Traverse Adjustment
- 17.9.3 Least Squares Network
- 17.9.4 Level Network
- 17.3 Setup
- 17.4 Download Raw
Chapter 4 Tools and Concepts

Convert data collector file to field file
Create survey data reduction function
Survey code change
Join strings

<table>
<thead>
<tr>
<th>Feature Code</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convert data collector file to field file</td>
<td>17.5 Convert Raw</td>
</tr>
<tr>
<td>Create survey data reduction function</td>
<td>17.6 Create Survey Function</td>
</tr>
<tr>
<td>Survey code change</td>
<td>17.7.4.2 Quick Change</td>
</tr>
<tr>
<td>Join strings</td>
<td>17.7.9.4 Join Two Strings of Same</td>
</tr>
</tbody>
</table>

Feature Code

<table>
<thead>
<tr>
<th>Feature Code</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert target height</td>
<td>17.7.10.1 Insert Target Height</td>
</tr>
<tr>
<td>Start new string</td>
<td>17.7.9.1 New String</td>
</tr>
<tr>
<td>Auto order string points</td>
<td>17.7.7.3 Auto Order</td>
</tr>
<tr>
<td>Order by points</td>
<td>17.7.7.1 By Points</td>
</tr>
<tr>
<td>Remove ordering</td>
<td>17.7.7.4 Remove Order</td>
</tr>
<tr>
<td>Edit survey data</td>
<td>17.7.2 Field Data</td>
</tr>
<tr>
<td>Edit field data by picking a string</td>
<td>17.7.3 Field Data by String</td>
</tr>
<tr>
<td>Lock a function</td>
<td>28.4.2 Lock</td>
</tr>
<tr>
<td>Edit a report file</td>
<td>27.1 Edit</td>
</tr>
</tbody>
</table>
4.28.9 Tin Utility Toolbar

Position of option on menu: various

The Tin Utility toolbar is:

![Tin Utility Toolbar]

Options on Toolbar

- create a tin
- quick triangulation selection
- null a tin by angle and length
- tin to tin depth polygons
- contour, smooth and label a tin
- intersect two tins
- translate/copy a tin

For the option *Create a tin*, go to

- 16.5.1 Triangulate Data
- 16.5.4 Quick Tin
- 16.13.5 Null by Angle and Length
- 16.11.8 Depth Range Polygons
- 16.9.2 Contour, Smooth and Label
- 16.11.3 Intersection
- 16.14.13 Translate/Copy
Options on Toolbars

For the option *Edit traverse spreadsheet*, go to

- Create a traverse spreadsheet 17.12.2 TSS Create
- Traverse spreadsheet utilities 17.12.4 TSS Utilities
- Lot check for traverse spreadsheet 17.12.5 Lot Check
- NZ traverse spreadsheet report 17.12.6 NZ TSS Report
- Traverse spreadsheet report 17.12.7 Standard TSS Report
- Traverse spreadsheet drafting 17.12.8 TSS Drafting
- TSS radiation tables drafting 17.12.9 TSS Radiation Table Drafting
- Read Landonline XML 17.12.10 Landonline XML Read
- Write Landonline XML 17.12.11 Landonline XML Write
- Set up tss parameters 17.12.1 TSS Parameters
4.28.11 Visualisation Toolbar

Position of option on menu: various

The Visualisation spreadsheet toolbar is:

![Visualisation Toolbar]

Options on Toolbar
- Tin render settings
- Create roadside furniture
- Create trees and shrubs
- Create houses
- Create fences
- Create forest
- Create clouds
- Create sky dome
- Create/edit a texture map file
- Change polygon drape
- Create and place billboards
- Change super string billboards
- 12d - billboard signs create
- New linemarking

For the option *Tin render settings*, go to 16.6.7 Render Settings
- Create roadside furniture 12.13.8.3 Roadside Furniture
- Create trees and shrubs 12.13.5.5 Trees/Shrubs as Faces and

Billboards
- Create houses 12.13.35.4 Houses
- Create fences 12.13.35.3 Fences
- Create forest 12.13.5.4 Create Forest
- Create clouds 12.13.35.1 Clouds
- Create sky dome 12.13.35.2 Sky dome
- Create/edit texture map file 12.13.4 Texture Map Edit
- Change polygon drape 12.13.3 Render Drape
- Create and place billboards 12.13.5.1 Create and Place Billboard
- Change super string billboards 12.13.5.2 Add and Remove Billboard from

Super String
- Create 12d - billboard signs create 12.13.5.3 12D - Billboard Signs

New linemarking 12.13.35.6 Line Marking (New)
4.28.12 Track Toolbar

Position of option on menu: various

The Track toolbar is:

![Track Toolbar Image]

<table>
<thead>
<tr>
<th>Options on Toolbar</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>calc cl panel</td>
<td>20.11.1 Calc CL Panel</td>
</tr>
<tr>
<td>read turnouts</td>
<td>20.11.2.3 Read Turnouts</td>
</tr>
<tr>
<td>write turnouts file</td>
<td>20.11.2.4 Write Turnouts File</td>
</tr>
<tr>
<td>turnouts create/edit</td>
<td>20.11.2.2 Turnouts Create/ Edit</td>
</tr>
<tr>
<td>turnout place</td>
<td>20.11.2.1 Turnout Place</td>
</tr>
<tr>
<td>copy vc</td>
<td>20.11.3 Copy VC</td>
</tr>
<tr>
<td>rail slew calculator</td>
<td>20.11.4 Rail Slew Calculator</td>
</tr>
<tr>
<td>cant panel</td>
<td>20.11.5 Calculate Cant</td>
</tr>
<tr>
<td>plot rails panel</td>
<td>20.11.7.1 Plot Rails Panel</td>
</tr>
</tbody>
</table>

For the option calc cl, go to [calc cl panel](20.11.1 Calc CL Panel)
read turnouts [read turnouts](20.11.2.3 Read Turnouts)
write turnouts file [write turnouts file](20.11.2.4 Write Turnouts File)
turnouts create/edit [turnouts create/edit](20.11.2.2 Turnouts Create/ Edit)
turnout place [turnout place](20.11.2.1 Turnout Place)
copy vc [copy vc](20.11.3 Copy VC)
rail slew calculator [rail slew calculator](20.11.4 Rail Slew Calculator)
calculate cant [calculate cant](20.11.5 Calculate Cant)
plot rails panel [plot rails panel](20.11.7.1 Plot Rails Panel)

To return to the beginning of this chapter, click on 4 Tools and Concepts.
4.29 Drag and Drop

Some files can be dragged and dropped onto 12d Model and panels automatically open for them, and some can be dragged and dropped as attachments to Outlook 2002 and above.

*.project files can be dragged and dropped to open a new project and files can be dragged and dropped onto a file box and the full path name to the file will be automatically entered into the file box.

The files that can be dragged and dropped include

4.29.1 File Box
4.29.2 .12daz, 12da Files
4.29.3 .dat Files
4.29.4 .chain, .rcn Files
4.29.5 .mtf Files
4.29.6 .mapfile Files
4.29.7 .slx Files
4.29.8 .4do Files
4.29.9 .project Files
4.29.10 .dwg, .dxf Files
4.29.1 File Box

If you drag a file from Windows Explorer onto a File Box on any panel, the full file path name of the file is entered into the File Box.

Return to 4.29 Drag and Drop.

4.29.2 .12daz, 12da Files

If you drag a .12daz or .12da file onto an open 12d Model project, it opens up the Read 12d Solutions Archive Data panel with the full path name of the .12daz or .12da file entered into the File to read box.

This will work for files from folders, 12d Synergy, Skype and most other places that allow drag and drop.

It will also work for files that are email attachments in Outlook 2002 and above.

If you are dragging and dropping more than one .12daz or 12da file at a time, then the one Read 12d Solutions Archive Data panel will be opened and all the dropped files listed in the Many Files grid.

Return to 4.29 Drag and Drop.

4.29.3 .dat Files

If you drag a .dat file onto an open 12d Model project, it opens up the Read x y z s Data panel with the full path name of the .dat file entered into the File to read box.

This will work for files from folders, Skype and most other places that allow drag and drop.

It will also work for files that are email attachments in Outlook 2002 and above.

If you are dragging and dropping more than one .dat file at a time, then the one Read x y z s Data panel will be opened and all the dropped files listed in the Many Files grid.

Return to 4.29 Drag and Drop.

4.29.4 .chain,.rcn Files

If you drag a .chain or .rcn file onto an open 12d Model project, it opens up the Create/Edit Chain panel with the full path name of the .chain or .rcn file entered into the Chain file box and the chain file is automatically read in.

This will work for files from folders, 12d Synergy, Skype and most other places that allow drag and drop.

If you are dragging and dropping more than one chain file at a time, then a separate Create/Edit Chain panel is opened for each chain file.

Return to 4.29 Drag and Drop.

4.29.5 .mtf Files

If you drag a .mtf file onto an open 12d Model project, it opens up the mtf in the MTF Edit panel.

This will work for files from folders, 12d Synergy, Skype and most other places that allow drag and drop.

If you are dragging and dropping more than one mtf file at a time, then a separate MTF Edit panel is opened for each mtf file.

Return to 4.29 Drag and Drop.
4.29.6 .mapfile Files

If you drag a .mapfile file onto an open 12d Model project, it opens up the Map File Create/Edit panel with the full path name of the .mapfile file entered into the Map file box and the Map File is automatically read in.

This will work for files from folders, 12d Synergy, Skype and most other places that allow drag and drop.

If you are dragging and dropping more than one Map File at a time, then a separate Map File Create/Edit panel is opened for each Map File.

Return to 4.29 Drag and Drop.

4.29.7 .slx Files

If you drag an .slx file onto an open 12d Model project, it opens up all the panels as specified in the SLX file.

This will work for files from folders, 12d Synergy, Skype and most other places that allow drag and drop.

If you are dragging and dropping more than one SLX at a time, then all the panel in all the SLX files are opened.

Return to 4.29 Drag and Drop.

4.29.8 .4do Files

If you drag a .4do file onto an open 12d Model project, it runs the macro.

This will work for files from folders, 12d Synergy, Skype and most other places that allow drag and drop.

If you are dragging and dropping more than one .4do file at a time, then each macro will be started.

Return to 4.29 Drag and Drop.

4.29.9 .project Files

If you drag a .project file (the 12d Model project) onto an open 12d Model project, the current open 12d Model project is closed (it will ask whether you want to save) and the dragged .project is opened in 12d Model.

Return to 4.29 Drag and Drop.

4.29.10 .dwg,.dxf Files

If you drag a .dwg or .dxf file onto an open 12d Model project, it opens up the read Read DWG/DXF Data panel with the full path name of the .dwg/.dxf file entered into the File box.

This will work for files from folders, 12d Synergy, Skype and most other places that allow drag and drop.

If you are dragging and dropping more than one DWG/DXF File at a time, then a separate Read DWG/DXF Data panel is opened for each DWG/DXF file.

Return to 4.29 Drag and Drop.
4.30 Setting Up XML Reports

Many options now have **XML reports** and this allows users to create their own customised reports.

Once you have a customised report for a panel, it can be added to the list of reports given in the **Report type** field for that panel.

For example, the ADAC Report is shipped with 3 report types - ADAC.pdf, ADAC.html and original.xml - but a user may will to add their own customised report.

Hence in **12d Model**, there is an XML file called **report_templates.xml** that defines which reports, 12d supplied or user customised, are available for a panel.

For each of the reports for a panel, the **report_templates.xml** file contains
(a) the name in the **Report type** pop-up list
(b) the xslt that generates the report
(c) the file ending for the report file
(d) the number of decimal places in the report
(e) a comment about the report

The **report_templates.xml** are all **Set_Ups** files like **colours.4d files**, and folders are searched in a specific order to find **report_templates.xml** files.
HOWEVER, unlike colours.4d, it doesn’t matter if the report_templates.xml file is found in a folder, the search continues and all the folders that contain the file are found. And, again unlike colours.4d, the reports used are the merger of all the found files.

The search order is still important because if the same name for a report for a panel exists in more than one file in the found folders, the first occurrence in the files in the search order is the one that is used.

For example, if you had a report called ADAC pdf in the file report_templates.xml in your working folder, and one called ADAC pdf in the file report_templates.xml in Programs files\12d\12dmodel\11.0\set_ups, then the ADAC pdf in your working folder is the one that will be used and seen in the Report type pop-ups in panel ADAC Report.

To create and/or edit the Report types for a panel, see 4.30.1 Create/Edit Report Types.

Go to the next section 4.30.1 Create/Edit Report Types or return to 4.30 Setting Up XML Reports.
4.30.1 Create/Edit Report Types

To create and/or edit the Report types for a panel, click on the choice icon for the Report types field and select <Customise>

The Edit Report_templates.xml panel is then brought up and it shows the standard areas for looking for the report_templates.xml files - Working folder, Customer (User), User, Set_Ups and Other - and displays whether the appropriate xml file:

(a) exists and is available for editing (Edit)
 If the xml file exists in the folder and you have access to edit it, then the folder name is written in the panel and [Edit] is written on the right hand side of the line.

(b) does not exist but can be created (Create) by the editor
 If the xml file does not exist in the folder and you have access to create it, then the folder name is written in the panel and [Create] is written on the right hand side of the line.
 In this case a new file is created and written out to the given folder.

(c) is in a folder that has no access for editing and so can only be viewed (View)
 If there is no access to the folder to create/edit the file, then the folder name is written in the panel and [View] is written on the right hand side of the line. Although the styles can’t be edited, they can be copied.
 This usually applies to the Set Ups folder which normally requires Admin privileges for it to be written to.

(d) is in Customer (User).
 This only appears if a Customer User area has been defined.

(e) is defined separately by the user and then Other is displayed.
 In this case, the full path name of the XML file is given by the user.
See

4.30.1.1 [Create] for Report Types
4.30.1.2 [Edit] for Report Types

Go to the next section 4.30.1.1 [Create] for Report Types or return to 4.30 Setting Up XML Reports.
4.30.1.1 [Create] for Report Types

When [Create] is shown, a new xml file can be created in that folder.

Click on the line with [Create] and the Editor for a report_templates.xml starts up with a Reports group header but reports in it.

All the other report_templates.xml files that are found are listed in the Includes section displayed at the bottom of the tree.

The included files can not be edited whilst create/editing this file BUT you can copy items from them and paste them into items in this file.

New items for the Report type pop up can now be created (see 4.30.1.2.1 Creating New Report Types) and a new XML created by clicking on the Write button.

Creating and editing of report_templates.xml files is the same as for [Edit] and so is documented in that section. See 4.30.1.2 [Edit] for Report Types.

Write - writes out the information in the panel to the files name given in Current file.

Go to the next section 4.30.1.2 [Edit] for Report Types or return to 4.30 Setting Up XML Reports.
4.30.1.2 [Edit] for Report Types

When [Edit] is shown, an xml file already exists and can be edited.

Click on the line with [Edit] and the Editor for the report_templates.xml starts up and displays from the file, all the existing Report types for the panel.

After completing any editing, the XML is saved by clicking on the Write button.

As in the [Create] case, all the other appropriate files that are found are listed in the Includes section are displayed at the bottom of the tree (see 4.30.1.1 [Create] for Report Types).

The included files can not be edited whilst create/editing this file BUT you can copy items from them and paste them into items in this file.

For editing in the panel, see

4.30.1.2.1 Creating New Report Types
4.30.1.2.2 Copy and Paste
4.30.1.2.3 Deleting a Report Type
4.30.1.2.4 Duplicating a Report Type
4.30.1.2.5 Editing a Report Type

Go to the next section 4.30.1.2.1 Creating New Report Types or return to 4.30 Setting Up XML Reports.
4.30.1.2.1 Creating New Report Types

To create a new Report type from scratch when there are no Report types, highlight the Reports group header and click on the Add Child icon.

Note - the Add Child icon adds a node as a subnode of the highlighted node.

Too create a new Report type from scratch when some Report types already exist, you can highlight the Report type name and click on the Add (Add Sibling) icon.

The Add icon adds a new item at the same level (a sibling) as the highlighted item and that is why a Report type must already exist so that one can be selected.

In both cases a new Report type is created with no name and so the general name report_type is written in the Reports list until the Report type is given a name.

Once the new Report type is given a name then that name will appear in the tree.
Once the new Report type is created then it can be edited by going into each field of the Report type and making changes.

Other Methods for Creating New Report Types

Duplicate can be used if there are already existing Report types for the panel in the file (4.30.1.2.4 Duplicating a Report Type).

Copy and Paste is particularly useful when there are no Report types for the panel in the file but there are Report types for the panel in other files listed in the Includes node. Although these Report types can’t be edited, they can be copied (4.30.1.2.2 Copy and Paste).

Go to the next section 4.30.1.2.2 Copy and Paste or return to 4.30 Setting Up XML Reports.
4.30.1.2.2 Copy and Paste

Copy and Paste can be used to create a copy of an existing Report type, and then the copied Report type edited.

Although there may be no Report types in the folder you are creating Report types for, there will usually be some Report types in the XML file in Set Ups that can be copied.

In the tree in the Editor, click on the + in front of Set Ups to expand the tree and then click on the item in the tree that you want to copy. Then click on the Copy icon.

Next click on and highlight the Reports header and click on Paste. The Report type will then appear under the Reports header with the same name as the original Report type. The copied Report type can then be edited.

NOTE: If the name of the copied Report type is not changed then this Report type will be used instead of the one in Set Ups.

Go to the next section 4.30.1.2.3 Deleting a Report Type or return to 4.30 Setting Up XML Reports.
4.30.1.2.3 Deleting a Report Type

To delete a Report type, simply click on and highlight the Report type name, and then click on the Delete icon.

Go to the next section 4.30.1.2.4 Duplicating a Report Type or return to 4.30 Setting Up XML Reports.

4.30.1.2.4 Duplicating a Report Type

To duplicate a Report type, simply click on and highlight the Report type name, and then click on the Duplicate icon.

A copy of the Report type, with exactly the same name, is created and added to the end of the list of Report type.

The name of the Report type needs to be changed, and any other edits done that are required.

Go to the next section 4.30.1.2.5 Editing a Report Type or return to 4.30 Setting Up XML Reports.
4.30.1.2.5 Editing a Report Type

To edit a Report type, click on the Report type name and all the values for that Report type will be displayed on the right hand side of the panel.

The panel fields on the right hand side of the panel have the same icons as in other 12d Model panels and the standard pop ups are all available. For example, text, number and choice icons.

When clicking to go to another Report type, all the fields currently on the right hand side are validated and if there are any problems, the first line with an error is coloured red and an Editor error box is displayed.

If Yes is selected, then all the invalid field values are discarded, the Editor error panel removed, and the data for the new selected node displayed on the right hand side of the panel.

If No is selected, then the right hand side of the panel does not change and can undergo further edits.

Go back to the section 4.30.1.2 [Edit] for Report Types or return to 4.30 Setting Up XML Reports.
5 Starting Up

This chapter contains information about how to start 12d Model, organising 12d Model error logging and how to run chains and macros when starting up 12d Model.

Go to

5.1 Front Panel - Open a Recent Project
5.4 Options for the Highlighted Project
5.5 Organizing Working Areas
5.6 Project Shortcuts
5.7 Creating Project Shortcuts by Hand
5.8 Environment Variables Shortcut
5.9 Running Macros and Chains on Start Up
5.10 Error Logging File

5.1 Front Panel - Open a Recent Project

When 12d Model is installed from the 12d Installation CD, the 12d icon 12d Model 11 is created.

![icon for 12d Model 32 bit exe](image1)
![icon for 12d Model 64 bit exe](image2)

The 12d Model icon is a shortcut to start 12d Model and then attach to the folder C:\12d\11.00.

Clicking the 12d Model icon starts 12d Model. First the 12d Model splash screen will appear and then the initial 12d Model screen with the Open a Recent Project panel.
If this does not work, please contact your 12d Model administrator to check the procedure to be used on your system. For a detailed description on how to install 12d Model, please refer to the Installing 12d Model chapter in the Getting Started manuals.

To select a project is the Recent projects list, simply double click on the entry in the list and 12d Model will open the project up.

The description of the functions of the fields and buttons in the Open a Recent Project panel are:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recent projects list</td>
<td>output</td>
<td>recent projects</td>
<td>Pop-Up</td>
</tr>
<tr>
<td>Project description</td>
<td>output</td>
<td>description of the project highlighted in the Recent projects list</td>
<td></td>
</tr>
<tr>
<td>Advanced</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full path</td>
<td>output</td>
<td>name of the full path to the project</td>
<td></td>
</tr>
<tr>
<td>Last accessed</td>
<td>output</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If this does not work, please contact your 12d Model administrator to check the procedure to be used on your system. For a detailed description on how to install 12d Model, please refer to the Installing 12d Model chapter in the Getting Started manuals.
date that the project was last accessed.

The icon **Remove from list** - removes the project from the recent projects list
The icon **Refresh list** - refreshes the recent projects list
For the icons that work on the highlighted project, go to technical references

For the **Browse** button, go to *5.2 Browse Button and Open Tab*
For the **New** button, go to *5.3 New Button and New Tab*
For the **Nodes** button, go to *7.6.5.6 Nodes 4d Editor*
5.2 Browse Button and Open Tab

Clicking on the **Browse** button brings up the **Open** tab that allows you to browse and open an **existing** project. This is used when opening a project that is not in the **Recent Projects** list. The **Open** button opens the project that has been browsed to.

Folder input current folder Microsoft browser

name of the folder to look for the project. This will become the working folder. If the displayed folder does not contain the required project, clicking LB on the folder icon on the right side of the field will bring up the Microsoft browser which is used to navigate to the folder containing the required project.
If the selected folder contains 12d Model projects, then a pop-up with a list of projects in the folder is displayed in the Project name field and the required project can be selected from the list.

Project

input

none

projects in folder

name of the project to become the working project.

Open

button

after selecting this button, the working folder is changed to the folder specified in the folder field and the selected project opened. If the project does not exist, an error message appears.

Recent Projects

button

takes you back to the original front screen. See 5.1 Front Panel - Open a Recent Project.

Quit

button

exit 12d Model.

Note

The New tab takes you to the tab for creating a new project. See 5.3 New Button and New Tab.
5.3 New Button and New Tab

Clicking on the New button brings up the New tab that allows you to create a new project. The New button creates the new project.

To create a new project, fill in the Folder name and Project name and click on the New button.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folder</td>
<td>folder box</td>
<td>current folder</td>
<td>select folder panel</td>
<td></td>
</tr>
</tbody>
</table>

If Create working folder is ticked, a folder with the same name as the project is created in the folder given in this panel field, and the project will be created inside this folder with the same name as the project. This is to encourage the habit of creating a folder of the same name of the project and then creating the project inside the folder.

If Create working folder is not ticked, the project is created in the folder given in this panel field.

Project name typed input
name of the new project to be created.
Create working folder tick box
if tick, a folder of the same name as the project is created in the folder Folder, and the project is created inside this folder. The folder with the same name as the project is then the working folder.
If not tick, the project is created in the folder Folder and this folder is the working folder.

Description typed input
a description of the project can be typed into this field. This is stored with the project.

Advanced tick box
if tick, environment configurations can be assigned to the project and extra panel fields are displayed to allow for this. For more information, please go to the section 7.2.1 Project Open/
Create Panel with Advanced Ticked.
If not tick, no extra panel fields are displayed.

New button
after selecting this button, the new project created in either the Folder or if Create working folder is ticked, inside a folder created in the Folder of the same name as the project.
12d Model then opens the newly created project.

Recent Projects button
takes you back to the original front screen (5.1 Front Panel - Open a Recent Project).

Quit button
exit out of 12d Model.

Note
The Open tab takes you to the tab for browsing to open an existing project (5.2 Browse Button and Open Tab).
5.4 Options for the Highlighted Project

When a project is highlighted in the list of recent projects, icons for options are activated on the right hand side of the Project Selection panel.

Copy project - copy the project and the working folder
Move project - move the project and working folder to a new folder
Rename project - rename the project and the working folder
Delete project - delete the project and the working folder
Zip project - zip up the project and the working folder
Create desktop shortcut - create a shortcut on the desktop that starts 12d Model and opens the project - see 5.6 Project Shortcuts
Explore working folder - open Windows Explorer and show the contents of the working folder

These options are documented in the section 7.2.4 Options Active When Recent Project Highlighted.

Go to the next section 5.5 Organizing Working Areas.
5.5 Organizing Working Areas

For each project, *12d Model* creates a unique sub-folder of the working folder with the name consisting of the project_name followed by `.project`. For example, for the project *Olympic*, and folder called *Olympic.project* is created.

This sub-folder (*Olympic.project*) is called the **project area**. All the internal *12d Model* information for that project is kept inside the project area.

All outputs, reports and plots are written to the working folder (the folder containing the project) and are **not** held inside the project area.

Hence to get a complete backup of the project and all associated information, it is best to **backup the entire working folder**.

The project name, which can be up to 256 alphanumeric characters and can include spaces, must be unique within the working folder but other folders may include *12d Model* projects with the same name - these projects are distinct and are not related in any way.

There is no limit to the number of projects in a particular working folder but because all the outputs, reports and plots for each project in the same working folder would be mixed in together, it is recommended to have each project in its own working folder. That way the inputs files, output files, plots, reports etc. from the separate projects do not end up in the same working folder. Each separate working folder can then be easily backed up.

As an example, if three unrelated projects - olympics, airport, and dam - are to be created in a folder called *12d jobs*, it is suggested that the project *olympic* is created in a sub folders of *12d jobs* called *olympic*, *dam* is created in a sub folders of *12d jobs* called *dam* and *airport* is created in a sub folders of *12d jobs* called *airport*.

To help users adhere to this convention, when creating new projects, there is a Create working folder tick box which if ticked, will first create a folder of the same name as the project being created and then create the project in that folder.

Go to the next section 5.6 Project Shortcuts.
5.6 Project Shortcuts

The list of most recent projects makes it very easy for 12d operators to get into their projects. However if there is a folder of projects, or even a particular project, that a user wants to get into by simply double clicking on an Icon on the screen, then a Windows shortcut can be used to do it.

The easiest way to create the shortcut is to first make sure that the project is in the recent projects list. To do this, just open up the project and then exit 12d Model.

Then start up 12d Model again by clicking on the 12d icon on the desktop, highlight the project in the recent projects list and select the icon for Create desktop shortcut on the icons on the right hand side of the project list.

This will create a shortcut on the desktop with the name of the project, and the shortcut is set to open up the project when the icon is double clicked.
5.7 Creating Project Shortcuts by Hand

Target: has the path to `12d.exe` This is optional and can be the full path name to an existing project (including the project name) and this is opened when the icon is clicked.

OR

just an existing project and this must be in the folder given in **Start in**: and it is opened

Start in: is used as the working folder when no full project path is given in **Target**.
Creating Project Shortcuts by Hand

Creating an icon to open up in an existing 12d Model project can also be done by hand by copying a 12d icon that is already on the screen, renaming the copied icon to the name of the project (say survey).

The Properties for the icon survey is then modified by changing what is in the Target: box and maybe the Start in: box.

To display and modify the properties of a desktop icon, click RB over the 12d icon and select Properties from the menu. Then click on the Shortcut tab

The Properties for the icon survey can now be modified to:

(a) open an existing project

If an icon is to open a given project, then the full path to the projects (including the project folder name) in given in the Target: field after the path to the 12d exe.

For example, if the 12d Model project survey was in the folder "12d jobs\survey", set the Target: for the icon survey to:

"C:\Program Files\12d\12dmodel\11.00\nt.x86\12d.exe" "C:\12d jobs\survey\wurvey.project"

The icon survey would then automatically open up the project

C:\12d jobs\survey\survey.project

Note that if the path name for the project in Target: contain spaces, then it must be enclosed in double quotes ("").

If the survey icon was double clicked on, it would now open the project survey.

The Start in: is ignored.

(b) open an existing project

Another way that an existing project can be opened is that if a project such as survey already exists in the folder given by the Start in: field, then in the Target: field, the project name is
added after the path to 12d.exe.

For example, the **Target:**

```
"C:\Program Files\12d\12dmodel\11.00\nt.x86\12d.exe" survey
```

would automatically open the project **survey** in the **Start in:** folder of the shortcut.

So **Target:** and **Start in:** are used to obtain the existing project to open whereas in (a), only **Target:** is used.

Note that if either the path names for the **Target:** or **Start in:**, or the project name contain spaces, then they must be enclosed in double quotes (").

Note

The **Target:** field is actually a command line to start up **12d Model**. For more information see **39.8 Arguments When Starting 12d Model** in Appendix **39 Setting Up & Configuring 12d**.

Please continue to the next section **5.8 Environment Variables Shortcut**.
5.8 Environment Variables Shortcut

If a file of 12d Model environment variables has been set up by the user (see section 39.4. Environment Variables in Appendix 39 Setting Up & Configuring 12d), then instead of setting the environment variable ENVIRONMENT_4D to point to the file or setting it up with the default name, env.4d, the environment file can be passed to 12d Model using the Target of the icon properties.

For example, the Target:

"C:\Program Files\12d\12dmodel\11.00\nt.x64\12d.exe" -env F:\12d\env.4d

would fire up the 64-bit 12d.exe using the file of environment variables called F:\12d\env.4d

The Target:

"C:\Program Files\12d\12dmodel\11.00\nt.x64\12d.exe" -env F:\12d\env.4d airport

would fire up the 64-bit 12d.exe using the file of environment variables called F:\12d\env.4d and also automatically open the project airport in the Start in: folder of the shortcut.

Again if any of the path names contain spaces, then they must be enclosed in double quotes ("").

The Target: field is actually a command line to start up 12d Model. For more information see 39.8 Arguments When Starting 12d Model in Appendix 39 Setting Up & Configuring 12d.

Please continue to the next section 5.9 Running Macros and Chains on Start Up.
5.9 Running Macros and Chains on Start Up

To allow for tailoring 12d Model when a new project is created or an existing project opened, 12d Model runs user supplied files of macros and/or chains.

For new projects, the default name of the file is macros.4d

This can be changed to a different file by setting the environment variable

RUN_MACROS_FILE_4D file_of_macros_to_run_for_new_projects

For existing projects, the default name of the file is project_macros.4d

This can be changed to a different file by setting the environment variable

RUN_PROJECT_MACROS_FILE_4D file_of_macros_to_run_for_existing_projects

(the environment variables can be set on the Extra A tab of the env.4d editor - see 7.6.3 env.4d)

The files consist of macros and/or chains, one per line, where

for macros, just the name of the macro is needed on the line

and for chains, the command run_chain name_of_the_chain is needed on the line.

The macros and chains are run in the order that they occur in the file.

Please continue to the next section 5.10 Error Logging File.
5.10 Error Logging File

When 12d Model starts up, it tries to create an error logging file, called

log?????.4de

where ????? is a hashed number using your login name, process id & the current time.

When 12d Model terminates, the error log file is deleted if no errors were logged.

The folder that the error log file is created in is given by the environment variable LOG_DIR_4D

If LOG_DIR_4D is not used, 12d Model tries to create the log file in the current folder, the HOME folder, the TMP folder and the TEMP folder.

If creating a error log file fails in all these areas, 12d Model will not start up. This should never happen.

To return to the beginning of this chapter, click on 5 Starting Up.
6 12d Model Help

Position of option on menu: Help => 12d Model

All the information in the 12d Model Reference manual is also available as electronic Help accessed from within 12d Model (also know as the 12d Model Context Sensitive Help).

The entire 12d Model Help manual can be accessed by selecting 12d Model on the Help menu item on the main 12d Model menu.

12d Model help
12d macro programming language help

links to web site www.12d.com,
12d Model modules authorized, dongle number
e-mail details of your 12d Model to 12d Solutions
dongle testing panel
check for newer versions of 12d Model
brings up Microsoft’s System Information panel
For Windows 7 links to the WinHlp32.exe

Clicking on 12d Model brings up Help Topics: 12d Model Reference

The panel Help Topics: 12d is actually using Microsoft’s WinHlp system and it allows you to look at the overall structure of the 12d Model Help and access any part of it. More information on
using the tabs Contents, Index and Find will follow in the next section.

Alternatively, individual topics for a panel or menu can be invoked by pressing the F1 key whenever the focus is on the menu or panel, or by clicking on the Help button on any 12d Model panel (see F1 Key). This is the context sensitive nature of the 12d Model Help.

For some options, there is also additional help files and videos. This is denoted by a * after Help on the Help button. That is Help* (see Extra Help).

It is also possible to have a Help button and F1 key available for 12d Model PLs (macro) programs written by 12d Solutions or by Users. Please see the 12d Model Programming Language manual for more information on this feature.

Note: The 12d Model Reference manual is available in pdf on the 12d Model installation DVD, or on the 12d web site www.12d.com.

More information on the Help system is given in the sections:

 - Contents
 - Index
 - Find
 - Panel Help Button
 - F1 Key
 - Navigating in Help
 - Extra Help
Contents

The Contents tab allows you to look at the overall structure of the 12d Model Help and access any part of it.

Warning - only topics in the Contents can be viewed in Help so any folders in Contents folders must be expanded until topics are displayed. Topics can be easily identified because they have a question mark beside them indicating that Help is available and can be viewed.

For example, double clicking on Tools and Concepts expands the next level of Tools and Contents.
and topics are *The Mouse, The Keyboard* etc.

Double clicking on the topic **Picking Strings** will then display the topic.
The **Contents** then disappear leaving **Help** open at the selected topic.

Picking Strings

In many 12d Model options, the user is required to "pick" the string to be used in the option, or to get information about a string.

After any option requiring a pick is selected, a message regarding the function of the mouse buttons is written to the screen message area.

```
<option> [picks][test][menu]
```

There are two picking method available in 12d Model:

(a) *Fast pick* where the pick and the accept occur as one operation and
(b) *Tentative picks* with a separate pick and accept mechanism

"Fast pick" will documented first followed by the "Tentative pick" (pick and accept) method.

Fast Pick

To **fast pick** a string, simply move the cursor near the string and click MB or type <enter>. The nearest string to the cursor satisfying the snap condition is selected.
Double clicking on **Contents** on the top of the *Help* will bring the Contents listing back up.
Continue to [Index](#) or return to [6 12d Model Help](#).

Index

The *Index* tab searches through all entries in the Index of the Help.
As the first few characters of the required entry are typed in, the matching index entries are displayed.

Double clicking on the displayed entries will go to the topic in the Help containing the selected index entry. If more than one topic includes the index entry, then the list of topics is displayed.
If the index has sub-indices, they can be searched by first typing in the main index followed by a comma, then a space and the first few characters of the sub-index.
Continue to [Find](#) or return to [6 12d Model Help](#).
Find

The most powerful searching method for the Help system is *Find*. Simply click on the *Find* tab to search for words or phrases that may be contained in a Help topic. If *Find* is being invoked for the first time, the *Find Setup Wizard* runs to create an index of every word in the Help.

From then on, selecting the *Find* tab goes straight to the *Find* screen.
Continue to Panel Help Button or return to 12d Model Help.
Panel Help Button

Every panel has a Help button which when selected goes to the topic describing that panel.

The default 12d Model Help is all in one Winhelp file but a method for displaying additional help information exists so 12d Solutions, 12d Distributors and Users can supply additional (extra) Help information.

If there is extra help available for an option, then Help* will appear instead of Help on the panel button.

Information on how the extra help is set up is given in the section Extra Help. Continue to F1 Key or return to 6 12d Model Help.
F1 Key

Another method of invoking Help is by using the F1 key as follows:

when a menu or panel is on the screen and has focus (the menu or panel title area will be highlighted), or the cursor is over an item on a toolbar, pressing F1 will bring up the help for that menu, panel or toolbar item.

Warning - some of the items on the Strings menu automatically start up a string select and change the focus from the panel to a View. This means that pressing F1 will bring up the Help for the View and not the Help for the panel.

To get Help for such a panel, click on the panel to bring the focus back to the panel before pressing F1. The top of the panel will highlight showing that it has focus.

Continue to Navigating in Help or return to 6 12d Model Help.
Navigating in Help

Once at a topic in the Help, the << and >> buttons at the top of the Help topic will go to the previous and next Help topics respectively.

Individual Help topics can be printed by clicking Print at the top of the Help page.

Because it is difficult to print large sections of Microsoft's Help system, a PDF file of the entire 12d Model Reference Manual has been created and can be used to print out large sections of the manual.

Continue to Extra Help or return to 6 12d Model Help.
Extra Help

The default context sensitive 12d Model Help is all in one help file supplied by 12d Solutions but a method for displaying additional help information exists so 12d Solutions, 12d Distributors and Users can supply additional (extra) Help information. This extra information can also be supplied by 12d Model PLs (macros) written by 12d Solutions or Users.

How to Set Up Extra Help

Any extra help for an inbuilt panel (that is, one not created by a macro) is placed in a folder with the same name as the dump name for the panel without the ending after the “.” (to get the dump name, see Dumping a Panel, Creating a Screen Layout File or Default File in 12d Help or the 12d Model Reference manual).

For macros, created by Users or 12d Solutions, there can only be the same Help button for any panels created by the macro and the extra help for the macro is placed in a folder with the same name as the macro without the ending "4do" after the "." and with any blanks or non alphanumeric characters replaced by a underscore ("_"). For example, the extra help files for the macro called "testing help (3) system.4do" go in a folder called testing_help__3__system. Note there is an underscore for the blanks and the "(" and ")" in the macro name.

The extra help files for an inbuilt panel or macro can have any name and can be a pdf, wmv, avi. txt etc.

For example, for the panel Project Tree brought up by selecting Project =>Tree, the extra documentation would be in a folder called Project_Tree.

The folder of extra help for a panel, is then placed in any one of the three places:

(a) in the Help folder in the 12d Model installation area: For example, for version 11
 c:\Program Files\12d\12d Model\11.00\Help
 c:\Program Files (x86)\12d\12d Model\11.00\Help

(b) in a folder called Help inside the Set_ups folder in the 12d Model installation area. For example
 c:\Program Files\12d\12d Model\11.00\Set_ups\Help
 c:\Program Files (x86)\12d\12d Model\11.00\Set_ups\Help
 or
(c) in a folder called Help inside the User folder in the 12d User area. For example
 c:\12d\11.00\User\Help

For an inbuilt panel an macro, each of these areas is searched and if any extra help is found, it is listed with the full path to each extra help file.

If there is any extra help for a inbuilt panel or macro, the Help button on the panel will be replaced with a Help * button. The * indicates that there is extra help available.

When you click on the Help * button, you will get a list of all the extra help files for that inbuilt panel or macro with the full pathname to the extra help. Clicking on the file name will bring up that extra help.

For example,
Users Own Extra Help Files

Note that users can also have their own extra help files and the files are simply placed in the correctly named folder under User\Help.
7 Project

The Projects walk-right menu is:

For the options, see:

- **Recent Projects** 7.1 Recent Projects
- **Open** 7.2 Open
- **New** 7.2.3 New
- **12d Synergy** 7.3 12d Synergy
- **Check base points** 7.4 Check Base Points
- **Details** 7.5 Details
- **Management** 7.6 Management
- **Restart** 7.7 Restart
- **Save** 7.8 Save
- **Tree** 7.9 Tree
- **Utilities** 7.10 Utilities
- **Delete** 7.11 Delete
- **Model** 7.12 12d Model
- **Model Menu** 7.13 12d Model Menu (only on the Main Menu)
- **Exit** 7.14 Exit
7.1 Recent Projects

Position of option on menu: Project => Recent projects

Walking right on the Project => Recent projects lists the projects recently accessed by 12d Model.

Clicking on a project in the list will open the project.

Clicking on the Recent Projects heading on the Main Menu or on the Recent projects item when the Projects menu is pinned up, brings up the Open a Recent Project panel which shows the recent project in the front panel (see 5.1 Front Panel - Open a Recent Project).
Go to the next section 7.2 Open/Create Project or return to 7 Project.
7.2 Open/Create Project

Position of option on menu: Project => Open
Position of option on menu: Project => New

Both Open and New bring up the Open/Create panel with the Open or New showing.

(a) The Open option is used to change the working folder and the working project to an another existing project.

With Advanced ticked, it is also possible to set or modify one or more of the Environment configuration, Dongle or Workspace set ups for the projects. For more information on Environment configuration settings, go to 7.6.4 Env Configuration or a quick discussion in the section 7.2.1 Project Open/Create Panel with Advanced Ticked.

The Open/Create panel with the Open tab showing is described in the section 5.2 Browse Button and Open Tab.

(b) New creates a new 12d Model project.

A working folder (directory) of the same as the project can also be created with the actual project created inside the folder.

The Open/Create panel with the New tab showing is described in the section 5.3 New Button and New Tab.
7.2.1 Project Open/Create Panel with Advanced Ticked

To tailor 12d Model, there are a large number of environment variables in a file called env.4d. For most users, one env.4d file provides enough customisation for their site but for users with customers requiring very different set ups, a more flexible system is required.

For example, one project may be for a Main Roads Department which requires its own mapping files, linestyle files, ppf files etc, and another project is for a Local Authority who has totally different standards and requirements.

For this more complex situation, different env.4d files and environment variable overrides can be defined for each project and the Advanced tick box gives access to the advanced tailoring for a project.

For more information on the advanced tailoring, go to 7.6.4 Env Configuration.

With Advanced ticked, the Open/Create and Open a Recent Project panels display a section for extra configuration options.

The extra fields and buttons in this panel have the following functions.
### Field Description	Type	Defaults	Pop-Up
Registry file | registry box | env_configs.4dfolder browse |

the registry file used to define the Environments, Dongles and Workspaces definitions.

Environment configuration

if non blank, the given Environment configuration set up is used for this project.

The choices for the Environment configuration pop-up come from the registry file. For more information on defining Registry files, go to [7.6.4 Env Configuration](#) and for more information on the Environmental configuration section in particular, go to [Creating/Editing an Environments Set Up](#).

Dongle configuration

if non blank, the given Dongle set up is to be used for this project.

The choices for the Dongles pop-up come from the Registry file. For more information on defining Registry files, go to [7.6.4 Env Configuration](#) and for more information on the Dongles section in particular, go to [Creating/Editing a Dongles Set Up](#).

Workspace

if non blank, the given Workspace set up is used and if it includes a workspace file, then that file is used when the project is opened. However once the project is opened, the workspace file is saved locally and any changes saved with the project.

The choices for the Workspace pop-up come from the Registry file. For more information on defining Registry files, go to [7.6.4 Env Configuration](#) and for more information on the Workspaces section in particular, go to [Creating/Editing a Workspaces Set Up](#).

Go to the next section [7.2.2 Open](#) or return to [7.2 Open/Create Project](#).
7.2.2 Open

Position of option on menu: Project => Open

Position of option on menu: Project => Utilities => Projects

For the Project => Utilities => Project option, go to the section 7.10.2 Projects.

The Open option is used to change the working folder and the working project to another existing project.

With Advanced ticked, it is also possible to set or modify one or more of the Environment configuration, Dongle or Workspace set ups for the projects. For more information on Environment configuration settings, go to 7.6.4 Env Configuration or a quick discussion in the previous section 7.2.1 Project Open/Create Panel with Advanced Ticked.

Open option brings up the Open/Create panel with the Open tab showing, and this is described in the section 5.2 Browse Button and Open Tab.

Go to the next section 7.2.3 New or return to 7.2 Open/Create Project.
7.2.3 New

Position of option on menu: Project => New

New creates a new 12d Model project.

A working folder (directory) of the same as the project can also be created with the actual project created inside the folder.

New option brings up the Open/Create panel with the New tab showing, and this is described in the section 5.3 New Button and New Tab.

Go to the next section 7.2.4 Options Active When Recent Project Highlighted or return to 7.2 Open/Create Project.
7.2.4 Options Active When Recent Project Highlighted

When a project is highlighted in the list of recent projects in the Open a Recent Project panel, icons for options are activated on the right hand side of the Project Selection panel.

<table>
<thead>
<tr>
<th>Option</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy Project</td>
<td>see 7.2.5 Copy Project - Icon</td>
</tr>
<tr>
<td>Move Project</td>
<td>see 7.2.6 Move Project - Icon</td>
</tr>
<tr>
<td>Rename Project</td>
<td>see 7.10.7 Rename</td>
</tr>
<tr>
<td>Delete Project</td>
<td>see 7.2.7 Delete Project - Icon</td>
</tr>
<tr>
<td>Zip Project</td>
<td>see 7.2.8 Zip Project - Icon</td>
</tr>
<tr>
<td>Create Desktop Shortcut</td>
<td>create a shortcut on the desktop that starts 12d Model and opens the project - see 5.6 Project Shortcuts</td>
</tr>
<tr>
<td>Explore</td>
<td>open Windows Explorer and show the contents of the working folder</td>
</tr>
<tr>
<td>Refresh</td>
<td>refresh the recent projects list</td>
</tr>
</tbody>
</table>
7.2.5 Copy Project - Icon

Position of option on menu: Project Selection => Copy Project icon
Position of option on menu: Project => Open => Copy Project icon

This panel copies a project to a new location. If you are attempting to copy the project you are currently in, 12d Model will prompt you to save and restart.

Selecting \(\text{Copy Project} \) brings up the Copy Project panel:

![Copy Project Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working folder</td>
<td>file</td>
<td>the folder containing the project</td>
<td></td>
</tr>
<tr>
<td>Project</td>
<td>file</td>
<td>the name of the project to copy</td>
<td></td>
</tr>
<tr>
<td>Target</td>
<td>file</td>
<td>where the project should copied to</td>
<td></td>
</tr>
<tr>
<td>Include working folder (containing project)</td>
<td>tick box</td>
<td>if ticked, the folder containing the project (and all sub folders) will also be copied</td>
<td></td>
</tr>
<tr>
<td>Reset project id (required for sharing)</td>
<td>tick box</td>
<td>if you are intending to share the copied project, you must reset the ID - otherwise sharing will not be allowed from the copied project</td>
<td></td>
</tr>
<tr>
<td>Copy</td>
<td>button</td>
<td>copies the project</td>
<td></td>
</tr>
</tbody>
</table>

Go to the next section 7.2.6 Move Project - Icon or return to 7.2 Open/Create Project.
7.2.6 Move Project - Icon

Position of option on menu: Project Selection=> Move Project icon
Position of option on menu: Project =>Open=> Move Project icon

This panel moves a project to a new location. If you are attempting to move the project you are currently in, 12d Model will prompt you to save and restart.

Selecting brings up the Move Project panel:

The fields and buttons used in this panels have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working folder</td>
<td>file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the folder containing the project</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the name of the project to move</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target</td>
<td>file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>where the project should moved to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Include working folder (containing project)</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, the folder containing the project (and all sub folders) will also be moved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset project id (required for sharing)</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if you are intending to share the moved project, you must reset the id - otherwise sharing will not be allowed from the moved project.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>moves the project</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go to the next section 7.2.7 Delete Project - Icon or return to 7.2 Open/Create Project.
7.2.7 Delete Project - Icon

Position of option on menu: Project Selection => Delete Project icon

Position of option on menu: Project => Open => Delete Project icon

This will delete a project. This cannot be the current open project.

Selecting \(\times \) brings up the Delete Project panel:

![Delete Project panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working folder</td>
<td>file</td>
<td></td>
<td>the folder containing the project to be deleted</td>
</tr>
<tr>
<td>Project</td>
<td></td>
<td></td>
<td>the name of the project to delete</td>
</tr>
<tr>
<td>Delete</td>
<td>button</td>
<td></td>
<td>delete the project</td>
</tr>
</tbody>
</table>

Go to the next section 7.2.8 Zip Project - Icon or return to 7.2 Open/Create Project.
7.2.8 Zip Project - Icon

Position of option on menu: Open/Create Project => Zip Project icon

This panel will zip a project. If you attempt to zip the current project, 12d Model will prompt you to save and restart.

Selecting ![Zip Project icon] brings up the Zip Project panel:

![Zip Project panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working folder</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the folder where the project resides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project</td>
<td>project box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the name of the project you wish to zip</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zip file</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the file to zip into</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete existing zip file</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked on, any existing zip file will be deleted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Include directory containing project</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked on, the directory containing the project (the working directory) will also be zipped, along with all sub folders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zip</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zips the project</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Return to [7.2 Open/Create Project](#).
7.3 12d Synergy

Position of option on menu: Project => 12d Synergy

This section of documentation is a work in progress and will be updated in subsequent releases.

On selecting the 12d Synergy option,

Go to the next section 7.4 Check Base Points or return to 7 Project.
7.4 Check Base Points

Position of option on menu: Project => Check base points

All 12d Model versions have a Base module that is authorised for a set number of Base Points. For example, the 50K Base allows up to 50,000 base points, the 5M version allows up to 5,000,000 base points and the 250M version allows up to 250,000,000 base points.

The Check base points option displays the number of base points used in the current project and the total number of base points authorised for the version of 12d Model being used to open the project.

The items included in the Base Point count are:
1. each vertex in a string counts as a base point except
 (a) for a project, the vertices of strings created when plotting to a model inside the project do not count as base points for that project
 (b) for a project, contours generated by 2d Model and written to models inside the project do not count for that project.
2. points in a tin count as base points
3. for an alignment, the number of base points is the number of HIP’s plus the number of VIP’s
4. items in models and tins shared into a project are included in the base point count.

Important Note:
If any non-counted base point data is written out as 12da and read into a project then the data read in from the 12da will be included in the base point count in the project that the data is read into.

Selecting Check base points displays the Check Base Points panel.

Go to the next section 7.5 Details or return to 7 Project.
7.5 Details

Position of option on menu: Project => Details

A project description and project details can be defined.

The *Project details* walk-right menu contains various project items.

![Project Details menu](image)

- *Description* - display/modify the project description
- *Details* - display/modify the project details
- *Diary* - project diary

For the option *Description*, go to 7.5.1 *Description*

For the option *Details*, go to 7.5.2 *Edit Details*

For the option *Diary*, go to 7.5.3 *Diary*

The options in the menu will now be described.
7.5.1 Description

Position of option on menu: Project => Details => Description

The description option is used to create and edit the project description. Selecting Description brings up the Project Description panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field/Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project description area</td>
<td>input</td>
<td>the description for the project to be rebuilt. The description can be more than one line long.</td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td>set the project description to be the text in the project description area.</td>
<td></td>
</tr>
</tbody>
</table>

Note: This panel is a resizable panel.

Go to the next section 7.5.2 Edit Details or return to 7.5 Details.
7.5.2 Edit Details

Position of option on menu: Project => Details => Details

The Details option is used to enter project details.

Selecting Details opens the Edit Project Details panel.

What information is to be entered into the Enter Project Details panel is defined in the option Project => Management => Details editor - go to 7.6.2 Details Editor

The fields and buttons used in the Enter Project Details panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>set the project details to the values show in the panel. The values are stored as project attributes.</td>
</tr>
<tr>
<td>Load button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>brings up the Projects Details Setting Reload panel that is used to load a new definition of project detail attributes.</td>
</tr>
</tbody>
</table>

A file defining a new set of project attributes of project details can be loaded. How existing project details are handled depends on the value of Old details handling.
Old details handling

Remove - all existing project detail attributes are removed and totally replaced by the new set

Keep (no update) - any existing project detail are kept but their values are not updated by the default setting if the same attribute exists in the Settings file.

Keep (with update) - any existing project detail are kept and their values are updated by the default setting if the same attribute exists in the Settings file.

Go to the next section 7.5.3 Diary or return to 7.5 Details.
7.5.3 Diary

Position of option on menu: Project => Details => Diary

The Project diary allows information to be entered for each day. It can also be used to edit project details and the project description.

Selecting Diary brings up the Project Diary panel.

The Project diary panel has a grid with nodes for the Project diary, Project Details and Project description.

Clicking on the + on Project diary will expand the tree to show all the dates with diary notes as well as a position for entry at today’s date. Clicking in the calendar at the bottom of the panel will allow notes to be added for earlier days that do not already have notes. Notes can not be added for future dates.

Clicking on Project details will display in read-only format the Project details information for the project with their current values. To modify any of the values, click on the Edit button and the Edit Project Details panel is displayed. The information can then be modified/saved as documented in the section 7.5.2 Edit Details.

Clicking on Project description display the current description in the right hand side of the panel. The description is simply text and can be modified directly in the panel. Click on the Write button to save the modified description.
Clicking on **Export** display the **Export Diary** panel.

![Export Diary panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>
| **Export as plain text** | if ticked, exports the diary as plain text without formatting
if not ticked, exports the diary in RTF, with all formatting retained | tick box | not ticked | |
| **Export mode** | which data should be exported - the whole diary, the selected month or the selected day | choice box | Whole diary | Whole diary, Selected month, Selected day |
| **Export to** | the file to export the diary to | file | | |
| **Export** | writes the current export diary settings out to the file given in the **Export to** field. | | | |

Return to [7.5 Details](#).
7.6 Management

Position of menu: Project => Management

Options to set up the project

The Project management walk-right menu contains various project items.

For the option:

- **Defaults**, go to 7.6.1 Defaults
- **Details editor**, go to 7.6.2 Details Editor
- **env.4d**, go to 7.6.3 env.4d
- **Env configuration**, go to 7.6.4 Env Configuration
- **Dongles**, go to 7.6.5 Dongles
- **Projections**, go to 7.6.6 Projections
- **N values**, go to 7.6.7 N values
- **7 parameters**, go to 7.6.8 7 Parameters
- **Workspace**, go to 7.6.9 Project Workspace
- **Tags**, go to 7.6.10 Tags
- **Tree**, go to 7.6.11 Tree
- **Managers**, go to 7.6.12 Managers
- **Sharing**, go to 7.6.13.2 Project Sharing
- **Forest files**, go to 7.6.14 Forest File
- **Trash bin**, go to 7.6.15 Trash Bin
- **Project preview**, go to 7.6.16 Project Preview
- **Toggle density drawing**, go to 7.6.17 Toggle Density Drawing
- **Toggle topmost buttons**, go to 7.6.18 Toggle Topmost Buttons

The options in the menu will now be described.
7.6.1 Defaults

Position of option on menu: Project => Management => Defaults

The **Defaults** option allows the user to view and modify many of the default values used in the current 12d Model project.

NOTE - The values in the default option panels are initially set for a new project by the values in the **defaults.4d** file. For more information on the defaults.4d file, go to the section 39.2.7.3. **Defaults File (defaults.4d)** in the Appendix 39 Setting Up & Configuring 12d

Any changes made in the **Defaults** panel are used in the current session for the project when the **Set** button is pressed. The values are only **saved** for the project if a **Project => Save** is done after the **Set**.

On selecting the **Default Settings** tab, the **Default Settings** are displayed.

![Defaults Panel](image)

The **Defaults** panel consists of tabs for the groups of settings **Defaults, System, Trash** and **Name**.

- **Default Settings** tab
- **System Settings** tab
- **Trash Settings** tab
Names Settings tab

Default Settings tab

![Default Settings Tab](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>colour box</td>
<td>default colour</td>
<td>available colours</td>
</tr>
<tr>
<td>the name of the current default colour used for line strings.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point colour</td>
<td>colour box</td>
<td>def point colour</td>
<td>available colours</td>
</tr>
<tr>
<td>the current default colour used for point strings.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin colour</td>
<td>colour box</td>
<td>def tin colour</td>
<td>available colours</td>
</tr>
<tr>
<td>the default tin colour used in the triangulate model and view panels.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contour colour</td>
<td>colour box</td>
<td>default cont colour</td>
<td>available colours</td>
</tr>
<tr>
<td>the default contour colour used in the contour panel.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions.
Cont bold colour colour box default cont index colour available colours
the default contour bold colour is used in the contour panel.

I/O null height input -999.0
this field contains the value of the value recognised as a null height when reading in and writing out data.

Text height (pixels) input 8
the default text height used in the sewer option and other panels.

Chord/Arc tolerance input 0.1
the maximum value of a chord to arc distance. If this distance is exceeded when approximating curves by chords, extra points are inserted into the curve so that the chords all have chord/arc distances less than this value. A value of zero disables the chord/arc test.

Culling tick box
the culling setting for any new perspective or plan views.

Culling size (pix) input 5
the culling size for any new perspective or plan views.

Corner angle input 15
when applying templates or calculating interfaces along a string, extra sections may be required at string vertices with no horizontal curve on them. If the corner angle is non-zero, extra sections are added in at multiples of the corner angle value for the plan angle at the vertex.

Weed tolerance input 0
if two points on a string (with the same bearing) are closer that this distance then the second point is left out. This applies to the extra points added in at chainage points in interfacing and corner angles.

Section view exagg input 10
the vertical exaggeration used for any new section views.

Perspective view exagg input 1
the vertical exaggeration of any new perspective.

Cut volume sign choice box negative negative, positive
the sign (positive or negative) used for cut volumes and areas. The sign for fill is the opposite.

Use density drawing tick box
If Use density drawing is ticked, the data density for a model is calculated and if it is too high, a red rectangle is drawn around the model instead of the individual vertices of the strings in the model. If the data density of the model is low enough not to replace the entire model by a red rectangle, a data density is calculated for each string in the model and if the data density is too high, the string is replaced by a red rectangle.

Note: This setting is only applicable to the 250M version of 12d Model.

The default for a new project is given by the environment variable USE_DENSITY_CHECKS_4D.

Load button
read the default values from the current default.4d file for the project. The values are not used for the project until the Set button is pressed. The values are not saved for the project until a Project => Save is done after the Set.

Set button
when set is selected, the defaults are set to the values given in the corresponding fields of this panel. These are not saved unless a Project => Save is done after the Set.
Write button

write the values in the panel to the defaults.4d file. The values are not used for the project until the Set button is pressed. The values are not saved for the project itself until a Project => Save is done after the Set. For more information on the Write button, go to the section 39.2.6 Writing Out Setup Files in the Appendix 39 Setting Up & Configuring 12d.

System Settings tab

On selecting the System Settings tab, the System Settings are displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle mode</td>
<td>choice box</td>
<td>bearings</td>
<td>cartesian, bearings</td>
</tr>
</tbody>
</table>

specifies whether bearings or cartesian angles are used in reporting the instantaneous direction of the selected string in the information menu.
Cross size (pixels) input/output 2
the size in pixels that crosses (for points etc.) are drawn on the screen.

Cross size (mm) input/output 2.5
the size in millimetres that crosses (for points etc.) are drawn on any plots.

Highlight cross size input/output 8
the size in pixels of the cross used for highlighting objects in views.

Highlight cross colour colour box yellow available colours
the colour of the cross used for highlighting objects in views.

Highlight colour colour box white available colours
the colour used to display objects in views when they are highlighted.

Display colours input/output 0
the number of colours from the colours.4d file that are displayed in a Select Colour pop-up.
If 0, all colours are displayed.
The order that the colours are selected is given by the Pop-up number in the colours.4d file. See 4.22.3 Editing Colours.4d.

Save interval (min) input/output 5
the number of minutes that elapse after a save before the save project reminder panel comes up. If 0, the panel never comes up.

Display precision input/output 3
the number of decimal places used for values displayed in the information menus.

Box precision input/output 4
the number of decimal places used for values displayed in boxes and panels.

Popup length input/output 28
this is no longer used - the maximum number of items in a pop-up before breaking the pop-up into walk-rights.

Display reports tick box tick
if ticked, as soon as a report is produced, it will be displayed in the editor defined by the environment variable, EDITOR_4D.

Display edit info tick box tick
if ticked, the edit info panel is automatically displayed whenever a string is created or edited.

Print reports tick box tick
if ticked, as soon as a report is produced, it will be passed to the script/program defined by the environment variable, PRINTER_4D.

Send plots tick box tick
if ticked, as soon as a plot is produced, it will be passed to the script/program defined by the environment variable, PLOTTER_4D.

Plan crosses tick box
This option is experimental - at the moment things will look messy when editing in a section view with plan crosses turned on.
if ticked, when the cursor is in a plan or perspective view, it is projected onto any section views as well.

Function results tick box tick
if ticked, function results such as volumes will be displayed on the screen every time a recalc is done.
if not ticked, no function results as displayed on a function recalc.

Load button
read the default values from the current default.4d file for the project. The values are not used for the project until the Set button is pressed. The values are not saved for the project until a Project => Save is
done after the **Set**.

Set button

When set is selected, the defaults are set to the values given in the corresponding fields of this panel. These are not saved unless a **Project => Save** is done after the **Set**.

Write button

Write the values in the panel to the defaults .4d file. The values are not used for the project until the **Set** button is pressed. The values are not saved for the project itself until a **Project => Save** is done after the **Set**. For more information on the **Write** button, go to the section 39.2.6 Writing Out Setup Files in the Appendix 39 Setting Up & Configuring 12d

Trash Settings tab

On selecting the **Trash Settings** tab, the **Trash Settings** are displayed.

![Image of Defaults dialog box]

The fields and buttons used in this panel have the following functions.
In many string options, new strings are created from existing strings. What happens to the original strings may be determined by the **trash mode**. If set to **keep string**, the original strings will not be touched. If set to **trash string**, the original strings will be moved to the trash model. If set to **delete string**, the original strings will be deleted.

The model that trashed strings are put into. This model needs to be cleaned or deleted to permanently remove the strings.

read the default values from the current default.4d file for the project. The values are not used for the project until the **Set** button is pressed. The values are not saved for the project until a **Project =>Save** is done after the **Set**.

when set is selected, the defaults are set to the values given in the corresponding fields of this panel. These are not saved unless a **Project =>Save** is done after the **Set**.

write the values in the panel to the defaults.4d file. The values are not used for the project until the **Set** button is pressed. The values are not saved for the project itself until a **Project =>Save** is done after the **Set**. For more information on the **Write** button, go to the section **39.2.6 Writing Out Setup Files** in the Appendix 39 Setting Up & Configuring 12d.

- **Names Settings tab**
 - On selecting the **Name Settings** tab, the **Name Settings** are displayed.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Names</td>
<td>input</td>
<td>*.mapfile, *.mf files</td>
<td>name of the Map File used as the default name mapping file.</td>
</tr>
<tr>
<td>Load</td>
<td>button</td>
<td></td>
<td>read the default values from the current <code>defaults.4d</code> file for the project. The values are not used for the project until the Set button is pressed. The values are not saved for the project until a Project => Save is done after the Set.</td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td></td>
<td>when set is selected, the defaults are set to the values given in the corresponding fields of this panel. These are not saved unless a Project => Save is done after the Set.</td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td>write the values in the panel to the <code>defaults.4d</code> file. The values are not used for the project until the Set button is pressed. The values are not saved for the project itself until a Project => Save is done after the Set. For more information on the Write button, go</td>
</tr>
</tbody>
</table>
to the section 39.2.6 Writing Out Setup Files in the Appendix 39 Setting Up & Configuring 12d.

Go to the next section 7.6.2 Details Editor or return to 7.6 Management.
7.6.2 Details Editor

Position of option on menu: Project => Details => Management => Details editor

The Details Editor option creates the files used to define the project attributes displayed in the Project Details panel.

On selecting the Details Editor option, the Project Details Editor panel is displayed.

The items defined in the Project Details Editor panel can be of type Text (e.g. fred), Integer (e.g. 11) or Real (e.g. 23.15).

The fields and buttons used in the Enter Project Details panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set</td>
<td>button</td>
<td></td>
<td>the values in the panel are set as the project details setup</td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
writes out a project details file.

When inserting a new **detail**, the following is displayed

![Project Details Editor](image)

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>choice box</td>
<td>Text, Text, Integer, Real</td>
<td></td>
</tr>
<tr>
<td>the detail can be text, an integer or a real value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>name of the project attribute used to store the detail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Display name</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>name to appear in the Enter Project Details panel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>description that appears when the Display name is clicked in the Enter Project Details panel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default value</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>default value for the detail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precision</td>
<td>integer box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>only for Type Real - number of decimal places</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is optional</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, then the detail does not have to be filled in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked, it is compulsory to fill in the detail in the Enter Project Details panel before leaving the panel.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go to the next section **7.6.3 env.4d** or return to **7.6 Management**.
7.6.3 env.4d

Position of option on menu: Project => Management => env.4d

The env.4d option is used to create/update the env.4d file of environmental variables. When the option is selected, it reads in the current env.4d file and displays in the panel, the values for any environment variables in the file. Hence the panel shows the values for the environment variables in the file, not those that are not in the file and have default values set by 12d Model.

Hence the tick boxes in the Edit Environment Variables panel have three states rather than the standard two states. There is the standard tick or nothing to denote the value of the variable is set from the env file (or is going to be written out to the env file) or a greyed out tick or greyed out blank box to indicate that the value has not been set by the environment variable. Clicking on the tick box will toggle between the three states - on, off and no value.

After any modifications are made, the parameters are written out to an env.4d file.

Note that the env.4d file is only used when a project is loaded so the parameters written to an env.4d file can only take affect for the current project if a project restart is done.

Selecting env.4d displays the Edit Environmental Variables panel.
This panel has a tree on the left hand side and clicking on the + will expand the node and - will collapse the node.

The fields and buttons at the bottom of the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search for field</td>
<td>typed input</td>
<td>text to search for on the env.4d panel (not the env variable name).</td>
<td></td>
</tr>
<tr>
<td>Search button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prev. button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For more information on the Write button, go to the section 39.2.6 Writing Out Setup Files in the Appendix 39 Setting Up & Configuring 12d.

Note - the env.4d file is only used when a project is loaded so the parameters written to the env.4d file will only take affect for the current project if a project restart is done.

For information on the variables, see

General
Files & Folders
Projects
Dongles
Elements
The environment variables are described in more detail in the section 39.4 Environment Variables of the Appendix 39 Setting Up & Configuring 12d.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Show full path name</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, when 12d Model fires up the actual file names defined by any environment variables are written to the output window. This is useful for debugging.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Env variable and full documentation: see</td>
<td>SHOW_PATHS_4D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Show Vista full path name</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, then for Microsoft Vista, when 12d Model fires up, the actual file names defined by any environment variables are written to the output window. This is useful for debugging due to the fact that Vista may put file in strange places.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Env variable and full documentation: see</td>
<td>SHOW_VISTA_VIRTUAL_STORE_PATHS_4D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enable undo</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, allow Undos.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Env variable and full documentation: see</td>
<td>UNDO_4D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan table settings</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, allow the drawing of z-values, vertices, etc. on the plan view to be set by individual models rather than for all models on the view.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Env variable and full documentation: see</td>
<td>PLAN_TABLE_SETTINGS_4D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use names.4d comment field</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environment variable</td>
<td>USE_NAMES_COMMENT_4D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check for updates on startup</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, the 12d web site is checked on startup for any newer updates to 12d Model. If not ticked, the 12d web site is not checked.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environment variable</td>
<td>CHECK_FOR_UPDATES_4D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Show time taken for options</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, the time taken for an option to run is written to the output window.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If not ticked, the information is not written to the output window.

Environment variable
SHOW_OPTION_EXECUTION_TIME_4D

Text editor
file box

if non-blank, the script or program that is fired up when a report is created. It usually points to an editor.

Env variable and full documentation: see **EDITOR_4D**

Typed units mode
choice box

Controls the typed input units for feet - international and/or US.

Environment variable
TYPED_UNITS_MODE_4D

System names
Choice box
Long, Short, Short then long

for file name compatibility with DOS 8.3 format, the default names for all setup files can be restricted to just short names (8.3), long names, or short and then long.

Environment variable
SYSTEM_NAMES_4D

Web search
typed input

Env variable and full documentation: see **WEB_SEARCH_4D**

Processor affinity
typed input

Env variable and full documentation: see **PROCESSOR_AFFINITY_4D**

Sort colour box by popup number
tick box

In ticked the colours in the Select Colour popup are sorted by the Pop-up number.

Env variable and full documentation: see **SORT_COLOURS_BY_POPUP_NUM_4D**

Files & Folders

Files & Folders > Folders

Use “\Documents and Settings\All Users” for env.4d, users user_lib folders
tick box

Env variable and full documentation: see **USE_ALL_USERS_PROFILE_4D**

Setups folder
folder box
default set_ups

if non blank, the full path name of the folder to use for the 12D Solutions supplied setup files.

Env variable and full documentation: see **SET_UPS_4D**

Library folder
folder box
default library

if non blank, the full path name of the folder to use for the 12D Solutions supplied library files.

Env variable and full documentation: see **LIB_4D**

User folder
folder box
default user

if non blank, the full path name of the folder to use for the User supplied setup files.

See **User and Customer_User**.

Env variable and full documentation: see **USER_4D**

User library folder
folder box
default user_lib

if non blank, the full path name of the folder to use for the User supplied library files.
See 39.3.2 User Library.

Env variable and full documentation: see _USER_LIB_4D

Customer user folder folder box no default
if non blank, the full path name of the folder to use for the Customer User supplied setup files.
See User and Customer User.

Env variable and full documentation: see _CUSTOMER_USER_4D

Customer library folder folder box no default
if non blank, the full path name of the folder to use for the Customer supplied library files.
See 39.3.3 Customer Library.

Env variable and full documentation: see _CUSTOMER_LIB_4D

Log folder folder box default working folder
if non blank, the full path name of the folder to use for the 12d Model log files.

Env variable and full documentation: see _LOG_DIR_4D

Help folder folder box default help
If non blank, the full path name of the folder containing the 12d Model help files.

Env variable and full documentation: see _HELP_4D

Files & Folders > Files

Fonts file file box default fonts.4d
if non blank, the full path name of the file to use for defining text fonts.

Env variable and full documentation: see _FONTS_4D

Function keys file file box default userkeys.4d
if non blank, the full path name of the file to use for function keys definitions.

Env variable and full documentation: see _FUNCTION_KEYS_4D

Linestyles file file box default linestyl.4d
if non blank, the full path name of the file to use for defining linestyles.

Env variable and full documentation: see _LINESTYLES_4D

Name mappings file file box default names.4d
if non blank, the full path name of the file to use for defining names file for the mapping of string names.

Env variable and full documentation: see _NAME_MAPPINGS_4D

Textstyles file file box default textstyl.4d
if non blank, the full path name of the file to use for defining the text styles and fonts they use.

Env variable and full documentation: see _TEXTSTYLES_4D

Textstyles favourite file file box default textstyle_names.4d
if non blank, the full path name of the file to use for defining the textstyles favourites.

Env variable and full documentation: see _TEXTSTYLE_MAPPINGS_4D

Colours.4d file box default colours.4d
If non blank, the full path name of the file to use as the 12d Model colour file.

Env variable and full documentation: see _COLOURS_4D

Defaults.4d file box default defaults.4d
If non blank, the full path name of the file to use as the 12d Model defaults file.

Env variable and full documentation: see _DEFAULTS_4D

Digitizers.4d file box default digitizers.4d
If non blank, the full path name of the file to use as the 12d Model digitizers file.

Environment variable DIGITIZERS_4D

Symbols.4d file box default symbols.4d
If non blank, the full path name of the file to use as the 12d Model symbols file.

Env variable and full documentation: see _SYMBOLS_4D

Patterns.4d file box default patterns.4d
If non blank, the full path name of the file to use as the 12d Model patterns file.

Env variable and full documentation: see _PATTERNS_4D

astyles.4d file box default astyles.4d
If non blank, the full path name of the file to use for defining super alignment symbology.

Environment variable SUPER_ALIGNMENT_STYLE_4D

On duplicate toolbar choice box Do nothing, Take First, Take last
This environment variable manages what to do if toolbars with the same name are read from a toolbars.4d file.

Do nothing - accept all toolbars of the same name
Take first - accept only the first instance of the toolbar
Take last - accept only the last instance of the toolbar

Env variable and full documentation: see _TOOLBAR_DUPLICATE_MODE_4D

On duplicate linestyle / symbol

This environment variable manages what to do if symbols or linestyles with the same name are read from the symbols.4d or linestyle.4d file

Do nothing - accept all instances of symbols / linestyles of the same name
Take first - accept only the first instance of the symbol / linestyle
Take last - accept only the last instance of the symbol / linestyle

Env variable and full documentation: see _LINESTYLE_DUPLICATE_MODE_4D

Files & Folders > File input

Use anonymous functions for file inputs tick box
if ticked, when a file is read with a File input option, a function is automatically created and named. This function must exist to allow the data to be added to a view after it is read in, to be able to delete all the data read in at a later time, and to re-run the function to reread the data file and replace the data read in last time.

Env variable and full documentation: see _ALLOW_ANONYMOUS_FUNCTIONS_4D
Add file input data to a view

Choice box

If anonymous functions are set, the data created by the File input option can be added to a view. The choices are:

- **Do nothing** - don't add the data read in to any view
- **Add to current view** - add the data read in to the current view (the current view is the view that is highlighted)
- **Add to new view** - automatically create a new view and add the data read in to that view
- **Add to named view** - add the data read in to the view given by `FILE_READ_ADD_TO_VIEW_NAME_4D` (see Add file input data to view name).

Env variable and full documentation: see `FILE_READ_ADD_TO_VIEW_4D`

Add file input data to view name

Text box

Name of the view to use if `FILE_READ_ADD_TO_VIEW_NAME_4D` is set to **Add to named view** (see Add file input data to a view and Use anonymous functions for file inputs).

If the view does not exist then it is created.

Env variable and full documentation: see `FILE_READ_ADD_TO_VIEW_NAME_4D`

Genio wildcard

Typed input

Sets the ending of the files selected for the pop-up list for the File field in the Read Genio Data panel.

Env variable and full documentation: see `GENIO_WILDCARD_4D`

Files & Folders > File backups

Use backups.4d folder

Tick box

If tick, backup files are placed in the folder backups.4d in the project working folder (that is, in the folder containing the .project folder).

Env variable and full documentation: see `USE_BACKUPS_4D_FOLDER_4D`

Files & Folders > Usage Logs

Usage log folder

Folder box

If non blank, log files of the form `<log file folder>\<dongle>\<user>\<computer>\<time stamp>\<process ID>.log`

Will be created in the given folder.

Env variable and full documentation: see `USAGE_LOG_4D`

Usage logs folder

Folder box

If non blank, log files of the form `<log file folder>\<dongle>\<user>\<computer>\<time stamp>\<process ID>.log`

Will be created in the given folder.

Env variable and full documentation: see `USAGE_LOGS_4D`

Projects

Projects > General

Short project names

Tick box
if ticked, use short extension names (3 characters after the .) for all internal files such as models, tins, projects.

Env variable and full documentation: see PROJECT_NAMES_4D

Setups file file box default setups.4d
if non blank, the full path name of the file to use for setting up the initial screen layout for new projects.

Env variable and full documentation: see SETUPS_FILE_4D

Recent projects positive integer box default 20
if non blank, the maximum number of accessed projects displayed in the Project list when 12d Model first starts up.

Env variable and full documentation: see RECENT_PROJECTS_4D

Projects > Macros

Macro input mode tick box
controls whether or not the value passed down in the variable to receive the answer for any macro prompt, is actually placed into the console panel as the default answer so that it can be accepted by just typing <enter> into the console panel.

If ticked, put the passed down values into the console panel.

Env variable and full documentation: see MACRO_INPUT_MODE_4D

macros.4d (run on new project) file box default macros.4d
if non blank, the full path name of the file of macros that is run when 12d Model creates a new project.

Env variable and full documentation: see RUN_MACROS_FILE_4D

project Macros.4d (run on every project) file box default project Macros.4d
if non blank, the full path name of the file of macros that is run when 12d Model opens an existing project.

Env variable and full documentation: see RUN_PROJECT_MACROS_FILE_4D

Projects > Details

Show project details on new project tick box
If ticked, the Edit Project Details panel is displayed when a new project is created.

Env variable and full documentation: see SHOW_PROJECT_DETAILS_4D

Validate project details on startup tick box default tick
If ticked, the Project Details are validated when a project is opened and the user can not continue until all the details validate. See 7.5.2 Edit Details.

Env variable and full documentation: see ALWAYS_VALIDATE_PROJECT_DETAILS_4D

New project details file file box default
If non blank, the full path name of the file of project details file to use for new projects.

Env variable and full documentation: see PROJECTDETAILS_4D

Projects > Reports
Amount of report header

choice box

no header, minimal header, full header

controls the amount of header information in reports.

Env variable and full documentation: see REPORT_HEADER_4D

Printer script

file box

if not blank, points to a script or program which is fired up whenever a report is generated.

Env variable and full documentation: see PRINTER_4D

Projects > Sharing

Auto sync tins

tick box
default off

if ticked, the server projects for any shared tins added to this project are checked to see if they have been modified (checked every SHARE_CHECK_INTERVAL seconds). If any tins have been modified, they are re-copied to this project.

Env variable and full documentation: see AUTO_TIN_SYNC_4D

Auto sync models

tick box
default off

if ticked, the server projects for any shared models added to this project are checked to see if they have been modified (checked every SHARE_CHECK_INTERVAL seconds). If any models have been modified, they are re-copied to this project.

Env variable and full documentation: see AUTO_MODEL_SYNC_4D

Interval to check for updates

positive integer
default 0

if non zero, the number of seconds between checks to see if any of the shared tins or models added to the project have been modified.

Env variable and full documentation: see SHARE_CHECK_INTERVAL_4D

Share locking folder

folder box
default inside project

if non blank, the full path name of the folder used to keep lock files for shares.

Env variable and full documentation: see SHARE_LOCKS_FOLDER_4D

Colour for shared elements in list boxes

colour box
default blue

if non blank, the colour to use for showing shared tins/models in a list of tins/models. That is, the tins/models that have been added to the project as shared tins/models are shown in this colour. Setting the colour to black will disable this feature.

Env variable and full documentation: see SHARED_ELEMENT_COLOUR_4D

Colour for sharing elements in list boxes

colour box
default 255,165,0

if non blank, the colour to use for showing tins/models that are allowed to be shared in a list of tins/models. That is, those tins/models in the project that the user has allowed others to share are shown in this colour. Setting the colour to black will disable this feature.

Env variable and full documentation: see SHARING_ELEMENT_COLOUR_4D

Sharing map file

file box
default none

if not blank, the full path name of the map file to be applied to shared models.

Env variable and full documentation: see SHARE_MAP_FILE_4D

Sharing cache folder

file box
default none

if not blank, the full path name of the folder to use for caching models and tins.
Projects > Trash bin

Use trash bin tick box default tick
if ticked, any deleted models or tins, or cleaned models, are placed in the Trash bin.

Env variable and full documentation: see USE_TRASH_BIN_4D

Days before auto purge positive integer default 0 (don’t purge)
the number of days before the Trash Bin is automatically purged of tins and models.
If 0, the Trash Bin is not purged.

Env variable and full documentation: see PURGE_TRASH_DAYS_4D

Maximum trash bin size (Mb) positive integer default 0 (don’t limit)
maximum number of Mb that the trash file can be.
If 0, the Trash Bin is not limited in size.

Env variable and full documentation: see MAXIMUM_TRASH_SIZE_4D

On overflowing trash bin Choice box Auto manage, auto empty default Auto manage
the action to take when the trash bin exceeds the maximum trash bin size.
If Auto manage, the oldest files in the trash bin are deleted until the new item can fit in the trash bin.
if Auto empty, files in the trash bin are deleted.
Note - if a large model or tin is deleted and it is bigger than the maximum trash bin size, the user is alerted and asked to decide if they want the element to go in the trash bin anyway, or if they want to permanently delete it.

Env variable and full documentation: see OVERFLOWING_TRASH_MODE_4D

Projects > Workspace

New project workspace file file box default
if non blank, the full path name of the workspace file for new projects.

Env variable and full documentation: see WORKSPACE_FILE_4D

Always show new toolbars tick box default
if ticked, when a project starts up, all the toolbars are checked to see if they are listed in the workspace (visible or invisible) and if the toolbar does not exist, then the toolbar will be displayed. This is to allow any new toolbars added to toolbars.4d to be automatically displayed so that the user knows that it exists.

Env variable and full documentation: see NEW_TOOLBARS_VISIBLE_4D

Dongles

Dongles > General

Time dongle access positive integer
time between searches for a dongle

Env variable and full documentation: see DEBUG_DONGLE_ACCESS_4D

Nodes file file box default nodes.4d
if not blank, the full path name of the 12d Model authorization file.

Env variable and full documentation: see AUTHORIZATION_4D

Dongles file
file box
default dongles.4d
if not blank, the full path name of the 12d Model dongles file.
Env variable and full documentation: see DONGLES_4D

Dongles > Wibu (deprecated)
these environment variables for Wibu dongles have been replaced by the dongles.4d file. The dongles.4d file has the information about what Local and Network Wibu dongles and CodeMeter Containers to search for. See 7.6.5.3 Dongles.4d Editor.

Use Wibu dongle
tick box
if ticked, search for 12d Wibu dongles
If not ticked, don’t search for Wibu dongles
Env variable and full documentation: see WIBU_4D

Local
choice box
local, no local
if local, then a stand alone Wibu dongle is looked for on the computer hat the user is on.
If no local, then no stand alone Wibu dongle is looked for on the computer
Env variable and full documentation: see WIBU_DONGLE_4D

Network
choice box
no network, network first, network last
if no network, then no Wibu network dongle is looked for.
If network first, then a Wibu network dongle is looked for before a single user local dongle.
If network last, then a Wibu network dongle is looked for after looking for a single user local dongle.
Env variable and full documentation: see WIBU_DONGLE_4D

Login retries
positive integer
number of retries to find a Wibu dongle
Env variable and full documentation: see WIBU_DONGLE_4D

Login wait
positive integer
time in seconds to wait between Wibu dongle retries
Env variable and full documentation: see WIBU_DONGLE_4D

Disable dongle
tick box
if ticked, don’t search for a Wibu dongle
if not ticked, search for a Wibu dongle
Env variable and full documentation: see WIBU_DONGLE_4D

Debug dongle
tick box
if ticked,
if not ticked,
Env variable and full documentation: see WIBU_DONGLE_4D

Wibu IP/Name addresses
if non blank, a list of IP addresses and/or computer names to search for a 12d Wibu network dongle.
The items in the list are separated by commas
If blank, search the entire network for a 12d Wibu network dongle
Elements

Elements > Rasters

Use image server tick box
If ticked
Environment variable USE_IMAGE_SERVER_4D

Use ECW server tick box
If ticked
Environment variable USE_ECW_SERVER_4D

Elements > Strings

Use new string creates tick box
If ticked then the String Creates are for super strings.
If not ticked, the String Creates are the non-super string creates.
Environment variable NEW_STRING_CREATES_4D

Super strings ? tick box default tick
if ticked, super strings are allowed.
If not ticked super strings are not allowed.
Environment variable SUPER_STRINGS_4D

Only use super string tick box default no tick
if ticked, only super strings are created by all options.
Environment variable USE_SUPER_STRINGS_4D

Always use Super Strings advanced mode tick box default no tick
if ticked, the super string editor always comes up in the Advanced mode with all options available.
Environment variable SUPER_ADVANCED_MODE_4D

Use speed tables tick box default tick
if ticked, speed tables are enabled.
If not ticked, speed tables are not allowed.
Environment variable SPEED_TABLES_4D

Alignment VG Corridor fixup tick box default tick
if ticked, alignment corridor calculations introduced in V8 are used.
If not ticked, the V7 alignment corridor calculations are used.
Env variable and full documentation: see ALIGNMENT_CORRIDOR_FIXUP_4D

Use bisector section tick box default no tick
at a HIP with no curve on it, either two sections can be applied at the HIP point or just a single bisector section applied to the bisector of the change of angle through the HIP.
If ticked, the bisector section is used.
If not ticked, two sections will be created at the HIP.
Env variable and full documentation: see BISECTORS_4D

Weed Tolerance positive real

Env variable and full documentation: see WIBU_IPADDR
Used in Alignment and Super strings so that when arcs have been chord-to-arc’d, the resulting points are weeded so that no point is closer than the weed tolerance. Is is also used in Apply Template and Apply MTF so that no cross sections are closer than the weed tolerance.

Env variable and full documentation: see **WEED_TOLERANCE_4D**

Polyline draw

<table>
<thead>
<tr>
<th>choice box</th>
<th>don’t use speed ups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>intermediate speed ups</td>
</tr>
<tr>
<td></td>
<td>faster speed ups</td>
</tr>
</tbody>
</table>

Different methods that speed up drawing of polylines.

Env variable and full documentation: see **POLYPOLYLINE_4D**

Elements > Tins

Tin viewport clip

<table>
<thead>
<tr>
<th>tick box</th>
<th>shipped env.4d has this ticked</th>
</tr>
</thead>
</table>

If ticked then some experimental techniques for speeding up the drawing of tins, fast contours is used.

Env variable and full documentation: see **TIN_VIEWPORT_CLIP_4D**

Pre/postfix for model for tin

<table>
<thead>
<tr>
<th>text box</th>
<th>default is "tin"</th>
</tr>
</thead>
</table>

This environment variable is used to customize the default model for the tin in the panels for creating triangulations. Text can be defined for prepending and/or appending to the tin name to create a default model name from the tin name.

The text for prefixing and postfixing is given in a special form: **pre-text*post-text**

If pretext only, just give the text. If post text is required, precede it by a "*".

If the environment variable is not set, the default "tin" is used.

Env variable and full documentation: see **MODEL_FOR_TIN_PREFIX_4D**

Allow exact calculations for super tins

<table>
<thead>
<tr>
<th>tick box</th>
</tr>
</thead>
</table>

Options using tins are split into two categories:

1. options that require sections through tins
2. options that require the triangles of the tin

If ticked, this allows super tins to be used in options where triangles are required for calculations.

If not ticked, this prevents super tins to be used in options where triangles are required for calculations.

Note: ticking this option requires super tins to be updated when a tin within the super tin changes, so there is a time, storage, and memory cost. It was found that some projects only ever required options that used sections (not triangles), so for these type of projects, there is an efficiency gain by turning off this option.

Env variable and full documentation: see **ALLOW_SUPER_TINS_EXACT_CALCS_4D**

Elements > Selects

Autopan on selects

<table>
<thead>
<tr>
<th>tick box</th>
<th>default tick</th>
</tr>
</thead>
</table>

If ticked, if you have accepted but not accepted a string and are zoomed in on the strings and type **ch value** where the position at that chainage is off the view, the view will autopan so that the new selection point (at chainage value) is on the view. This applies for all typed selects.

Env variable and full documentation: see **AUTO_PAN_SELECT_4D**

Auto hide panel on selects

<table>
<thead>
<tr>
<th>tick box</th>
<th>default not tick</th>
</tr>
</thead>
</table>

If ticked, when the string select icon is picked on a panel, the panel minimises until a string is selected.
and accepted.

Env variable and full documentation: see _AUTO_HIDE_PANEL_SELECTS_4D

Pick only on selects tick box
if ticked,

Env variable and full documentation: see _PICK_ONLY_ON_SELECTS_4D

Display all strings at snap tick box
if ticked,

Env variable and full documentation: see _USE_DISPLAY_MANY_SNAP_4D

Show prettier information tick box
if ticked,

Env variable and full documentation: see _USE_NEW_SELECT_4D

CAD

Fast accept tick box
If ticked, the Fast Accept snap (A snap) is turned on by default for new projects.
If Fast Accept (A snap) is on, when an item is picked and there is one item in the selection list, then the item is automatically accepted without clicking MB.

Env variable and full documentation: see _FAST_ACCEPT_4D

Fast construction snap tick box
If ticked, the Fast Construction snap (K snap) is turned on by default for new projects.

Env variable and full documentation: see _FAST_CONSTRUCTION_SNAPS_4D

Never snap to self tick box default tick
If ticked, the software tries to stop snapping to itself during editing.

Env variable and full documentation: see _NEVER_SNAP_ITSELF_4D

Construction snaps model
If non blank, the model to use for objects created during construction snaps.

Env variable and full documentation: see _CONSTRUCTION_SNAP_MODEL_4D

Plan height max real value box default 0
set the default value to use in Plan Settings panels that have a Height max (w) field.

Env variable and full documentation: see _HEIGHT_MAX_DEFAULT_4D

Default CAD Modify mode choice box Multi pick

Env variable and full documentation: see _CAD_START_IN_MULTI_PICK_4D

Plotting
Plotting > General

Plan plot scale 1: real box default blank
if non blank, the default plot scale to be used on any new plan views.

Note that the scale is used in the plan view for displaying text, linestyles and symbols defined in paper...
units.

Env variable and full documentation: see DEFAULT_PLAN_PLOT_SCALE_4D

Show title variables choice box as blank as $variable no substitution

this is used for debugging the title block file. Default is as blank.

If as blank, any $variable not used is left as blank.
If as $variable, any $variable not used is shown as $variable.
If no substitution, all $variable are plotted with no substitution.

Env variable and full documentation: see SHOW_TITLE_VARIABLES_4D

Symbol file for long and x-sections file box default plotsymb.4d

if non blank, the full path name of the plot symbols file.

Env variable and full documentation: see PLOT_SYMBOLS_4D

Plotter script file box

If non blank, points to a script or program which is fired up whenever a plot is generated.

Env variable and full documentation: see PLOTTER_4D

User plotters file box default plotters.4d

if non blank, the full path name of the file containing the definitions of plotters.

Env variable and full documentation: see PLOTTERS_4D

Plotter mapping file file box default pmf.4d

if non blank, the full path name of the file used as the default plotter mapping file.

Env variable and full documentation: see PLOTTER_MAPPING_4D

Sheets file file box default sheets.4d

if non blank, the full path name of the file defining the plot sheet sizes.

Env variable and full documentation: see SHEET_SIZES_4D

DGN plot seed file file box

if non blank, the full path name of the file to use as a seed file for Microstation plots.

Env variable and full documentation: see DGN_PLOT_SEED_FILE_4D

DWT plot template file file box

if non blank, the full path name of the file to use as a template file for AutoCAD plots.

Env variable and full documentation: see DWG_PLOT_SEED_FILE_4D

Acad plot unit choice box English, Metric

Env variable and full documentation: see DWG_PLOT_UNIT_4D

Use title blocks in 12a format tick box default tick

if ticked, the title block file is in 12da format.
If not ticked, the title block is in the pre V7 title block .tf format

Env variable and full documentation: see V7_TITLE_BLOCKS_4D

Use hardware arcs tick box default tick

if ticked, use computer hardware to draw arcs (rather than software).
If not ticked, draw arcs in software
Env variable and full documentation: see HARDWARE_ARCS_4D

Write all plot parameters
tick box
default tick

Only used in old Plot options using (text) ppf files which have been superseded by binary ppf files. The panels have a Plot parameters write field to write out an text ppf for the plot.

If ticked, when writing out an (text) ppf files, write out all plot parameters.
If not ticked, only write out those plot parameters that have been used in the ppf file.

Env variable and full documentation: see WRITE_ALL_PLOT_PARAMETERS_4D

Show old plotting options
tick box
default tick

If ticked, then a menu Plot => Old plotting is included which has all the old text ppf options.

Env variable and full documentation: see ALLOW_OLD_PLOTTING_4D

Offset chainages to output window
tick box
default not tick

If ticked,

Environment variable SPECIAL_OFFSET_CHAINAGES_4D

Plotting > Parameter files > Binary

Binary drainage plan parameter file
file box
default none

if non blank, the full path name of the file used as the default binary plot parameter file (drainplanppf) for the plan annotation produced by the panel Drainage Plan Plot PPF Editor.

Env variable and full documentation: see NEW_DRAINAGE_PLAN_PPF_4D

Binary Melbourne Water parameter file
file box
default none

if non blank, the full path name of the file used as the default binary plot parameter file (melbppf) for the long section plot produced by the panel Sewer Plot Melbourne Water PPF Editor.

Env variable and full documentation: see NEW_DRAINAGE_MELB_PPF_4D

Binary drainage parameter file
file box
default none

if non blank, the full path name of the file used as the default binary plot parameter file (drainppf) for the long section plot produced by the panel Drainage Plot PPF Editor.

Env variable and full documentation: see NEW_DRAINAGE_PPF_4D

Binary pipeline parameter file
file box
default none

if non blank, the full path name of the file used as the default binary plot parameter file (pipelineppf) for the long section plot produced by the panel Pipeline Plot PPF Editor.

Env variable and full documentation: see NEW_PIPELINE_PPF_4D

Binary plot frame parameter file
file box
default none

if non blank, the full path name of the file used as the default binary plot parameter file (.plotframeppf) for the long section plot produced by the panel Section Long Plot PPF Editor.

Env variable and full documentation: see NEW_PLOT_FRAME_PPF_4D

Binary long section parameter file
file box
default none

if non blank, the full path name of the file used as the default binary plot parameter file (.lplotppf) for the plan plot produced by the panel Plot Frame PPF Editor.

Env variable and full documentation: see NEW_LONG_SECTION_PPF_4D

Binary x-section parameter file
file box
default none
if non blank, the full path name of the file used as the default binary plot parameter file (.xplotppf) for the cross section plot produced by the panel Section X Plot PPF Editor.

Env variable and full documentation: see NEW_X_SECTION_PPF_4D

Plotting > Parameter files > Ascii

X-section parameter file file box default none

Note - the text ppf's have been superseded by the binary ppfs.

if non blank, the full path name of the file used as the default text plot parameter file (.ppf) for the cross section plot produced by the panel Cross Section Plot.

Env variable and full documentation: see X_SECTION_PPF_4D

Long-section parameter file file box default none

Note - the text ppf's have been superseded by the binary ppfs.

if non blank, the full path name of the file used as the default text plot parameter file (.ppf) for the long section plot produced by the panel Long Section Plot.

Env variable and full documentation: see LONG_SECTION_PPF_4D

Drainage parameter file file box default none

Note - the text ppf's have been superseded by the binary ppfs.

if non blank, the full path name of the file used as the default text plot parameter file (.ppf) for the drainage long section plot produced by the panel New Plot Drainage Network.

Env variable and full documentation: see DRAINAGE_PPF_4D

Melbourne Water parameter file file box default none

Note - the text ppf's have been superseded by the binary ppfs.

if non blank, the full path name of the file used as the default text plot parameter file (.ppf) for the Melbourne Water long section plot produced by the panel Melbourne Water Sewer Plot.

Env variable and full documentation: see SEWER_PPF_4D

Plotting > Printing

Enable Windows printers tick box default tick

If ticked, use Windows printers

Env variable and full documentation: see WINDOWS_PRINTERS_4D

Update document properties before printing tick box

If ticked,

Environment variable WINDOWS_PRINTER_SET_DOCUMENT_PROPERTIES_4D

Windows 2000/XP print dialog tick box

If ticked, PrintD1gEX.
If not ticked, PrintD1g

Env variable and full documentation: see WINDOWS_PRINT_MODE_4D

Use exclusive access to printer tick box

If ticked, force direct printing to the printer (the user may need Printer admin access).

Env variable and full documentation: see WINDOWS_PRINT_MODE_4D
Use intermediate print file
tick box

If ticked, print to a file first and then submit the file to the printer.

Env variable and full documentation: see `WINDOWS_PRINT_MODE_4D`

Raster resolutions dots/inch
real value box
default 150.0

number of dots per inch to use for plotting rasters

Env variable and full documentation: see `DEFAULT_RASTER_DPI_4D`

Maximum time for PDF995 (seconds)
positive integer

the number of seconds to wait for PDF995 to finish producing the current PDF file.

Env variable and full documentation: see `PDF995_TIME_LIMIT_4D`

Windows printer resolution dots/mm
choice box

Windows 95/98/Me
Windows 2000/XP

For Windows 95, 98 and ME, the printer resolution can only be 0.04 mm when covering an A0 sheet.

Under Windows NT, 2000 and XP, no such restriction exists and the full resolution of 0.01 mm can be used so the environment variable HIMETRIC_4D allows access to the higher resolution for Windows NT, 2000 and XP.

Env variable and full documentation: see `HIMETRIC_4D`

Survey

Ignore extra words in .fld files
tick box

If ticked, trailing tabs are not considered words in a field file. Mainly for Leica when writing a format file which can’t suppress trailing tabs when writing a 12d Field file.

Env variable and full documentation: see `FLD_IGNORE_XTRA_WORDS_4D`

Allow named point attributes
tick box

If ticked,

Environment variable `ALLOW_NAMED_POINT_ATTRIBUTES_4D`

Display commands in SDR Editor as per V8
tick box

If ticked,

Environment variable `SDR_DISPLAY_V8_FORMAT_4D`

Data collectors file
file box
default `survey.4d`

if non blank, the full path name of the file of definitions of available data collectors.

Env variable and full documentation: see `DATA_COLLECTORS_4D`

Data collector
choice box

data collectors in `survey.4d`

the data collector that is used if no data collector has been set for a project, and the default data collector that is used in the Survey Data Setup panel.

Env variable and full documentation: see `DATA_COLLECTOR_4D`

Station prefix
text box

the Station prefix to user if no Station prefix has been set for a project, and the default Station prefix that is used in the Survey Data Setup panel.

Env variable and full documentation: see `STATION_PREFIX_4D`

DMS entry, treat 0.123 as 12 minutes 03 seconds
tick box
if ticked, the special case of 0.mms is interpreted as mm minutes and s seconds. That is, 0.123 is interpreted as 12 minutes and 3 seconds.
If not ticked, the special case of 0.mms is interpreted as mm minutes and 10 x s seconds. That is, 0.123 is interpreted as 12 minutes and 30 seconds.

Env variable and full documentation: see `INTERPRET_DMS_INPUT_OLD_4D`

Drainage

Drainage flow direction same as string direction tick box

if ticked, the drainage flow direction is the same as the string direction.
If not ticked, the drainage flow direction is in the opposite direction to the string direction.

Env variable and full documentation: see `DRAINAGE_FLOW_DIR_4D`

Show old grading edit options tick box

if ticked, the grading options used before V8 are still in the Drainage editor.

Environment variable `DRAINAGE_EDIT_GRADE_4D`

Show full hydraulic report details tick box default not ticked

the rational hydraulic report contains hydrology data.
If ticked, the hydrology calculations for each catchment set (1 to 3) are written to the hydraulic report.

Env variable and full documentation: see `FULL_HYDRAULIC_REPORT_4D`

Label 150 and PVC pipes tick box default ticked

if ticked, the 150 PVC pipes are labelled on the drainage long section.
If not ticked, the 150 PVC pipes are not labelled on the drainage long section.

Env variable and full documentation: see `LABEL_PVC_150_PIPES_4D`

Drainage.4d file box default drainage.4d

if not blank, the full path name of the file to use as the file of 12d Model drainage definitions.

Env variable and full documentation: see `DRAINAGE_4D`
MTF & Boxing

MTF & Boxing > MTF General

Disable MTF warnings tick box

if ticked, write mtf warnings to the background window.
If not ticked, display the mtf warnings in the text editor.

Env variable and full documentation: see DISABLE_MTF_WARNINGS_4D

MTF extra start/end tick box

if ticked, Extra start/end is turned on by default in the MTF Editor.

Env variable and full documentation: see EXTRA_START_END_MTF_4D

MTF extra start/end value measure box

the default extra start/end value for a new MTF. After a MTF is created, the value can be changed within the MTF, and saved with the MTF.

Env variable and full documentation: see MTF_EXTRA_START_END_VAL_4D

Default name for design layer

the default name for the design layer in a new MTF. After a MTF is created, the value can be changed within the MTF, and saved with the MTF.

Env variable and full documentation: see MTF_DESIGN_LAYER_NAME_4D

Name to access hinge as link

the default name used to refer to the Hinge string as a link in a new MTF. After a MTF is created, the value can be changed within the MTF, and saved with the MTF.

Env variable and full documentation: see MTF_CONSTRUCTION_HINGE_NAME_4D

Snippet temp file, use snippet name tick box

if ticked, the temporary file created after the preprocessing occurs for the snippet is given the same name as the snippet, with the file extension .tmp_mtf
If not ticked, the MTF name is used. Note: If there is more than one snippet, this file will be overwritten.

Env variable and full documentation: see MTF_SNIPPET_TEMP_FILE_USE_SNIPPET_NAME_4D

For more information on snippets, see 21.5 Defining and Using Snippets.

Don’t delete snippet temp file tick box

if ticked, the temporary files created after the preprocessing occurs for the snippet are left on the hard drive.
If not ticked, the temporary files are deleted.
NOTE: If the snippet is compiled, the temporary files are always deleted.

Env variable and full documentation: see MTF_SNIPPET_TEMP_FILE_USE_SNIPPET_NAME_KEEP_4D

For more information on snippets, see 21.5 Defining and Using Snippets.

Snippet temp file custom extension text

if not blank, the standard .tmp_mtf file extension will be replaced with this value.
If blank, the standard .tmp_mtf file extension will be used.

Env variable and full documentation: see MTF_SNIPPET_TEMP_FILE_EXTENSION_4D

For more information on snippets, see 21.5 Defining and Using Snippets.
MTF Seed files, include MTF files tick box

if ticked, existing MTF files are included (in addition to files of type .MTF_Seed) in the choices of files which can be used as a MTF Seed file.

if not ticked, only files of type .MTF_Seed are included in the choices of files which can be used as a MTF Seed file.

Env variable and full documentation: see MTF_SEED_INCLUDE_MTFS_4D

MTF & Boxing > MTF Editor General

Remember panel location/size tick box ticked

if ticked, when a MTF panel is placed on the screen and closed with Finish, its final position and size are recorded and used when the panel is opened again.

Env variable and full documentation: see REMEMBER_MTF_PANEL_SIZE_4D

Default MTF editor zoom buffer (%) real box default 5

the value is a percentage increase on the distance required to fit the arrows.

if Autopan is on for the Left/Right MTF Modifiers panel, when a command is clicked in the panel and the region to pan is not displayed on the view, then the extent displayed is the required amount increased by the real_value percentage.

Env variable and full documentation: see NEW_MTF_EDITOR_ZOOM_BUFFER_4D

Default MTF editor autopan on tick box default tick

if ticked, the default for Autopan is on for the MTF Left/Right MTF Modifiers panel.

if not ticked, the default for Autopan is off for the MTF Left/Right MTF Modifiers panel.

Env variable and full documentation: see NEW_MTF_EDITOR_AUTOPAN_DEFAULT_4D

Named part text size (pixels) measure box

the size of the text to use when the name of the named part is highlighted.

Env variable and full documentation: see MTF_NAMED_PART_HIGHLIGHT_TEXT_SIZE_4D

Pasted modifier colour colour box

when you cut/paste the modifiers, the background colour of the pasted rows will remain that colour until you edit them, i.e. this option lets you know the pasted rows until you edit them.

Env variable and full documentation: see NEW_MTF_EDITOR_PASTED_MODIFIER_COLOUR_4D

MTF & Boxing > MTF Hinge Colours

Hinge offset colour colour box

the colour of the text in the Type column for the Hinge Offset commands in the Hinge Modifiers panel.

Env variable and full documentation: see HINGE_OFFSET_ZONE_COLOUR_4D

Hinge height colour colour box

the colour of the text in the Type column for the Hinge Height commands in the Hinge Modifiers panel.

Env variable and full documentation: see HINGE_HEIGHT_ZONE_COLOUR_4D

Hinge position colour colour box

the colour of the text in the Type column for the Hinge Position commands in the Hinge Modifiers panel.

Env variable and full documentation: see HINGE_POSITION_ZONE_COLOUR_4D
MTF & Boxing > MTF Fixed/Snippet/Decision Colours

Fixed colour
the colour of the text in the Type column for the Fixed commands in the Left/Right MTF Modifiers panel.

Env variable and full documentation: see FIXED_ZONE_COLOUR_4D

Fixed width colour
the colour of the text in the Type column for the Fixed commands involving width, in the Modifiers section of the Left/Right MTF Modifiers panel.

Env variable and full documentation: see FIXED_WIDTH_ZONE_COLOUR_4D

Fixed height colour
the colour of the text in the Type column for the Fixed commands involving height, in the Modifiers section of the Left/Right MTF Modifiers panel.

Env variable and full documentation: see FIXED_HEIGHT_ZONE_COLOUR_4D

Fixed xfall colour
the colour of the text in the Type column for the Fixed commands involving xfall, in the Modifiers section of the Left/Right MTF Modifiers panel.

Env variable and full documentation: see FIXED_XFALL_ZONE_COLOUR_4D

Fixed decision colour
the colour of the text in the Type column for the Fixed Decision commands in the Left/Right MTF Modifiers panel.

Env variable and full documentation: see FIXED_DECISION_ZONE_COLOUR_4D

Snippet colour
the colour of the text in the Type column for the Snippet command in the Modifiers section of the Left/Right MTF Modifiers panel.

Env variable and full documentation: see SNIPPET_ZONE_COLOUR_4D

Decision colour
the colour of the text in the Type column for the Decision commands in the Modifiers section of the Left/Right MTF Modifiers panel.

Env variable and full documentation: see DECISION_ZONE_COLOUR_4D

Non zone specific colour
the colour of the text in the Type column for the commands that aren’t in the Fixed, Cut, Fill or Final sections of the modifiers in the Left/Right MTF Modifiers panel, e.g. Interval commands.

Env variable and full documentation: see NOP_ZONE_COLOUR_4D

MTF & Boxing > MTF Cut/Fill Colours

Cut colour
the colour of the text in the Type column for the Cut commands (other than those involving width, height or slope) in the Modifiers section of the Left/Right MTF Modifiers panel.
Env variable and full documentation: see `CUT_ZONE_COLOUR_4D`

Cut width colour
- **colour box**: default light red
 - the colour of the text in the Type column for the Cut commands involving width, in the Modifiers section of the *Left/Right MTF Modifiers* panel.

Env variable and full documentation: see `CUT_WIDTH_ZONE_COLOUR_4D`

Cut height colour
- **colour box**: default dark red
 - the colour of the text in the Type column for the Cut commands involving height, in the Modifiers section of the *Left/Right MTF Modifiers* panel.

Env variable and full documentation: see `CUT_HEIGHT_ZONE_COLOUR_4D`

Cut slope colour
- **colour box**: default dark red
 - the colour of the text in the Type column for the Cut commands involving slope, in the Modifiers section of the *Left/Right MTF Modifiers* panel.

Env variable and full documentation: see `CUT_SLOPE_ZONE_COLOUR_4D`

Fill colour
- **colour box**: default green
 - the colour of the text in the Type column for the Fill commands (other than those involving width, height or slope) in the Modifiers section of the *Left/Right MTF Modifiers* panel.

Env variable and full documentation: see `FILL_ZONE_COLOUR_4D`

Fill width colour
- **colour box**: default light green
 - the colour of the text in the Type column for the Fill commands involving width, in the Modifiers section of the *Left/Right MTF Modifiers* panel.

Env variable and full documentation: see `FILL_WIDTH_ZONE_COLOUR_4D`

Fill height colour
- **colour box**: default dark green
 - the colour of the text in the Type column for the Fill commands involving height, in the Modifiers section of the *Left/Right MTF Modifiers* panel.

Env variable and full documentation: see `FILL_HEIGHT_ZONE_COLOUR_4D`

Fill slope colour
- **colour box**: default dark green
 - the colour of the text in the Type column for the Fill commands involving slope, in the Modifiers section of the *Left/Right MTF Modifiers* panel.

Env variable and full documentation: see `FILL_SLOPE_ZONE_COLOUR_4D`

MTF & Boxing > MTF Final Colours

Final colour
- **colour box**: default light brown RGB(147, 87, 28)
 - the colour of the text in the Type column for the Final commands (other than those involving width or slope) in the Modifiers section of the *Left/Right MTF Modifiers* panel.

Env variable and full documentation: see `FINAL_ZONE_COLOUR_4D`

Final width colour
- **colour box**: default dark brown
 - the colour of the text in the Type column for the Final commands involving width, in the Modifiers section of the *Left/Right MTF Modifiers* panel.

Env variable and full documentation: see `FINAL_WIDTH_ZONE_COLOUR_4D`

Final cut colour
- **colour box**: default light brown
 - the colour of the text in the Type column for the Final command for Final Cut slope, in the Modifiers section of the *Left/Right MTF Modifiers* panel.
section of the Left/Right MTF Modifiers panel.

Env variable and full documentation: see **FINAL_CUT_SLOPE_ZONE_COLOUR_4D**

Final fill colour

- colour box
- default light brown

the colour of the text in the Type column for the Final command for Final Fill slope, in the Modifiers section of the Left/Right MTF Modifiers panel.

Env variable and full documentation: see **FINAL_FILL_SLOPE_ZONE_COLOUR_4D**

Final no cut colour

- colour box
- default light brown

the colour of the text in the Type column for the Final command for No Cut slope, in the Modifiers section of the Left/Right MTF Modifiers panel.

Env variable and full documentation: see **FINAL_NO_CUT_SLOPE_ZONE_COLOUR_4D**

Final no fill colour

- colour box
- default light brown

the colour of the text in the Type column for the Final command for No Fill slope, in the Modifiers section of the Left/Right MTF Modifiers panel.

Env variable and full documentation: see **FINAL_NO_FILL_SLOPE_ZONE_COLOUR_4D**

Final no cut/fill colour

- colour box
- default light brown

the colour of the text in the Type column for the Final commands for No cut/fill, in the Modifiers section of the Left/Right MTF Modifiers panel.

Env variable and full documentation: see **FINAL_NO_CUT_FILL_SLOPE_ZONE_COLOUR_4D**

MTF & Boxing > Boxing Editor

Boxing wall offset

- measure box
- default 0.000001

when boxing automatically creates a vertical wall, this is the offset distance between the top and bottom of the vertical wall.

Env variable and full documentation: see **BOXING_WALL_OFFSET_4D**

Rules colour

- colour box
- default blue

the colour of the text in the Type column in the Boxing Rules panel for all Boxing command other than Comment, Decision, Goto and Label.

Env variable and full documentation: see **BOXING_RULES_COLOUR_4D**

Comment colour

- colour box
- default yellow

background colour for the Comment boxing command grid row in the Boxing Rules panel. The text in the grid row is black.

Env variable and full documentation: see **BOXING_COMMENT_COLOUR_4D**

Decision/goto colour

- colour box
- default mauve

the colour of the text in the Type column for the Decision and Goto commands in the Boxing Rules panel.

Env variable and full documentation: see **BOXING_DECISION_GOTO_COLOUR_4D**

Label colour

- colour box
- default light red

the colour of the text in the Type column for the Label command in the Boxing Rules panel.

Env variable and full documentation: see **BOXING_LABEL_COLOUR_4D**

Region colour

- colour box
the colour of the text in the row for the Region command in the Boxing Rules panel.

Env variable and full documentation: see BOXING_REGION_COLOUR_4D

Views
Views > General

Prompt on close tick box
if ticked, when a view is closed/deleted, a prompt will ask for a confirmation of deleting/closing.

Env variable and full documentation: see PROMPT_ON_VIEW_CLOSE_4D

Use density drawing tick box
if ticked, for a new project, the default for Use density drawing in the Defaults panel is tick.
If not ticked, for a new project, the default for Use density drawing in the Defaults panel is no tick.

For more information on density drawing, see Use density drawing tick box.
Note: This setting is only applicable to the 250M version of 12d Model.

Env variable and full documentation: see USE_DENSITY_CHECKS_4D

Default pan mode tick box
default tick
if ticked, standard pan is used for pan/pans on view.
If not ticked, pane delta is used for pan/pans on view.

Env variable and full documentation: see PAN_MODE_4D

Zoom origin dynamic tick box
default not tick
controls the origin of the dynamic zoom.
If ticked, then the point selected in the view to indicate which view to dynamically zoom (and to be the zoom-in, zoom-out definition point) becomes the point to dynamically zoom about.
Whilst the dynamic zoom is running, another point can be selected to become the new zoom origin.

Env variable and full documentation: see ZOOM_ORIGIN_DYNAMIC_4D

Zoom pan dynamic tick box
default not tick
if ticked, dynamic pan is the default for the pan options.

Env variable and full documentation: see ZOOM_PAN_DYNAMIC_4D

Icons on views tick box
default tick
if ticked then icons instead of text are used for menu items on the views.
If not ticked, text is used for menu items on the views.

Env variable and full documentation: see VIEW_BITMAP_BUTTONS_4D

Show view buttons tick box
default tick
if ticked then menu items (view buttons) are displayed on the views (as icons or text).
If not ticked, menu items (view buttons) on not displayed on the views.

Note: displaying view buttons as icons or text is controlled by Icons on views.

Env variable and full documentation: see VIEW_BUTTONS_4D

Data tool tips tick box
default tick
if ticked then data tips can be displayed when the cursor moves over vertices in a plan view. The D snap is then operational and toggles the data tips on and off in a 12d session.
If not ticked, data tips will not be displayed and DSnap has no effect.

Env variable and full documentation: see _DATA_TIPS_4D

Default view colour choice box default black
the default background colour for views. After a view is created, its background colour can then be modified and the new colour is saved for that view.

Env variable and full documentation: see _DEFAULT_VIEW_COLOUR_4D

Preview view name text box default blank
if non blank, the name of the view whose image is dumped on exiting the project. The image is used as the project preview.
If blank then the last active view is used.

Env variable and full documentation: see _PREVIEW_VIEW_4D

Views > OpenGL

View backing store choice box off, on
if on, a backing store is used.
if off, a backing store is not used.
For Windows Vista/Windows 7, the default is on. Otherwise the default is 0.

Env variable and full documentation: see _OPENGL_VIEW_BACKING_STORE_4D

Use offset tick box default tick
if ticked, the coordinates are localised for OpenGL calls. This is to work around problems with some graphics cards that can’t handle large coordinates.

Env variable and full documentation: see _OPENGL_OFFSET_4D

Cache tins tick box default not ticked
if ticked, tins are cached in the graphics card memory for potential speed ups. More memory in the graphics card allows more caching and usually more performance gains.

Env variable and full documentation: see _OPENGL_CACHE_TINS_4D

Cache textures and rasters tick box default ticked
if ticked, rasters and textures are cached in the graphics card memory for potential speed ups. More memory in the graphics card allows more caching and usually more performance gains.

Env variable and full documentation: see _OPENGL_CACHE_4D

Use mipmap maps for rasters tick box default tick
if ticked, the graphics card down samples for rasters when the image is further away.

Env variable and full documentation: see _OPENGL_MIPMAP_4D

Use mipmap maps for billboards tick box
if ticked, the graphics card down samples for billboards when the image is further away.

Env variable and full documentation: see _OPENGL_MIPMAP_BILLBOARDS_4D

Use mipmap maps for plan images tick box default ticked
if ticked, the graphics card down samples plan images when draped onto a tin.

Env variable and full documentation: see _OPENGL_MIPMAP_PLAN_IMAGES_4D

Use mipmap maps for projector images tick box default ticked
if ticked, the graphics card down samples projector images (a projector is for the “hidden” perspective image data object of a super string).

Env variable and full documentation: see **OPENGL_MIPMAP_PROJECTOR_IMAGES_4D**

GUI

GUI > General

Width of edit fields (number of characters)

text box
default 10
if non blank, the number of characters to make the width of an Edit Box on a panel.

Env variable and full documentation: see **EDIT_BOX_WIDTH_IN_CHARACTERS_4D**

Show help buttons

tick box
if ticked, Help buttons are added to panels.

Env variable and full documentation: see **HELP_BUTTONS_4D**

Use lists for popups

tick box
if ticked, the popup lists are scrolling lists.
If not ticked, the popups turn into walk-right menus when too long.

Env variable and full documentation: see **LIST_POPUPS_4D**

Use trees for linestyles and symbols

tick box
default tick
if ticked, the linestyle and symbol pop-up lists are in scrolling boxes so they don’t run over the bottom of the screen. The list of linestyles/symbols is displayed in a tree structure with the Groups as the nodes of the tree.
If not ticked, the linestyle and symbols lists are one long list with each Group being an item on the list. The list may get too long to fit on the screen.

Env variable and full documentation: see **USE_NEW_LINESTYLE_LIST_BOX_4D**

Warp cursor hide

tick box
default not tick
controls whether the cursor is hidden before moving - only needed on some computers.
If ticked, don’t hide the cursor before moving it.
If not ticked, hides the cursor before moving it.

Env variable and full documentation: see **WARP_CURSOR_HIDE_4D**

Multi-line text edits

tick box
default not tick
if ticked, a Text Edit Box is used instead of the Input Box and more than one line of text can be typed.

Env variable and full documentation: see **MULTI_LINE_TEXT_4D**

Colour widgets with errors

tick box
default ticked
if ticked, when a panel field fails to validate, the panel field is filled with the colour given in the Colour for failed widgets.

Env variable and full documentation: see **USE_VALIDATION_COLOURS_4D**

Colour for failed widgets

colour box
if not blank, the colour to fill the panel field with when there is a validation error for the field. The value is either a colour name, a colour number or RGB(x,y,z).
This is only used if Colour widgets with errors is ticked (or at least not ticked since the default is ticked).
If blank, the default colour is RGB(255,72,72),

Env variable and full documentation: see **VALIDATION_FAIL_COLOUR_4D**
Xtra menu file
- file box
- default xtramenu.4d
- if non blank, the full path name of the 12d Solutions supplied file of definitions for some extra menus.

Env variable and full documentation: see `EXTRA_OPTIONS_4D`

User options file
- file box
- default usermenu.4d
- if non blank, the full path name of the user supplied file of definitions for user defined menus.

Env variable and full documentation: see `USER_OPTIONS_4D`

Toolbars file
- file box
- default toolbars.4d
- if non blank, the full path name of the toolbar definitions and names.

Env variable and full documentation: see `TOOLBARS_4D`

Delete walkrights distance
- positive integer
- default 32
- the distance in pixels that is used to collapse the cascade of walk-right menus when the cursor moves that distance past the end of the last walk-right menu.

Env variable and full documentation: see `AUTO_DELETE_WALKRIGHTS_4D`

Drag reset distance
- positive integer
- default 50
- the distance in pixels to move the cursor to reset the picking rejection list for a directional pick. If blank then the value 50 is used.

Env variable and full documentation: see `AUTO_RESET_SELECT_DRAG_TOLERANCE_4D`

Reset distance
- positive integer
- default 5
- the distance in pixels to move the cursor to reset the picking rejection list for a non-directional pick. If blank then the value 5 is used.

Env variable and full documentation: see `AUTO_RESET_TOLERANCE_4D`

Default table width
- positive integer
- default 5
- if non blank, gives the number of characters displayed in tables such as decisionals and mtf editor.

Env variable and full documentation: see `DEFAULT_TABLE_WIDTH_4D`

Linestyle/symbol box width
- number box
- if non blank, the pixel width of the linestyle and symbol scrolling pop-ups.
- If blank, the default is 256.

Env variable and full documentation: see `LINESTYLE_BOX_WIDTH_4D`

Linestyle/symbol box height
- number box
- if non blank, the pixel height of the linestyle and symbol scrolling pop-ups.
- If blank, the default is 512.

Env variable and full documentation: see `LINESTYLE_BOX_HEIGHT_4D`

GUI > OnScreen keyboard

On screen keyboard mode
- choice box
- No keyboard
- Dockable keyboard
- Full screen keyboard

Default No keyboard

If `No keyboard`, then no onscreen keyboard comes up when you double click in a panel field.
If `Dockable keyboard`, when you double click in a panel field that takes typed input, then a dockable onscreen keyboard come up for the user to type the data for the panel field into.
if **full screen keyboard**, when you double click in a panel field that takes typed input, then a full screen onscreen keyboard come up for the user to type the data for the panel field into.

Env variable and full documentation: see **ONSCREEN_KEYBOARD_4D**

On screen keyboard layout choice box

Full keyboard
Numeric keyboard

Default **Full keyboard**

if **Full keyboard**, then when there is an onscreen keyboard, it comes up with a full keyboard.

if **Numeric keyboard**, then when there is an onscreen keyboard, it comes up with just a numeric keyboard.

Env variable and full documentation: see **ONSCREEN_KEYBOARD_LAYOUT_4D**

On screen keyboard font size number box

If non blank, the pixel size of the font for the onscreen keyboard.
If blank, it defaults to the normal system font size.

Env variable and full documentation: see **ONSCREEN_KEYBOARD_FONT_SIZE_4D**

GUI > Special characters

Large diameter symbol integer (base 10) default 216

The integer (base 10) value of the character to use as the large diameter symbol.

Env variable and full documentation: see **DIAMETER_LARGE_CHARACTER_4D**

Cubed symbol integer (base 10) default 179

The integer (base 10) value of the character to use as the cubed symbol.

Env variable and full documentation: see **CUBED_CHARACTER_4D**

Small diameter symbol integer (base 10) default 248

The integer (base 10) value of the character to use as the small diameter symbol.

Env variable and full documentation: see **DIAMETER_SMALL_CHARACTER_4D**

Middle dot integer (base 10) default 183

The integer (base 10) value of the character to use as the middle dot symbol.

Env variable and full documentation: see **MIDDLE_DOT_CHARACTER_4D**

Squared symbol integer (base 10) default 178

The integer (base 10) value of the character to use as the squared symbol.

Env variable and full documentation: see **SQUARE_CHARACTER_4D**

Degrees character integer (base 10) default 176

The integer (base 10) value of the character to use as the degrees character.

Env variable and full documentation: see **DEGREES_CHARACTER_4D**

GUI > Chain Editor

Prompt for on deleting a chain command tick box

If ticked,

Env variable and full documentation: see **ASK_ON_CHAIN_COMMAND_DELETE_4D**
GUI > Split drafting message

Split long drafting messages tick box

if ticked, for CAD Dimensions, Leaders and Tables, long messages being written to the screen message area are broken up into two shorter lines with the first one being displayed. Both the shorter lines have a (m)ore on them to get to the other line.

Env variable and full documentation: see [DRAFTING_SPLIT_MESSAGE_4D](#)

Warnings and Error Reporting

Double confirm delete tick box default not tick

if ticked, the user is asked twice to confirm for deletes and cleans. If not ticked, the user is asked once to confirm for deletes and cleans.

Env variable and full documentation: see [DOUBLE_CONFIRM_DELETE_4D](#)

Crash log level choice box

- MiniDumpNormal
- MiniDumpWithDataSegs
- MiniDumpWithFullMemory
- MiniDumpWithHandleData
- MiniDumpFilterMemory
- MiniDumpScanMemory
- MiniDumpWithUnloadedModules
- MiniDumpWithIndirectlyReferencedMemory
- MiniDumpFailureModulePaths
- MiniDumpWithProcessThreadData
- MiniDumpWithPrivateReadWriteMemory
- MiniDumpWithoutOptionalData

Controls the amount of information written out if 12d Model crashes.

Environment variable: [MINI_DUMP_LEVEL_4D](#)

GIS

ArcSDE DLL Path file box

the full path name to the ArcSDE DLL. This is only required when using the ArcSDE Server.

Env variable and full documentation: see [GIS_ARCSDE_PATH_4D](#)

Oracle DLL Path file box

the full path name to the Oracle DLL. This is only required when using the Oracle Server.

Env variable and full documentation: see [GIS_ORACLE_PATH_4D](#)

External Apps

External Apps > ADAC

Adac version text

the ADAC Schema version, e.g. 4.1.0

Env variable and full documentation: see [ADAC_VERSION_4D](#)

External Apps > AutoCAD

Autocad template folder folder box
if non blank, the full path name of the folder holding Autocad template files.

Env variable and full documentation: see ACAD_SEEDFILES_4D

Acad.pat file box
If non blank, the full path name of the AutoCAD patterns file.

Env variable and full documentation: see AUTOCAD_PATTERNS_4D

Trimesh output mode choice box
Do not write, Faces, Polyface mesh

Env variable and full documentation: see TRIMESH_TO_DWG_MODE_4D

External Apps > CivilCAD

CivilCAD folder folder box
If non blank, the full path name of the folder holding CivilCAD files.

Env variable and full documentation: see CIVILCAD_PATH_4D

External Apps > Microstation

Microstation seed folder folder box
If non blank, the full path name of the folder of Microstation seed files.

Env variable and full documentation: see MS_SEEDFILES_4D

External Apps > TP Stakeout

TP Stakeout folder folder box
If non blank, the full path name of the folder of TP Stakeout files.

Env variable and full documentation: see TP_STAKEOUT_PATH_4D

External Apps > VPath

Vpath Windows folder folder box
If non blank, the full path name of the folder for the Queensland Main Road Windows program Vpath - for vehicle turning paths.

Env variable and full documentation: see WINDOWS_VEHICLE_PATH_4D

External Apps > Winter

Winter data folder folder box
If non blank, the full path name of the Folder containing the Winter data of N-values for Australia.

Env variable and full documentation: see WINTER_DATA_4D

Winter faster interpolations tick box
Default tick
If ticked, re-reading the Winter data is avoided and this speeds up the calculation for the Winter interpolations.

Env variable and full documentation: see WINTER_USE_NEW_METHOD_4D
the Variables grid allows for the entry of 12d environment variables that have not been especially included in the Edit Environment Variables panel.

The variable tab consists of a table for specifying environment variable names (Variable) and setting their values (Value).

This is mainly used for setting environment variables that are not already in the Edit Environment Variables panel.

Go to the next section 7.6.4 Env Configuration or return to 7.6 Management.
7.6.4 Env Configuration

Position of menu: Project => Management => Env configuration

The default **12d Model** system uses the 12d Solutions supplied set_ups and library folders in `Program files\12d\12d Model\11.0` and the user supplied folders `user` and `user_lib` in `c:\12d\11.00`.

There are **12d Model** environment variables in `env.4d` that can modify the location of each of these folders and most set up files, dongle to be used and the workspace file for new projects.

For most users this provides enough customisation however for users requiring totally different user and user_lib folders for different clients will find the above system too restricting.

For example, one project may be for a Main Roads Department which requires its own mapping files, linestyle files, ppf files etc. Another project is for a Local Authority who has totally different requirements.

Environment Configurations can

(a) define the environment variable file `env.4d` to be used. Hence if different env.4d files have been set up for different clients, the environment configuration file quickly sets up that binding for a project.

(b) define environment variables that over writes the values set up in the env.4d file being used for the project. Often a whole new env file is not required but just the replacement of some of the environment variables. For example, just override the location of the folders user and user_lib from those in the env.4d file being used.

(c) define the computer with the network dongle to be used with the project. If used, this will override any settings in the env.4d file and values in Environments.

(d) define the workspace file to be used for new projects. If used, this will override any settings in the env.4d file or values in Environments.

Selecting Env configuration displays the Edit Environment Configuration panel which defines the different Environment configurations, Dongle and Workspace settings.
Buttons at Bottom

Write
 write out a Registry file

Read
 read in the registry file given in the Registry file field.

Each of the sections Environments, Dongles and Workspaces will now be described in greater detail.

For the section Registry file, go to

Environments Creating/Editing a Registry File
Dongles Creating/Editing an Environments Set Up
Workspaces Creating/Editing a Workspaces Set Up
How To Use the Edit Environment Configurations Panel

Creating/Editing a Registry File

When the Edit Environment Configurations panel is opened, if no env_configs.4d file exists in the User folder for that project, a new blank env_configs.4d file is automatically created.

To create a Registry file of a different name, navigate to the folder to write the registry file to, type the registry file name into the Registry file box and hit <enter>. All the created information will be written away to this file when the Write icon is clicked on the Edit Environment Configurations panel.

The edit and modify a new Registry file, type in the path name or use the navigator on the Registry file box and select the required registry file. Clicking on the Read icon reads in the information from the selected registry file.

Each of the sections Environments, Dongles and Workspaces will now be described in greater detail.

For the section Environments, go to

Creating/Editing an Environments Set Up

Creating/Editing a Dongles Set Up

Creating/Editing a Workspaces Set Up

Creating/Editing an Environments Set Up

To create a new Environments set up, click on the Environments node and then on the Insert button.

To edit an existing Environments set up, simply click on the name of the set ups to be edited in the Environments section

If the Base Env.4d file field is blank, then the default env.4d file is used for the project.
If the Base Env.4d file field is not blank, then it gives the (path) name of the file to use as the env.4d file.
Any environment variable can be overridden by typing its name and value into the grid, or by bringing up an environment variable editor by clicking on Define env overrides button and fill in the required values in the Edit Environment Variables panel that is brought up.

To edit an existing Environments set up, simply click on the set up name.

Clicking on Write in the Edit Environment Configuration panel writes out all the data for the sections Environments, Dongles and Workspaces, to the registry file.
Creating/Editing a Dongles Set Up

To create a new Dongle set up, click on the Dongles node and then on the Insert button.

To edit an existing Dongle set up, simply click on the name of the Dongle set up to be edited.

Any environment variable values defined in the General, Hardlock and Wibu tabs will override those in the environment file.
Clicking on Write in the Edit Environment Configuration panel writes out all the data for the sections Environments, Dongles and Workspaces, to the registry file.

Click on Write on the Edit Environment Configurations panel to write out the data to the Registry file
Creating/Editing a Workspaces Set Up

To create a new Workspaces set up, click on the Workspaces node and then on the Insert button. To edit an existing Workspaces set up, simply click on the name of the workspaces set up to be edited.

The full path name of the Workspaces file to be used when creating new projects is recorded in the Workspace file panel field.

Clicking on Write in the Edit Environment Configuration panel writes out all the data for the sections Environments, Dongles and Workspaces, to the registry file.

Go to the next section 7.6.6 Projections or return to 7.6 Management.
7.6.5 Dongles

Position of menu: Project => Management => Dongles

The Dongles walk-right menu contains options to discover all the dongles on your subnet, edit the dongles.4d file, certify CodeMeters and show authorization information.

- run the dongle administration options
- edit the dongles.4d file
- certify CodeMeter containers
- show Authorization details
- edit the nodes.4d file
- report on the users of CodeMeter network dongles

See
- 7.6.5.2 Dongles Administration
- 7.6.5.3 Dongles.4d Editor
- 7.6.5.4 Certify CodeMeter
- 7.6.5.5 Authorization Details
- 7.6.5.6 Nodes.4d Editor
- 7.6.5.7 CodeMeter Network User

Also for information on the Authorization Error panel that comes up if there is an error authorising 12d Model, see 7.6.5.1 Authorization Error.

For more information about what is needed for authorizing 12d Model, see 7.6.5.1 12d Dongles, Dongles.4d, Nodes.4d, and Authorizing
7.6.5.1 12d Dongles, Dongles.4d, Nodes.4d, and Authorizing

To control the licensing of 12d Model and specify what modules are used for each 12d Model license, 12d Model uses a combination of a physical hardware lock and a nodes.4d file. The physical hardware lock is a Wibu dongle or a CodeMeter Container.

A Wibu dongle is either a Wibu USB Standalone (local) dongle (green colour), or a Wibu USB Network dongle (blue colour) that controls a given number of licenses. Each Wibu dongle has a unique 12d Model dongle number. See 7.6.5.1.1 Wibu Dongles

A CodeMeter Container comes in a variety of physical shapes (USB, SD card etc) but unlike the Wibu dongle, the CodeMeter Container can contain one or more virtual 12d Model dongle number. Each virtual 12d Model dongle number is either a Standalone number or a Network number, and in Network case, it also have a given number of licenses. See 7.6.5.1.2 Wibu CodeMeter Containers.

Hence the 12d Model dongle number (from a physical Wibu dongle or within a CodeMeter Container) is either

- a Standalone (Local) number
- a Network number with a given number of licenses

For brevity, the 12d Model dongle number is also referred to as the 12d dongle number or just the 12d dongle. But remember that the 12d dongle may not be a physical item - it may be just one of many 12d dongles stored in a CodeMeter Container.

So the term 12d dongle will be used to mean:

(a) a physical Wibu dongle (either stand alone or network). This has a label with the 12d dongle number written on it.

(b) a virtual 12d dongle inside a CodeMeter Container. The 12d dongle numbers are obtained by running a CodeMeter Administration tool.

The dongles.4d file lists the computers to search for Wibu dongles and CodeMeter Containers to find 12d dongle numbers. It also defines the order to search for both computers and dongle types. See 7.6.5.3 Dongles.4d Editor.

The nodes.4d file is supplied by your 12d Model Reseller and contains a list of 12d Model dongle numbers that are valid for you, and for each 12d Model dongle number in the list, the valid modules for that 12d Model dongle number. The nodes.4d file is an XML file and there is an option to examine, modify and report on it. See 7.6.5.3 Dongles.4d Editor.

When 12d Model tries to create a new project, or open an existing project, 12d Model uses

1. the dongles.4d file to obtain a usable 12d Model dongle number from the specified Wibu dongles or CodeMeter Containers

and if a 12d Model dongle number is found,

2. a matching valid entry in the nodes.4d file for that 12d Model dongle number.

If a match is found then the 12d Model project is opened. Otherwise an Authorization Error panel is displayed.

See

7.6.5.1.1 Wibu Dongles
7.6.5.1.2 Wibu CodeMeter Containers
7.6.5.1.1 Wibu Dongles

A **Wibu dongle** can be either a Wibu USB Standalone (local) dongle (a translucent green colour), or a Wibu USB Network dongle (a solid colour) that controls a given number of licenses. Each Wibu dongle has a unique **12d Model** dongle number.

The **12d Model** dongle numbers for Wibu Standalone (Local) dongles start with 572d. The **12d Model** dongle numbers for Wibu Network dongles start with e151.

Continue to the next section 7.6.5.1.2 Wibu CodeMeter Containers or return to 7.6.5.1 12d Dongles, Dongles.4d, Nodes.4d, and Authorizing or 7.6.5 Dongles.

7.6.5.1.2 Wibu CodeMeter Containers

In V11 a new type of physical hardware lock from Wibu, referred to as a **Wibu CodeMeter Container**, has been introduced. We will refer to the **Wibu CodeMeter Container** as a **CodeMeter Container** or a **CodeMeter**.

The **CodeMeters** are similar to the earlier Wibu standalone and network dongles except that they come in a wider variety of hardware shapes that will be more suitable for portable and tablet computers.

Unlike the Wibu dongle, the CodeMeter Container can contain one or more virtual **12d Model** dongle numbers.

Each virtual **12d Model** number may be either a Standalone number or a Network number, and in the Network case, it will also have a given number of licenses.

The **12d Model** Local (Standalone) dongle numbers in a CodeMeter Container start with 5c2d. The **12d Model** Network dongle numbers in a CodeMeter Container start with ec51.

Return to 7.6.5.1 12d Dongles, Dongles.4d, Nodes.4d, and Authorizing or 7.6.5 Dongles.
7.6.5.2 Dongles Administration

Position of option on menu: Project => Management => Dongles => Administration
Position of option on menu: Help => Dongles

Selecting Administration brings up the Dongles Administration panel which displays information on CodeMeter Containers and Wibu Dongles as nodes in a tree structure.

Clicking on the + in front of All Dongles will list the physical dongles that could be on your computer. That is, CodeMeter Containers and Wibu Dongles.

The CodeMeter and Wibu nodes can also be expanded by clicking on their +.
Clicking + on **CodeMeter >Web admin** will show the computer you are on as *localhost*.

1. Clicking on **CodeMeter >Web admin >localhost** will run the CodeMeter Administration program and display information about the computer you are on in *Home* tab of the **CodeMeter WebAdmin** panel.

2. Clicking on **CodeMeter >Discover** will search the 255 subnets looking for any **CodeMeter Containers** on each subnet.

 The **Discovery** may take up to five minutes and you can see the progress of the **Discovery** as it lists the IP addresses being searched in the left hand corner of the screen message area, and the right hand side displays how many seconds the **Discovery** has been running.
When **Discovery** has finished searching the 255 sub nets, the IP address of any computer with a CodeMeter Container on it is listed under the **Discover** node. So a + will appear in front of **Discover** if at least one CodeMeter Container has been found.

Expanding **Discover** will display the IP Addresses with CodeMeter Containers (called **CmContainers**) on them. And expanding an IP Address will list all the CmContainers attached to that IP.

Double clicking on a **CmContainer** will bring up the **CodeMeter WebAdmin** panel with the **Content >Licenses** tab on display.

The **Content >Licenses** tab will show the **Products** it contains and for each **12d Product**, it will show the

(a) 12d Product name
(b) 12d Customer name
(c) **12d Model** dongle number (a virtual dongle inside the physical CodeMeter Container)
(d) number of licenses for that **12d Model dongle**.
Note that there may be more than one virtual 12d Dongle inside the one physical CodeMeter Container, as well as products from other software vendors. For example,

3. Other information can be displayed by clicking on the other tabs and subtabs of the CodeMeter WebAdmin panel.

Continue to the next section 7.6.5.3 Dongles 4d Editor or return to 7.6.5 Dongles.
7.6.5.3 Dongles.4d Editor

Position of option on menu: Project => Management => Dongles => Dongles.4d editor

The **dongles.4d** file lists the computers to search for Wibu dongles (7.6.5.1.1 Wibu Dongles) and CodeMeter Containers (7.6.5.1.2 Wibu CodeMeter Containers) to find 12d dongle numbers. It also defines the order to search for both computers and dongle types.

The **Dongles Editor** option is for editing the **dongles.4d** file.

Selecting **Dongles.4d editor** brings up the **Dongles.4d Editor** panel.

The **Dongles.4d Editor** panel displays the list of Wibu dongles (local and/or network) and CodeMeter containers (local and/or network) to search for to find 12d dongles to potentially use when opening a project. The order of searching is the order that the items occur in this list.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This brings up the Add a New Dongle panel
Wibu - local and auto local: search the local computer for a Wibu Standalone dongle. If there is more than one Standalone Wibu dongle on the computer then the first one found is used. So there should only be one Standalone Wibu dongle on the computer.

<table>
<thead>
<tr>
<th>Type</th>
<th>Wibu - Local and Auto Local</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Wibu Auto Local</td>
</tr>
<tr>
<td>Active</td>
<td>true</td>
</tr>
<tr>
<td># retries</td>
<td>0</td>
</tr>
<tr>
<td>Wait time (seconds)</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Wibu - network: a server name (computer name) is given as part of the information for this Type. The computer on the network with this name is searched for a Wibu Network dongle. There should only be one Wibu network dongle on the given computer.

<table>
<thead>
<tr>
<th>Type</th>
<th>Wibu - Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>New dongle</td>
</tr>
<tr>
<td>Active</td>
<td>true</td>
</tr>
<tr>
<td>Server name</td>
<td></td>
</tr>
<tr>
<td># retries</td>
<td>0</td>
</tr>
<tr>
<td>Wait time (seconds)</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Wibu - auto network: search all computers on the network for Wibu Network dongles. Note there should only be one Wibu network dongle on the one computer.

<table>
<thead>
<tr>
<th>Type</th>
<th>Wibu - Auto Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>New dongle</td>
</tr>
<tr>
<td>Active</td>
<td>true</td>
</tr>
<tr>
<td>Filter</td>
<td></td>
</tr>
<tr>
<td># retries</td>
<td>0</td>
</tr>
<tr>
<td>Wait time (seconds)</td>
<td>0.01</td>
</tr>
</tbody>
</table>
CodeMeter - local: a Dongle UNC is given as part of the information for this Type. The local computer is searched for a CodeMeter Container of the given Dongle UNC.

<table>
<thead>
<tr>
<th>user defined name</th>
<th>CodeMeter - Local</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>New dongle</td>
</tr>
<tr>
<td>Active</td>
<td>true</td>
</tr>
<tr>
<td>Dongle UNC</td>
<td></td>
</tr>
<tr>
<td># retries</td>
<td>0</td>
</tr>
<tr>
<td>Wait time (seconds)</td>
<td>0.01</td>
</tr>
</tbody>
</table>

CodeMeter - auto local: search the local computer for all CodeMeter Containers that have 12d Standalone dongles in them.

<table>
<thead>
<tr>
<th>user defined name</th>
<th>CodeMeter - Auto Local</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>New dongle</td>
</tr>
<tr>
<td>Active</td>
<td>true</td>
</tr>
<tr>
<td>Filter</td>
<td></td>
</tr>
<tr>
<td># retries</td>
<td>0</td>
</tr>
<tr>
<td>Wait time (seconds)</td>
<td>0.01</td>
</tr>
</tbody>
</table>

CodeMeter - network: a computer name is given as part of the information for this Type. The computer on the network with this name is searched for CodeMeter Containers with 12d network dongle numbers in them.

<table>
<thead>
<tr>
<th>user defined name</th>
<th>CodeMeter - Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>New dongle</td>
</tr>
<tr>
<td>Active</td>
<td>true</td>
</tr>
<tr>
<td>Server name</td>
<td></td>
</tr>
<tr>
<td># retries</td>
<td>0</td>
</tr>
<tr>
<td>Wait time (seconds)</td>
<td>0.01</td>
</tr>
</tbody>
</table>

CodeMeter - auto network: search all computers on the network for CodeMeter Containers that have 12d network dongles in them.

<table>
<thead>
<tr>
<th>user defined name</th>
<th>CodeMeter - Auto Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>CodeMeter Auto Network</td>
</tr>
<tr>
<td>Active</td>
<td>true</td>
</tr>
<tr>
<td>Filter</td>
<td></td>
</tr>
<tr>
<td># retries</td>
<td>0</td>
</tr>
<tr>
<td>Wait time (seconds)</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Pause: wait for a given amount of time before going on to the next entry in the list.
Delete button
- delete the highlighted entry.

Up Arrow button
- move the highlighted entry up in the list.

Down Arrow button
- move the highlighted entry down in the list.

Write button
- write out the dongles.4d file. For more information on the Write button, go to the section 39.2.6 Writing Out Setup Files in the Appendix 39 Setting Up & Configuring 12d.

For information on the dongles.4d file installed with 12d Model, see 7.6.5.3.1 Dongles.4d Shipped with 12d Model.

Important Note
If the dongles.4d file being used by 12d Model has no entries relating to network dongles, then any existing deprecated WIBU_DONGLE_4D and WIBU_IPADDR environment variables for WIBU network dongles are still used.

Continue to the next section 7.6.5.4 Certify CodeMeter or return to 7.6.5 Dongles.
7.6.5.3.1 Dongles.4d Shipped with 12d Model

When 12d Model is installed, a dongles.4d file is included in set_ups.

This shipped dongles.4d file only contains entries to as 12d Model to look for any local Wibu dongles and any local Codemeter Containers.

Important Note for Network Dongle Users

There are no entries for network dongles in the shipped dongles.4d file.

So if you are using Wibu network dongles or Codemeter Containers with network 12d dongles in them, then you need to have your own dongles.4d file that includes entries for network dongles. Your dongles.4d file is searched for as a Set Up file, or by using the environment variable DONGLES_4D.

Return to 7.6.5 Dongles.4d Editor or 7.6.5 Dongles.
7.6.5.4 Certify CodeMeter

Position of option on menu: Project => Management => Dongles => Certify CodeMeter

The Wibu CodeMeter Container (also called CodeMeter Container or CodeMeter dongle or just CodeMeter) use the Certified Time capability of the dongle and the dongle must communicate over the Internet with a certified Wibu Time Server every two months to check that there is no problem with the **CodeMeter Container** that your **12d Model** license is coming from.

For Certification to occur, a computer able to access the dongle must also have access to the Internet to run the Certification.

One month before the end of the two month period, **12d Model** will bring up the **Certify CodeMeter Dongle** panel which gives the number of days, minutes and seconds remaining until Certification is required.

The **Certify CodeMeter Dongle** panel can also be brought up by the option

Project => Management => Dongles => Certify CodeMeter

Clicking on the button **Certify** will attempt to certify the CodeMeter.

Important Note

There is an environment variable AUTO_CERTIFY_DONGLE_4D and if it is set on then when the warning period is active for the CodeMeter Container (dongle) being used by **12d Model**, **12d Model** will automatically attempt to certify the dongle and if successful, no intervention by the user is required. See **AUTO_CERTIFY_DONGLE_4D**.

Continue to the next section **7.6.5.5 Authorization Details** or return to **7.6.5 Dongles**.
7.6.5.5 Authorization Details

Position of option on menu:
Project =>Management =>Dongles => Authorization details

The Authorization Details option shows similar information to the Authorization Error panel except in this case there is a match between a found 12d Model dongle and an entry in the nodes.4d file.

Selecting Authorization details brings up the Authorization Details panel.

The fields and buttons used in this panel have the following functions.

Field Description	Type	Defaults	Pop-Up
Summary tab | | |
this summarises information from the Authorization details tab. It shows the 12d Model dongle being used.
Authorization details tab

shows details about the
version of 12d Model
nodes.4d file used
dongles.4d file used
env.4d file used
Windows Environment
What is in the Output Window
Windows Registry
Windows Registry User

Dongle administration tab
same as running the Project => Management => Dongles => Administration option. See 7.6.5.2 Dongles Administration.

Buttons at Bottom
Email support button creates an email with an attachment of a zipped up copy of all the information on the Authorization details tab.
If there is an error in the authorising of 12d Model, 12d Model will not open a project but instead bring up a similar panel called the Authorization Error panel. See 7.6.5.5.1 Authorization Error.

Continue to the next section 7.6.5.6 Nodes.4d Editor or return to 7.6.5 Dongles.
7.6.5.5.1 Authorization Error

This panel only appears if 12d Model will not authorise for the selected project.

Before any selected 12d Model project will open, a valid authorization is required.

A valid authorization consists of:

1. a 12d Model dongle number from a Wibu dongle or a CodeMeter Container
2. a valid entry in a nodes.4d to match the 12d Model dongle number

If either of the above is missing, then instead of the project being opened, an Authorization Error panel is displayed with information to help find the error.

For more information on what is needing for authorising 12d Model, see 7.6.5.1 12d Dongles, Dongles.4d, Nodes.4d, and Authorizing.

The Authorization Error panel contains information to help find out why there is an authorization error.

![Authorization Error Panel]

The fields and buttons used in this panel have the following functions.

Field Description
Type
Defaults
Pop-Up

Summary tab

this summarises information from the Authorization details tab.
Authorization details tab

shows details about the
version of 12d Model
nodes.4d file used
dongles.4d file used
env.4d file used
Windows Environment
What is in the Output Window
Windows Registry
Windows Registry User

Dongle administration tab

same as running the Project => Management => Dongles => Administration option. See 7.6.5.2 Dongles Administration.

Buttons at Bottom

Projects button
opens the 12d Model front screen so a 12d Model project can be selected or created.

Dongles.4d button
opens the Dongles.4d Editor panel so that the dongles.4d file can be edited. See 7.6.5.3 Dongles.4d Editor.

Env.4d button
opens the Env.4d Editor panel so that the env.4d file can be edited. See 7.6.3 env.4d.

Email support button
creates an email with an attachment of a zipped up copy of all the information on the Authorization details tab. This will provide useful information for someone trying to determine why the project is not authorising.

Return to 7.6.5.5 Authorization Details or 7.6.5 Dongles.
7.6.5.6 Nodes.4d Editor

Position of option on menu: Project => Management => Dongles => Nodes.4d editor

The **nodes.4d** is an XML format and so cannot be easily edited, or even viewed, in its native XML format.

There is a program shipped by **12d Solutions** that is used to install the nodes.4d file that can:

(a) Install a **nodes.4d** file
(b) merge in another nodes file
(c) look at all the entries in the file and display information on each entry (start & end dates, modules authorised etc)
(d) move entries up and down
(e) delete entries
(f) create an html report on the entries
(g) create a new **nodes** file from selected entries

This program is accessible from inside **12d Model** by

(a) the **Nodes** button on the Front screen (the one before you select a project)
(b) the option **Projects => Management => Dongles => Nodes.4d editor**
(c) the program is called 12dNodesUtility.exe and is installed as a 32-bit program in **Program Files (x86) \12d\Nodes\11.0**

The **Nodes.4d Editor** option is for editing the **Nodes.4d** file.

Note that program is actually external to **12d Model** and when it is run, it is running independently of **12d Model**.

Selecting **Nodes.4d editor** brings up the external program and its panel **Installing a 12d Model 11 Nodes File**:

![Image of the 12d Model 11 Nodes File installation panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

Management
Install tab
this tab is for installing the nodes.4d file.

Source file box file browser
the full path name of the nodes file to install.

Operation choice box Replace Replace, Append, Prepend
if Replace, the Destination file is replaced by the Source file.
If Append, the Source file is added to the end of the Destination file.
If Prepend, the Source file is added to the beginning of the Destination file.

Destination file box file browser
the full path name of where to install the nodes.4d file.

Install button
install the nodes.4d file.

Manage tab
this tab is for editing and reporting a nodes.4d file.

Nodes file file box file browser
the full path name of the nodes file to edit/modify/report.

After the nodes.4d file has been fill in, click on the Edit icon (Looking glass icon) to bring up the Node Contents panel.

The panel shows all the Client Entries in the nodes.4d file in a tree structure with all the dongle records for a particular Client Entry displayed when the + is clicked on in front of the Client Entry.

Note: The Client Entry contains all the dongles records that were produced for a Client at the one time. These dongle records can only stay inside that one Client Entry, even though there may be other Client Entries of the same name.

Dongle Records can be moved up or down within a Client Entry but can’t be moved to a different Client Entry.

A Client Entry can be moved up and down in the Tree.

Highlighted Client Entries can be deleted and all the Dongle Records for the Client Entry will also be deleted.

Highlighted Dongle Records can be deleted.

File has options to produce a HTML report and write out to a new nodes file as a subset of the Client
Entries and Dongle Records.

Clicking on X removes the Node Contents panel.

Highlighted Client Entries can be moved up or down. Dongle Records can be moved up or down within the same Client Entry.

delete highlighted Client Entries or Dongle Records.

general information for the selected dongle record

the top level of the tree are the Client Entries. Each Client Entry contains all the dongle records produced at the same time

clicking on the + lists all the Dongle Records for that Client Entry

modules authorised for the selected Dongle Record

clicking on a Dongle Record lists the information for that dongle record in the two areas on the right hand side of the panel

load in another nodes file of Client Entries and Dongle Records

write out a new nodes file of Client Entries and Dongle Records

generate an HTML report

1. Merge

menu item

clicking on Merge brings up the Microsoft browser to obtain the another nodes.4d read in.
The new **Client Entries** and **Dongle Records** are added to the bottom of the list of existing **Client Entries** ready for editing.

2. Export menu item

 clicking on Export brings a Tree showing all the Client Entries and Dongle Records but with a tick box to indicate if the information is to be written out or not, to the new nodes file.

 Write button

 clicking on Write brings up the Microsoft **Save As** browser to obtain the name of the file to write the selected information out to as a node.4d file.

 Stop button

 clicking on Stop takes you back to the **Node Contents** panel

3. Report menu item
clicking on Report brings up the Microsoft Save As browser to obtain the name of the file to write the HTML report to.

The report will list all the Client Entries. And for each Client Entry, the Dongle Records in it showing the modules authorised for that Dongle Record in blue.

Continue to the next section 7.6.5.7 CodeMeter Network User or return to 7.6.5 Dongles.
7.6.5.7 CodeMeter Network User

Position of option on menu:
Project => Management => Dongles => CodeMeter network users

This option shows the number of 12d Model licenses on the CodeMeter network dongles and how many are used/unused. A report can also be produced showing details for each individual network dongle.

Selecting CodeMeter network users brings up a panel Users on a CodeMeter Network Dongle:

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of licenses</td>
<td>output only</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the total number of 12d Model licenses on the CodeMeter network dongles. This number is updated when Report button is pressed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of licenses in use</td>
<td>output only</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the number of 12d Model licenses currently being used.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of licenses left</td>
<td>output only</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the number of 12d Model licenses left to be used.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report type</td>
<td>choice box</td>
<td>html report, original xml, <customize></td>
<td>html report, original xml, <customize></td>
</tr>
<tr>
<td></td>
<td>output format for the report. An XML file will be produced and then if required, converted to the selected report.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For information on setting up custom reports from the generated XML file using xslts, see 4.30 Setting Up XML Reports.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if not blank, an XML file will be created and a report of this name, and of the type given by Report type will be generated from the XML file.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If blank, no report is created but the number of licenses information is still written to the appropriate panel fields.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>check how many licenses are on CodeMeter network dongles and write the values to the panel fields. If Report file is not blank then a report is also produced.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Return to 7.6.5 Dongles.
7.6.6 Projections

Position of option on menu: Project => Management => Projections

User defined Projections can be defined using the Create/edit option. A user defined projection can then be set for the project (the project projection). Values from the project projection (e.g. scale factor) are used in various options.

The **Project projections** walk-right menu contains various projection items.

- **Set**
- **Create/edit**
- **Delete**
- **Reset**

For the option Set, go to the section 7.6.6.1 Set Projection.
- **Create/edit** 7.6.6.2 Create/Edit Projection.
- **Delete** 7.6.6.4 Delete Projection.
- **Reset** 7.6.6.5 Reset Projection.
7.6.6.1 Set Projection

Position of option on menu: Project => Management => Projections => Set

The Set option sets the Project Projection to be the one selected from the list defined projections.
To define a new projection, see 7.6.6.2 Create/Edit Projection.

On selecting the Set option, the Set Projection panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projection name</td>
<td>choice box</td>
<td>all defined projections</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the projection to be set as the Project projection.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depending on the projection type, the relevant projection parameters are displayed in the rest of the fields in the panel.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The rest of the fields are for reporting information about the selected projection.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The fields will change depending on the type of the selected Projection.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>To define a new projection, see 7.6.6.2 Create/Edit Projection.</td>
<td></td>
</tr>
</tbody>
</table>

Set button

after selecting this button, the projection for the project is set to that given in the Project name field. The project projection is used in a number of options in 12d Model.

Go to the next section 7.6.6.2 Create/Edit Projection or return to 7.6.6 Projections.
7.6.6.2 Create/Edit Projection

Position of option on menu: Project => Management => Projections => Create/Edit

This option defines a new projection, or edits an existing projection in the current list of available projections.

On selecting the Create/edit option, the Create/edit Projection panel is displayed.

For more information about terminology used in this sections, see the Appendix 38 Geodetics Summary.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projection name</td>
<td>typed input</td>
<td>all defined projections</td>
<td></td>
</tr>
<tr>
<td></td>
<td>an choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>name of the projection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to be set as the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project projection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projection Type</td>
<td>choice box</td>
<td>Transverse Mercator, UTM RSO, General</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin latitude (dms)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin longitude (dms)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>False easting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>False northing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scale factor</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For Transverse Mercator the fields are:
- Origin latitude (dms); Origin longitude (dms), False Easting, False Northing, Scale factor.

For UTM the fields are:
- Zone number, North/South Hemisphere.

For RSO the fields are:
- Origin latitude (dms); Origin longitude (dms), Rectified Skew Azimuth (dms), False Easting, False Northing, Scale factor.

For General the field is Projection Parameter which requires a special line of text defining the projection. For more information on defining a general projection, see 7.6.6.3 Defining a General Cartographic Projection.
Use known ellipsoid

if **ticked**, the ellipsoid for the projection has been defined previously and the parameters for the particular ellipsoid can be used. The values of defined ellipsoids are displayed when a selection is made from the ellipsoid pop-up box (e.g. GRS80).

if **not ticked** then the ellipsoid parameters can be defined by entering the ellipsoid parameters.

Add/Modify

after selecting this button, the user defined projection is added to the current list or the existing projection definition is modified, using the entered values. A number of new projections can be added by simply entering the relevant data and selecting the add/modify button.

Write

after selecting this button, the user defined projections defined by the add/modify process are written to a **carto.4d** file which can be written to various locations. This means that the new defined projections can be used for other **12d Model** projects. For more information on the Write button, go to the section 39.2.6 Writing Out Setup Files in the Appendix 39 Setting Up & Configuring 12d.

Go to the next section 7.6.6.3 Defining a General Cartographic Projection or return to 7.6.6 Projections.
7.6.6.3 Defining a General Cartographic Projection

A general cartographic projection is defined by giving a series of parameters starting with the mandatory +proj parameter giving the projection type. For example,

$$+proj=\text{projection_type}$$ e.g. +proj=tmerc or +proj=utm

To specify the Earth's elliptical figure used in the projection, two parameters are required. The first required value is the major semi-axis of the ellipse or equatorial radius,

$$\text{major semi-axis of the ellipse} +a= \text{value}$$

and the second parameter can be any one of the following standard forms:

- minor semi-axis of the ellipse +b= value
- flattening +f= value
- reciprocal flattening (i.e. 1/f) +rf= value
- eccentricity +e= value
- eccentricity squared +es= value

For example, the Australian National Spheroid (ANS) is defined by:

$$+a=6378160$$
$$+rf= 298.25$$

GRS80 is defined by:

$$+a=6378137$$
$$+rf= 298.257222101$$

WGS84 is defined by:

$$+a=6378137$$
$$+rf= 298.257223663$$

A further three parameters are common to most projections: the central meridian +lon_0=value, and the cartesian offsets for the respective x and y axis, +x_0=value, +y_0=value (often referred to as false easting and northing).

$$\text{central meridian} +\text{lon}_0= \text{value} \quad \text{units in decimal degrees}$$
$$\text{x offset - false easting} +x_0=\text{value}$$
$$\text{y offset - false northing} +y_0=\text{value}$$

A fourth parameter, +lat_0=value, is used to designate a central parallel and associated y axis origin for a projection.

Unless a value is specified for the parameters lon_0, lat_0, x_0 and y_0, they are assumed to be zero.

Other parameters will depend on the particular projection used.

See:

7.6.6.3.1 Transverse Mercator Projection +proj=tmerc
7.6.6.3.2 Universal Transverse Mercator Projection +proj=utm
7.6.6.3.3 Australian Map Grid (AMG84)
7.6.6.3.4 Map Grid of Australia (MGA94)
7.6.6.3.5 Lambert Conformal Conic Projection +proj=lcc

Go to the next section 7.6.6.3.1 Transverse Mercator Projection +proj=tmerc or return to 7.6.6 Projections.
7.6.6.3.1 Transverse Mercator Projection \(+\text{proj}=\text{tmerc} \)

- project
- scale factor
- scale factor \(+k=value \)

e.g. Metro-Perth is:

\(+\text{proj}=\text{tmerc} \) \(+a=6378160\) \(+rf=298.25\) \(+\text{lon}_0=115.833333333\) \(+\text{lat}_0=0.0\) \(+x_0=54466.561\) \(+y_0=3690893.265\) \(+k=1.0\)

Perth Coastal Grid 1984 (PCG84) is:

\(+\text{proj}=\text{tmerc} \) \(+a=6378160\) \(+rf=298.25\) \(+\text{lon}_0=115.833333333\) \(+x_0=40000\) \(+y_0=3800000\) \(+k=1.000006\)

Go to the next section 7.6.6.3.2 Universal Transverse Mercator Projection \(+\text{proj}=\text{utm} \) or return 7.6.6.3 Defining a General Cartographic Projection or 7.6.6 Projections.

7.6.6.3.2 Universal Transverse Mercator Projection \(+\text{proj}=\text{utm} \)

This is a special from of the Transverse Mercator Projection. The central meridian is constrained to 6 degree intervals starting at 3 degrees. An extra parameter exists called \(+\text{zone}\) where \(+\text{zone}=1\) specifies the region from 180 degree W to 174 degrees W (equivalent to \(+\text{lon}_0=177\) degrees W) and proceeds easterly until \(+\text{zone}=60\) for the region from 174 degree E to 180 degrees E (i.e. \(+\text{lon}_0=177\) degrees E). Hence

\(+\text{zone}=N\) \(N = 1, 2, ..., 60\)

which automatically defines the central meridian \(+\text{lon}_0=6 \times N - 183\) where \(N = \text{zone number}\).

The \(+\text{south}\) option adds a false northing of 10,000,000 m (used for AMG and MGA co-ordinates) for projection in the Southern Hemisphere.

\(+\text{south}\) defines \(+y_0=1000000\)

In all cases, for a Universal Transverse Mercator projection, a false easting of 500,000 m is used.

\(+x_0=500000\)

Go to the next section 7.6.6.3.3 Australian Map Grid (AMG84) or return 7.6.6.3 Defining a General Cartographic Projection or 7.6.6 Projections.

7.6.6.3.3 Australian Map Grid (AMG84)

The Australian Map Grid is a Universal Transverse Mercator Projection with

- coordinates are in metres
- zones are 6 degrees wide plus overlapping belts of 80 kilometres at each grid junction
- AMG zones are numbered from zone 49 with central meridian 111 degrees E to zone 57 with central meridian 159 degrees E.
- the origin of each zone is the intersection of the central meridian with the equator
- a central scale factor, \(k\), is defined as 0.9996
- a false easting of 500,000 and a false northing of 10,000,000 are used
- uses the Australian National Spheroid \(+a=6378160\) \(+rf=298.25\)

For example, the definition of AMG zone 50 is:

\(+\text{proj}=\text{utm}\) \(+\text{south}\) \(+\text{zone}=50\) \(+k=0.9996\) \(+a=6378160\) \(+rf=298.25\)

Go to the next section 7.6.6.3.4 Map Grid of Australia (MGA94) or return 7.6.6.3 Defining a General Cartographic Projection.
General Cartographic Projection or 7.6.6 Projections.

7.6.6.3.4 Map Grid of Australia (MGA94)
The Map Grid of Australia is a Universal Transverse Mercator Projection with
(a) coordinates are in metres
(b) zones are 6 degrees wide plus overlapping belts of 80 kilometres at each grid junction
(c) MGA zones are numbered from zone 49 with central meridian 111 degrees E to zone 57 with central meridian 159 degrees E.
(d) the origin of each zone is the intersection of the central meridian with the equator
(e) a central scale factor, k, is defined as 0.9996
(f) a false easting of 500,000 and a false northing of 10,000,000 are used.
(g) uses GRS80 \(+a=6378137 +rf=298.257222101 \)

For example, the definition of MGA zone 50 is:
\[\text{+proj=utm +south +zone=50 +k=0.9996 +a=6378137 +rf=298.257222101} \]
Go to the next section 7.6.6.3.5 Lambert Conformal Conic Projection or proj=lcc or return 7.6.6.3 Defining a General Cartographic Projection or 7.6.6 Projections.

7.6.6.3.5 Lambert Conformal Conic Projection \(+\text{proj=lcc} \)
This is a special form of the Conic Projection.
There are two standard parallels \(+\text{lat}_1\) and \(+\text{lat}_2\) and the projection is centred on \(+\text{lat}_0\) and \(+\text{lon}_0\)
For example, a Lambert Conformal Conic Conformal with standard parallels of 15 degrees South and 39 degrees South, centred at centred at 27 degrees South 134 degrees East, with a false origin at that point is 5,000,000m/5,000,000m and using the Australian National Spheroid (i.e. AGD84) is
\[+\text{proj=lcc +lat}_1=-15 +\text{lat}_2=-39 +\text{lon}_0=134 +\text{lat}_0=-27 +x_0=5000000 +y_0=5000000 +a=6378160 +rf=298.25 \]
Go to the next section 7.6.6.4 Delete Projection or return 7.6.6.3 Defining a General Cartographic Projection or 7.6.6 Projections.
7.6.6.4 Delete Projection

Position of option on menu: Project => Management => Projections => Delete

The Delete option deleted a projection from the list of available projections.

On selecting the Delete Projection option, the Delete Projection panel is displayed.

![Delete Projection panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projection name</td>
<td>input</td>
<td>all defined projections</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the projection to be deleted from the Project projection list.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The rest of the fields depend upon the projection type and are used to display information about the projection.</td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td>button</td>
<td>after selecting this button, the selected projection is deleted from the project projection list. This can be done for a number of projections by simply selecting the projection to be deleted and selecting the delete button.</td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td>after selecting this button, the list of projections altered by the delete process can be written in various locations. This means that the updated projections list will be used to set current and future projects. For more information on the Write button, go to the section 39.2.6 Writing Out Setup Files in the Appendix 39 Setting Up & Configuring 12d</td>
<td></td>
</tr>
</tbody>
</table>

Go to the next section 7.6.6.5 Reset Projection or return 7.6.6.3 Defining a General Cartographic Projection or 7.6.6 Projections.
7.6.6.5 Reset Projection

Position of option on menu: Project => Management => Projections => Reset

The **Reset** option is used to remove the projection set for the project.

On selecting the **reset Projection** option, the **Project Projection Reset** panel is displayed.

![Project Projection Reset Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current projection</td>
<td>output</td>
<td>name of the projection currently set for the project.</td>
<td></td>
</tr>
<tr>
<td>Reset</td>
<td>button</td>
<td>after selecting this button, the projection for the project is set to none. That is, no project has been set for the Project.</td>
<td></td>
</tr>
</tbody>
</table>

Go to the next section 7.6.7 N values or return to 7.6 Management.
7.6.7 N values

Position of option on menu: Project => Management => N values

N values are the separation distances between the geoid and the ellipsoid. In GPS surveys, heights are often given in ellipsoid heights whilst most other level datums are based on the geoid. Since most geodetic calculations are based on the ellipsoid, any observations should be reduced onto the ellipsoid. This reduction process takes into the consideration the heights above the ellipsoid. Therefore, it is necessary to convert non ellipsoid heights to ellipsoid values by adding the geoid-ellipsoid separations (n values). There are various methods for determining the N values.

An N value method can be defined using the Create/edit option. Values from the project N value settings are used to determine which method is used to calculate N values. These values are used in various options where the level values are not ellipsoid values and require the N value to be added to get to an ellipsoid height. A user defined N value method can then be set for the project (the project N value setting) which is then the default N Values in any panel.

For more information about terminology used in this section, see the Appendix 38 Geodetics Summary.

The Project n value walk-right menu contains various projection items.

For the option *Set*, go to the section 7.6.7.1 Set N-Values.

For the option *Create/edit*, go to the section 7.6.7.2 Create/Edit N-Values.

For the option *Delete*, go to the section 7.6.7.3 Delete N-Values.

For the option *Reset*, go to the section 7.6.7.4 Reset N-Values.
7.6.7.1 Set N-Values

Position of option on menu: Project => Management => N values => Set

The Set option sets the Project N Values and these are then used as the default in panels.

On selecting the Set option, the Set N value settings panel is displayed.

![Set N value settings panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>N value setting name</td>
<td>choice box</td>
<td>all defined N value settings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the n value setting to be set as the Project N value setting.</td>
<td></td>
</tr>
<tr>
<td>N value setting type</td>
<td>input</td>
<td>defined N value types</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depending on the N value interpolation method, the relevant method is displayed.</td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>after selecting this button, the current N value setting is set using the displayed values. These values are used as defaults in panels that need N values for calculations.</td>
<td></td>
</tr>
</tbody>
</table>

Go to the next section 7.6.7.1 Set N-Values or return to 7.6.7 N values.
7.6.7.2 Create/Edit N-Values

Position of option on menu: Project => Management => N values => Create/Edit

On selecting the Create/edit option, the Create/edit N value settings panel is displayed.

Field Description	Type	Defaults	Pop-Up
N value setting name | choice box | all defined N value settings | name of the n value setting to be set as the Project N value setting.

N value setting type | choice box | defined N value types | There are various methods for the determination of the N values. These are given in the choice box:

- No N values required
- Constant N value
- Winter
- NGS
- Plane
- Difference tin
- New Caledoria RANC00

Depending on the setting type chosen, the panel will display the appropriate fields.

No N values required: This applies to data that already has ellipsoid heights and requires no interpolation for N values.

For N value setting type = Constant N value

Field Description	Type	Defaults	Pop-Up
Constant N value | | | |
Constant N value

- **input box**

 this N value will be used for the entire n value interpolation process. (i.e. it will not change).

For N value setting type = Winter

This method uses the same method as the Winter interpolation software supplied by Auslig. The data files used should be winter compatible and reside in a folder that is pointed to by the WINTER_DATA_4D parameter in the env.4d file. The data files can be downloaded from the Auslig website.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Ausgeoid file map scale</td>
<td>choice box</td>
<td>1:100,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:250,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:1,000,000</td>
<td></td>
</tr>
</tbody>
</table>

this value will be dependant on the type of files to be used by winter. The files themselves should be in a folder that is pointed to by the WINTER_DATA_4D parameter in the setup area of the env.4d file.

- **Use bicubic interpolation if possible**

 tick box
 ticked

 if ticked, the bicubic interpolation method will be used if possible.

For N value setting type = NGS

This method is currently under development.

For N value setting type = Plane

This method allows a plane to be defined allowing N values to be derived from that plane.
Field Description | Type |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin easting</td>
<td>input box</td>
</tr>
<tr>
<td>Origin northing</td>
<td>input box</td>
</tr>
<tr>
<td>Corr constant</td>
<td>input box</td>
</tr>
<tr>
<td>Corr per unit easting</td>
<td>input box</td>
</tr>
<tr>
<td>Corr per unit northing</td>
<td>input box</td>
</tr>
</tbody>
</table>

For N value setting type = Difference tin

This method allows value to be interpolated from a difference tin. A difference tin is simply a tin of difference values (N values). This tin can be re-triangulated as new points become available, thus introducing more points than a regular grid.

Field Description | Type | Defaults |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Difference tin</td>
<td>tin box</td>
<td>Available tins</td>
</tr>
</tbody>
</table>

the difference tin from which the N values will be interpolated.

Add/Modify button

after selecting this button, the user defined N value settings are added to the current list or the existing N value settings is modified. using the entered values. A number of new settings can be added by simply entering the relevant data and selecting the add/modify button.
Write button

After selecting this button, the user defined N value settings defined by the add/modify process can be written to the file nvalues.4d in various locations. This means that the defined N value settings will be allowed to be set in current and future projects. For more information on the Write button, go to the section 39.2.6 Writing Out Setup Files in the Appendix 39 Setting Up & Configuring 12d.

For N value setting type = New Caledonia RANC00

![Create/Edit N value settings](image)

7.6.7.3 Delete N-Values

Position of option on menu: Project => Management => N value => Delete

The Delete option deleted a projection from the list of available projections.

On selecting the Delete option, the Delete N value setting panel is displayed.

![Delete N value setting](image)

The fields and buttons used in this panel have the following functions.
<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>N value setting name</td>
<td>input</td>
<td>all defined N value settings</td>
<td></td>
</tr>
</tbody>
</table>

name of the setting to be deleted from the N value setting list.
Depending on the setting type, the relevant setting parameters are displayed.

Delete button
after selecting this button, the selected N value setting is deleted from the setting list. This can be done for a number of n value settings by simply selecting the projection to be deleted and selecting the delete button.

Write button
after selecting this button, the list of n value settings altered by the delete process can be written to the nvalues.4d file in various locations. This means that the updated n value settings list will be used to set current and future projects. For more information on the Write button, go to the section 39.2.6 Writing Out Setup Files in the Appendix 39 Setting Up & Configuring 12d.

Go to the next section 7.6.7.4 Reset N-Values or return to 7.6.7 N values.
7.6.7.4 Reset N-Values

Position of option on menu: Project => Management => N values => Reset

The Reset option is used to remove the projection set for the project.

On selecting the reset option, the Project N value setting reset panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current N value setting</td>
<td>output only</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the n value setting, set for the project.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>after selecting this button, the N value setting for the project is set to none. That is, no N value setting has been set for the Project.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go to the next section [7.6.8.1 Create/Edit 7 Parameters](#) or return to [7.6.7 N values](#).
7.6.8 7 Parameters

Position of option on menu: Project => Management => 7 parameters

Seven (7) parameter transformations are used to transform data between two ellipsoids. They are also known as 7 parameter similarity transforms, Bursa-Wolf and 7 parameter Helmert transformations.

Warning: the definition and hence sign of some terms varies between countries.

In 12d Model, the seven parameter similarity transformations are used in the General Transformation option Survey => Conversions => General transformations (see 17.10.6 General Transformations) and the transformation is applied in the Global XYZ system.

The 7 parameters walk-right menu contains options to create and delete seven parameter transformation setting.

For the option Create/edit, go to 7.6.8.1 Create/Edit 7 Parameters
Delete 7.6.8.2 Delete 7 Parameters

The options in the menu will now be described.
7.6.8.1 Create/Edit 7 Parameters

Position of option on menu: Project => Management => 7 parameters => Create/Edit

On selecting the Create/edit option, the Add/Modify Seven Parameter Details panel is displayed.

![Add/Modify Seven Parameter Details](Image)

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion name</td>
<td>choice box</td>
<td>all defined 7 param settings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the 7 parameter setting to be created/edited.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DX, DY, DZ</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the translations for the 7 parameter transformation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rX (arc seconds), rY (arc seconds), rZ (arc seconds)</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the rotations, in arc seconds, for the 7 parameter transformation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scale</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the scale for the 7 parameter transformation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use Position Vector Transformation sign convention (European)</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, the European Position Vector Transformation convention is used.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked, PVT sign is not used (mainly not used for USA).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depending on the sign convention, some of the parameters will have the opposite sign.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add/Modify</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>after selecting this button, either the new 7 parameter set is created or an exiting one modified. To save the setting list, use the Write button.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>after selecting this button, the user defined 7 parameter settings are written out to the file 7params.4d in the user selected folder. This means that the 7 parameter settings will be available in the current and future projects. For more information on the Write button, go to the section 39.2.6 Writing Out Setup Files in the Appendix 39 Setting Up & Configuring 12d.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go to the next section 7.6.8.2 Delete 7 Parameters or return to 7.6.8 7 Parameters.
7.6.8.2 Delete 7 Parameters

Position of option on menu: Project => Management => 7 parameters => Delete

The Delete option deleted a seven parameter set from the list of available seven parameter settings.

On selecting the Delete option, the Delete 7 Parameter Details panel is displayed.

![Delete Seven Parameter Details Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion name</td>
<td>input</td>
<td>all defined 7 param settings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the 7 parameters setting to be deleted from the 7 parameter settings list. The relevant setting parameters are displayed.</td>
<td></td>
</tr>
<tr>
<td>Delete button</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>after selecting this button, the selected 7 parameter setting is deleted from the setting list. This can be done for a number of 7 parameter sets by simply selecting the name to be deleted and selecting the delete button. To save the modified setting list, use the Write button</td>
<td></td>
</tr>
<tr>
<td>Write button</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>after selecting this button, the user defined 7 parameter settings are written out to the file 7params.4d in the user selected folder. This means that the 7 parameter settings will be available in the current and future projects. For more information on the Write button, go to the section 39.2.6 Writing Out Setup Files in the Appendix 39 Setting Up & Configuring 12d</td>
<td></td>
</tr>
</tbody>
</table>

Return to 7.6.8.7 Parameters.
7.6.9 Project Workspace

Position of option on menu: Project => Management => Workspace

Options to set up the project

The Project Workspace walk-right menu contains various projection items.

For the option Setup, go to 7.6.9.1 Workspace Setup
For the option Load, go to 7.6.9.2 Project Workspace Load
7.6.9.1 Workspace Setup

Position of option on menu: Project => Management => Workspace => Setup

The workspace file is used to define the position of toolbars and output window for a new project.

Once inside an existing project, the workspace file is no longer used and the final positions of the toolbars and output window are recorded inside the project so they come up in the same final position as when the project is reopened.

The Workspace Setup option allows the user to define new workspace setup files that can be loaded at any time in an existing project or used as the default workspace file used for all new projects.

On selecting the Setup option, the Workspace Setup panel is displayed.

![Workspace Setup Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>write out the current toolbar configuration to a .4dw file.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>read in the workspace.4dw file in the current project folder.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>remove all the current toolbars and read in the default workspace.4dw file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workspace file</td>
<td>file box</td>
<td>current workspace file*.4dw files</td>
<td>name of the workspace file to re imported/exported</td>
</tr>
<tr>
<td>Import</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>read in and use the workspace file given in the Workspace file field.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Export</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>write the current toolbar settings out to the workspace file given in the Workspace file field.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go to the next section 7.6.9.2 Project Workspace Load or return to 7.6.9 Project Workspace.
7.6.9.2 Project Workspace Load

Position of option on menu:
Project => Management => Workspace > Load

This option displays and selects a project workspace file to set up the icons etc. on the screen.

The **Project Workspace Load** walk-right menu contains further walk-rights to display the workspace files in the local project, the set ups folder and the user folder.

To load a workspace file, simply click on the name in the walk-right lists.

Return to **7.6.9 Project Workspace**.
7.6.10 Tags

For the option Tag tree go to
Find new tags

7.6.10.1 Tag Tree
7.6.10.2 Register New Tags
7.6.10.1 Tag Tree

Position of option on menu: Project => Management => Tags => Tag tree

The 12d Model objects models, tins and strings can be tagged with an unlimited number of user defined text strings called tags. For example, a string may be tagged with the two tags, "survey day 1" and "sewer".

Tags names are case sensitive and must be unique. Tags are used in an increasing number of 12d Model options. For example, on a view, models can be selected for adding/removing by giving a tag name.

To further increase their usefulness, tags in a project can also be assigned a hierarchy, or tree structure. However that will be discussed shortly after first describing how to create, apply and remove simple tags (see Defining a Tag Tree (Tag Hierarchy)).

Selecting Tags displays the Tag Tree panel which is used to defined tags, and also apply and remove tags from objects.

Buttons at Bottom
- Refresh button: refresh the grid.
- Import button: import a tag tree definition file.

Clicking on Import brings up the Tag Tree Import panel.
Tag file tags box all .tags files
name of the tag file to read the tag definitions from.

Import button
read in the tag definitions from the Tag file and merge them with the current definitions for the project.

Export button
export a tag tree definition file.

Clicking on Export brings up the Tag Tree Export panel.

Tag file tags box all .tags files
name of the tag file to write the project tag definitions out to.

Export button
write out the tag tree definition for this project to the Tag file.
How To Use the Tag Tree Panel

Creating a Tag

To create a new first level tag, click on Tags and then the Insert icon.

The name of the tag is typed into the Tag name field, the information on the Details tab: Created by, Created on and Comments, can be filled in (all are optional) and then click on Update details to create the tag.
Applying a Tag To Objects
To apply a tag, click on the tag name and then the Tag Objects tab. Select the data with the Data to Tag data source. Select the Tag mode (choice of Strings only, Models only, Strings and models). Click on Tag objects to tag the selected objects.
Retrieving and Deleting Tagged Objects

To retrieve a list of data tagged with a certain tag, click on the *tag name* and then the *Objects* tab. Click on **Retrieve** to list all the objects with the tag.

To remove tags, click the tick on in the *Remove column*. Click on **Remove** to remove the tag from the ticked objects.

Note - clicking RB on the **Remove** at the top of the column in the grid brings up a panel with options to set all the ticks on, set all the ticks off or toggle the tick state.
Defining a Tag Tree (Tag Hierarchy)

Tag names are *case sensitive* and must be *unique* and objects can be tagged with *more than one* tag. For example, a string may be tagged with the two tags, "survey day 1" and "sewer"

To further increase their usefulness, tags in a project can also be assigned a *hierarchy*, or *tree structure*.

A *tag tree structure* can be created for the project by following the rules:

1. Tags can be *first level tags* or *sub-tags*, but not both.
2. *First level tags* are tags created at the top level of the tag tree. That is, they are the level directly below the *Tags* label in the *Tag Tree* panel.
3. *Sub-tags* are tags that are created as sub-tags of a *first level tag*, or sub-tags of other sub-tags.
4. First level tags can not be used as sub-tags and sub-tags can not be a first level tag.
5. *Tag names* must be *unique* amongst *all tags* - *first level tags* and *sub-tags*. So you can't have a first level tag with the same name as a sub-tag, and vice-versa.
6. The same subtag name can not appear more than once in any single *tag-subtag* sequence.

 For example, you can have a tag *Vegetation types* with a subtag of *Grass* and with a sub-subtag of *Bent*, but you can't have a tag *Vegetation types* with a subtag of *Grass*, a sub-subtag of *Bent*, and a sub-sub-subtag of *Grass*.

 That is *Vegetation types > Grass > Bent* is allowed
 but *Vegetation types > Grass > Bent > Grass* is not allowed

 Note that because tags are case sensitive

 Vegetation types > Grass >Bent > grass is allowed.

7. A subtag can appear in more than one tag sequence as long as Rule 6 is not violated.
A tag hierarchy can be very useful.

For example, if we have the tags and tag tree as defined in the previous picture, adding the models tagged as Trees with the **Add Tagged Models** option will also add the models tagged with Elm, Gum, Pine, Grass, Bent, Buffalo, Matilda buffalo, Shademasteer buffalo, Sir Walter buffalo and Couch **even if they are not tagged as Trees**.

If Grass was removed as a subtag of Trees then adding Trees with the **Add Tagged Models** option will then only add the models tagged with Trees, Elm, Gum and Pine. So no new tagging was needed, just a modification to the tag tree definition.

Creating a Tag Tree Structure

To create a subtag of any tag is very similar to creating a first level tag.

To create a **new sub tag**, click on the tag to have the subtag, and then click on the **Insert** icon.

The name of the subtag is typed into the **Tag name** field, the information on the **Details** tab: **Created by**, **Created on** and **Comments**, can be filled in (all are optional) and then click on **Update details** to create the subtag.
Management

1. Click on the subtag and then on the Insert icon
2. The name of the new tag is typed into the Tag name field
3. The information on the Details tab: Created by, Created on and Comments, can be filled in (all are optional)
4. Click on Update details to create the subtag

new sub tag Trees
Copy and Paste in a Tag Tree Structure

The Copy and Paste icons are used to copy subtags around the tag tree structure.
To copy, first click on the subtag you wish to copy (say Grass), and then click on the Copy icon.
The Paste button will then become active.

Now click on the first level tag or subtag to copy the subtag to (say Trees), and then click on the Paste icon.
The subtag (and the tree below it) will now be copied as a subtree of the selected tag.
Deleting a Subtag in Tag Tree Structure

A first level tag or subtag can be deleted from anywhere in the tree by simply clicking on the tag to be deleted and then clicking on the Delete icon.

Go to the next section 7.6.10.2 Register New Tags or return to 7.6.10 Tags.
7.6.10.2 Register New Tags

Position of option on menu: Project => Management => Tags => Find new tags

Register new tags is used to locate any new tags that have been added on models or strings which have not been registered with the project.

Unregistered tags may occur when reading in a 12da that contains models or strings with tags. Until a tag is registered, it can not be used in source boxes or other panels.

Selecting Find new tags, brings up the Register new tags panel.

The fields and buttons used in this panel have the following functions.

Field Description	Type	Defaults	Pop-Up
Data to search | source

Data to search - for a full description go to 4.19.3 Data Source.

Search | button

perform the search.

Return to 7.6.10 Tags.
7.6.11 Tree

Position of option on menu: Project => Tree

Position of option on menu: Project => Management => Tree

For documentation on this option, go to the section Project => Tree (see 7.9 Tree).
7.6.12 Managers

Position of option on menu: Project => Management => Managers

The Managers display in a tree structure information and settings for all the models, tins, functions and templates both in the project and removed from the project, and for all the views in the project.

The Managers walk-right menu contains a manager for the entire project and separate managers for modes, tins, functions templates and views.

![Managers](image)

display nodes for all models, tins, functions & templates (in & removed from the project), & all views in the project

For the option:
- **Project**, go to [7.6.12.1 Project Manager](#).
- **Model** [7.6.12.2 Model Manager](#).
- **Tin** [7.6.12.3 Tin Manager](#).
- **Function** [7.6.12.4 Function Manager](#).
- **Template** [7.6.12.5 Template Manager](#).
- **View** [7.6.12.6 View Manager](#).
7.6.12.1 Project Manager

Position of option on menu: Project => Management => Managers => Project

The **Project Manager** displays in a tree structure nodes for all the models, tins, functions and templates both in the project and removed from the project, and all the views in the project.

Selecting **Project** displays the **Project Manager** panel.

If there are any models/tins/functions/templates in the Project, then there will be a **Project models/tins/functions/templates** node in the tree and that node has sub nodes for all the models/tins/functions/templates in the project. The name of the sub node is the name of the model/tin/function/template.

If there are any models/tins/functions/templates that have been removed from the Project, then there will be a **Removed models/tins/functions/templates/views** node in the tree and that node has sub nodes for all the removed models/tins/functions/templates. The name of the sub node is the name of the removed model/tin/function/template.

If there are any views in the Project, then there will be a **Project view** node in the tree with the views as sub nodes. The name of sub node is the name of the view.

The information and setting displayed for these nodes is the same as those in the separate Model/Tin/Function/Template/View Managers and so will be documented in those sections.

See **7.6.12.2 Model Manager**
7.6.12.3 Tin Manager
7.6.12.4 Function Manager
7.6.12.5 Template Manager
7.6.12.6 View Manager

Continue to the next section 7.6.12.2 Model Manager or return to 7.6.12 Managers.
7.6.12.2 Model Manager

Position of option on menu: Project => Management => Managers => Model

The Model Manager displays in a tree structure all the settings for models in the project, and the names of all the removed models.

Selecting Model displays the Model Manager panel.

If there are any models in the Project, then there will be a Project models node in the tree.

Expanding the Project models node lists all the models in the project as sub nodes, and expanding the sub node of a project model displays information and settings for the model on the right hand side of the panel. The name of the sub node is the name of the model.

Many of the settings can then be changed, and the changes take place immediately without having to press any other button.

If there are any models that have been removed from the Project, then there will be a Removed models node in the tree.

Expanding the Removed models node lists all the models removed from the project as sub nodes but no other information or settings can be displayed for removed models. The name of the sub node is the name of the removed model.

Continue to the next section 7.6.12.3 Tin Manager or return to 7.6.12 Managers.
7.6.12.3 Tin Manager

Position of option on menu: Project => Management => Managers => Tin

The Tin Manager displays in a tree structure, all the settings for tins in the project, and the names of all the removed tins.

Selecting Tin displays the Tin Manager panel.

If there are any tins in the Project, then there will be a Project tins node in the tree.

Expanding the Project tins node lists all the tins in the project as sub nodes, and expanding the sub node of a project tin displays information and settings for the tin on the right hand side of the panel. The name of the sub node is the name of the tin.

Many of the settings can then be changed, and the changes take place immediately without having to press any other button.

If there are any tins that have been removed from the Project, then there will be a Removed tins node in the tree.

Expanding the Removed tins node lists all the tins removed from the project as sub nodes but no other information or settings can be displayed for removed tins. The name of the sub node is the name of the removed tin.

Continue to the next section 7.6.12.4 Function Manager or return to 7.6.12 Managers.
7.6.12.4 Function Manager

Position of option on menu: Project => Management => Managers => Function

The **Function Manger** displays in a tree structure, all the settings for functions in the project, and the names of all the removed functions.

Selecting **Function** displays the **Function Manager** panel.

If there are any functions in the Project, then there will be a **Project functions** node in the tree.

Expanding the **Project functions** node lists all the functions in the project as sub nodes, and expanding the sub node of a project function displays information and settings for the function on the right hand side of the panel. The name of the sub node is the name of the function.

Many of the settings can then be changed, and the changes take place immediately without having to press any other button.

If there are any functions that have been removed from the Project, then there will be a **Removed functions** node in the tree.

Expanding the **Removed functions** node lists all the functions removed from the project as sub nodes but no other information or settings can be displayed for removed functions. The name of the sub node is the name of the removed function.

Continue to the next section 7.6.12.5 Template Manager or return to 7.6.12 Managers.
7.6.12.5 Template Manager

Position of option on menu: Project => Management => Managers => Template

The Template Manager displays in a tree structure, all the settings for templates in the project, and the names of all the removed templates.

Selecting Template displays the Template Manager panel.

If there are any templates in the Project, then there will be a Project templates node in the tree.

Expanding the Project templates node lists all the templates in the project as sub nodes, and expanding the sub node of a project template displays information and settings for the template on the right hand side of the panel. The name of the sub node is the name of the template.

Many of the settings can then be changed, and the changes take place immediately without having to press any other button.

If there are any templates that have been removed from the Project, then there will be a Removed templates node in the tree.

Expanding the Removed templates node lists all the templates removed from the project as sub nodes but no other information or settings can be displayed for removed templates. The name of the sub node is the name of the removed template.

Continue to the next section 7.6.12.6 View Manager or return to 7.6.12 Managers.
7.6.12.6 View Manager

Position of option on menu: Project => Management => Managers => View

The View Manager displays in a tree structure, all the settings for views in the project.

Selecting View displays the View Manager panel.

If there are any views in the Project, then there will be a node (view node) in the tree with the name of the view as the node name.

Expanding a view node lists information and setting for that view as sub nodes, and displays values for the nodes and sub nodes in the right hand side of the panel.

Once displayed in the right hand side, many of the settings can be changed, and the changes will take place immediately without having to press another button.

For each view node, the sub nodes, settings and information displayed is the same as for the View Properties panels. See 9.4.6 Properties.

Return to 7.6.12 Managers.
7.6.13 Sharing

See
7.6.13.1 Sharing of Models and Tins

7.6.13.1 Sharing of Models and Tins

Models and Tins can be shared into your project from other projects. That means that in your project, the models and tins that are shared in from another project are not created in your project, but are copies of the models and tins from the other project.

And when the models and/or tins are modified in the other project, they can be automatically updated in your project.

In your own project, you decide which models and tins are available to be shared into other peoples projects. That is, you say which or your models and tins can be shared out to another project.

It is possible to have Shares of Shares. That is, you share a model or tin into your project, and then that model or tin is shared out to another project.

When models and tins are being shared into your project, a copy of the models and tins are copied over into your project. And each time one of the models or tins is modified in the original project, a new copy is made in your project.

However when you exit a project, the next time you start the project the models and tins that are shared into your project may not have changed. Rather than copying the models and tins again, it is possible to have the models and tins saved in a special folder, called a Sharing Cache Folder, so they do not have to be copied over again when ever a project is restarted.

There is an environment variable, SHARING_CACHE_4D, which gives the full path name to the local folder to use as the Sharing Cache Folder.

In the Edit Environment Variables panel, it is the field Sharing cache folder in Projects >Sharing.

![Edit Environment Variables](image)

If Sharing cache folder is left blank then local caching does not occur.

Go to the next section 7.6.13.2 Project Sharing or return to 7.6.13 Sharing.
7.6.13.2 Project Sharing

The Sharing walk-right menu is:

For information about sharing, go to 7.6.13.1 Sharing of Models and Tins.

For the options:

- Manage, please go to 7.6.13.3 Share Management
- Settings 7.6.13.4 Project Share Settings
- Sharing map files 7.6.13.5 Sharing Map Files
- Read share index 7.6.13.6 Add Shares By Index File
- Export share index 7.6.13.7 Export A Share Index File
- Convert share paths to relative 7.6.13.8 Convert Share Paths To Relative
- Subscribe to share master files 7.6.13.9 Subscribe to Sharing Master Files
- Create share master file 7.6.13.10 Sharing Master File
- Localize shares 7.6.13.11 Localize Shares
7.6.13.3 Share Management

Position of option on menu: Project => Management => Sharing => Manage

The Share Management tool combines all the Share, Add and Remove options for the sharing of models and tins in and out.

Selecting Manage brings up the Share Management panel and the panel will list under the This Project node, all the models and tins in the project that are available to share out, and as extra as nodes, all the projects that models and tins have been shared in from.
See

7.6.13.3.1 Making Models or Tins Available for Sharing
7.6.13.3.2 Sharing in Models and Tins
7.6.13.3.1 Making Models or Tins Available for Sharing

Clicking on **This Project** displays all the models in the project on the **Models** tab, and all the tins in the project under the **Tins** tab.

Models or tins that have been made available for sharing, that is are **shared out** so other projects can share in these models and tins from this project, have a tick beside them in the **Set** column.

To share models or tins out, simply click the tin on in the **Share Out** column and then click on **Set**.

Similarly if there is no tick in the **Share** column then clicking on **Set** will make the models or tins no longer available to share out.

Go to the next section 7.6.13.3.2 **Sharing in Models and Tins** or return to 7.6.13.3 **Share Management**.
7.6.13.3.2 Sharing in Models and Tins

Under each project node, there is a Models and Tins node.

Models
Clicking on the Models node lists all the models that have been shared in on the Shared tab, and all the models that are available to be shared in from that project on the Available for Sharing tab.

On the Shared tab, highlighting a model name and clicking on the Remove button will stop the model from being shared in.

On the Available Sharing tab, all models available for sharing in are shown and those that have already been shared in are coloured yellow. Models that are not shared in can be shared in by ticking in the Share ? column and then clicking the Add button.

Tins
Clicking on the Tins node lists all the tins that have been shared in on the Shared tab, and all the tins that are available to be shared in from that project on the Available for Sharing tab.

On the Shared tab, highlighting a tin name and clicking on the Remove button will stop the tin from being shared in.

On the Available Sharing tab, all tins available for sharing in are shown and those that have already been shared in are coloured yellow. Tins that are not shared in can be shared in by
ticking in the **Share** column and then clicking the **Add** button.

New Project Button

Clicking on the **New Project** button brings up the **Select a Project to Share From** panel.

Selecting a project and clicking on **Set** adds the given project as a new node in the **Share Management** panel and the **Model** and **Tin** nodes can be used to share in models and tins from that new project.
Go to the next section 7.6.13.4 Project Share Settings or return to 7.6.13.3 Share Management.
7.6.13.4 Project Share Settings

Position of option on menu: Project =>Management =>Sharing =>Settings

There are three environment variables that control the auto-synchronizing of any shared models or tins added to this project.

- SHARE_CHECK_INTERVAL_4D number_of_seconds
- AUTO_MODEL_SYNC_4D 1 or 0
- AUTO_TIN_SYNC_4D 1 or 0

This option will temporarily modify the values for this session. When the project is restarted, the values will revert to those given by the environment variables.

Selecting Share settings brings up the Project Share Settings panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interval to check for updates</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time in seconds to check if any of the shared models or tins added to the project have been updated in the server projects.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The environment variable controlling this when the project starts up is</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHARE_CHECK_INTERVAL_4D number_of_seconds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The value is only modified for this session. To permanently change the value, please modify the environment variable.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Autosync tins tick box
 if ticked, the server projects for any shared tins added to this project are checked to see if they have been modified (checked every SHARE_CHECK_INTERVAL seconds). If any tins have been modified, they are re-copied to this project.

 The environment variable controlling this when the project starts up is |
 AUTO_TIN_SYNC_4D 1 or 0 |
 The value is only modified for this session. To permanently change the value, please modify the environment variable.

- Autosync models tick box
 if ticked, the server projects for any shared models added to this project are checked to see if they have been modified (checked every SHARE_CHECK_INTERVAL seconds). If any models have been modified, they are re-copied to this project.

The environment variable controlling this when the project starts up is

\[\text{AUTO_MODEL_SYNC_4D} \quad 1 \text{ or } 0 \]

The value is only modified for this session. To permanently change the value, please modify the environment variable.

Set button

set the values in the panel for this session. The values will revert back to the ones given by the environment variables when the project is restarted.

The values are only modified for this session and will revert back to the ones given by the environment variables when the project is restarted. To permanently change the value, please modify the environment variable.

Go to the next section 7.6.13.5 Sharing Map Files or return to 7.6.13 Sharing.
7.6.13.5 Sharing Map Files

Position of option on menu: Project =>Management =>Sharing =>Sharing map files

The **Sharing Map Files** option allows different models **shared in** to use different **Map files**. Clicking on the option **Sharing map files** brings up the **Sharing Map Files** panel.

Model Mask-Map File grid:

The **Model Mask Map** grid in loaded from the file **sharing_map_files.4d** which is a **Set Up** file that is loaded when the project is opened.

The **Model Mask-Map File** grid consists of rows of text for **Model Mask** and one the same row, and associated **Map File**.

The **Model Mask** is a text string of alphanumeric characters and spaces, and including * for a wild card and ? as a wild character.

For each **shared in** model, the model name is checked against the **Model Mask** in the first the first row, and if no match is made, is then tested against the next row. This is repeated until a match occurs.

When a match occurs, the **Map File** for the match row is applied to the model and no more tests against **Model Masks** are made.

If there is no match but there is a project **Sharing map file** (see the field **Projects >Sharing >Sharing map file** in the Edit Environment Variables panel), then the **Sharing map file** is applied to the **shared in** model.

If no match occurs and there is no project **Sharing map file** then the **shared in** model is left alone.

If the data in the **Model Mask Map** grid is modified then the modified file is written out with the **Write** button. A project restart is required for the new file to take effect.

Write Button

When the **Write** button is selected, a **Write Setup File** panel comes up to specify where the **sharing_map_files.4d** file is to be written out to.
For the choices on the panel, see 39.2.6 Writing Out Setup Files

A project restart is required for the new file to take effect

Note

When applying a Map File to a shared in model, only the Basic tab of the Map File is used and it is only used to change the colour of strings in the shared in model.

Go to the next section 7.6.13.6 Add Shares By Index File or return to 7.6.13 Sharing.
7.6.13.6 Add Shares By Index File

Position of option on menu: Project => Management => Sharing => Read share index

This panel loads shared tin and model details from a share index file, created by 7.6.13.7 Export A Share Index File and allows you to choose which items should be shared into your project. Selecting Read share index brings up the Add Shares By Index File panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index file</td>
<td>the sharing index file to read</td>
<td>file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>the type of element (model or tin)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>the name of the element</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share?</td>
<td>whether or not to share the element in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load</td>
<td>loads the information from the selected index file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share</td>
<td>adds the selected shares to the project</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go to the next section 7.6.13.7 Export A Share Index File or return to 7.6.13 Sharing.
7.6.13.7 Export A Share Index File

Position of option on menu: Project => Management => Sharing => Export share index

This panel exports a list of all the shared elements (models and tins) that have been shared into this project. This can then be used to recreate the same sharing setup in another client project.

Selecting Export share index brings up the Export a share index file panel

![Export a share index file panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Export file</td>
<td>the file to export details to</td>
<td>file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Export</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>exports the sharing information</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go to the next section 7.6.13.8 Convert Share Paths To Relative or return to 7.6.13 Sharing.
7.6.13.8 Convert Share Paths To Relative

Position of option on menu: Project =>Management =>Sharing=>Convert share paths to relative

This option changes the share paths of models and tins from absolute path names to relative path names. It is mainly used for projects where the share names were recorded as full paths names (e.g. V8 projects).

Selecting Convert share paths to relative brings up the Convert Share Paths to relative panel.

![Convert Share Paths to Relative Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convert model paths</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td>Convert tin paths</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
</tbody>
</table>

Convert model paths

if ticked, the absolute path names of shared models added to this project will be converted to relative paths.

Convert tin paths

if ticked, the absolute path names of shared tins added to this project will be converted to relative paths.

Convert

convert absolute paths to relative.

Go to the next section 7.6.13.9 Subscribe to Sharing Master Files or return to 7.6.13 Sharing.
7.6.13.9 Subscribe to Sharing Master Files

Position of option on menu: Project => Management => Sharing => Subscribe to share master files

This panel allows you to subscribe to a set of sharing master files. Each master file defines a set of known models and tins, which will be shared into this project.

Selecting **Subscribe to share master files** brings up the **Subscribe to Sharing Master Files** panel.

![Subscribe to Sharing Master Files Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that the share check interval must be set, which can be set from the 7.6.13.4 Project Share Settings panel.

Go to the next section **7.6.13.10 Sharing Master File** or return to **7.6.13 Sharing.**
7.6.13.10 Sharing Master File

Position of option on menu: Project => Management => Sharing => Create share master files

This panel allows you to define a sharing master file. A sharing master file can be created and subscribed to by a number of clients. This will enforce and define the set of shared models and tins the clients will consume. Updating the sharing master file will likewise update the clients, at a set interval as defined by the client.

This panel will list all models and tins that the user has marked as shareable.

Selecting **Create share master files** brings up the **Sharing master file** panel.

![Sharing master file panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master file</td>
<td>the file to write to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add?</td>
<td>whether or not to add the item to the sharing master file</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>the name of the model or tin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions.
the type of the element (model or tin)

Write button
writes the sharing master file

Refresh button
refreshes the list of shareable models and tins.

Go to the next section [7.6.13.11 Localize Shares](#) or return to [7.6.13 Sharing](#).
7.6.13.11 Localize Shares

Position of option on menu: Project => Management => Sharing => Localize shares

This option copies all the shared models and tins to the local project in a special folder and make them "local shares" so like the original shared models and tins, they still can't be edited.

This is useful for creating a project that is being sent to another user so that all the shared models and tins are included in the project.

IMPORTANT WARNING

You can't go back to the original shares so make sure this is only run on a copy of a project and not a working project. If you only wanting copies of your shared models and tins in the project then use the Copy models and tins commands.

Selecting Subscribe to share master files brings up the Subscribe to Sharing Master Files panel.

![Localize shares panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Localize button</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

creates "local" shares of all the shared models and tins.

Return to 7.6.13 Sharing.
7.6.13.12 Sharing Information

Position of option on menu: Project => Management => Sharing => Share info

This option has been removed for V11 and replaced by 7.6.13.3 Share Management.

This panel shows information about all models and tins shared into your current project. Selecting Share info brings up the Sharing information panel.
Server Node

Each server you are sharing from is listed in the tree. Selecting the server node displays the path of the server, the project description and an option to view the diary for that project.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View diary</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Views the diary for that project - disabled if no project diary created
Models Node

Each Model Node shows details about the shared model.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Synchronized</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Path

the path to the original source of the model

Last Synchronized

the time the model was last synchronized
Tin Node

Each Tin Node shows details about the shared tin.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
 the path to the original source of the tin

| Last Synchronized | | | |
 the time the tin was last synchronized

Return to [7.6.13 Sharing](#).
7.6.14 Forest File

Position of option on menu: Project => Management => Forest file

The **Forest file** option creates files to control the types of trees, variation in heights and spreads and relative proportions of the various tree types in the file.

Selecting Forest file brings up the Forest file panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest file</td>
<td>file box</td>
<td>file box</td>
<td>*.forest</td>
<td></td>
</tr>
<tr>
<td>Read</td>
<td>read in the forest file given in Forest file</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>write out to forest file to the file given in Forest file</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree grid</td>
<td>grid</td>
<td>grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree type</td>
<td>billboard select</td>
<td>billboard select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of Forest</td>
<td>relative proportions of the forest made up of this tree. The actual proportion is this value over the sum of all the values in this column.</td>
<td>positive real</td>
<td>*.forest</td>
<td></td>
</tr>
<tr>
<td>Maximum/Minimum Height</td>
<td>min and maximum heights to use for this tree type.</td>
<td>positive reals</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
% Spread Variation positive real between 0 and 100

Go to the next section 7.6.15 Trash Bin or return to 7.6 Management.
7.6.15 Trash Bin

Position of option on menu: Project =>Management =>Trash bin

If the **Trash Bin** is turned on (by setting the env variable USE_TRASH_BIN_4D) then any deleted models, tins, functions and templates are not deleted from the disk but moved to the **12d Trash Bin**. Also for any models that are cleaned, the strings are moved to the trash bin.

If there is any data in the trash bin, a trash bin icon is displayed in the bottom left hand corner of the project window.

Clicking on the trash bin icon, brings up the **Trash Bin** panel which displays the tins, templates or functions that have been deleted, and the models that have been deleted or cleaned. The delete/cleaned objects can be restored to the project.

Selecting **Trash bin** from Project =>Management =>Trash bin, also brings up the **Trash Bin** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deleted By</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restore As</td>
<td></td>
<td>optional</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Restore</th>
<th>Delete</th>
<th>Refresh</th>
<th>Finish</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trash Bin Grid</td>
<td>grid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>output only model, tin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>type of object - model or tin.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>output only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the object.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deleted by</td>
<td>output only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the user who deleted/cleaned the object.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>output only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>time of the deletion.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select</td>
<td>tick box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ticked if this object is to be Restored/Deleted. Note that right bottom on Select brings up a menu to Toggle (tick to no tick, no tick to tick), Set (set all to tick), or Clear (set all to no tick) for the entire column.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restore As</td>
<td>text</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if not blank, the name the restore the object as.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If blank, restore the object with its original name in the Name column.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buttons</td>
<td>grid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restore</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>restore all the ticked objects.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>delete all the ticked objects from the trash. These items are then permanently deleted.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refresh</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>refresh the grid.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go to the next section 7.6.16 Project Preview or return to 7.6 Management.
7.6.16 Project Preview

Position of option on menu: Project => Management => Project preview

When a 12d Model project is exited, an image is saved to display in the New/Open project options. The image can be the last active view or an image defined by the user. The Project preview option can write out a user selected image or remove one if a fixed image has been previously set.

Selecting Project preview brings up the Project Preview panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Take preview button</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if clicked, the image of the current active view is written and set to be used as a fixed project preview image. That is, this image is always used as the project preview.</td>
<td></td>
</tr>
<tr>
<td>Release preview button</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>active when a fixed image is being used for the project preview. In that case if it is then clicked, the fixed image is deleted. An automatic image of the last active view will then be saved each time the project is exited.</td>
<td></td>
</tr>
</tbody>
</table>

Go to the next section 7.6.17 Toggle Density Drawing or return to 7.6 Management.
7.6.17 Toggle Density Drawing

Position of option on menu: Project =>Management =>Toggle density drawing

Toggles the Use density drawing tick box in the Defaults panel.
For more information on density drawing, see Use density drawing tick box.

Note: This setting is only applicable to the 250M version of 12d Model.

Continue to the next section 7.6.18 Toggle Topmost Buttons or return to 7.6 Management.
7.6.18 Toggle Topmost Buttons

Position of option on menu: Project => Management => Toggle topmost buttons

Toggles on buttons to use instead of a keyboard or mouse when working on a tablets.

Clicking on `Toggle topmost buttons` toggles the following buttons on and off.

Return to **7.6 Management**.
7.7 Restart

Position of option on menu: Project => Restart

The Restart option exits the current 12d Model project and then restart using the same project. Useful for testing changes to set up files etc.

It will prompt if project Save is required.

7.8 Save

Position of option on menu: Project => Save

The Save option saves the working project to disk.

On the Save from the Main menu, simply select the option and the project is saved.

On selecting Save from the floating Projects menu, the save project panel is displayed.

The position of the save project panel is also saved and the panel automatically placed on the screen when the project is started up again.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Save button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

after selecting this button, the working project is saved to disk.

Go to the next section 7.9 Tree or return to 7 Project.
7.9 Tree

Position of option on menu: Project => Tree

Position of option on menu: Project => Management => Tree

The Tree option is under continual development and being extended with each version of 12d Model.

Tree is used to drill down through information about the data in the project (for example models, tins and views) and also to interactive create/edit/edit most of the set-up information that is contained in text files. These include:

(a) Name mapping (file names.4d) documented in the section 7.9.1 Name Mappings - Names.4d File

(b) Plotters set-ups (file plotters.4d) which in not yet documented. See the section 7.9.2 Plotters.

(c) Survey data collectors (file survey.4d) documented in the section 7.9.3 Survey Data Collectors

(d) Linestyles (file linestyl.4d) documented in the section 7.9.4 Linestyles

(e) Symbols (file symbols.4d) documented in the section 7.9.5 Symbols

(f) Textstyles (file textstyl.4d) documented in the section 7.9.6 Textstyles

(g) Textstyle data favourites (file textstyle_names.4d) documented in 7.9.7 Textstyle Data Favourites

(h) Sheet sized (file sheets.4d) documented in the section 7.9.8 Sheet Sizes

On selecting the Tree option, the Project Tree panel is displayed.

Note: This is a resizable panel.

Clicking on a + expands that browse tree node to show what items are available to get more
information on. Clicking on a + collapses that browse tree node,

For the items Name mappings, Plotters, Survey data collectors, Textstyles and Textstyle data favourites, once they are expanded then the items displayed need no further expansion (there is no + displayed in front of the items) and double clicking on the expanded items brings up the create/edit panels for the item.

For example, clicking on + for Survey data collectors and then double clicking on a data collector brings up the Survey.4d Create/Edit panel.

![Survey.4d Create/Edit panel](image)

For the option Name mappings, go to

- 7.9.1 Name Mappings - Names.4d File
- 7.9.2 Plotters
- 7.9.3 Survey Data Collectors
- 7.9.4 Linestyles
- 7.9.5 Symbols
- 7.9.6 Textstyles
- 7.9.7 Textstyle Data Favourites
- 7.9.8 Sheet Sizes
7.9.1 Name Mappings - Names.4d File

Position of option on menu: Project => Tree

The name mapping file is used in all panel fields requiring the name of a string and the name field in the CAD Controlbar.

After the string name is typed, if <Enter> is pressed then each section of the name mapping file being used for the project is searched for matches with the Key for the Basic node, or Name field for the other nodes (Symbol, Tinable etc).

If there is a match of the string name with a key/name, then the name, model, colour point/line type etc. for that key/name may be used in the appropriate panel fields, toolbar fields, ControlBars etc that go with the string name.

Note:

From 12d Model 11 onwards, there is a Group column in the grid for the Basic node in the Names.4d file so that the individual rows of the grid can be given a group/subgroup structure.

When the Groups column is used, the Names pop-up can look like:

![Image of the Names pop-up]

To edit the names.4d file, either:

(a) Click on the option Project=> Tree, to bring up the Project tree panel, and then click on the + on Name mapping to expand the item:
Double clicking LB on the item *Create name mapping* to bring up the *Names.4d Create/Edit* panel which will be already editing the *names.4d* file.

Or double clicking LB on any of the items below *Create name mapping* in the expansion of *Name mappings* will also bring up the *Names.4d Create/Edit* panel.

(b) Clicking LB on the Names icon in any panel or ControlBar field will bring up the *Select name* panel and selecting [Edit] at the bottom of the panel brings up the *Names.4d Create/Edit* panel.

The *Names.4d Create/Edit* panel that appears is.
Buttons

Set button
sets the definition for this editing session of the project - the information will be lost when the project is exited.

Write button
write the information to the file names.4d. The file can then be used when projects are started. The information won’t be used for the current session unless the Set button is selected as well. For more information on the Write button, go to the section 39.2.6 Writing Out Setup Files in the Appendix 39 Setting Up & Configuring 12d

The nodes on the Names.4d Create/Edit panel are a subset of those on the Map File Create/Edit panel. Some information will be given for each node but most of it, a link will be given to the appropriate section of the Map File Create/Edit panel.

For more information on Header, go to 7.9.1.1 Header Node
Basic 7.9.1.2 Basic Node
Symbols 7.9.1.3 Symbol Node
Tinable 7.9.1.4 Tinable Node
Text Data 7.9.1.5 Text Data Node
Pipe 7.9.1.6 Pipe Node
Attribute Data 7.9.1.7 Attributes Data Node

7.9.1.1 Header Node
The Header just has lines of comment text. A common use is to document which client the file is to be used for, or the revision history.

Go to the next section 7.9.1.2 Basic Node or return to 7.9.1 Name Mappings - Names.4d File.

7.9.1.2 Basic Node
The Basic grid selects data using the typed in value in the Name field of the CAD ControlBar, or any other appropriate Name panel fields.

The typed in value is checked against the Key column and if a match occurs, sets the name, model, colour, linestyle, point-line type and weight fields. The Att Key column is not used.

Note: If the is a name is the Name column of the Basic node, then that name replaces the value typed into the Name field in the panel or the CAD ControlBar. If the Name column for the match is blank, the text that is typed in is left and used in the Name field of the panel or the CAD ControlBar.
Processing Using Key for Basic Node

the typed in value is searched against the list of names in the Key column until a first match with Key is found.

If a match is found, then any non-blank data in the grid is used to fill out the appropriate panel fields or toolbar fields. The Key column can include wild cards (*) and/or wild characters. The Att Key column is not used.

If no match is found then none of the grid fields are used.

Name input
if not blank, name used to replace the typed in value. This is usually blank.

Model model grid available models
if not blank, model to use

Colour colour grid available colours
if not blank, colour to use

Point Line point/line grid point/line
if not blank, point-line type to use

linestyle available linestyles
if not blank, the linestyle to use

Weight input
if not blank, weight to use for strings with linestyle 1

Comment input
user comment

Group text input
There is now an optional Group column in the grid for the Basic node in the Names.4d file so that the individual rows of the grid can be given a group/subgroup structure.
If the Group column for a row is not blank, then the information is used as a group/subgroup structure in any names.4d pop up.

The group/subgroup structure is written as the top group name first, followed by the first level subgroup name, the second level subgroup name, etc., with each of the names separated by a forward slash /.

\[
group\text{_name}/first\text{_level}\text{_subgroup_name}/second\text{_level}\text{_subgroup_name} \text{ etc.}
\]

For example, a top level group Folder1 with the first level subgroup Folder2 is written as

Folder1/Folder2

IMPORTANT NOTE:

Regardless of the group/subgroup structure, the search order for finding a match with the key in the Basic node of the Names.4d file is still the order that the rows occur in the Basic grid.

In a Names.4d pop, the above names.4d file will look like

If you don't want the Group Column to be used then you have to set the environment variable USE_TREE_NAME_BOX_4D to 0. By default is has the value 1.

Comment and Active

See 8.8.2 Comment and Active Column in Grids.
7.9.1.3 Symbol Node

The Symbols grid selects data using either the typed in value in the Name field of the CAD ControlBar or any other appropriate Name panel fields. Or, if there was a substituted Name from the Names column in the Basic node, then that is used.

The Att Key column is not used.

Processing Using Name in the Symbol Node

The typed in value, or Name if one has been substituted from the Name column in the Basic node, is searched against the list of names in the Name column until a first match with Name is found.

If a match is found, then any non-blank data in the grid is used to fill out the appropriate panel fields or toolbar fields. The Name column an include wild cards (*) and/or wild characters. The Att Key column is not used.

If no match is found then none of the grid fields are used.

Symbol

Symbols grid

when the CAD ControlBar Name field is being used the Symbol name from the Symbol column is used in the Symbol name fields in the Symbol ControlBar.

When a Name field is used in other appropriate panels, the Symbol name from the Symbol column is used in Symbol fields.

Comment and Active

See 8.8.2 Comment and Active Column in Grids.
7.9.1.4 Tinable Node

The Tinable grid selects data using either the typed in value in the Name field of the CAD ControlBar or any other appropriate Name panel fields. Or, if there was a substituted Name from the Names column in the Basic node, then that is used.

The Att Key column is not used.

Processing Using Name in the Tinable Node

the typed in value, or Name if one has been substituted from the Name column in the Basic node, is searched against the list of names in the Name column until a first match with Name is found.

If a match is found, then any non-blank data in the grid is used to fill out the appropriate panel fields or toolbar fields. The Name column an include wild cards (*) and/or wild characters. The Att Key column is not used.

If no match is found then none of the grid fields are used.

Tinable tinability grid

when the CAD ControlBar Name field is being used the Tinable value from the Tinable column is used in the Tinability fields in the CAD ControlBar.

When a Name field is used in other appropriate panels, the Tinable value from the Tinable column is used in Tinability fields.

For the Tinable value:
if the Tinable value is no, the entire string is non tinable. That is, the vertices are not included in any triangulation.

If yes, the entire string is tinable. That is, the vertices are used in any triangulation and the segments between the vertices are used as breaklines.

If points, the vertices of a string are tinable but the segments are not. That is, the vertices are used in any triangulation but the segments between the vertices are used as breaklines.
Comment and Active

See [8.8.2 Comment and Active Column in Grids](#).

Go to the next section [7.9.1.5 Text Data Node](#) or return to [7.9.1 Name Mappings - Names.4d File](#).

7.9.1.5 Text Data Node

The **Text Data** grid selects data using either the typed in value in the **Name** field of the CAD ControlBar or any other appropriate **Name** panel fields. Or, if there was a substituted **Name** from the **Names** column in the **Basic** node, then that is used.

The **Att Key** column is not used.

- **Processing Using Name in the Text Data Node**

 The typed in value, or **Name** if one has been substituted from the **Name** column in the **Basic** node, is searched against the list of names in the **Name** column until a **first** match with **Name** is found.

 If a match is found, then any non-blank data in the grid is used to fill out the appropriate panel fields or toolbar fields. The **Name** column can include wild cards (*) and/or wild characters. The **Att Key** column is not used.

 If no match is found then none of the grid fields are used.

- **Textstyle Data**

 textstyle Data grid

 when the CAD ControlBar **Name** field is being used, the **Textstyle Name** and the **Textstyle Size** from the **Textstyle Data** is used in the fields in the Text ControlBar.

 When a **Name** field is used in other appropriate panels, the **Textstyle Data** is used in Textstyle Data fields.

- **Comment and Active**

 See [8.8.2 Comment and Active Column in Grids](#).
Go to the next section 7.9.1.6 Pipe Node or return to 7.9.1 Name Mappings - Names.4d File.

7.9.1.6 Pipe Node

The Pipe grid selects data using either the typed in value in the Name field of the CAD ControlBar or any other appropriate Name panel fields. Or, if there was a substituted Name from the Names column in the Basic node, then that is used.

The Att Key column is not used.

Processing Using Name in the Pipe Node

The typed in value, or Name if one has been substituted from the Name column in the Basic node, is searched against the list of names in the Name column until a first match with Name is found.

If a match is found, then any non-blank data in the grid is used to fill out the appropriate panel fields or toolbar fields. The Name column an include wild cards (*) and/or wild characters. The Att Key column is not used.

If no match is found then none of the grid fields are used.

Justify, Shape, Size 1, Size 2

Pipe grid

when the CAD ControlBar Name field is being used, the Justify, Shape, Size 1 and Size 2 from the Pipe grid are used in the fields in the Pipe ControlBar.

Note that there does not need to be a match in the Basic section of Names.4d, just a match in the Pipe
But if it is not in the Basic section of the Names.4d file then it won’t appear in the Names pop up and the name will have to be typed into the Name field by hand followed by <Enter>.

When a Name field is used in other appropriate panels, the grid data is used in Pipe fields.

Comment and Active

See 8.8.2 Comment and Active Column in Grids.

Go to the next section 7.9.1.5 Text Data Node or return to 7.9.1 Name Mappings - Names.4d File.
7.9.1.7 Attributes Data Node

The Attribute Data grid selects data using either the typed in value in the Name field of the CAD ControlBar or any other appropriate Name panel fields. Or, if there was a substituted Name from the Names column in the Basic node, then that is used.

The Att Key column is not used.

Processing Using Name in the Attribute Node

the typed in value, or Name if one has been substituted from the Name column in the Basic node, is searched against the list of names in the Name column until a first match with Name is found.

If a match is found, then any non-blank data in the grid is used to fill out the appropriate panel fields or toolbar fields. The Name column an include wild cards (*) and/or wild characters. The Att Key column is not used.

If no match is found then none of the grid fields are used.

Map Attributes

Attributes grid

when the CAD ControlBar Name field is being used, the Attributes from the Map Attributes column are used in the field in the Attributes ControlBar.

Note that there does not need to be a match in the Basic section of Names.4d, just a match in the Attributes Data section of Names.4d. BUT if it is not in the Basic section of the Names.4d file then it won't appear in the Names pop up and the name will have to be typed into the Name field by hand followed by <Enter>.
When a Name field is used in other appropriate panels, the Attributes are used in Attribute fields.

Comment and Active

See 8.8.2 Comment and Active Column in Grids.

Return to 7.9.1 Name Mappings - Names.4d File.
7.9.2 Plotters

User defined plotters can be set up in 12d Model and the information is stored in the file plotters.4d which is fully documented in the section 43.2 Defining Plotters - Plotters.4d in the Appendix 43 Plotters and Plotting.

The interactive editor Plotters on the Browse option is not yet fully implemented or documented.

Go to the next section 7.9.3 Survey Data Collectors or return to 7.9 Tree.
7.9.3 Survey Data Collectors

Position of option on menu: Project => Tree

Click on Survey data collectors to expand the item and then double click LB on Create data collector to create a new data collector, or double click LB on an existing data collector in the list to edit an existing data collector definition.

The Survey.4d Create/Edit panel will then appear.

![Survey.4d Create/Edit panel](image)

This option is fully documented in the 36.9 Data Collector Definitions section in the Appendix 36. 12d Survey Guide.

Go to the next section 7.9.4 Linestyles or return to 7.9 Tree.
7.9.4 Linestyles

Position of option on menu: Project => Tree

Click on Linestyles to expand the item and then double click LB on Create linestyle to create, edit or delete linestyles, or double click LB on an existing textstyle in the list to edit an existing linestyle definition. The Linestyle Create/Edit/Delete panel will then appear.

The linestyle can be created interactively in 12d Model by drawing the new linestyle using strings containing lines, arcs, circles and text. This information can then be used to create the linestyle.

To edit a linestyle, the current definition is written to a model which can then be edited to create the modified linestyle.

The definition of a linestyle includes:

(a) a unique name
(b) the Group to show the linestyle under in the linestyle pop-up
(c) the linestyle type

All the information for linestyles is stored in the text file linestyl.4d but the Linestyle Create/Edit/Delete panel is normally used to create and modify the file rather than using a text editor. (the file linestyl.4d is fully documented in the 40.1 Line Styles section of the Appendix 40 Linestyles, Symbols, Textstyles & Patterns).

The Linestyle Create/Edit/Delete panel is:
Linline
tyle Create/Edit/Delete

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option</td>
<td>choice box</td>
<td>Create</td>
<td>Create, Edit, Delete</td>
</tr>
<tr>
<td>Linestyle name</td>
<td>input</td>
<td>available linestyles</td>
<td>name of the linestyle to be created, edited or deleted.</td>
</tr>
<tr>
<td>Group</td>
<td>input</td>
<td>available groups</td>
<td>name of the group for the linestyle - can be a new group name.</td>
</tr>
<tr>
<td>Linestyle type</td>
<td>choice box</td>
<td>world</td>
<td>user, pixel, world, paper, 2 point, group</td>
</tr>
</tbody>
</table>

For Option choice "Create" - Data input

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data input</td>
<td>source box</td>
<td>model</td>
<td></td>
</tr>
</tbody>
</table>

-data to be used to create the linestyle.

For Option choice "Edit" - Edit line work

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model for linestyle</td>
<td>model box</td>
<td>available models</td>
<td>model to write the linestyle out to so that it can be edited.</td>
</tr>
</tbody>
</table>

Write out linestyle

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

-when selected, the linestyle is written out to the Model for linestyle.
For Option choice "Delete"

Linstyle to delete linestyle box available linestyles
name of the linestyle to delete.

Linstyle to replace it with linestyle box available linestyles
when the linestyle is deleted, any string with that linestyle has to have a new linestyle. This is the
linestyle that is set for strings with the deleted linestyle

For the Linestyle type - User, Pixel, World, Paper

No imbedded colours in linestyle tick box tick
if ticked then no colours from the data are used in the linestyle.
If not ticked then any colours used in the data are used in the linestyle

Origin x/y double box
if non blank, the x/y value for the origin of the linestyle.
If blank, a value is calculated by 12d.

Factor double box
if non blank, the linestyle is factored up by this value.
If blank, the factor is taken to be 1.

Length double box
if non blank, the linestyle is repeated after this length.
If blank, the linestyle length is calculated by 12d.

Mode choice box use string pt/line type
only at vertices, repeat style
if use string pt/line type, then if the string pt/line type is line then the linestyle is repeated after the
Length value. If the string pt/line type is point, then the linestyle is only drawn at each vertex of the
string.
If only at vertices, then the linestyle is only drawn at each string vertex regardless of the strings pt/line
type.
If repeat style, then the linestyle is repeated after the Length value regardless of the strings pt/line type.

For the Linestyle type - 2 point

No imbedded colours in linestyle tick box tick
if ticked then no colours from the data are used in the linestyle.
If not ticked then any colours used in the data are used in the linestyle

Origin x/y double box
if non blank, the x/y value for the first origin of the linestyle.
If blank, a value is calculated by 12d.

Origin 2 x/y double box
if non blank, the x/y value for the second origin of the linestyle.
If blank, a value is calculated by 12d.

Stretch in choice box one direction, both directions
if "one direction", the linestyle is only stretched along the axis joining the two original points. The
linestyle is not stretched perpendicular to that axis.
If "both directions", the linestyle is stretched in all directions.

Drawn on choice box every line/arc every line/arc,
every second line/arc
if "one direction", the linestyle is only stretched along the axis joining the two original points. The linestyle is not stretched perpendicular to that axis.
If "both directions", the linestyle is stretched in all directions.

For Linestyle type - Group

Linestyle

grid

list of linestyles that make up the this one linestyle.

Buttons

Process button

process the data in the panel fields. The internal definitions of the linestyles is modified. The definitions are not written to the linestyle file.

Write button

write the modifications to the file linestyles.4d file. This files can then be used when projects are opened up. The information won’t be used for the current session unless the Process button is selected as well. For more information on the Write button, go to the section 39.2.6 Writing Out Setup Files in the Appendix 39 Setting Up & Configuring 12d

This option updates the files linestyles.4d which is fully documented in the 40.1 Line Styles section in the Appendix 40 Linestyles, Symbols, Textstyles &Patterns.

Go to the next section 7.9.5 Symbols or return to 7.9 Tree.
7.9.5 Symbols

Position of option on menu: Project => Tree

Click on Symbols to expand the item and then double click LB on Create symbol to create, edit or delete symbols, or double click LB on an existing symbol in the list to edit an existing symbol definition. The Symbol Create/Edit/Delete panel will then appear.

The symbol can be created interactively in 12d Model by drawing the new symbol using strings containing lines, arcs, circles and text. This information can then be used to create the symbol.

To edit a symbol, the current definition is written to a model which can then be edited to create the modified symbol.

The definition of a symbol includes:
(a) a unique name
(b) the Group to show the symbol under in the symbol pop-up
(c) the symbol type

All the information for linestyles is stored in the text file symbols.4d but the Symbol Create/Edit/Delete panel is normally used to create and modify the file rather than using a text editor. (the file symbols.4d is fully documented in the 40.1 Line Styles section of the Appendix 40 Linestyles, Symbols, Textstyles & Patterns).

The Symbol Create/Edit/Delete panel is:
Symbol Create/Edit/Delete

<table>
<thead>
<tr>
<th>Option</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol name</td>
<td></td>
</tr>
<tr>
<td>Group</td>
<td></td>
</tr>
<tr>
<td>Symbol type</td>
<td></td>
</tr>
</tbody>
</table>

Edit linework

- Model for symbol

- Write out symbol

No embedded colours in symbol

- Origin x
- Origin y
- Factor
- Length

choice invalid

- Process
- Write
- Finish
- Help
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option</td>
<td>choice box</td>
<td>Create</td>
<td>Create, Edit, Delete</td>
</tr>
<tr>
<td></td>
<td>type of edit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol name</td>
<td>input</td>
<td>available symbols</td>
<td>name of the linestile to be created, edited or deleted.</td>
</tr>
<tr>
<td>Group</td>
<td>input</td>
<td>available groups</td>
<td>name of the group for the symbol - can be a new group name.</td>
</tr>
<tr>
<td>Symbol type</td>
<td>choice box</td>
<td>world</td>
<td>pixel, world, paper</td>
</tr>
<tr>
<td></td>
<td>type of the symbol</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For Option choice "Create" - Data input

Data input
source box | model
data to be used to create the symbol.

For Option choice "Edit" - Edit line work

Model for symbol
model box | available models
model to write the symbol out to so that it can be edited.

Write out symbol
button
when selected, the symbol is written out to the Model for symbol.
For Option choice "Delete"

Symbol to delete symbol box available symbols

name of the linestyle to delete.

Symbol to replace it with symbol box available symbols

when the symbol is deleted, any vertex of a string with that symbol has to have a new symbol. This is
the symbol that is set for strings with the deleted symbol

No imbedded colours in symbol tick box tick

if ticked then no colours from the data are used in the symbol.
If not ticked then any colours used in the data are used in the symbol

Origin x/y double box

if non blank, the x/y value for the origin of the symbol.
If blank, a value is calculated by 12d.

Factor double box

if non blank, the symbol is factored up by this value.
If blank, the factor is taken to be 1.

Length double box

if non blank, the symbol is repeated after this length.
If blank, the symbol length is calculated by 12d.

Process button

process the data in the panel fields. The internal definitions of the symbols is modified. The definitions
are not written to the symbol file.

Write button

write the modifications to the file symbols.4d file. This files can then be used when projects are opened
up. The information won’t be used for the current session unless the Process button is selected as well.
For more information on the Write button, go to the section 39.2.6 Writing Out Setup Files in the
Appendix 39 Setting Up & Configuring 12d

This option updates the files symbols.4d which is fully documented in the 40.2 Symbols section
of the Appendix 40 Linestyles, Symbols, Textstyles &Patterns.

Go to the next section 7.9.6 Textstyles or return to 7.9 Tree.
7.9.6 Textstyles

Position of option on menu: Project => Tree

Click on Textstyles to expand the item and then double click LB on Create textstyle to create a new textstyle, or double click LB on an existing textstyle in the list to edit an existing textstyle definition. The Create/Edit Textstyle panel will then appear.

The textstyle definition includes

(a) a unique name
(b) the font used for textstyle - this may be a true type font
(c) mappings of textstyle names when reading in data from AutoCAD and Microstation
(d) mappings of textstyle names when writing data out to AutoCAD, Microstation and 12d Model Models.

All the information for textstyles and fonts is stored in text files (textstyl.4d and fonts.4d) but the Create/Edit Textstyle panel is normally used to create and modify the files rather than using a text editor. (the files textstyles.4d and fonts.4d which are fully documented in the 40.3 Textstyles and Fonts section of the Appendix 40 Linestyles, Symbols, Textstyles & Patterns).

The Create/Edit Textstyle panel is:

![Create/Edit Textstyle panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textstyle name</td>
<td>input</td>
<td>available textstyles</td>
<td></td>
</tr>
</tbody>
</table>
name of the textstyle to be defined or edited.

Font section

Font name

output recent projects
name of the font to be used for the textstyle.

True type font

tick box
tick
if **ticked** then the font is a true type font. The next box asks for the True Type Font name. If **not ticked** then the font needs an SHP file to define the characters. The next box asks for the SHP name.

TTF name

input available true type fonts
name of the true type font.

SHP name

input available SHP files
name of the SHP file to define the characters.

Fixed section

Input/Output section

Model tab

Hardware text

tick box
tick
if **ticked** then any **12d Model** text is written out to a model as text strings. If **not ticked** then each characters of a text string is turned into individual lines and arcs (i.e. each character is stroked).

DXF tab

Hardware text

tick box
tick
if **ticked** then any **12d Model** text is written out to the DXF file as text. If **not ticked** then each characters of a text string is turned into individual lines and arcs (i.e. each character is stroked).

Input name

input when a DXF file is read in, any text in the DXF file with style of this **Input name**, is converted to **12d Model** text strings with the textstyle **Textstyle name**.

Output name

input if the **Hardware text** flag is set to tick - when data is written out to a DXF file, any **12d Model** text with the textstyle of the name in the field **Textstyle name**, is converted to DXF text with style of this **Output name**. If the **Hardware text** flag is not set to tick, then this field is ignored.

DWG tab

Hardware text

tick box
tick
if **ticked** then any **12d Model** text is written out to the DWG file as text. If **not ticked** then each characters of a text string is turned into individual lines and arcs (i.e. each character is stroked).

Input name

input when a DGN file is read in, any text in the DGN file with style of this **Input name**, is converted to **12d Model** text strings with the textstyle **Textstyle name**.

Output name

input if the **Hardware text** flag is set to tick - when data is written out to a DWG file, any **12d Model** text with the textstyle of the name in the field **Textstyle name**, is converted to DWG text with style of this **Output name**. If the **Hardware text** flag is not set to tick, then this field is ignored.
DGN tab

Hardware text

Tick box

Tick

If **ticked** then any *12d Model* text is written out to the DGN file as text.

If **not ticked** then each character of a text string is turned into individual lines and arcs (i.e., each character is stroked).

Input name

Input

When a DGN file is read in, any text in the DGN file with style of this *Input name*, is converted to *12d Model* text strings with the textstyle *Textstyle name*. For DGN, the text style must be a number between 1 and 64.

Output name

Input

If the *Hardware text* flag is set to **tick** - when data is written out to a DGN file, any *12d Model* text with the textstyle of the name in the field *Textstyle name*, is converted to DGN text with style of this *Output name*. For DGN, the text style name must be a number between 1 and 64.

If the *Hardware text* flag is not set to **tick**, then this field is ignored.

Other tab

Hardware text

Tick box

Tick

If **ticked** then any *12d Model* text is written out to the file as text.

If **not ticked** then each character of a text string is turned into individual lines and arcs (i.e., each character is stroked).

Input name

Input

When a file is read in, any text in the file with style of this *Input name*, is converted to *12d Model* text strings with the textstyle *Textstyle name*.

Output name

Input

If the *Hardware text* flag is set to **tick** - when data is written out to a file, any *12d Model* text with the textstyle of the name in the field *Textstyle name*, is converted to text with style of this *Output name*.

If the *Hardware text* flag is not set to **tick**, then this field is ignored.

Buttons

Set

Button

Sets the definition for this editing session of the project - the information will be lost when the project is exited.

Write

Button

Writes the information to the files *textstyles.4d* and *fonts.4d* files. These files can then be used when projects are started. The information won’t be used for the current session unless the Set button is selected as well. For more information on the *Write* button, go to the section 39.2.6 Writing Out Setup Files in the Appendix 39 Setting Up & Configuring 12d

This option updates the files *textstyles.4d* and *fonts.4d* which are fully documented in the 40.3 Textstyles and Fonts section of the Appendix 40 Linestyles, Symbols, Textstyles & Patterns.

Go to the next section 7.9.7 Textstyle Data Favourites or return to 7.9 Tree.
7.9.7 Textstyle Data Favourites

Position of option on menu: Project => Tree

The textstyle data favourites option defines a set of text style parameters recorded with a user given name. When ever a text style needs to be defined, the name of a textstyle data favourite can be selected and the values of the favourite used for the text.

To define or modify a textstyle favourite, click on Textstyle data favourites in the Browse list to expand the item and then double click LB on Create textstyle data favourite to create/edit the textstyle_names.4d file.

Double clicking LB on any of the items below Create textstyle data favourite will also create/edit the textstyle_names.4d file.

In either case, the Textstyle_names.4d Create/Edit panel will then appear.

![Screen capture of Textstyle_names.4d Create/Edit panel]

Buttons

- **Set** button

 sets the definition for this editing session of the project - the information will be lost when the project is exited.

- **Write** button

 write the information to the textstyle_names.4d file. The file can then be used when projects are started. The information won’t be used for the current session unless the Set button is selected as well. For more information on the Write button, go to the section 39.2.6 Writing Out Setup Files in the Appendix 39 Setting Up & Configuring 12d.

Go to the next section 7.9.8 Sheet Sizes or return to 7.9 Tree.
7.9.8 Sheet Sizes

Position of option on menu: Project => Tree

Click on Sheet sizes to expand the item and then double click LB on Create sheet size to bring up the Sheet Sizes File panel to create, edit or delete sheet size definitions, or double click LB on an existing sheet size in the list to also bring up the Sheet Sizes File panel.

Buttons

Set button

sets the definition for this editing session of the project - the information will be lost when the project is exited.

Write button

write the information to the file sheets.4d. The file can then be used when projects are started. The information won’t be used for the current session unless the Set button is selected as well. For more information on the Write button, go to the section 39.2.6 Writing Out Setup Files in the Appendix 39 Setting Up & Configuring 12d

This option updates the file sheets.4d which is fully documented in the 39.2.7.4 Sheet Sizes File (sheets.4d) section of the Appendix 39 Setting Up & Configuring 12d.

Return to 7.9 Tree.
7.10 Utilities

Position of menu: Project => Utilities

The utilities walk-right menu contains various project items.

For the option *Attributes*, go to
- **Projects**: 7.10.2 Projects
- **Create**: 7.10.3 Create
- **Rebuild**: 7.10.4 Rebuild
- **Explore**: 7.10.5 Explore
- **Copy**: 7.10.6 Copy
- **Rename**: 7.10.7 Rename
- **Reset Project Id**: 7.10.8 Reset Project ID
7.10.1 Attributes

Position of option on menu: Project => Utilities => Attributes

The Attributes options displays, creates and edits the attributes for the current project.

On selecting Attributes, the Project Attributes panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>name of the attribute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>type of attribute - integer, real, text</td>
<td>integer, real, text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>value for the attribute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apply</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OK
- set the attributes to the values in the panel and then exit the panel.

Apply
- set the attributes to the values in the panel but don’t exit the panel.

Go to the next section [7.10.2 Projects](#) or return to [7.10 Utilities](#).
7.10.2 Projects

Position of option on menu: Project => Utilities => Projects

The *projects* walk-right menu provides a list of all the projects available in the working folder. Each project is contained in a sub-folder of the working folder.

Selecting a project from the walk-right list will bring up the Change Project panel with the selected project name already in the New project panel field.

For more information on the Change Project panel, go to the earlier section 7.2.2 Open.

Go to the next section 7.10.3 Create or return to 7.10 Utilities.
7.10.3 Create

Position of option on menu: Project => Utilities => Create

On selecting the **Create** option, the **Create Project** panel is displayed.

![Create Project Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td>name of the new project to be created.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>after selecting this button, a new project folder is created. The working project does not change to the new project.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go to the next section 7.10.4 **Rebuild** or return to 7.10 Utilities.
7.10.4 Rebuild

Position of option on menu: Project => Utilities => Rebuild

The rebuild option is used to try and rebuild a project if some of the information has been corrupted.

On selecting the option, the project header file will be deleted and re-created and all the models, tins, templates and functions inside the project’s folder added back into the project. The view information for the original project will be lost.

On selecting the rebuild option, the rebuild project panel is displayed.

![Rebuild Project Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td>the name of the project to be rebuilt.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rebuild</td>
<td>after selecting this button, the project given in the project field is rebuilt.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note - the current (working) project cannot be rebuilt.

Go to the next section 7.10.5 Explore or return to 7.10 Utilities.

7.10.5 Explore

Position of option on menu: Project => Utilities => Explore

The Explore brings up the Windows Explorer showing the contents of the working folded. That is, showing the contents of the folder containing the project.

Go to the next section 7.10.6 Copy or return to 7.10 Utilities.
7.10.6 Copy

Position of option on menu: Project => Utilities => Copy

The copy option is used to make a copy of any project (other than the current project) in the working folder.

On selecting the copy option, the copy project panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy current working folder</td>
<td>tick box</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Old project</td>
<td>input</td>
<td>none</td>
<td>projects in folder</td>
</tr>
<tr>
<td>New folder</td>
<td>input</td>
<td>current working folder</td>
<td></td>
</tr>
<tr>
<td>New project</td>
<td>input</td>
<td>name of the copy of the project. The new project name cannot be the same as an existing project in the New folder.</td>
<td></td>
</tr>
<tr>
<td>Reset project ID (required for sharing)</td>
<td>tick box</td>
<td></td>
<td>if ticked, 12d will automatically reset the project id in the new copy of the project. This will prevent multiple projects with the same id, which are not allowed when sharing from one project to another. If not ticked, 12d will not reset the project id in the new copy of the project.</td>
</tr>
<tr>
<td>Copy</td>
<td>button</td>
<td></td>
<td>if ticked, a complete copy of the project given in the old project field is made and saved under the name given in the new project field. If Copy current working folder is ticked, the contents of the working folder containing the project is also copied.</td>
</tr>
</tbody>
</table>

Go to the next section 7.10.7 Rename or return to 7.10 Utilities.
7.10.7 Rename

Position of option on menu: Project => Utilities => Rename

The Rename option is used to rename any project (other than the current project) in the working folder, and if required, the working folder as well.

On selecting Rename, displays the Rename project panel.

![Rename project panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Desciption</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working folder</td>
<td>folder box</td>
<td>folder browse</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the folder that contains the project to be renamed (the working folder for the project).</td>
<td></td>
</tr>
<tr>
<td>Project</td>
<td>project box</td>
<td>projects in working folder</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the project to rename - this can’t be the project currently opened.</td>
<td></td>
</tr>
<tr>
<td>New name</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the new name for the project. The new project name cannot be the same an existing project in the working folder.</td>
<td></td>
</tr>
<tr>
<td>Rename working folder (containing the project)</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if tick, if the working folder containing the project to be renamed is the same as the project name, then the working folder will also be renamed.</td>
<td></td>
</tr>
<tr>
<td>Rename</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>after selecting this button, the selected project will be given the new name. If Rename working folder (containing project) is ticked and the name working folder is the same as the project, then the working folder will also be renamed.</td>
<td></td>
</tr>
</tbody>
</table>

Go to the next section 7.10.8 Reset Project ID or return to 7.10 Utilities.
7.10.8 Reset Project ID

Position of option on menu: Project => Utilities => Reset Project ID

This option is used when a project has the same id as another project. If a user wishes to share from a server project that is a copy of another project, then the project ID must be reset. On selecting the Reset Project ID option, the Reset Project ID panel is displayed.

Selecting Change displays the Reset Project ID? panel on the screen.

Selecting the Yes button will cause the project to resave and 12d Model will restart.

Go to the next section 7.11 Delete or return to 7.10 Utilities.
7.11 Delete

Position of option on menu: Project => Delete

On selecting the delete project option, the delete project panel is displayed.

![Delete Project Panel]

The fields and buttons used in the delete project panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td>name of project to delete</td>
<td>input</td>
<td>available projects</td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After selecting this button, a yes-no pop-up menu appears to confirm that deleting the project is required. If deletion is confirmed, the selected project is deleted from the computer disk.

Go to the next section 7.12 12d Model or return to 7 Project.
7.12 12d Model

Position of option on menu: Project => 12d Model

The 12d model walk-right menu and the walk-right by menu are

12d Model Info
12d Model by 12d Solutions Pty Ltd
12d Model 5 Million pts
12d Model 11.0 CIf RC3
May 16 2015
Valid until Saturday, March 26, 2016

12d Model version date version compiled

12d Solutions phone, fax etc.

12d Solutions
PO Box 351
Narrabeen
NSW 2101
AUSTRALIA

Ph 61-2-9970-7117
Fax 61-2-9970-7118
www.12d.com
Support
Originators

The walk-right menu for Originators is:

Originators
Alan Gray
Dr Lee Gregory

Go to the next section 7.13 12d Model Menu or return to 7 Project.
7.13 **12d Model Menu**

Position of option on menu: Project => 12d Model menu

Selecting the **12d Model Menu** option brings up the floating **12d Model** menu as described at the beginning of this chapter.

![12d Model Menu](image)

For the options, see

<table>
<thead>
<tr>
<th>Option</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projects</td>
<td>7 Project</td>
</tr>
<tr>
<td>File I/O</td>
<td>8 File</td>
</tr>
<tr>
<td>Edit</td>
<td>11 Edit</td>
</tr>
<tr>
<td>Views</td>
<td>12 View</td>
</tr>
<tr>
<td>Models</td>
<td>13 Models</td>
</tr>
<tr>
<td>Strings</td>
<td>14 Strings</td>
</tr>
<tr>
<td>Triangles</td>
<td>16 Tins</td>
</tr>
<tr>
<td>Survey</td>
<td>17 Survey</td>
</tr>
<tr>
<td>Design</td>
<td>20 Design</td>
</tr>
<tr>
<td>Drafting</td>
<td>24 Drafting</td>
</tr>
<tr>
<td>Plots</td>
<td>25 Plots</td>
</tr>
<tr>
<td>Reports</td>
<td>27 Reports</td>
</tr>
<tr>
<td>Utilities</td>
<td>28 Utilities</td>
</tr>
<tr>
<td>User</td>
<td>29 User</td>
</tr>
<tr>
<td>Help</td>
<td>31 Help</td>
</tr>
<tr>
<td>Save / Exit</td>
<td>32 Save and Exit</td>
</tr>
</tbody>
</table>

Go to the next section **7.14 Exit** or return to **7 Project**.
7.14 Exit

Selecting Exit exists 12d Model

Also see 32 Save and Exit

Return to 7 Project.
8 File

Position of main menu: File

The facilities for reading and writing data files, layout files, textstyle definitions, template files into and out of 12d Model, plus screen dumps are collected under the File I/O menu.

The File I/O walk-right menu containing these options is:

- create floating File I/O menu

on Main menu

- File I/O User menu

- File I/O
- Data input
- Data output
- Layouts
- ADAC
- Digitizer
- GIS
- Label Map files
- Map files
- Range files
- Screen dump
- Templates
- Textstyle input
- Edit file
- User

on 12d Model menu and floating File I/O menu

- read in data files
- write out data files
- read/write screen layout files
- create, read and write ADAC XML files
- digitizing option
- GIS interface
- read/write Label Map Files
- read/write Map Files
- read/write range files
- screen dump of window
- read/write design templates
- read in textstyle definitions file
- edit a file

See

- Data input 8.1 Data Input
- Data output 8.2 Data Output
- Layouts 8.3 Layouts
- ADAC 10.4 12d ADAC Menu
- Digitizer 8.5 Digitizer
- GIS 8.6 GIS
- Label Map files 8.7 Label Map Files
- Map files 8.8 Map Files
- Range files 8.9 Range Files
- Screen dump 8.10 Screen Dump
- Templates 8.11 Templates
- Textstyle input 8.12 Textstyle Input
- Edit file 8.13 Edit a File
8.1 Data Input

Position of menu: File I/O => Data input

The facilities for reading data files into 12d Model are collected under the File I/O => Data input menu.

Some of the formats are provided in the base product (xyz data, BCC Epson, 12d Model HP plots and 12d Model 12da files) and the rest are optional (dxf, genio, geocomp, etc.).

The default Input null value is described in the section 8.1.1 Input Null Value.

For the options:
- 12d 8.1.2 12d Input
- 2d PDF 8.1.3 Import 2D PDF
- ArcView SHP 8.1.4 ArcView SHP Input
- x y z 8.1.5 Input X Y Z Text Files
- BCC Epson 8.1.6 BCC Epson Input
- Civilcad 8.1.7 CivilCad Input
- DEM 8.1.8 DEM Input
- DGN 8.1.9 Input DGN Binary Files
- DWG/DXF/DBX 8.1.10 DWG/DXF Input
- FBX 8.1.11 FBX Input
- Genio 8.1.12 Genio Input
- Geocomp 8.1.13 Geocomp Input
- Keays 8.1.14 Keays Input

The default Input null value is described in the section 8.1.1 Input Null Value.
<table>
<thead>
<tr>
<th>Format</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>LandXML</td>
<td>8.1.15</td>
</tr>
<tr>
<td>MapInfo MID/MIF</td>
<td>8.1.17</td>
</tr>
<tr>
<td>OBJ</td>
<td>8.1.18</td>
</tr>
<tr>
<td>Point clouds</td>
<td>8.1.16</td>
</tr>
<tr>
<td>SDR Map</td>
<td>8.1.19</td>
</tr>
<tr>
<td>TOT</td>
<td>8.1.20</td>
</tr>
<tr>
<td>TP Setout</td>
<td>8.1.21</td>
</tr>
<tr>
<td>TP Stakeout strings</td>
<td>8.1.22</td>
</tr>
<tr>
<td>Old</td>
<td>8.1.23</td>
</tr>
</tbody>
</table>
8.1.1 Input Null Value

In three dimensional data, it is possible that a point can have a valid plan position but an undefined height. In 12d Model, there is a special null value (-9.9e29) which is used internally when height is undefined.

In other software systems, the null value may be different.

To allow for different null values, 12d Model has an i/o null height parameter.

As data is read in, the height is checked and if it is equal to the i/o null height, then it is replaced by the 12d Model null height.

The i/o null height is set in Default Settings tab of the Defaults panel in the Project => Management => Defaults (see 7.6.1 Defaults).

Note - some input panels have their own special null value field which is used instead of the i/o null height.

Return to 8.1 Data Input
8.1.2 12d Input

Position of menu: File I/O => Data input => 12d

The facilities for reading data files into 12d Model are collected under the File I/O => Data input => 12d menu.

Some of the formats are provided in the base product (xyz data, BCC Epson, 12d Model HP plots and 12d Model 12da files) and the rest are optional (dxf, genio, geocomp, etc.).

The default *Input null value* is described in the section 8.1.1 *Input Null Value*.

For the options:

- **12d archive data** [8.1.2.1 12d Archive Input](#)
- **12da Library** [8.1.2.2 12da Library](#)
- **12d XML data** [8.1.2.3 12d XML Data](#)
- **12d XML to 12da files** [8.1.2.4 12d XML to 12da files](#)
- **12d XML to 12d file** [8.1.2.5 12d XML to 12da file](#)
8.1.2.1 12d Archive Input

Position of option on menu: File I/O => Data input => 12d => 12d archive data

The 12d Archive format is a special format defined by 12d Solutions to allow data to be easily transferred from other programs into 12d Solutions software such as 12d Model. The 12d Archive format is given in the 34 12d Archive File Format. Note that there is also an XML format for writing out the data in 12d Model. See 35 12d XML File Format.

Selecting 12d archive data brings up the Read 12d Solutions Archive Data panel:

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many files</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

if ticked, a grid to allow multiple 12d archive files to be read in, is opened. A wild card is used to select all the files to be read in.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folder</td>
<td>folder box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

folder to search for files using the Wild card

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wildcard</td>
<td>text box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
wild card to use in search for files in the given folder

<table>
<thead>
<tr>
<th>Use</th>
<th>tick box</th>
</tr>
</thead>
<tbody>
<tr>
<td>if ticked, read in the file</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Files</th>
<th>file box</th>
</tr>
</thead>
<tbody>
<tr>
<td>name of the file in the folder</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size (KB)</th>
<th>output only</th>
</tr>
</thead>
<tbody>
<tr>
<td>file size</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pre*post</th>
<th>text box</th>
</tr>
</thead>
<tbody>
<tr>
<td>if non blank, prepost text to use for the models in this 12d archive file (see 4.19.2 PrePostfix in Panel Fields for information on using pre*postfix.</td>
<td></td>
</tr>
<tr>
<td>If blank, use the prepost text from the Prepostfix for models panel field.</td>
<td></td>
</tr>
</tbody>
</table>

Note - if a non-blank value for Pre*post is given in the column for a file then the Pre*postfix for models is ignored.

<table>
<thead>
<tr>
<th>File to read</th>
<th>file box</th>
</tr>
</thead>
<tbody>
<tr>
<td>.12daz, .12da or .4da files</td>
<td></td>
</tr>
<tr>
<td>name of the 12d Model Archive file to be read in.</td>
<td></td>
</tr>
<tr>
<td>Note that Drag and Drop works for 12daz, 12da and 4da files. It will also work for files that are email attachments in Outlook 2002 and above.</td>
<td></td>
</tr>
<tr>
<td>If you are dragging and dropping more than one 12daz, 12da or 4da file at a time, then one panel will be opened and all the dropped files listed in the Many Files grid.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Map file</th>
<th>file box</th>
</tr>
</thead>
<tbody>
<tr>
<td>.mapfile, *.mf files</td>
<td></td>
</tr>
<tr>
<td>if not blank, the name of the 12d Map File to be used for all strings read in, including any files given with the Many files mode ticked on.</td>
<td></td>
</tr>
<tr>
<td>If blank, no map file is used</td>
<td></td>
</tr>
</tbody>
</table>

When using a map file, the string name is used as the entity-name for matching with the keys in the map file. See the section 8.8.1 Create/Edit a Map File for information about 12d map files.

<table>
<thead>
<tr>
<th>Pre*postfix for models</th>
<th>pre*postfix box</th>
</tr>
</thead>
<tbody>
<tr>
<td>if non-blank, a prefix and a postfix to be applied to the model names used in the map file.</td>
<td></td>
</tr>
<tr>
<td>Go to the section 4.19.2 PrePostfix in Panel Fields for information on using prepostfix.</td>
<td></td>
</tr>
<tr>
<td>Note - if a non-blank value for Prepost is given in the column for a file then the Prepostfix for models is ignored.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Use pre*postfix for tins</th>
<th>tick box</th>
</tr>
</thead>
<tbody>
<tr>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td>if ticked, a prefix and a postfix are to be applied to any tin names in the 12d Archive data.</td>
<td></td>
</tr>
<tr>
<td>Go to the section 4.19.2 PrePostfix in Panel Fields for information on using prepostfix.</td>
<td></td>
</tr>
<tr>
<td>Warning - if a tin already exists in 12d Model with the tin name, then the tin cannot be read in from the 12d Archive file.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Use map file model when pt/line changes</th>
<th>tick box</th>
</tr>
</thead>
<tbody>
<tr>
<td>if not ticked and the pt/line type of the string does not match that in the map file, then the string is placed in.</td>
<td></td>
</tr>
<tr>
<td>If tick, the.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allow #include to be used</th>
<th>tick box</th>
</tr>
</thead>
<tbody>
<tr>
<td>if ticked, expand an files referenced by an #include.</td>
<td></td>
</tr>
<tr>
<td>If not ticked, ignore the #includes</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Convert 2d, 3d, 4d, poly, face, interface to super</th>
<th>tick box</th>
</tr>
</thead>
<tbody>
<tr>
<td>if ticked, non super string versions of 2d/3d/4d/poly/face/interface strings are converted to super strings.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fence string</th>
<th>polygon box</th>
</tr>
</thead>
<tbody>
<tr>
<td>A polygon is selected/created and used with the Fence mode choice to restrict the selection of strings</td>
<td></td>
</tr>
</tbody>
</table>
read in from the 12d Archive file.

Clicking LB on the Select Polygon icon on the right hand side of the Fence string field allows the user to select a polygon.

Clicking RB on the Select Polygon icon on the right hand side of the Fence string field brings up the Polygon Choice Box for the user to select a method of creating/selecting a polygon.

Clicking MB does nothing.

Fence mode choice box available choices

The strings selected are then restricted to those using the polygon and satisfying the Fence mode:

Read button reads the data in.

Special Note
Pressing the <Esc> key will interrupt and terminate the reading in of the files.
8.1.2.2 12da Library

Position of option on menu: File I/O => Data input => 12d => 12da Library

The 12da Library allows a user to load 12da's from a 'library', defined by a directory structure. Every folder within the nominated directory will be searched for 12da files, and this directory structure will be shown in the tree on the left hand side of the panel. When selected, the 12da will be shown in a preview on the right.

These 12das can be output into a nominated model, and a specific position, or you can choose to use the file position.

Selecting 12da Library brings up the 12da Library panel.

![12da Library panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Library directory</td>
<td>file</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*the directory to search for 12das in
Use models from file tick box
if ticked use the models specified in the 12da

Model model box
if not using the models listed in the file, the model for the data in the 12da

Use file position tick box
if ticked use the file specified in the file position

Position x coordinate
the x-coordinate for the data, if not using the position in the file

Position y coordinate
the y-coordinate for the data, if not using the position in the file

Position z coordinate
an optional y-coordinate for the data, if not using the position in the file

Rotation mode choice box
Clockwise, Anti-clockwise
how to apply an optional rotation (Clockwise or Anti-clockwise)

Rotation
an optional rotation to apply
8.1.2.3 12d XML Data

Position of option on menu: File I/O => Data input => 12d => 12d XML data

The 12d XML format is a special format defined by 12d Solutions to allow data to be easily transferred from other programs into 12d Solutions software such as 12d Model. The 12d XML format is given in the 35 12d XML File Format.

Note - 12d XML contains the same information as a 12da file but it is a XML format.

Selecting 12d XML data brings up the Read 12d Solutions XML Data panel:

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many files</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

if ticked, a grid to allow multiple 12d XML files to be read in, is opened. A wild card is used to select all the files to be read in.

Folder text box
folder to search for files using the Wild card

Wildcard text box
wild card to use in search for files in the given folder

Use tick box
if ticked, read in the file
Files

name of the file in the folder

Size (KB)

file size

Pre*post

text box

if non blank, pre*post text to use for the models in this 12d XML file (see 4.19.2 Pre*Postfix in Panel Fields) for information on using pre*postfix.

If blank, use the pre*post text from the Pre*postfix for models panel field.

Note - if a non-blank value for Pre*post is given in the column for a file then the Pre*postfix for models is ignored.

File to read

name of the 12d Model XML file to be read in.

Note that Drag and Drop works for 12dxmiz and 12dxml files.

It will also work for files that are email attachments in Outlook 2002 and above.

If you are dragging and dropping more than one 12dxmiz or 12dxml file at a time, then one panel will be opened and all the dropped files listed in the Many Files grid.

Map File

if not blank, the name of the 12d Map File to be used for all strings read in, including any files given with the Many files mode ticked on.

If blank, no map file is used

When using a map file, the string name is used as the entity-name for matching with the keys in the map file. See the section 8.8.1 Create/Edit a Map File for information about 12d map files.

Pre*postfix for models

if non-blank, a prefix and a postfix to be applied to the model names used in the map file.

Go to the section 4.19.2 Pre*Postfix in Panel Fields for information on using pre*postfix.

Note - if a non-blank value for Pre*post is given in the column for a file then the Pre*postfix for models is ignored.

Use pre*postfix for tins

if ticked, a prefix and a postfix are to be applied to any tin names in the 12d XML data.

Go to the section 4.19.2 Pre*Postfix in Panel Fields for information on using pre*postfix.

Warning - if a tin already exists in 12d Model with the tin name, then the tin cannot be read in from the 12d XML file.

Use map file model when pt/line changes

if not ticked and the pt/line type of the string does not match that in the map file, then the string is placed in.

If tick, the.

Allow #include to be used

if ticked, expand an files referenced by an #include.

If not ticked, ignore the #includes

Convert 2d, 3d, 4d, poly, face, interface to super

if ticked, non super string versions of 2d/3d/4d/poly/face/interface strings are converted to super strings.

Read

reads the data in.
8.1.2.4 12d XML to 12da files

Position of option on menu: File I/O => Data input => 12d => 12d XML to 12da files

The **12d XML to 12da** option converts 12d XML files to 12da files.

Selecting **12d XML to 12da files** brings up the **Convert 12d Solutions XML to Archive Files** panel:

![Convert 12d Solutions XML to Archive Files panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many files</td>
<td>If ticked, a grid to allow multiple 12d XML files to be converted to 12da XML files. A wild card is used to select all the files to be converted.</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folder</td>
<td>Folder to search for files using the Wild card</td>
<td>folder box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wildcard</td>
<td>Wild card to use in search for files in the given folder</td>
<td>text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use</td>
<td>If ticked, convert the file</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Files</td>
<td>Name of the file in the folder</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size (KB)</td>
<td>File size</td>
<td>output only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre*post</td>
<td>If non blank, pre*post text. If blank, use.</td>
<td>text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convert</td>
<td>Converts the 12d XML files to 12da files with the same name stem.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.1.2.5 12d XML to 12da file

Position of option on menu: File I/O => Data input => 12d => 12d XML to 12da file

The **12d XML to 12da** option converts 12d XML file to a 12da file.

Selecting 12d XML to 12da file brings up the **Convert 12d Solutions XML to Archive File** panel:

![Convert 12d Solutions XML to Archive File panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>XML file</td>
<td>name of the 12d XML file to convert to a 12da file.</td>
<td>file box</td>
<td>*.12dxmlz, *.12dxml</td>
<td></td>
</tr>
<tr>
<td>12da file</td>
<td>name of the 12da file to convert the 12d XML file to.</td>
<td>file box</td>
<td>*.12a files</td>
<td></td>
</tr>
</tbody>
</table>

Convert button:
convert the 12d XML file to the 12da file.
8.1.3 Import 2D PDF

Position of option on menu: File I/O => Data input => 2d PDF

This option reads in a 2D pdf file and can create an image of the pdf and/or extract any line work (vectors) and text that may exist in the 2D pdf.

Note 1
1. Although you can "see" lines and text in the raster does not mean that they exist inside the pdf as lines (vectors) and text data. They may be in the image only. This option does not do text and/or line recognition from the raster.
2. If the font for any text inside the pdf file does not exist in 12d, then another existing 12d font will be used. This can mean that the character positions are not correct.
3. If the font is encoded, then in some instances, the incorrect text will be displayed.

Selecting Import 2D pdf displays the Import 2D PDF File panel.

![Import 2D PDF File panel](image)

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source tab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDF file to import</td>
<td>file</td>
<td>* .pdf files</td>
<td></td>
</tr>
<tr>
<td>Page(s) selection</td>
<td>only one of Single, Range or All can be selected.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>radio button and choice box</td>
<td>page numbers</td>
<td></td>
</tr>
</tbody>
</table>

name of the PDF file to import/read in.

Only one of Single, Range or All can be selected.

If selected, this is the page number to import from the pdf file. The pop up has a list of pages and the page size (in mm) of each page in the pdf.
Range radio button, number box

if selected, the range of the page numbers to read in from the pdf file.

The page numbers and/or page ranges are separated by commas, and the pages in a range are separated by a minus. For example 1,3,5-12

All radio button

if selected, all the pages in the pdf file are imported.

Null colour colour box

if not blank, the colour to use for the background colour in the pdf images.

If blank, leave the colours as they are in the pdf.

Width/Height in mm output only

the width/height (in mm) of the page selected from the pdf is written out to these fields.

Temporary folder folder box

the folder to use for temporary files created whilst processing the pdf.

Location tab

The units in the pdf file are paper units and not world coordinates. The location tab supplies the information for positioning the data in the pdf file in world units by either typing in a world origin, anticlockwise rotation angle and world width and height, or by using supplying a file in ESRI world format with the information in it.

Data format choice box Raw details Raw Details or ESRI world

if Raw details, the location details are typed into the World Location Details section as rotation, world origin, world width and height.

If ESRI world, the location details are taken from the ESCRI world file given in Location file. An ESRI world file gives the xscale, row rotation, column rotation, yscale, x origin and y origin. For use with 12d, the row and column rotations must be the same and yscale = - xscale.
Location file

file box

file with the location details if ESRI world is selected as the Data format.

World Location information

if Raw Details is selected as the Data format, the Anticlockwise rotation, (X,y) origin, World width, World height and Source file factor are used to position and scale the data in the pdf file.

Anticlockwise rotation

angle box

the world rotation to rotate the raster, text and vectors in the pdf file. The units are dms in hp notation and the rotation is measured in a counter clockwise direction from the positive x-axis.

X/Y coordinate

real box

the world x/y coordinate of the left hand bottom corner of the raster in the pdf file.

Only one of PDF file factor, World width, and World height is needed and the others are calculated.

That is, if one of PDF file factor, World width, or World height is typed and <Enter> pressed, then the other two are automatically calculated using the entered value and the Width in mm and Height in mm from the first page of the pdf file itself. However only the PDF file factor is used to scale the pdf’s.

PDF file factor

real box 1000

multiplication factor to apply to the units in the each of the pages of the pdf file. Normally 1000 so millimetres in the pdf go to metres in 12d Model.

World width/height

real box

the width/height in world units of the raster in the first page of the pdf file. The values are not used to scale the pdf. Only the PDF file factor is used.

Output tab

Controls what is going to be produced from the pdf file.
Import

if Raw Details is selected as the Data format in the Location tab, the Anticlockwise rotation, (x,y) origin, World width, World height and Source file factor are used to position and scale the rasters, vectors and the text placement positions.

Vectors tick box
if ticked, any vectors (line work) in the pdf file are read in and placed in the model given by the field Name stem.

Boundaries tick box
if ticked, any polygon boundaries in the pdf file are read in and placed in the model given by the field Name stem followed by " ClipBnd"

Text tick box
if ticked, any text in the pdf file is read in and placed in the model given by the field Name stem followed by " Text"

Create Raster

only one of Colour, Greyscale or Mono can be ticked. If none are ticked then no rasters are created from the pdf.
Any created rasters are placed in a model given by the field Name stem followed by " raster".

Colour tick box
if ticked, a raster for each selected page of the pdf is created and the colours in the pdf are retained in the raster.

Greyscale tick box
if ticked, a raster for each selected page of the pdf is created and the colours in the rasters are grey scaled.

Mono tick box
if ticked, a raster for each selected page of the pdf is created and any colours are mapped to black.

Name stem text box name of the pdf file with each non alphanumeric character replaced by a space
the name stem used to generate the model names for the created models.

Include page number in names tick box ticked
if ticked, the page numbers in the pdf are also included as part of the model names.

Clean models first tick box ticked
if ticked, the models are cleaned before the pdf pages are read in.

View for output view box
if non-blank, add the models to this view

Output Raster DPI number box 150
the number of dots per inch for the created rasters.

Raster size output
the size of the produced raster.
Settings tab

Raster

Settings to use for rasters.

Show border
tick box
if ticked, a border is drawn around the raster.

Colour for border
colour box
available colours
colour to draw the border around the raster.

Transparent blend
real box
1
blend (transparency) to apply to the rasters. The value is between 0 and 1 and 1 means it is fully opaque (i.e. no transparency).

Vector and Text

Settings to use for vectors (line work) and text.

Colour black to white
tick box
if ticked, black colour are changed to white. Useful when using a black background for a view.

Bezier curve pieces
number box
32
if there are Bezier curves in the vectors, then they are broken into this many linear segments.

Fill blend factor
real box
1
extra Blend (transparency) to apply to polygon fills. The value is between 0 and 1 and 1 means it is fully opaque (i.e. no transparency).

Text size factor
real box
0.7261
the text size in pdf is different to traditional 12d text sizing (pdf size includes descenders). This factor is applied to any text to correct for the difference is size definitions.
Button at bottom

Create button

import the 2d PDF file into the appropriate model.
8.1.4 ArcView SHP Input

Position of option on menu: File I/O => Data input => ArcView SHP

Option to read in ArcView shaped files.

Selecting ArcView SHP brings up the Read ArcView Shape Data panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Files tab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If ticked, a grid to allow multiple ArcView shape files to be read in, is opened. A wild card is used to select all the files to be read in.

Folder

Folder to search for files using the **Wildcard**

..shp*
Data Input

Wildcard
input

d wildcard to use in search for files in the given folder

Use
tick box

if **ticked**, read in the file

Files
output

name of the file in the folder

Size
output

file size

Pre*post
text input

if **non blank**, pre*post text to use for the models in this Arcview shp file (see 4.19.2 Pre*Postfix in Panel Fields) for information on using pre*postfix.

If **blank**, use the pre*post text from the Pre*postfix for models panel field.

Note - if a non-blank value for Pre*post is given in the column for a file then the Pre*postfix for models is ignored.

File to read
file box *.shp files

name of the ArcView shape file. 12d Model then reads this and the two (2) other files that go with the shape file. The two other file extensions are *.shx and *.dbf.

If no attribute is mapped to model, then the file name (minus the .shp) is used as the model for the data.

Map file tab

Map file
file box *.mf and *.mapfile files

if **non-blank**, the name of the 12d map file to be used for all strings read in.

If **blank**, no map file is used

When using a map file, the string name is used as the entity-name for matching with the keys in the map file. See the section 8.8.1 Create/Edit a Map File for information about 12d map files.

Pre*postfix for models
pre*postfix box

if non-blank, a prefix and a postfix to be applied to the model names used in the Map File.

Go to the section 4.19.2 Pre*Postfix in Panel Fields for information on using pre*postfix.

Attributes tab
Read attributes button

Click to check what attributes are present in the ArcView shape files and any ArcView attributes found are listed in the ArcView Type and ArcView Name columns in the grid.

Destination Grid column

type of 12d attribute to map the Arcview attribute to:

- none - don’t use the attribute - the attribute is ignored
- attribute - use as 12d attribute
- name - use as 12d string name
- height - use as 12d vertex height
- colour - use as 12d string colour
- model - use as model name
- weight - use as string weight
- linestyle - use as 12d linestyle
- textstyle - use as 12d textstyle

Note - if no ArcView attribute is mapped to Model, then the file name (minus the .shp) is used as the model for the data.

Attribute name Grid column

if non blank and the ArcView attribute is being sent to a 12d attribute, then this is the s12d attribute name

Fencing tab
Fence string
polygon box
string to use to restrict the data being read in.

Fence mode
choice box
String inside
String inside/crossing
String outside
String outside/crossing
String crossing

String inside - read string in if it is totally inside the polygon
String inside/crossing - read string in if it is totally inside, or crossing the polygon
String outside - read string in if it is totally outside the polygon
String outside/crossing - read string in if it is totally outside, or crossing the polygon
String crossing - string in if it is crossing the polygon

Note - only whole strings are read in.

Read
button
read the data in.
8.1.5 Input X Y Z Text Files

Position of menu: File I/O => Data input => x y z

The options under x y z read in vertices of strings from a text format. It is also possible to read in string names, point id’s, string, segment and vertex attributes.

The X Y Z walk-right menu is

- **XYZ Input**
 - x y z
 - x y z pt-id
 - x y z general

These options allow:
- To read in x y z s data
- To specify x y z s point id
- To specify x y z s point no and attribute

For x y z s, go to:
- [8.1.5.1 X Y Z S Input](#)
- [8.1.5.2 X Y Z S Point Id File Format](#)
- [8.1.5.3 X Y Z and Attributes User Format Input](#)
8.1.5.1 X Y Z S Input

Position of option on menu: File I/O => Data input => x y z s

The x-y-z-s option reads in the xyzs format which is designed so that point and line strings can be quickly and easily coded and entered into 12d Model. It is **not** intended for more complex strings such as alignments and text where the 12d Model 12da format is more suitable. See 8.1.5.1.1 Input X Y Z S File Format

Selecting **xyzs** brings up the **Read xyzs Data** panel.

![Read xyzs Data panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many files</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If ticked, a grid to allow multiple files to be read in, is opened. A wildcard is used to select all the files to be read in.

![Folder and Wildcard](image)

Folder

Folder box

*folder to search for files using the **Wild card***

Wildcard

Input

wild card to use in search for files in the given folder
Use tick box
if ticked, read in the file

Files output
name of the file in the folder

Size output
file size

Pre*post text input
if non blank, pre*post text to use for the models in this xyzs file (see 4.19.2 Pre*Postfix in Panel Fields for information on using pre*postfix.
If blank, use the pre*post text from the Pre*postfix for models panel field.

Note - if a non-blank value for Pre*post is given in the column for a file then the Pre*postfix for models is ignored.

File file box *.dat files
name of the data file to be read in

Map file map file box *.mf files
if non-blank, the name of the 12d map file to be used for all strings read in.
If blank, no map file is used

When using a map file, the string name is used as the entity-name for matching with the keys in the map file. See the section 8.8.1 Create/Edit a Map File for information about 12d map files.

Pre*postfix for models pre*postfix box
if non-blank, a prefix and a postfix to be applied to the model names used in the Map File.
Go to the section 4.19.2 Pre*Postfix in Panel Fields for information on using pre*postfix

Default line colour colour box default colour available colours
colour used for line-strings (if no colour is defined in the file)

Default point colour colour box default pt colour available colours
colour used for the crosses in point-strings (if no colour is defined in the file)

Default model for data model box available models
name of the model that the data is to be placed in. The model will be created if it does not already exist. This field must be filled in.

Use super strings tick box
if ticked, super strings will be created.
If not ticked, 3d strings will be created.

Add to view view box available views
if non blank, the default model will be automatically added to the given view

Read button
read the data into the model given in the model field.
8.1.5.1.1 Input X Y Z S File Format

The x-y-z-s format is designed so that point and line strings can be quickly and easily coded and entered into 12d Model. It is not intended for more complex strings such as alignments and text where the 12d Model 12da format is more suitable.

For the x-y-z format, point data is set out with one point of x y z data per line. The three values are separated by one or more spaces (free format). For example

990 3 10
112 1001 23.5

A point-string is represented in 12d Model with a cross at each point. The colour of the cross can be defined by including a POINT_COLOUR command on the line before the point-string begins.

For example, a two point point-string with red crosses would be coded as

POINT_COLOUR red
100.3 990.3 10
112 1001 23.5

Line string data is also set out with one point per line (in the order that the points occur in the string) but with a string label included at the end of each line. The string label is repeated for each point in the string. The line string terminates when the string label changes to another name for a new line string or is blank for a point string.

A line-string is drawn with a line connecting a point to its neighbouring points in the string (the string links). The colour of the links of the string can be set using the LINE_COLOUR command.

For example, a green, three point line-string called S1 becomes

LINE_COLOUR green
100.3 990.3 10 S1
112 1001 23.5 S1
119.3 1203.1 29.4 S1

Notes
(a) The name of the line string can include spaces but in that case the name must be enclosed in quotes "". For example, the string name may be "toe 1".
(b) If a string of a certain name is created and the string name reoccurs in the file, then a new string with the same name is created. It is not joined to the earlier string.

xyz Map File

See the section 8.8.1 Create/Edit a Map File for information about 12d Map Files.

The name of the xyzs string is used as the entity-name to be used for matching with a map file. The map file can be used to override the breakline type of line-strings in the x-y-z file.
8.1.5.2 X Y Z S Point Id File Format

Position of option on menu: File I/O => Data input => x y z s pt_no

On selecting the read x,y,z,s,pt_no option, the read x,y,z,s pt no panel is displayed.

This option reads data in one line at a time with the values separated by a delimiter (tab, space, semi-colon or comma) or the data on each line can be in fixed width columns.

In either case, the user specifies the order that the x, y, z, s and point number are in and if desired, only an x and y value needs to be read in.

The fields and buttons used in this panel have the following functions.

Field Description	Type	Defaults	Pop-Up
Files tab
Advanced | tick box | | |

If ticked, a grid to allow multiple files to be read in, is opened. A wild card is used to select all the files to be read in.
Folder
folder to search for files using the Wild card

Wildcard
wild card to use in search for files in the given folder

Use
tick box
if ticked, read in the file

Files
name of the file in the folder

Size
file size

Pre*post
text input
if non blank, pre*post text to use for the models in this file (see 4.19.2 Pre*Postfix in Panel Fields for information on using pre*postfix.

If blank, use the pre*post text from the Pre*postfix for models panel field.

Note - if a non-blank value for Pre*post is given in the column for a file then the Pre*postfix for models is ignored.

File to read
name of the data file to be read in

Basic tab

Default line colour
colour box
default colour
available colours
colour used for line-strings (if no colour is defined in the file)

Default point colour
colour box
default pt colour
available colours
colour used for the crosses in point-strings (if no colour is defined in the file)

Default text style
input
available textdatas
textdata for the point ids

Skip column headers
tick box
if ticked, the first line of the file is skipped.

Join all
tick box
if ticked, all vertices with the same string names are joined together regardless of where they are in the file. The order of the vertices is the order they occur in the file.

If not ticked then any time a string name changes in the file, a new string is created. So if the same string name occurs but separated by a different string name, then more than one string of that same name will be created. The order of the vertices is the order they occur in the file.
Default model for data
name of the model that the data is to be placed in. The model will be created if it does not already exist. This field must be filled in.

Add to view
if non-blank, the default model will be automatically added to the given views

Format tab
Input mode
if delimiter, the type of delimiter and the columns for the x, y and optionally z, name and point number are given.

Delimiter
if fixed width, the start and end positions are given for x, y and optionally z, name and point number.

Mapfile tab
Map file
if non-blank, the name of the 12d map file to be used for all strings read in, including any files given with the Advanced mode ticked on.

If blank, no map file is used

When using a map file, the string name is used as the entity-name for matching with the keys in the map file. See the section 8.8.1 Create/Edit a Map File for information about 12d map files.

Pre*postfix for models
if non-blank, a prefix and a postfix to be applied to the model names used in the Map File.

Go to the section 4.19.2 Pre*Postfix in Panel Fields for information on using pre*postfix.

Note - if a non-blank value for Pre*post is given in the column for a file then the Pre*postfix for models is ignored.

Fencing tab
Fence string: polygon box

string to use to restrict the data being read in.

Fence mode: choice box

String inside
String inside/crossing
String outside
String outside/crossing
String crossing

String inside - read string in if it is totally inside the polygon
String inside/crossing - read string in if it is totally inside, or crossing the polygon
String outside - read string in if it is totally outside the polygon
String outside/crossing - read string in if it is totally outside, or crossing the polygon
String crossing - string in if it is crossing the polygon

Note - only whole strings are read in.

Read: button

read the data into the model given in the model field.
8.1.5.3 X Y Z and Attributes User Format Input

Position of option on menu: File I/O => Data input => x y z general

On selecting the read x,y,z general option, the *Read x y z s General Files* panel is displayed.

This option reads data in one line at a time with the values separated by a delimiter (tab, space, semi-colon or comma) or the data on each line can be in fixed width columns.

In either case, the user specifies the order that the x, y, z, string name, point number and attributes appear in the file. If desired, only an x and y value needs to be read in.

The set-ups for defining all the positions of all the data in the file can be written out to a file (.xyf) for re-use.

![Read X Y Z General Files panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter file</td>
<td>input</td>
<td>*.xyf files</td>
<td></td>
</tr>
</tbody>
</table>

name of the file containing the settings for how the data is positioned in the input file.

| Read icon | button | | |
read the parameter file in.

Write icon button

write the setting in the panel out to a parameter file.

Files tab

Advanced tick box

if ticked, a grid to allow multiple files to be read in, is opened. A wild card is used to select all the files to be read in.

<table>
<thead>
<tr>
<th>Files to read</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Files</td>
<td></td>
</tr>
<tr>
<td>Folder</td>
<td></td>
</tr>
<tr>
<td>Wildcard</td>
<td></td>
</tr>
<tr>
<td>Use</td>
<td></td>
</tr>
<tr>
<td>Files</td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td></td>
</tr>
<tr>
<td>Pre*post</td>
<td></td>
</tr>
<tr>
<td>Use</td>
<td></td>
</tr>
<tr>
<td>Files</td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td></td>
</tr>
<tr>
<td>Pre*post</td>
<td></td>
</tr>
<tr>
<td>Use</td>
<td></td>
</tr>
<tr>
<td>Files</td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td></td>
</tr>
</tbody>
</table>

Folder folder box
folder to search for files using the Wild card

Wildcard input

wild card to use in search for files in the given folder

Use tick box

if ticked, read in the file

Files output

name of the file in the folder

Size output

file size

Pre*post text input

*if non blank, pre*post text to use for the models in this file (see 4.19.2 Pre*Postfix in Panel Fields for information on using pre*postfix.)*

*If blank, use the pre*post text from the Pre*postfix for models panel field.*

*Note - if a non-blank value for Pre*post is given in the column for a file then the Pre*postfix for models is ignored.*

File to read input
*.*dat files

name of the data file to be read in

Basic tab

Default line colour colour box

default colour available colours

colour used for line-strings (if no colour is defined in the file)

Default point colour colour box

default pt colour available colours

colour used for the crosses in point-strings (if no colour is defined in the file)

Default text style input

available textdatas

textdata for the point ids
Skip column headers
tick box
if ticked, the first line of the file is skipped.

Join all
tick box
if ticked, all vertices with the same string names are joined together regardless of where they are in the file. The order of the vertices is the order they occur in the file.

If not ticked then any time a string name changes in the file, a new string is created. So if the same string name occurs but separated by a different string name, then more than one string of that same name will be created. The order of the vertices is the order they occur in the file.

Default model for data
model box
available models
name of the model that the data is to be placed in. The model will be created if it does not already exist. This field must be filled in.

Add to view
view box
available views
if non blank, the default model will be automatically added to the given views

Format tab

Input mode
choice box
delimiter
delimiter, fixed width
if delimiter, the type of delimiter and the columns for the x, y and optionally z, name and point number are given.

Delimiter
choice box
tab \f one space, tab \t, semi colon, comma many spaces

if fixed width, the start and end column positions are given for x, y and optionally z, name and point number.

Column number/Start end position section
information to read in (x,y,z, attributes etc.) and its position in the input file.

Mapfile tab

Map file
file box
*.mf files
if non-blank, the name of the 12d map file to be used for all strings read in, including any files given with the Advanced mode ticked on.

If blank, no map file is used
When using a map file, the string name is used as the entity-name for matching with the keys in the map file. See the section 8.8.1 Create/Edit a Map File for information about 12d map files.

Pre*postfix for models
pre*postfix box

if non-blank, a prefix and a postfix to be applied to the model names used in the Map File.

Go to the section 4.19.2 Pre*Postfix in Panel Fields for information on using pre*postfix.

Note - if a non-blank value for Pre*post is given in the column for a file then the Pre*postfix for models is ignored.

Fencing tab

Fence string
polygon box

string to use to restrict the data being read in.

Fence mode
choice box

String inside
String inside/crossing
String outside
String outside/crossing
String crossing

String inside - read string in if it is totally inside the polygon
String inside/crossing - read string in if it is totally inside, or crossing the polygon
String outside - read string in if it is totally outside the polygon
String outside/crossing - read string in if it is totally outside, or crossing the polygon
String crossing - string in if it is crossing the polygon

Note - only whole strings are read in.

Read
button

read in the data
8.1.6 BCC Epson Input

Position of option on menu: File I/O =>Data input =>BCC Epson

The **BCC Epson** input option is designed to read in files in the BCC (Brisbane City Council) Epson format.

The BCC Epson format is point based with unique point numbers for each point. It also has the concept of **non-tinable** points. Since the super string supports vertex tinability, it is the best string type to use for storing data coming in BCC Epson format. Also the BCC Epson point ids are stored as the point ids of the super string vertices.

BCC Epson breaks its data up by a feature code and a 12d Model map file can be used to define models, colours, linestyles etc. where the BCC **feature code** as the entity-name (key) in the map file.

The best way to read in BCC Epson data is to have a map file which maps BCC Epson feature codes into strings with the same name as the feature code, and also places the strings into sensible models.

See the section **8.8.1 Create/Edit a Map File** for information about 12d map files used in this option.

Note:
All text after column 68 in the BCC Epson file is considered to be a note.

On selecting the **BCC Epson** option, the **Read BCC Epson Data** panel is displayed.

![Read BCC Epson Data Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epson file</td>
<td>input</td>
<td>.dat and .sur files</td>
<td>name of the BCC Epson file to be read in.</td>
</tr>
</tbody>
</table>
Map file input *.mf files
if non-blank, the name of the map file to be used for all strings read in.
If blank, no map file is used. The BCC Epson feature code is used as the entity-name to match against the key in the 12d map file.
See the section 8.8.1 Create/Edit a Map File for information about 12d map files used in this option.

Pre*postfix for models pre*postfix box
if non-blank, a prefix and a postfix to be applied to the model names used in the Map File.
Go to the section 4.19.2 Pre*Postfix in Panel Fields for information on using pre*postfix.

Default model for data input available models
name of the model that any unmapped data is placed in. The model will be created if it does not already exist. This field must be filled in.

Null height input -999
if non-blank, any BCC Epson z values equalling this value are taken as null values.

Line colour input red available colours
colour for BCC Epson string s.

Point colour input yellow available colours
colour for BCC Epson points that are not part of strings.

Separate text from data tick box
if not ticked, text is used in 4d or super stings
if ticked, separate text strings are created.

Text units input pixels pixels, world
units for the height of the text label.

Text height (u) input
height of the text (in text units).

Text offset (u) input
distance (in text units) to offset the text from its (x,y) placement position.

Text angle input angle of the text.

Create strings as input Super Strings 3d, 4d, Polyline, Super
type of strings to create.

Read button
read the data in.
8.1.7 CivilCad Input

CivilCad input is a separate chargeable module.

Position of option on menu: File I/O => Data input => CivilCad

The CivilCad input option is designed to read in CivilCad Version 4, 5 and some 6 text files. CivilCad breaks its data up by a layer name only. By default, CivilCad layers are mapped into 12d Model models.

CivilCad has no strings but only points, lines, arcs and circles. CivilCAD spirals are ignored. When reading in CivilCad data, 12d Model will try to head to tail consecutive lines from the same layer to create strings.

The CivilCad format is point based with unique point ids for each point. It also has the concept of non-contourable or non-tinable points.

Since the super string supports point tinability, it is the best string type to use for storing data coming in CivilCad format. CivilCad point ids are stored as the point numbers of the super string vertices.

In CivilCad, a layer is defined to contain only breaklines or non-breaklines. In 12d Model, this simply corresponds to strings having a line or point breakline type.

If a map file is used when reading CivilCad data, either the CivilCad layer name, entity code, layer/code or code/layer can be used as the entity-name to match against the key.

See the section 8.8.1 Create/Edit a Map File for information about 12d map files.

Warning - CivilCad has a null value of -10,000 - these values may need to be nulled in 12d Model after the CivilCad data is read in.

On selecting CivilCAD, the Read Civilcad Data panel is displayed.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civilcad file</td>
<td>file box</td>
<td>*.asc and *.as5 files</td>
<td></td>
</tr>
<tr>
<td>Map file</td>
<td>map file box</td>
<td></td>
<td>*mf files</td>
</tr>
<tr>
<td>Pre*postfix for models</td>
<td>pre*postfix box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Civilcad file**: name of the Civilcad text file to be read in.
- **Map file**: if non-blank, the name of the map file to be used for all strings read in.
 - *Key for map file* defines what is used to match against the key in the map file.
 - See the section 8.8.1 Create/Edit a Map File for information about 12d map files.
- **Key for map file**: if Layer, the Civilcad layer is used as the entity-name to match against the key in the map file. If Code, the Civilcad layer is code as the entity-name to match against the key in the map file.
- **Pre*postfix for models**: if non-blank, a prefix and a postfix to be applied to the model names used in the Map File.
 - Go to the section 4.19.2 Pre*Postfix in Panel Fields for information on using pre*postfix.
- **Use CivilCad styles**

Go to the section 8.8.1 Create/Edit a Map File for information about 12d map files.
if ticked, then the CivilCad linestyle number is used as the 12d Model linestyle name.

Use CivilCad colours tick box
if ticked, then the CivilCad colour number is used as the 12d Model colour number.

Ignore characters after delimiter tick box
if ticked, r.

(V5.3x) use -10000 as null height tick box tick
if ticked, any CivilCad z values of -10,000 are taken as null values.

(V5.3x) null height input -999
the value in the CivilCAD file to use as null height if User -10000 is not ticked.

Point colours colour box yellow available colours
colour for CivilCad points that are not part of strings.

Text height (pixels) input 8
the height in pixels of any text created, or for point numbers.

Text offset (pix) input 12
the offset (in pixels) from the (x,y) coordinate position for any text or point numbers.

Create strings as input Super Strings Lines and Arcs
3d Strings and Arcs, Polyline Strings
Super Strings
type of strings to create.

Match flags tick box
CivilCad data consists of individual lines and arcs. When reading CivilCad data, it undergoes head to tail processing and the match flags specify what CivilCad data can be joined.

Match layer/code/linetype/angles/pen tick box
if ticked, then any CivilCad lines and arcs must have the same layer/code/linetype/angle/pen before they can be joined in the head to tail process.

Read button
read the data in.
8.1.8 DEM Input

Position of option on menu: File I/O => Data input => DEM

The DEM option is designed to read in Digital Elevation Model data in the Arc/Info format.

On selecting DEM, the Read DEM panel is displayed.

![Read DEM panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format</td>
<td>choice box</td>
<td>Arc/Info ASCII</td>
<td>Arc/Info ASCII Grid *.dem</td>
</tr>
</tbody>
</table>

Format of the DEM to read in.

<table>
<thead>
<tr>
<th>Dem file to read</th>
<th>file box</th>
<th>name of the DEM file to be read in.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>File to read</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Create mode</th>
<th>choice box</th>
<th>String</th>
<th>String, Grid string, Grid tin</th>
</tr>
</thead>
</table>

see 14.10 Grids for an explanation of Grid string and Grid tin

<table>
<thead>
<tr>
<th>Single grid</th>
<th>tick box</th>
<th>not ticked</th>
</tr>
</thead>
</table>

if ticked, all points from all selected files are used in the creation of a single grid.

<table>
<thead>
<tr>
<th>Grid tin name Pre*post</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Model for DEM</th>
<th>model box</th>
<th>available models</th>
</tr>
</thead>
</table>

model to put the DEM data in.

<table>
<thead>
<tr>
<th>Read</th>
<th>button</th>
<th></th>
</tr>
</thead>
</table>

read the data in.
8.1.9 Input DGN Binary Files

Position of menu: File I/O => Data input => DGN

DGN input and output is a separate chargeable module.
The options under DGN read DGN V7 and DGN V8 binary files.
The DGN walk-right menu is

For DGN V8, go to
DGN V7

read DGN V8 binary file
read DGN V7 binary file

8.1.9.1 Input DGN V8
8.1.9.2 DGN V7 Binary Input
8.1.9.1 Input DGN V8

Position of option on menu: File I/O => Data input => DGN => DGN V8

NOTE: the format for DGN V8 has been changed and has not been published. There is a beta version of the DGN reader to try and read DGNV8. At this stage it is probably better to use DWG I/O to go in and out of Microstation V8.

Note: this option is under development, and its documentation is a work in progress.

Selecting **DGN V8** brings up the **Read DGN File** panel.

![Read DGN File panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>input</td>
<td>* .dgn files</td>
<td>name of the DGN V8 binary file to be read in</td>
</tr>
<tr>
<td>Read</td>
<td>button</td>
<td></td>
<td>read the data in</td>
</tr>
</tbody>
</table>
8.1.9.2 DGN V7 Binary Input

DGN binary input is a separate chargeable module.

Position of option on menu: File I/O => Data input => DGN => DGN V7

The DGN input option is designed to read in Intergraph and Microstation binary models (.dgn files) up to V7. Microstation V8 has a new undocumented format which is read in with the DGN V8 options (.).

Because of the limited number of levels available in an DGN file, the colour, linestyle and weight of items are often used to differentiate data types. For special files for VicRoads, there is also an DGN attribute which can be used to tag data.

Hence the entity-name used for matching in a map file when reading DGN files into 12d Model can be either the:

- DGN level
- VicRoads attribute
- DGN level, colour, linestyle, weight
- VicRoads attribute, colour, linestyle, weight

In the DGN map file, the four level key is given as a single key made up of the four items separated by | (with no additional spaces) in the order:

- level or VicRoads attribute | colour | line style | weight

For example, the key

30|2|0|0 means level 30, colour 2, style 0 and weight 0

A * can be used for any of the four items to indicate that no match is required for that item.

30*|0* means level 30, any colour, style 0, any weight

If a map file is not used, the DGN data is read into a 12d Model string of the same name as the DGN level and the DGN colour numbers are mapped to 12d Model colours. All the strings created go to the Default model for data specified in the Read DGN Data panel.

See the section 8.8.1 Create/Edit a Map File for information about 12d map files.

Text for Points in DGN

A further complication with DGN is that many Microstation users record individual points as a text entity with a character from a possibly user defined DGN font to represent a symbol at the point. The text then often has a justification other than left-bottom.

However, Microstation does not record the (x,y) coordinates of the justification point but only the left-bottom position to draw the symbol at. The actual (x,y) point needs to be calculated from the text justification and the actual symbol size.

Unfortunately this requires a knowledge of the DGN font symbol being used to calculate the true (x,y) position for the text justification point.

To help read in text as points so that they may be included in processes such as triangulation, in the DGN reader, it is possible to create 4d strings (which consist of an (x,y,z) point plus a piece of text) instead of a text string.

Warning

Because of the problem with needing to know the DGN font information to correctly calculate the (x,y) coordinate of the text, creating a 4d string instead of text will not fix the error in the (x,y) coordinates if an incorrect font is used in 12d Model.
The only safe solution is to avoid data in DGN format if the points are being represented by text.

NOTE: the format for DGN V8 has been changed and has not been published. There is a beta version of the DGN reader to try and read DGNV8. At this stage it is probably better to use DWG I/O to go in and out of Microstation V8.

On selecting the **DGNV7** option, the **Read DGN V7 File** panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGN file</td>
<td>input</td>
<td>* .dgn files</td>
<td></td>
</tr>
<tr>
<td>name of the DGN binary file to be read in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map file</td>
<td>input</td>
<td>* .mf files</td>
<td></td>
</tr>
<tr>
<td>if non-blank, the name of the map file to be used for all strings read in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If blank, no map file is used. The DGN level is used as the string name and all strings go to the Default model for data.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key for mapfile</td>
<td>input</td>
<td>VicRoads</td>
<td>level, VicRoads,</td>
</tr>
<tr>
<td>Vicroads/colour/linestyle/weight</td>
<td></td>
<td></td>
<td>Vicroads/colour/linestyle/weight</td>
</tr>
<tr>
<td>specifies how the key from the mapfile is interpreted.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre*postfix for models</td>
<td>pre*postfix box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if non-blank, a prefix and a postfix to be applied to the model names used in the Map File.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Go to the section 4.19.2 PrePostfix in Panel Fields for information on using prepostfix.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default model for data</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
</tbody>
</table>
model to use for strings not mentioned in the map file or if no map file is used.

2d file Z values
input Fixed at 0.0
fixed at 0.0, contour Z low, contour Z high
element Z low, element Z high

z value to use for 2d.dgn file

Arc interval
input 10
interval to use to break 3d circles into segments.

Note - a 3d circle in DGN is a circle in an included plane. This is not the same as a circle in civil work which is a circle in plan view. A 3d circle in an included plane does not project onto a circle in a plan view except in the special case when the inclined plane in parallel to the x-y plane.

Chord-arc tolerance
input 0.1
chord to arc tolerance to use when breaking 3d circles into segments.

Text as 4d strings
 tick box
if ticked, text is read in as a 4d string (an (x,y,z) coordinate plus a piece of text)

Map from DGN Colours
 tick box
if not ticked, DGN colour number n is mapped to 12d Model colour n.
if ticked, some of the DGN colours are attempted to be mapped to 12d Model colours.

Translate DGN faces to faces
 tick box
if ticked, DGN faces are read in as 12d Model face strings.

Read
 button
read the data in.
8.1.10 DWG/DXF Input

DWG/DXF input is a separate chargeable option

Position of option on menu: File I/O => Data input => DWG/DXF/DX8

The **DWG/DXF** input option is designed to read most Autocad DWG and DXF files.

Each DWG/DXF item has an associated layer. By default, 12d Model creates models of the same name as the layers (or with an additional user supplied prefix) and the DWG/DXF items placed in them.

However, this can be over written using a standard **12d map file** where the key is matched against Autocad layers rather than string names.

See the section [8.8.1 Create/Edit a Map File](#) for information about 12d map files.

Autocad blocks are recognised and either a point with the block name is created or the blocks are expanded into their components, each time they are referenced in the DWG/DXF file.

Bulges in polylines can only be interpreted correctly when the polyline has a constant z-value.

For this case, a 12d Model polyline string is created from the DXF polyline.

A Polyface Mesh in the DWG/DXF file is read in as a Trimesh.

Finally, DWG/DXF POINT entities of the same layer and colour can be concatenated into one point string as they are read in.

Selecting **DWG/DXF/DX8** displays the **Read DWG/DXF Data** panel:
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format</td>
<td>choice box</td>
<td>DWG</td>
<td>DWG, DXF</td>
</tr>
</tbody>
</table>

type of Autocad file to read in

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>file box</td>
<td>* .dwg or *.dx files</td>
<td></td>
</tr>
</tbody>
</table>

name of the DWG or DXF file to read in

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map file</td>
<td>map file box</td>
<td>*.mf, *.mapfile files</td>
<td></td>
</tr>
</tbody>
</table>

if non-blank, the name of the map file to be used for all DWG/DXF layers read in. The DWG/DXF layer is the entity-name for matching against the key in the map file. If blank, no map file is used.

See the section 8.8.1 Create/Edit a Map File for information about 12d map files.

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre*postfix for models</td>
<td>pre*postfix box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

if non-blank, a prefix and a postfix to be applied to the model names used in the Map File.

*Go to the section 4.19.2 Pre*Postfix in Panel Fields for information on using pre*postfix.*

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target layer</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Data Input

if non-blank, only autocad items in the layer with the name given in the target layer field will be read in.

Null level value
input
-999

z-value to treat as a null level

Default AutoCAD lineweight
input
0.25

lineweight to use when it is undefined in an AutoCAD entity.

Spline approximation
input
12

splines are broken into small segments

Names
choice box
layer for name
no name, layer for name

If no name, strings are not given a name.

If layer for name, strings are given the name of the AutoCAD layer they were on.

Images
choice box
to plan images
to plan images, to rasters, ignore

Blocks
choice box
to symbols
to symbols, explode, to points

If to symbols, blocks are read in as 12d Symbols of the same name.

If explode, blocks are read in and exploded into vertices and line work.

If to points, a 12d vertex is created at each block.

Only create visible symbols
tick box
tick

Translate 3DFaces to faces
tick box

if tick, DWG/DXF faces are read in as 12d Model face strings.

User 12d ACAD colour numbers
tick box

Create 2d/3d polys from ctrl points
tick box

Head to tail points/lines
tick
tick

if ticked, DWG/DXF POINT entities of the same layer and colour are concatenated into one point string as they are read in and DWG/DXF LINE entities of the same layer and colour are

Only load visible layers
tick
tick

if ticked, only DWG/DXF visible layers are read in otherwise all layers are read in.

Load paper space
tick
no tick

if ticked, paper space data will be read in.

Load xref files
tick
no tick

if ticked, an xref files in the DWG/DXF are also read in.

Read
button

read the data in.
8.1.11 FBX Input

Position of option on menu: File I/O => Data input => FBX
Position of option on menu: Strings => Trimesh => Trimeshes from FBX file
This option is documented in 14.3.4 Trimeshes from FBX File.
8.1.12 Genio Input

Position of option on menu: File I/O => Data input => Genio

The software package MX (formerly called Moss) includes a data file format called GENIO for use in transferring data between Moss and other programs (see the MX Manual for a partial description of genio). There is currently two default genio input formats - versions 6 and 7. 12d Model recognises both formats.

For information on the Genio file format support by 12d Model, please go to the section 8.1.12.1 Genio File Format

On selecting the Genio option, the Read Genio Data panel is displayed.

The fields and buttons have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Files tab</td>
<td>Advanced</td>
<td>tick box</td>
<td></td>
</tr>
</tbody>
</table>

If ticked, a grid to allow multiple files to be read in, is opened. A wild card is used to select all the files to be read in.
Folder

folder box
generate to search for files using the Wild Card

Wildcard

input
wild card to use in search for files in the given folder

Use

tick box
if ticked, read in the file

Files

output
name of the file in the folder

Size

output
file size

Pre*post

text input
if non blank, pre*post text to use for the models in this file (see 4.19.2 Pre*Postfix in Panel Fields for information on using pre*postfix.

If blank, use the pre*post text from the Pre*postfix for models panel field.

Note - if a non-blank value for Pre*post is given in the column for a file then the Pre*postfix for models is ignored.

File to read

file box
default *.mos files
This can be modified by the environment variable GENIO_WILDCARD_4D

Basic tab

Transition type

transition box clothoid transition pop-up
type of transition used in the genio file

Line colour

colour box default colour available colours
colour used for line-strings

Point colour

colour box default pt colour available colours
colour used for the crosses in point-strings (genio string labels starting with P).

Text style data for 4d strings

the text style data to use for the text in any 4d strings in the genio file

Text style data for text

the text style data to use for text strings in the genio file

Multiply text height by 10

tick box
if ticked, the text size is multiplied by 10

Mapfile tab

Map file file box *.mf files
if non-blank, the name of the 12d map file to be used for all strings read in, including any files given with the **Advanced** mode ticked on.
If blank, no map file is used

When using a map file, the string name is used as the entity-name for matching with the keys in the map file. See the section 8.8.1 Create/Edit a Map File for information about 12d map files.

Prepostfix for models pre*postfix box
if non-blank, a prefix and a postfix to be applied to the model names used in the Map File.
Go to the section 4.19.2 Pre*Postfix in Panel Fields for information on using pre*postfix.

Note - if a non-blank value for **Pre**post is given in the column for a file then the **Pre**postfix for models is ignored.

Advanced tab

Compress 3d to 2d tick box tick
if ticked, convert any 3d strings with constant z-value to 2d strings.

Convert 6d to alignment tick box tick
if ticked, convert any 6d strings to 12d Model alignment strings.

Generate Point ID's tick box no tick
if ticked,

Create control stations from SSTN tick box no tick
if ticked, control stations are created in 12d Model for each point in a genio string named SSTN

Smigs file ? tick box no tick
if ticked, try to interpret the genio file as a Smigs genio file.

Use super strings tick box tick
if ticked, all strings are read in as super string

Use invisible segments for discontinuities tick box
if ticked, MX strings with discontinuities are read in as super strings with invisible segments.
If not ticked, MX strings with discontinuities are broken into pieces when read in.

G strings to super alignments tick box no tick
if ticked, MX G strings are read in as 12d super alignments

Debug G strings tick box no tick
because of the lack of documentation of the G string in MX, a G string may not be interpreted correctly.
If ticked, a super string is created with the information from the MX G string to try and help interpret what the data was.

Reverse calc super alignments tick box no tick

Better way of interpreting VG tick box tick
if ticked, a different method for interpreting vertical geometry in a MX G strings is used.
This may or may not be successful.

Local Origin tab

Local origin x y box x y selector

if non-blank, the given coordinates are used as a local origin when reading in the data. That is, the local origin values are subtracted from each data point as it is read in.

Read button

read in the genio data from the file given in the file field.
8.1.12.1 Genio File Format

The software package MX (formerly called Moss) includes a data file format called GENIO for use in transferring data between Moss and other programs (see the MX Manual for a partial description of genio). There is currently two default genio input formats - versions 6 and 7. 12d Model recognizes both formats.

MX provides three options (001,003,017) to allow variations in the format of the genio 080 records. 12d Model recognizes and uses each option.

MX free format (that is, using commas and the 'field-number=' syntax) is allowed. For example

080,ABCD,,5=0.0

MX 2d, 3d, 4d, 6d, text and most 12d and text strings are loaded directly into 12d Model strings.

For 5d, the strings are processed but only the 3d information is used and loaded into 12d Model.

The MX 10d (volume string) is allowed in the genio file but will not be read into 12d Model.

In the genio file, the GENIO card defines the name of the MX model for the following strings. 12d Model loads the strings into a 12d Model model with the same name as the MX model. However, 12d Model allows the user to define a map file which may over-ride the Genio card.

A genio file may contain more than one MX model, each genio model being separated by a 999 card. 12d Model will load each separate MX model into a 12d Model model with the same name as the MX model.

If an error occurs whilst reading a genio record, the genio record will be skipped and, if possible, the next genio record read.

12d Map File

See the section 8.8.1 Create/Edit a Map File for information about 12d map files.

The name of the MX string is used as the entity-name to be used for matching in a 12d map file.

The MX model given in the GENIO record is taken to be the default model for the genio reader.

Hence the genio map file can be used to over-ride the MX GENIO card and the MX default for point strings (this is necessary for genio files generated from non MX systems that don't use the correct point string convention).

For text in a Genio file (the string name for text must start with a * in the Genio file), the key in the map file must start with geniotext followed by the characters to match on which will be matched against the characters following the * in the genio string name. For example

 geniotextEB* * text yellow point "PHCP" // matches text

will match any Genio text with the string name starting with ""EB"

Note that * is not a wild card in the Genio string name but the "EB*" after "geniotext" is for use by the 12d map file and hence is an "EB" followed by a wild card. Hence it matches against any Genio text name starting with "EB".

Summary

12d Model recognizes the following genio options for MX V6 and V7 formats -

<table>
<thead>
<tr>
<th>GENIO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FINISH</td>
<td></td>
</tr>
<tr>
<td>001</td>
<td>format card</td>
</tr>
<tr>
<td>003</td>
<td>order card</td>
</tr>
<tr>
<td>017</td>
<td>angle card</td>
</tr>
<tr>
<td>080</td>
<td>for 2d, 3d, 4d, 6d, 12d and text strings</td>
</tr>
<tr>
<td>080</td>
<td>the 3d information only for 5d strings</td>
</tr>
<tr>
<td>090</td>
<td>triangulation information</td>
</tr>
<tr>
<td>999</td>
<td></td>
</tr>
</tbody>
</table>
genio comment lines

12d Model accepts MX null values of -999.0

12d Model **ignores** the genio options:
080 for **10d** strings

A 12d map file can be used to select the colour and model for any strings read in from the MX genio file whose names match the keys in the map file.
8.1.13 Geocomp Input

Position of option on menu: File I/O => Data input => Geocomp

Geocomp input is a separate chargeable module.

Geocomp is a points based software package used for manipulating and reducing survey data on a PC.

Geocomp data is held in two text files - the points file and the strings file. These text files can be used to transfer data from Geocomp to 12d Model. More information on the Geocomp data structure is given in the previous section 8.1.13.1 Geocomp File Format.

Selecting Geocomp displays the Read Geocomp Data panel.

![Read Geocomp Data Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geocomp file (.pts)</td>
<td>file box</td>
<td>*.pts files</td>
<td></td>
</tr>
</tbody>
</table>

name of the Geocomp points file to be read in. The corresponding strings file is also used.

| Map file | map file box | *.mf and *.mapfile files | |
|----------------------------|-----------------|----------------------------|

if non-blank, the name of the map file to be used for all strings read in. If blank, no map file is used.

See the section 8.8.1 Create/Edit a Map File for information about 12d map files.

<table>
<thead>
<tr>
<th>Pre*postfix for models</th>
<th>pre*postfix box</th>
<th></th>
<th></th>
</tr>
</thead>
</table>
if non-blank, a prefix and a postfix to be applied to the model names used in the Map File.

Go to the section 4.19.2 Pre*Postfix in Panel Fields for information on using pre*postfix.

Use mapfile model tick box no tick when pt/line changes

if ticked, then if the geocomp.str file says the entity is a line (point) feature and the map file says it is a point (line), the mapfile is used.

Default model model box available models

model to use for strings not mentioned in the map file.

Default line colour colour box default colour available colours

colour used for line-strings.

Default point colour colour box default pt colour available colours

colour used for the crosses in point-strings.

Null level input -9999

the Geocomp z-values to be considered null z-values.

Text height (pix) input 8

the height in pixels of any text created for point number or Geocomp descriptions.

Text offset (pix) input 2

the offset (in pixels) from the (x,y) coordinate position for the text of a 4d string.

Automatic descriptions tick box

if ticked, then the first three characters of the entity code are compared to the first 3 characters of the 20 character description and if they are the same, the text is only characters 6 to 15 of the description.

Start of description input

the user can restrict the amount of the geocomp description that is read in. if non-blank, this is the number of the character position to start reading the description from. If blank, the start position is 1.

Finish of description input

if non-blank, this is the number of the character position to end reading the description from. If blank, it is the end of the geocomp description.

Read irregular lines as lines tick

if ticked, Geocomp irregular lines are read in as strings.

Create strings as input Super Strings Polyline Strings Super Strings

type of strings to create.

Match angles tick

if ticked, preference is given to joining geocomp lines of similar angles first.

if not ticked, geocomp lines are joined in the order they are in the file.

Read button

read in the Geocomp data from the points file and (corresponding strings file) given in the file field.
8.1.13.1 Geocomp File Format

Geocomp input is a separate chargeable module.

Geocomp is a software package used for manipulating and reducing survey data on a PC.

Geocomp is a point based system. The fundamental data consists of individual points with unique point numbers and entities such as lines and arcs defined in terms of the points.

Geocomp data is held in two text files - the points file and the strings file. These text files can be used to transfer data from Geocomp to 12d Model.

The Geocomp points file is a sequential list of points, one point per line. Each point consists of the data

easting, northing, elevation, stand-point-number

that is

x-value, y-value, z-value, stand-point-number

The line number of each point in the file is also the unique point number for that point. For example, the point defined on the eleventh line of the points file, is point number eleven.

The stand-point-number is the point number of the instrument station used for collecting the points coordinates. The stand-point-number is not used in 12d Model.

The Geocomp strings file defines how the Geocomp entity types are constructed from points in the point file. The Geocomp entity types are

<table>
<thead>
<tr>
<th>Entity Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>two point lines</td>
</tr>
<tr>
<td>2</td>
<td>irregular lines</td>
</tr>
<tr>
<td>3</td>
<td>arc defined by start point, point on arc, end point</td>
</tr>
<tr>
<td>4</td>
<td>arc defined by start point, arc centre, end point</td>
</tr>
<tr>
<td>5</td>
<td>point feature</td>
</tr>
<tr>
<td>6</td>
<td>circle defined by centre and a point on the circle</td>
</tr>
</tbody>
</table>

The strings file also gives each defined entity an entity number.

The 12d Model Geocomp data reader recognises all the entity types in the strings file except for irregular lines (type 2).

All point numbers referred to in the strings file are references to the (implied) point numbers of points in the points file. Hence both files are needed to define the Geocomp data and the order of points in the point file is critical and cannot be modified.

The Geocomp naming convention for the two files is to use the six digit Geocomp job number as a name stem and append .pts for the points file and .str for the strings file.

That is,

geocomp-job-number.pts points file
geocomp-job-number.str strings file

For example

099999.pts is the point file for Geocomp job number 099999
099999.str is the strings file for Geocomp job number 099999

12d Model uses a wider data set than is directly represented in the Geocomp points and strings files. However, by observing a number of conventions and processing the strings file data according to these conventions, the Geocomp data can be sensibly passed across to 12d Model.

For example, although the Geocomp strings file only defines two-point lines, 12d Model can construct strings of many points from consecutive two-point lines by joining the lines together.
whenever
(a) the second point of one line is the same as the first point of the next line in the file
and
(b) the lines have the same entity number.
The entity number of the consecutive lines is used as the 12d Model string name.

Similarly, consecutive point features with the same entity number are joined to form a 12d Model
4d point string with the entity number as the string name.

In the Geocomp strings file, descriptive text can also be included at the end of each line
defining an entity. The text is enclosed within double quotes "". The descriptive text is ignored for
all entities except point features.

For a point-feature, which is represented in 12d Model as a 4d string, the descriptive text is
recorded as the text label for that point.

By using a systematic entity and descriptive text labelling system in Geocomp, it is possible to
sensibly transfer all of the Geocomp data to 12d Model.

Note - in Geocomp, a z-value of -9999 represents a null z-value, that is, a z-value that has not
been defined. Any Geocomp null values are recorded as 12d Model null values.

Geocomp Map File

See the section 8.8.1 Create/Edit a Map File for information about 12d map files.

Using the conventions described in the previous section, Geocomp data can be interpreted as
12d Model strings with entity-names corresponding to the Geocomp entity numbers.

Hence the Geocomp entity numbers are used as the entity-names for matching with a map file.

If no match is found with the map file, the default colours and model given in the Geocomp read
panel are used. The point-line type is taken to be point for point feature entities (entity type 5)
and line point-line type for all other entities. The geocomp entity number is used as the string
name and the style set to 1.

WARNING

If the breakline type in the map file is set to point or line and this does not match the point or
string type coming from the geocomp file, then the string is placed in the defaults model. This is
a consistency check for entities that can only be a point or a line breakline type (but not both). To
disable this feature, a * can be used in the map file for the breakline type and then the breakline
type is determined by whether the Geocomp entity is a point feature or not.

Summary

12d Model recognizes the following Geocomp entity types

<table>
<thead>
<tr>
<th>Entity Number</th>
<th>Entity type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>two point lines</td>
</tr>
<tr>
<td>3</td>
<td>arc defined by start point, point on arc, end point</td>
</tr>
<tr>
<td>4</td>
<td>arc defined by start point, arc centre, end point</td>
</tr>
<tr>
<td>5</td>
<td>point feature</td>
</tr>
<tr>
<td>6</td>
<td>circle defined by centre and a point on the circle</td>
</tr>
</tbody>
</table>

12d Model recognizes the Geocomp null values of -9999

12d Model ignores the entity type

<table>
<thead>
<tr>
<th>Entity type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>irregular lines</td>
</tr>
</tbody>
</table>

A Geocomp map file can be used to specify the string name, breakline type, colour, style and
model for strings read from the Geocomp text files.
Note - the breakline type of a string of Geocomp point features (entity type 5) will always be set to point regardless of the Geocomp map file.
8.1.14 Keays Input

Position of option on menu: File I/O => Data input => Keays

The Keays input option is designed to read in Keays (RoadPak) files in trf format.

The Keays data has a code and notes, and the code and notes can be used with a 12d Model map file to define models, colours, linestyles etc.

The Keays note is made up of individual notes separated by spaces. Each individual note (in order) can be used as part of the entity-name for use with the map file.

In the Keays map file, the multi-level key is given as a single key made up of the required items separated by | (with no additional spaces) in the order:

```
Code | note 1 | note 2 | ... | note n
```

For example, the key:

```
BD|building|
```

means code BD, note 1 = "building"

A * can be used for any of the items to indicate that no match is required for that item.

```
BD|*|top|
```

means code BD, anything for note 1, note 2 = "top"

A * and nothing else after the code means that all notes are accepted.

```
BD*
```

means code BD and any notes

A * at the end of the notes means any note is a match from that point onwards.

```
BD|*|top|*
```

means code BD, anything for note 1, note 2 = "top", and any note after note 2.

If a map file is not used or no match is found in the map file, the Keays data is placed into the default model with its code as the string name.

See the section **8.8.1 Create/Edit a Map File** for information about 12d map files.

On selecting the Keays option, the Read Keays Data panel is displayed.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keays file</td>
<td>file box</td>
<td></td>
<td>*.trf</td>
</tr>
</tbody>
</table>

 name of the Keays trf file to be read in.

| **Map file** | map file box | | *.mf files |

 if non-blank, the name of the map file to be used for all strings read in. If blank, no map file is used.

 The Keays code and note can be used as the entity-name to match against the key in the map file.

 See the section 8.8.1 Create/Edit a Map File for information about 12d map files.

| **Key for map file** | input | code | code, code/note |

 if code, the Keays code is used as the key for the map file.

 If code/note, the Keays code and note is used as the key for the map file.

| **Pre*postfix for models**| pre*postfix box | | |

 if non-blank, a prefix and a postfix to be applied to the model names used in the Map File.

 *Go to the section 4.19.2 Pre*Postfix in Panel Fields for information on using pre*postfix.*

| **Default model for data**| model box | available models | |

 name of the model that any unmapped data is placed in. The model will be created if it does not already exist. This field must be filled in.

| **Null height** | input | -999 | |

 if non-blank, any Keays z values equalling this value are taken as null values.
Line colour: colour box red available colours
colour for Keays string s.

Point colour: colour box yellow available colours
colour for Keays points that are not part of strings.

Text units: input pixels pixels, world
units for the height of the text label.

Text height (u): input
height of the text (in text units).

Text offset (u): input
distance (in text units) to offset the text from its (x,y) placement position.

Text angle: input 0
angle of the note text.

Create strings as: input Super Strings 3d, 4d, Polyline, Super
type of strings to create.

Use unique notes per string: tick box
if ticked, a change of code or note is used to break Keays string data into strings. This also applies to
the point ids and notes text.

Use encryption: tick box
if ticked, then the last 4 characters of the code is used to denote tinability and boundary information.

Read: button
read the data in.
8.1.15 LandXML Input

Position of menu: File I/O => Data input => Landxml

LandXML is a format that attempts to cover some civil and surveying entities. It includes some of the geometry definitions but not display information such as colours, styles etc.

The format was started by Autodesk but the LandXML committee now appears to be defunct. Unfortunately due to limitations in the LandXML format, many vendors added their own proprietary extensions which makes the LandXML format of only limited value and a different tailored LandXML reader is required for each vendor variation. The names and definitions of transitions can vary from vendor to vendor.

Finally the methodology behind the LandXML model is based on the restricted US approach of using X-sections and not strings to model data. This makes it unsuitable except for simple civil models.

One use of LandXML is to get some access to data from vendor software that only has unpublished encrypted proprietary binary formats. For example, AutoCAD DWG, Civil3D, Microstation DGN V8, InRoads and InRail.

This option is under continual developed as the LandXML standard keep changing.

See

8.1.15.1 Read LandXML
8.1.15.2 LandXML Validator
8.1.15.3 LandXML Surfaces Remover

Note: 12d Model has special LandXML readers for LINZ-XML (for LandOnline NZ), ePlan NSW, ePlan Queensland, ePlan Victoria and Leica-XML.
8.1.15.1 Read LandXML

Position of option on menu: File I/O => Data input => LandXML => LandXML reader

Selecting LandXML reader brings up the Read LandXML File panel.

![Read LandXML file](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survey map</td>
<td>map file box</td>
<td>* .mf files</td>
<td></td>
</tr>
<tr>
<td>if not blank, the name of a map file to be used for a special mapping of data in the Survey sections of a Land XML file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If blank, no map file is used.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>See the section 8.8.1 Create/Edit a Map File for information about 12d map files.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre*postfix for models</td>
<td>pre*postfix box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if non-blank, a prefix and a postfix to be applied to the model names used in the Model field. Go to the section 4.19.2 PrePostfix in Panel Fields for information on using prepostfix.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File</td>
<td>file box</td>
<td>* .xml files</td>
<td></td>
</tr>
<tr>
<td>name of the LandXML file to read in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transition mapping</td>
<td>file box</td>
<td>* .trans_map files</td>
<td></td>
</tr>
<tr>
<td>file containing the mapping of transitions between the names of LandXML transitions and equivalent transitions in 12d Model.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse calc horizontal</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, try and turn the segments of an Alignment in the LandXML file into an editable Super</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Alignment.

Tolerance
real box
if not zero,

Grid for Sections of the Land XML File

Name
name of the section of the Land xml definition that is in the file. If it is a Survey section, is the name of
the plan.

Model
model cell
available models
model to read the Land xml data into

Colour
colour cell
available colours
colour to use for the strings in the xml file

Linestyle
linestyle cell
available linestyles
linestyle to use for the strings

Weight
input
weight to use for the strings

Active
tick box
if ticked, load this section of the Land xml file in.

Read
button
read the data into the models given in the **Model** field of the grid.
8.1.15.2 LandXML Validator

Position of option on menu: File I/O => Data input => LandXML => Validator

This option validates an XML file against the LandXML schema. Selecting **Validator** brings up the **LandXML Validator** panel.

![LandXML Validator panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>choice box</td>
<td>1.2</td>
<td>LandXML versions</td>
<td></td>
</tr>
<tr>
<td>XML File</td>
<td>file box</td>
<td>*.xml files</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Version**

 the version of Land XML to validate the XML file against.

- **XML File**

 name of the XML file to validate against the Land XML Schema.

- **Validate**

 validate the XML file against the LandXML schema.
8.1.15.3 LandXML Surfaces Remover

Position of option on menu: File I/O => Data input => LandXML => Surfaces remover

This option removes the Surfaces section from a given LandXML file.

Selecting Surfaces remover brings up the LandXML Surfaces Remover panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input XML File</td>
<td>file box</td>
<td></td>
<td>*.xml files</td>
</tr>
<tr>
<td>Output XML File</td>
<td>file box</td>
<td></td>
<td>*.xml files</td>
</tr>
<tr>
<td>Remove</td>
<td>button</td>
<td></td>
<td>create a new file with the Surfaces sections removed.</td>
</tr>
</tbody>
</table>
8.1.16 Input Point Cloud Files

Position of menu: File I/O => Data input => Point clouds

The options under Point Cloud Input read data in various formats.

The Point Cloud Input walk-right menu is

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E57</td>
<td>read data in E57 format</td>
</tr>
<tr>
<td>Faro</td>
<td>read data in Faro format</td>
</tr>
<tr>
<td>LAS</td>
<td>read data in LAS format</td>
</tr>
<tr>
<td>Leica</td>
<td>read data in Leica format</td>
</tr>
<tr>
<td>SRTM</td>
<td>read data in SRTM format</td>
</tr>
</tbody>
</table>

See

- **E57** [8.1.16.1 E57 Cloud Input](#)
- **Faro** [8.1.16.2 Faro Point Cloud Input](#)
- **LAS** [8.1.16.3 LAS Cloud Input](#)
- **Leica** [8.1.16.4 Leica Point Cloud Input](#)
- **SRTM** [8.1.16.5 Read SRTM Files](#)
8.1.16.1 E57 Cloud Input

Position of menu: File I/O => Data input => Point clouds => E57

The E57 Cloud Input walk-right menu is

```
[Import E57]
[Import E57]
[E57 to LAS]
```

import E57 files
convert E57 files to LAS files

See

- *Import E57* [8.1.16.1.1 Import E57 Files]
- *E57 to LAS* [8.1.16.1.2 E57 to LAS Files]
8.1.16.1.1 Import E57 Files

Position of option on menu: File I/O => Data Input => Point Clouds => E57 => Import E57
Selecting Import E57 brings up the Import E57 Files panel.

![Import E57 Files panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Files tab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Many files</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>grid to allow</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>multiple e57</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>files to be</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>read in is</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>opened. A wild</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>card is used</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>to select all</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the files to</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>be read in.</td>
<td></td>
</tr>
<tr>
<td>Folder</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>folder to</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>search for</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>files using</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the Wildcard</td>
<td></td>
</tr>
<tr>
<td>Wildcard</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>wild card to</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>use in search</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>for files in</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the given</td>
<td></td>
</tr>
</tbody>
</table>

![Files tab]

Use	tick box		
		if ticked,	
		read in	
		the file	
Files	output		
		name of	
		the file	
		in the	
		folder	
Size

output

file size

Only one cloud string per E57 file

tick box ticked

if ticked, all cloud points will be combined into one 12d cloud string.

Basic tab

![Image of the 12d Model Reference Manual showing the Basic tab interface.]

Colour for data

colour box

string colour to be used if the cloud object does not have colour for each point

Model for data

model box

name of the model that the data is to be placed in. The model will be created if it does not already exist. This field must be filled in.

Projection tab

![Image of the 12d Model Reference Manual showing the Projection tab interface.]

Long/Lat to X/Y Coordinates

choice box available projections

if non-blank, the cartographic projection to apply to the longitude-latitude values.

If blank, the co-ordinates are not transformed from (longitude, latitude) to (x,y). Hence the initial (x,y) co-ordinates are transformed to (longitude, latitude) by the transformation given in the **x/y co-ordinates to Long/Lat** field and then left in (longitude, latitude). Note that in the southern hemisphere, the latitude values are negative.

Long/Lat stored as

choice box degrees radians

degrees
decimal degrees format for the longitude and latitudes - either radians, degrees (in 4.17.1 HP Notation for degrees, minutes and seconds) or decimal degrees.

Fencing tab

Fence string polygon box

string to use to restrict the data being read in.

Fence mode choice box

File inside
File inside/crossing
File outside
File outside/crossing
File crossing

File inside - read file in if it is totally inside the polygon
File inside/crossing - read file in if it is totally inside, or crossing the polygon
File outside - read file in if it is totally outside the polygon
File outside/crossing - read file in if it is totally outside, or crossing the polygon
File crossing - read file in if it is crossing the polygon

Note - only whole files are read in.

Button at bottom

Read button

read the data into the model given in the model field.
8.1.16.1.2 E57 to LAS Files

Position of option on menu: File I/O => Data Input => Point Clouds => E57 => E57 to LAS
Selecting E57 to LAS brings up the E57 to LAS Files panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Files tab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Many files tick box</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Only one cloud string per E57 file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folder</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wildcard input</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

if ticked, a grid to allow multiple E57 files to be converted is opened. A wild card is used to select all
the files to be read in.

folder to search for files using the Wild card

wild card to use in search for files in the given folder

Only one cloud string per E57 file tick box ticked

if ticked, all cloud points will be combined into one 12d cloud string.
Target folder file box

folder where the output LAS file(s) will be created. As it is unknown how many files will be created, it is good practice to specify an empty folder for these files. For example, if the input file is `geelong.e57`, the output file(s) will be `geelong.las` OR `geelong_1.las`, `geelong_2.las`, etc.

Note: Multiple las files will only be created if the tick box Only one cloud string per file is unticked and the input file has multiple clouds.

Projection tab

Long/Lat to X/Y Coordinates choice box available projections

if non-blank, the cartographic projection to apply to the longitude-latitude values.
If blank, the co-ordinates are not transformed from (longitude, latitude) to (x,y). Hence the initial (x,y) co-ordinates are transformed to (longitude, latitude) by the transformation given in the x/y co-ordinates to Long/Lat field and then left in (longitude, latitude). Note that in the southern hemisphere, the latitude values are negative.

Long/Lat stored as choice box degrees radians

degrees decimal degrees

format for the longitude and latitudes - either radians, degrees (in 4.17.1 HP Notation for degrees, minutes and seconds) or decimal degrees.

Fencing tab
Fence string
string to use to restrict the data being read in.

Fence mode
choice box

File inside
File inside/crossing
File outside
File outside/crossing
File crossing

File inside - read file in if it is totally inside the polygon
File inside/crossing - read file in if it is totally inside, or crossing the polygon
File outside - read file in if it is totally outside the polygon
File outside/crossing - read file in if it is totally outside, or crossing the polygon
File crossing - read file in if it is crossing the polygon

Note - only whole files are read in.

Button at bottom

Convert
button
convert the data into the model given in the model field.
8.1.16.2 Faro Point Cloud Input

Position of menu: File I/O => Data input => Point clouds => Faro

This section of documentation is a work in progress and will be updated in subsequent releases. The Faro Point Cloud Input walk-right menu is:

- Import Faro FLS
- Faro FLS to LAS

See:
- *Import Faro FLS* 8.1.16.2.1 Import Faro FLS Files
- *Faro FLS to LAS* 8.1.16.2.2 Faro Cloud FLS to LAS Files
8.1.16.2.1 Import Faro FLS Files

Position of option on menu: File I/O => Data Input => Point Clouds => Faro => Import Faro FLS

Selecting Import Faro FLS brings up the Import Faro FLS Files panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Files tab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Many files</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If ticked, a grid to allow multiple fls files to be read in is opened. A wild card is used to select all the files to be read in.</td>
</tr>
<tr>
<td>Folder</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Folder to search for files using the Wild card</td>
</tr>
<tr>
<td>Wildcard</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wild card to use in search for files in the given folder</td>
</tr>
</tbody>
</table>
Use tick box

if ticked, read in the file

Files output

name of the file in the folder

Size output

file size

Only one cloud string per file tick box ticked

if ticked, all cloud points will be combined into one 12d cloud string.

Basic tab

Colour for data colour box

string colour to be used if the cloud object does not have colour for each point

Model for data model box
name of the model that the data is to be placed in. The model will be created if it does not already exist. This field must be filled in.

Projection tab

Long/Lat to X/Y Coordinates choice box available projections

If non-blank, the cartographic projection to apply to the longitude-latitude values.
If blank, the co-ordinates are not transformed from (longitude, latitude) to (x,y). Hence the initial (x,y) co-ordinates are transformed to (longitude, latitude) by the transformation given in the x/y co-ordinates to Long/Lat field and then left in (longitude, latitude). Note that in the southern hemisphere, the latitude values are negative.

Long/Lat stored as choice box degrees radians
degrees decimal degrees

format for the longitude and latitudes - either radians, degrees (in 4.17.1 HP Notation for degrees, minutes and seconds) or decimal degrees.

Fencing tab

Fence string polygon box

string to use to restrict the data being read in.

Fence mode choice box

File inside
File inside/crossing
File outside
File outside/crossing
File crossing

File inside - read file in if it is totally inside the polygon

File inside/crossing - read file in if it is totally inside, or crossing the polygon

File outside - read file in if it is totally outside the polygon

File outside/crossing - read file in if it is totally outside, or crossing the polygon

File crossing - read file in if it is crossing the polygon

Note - only whole files are read in.

Button at bottom

Import button

import the data into the model given in the model field.
8.1.16.2.2 Faro Cloud FLS to LAS Files

Position of option on menu: File I/O => Data Input => Point Clouds => Faro => Faro FLS to LAS

Selecting Faro FLS to LAS brings up the Faro Cloud FLS to LAS Files panel.

![Faro Cloud FLS to LAS Files panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Files tab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Many files</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
</tbody>
</table>

- If **ticked**, a grid to allow multiple fls files to be read in is opened. A wild card is used to select all the files to be read in.

- **Folder** file box
 - folder to search for files using the **Wildcard**

- **Wildcard** input
 - wildcard to use in search for files in the given folder.
Use tick box

if ticked, read in the file

Files output

name of the file in the folder

Size output

file size

Only one cloud string per file tick box ticked

if ticked, all cloud points will be combined into one 12d cloud string.

Target folder file box

folder where the output LAS file(s) will be created. As it is unknown how many files will be created, it is good practice to specify an empty folder for these files. For example, if the input file is geelong.fls, the output file(s) will be geelong.las OR geelong_1.las, geelong_2.las, etc.

Note: Multiple las files will only be created if the tick box Only one cloud string per file is unticked and the input file has multiple clouds.

Projection tab
Long/Lat to X/Y Coordinates choice box available projections
 if non-blank, the cartographic projection to apply to the longitude-latitude values.
 If blank, the co-ordinates are not transformed from (longitude, latitude) to (x,y). Hence the initial (x,y)
 co-ordinates are transformed to (longitude, latitude) by the transformation given in the x/y coordinates to Long/Lat
 field and then left in (longitude, latitude). Note that in the southern
 hemisphere, the latitude values are negative.

Long/Lat stored as choice box degrees radians
 format for the longitude and latitudes - either radians, degrees (in 4.17.1 HP Notation for degrees,
 minutes and seconds) or decimal degrees.

Fencing tab

Fence string polygon box
 string to use to restrict the data being read in.

Fence mode choice box
 File inside
 File inside/crossing
 File outside
 File outside/crossing
 File crossing
File inside - read file in if it is totally inside the polygon
File inside/crossing - read file in if it is totally inside, or crossing the polygon
File outside - read file in if it is totally outside the polygon
File outside/crossing - read file in if it is totally outside, or crossing the polygon
File crossing - read file in if it is crossing the polygon

Note - only whole files are read in.

Button at bottom

Convert button

convert the data into the model given in the model field.
8.1.16.3 LAS Cloud Input

Position of menu: File I/O => Data input => Point clouds => LAS

The LAS Cloud Input walk-right menu is

- Import LAS
- Reference LAS
- Read LAS into strings
- Cartographic transform

See
- Import LAS: 8.1.16.3.1 Import LAS Files
- Reference LAS: 8.1.16.3.2 Reference LAS Files
- Read LAS into strings: 8.1.16.3.3 Read LAS Files into Strings
- Cartographic transform: 8.1.16.3.4 LAS Cartographic
8.1.16.3.1 Import LAS Files

Position of option on menu: File I/O => Data Input => Point Clouds => LAS => Import LAS

Selecting Import LAS brings up the **Import LAS Files** panel.

![Import LAS Files panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Files tab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Many files</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td>If ticked, a grid to allow multiple las files to be read in is opened. A wild card is used to select all the files to be read in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folder</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folder to search for files using the Wild card.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wildcard</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wild card to use in search for files in the given folder.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Use tick box

if ticked, read in the file

Files output

name of the file in the folder

Size output

file size

Basic tab
Colour for data
colour box

String colour to be used if the cloud object does not have colour for each point

Model for data
model box

Name of the model that the data is to be placed in. The model will be created if it does not already exist. This field must be filled in.

Projection tab
Long/Lat to X/Y Coordinates

If non-blank, the cartographic projection to apply to the longitude-latitude values. If blank, the co-ordinates are not transformed from (longitude, latitude) to (x,y). Hence the initial (x,y) co-ordinates are transformed to (longitude, latitude) by the transformation given in the x/y co-ordinates to Long/Lat field and then left in (longitude, latitude). Note that in the southern hemisphere, the latitude values are negative.

Long/Lat stored as

choice box available projections

degrees decimal degrees

format for the longitude and latitudes - either radians, degrees (in 4.17.1 HP Notation for degrees, minutes and seconds) or decimal degrees.

Fencing tab
Chapter 8 File

Fence string polygon box
string to use to restrict the data being read in.

Fence mode choice box

File inside
File inside/crossing
File outside
File outside/crossing
File crossing

File inside - read file in if it is totally inside the polygon
File inside/crossing - read file in if it is totally inside, or crossing the polygon
File outside - read file in if it is totally outside the polygon
File outside/crossing - read file in if it is totally outside, or crossing the polygon
File crossing - read file in if it is crossing the polygon

Note - only whole files are read in.

Categories tab
Data Input

ID

Name

Visible

Button at bottom

Read button

read the data into the model given in the model field.
8.1.16.3.2 Reference LAS Files

Position of option on menu: File I/O => Data Input => Point Clouds => LAS => Reference LAS

Selecting Reference LAS brings up the Reference LAS Files panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Files</td>
<td>Many files</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, a grid to allow multiple las files to be read in is opened. A wild card is used to select all the files to be read in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folder</td>
<td>folder to search for files using the Wild card</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wildcard</td>
<td>input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>wild card to use in search for files in the given folder</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Use tick box

if ticked, read in the file

Files output

name of the file in the folder

Size output

file size

Basic tab
Colour for data

String colour to be used if the cloud object does not have colour for each point

Model for data

Name of the model that the data is to be placed in. The model will be created if it does not already exist. This field must be filled in.

Fencing tab
Data Input

Fence string

String to use to restrict the data being read in.

Fence mode

Choice box

- File inside
- File inside/crossing
- File outside
- File outside/crossing
- File crossing

- File inside - read file in if it is totally inside the polygon
- File inside/crossing - read file in if it is totally inside, or crossing the polygon
- File outside - read file in if it is totally outside the polygon
- File outside/crossing - read file in if it is totally outside, or crossing the polygon
- File crossing - read file in if it is crossing the polygon

Note - only whole files are read in.

Categories tab
Data Input

Reference LAS Files

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Visible</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Created</td>
<td>no</td>
</tr>
<tr>
<td>1</td>
<td>Unclassified</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>Ground</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>Low vegetation</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>Medium vegetation</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>High vegetation</td>
<td>no</td>
</tr>
<tr>
<td>6</td>
<td>Building</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>Low point</td>
<td>no</td>
</tr>
<tr>
<td>8</td>
<td>Reserved 8</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>Water</td>
<td>no</td>
</tr>
<tr>
<td>10</td>
<td>Rail</td>
<td>no</td>
</tr>
<tr>
<td>11</td>
<td>Road Surface</td>
<td>no</td>
</tr>
<tr>
<td>12</td>
<td>Reserved 12</td>
<td>no</td>
</tr>
</tbody>
</table>

Button at bottom

- **Read** button

read the data into the model given in the model field.
8.1.16.3.3 Read LAS Files into Strings

Position of option on menu: File I/O => Data Input => Point Clouds => LAS => Read LAS into strings
Selecting **Read LAS into strings** brings up the **Read LAS Files into Strings** panel.

![Read LAS Files into Strings panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Files tab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Many files</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td>if ticked, a grid to allow multiple las files to be read in is opened. A wild card is used to select all the files to be read in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folder</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>folder to search for files using the Wild card</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wildcard</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wild card to use in search for files in the given folder</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Use tick box
 if ticked, read in the file

Files output
 name of the file in the folder

Size output
 file size

Basic tab
Colour for data

colour box

string colour to be used if the cloud object does not have colour for each point

Model for data

model box

name of the model that the data is to be placed in. The model will be created if it does not already exist. This field must be filled in.

Fencing tab
Fence string
string to use to restrict the data being read in.

Fence mode
choice box

- **File inside**
- **File inside/crossing**
- **File outside**
- **File outside/crossing**
- **File crossing**

Note - only whole files are read in.
Grid tab

![Image of Grid tab interface]

Create mode choice box Grid string Grid string, Grid tin, Strings
see [14.10 Grids](#) for an explanation of Grid string and Grid tin

Single grid tick box not ticked
if ticked, all points from all selected files are used in the creation of a single grid.

Grid tin name Pre*post input
only enabled if Grid tin is selected. All grid tins created will have their names derived from the text entered with the * character beginning at 1 and incrementing for each tin created.

Origin X/Y coordinate X/Y boxes
the Origin X and Y coordinates signify a seed point on the grid. The seed point does not have to be within the extents of the LAS points. The computed grid origin x/y will be within LAS points, and the origin x/y specified will lie on an infinite version of the resulting grid.

Angle measure box
the angle of the grid's local X axis

Cell X/Y measure boxes
the local X axis and Y axis spacings
Categories tab

ID
the unique number as defined by the LAS standard

Name
the description for the equivalent ID

Visible
if yes, the specific category will be active for all operations on that cloud string.

Note: If all categories are set to no, then only Category 2 will be active.

Button at bottom
Read button
read the data into the model given in the model field.
8.1.16.3.4 LAS Cartographic

Position of option on menu: File I/O => Data Input => Point Clouds => LAS => Cartographic transform

See 14.15.3 Cartographic Transform.
8.1.16.4 Leica Point Cloud Input

Position of menu: File I/O => Data input => Point clouds => Leica

The Leica Point Cloud Input walk-right menu is:

- Import Leica PTS
- Import Leica PTX
- Leica PTS to LAS
- Leica PTX to LAS

See

- *Import Leica PTS* [8.1.16.4.1 Import Leica PTS Files]
- *Import Leica PTX* [8.1.16.4.2 Import Leica PTX Files]
- *Leica PTS to LAS* [8.1.16.4.3 Leica PTS to LAS Files]
- *Leica PTX to LAS* [8.1.16.4.4 Leica PTX to LAS Files]
8.1.16.4.1 Import Leica PTS Files

Position of option on menu: File I/O => Data Input => Point Clouds => Leica => Import Leica PTS

Selecting **Import Leica PTS** brings up the **Import Leica PTS Files** panel.

![Import Leica PTS Files panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Files tab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Many files</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
</tbody>
</table>

if ticked, a grid to allow multiple pts files to be read in is opened. A wild card is used to select all the files to be read in.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Folder</td>
<td>file box</td>
<td>folder to search for files using the Wild card</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wildcard</td>
<td>input</td>
<td>wild card to use in search for files in the given folder</td>
</tr>
</tbody>
</table>
Use tick box

if ticked, read in the file

Files output

name of the file in the folder

Size output

file size

Only one cloud string per file tick box ticked

if ticked, all cloud points will be combined into one 12d cloud string.

Basic tab

Colour for data colour box

string colour to be used if the cloud object does not have colour for each point

Model for data model box
name of the model that the data is to be placed in. The model will be created if it does not already exist. This field must be filled in.

Projection tab

Long/Lat to X/Y Coordinates
choice box available projections
If non-blank, the cartographic projection to apply to the longitude-latitude values.
If blank, the co-ordinates are not transformed from (longitude, latitude) to (x,y). Hence the initial (x,y) co-ordinates are transformed to (longitude, latitude) by the transformation given in the *x/y co-ordinates to Long/Lat* field and then left in (longitude, latitude). Note that in the southern hemisphere, the latitude values are *negative*.

Long/Lat stored as
choice box degrees radians decimal degrees
format for the longitude and latitudes - either radians, degrees (in 4.17.1 HP Notation for degrees, minutes and seconds) or decimal degrees.

Fencing tab

Fence string
polygon box
string to use to restrict the data being read in.

Fence mode
choice box
File inside
File inside/crossing
File outside
File outside/crossing
File crossing

File inside - read file in if it is totally inside the polygon
File inside/crossing - read file in if it is totally inside, or crossing the polygon
File outside - read file in if it is totally outside the polygon
File outside/crossing - read file in if it is totally outside, or crossing the polygon
File crossing - read file in if it is crossing the polygon

Note - only whole files are read in.

Button at bottom

Import button

import the data into the model given in the model field.
8.1.16.4.2 Import Leica PTX Files

Position of option on menu: File I/O => Data Input => Point Clouds => Leica => Import Leica PTX

Selecting Import Leica PTX brings up the **Import Leica PTX Files** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Files tab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Many files</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
</tbody>
</table>

if ticked, a grid to allow multiple ptx files to be read in is opened. A wild card is used to select all the files to be read in.

<table>
<thead>
<tr>
<th>Folder</th>
<th>file box</th>
<th></th>
</tr>
</thead>
</table>

*folder to search for files using the **Wild card**

<table>
<thead>
<tr>
<th>Wildcard</th>
<th>input</th>
<th></th>
</tr>
</thead>
</table>

wild card to use in search for files in the given folder
Use
tick box

if ticked, read in the file

Files
output

name of the file in the folder

Size
output

file size

Only one cloud string per file
tick box ticked

if ticked, all cloud points will be combined into one 12d cloud string.

Basic tab

Colour for data
colour box

string colour to be used if the cloud object does not have colour for each point

Model for data
model box

name of the model that the data is to be placed in. The model will be created if it does not already exist. This field must be filled in.
Projection tab

Long/Lat to X/Y Coordinates

choice box
available projections

if non-blank, the cartographic projection to apply to the longitude-latitude values.
If blank, the co-ordinates are not transformed from (longitude, latitude) to (x,y). Hence the initial (x,y) co-ordinates are transformed to (longitude, latitude) by the transformation given in the x/y co-ordinates to Long/Lat field and then left in (longitude, latitude). Note that in the southern hemisphere, the latitude values are negative.

Long/Lat stored as

choice box
degrees
radians
decimal degrees

format for the longitude and latitudes - either radians, degrees (in 4.17.1 HP Notation for degrees, minutes and seconds) or decimal degrees.

Fencing tab

Fence string

polygon box

string to use to restrict the data being read in.

Fence mode

choice box

File inside
File inside/crossing
File outside
File outside/crossing
File crossing

File inside - read file in if it is totally inside the polygon.
File inside/crossing - read file in if it is totally inside, or crossing the polygon

File outside - read file in if it is totally outside the polygon

File outside/crossing - read file in if it is totally outside, or crossing the polygon

File crossing - read file in if it is crossing the polygon

Note - only whole files are read in.

Button at bottom

Import button

import the data into the model given in the model field.
8.1.16.4.3 Leica PTS to LAS Files

Position of option on menu: File I/O => Data Input => Point Clouds => Leica => Leica PTS to LAS

Selecting Leica PTS to LAS brings up the Leica Cloud PTS to LAS Files panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Files tab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Many files</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
</tbody>
</table>

if ticked, a grid to allow multiple files to be converted is opened. A wild card is used to select all the files to be read in.

Folder

folder to search for files using the Wild card

Wildcard

input

wild card to use in search for files in the given folder
Use tick box

if ticked, read in the file

Files output

name of the file in the folder

Size output

file size

Only one cloud string per file tick box ticked

if ticked, all cloud points will be combined into one 12d cloud string.

Target folder file box

folder where the output LAS file(s) will be created. As it is unknown how many files will be created, it is good practice to specify an empty folder for these files. For example, if the input file is geelong.pts, the output file(s) will be geelong.las OR geelong_1.las, geelong_2.las, etc.

Note: Multiple las files will only be created if the tick box Only one cloud string per file is unticked and the input file has multiple clouds.

Projection tab
Long/Lat to X/Y Coordinates choice box available projections

If **non-blank**, the cartographic projection to apply to the longitude-latitude values. If **blank**, the co-ordinates are not transformed from (longitude, latitude) to (x,y). Hence the initial (x,y) co-ordinates are transformed to (longitude, latitude) by the transformation given in the **x/y co-ordinates to Long/Lat** field and then left in (longitude, latitude). Note that in the southern hemisphere, the latitude values are **negative**.

Long/Lat stored as choice box degrees radians

degrees decimal degrees

Format for the longitude and latitudes - either radians, degrees (in 4.17.1 HP Notation for degrees, minutes and seconds) or decimal degrees.

Fencing tab

Fence string polygon box

String to use to restrict the data being read in.

Fence mode choice box

File inside

File inside/crossing

File outside

File outside/crossing

File crossing
File inside - read file in if it is totally inside the polygon
File inside/crossing - read file in if it is totally inside, or crossing the polygon
File outside - read file in if it is totally outside the polygon
File outside/crossing - read file in if it is totally outside, or crossing the polygon
File crossing - read file in if it is crossing the polygon

Note - only whole files are read in.

Button at bottom

Convert button

convert the data into the model given in the model field.
8.1.16.4.4 Leica PTX to LAS Files

Position of option on menu: File I/O => Data Input => Point Clouds => Leica => Leica PTX to LAS

Selecting Leica PTX to LAS brings up the Leica Cloud PTX to LAS Files panel.

![Leica Cloud PTX to LAS Files panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Files tab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Many files</td>
<td></td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td>Folder</td>
<td>file box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wildcard</td>
<td>input</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

if ticked, a grid to allow multiple files to be converted is opened. A wild card is used to select all the files to be read in.

folder to search for files using the Wild card

wild card to use in search for files in the given folder
Use tick box

if ticked, read in the file

Files output

name of the file in the folder

Size output

file size

Only one cloud string per file tick box ticked

if ticked, all cloud points will be combined into one 12d cloud string.

Target folder file box

folder where the output LAS file(s) will be created. As it is unknown how many files will be created, it is good practice to specify an empty folder for these files. For example, if the input file is `geelong.ptx`, the output file(s) will be `geelong.las` OR `geelong_1.las`, `geelong_2.las`, etc.

Note: Multiple las files will only be created if the tick box **Only one cloud string per file** is unticked and the input file has multiple clouds.

Projection tab
Data Input

Long/Lat to X/Y Coordinates

choice box available projections

if non-blank, the cartographic projection to apply to the longitude-latitude values. If blank, the co-ordinates are not transformed from (longitude, latitude) to (x,y). Hence the initial (x,y) co-ordinates are transformed to (longitude, latitude) by the transformation given in the x/y co-ordinates to Long/Lat field and then left in (longitude, latitude). Note that in the southern hemisphere, the latitude values are negative.

Long/Lat stored as

choice box degrees radians

degrees decimal degrees

format for the longitude and latitudes - either radians, degrees (in 4.17.1 HP Notation for degrees, minutes and seconds) or decimal degrees.

Fencing tab

Fence string

polygon box

string to use to restrict the data being read in.

Fence mode

choice box

File inside

File inside/crossing

File outside

File outside/crossing

File crossing
File inside - read file in if it is totally inside the polygon
File inside/crossing - read file in if it is totally inside, or crossing the polygon
File outside - read file in if it is totally outside the polygon
File outside/crossing - read file in if it is totally outside, or crossing the polygon
File crossing - read file in if it is crossing the polygon

Note - only whole files are read in.

Button at bottom

Convert button
c convert the data into the model given in the model field.
8.1.16.5 Read SRTM Files

Position of option on menu: File I/O => Data Input => Point clouds => SRTM

SRTM refers to the Shuttle Radar Topography Mission, an international research effort which obtained a high-resolution digital topographic database of Earth. Selecting SRTM brings up the Read SRTM Files panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many files</td>
<td>Tick box</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If ticked, a grid to allow multiple hgt files to be read in is opened. A wild card is used to select all the files to be read in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folder</td>
<td>File box</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Folder to search for files using the Wild card</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wildcard</td>
<td>Input</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wild card to use in search for files in the given folder</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Use tick box
If ticked, read in the file

Files output
Name of the file in the folder

Size output
File size

Basic tab

Model for SRTM model box
Name of the model that the data is to be placed in. The model will be created if it does not already exist. This field must be filled in.
Fencing tab

Fence string

string to use to restrict the data being read in.

Fence mode

File inside - read file in if it is totally inside the polygon
File inside/crossing - read file in if it is totally inside, or crossing the polygon
File outside - read file in if it is totally outside the polygon
File outside/crossing - read file in if it is totally outside, or crossing the polygon
File crossing - read file in if it is crossing the polygon

Note - only whole files are read in.

Grid tab

Create mode

see 14.10 Grids for an explanation of Grid string and Grid tin

Grid tin name Pre*post

only enabled if Grid tin is selected. All grid tins created will have their names derived from the text entered with the * character beginning at 1 and incrementing for each tin created.
Project into UTM tick box ticked
if ticked, the project will be uploaded into the Universal Transverse Mercator coordinate system.

Button at bottom
Read button
read the data into the model given in the model field.
8.1.17 Mapinfo Input

Position of option on menu: File I/O => Data input => Mapinfo MID/MIF

Selecting MapInfo MID/MIF brings up the **Read MapInfo Mif/Tab Data** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced</td>
<td>tick box</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If ticked, a grid to allow multiple files to be read in, is opened. A wildcard is used to select all the files to be read in.

- **Folder** folder box

 *Folder to search for files using the **Wildcard***

- **Wildcard** input

 Wildcard to use in search for files in the given folder

- **Use** tick box
if ticked, read in the file

Files

output

name of the file in the folder

Size

output

file size

Pre*post

text input

if non blank, pre*post text to use for the models in this file (see 4.19.2 Pre*Postfix in Panel Fields for information on using pre*postfix.

If blank, use the pre*post text from the Pre*postfix for models panel field.

Note - if a non-blank value for Pre*post is given in the column for a file then the Pre*postfix for models is ignored.

File to read

file box *.tab or *.mif files

name of the MapInfo file.

If no attribute is mapped to model, then the file name (minus the .tab or .mif) is used as the model for the data.

Basic tab

Default colour for black

colour box white available colours

colour to use in 12d for black in MapInfo

Map file tab

Map file

colour box *.mf and *.mapfile files

if non-blank, the name of the 12d map file to be used for all strings read in.

If blank, no map file is used

When using a map file, the string name is used as the entity-name for matching with the keys in the map file. See the section 8.8.1 Create/Edit a Map File for information about 12d map files.

Pre*postfix for models

pre*postfix box

if non-blank, a prefix and a postfix to be applied to the model names used in the Map File.

Go to the section 4.19.2 Pre*Postfix in Panel Fields for information on using pre*postfix.

Attributes tab
Read attributes button

Click to check what attributes are present in the MapInfo files and any MapInfo attributes found are listed in the MapInfo Type and MapInfo Name columns in the grid.

Destination Grid column

type of 12d attribute to map the MapInfo attribute to:

- none - don’t use the attribute - the attribute is ignored
- attribute - use as 12d attribute
- name - use as 12d string name
- height - use as 12d vertex height
- colour - use as 12d string colour
- model - use as model name
- weight - use as string weight
- linestyle - use as 12d linestyle
- textstyle - use as 12d textstyle

Note - if no MapInfo attribute is mapped to Model, then the file name (minus the .tab or .mif) is used as the model for the data.

Attribute name Grid column

if non blank and the MapInfo attribute is being sent to a 12d attribute, then this is the 12d attribute name

Linestyles tab

MapInfo linestyle Grid column

MapInfo linestyle name

12d linestyle Grid column
12d linestyle to map the MapInfo linestyle to

Symbols tab

MapInfo symbol Grid column
MapInfo symbol name

12d symbol Grid column
12d symbol to map the MapInfo symbol to

Fencing tab

Fence string polygon box
string to use to restrict the data being read in.

Fence mode choice box

String inside
String inside/crossing
String outside
String outside/crossing
String crossing

String inside - read string in if it is totally inside the polygon
String inside/crossing - read string in if it is totally inside, or crossing the polygon
String outside - read string in if it is totally outside the polygon
String outside/crossing - read string in if it is totally outside, or crossing the polygon
String crossing - string in if it is crossing the polygon

Note - only whole strings are read in.

Read button
read the data in.
8.1.18 Wavefront OBJ Input

The OBJ option reads in a Wavefront OBJ file and creates trimeshes.

Selecting OBJ brings up the Read OBJ File panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obj file</td>
<td>file box</td>
<td>*.OBJ files</td>
<td></td>
</tr>
<tr>
<td>Model for trimeshes</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Default colour</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td>Read</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

name of the OBJ file to read in
model to put the created trimeshes in.
8.1.19 SDR Map Input

Position of option on menu: File I/O => Data input => SDR Map

The SDR Map input option is designed to read in files in the SDR Map ASCII format.

On selecting the SDR Map option, the Read SDR Map Data panel is displayed.

![Read SDR Map Data panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDR Map file</td>
<td>name of the SDR Map text file to be read in.</td>
<td>file box</td>
<td>*.txt</td>
<td></td>
</tr>
<tr>
<td>Map file</td>
<td>if non-blank, the name of the map file to be used for all data read in.</td>
<td>map file box</td>
<td>*.mf and *.mapfile files</td>
<td></td>
</tr>
<tr>
<td>Key for map file</td>
<td>if code, the SDRMap code is used as the key for the map file.</td>
<td>choice box</td>
<td>code</td>
<td>code, layer, layer/code</td>
</tr>
<tr>
<td></td>
<td>If layer, the SDRMap layer is used as the key for the map file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If code/layer, the SDRMap code/layer is used as the key for the map file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If layer/code, the SDRMap layer/code is used as the key for the map file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre*postfix for models</td>
<td>pre*postfix box</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
if non-blank, a prefix and a postfix to be applied to the model names used in the Map File.

Go to the section 4.19.2 Pre*Postfix in Panel Fields for information on using pre*postfix.

Use SDR Map styles tick box
if ticked,

Use Annotation prefix text tick box
if ticked,

Ignore characters after delimiter input
if non-blank, all characters on the line after the given delimiter will be ignored.

Use -10000 as null height tick box tick
if ticked, any z value of -10000 is converted to a null height in 12d Model.

Null height input -999
if non-blank, any SDR Map z values equalling this value are converted to null values in 12d Model.

Point colour colour box yellow available colours
colour for SDR Map points that are not part of strings.

Text height (pixels) input
height of the text in pixels

Text offset (pixels) input
distance in pixels to offset the text from its (x,y) placement position.

Match flags tick box
SDRMap data consists of individual lines and arcs. When reading SDRMap data, it undergoes head to tail processing and the match flags specify what SDRMap data can be joined.

Match layer/code/linetype/angles/pen tick box
if ticked, then any SDRMap lines and arcs must have the same layer/code/linetype/angle/pen before they can be joined in the head to tail process.

Read button
read the data in
8.1.20 TOT Input

Position of option on menu: File I/O => Data input => TOT

The TOT option attempts to read in TOT files.

Note: TOT is a format used by Model Maker, a software program from South Africa.

Selecting TOT brings up the Read TOT File panel.

![Read TOT File panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced</td>
<td>tick box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* If ticked, a grid to allow multiple TOT files to be read in, is opened. A wild card is used to select all the files to be read in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folder</td>
<td>folder box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wildcard</td>
<td>input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use</td>
<td>tick box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* If ticked, read in the file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Files</td>
<td>output</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>output</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File to read</td>
<td>file box</td>
<td></td>
<td></td>
<td>*.TOT files</td>
</tr>
<tr>
<td></td>
<td>name of the TOT file to read in</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Read button

read the data in
8.1.21 TP Setout Input

Position of option on menu: File I/O => Data input => TP Setout

The TP Setout input option is designed to read in .pta files from TP Setout

Selecting TP Setout brings up the **Read TP Setout Data** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP Setout file</td>
<td>file box</td>
<td>*.pta</td>
<td></td>
</tr>
</tbody>
</table>

name of the TP Setout .pta file to be read in.

Basic tab

Map file map file box *.mf files

if non-blank, the name of the map file to be used for all strings read in. If blank, no map file is used. The TP Setout code is used as the entity-name to match against the key in the map file.

See the section [8.8.1 Create/Edit a Map File](#) for information about 12d map files.

Pre*postfix for models pre*postfix box

if non-blank, a prefix and a postfix to be applied to the model names used in the Map File.

Go to the section [4.19.2 Pre*Postfix in Panel Fields](#) for information on using pre*postfix.

Default model for data model box available models

name of the model that any unmapped data is placed in. The model will be created if it does not already
exist. This field must be filled in.

Null height
- **input**
- **-9999**

If **non-blank**, any TP Setout z values equalling this value are taken as null values.

Line colour
- **colour box**
- **red**
- **available colours**

Point colour
- **colour box**
- **yellow**
- **available colours**

String points
- **tick box**
- **tick**

If ticked, points with the same description are joined together.
If not ticked, points with the same description are not joined together.

Textstyle data
- **textstyle data box**
- **available textstyle datas**

Coding tab

Point ids in column 5
- **tick box**

If **ticked**, there are point ids in column 5 of the file.

Feature code
- **input**

String number
- **input**

Point ids
- **input**

Attributes tab

Name

Type

Data

Read
- **button**

read the data in.
8.1.22 TP Stakeout Strings Input

Position of option on menu: File I/O => Data input => TP Stakeout strings

The TP Stakeout strings input option is designed to read in .3db files (binary strings) from TP Stakeout.

Selecting TP Stakeout strings brings up the Read TP Stakeout Binary Strings panel.

![Read TP Stakeout Binary Strings](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>File radio button</td>
<td>radio button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>on then an individual binary string file is to be read in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File name</td>
<td>file box</td>
<td>*.3db files</td>
<td></td>
</tr>
<tr>
<td>non-blank, the name of the binary string file to read in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folder radio button</td>
<td>radio button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>on then all the binary string files in the folder are to be read in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folder name</td>
<td>folder box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-blank, all the binary string files in this folder are read in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default model for data</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>name of the model to read the binary strings into.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read button</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>read the data in.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.1.23 Old Inputs

Position of menu: File I/O => Data input => Old

The Old menu contains superseded options. The Old walk-right menu is

![Old Data Input Menu](image)

- 12da/4da data
- DGN
- DGN (complex elements)
- DXF
- Genio from 12d V7
- 4D HP plot
- x y z general
- Old LandXML Reader
8.1.23.1 Genio from 12d V7

This section of documentation is a work in progress and will be updated in subsequent releases.
8.1.23.2 12D HP Plot File

Position of option on menu: File I/O => Data input => Old => 4D HP plot

12d Model has options to create plots for HPGL compatible plotters. This option reads back into 12d Model any plots created by 12d Model using HPGL plot options.

A plot file is only a two dimensional file defined in millimetres. When read back into 12d Model, the units are automatically multiplied by 1000.

In the option, the user can supply a further factor to multiply the x and y coordinates by and also a z-value which is used as a z coordinate for all the lines in the plot file.

On selecting the 12d HP plot option, the **read 4D HP plot file** panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP plot file</td>
<td>name of the 12d HP plot file to be read in</td>
<td>input</td>
<td>* .hp files</td>
<td></td>
</tr>
<tr>
<td>z value</td>
<td>z coordinate to use for the lines read in from the plot file</td>
<td>input</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Factor</td>
<td>the default units used when reading in a plot file are multiplied by 1000. They are then multiplied by this value.</td>
<td>input</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Model for plot</td>
<td>name of the model that the plot file is to be placed in. The model will be created if it does not already exist. This field must be filled in.</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Add to view</td>
<td>if a view name is entered, then the model will be automatically added to the view. This field can be blank.</td>
<td>input</td>
<td>available views</td>
<td></td>
</tr>
<tr>
<td>Read</td>
<td>read the plot file into the model given in the model field.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.1.23.3 DXF Input

Position of option on menu: File I/O => Data input => Old => DXF

DXF input is a separate chargeable option

The DXF input option is designed to read most autocad DXF files (up to Version 12), including binary DXF which was introduced in AutoCAD Release 10 as a means of addressing the problems of large file sizes, slow processing and limited accuracy that occur when using the ASCII DXF format. *12d Model* will automatically sense whether the input file is binary or ASCII.

The standard Autocad colours can be mapped to the equivalent *12d Model* colours or just mapped on a one-to-one basis to *12d Model* colour numbers.

Each DXF item has an associated layer. By default, *12d Model* creates models of the same name as the layers (or with an additional user supplied prefix) and the DXF items placed in them. However, this can be over-written using a standard *12d map file* where the key is matched against Autocad layers rather than string names.

See the section 8.8.1 Create/Edit a Map File for information about *12d map files*.

Autocad blocks are recognised and either a point with the block name is created or the blocks are expanded into their components, each time they are referenced in the DXF file.

Bulges in polylines can only be interpreted correctly when the polyline has a constant z-value. For this case, a *12d Model* polyline string is created from the DXF polyline.

Finally, DXF POINT entities of the same layer and colour are concatenated into one point string as they are read in.

On selecting the DXF option, the read dxf data panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>DXF File</td>
<td>input</td>
<td>* .dxf files</td>
<td></td>
</tr>
</tbody>
</table>

name of the DXF file to be read in
Map file

if non-blank, the name of the map file to be used for all DXF layers read in. The DXF layer is the entity-name for matching against the key in the map file.

If blank, no map file is used.

See the section 8.8.1 Create/Edit a Map File for information about 12d map files.

Prefix for models

if non-blank, all 12d Model model names created by the reader will be prefixed by this name.

Colour for dxf black

if the DXF colour of an item is black, then the colour in the colour for black field is used for the item in 12d Model.

Target layer

if non-blank, only autocad items in the layer with the name given in the target layer field will be read in.

Explode blocks

if ticked, autocad blocks are exploded in 12d Model.
If not ticked, blocks are not exploded and a point string is placed at the position of the block.

Map DXF colours

if ticked, the first seven DXF colours are mapped to the corresponding default 12d Model colours. If no ticked, the nth DXF colour is mapped to the nth 12d Model colour.

Create unknown textstyles

if ticked, then if a textstyle in the DXF file is not already defined in 12d Model, then a new 12d Model textstyle of the same name is created. If no ticked, then the 12d Model textstyle "1" is used for any unknown DXF textstyles.

Translate 3DFaces to faces

if ticked, DXF faces are read in as 12d Model face strings.

Colour for large dxf colours

if the DXF colour is greater than the largest colour number defined in the 12d Model colour map, then the colour in the colour for large dxf colours field is used for the DXF colour.

Read

read the data in.
8.1.23.4 User X Y Z and Attributes Input - Pre V9

Position of option on menu: File I/O => Data input => Old => x y z general
Note - this option was replaced in 12d Model 9.

On selecting the read x,y,z general option, the Read x y z s General File panel is displayed. This option reads data in one line at a time with the values separated by a delimiter (tab, space, semi-colon or comma) or the data on each line can be in fixed width columns. In either case, the user specifies the order that the x, y, z, string name, point number and attributes appear in the file. If desired, only an x and y value needs to be read in. The set-ups for defining all the positions of all the data in the file can be written out to a file (.xyf) for re-use.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter file</td>
<td>input</td>
<td>*.xyf files</td>
<td></td>
</tr>
<tr>
<td>Read icon</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write icon</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input settings section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File</td>
<td>input</td>
<td>*.dat files</td>
<td></td>
</tr>
<tr>
<td>Map file</td>
<td>file box</td>
<td>*.mf files</td>
<td></td>
</tr>
<tr>
<td>Pre*postfix for models</td>
<td>pre*postfix box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default line colour</td>
<td>input</td>
<td>default colour</td>
<td>available colours</td>
</tr>
<tr>
<td>Default point colour</td>
<td>input</td>
<td>default pt colour</td>
<td>available colours</td>
</tr>
<tr>
<td>Default text style</td>
<td>input</td>
<td>available textdatas</td>
<td></td>
</tr>
<tr>
<td>Default model for data</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Add to view</td>
<td>input</td>
<td>available views</td>
<td></td>
</tr>
<tr>
<td>Skip column headers</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Join all</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The name of the file containing the settings for how the data is positioned in the input file.

Read icon button
read the parameter file in.

Write icon button
write the setting in the panel out to a parameter file.

File input
name of the data file to be read in

Map file file box
if non-blank, the name of the map file to be used for all strings read in. If blank, no map file is used. The string name is used as the entity-name for matching with the keys in the map file.

See the section 8.8.1 Create/Edit a Map File for information about 12d map files.

Pre*postfix for models pre*postfix box
if non-blank, a prefix and a postfix to be applied to the model names used in the Map File.

Go to the section 4.19.2 Pre*Postfix in Panel Fields for information on using pre*postfix.

Default line colour input default colour available colours
colour used for line-strings (if no colour is defined in the file)

Default point colour input default pt colour available colours
colour used for the crosses in point-strings (if no colour is defined in the file)

Default text style input available textdatas
textdata for the point ids and other text

Default model for data input available models
name of the model that the data is to be placed in. The model will be created if it does not already exist. This field must be filled in.

Add to view input available views
if a view name is entered, then the model will be automatically added to the view. This field can be blank.

Skip column headers tick box
if ticked, the first line of the file is skipped.

Join all tick box
if ticked, all vertices with the same string names are joined together regardless of where they are in the file. The order of the vertices is the order they occur in the file.

If not ticked then any time a string name changes in the file, a new string is created. So if the same string name occurs but separated by a different string name, then more than one string of that same name will be created. The order of the vertices is the order they occur in the file.

Input mode choice box delimiter delimiter, fixed width
if **delimiter**, the type of delimiter and the columns for the x, y and optionally z, name and point number are given.

| Delimiter | choice box | tab \f | one space, tab \t, semi colon, comma many spaces |

if **fixed width**, the start and end column positions are given for x, y and optionally z, name and point number.

Column number/Start end position section

information to read in (x,y,z, attributes etc.) and its position in the input file.
8.2 Data Output

Position of menu: File I/O => Data output

12d Model provides output options so that data in a model or on a view can be written out to a disk file. This may be to allow data to be transferred to other programs for further processing or simply to get a readable list of data.

The default Output null value is described in the section 8.2.1 Output Null Value

The Data Output walk-right menu containing these options is

For the option 12d

ArcView SHP 8.2.4 ArcView SHP Output
x y z 8.1.5 Input X Y Z Text Files
DEM 16.14.7 DEMs
DGN 8.1.9 Input DGN Binary Files
DWG/DXF/DBX 8.2.7 Output DWG/DFX/DBX Files
Genio 8.2.8 Genio Output
LandXML 8.2.9 LandXML Output
MapInfo 8.2.10 Output MapInfo MID/MIF Files
Civilcad V5.0 8.2.11 CivilCAD
Geocomp 8.2.12 Geocomp
KML 8.2.15 KML Output
TP Stakeout triangles 8.2.13 TP Stakeout Triangles Output
TP Stakeout strings 8.2.14 TP Stakeout Strings Output
3d PDF 8.2.3 Write 3D PDF
DAE 8.2.16 Export DAE
IFC 8.2.19 IFC Output
OBJ 8.2.17 Export OBJ
STL 8.2.18 Export STL
Old

8.2.20 Old Outputs
8.2.1 Output Null Value

When writing out data for other systems, it is usually not appropriate to write out the internal 12d Model null height (-9.9e29).

Consequently as data is written out, any 12d Model null heights are replaced by the value given by the I/O null height parameter.

The I/O null height is set in Default Settings tab of the Defaults panel in the option Utilities=>Defaults.

Return to 8.2 Data Output
8.2.2 12d Output

Position of menu: File I/O => Data output => 12d

Selecting 12d brings up this walk-right menu

For the option 12d archive data, write out data in 12d Model Archive format
write out XML data
write out XML project data

For the option 12d XML data
write out XML project data

For the option 12d XML project data
write out XML project data
8.2.2.1 12d Archive Output

Position of option on menu: **File => Data output => 12d => 12d archive data**

The **12d Archive** format is a special format defined by 12d Solutions to allow data to be easily transferred from other programs into 12d Solutions software such as **12d Model**. The **12d Archive** format is given in the Appendix.

Selecting the 12d archive data brings up the **Write 12d Solutions Archive Data** panel.

![Write 12d Solutions Archive Data panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data to search - for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source of data is to be written out to a file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Format</td>
<td>choice</td>
<td>12d archive zipped</td>
<td>12d archived zipped, 12d archive</td>
</tr>
</tbody>
</table>
use 12d archive zipped (12daz) or 12d archive format (12a). The only difference is that the 12az file is a zipped 12da file with the same name stem.

File
file box
*.12da or *.12daz
name of the file for the information to be written out to in 12d Archive format. If the file already exists, then you are asked to Append, Replace or Cancel.

Decimal places
integer box 8
the number of decimal places used when writing the data out.

Output string references by computators
choice box No, Yes, No, De-reference
if Yes, any strings referenced by computators by strings in the data source that are not in the data source, are also written out.

If No, any strings referenced by computators by strings in the data source that are not in the data source, are NOT written out.

If De-reference, any super strings in the data source with computators are de-referenced. That is, the computators are replaced by internal elements of the string.

Output project description
tick box
if ticked, the project description is written out as comments at the top of the file.

Output times
tick box
if ticked, write out the creation times etc. for the objects.
If not ticked, don’t write out the creation times etc. for the objects.

Output ID’s
tick box
if ticked, write out the object IDs.
If not ticked, don’t write out the object IDs.

Output pipes in new format
tick box
if ticked,
If not ticked, don’t write out.

Output drawables
tick box
if ticked, write out the internal super alignment labelling as text.

Output super alignment parts
tick box
if ticked, write out all the construction details for super alignments.
If not ticked, don’t write out the construction details. Just write out the HG and VG segments.

Output attribute uid’s
tick box
if ticked, write out the attribute uids.

Output super string vertex/segment uid’s
tick box
if ticked, write out the any vertex and segment UIDs.

Output project attributes
tick box
if ticked, write out the project attributes.

Output comment header tick box

if ticked, write out information as comments at the top of the 12da file.

Output indenting spaces tick box

if ticked, leave out spaces for indenting lines in the file. This will reduce the size of the text 12da file.

Write button

write out the data specified by the Data source.
8.2.2.2 12d XML Data

Position of option on menu: File I/O => Data output => 12d => 12d XML data

The 12d XML format is a special format defined by 12d Solutions to allow data to be easily transferred from other programs into 12d Solutions software such as 12d Model. The 12d XML format is given in 35 12d XML File Format.

Note - 12d XML contains the same information as a 12da file but it is a XML format.

Selecting 12d XML data brings up the Write 12d Solutions XML Data panel:

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data to search - for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source of data to be written out to a file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Format</td>
<td>choice</td>
<td>12d xml zipped</td>
<td></td>
</tr>
<tr>
<td>use 12d xml zipped (12dxmlz) or 12d xml format (12xml). The only difference is that the 12xmlz file is a zipped 12dxml file with the same name stem.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
XML file

name of the file for the information to be written out to in 12d XML format. If the file already exists, then you are asked to Append, Replace or Cancel.

Decimal places

the number of decimal places used when writing out the data.

Output string references by computators

if Yes, any strings referenced by computators by strings in the data source that are not in the data source, are also written out.

If No, any strings referenced by computators by strings in the data source that are not in the data source, are NOT written out.

If De-reference, any super strings in the data source with computators are de-referenced. That is, the computators are replaced by internal elements of the string.

Output project description

if ticked, the project description is written out as comments at the top of the file.

Output times

if ticked, write out the creation times, etc. for the objects.

If not ticked, don’t write out the creation times etc. for the objects.

Output ID’s

if ticked, write out the object IDs.

If not ticked, don’t write out the object IDs.

Output pipes in new format

if ticked, write out the internal super alignment labelling as text.

Output super alignment parts

if ticked, write out all the construction details for super alignments.

If not ticked, don’t write out the construction details. Just write out the HG and VG segments.

Output attribute uid’s

if ticked, write out the attribute uids.

Output super string vertex/segment uid’s

if ticked, write out the any vertex and segment UIDs.

Output project attributes

if ticked, write out the project attributes.

Output comment header

if ticked, write out information as comments at the top of the 12da file.

Output indenting spaces

if ticked, leave out spaces for indenting lines in the file. This will reduce the size of the text 12d XML file.
Write button
write out the data specified by the Data source.
8.2.2.3 12d XML Project Data

Position of option on menu: File I/O => Data output => 12d => 12d XML project data

The 12d XML format is a special format defined by 12d Solutions to allow data to be easily transferred from other programs into 12d Solutions software such as 12d Model. The 12d XML format is given in the Appendix.

Note - 12d XML contains the same information as a 12da file but it is a XML format.

Selecting 12d XML project data brings up the Write 12d Solutions XML Project Data panel:

The fields and buttons used in this panel have the following functions.

Field Description	Type	Defaults	Pop-Up
XML file | folder box | name of the file for the information to be written out to in 12d XML format. If the file already exists, then you are asked to Append, Replace or Cancel.
Decimal places | integer box | 8 |
Output strings referenced by computators | choice box | No, Yes, No, De-reference |

If Yes, any strings referenced by computators by strings in the data source that are not in the data source, are also written out.

If No, any strings referenced by computators by strings in the data source that are not in the data source, are NOT written out.

If De-reference, any super strings in the data source with computators are de-referenced. That is, the
computators are replaced by internal elements of the string.

Output times tick box
- if ticked, write out the creation times, etc. for the objects.
- If not ticked, don’t write out the creation times etc. for the objects.

Output ID’s tick box
- if ticked, write out the object IDs.
- If not ticked, don’t write out the object IDs.

Output pipes in new format tick box
- if ticked, write out.
- If not ticked, don’t write out.

Output drawables tick box
- if ticked, write out the internal super alignment labelling as text.

Output super alignment parts tick box
- if ticked, write out all the construction details for super alignments.
- If not ticked, don’t write out the construction details. Just write out the HG and VG segments.

Output attribute uid’s tick box
- if ticked, write out the attribute uids.

Output super string vertex/segment uid’s tick box
- if ticked, write out the any vertex and segment UIDs.

Output comment header tick box
- if ticked, write out information as comments at the top of the 12da file.

Output indenting spaces tick box
- if ticked, leave out spaces for indenting lines in the file. This will reduce the size of the text 12d XML file.

Write button
- write out the data specified by the Data source.
8.2.3 Write 3D PDF

This option writes out a Data Source as a 3D pdf file. Currently no textures are applied.

Position of option on menu: File => Data output => Export 3d pdf

Selecting Export 3d pdf brings up the Write 3d pdf panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output file</td>
<td>file box</td>
<td></td>
<td>*.pdf</td>
</tr>
<tr>
<td>Null z value</td>
<td>real box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tin scale down factor</td>
<td>integer box</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Keep u3d file</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data to search - for a full description go to 4.19.3 Data Source.

To view the 3D PDF, see 8.2.3.1 How to View the Generated 3D PDF

8.2.3.1 How to View the Generated 3D PDF
At the moment the option is not setting an eye and target point do to look at the data in the generated 3d pdf file, follow these steps:

1. Open the 3d pdf file with Acrobat pdf viewer. You'll then get a bit of a box drawn on the screen.

2. Move the cursor into the box and you will see the message **Click to activate**. Then click anywhere inside the box.

3. Then Right click to bring up a menu and choose **Full Screen Multimedia** from the menu. You should then see your data fitted in the view and displaying.

 Hold down the left mouse button to rotate. Wheel to zoom in and out. Shift LB to pan.

Return to [8.2.3 Write 3D PDF](#).
8.2.4 ArcView SHP Output

Position of option on menu: File I/O => Data output => ArcView SHP

ArcView I/O is a separate chargeable module.

This Option is currently under development.

The ArcView Shape File format consists of nine different files containing different data types. The ArcView shape format has no colour, model or layer information, string names, etc., so this information has to be passed through as attributes for the data.

Selecting ArcView SHP displays the Write ArcView Shape Files for panel.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data to search - for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data source

input

source of data is to be written out to a file.

File prefix

input

prefix to use for the nine different shape files to be produced for the data.

No. decimals

integer box 3

number of decimal places to use in the shape files.

Closed strings as polylines

tick box 3

if ticked, write out closed strings in polyline shape files

Map

brings up the ArcView Mapping panel which defines the ArcView attributes to write the standard 12d Model string header information out to.

Write

button

write out, in ArcView shape file format, all the string data specified by the Data source.

The fields and buttons used in the ArcView Mapping panel have the following functions.
<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>ID</td>
<td></td>
<td>if non blank, write out an integer number which increments from 1.</td>
</tr>
<tr>
<td>Model</td>
<td>LAYER</td>
<td></td>
<td>if non blank, write out the model of the string to this attribute.</td>
</tr>
<tr>
<td>String name</td>
<td>NAME</td>
<td></td>
<td>if non blank, write out the name of the string to this attribute.</td>
</tr>
<tr>
<td>Colour</td>
<td>COLOUR</td>
<td></td>
<td>if non blank, write out the colour of the string to this attribute.</td>
</tr>
<tr>
<td>Weight</td>
<td>LINEWIDTH</td>
<td></td>
<td>if non blank, write out the weight of the string to this attribute.</td>
</tr>
<tr>
<td>Linestyle</td>
<td>LINETYPE</td>
<td></td>
<td>if non blank, write out the linestyle of the string to this attribute.</td>
</tr>
<tr>
<td>Z value</td>
<td>ELEVATION</td>
<td></td>
<td>if non blank, write out the first z-value of the string to this attribute.</td>
</tr>
<tr>
<td>Set button</td>
<td></td>
<td></td>
<td>record the attribute names given in the panel as the ones to be use when writing out the data.</td>
</tr>
</tbody>
</table>
8.2.5 Output X Y Z Text Files

Position of menu: File I/O => Data output => x y z

The options under x y z out write out vertices of selected strings in a text format. It is also possible to write out string names, point IDs, string, segment and vertex attributes, and chainages and offsets from a selected string.

The X Y Z walk-right menu is

For x y z s, go to

8.2.5.1 X Y Z S Output
8.2.5.2 User X Y Z S Output
8.2.5.3 User X Y Z Chainage and Offset Output
8.2.5.4 User X Y Z and Attributes Output

General x y z etc.
8.2.5.1 X Y Z S Output

Position of option on menu: File I/O => Data output => x y z => x y z s

The xyzs output format is identical to the input format - one point per line with the \(x \) and \(z \) values separated by spaces, and \(s \) is the string name.

A string's colour and label are used as colour records and string labels in the output file.

4d, interface, super strings and alignment strings are only output as 3d strings. The use of the 12d Model 12da file format is formatted for writing out all 12d Model string types.

Selecting the xyzs option brings up the **Write XYZ File** for panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type - for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source of data is to be written out to a file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File</td>
<td>input</td>
<td>*.dat files</td>
<td></td>
</tr>
<tr>
<td>name of the file for the information to be written out to.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>write out, in x y z s format, all the string data specified by the Data source.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.2.5.2 User X Y Z S Output

Position of option on menu: File I/O => Data output => x y z => x y z s pt_id

The xyzs output format is identical to the user specified input format - one point per line with the x y z s and point id values in a user specified order separated by either delimiters or in fixed width columns.

super strings, 4d, interface and alignment strings are only output as 3d strings. The use of the 12d Model 12da file format is used for writing out all 12d Model strings types.

Selecting the xyzs pt_id brings up the **Write XYZS pt_id File for** panel.

![Write XYZS pt_id File for panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type</td>
<td>for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source of data is to be written out to a file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output mode</td>
<td>choice box</td>
<td>delimiter</td>
<td>delimiter, fixed width</td>
</tr>
<tr>
<td>if delimiter, the type of delimiter and the columns for the x, y, z, name and point number are given (and</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
are all optional).

If fixed width, the start and end column positions are given for x, y, z, name and point number which are all optional.

Output Settings

Number of decimal places input box 3
number of decimal places to use in the x, y and z values.

Default for null value input box -999
value to write out for z when it is a null value in 12d Model.

Include column names tick box
if ticked, the names x, y, z etc. are written out in the appropriate columns as the first line of the file.

File input *.dat files
name of the file for the information to be written out to.

Write button
write out all the string data specified by the Data source.
8.2.5.3 User X Y Z Chainage and Offset Output

Position of option on menu: File I/O => Data output => x y z => x y z s ch offset

Position of option on menu: File I/O => Data output => x y z => New x y z s ch offset

The New xyz ch offset option was introduced in V7C1g and will replace the standard option. The difference is that the new option turns off the panel fields that are not required.

The xyz and ch output option writes out the x, y, z and chainage values for each string or a centreline string can be selected and the x, y, z and chainage values from the original string are output along with the chainage and offset from the selected reference string.

Selecting xyzs ch offset brings up the Write XYZSCH File for panel.

![Write XYZSCH File for panel](image)
The fields and buttons used in this panel have the following functions.

Field Description

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source type</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data source type - for a full description go to 4.19.3 *Data Source*.

Data source

source of data is to be written out to a file.

Write

write out all the data specified by the Data source.

General tab

Number of decimal places

input box 3

number of decimal places to use in the x, y, z and chainage values.
Default for null value input box -999

value to write out for z when it is a null value in 12d Model.

Include column names tick box

if ticked, the names x, y, z etc. are written out in the appropriate columns as the first line of the file.

Output File input *.dat files

name of the file for the information to be written out to.

Report at string points tick box

if ticked, the values are output for the points (vertices) of the strings from the data source. If a centre line has been selected, then the chainage for the centre line is calculated by dropping the string vertex onto the centre line.

Report at centreline chainages tick box

if ticked, the specified chainages of the selected centre line (given by label mode etc.) are used and then the positions on the strings from the data source are calculated by going out at right angles to the centre line at the chainage.

Centreline string select
optional - a selected centreline to use for chainages.

Label mode input

regular interval,
regular interval (plus end pts)
end points only
horizontal TPs, vertical TPs,
horizontal discontinuities vertical discontinuities
all discontinuities, crests/sags
all horizontal points
type of chainages to use from the centreline.

Ch interval or n/a input

the regular interval to use for chainages.

Ch reference input 0

the chainages to user are integer multiples of the chainage interval added to the reference chainage. For example, if the reference chainage is 23.2 and the chainage interval 10, the chainages $3.2, 13.2, 23.2, 33.2$ etc. will be used.

Start chainage input

if non-blank, the string chainage to start using. If blank, start at the beginning of the string.

End chainage input

if non-blank, the string chainage to finish. If blank, go to the end of the selected string.

Special chainage file box

file of special chainages to use.

Chord/arc tolerance input default chord/arc tolerance

the chord to arc tolerance to use on the centreline string for determining how many points are used around horizontal curves.

Maximum offset from centreline
if non blank, any vertices further than this distance from the centreline will NOT be written out.
If non blank, all vertices will be written out.

Position tab

Output mode
choice box delimiter delimiter, fixed width
if delimiter, then the specified data is written out, each value separated by the delimiter given in the Delimiter field.
If fixed width, the specified data is written out to a fixed position on the line. An end position is also given.

String name
if the column number (delimiter) or start-end position (fixed width) is given, then the name of the string from the data source is written out. Otherwise it is not written out.

String vertex index
if the column number (delimiter) or start-end position (fixed width) is given, then the vertex index of the string vertex is written out.

String point id
if the column number (delimiter) or start-end position (fixed width) is given, then the point id of the vertex of the string is written out.

String chainage
if the column number (delimiter) or start-end position (fixed width) is given, then the string chainage of the vertex of the string is written out (not the centre line chainage).

String x/y/z
if the column number (delimiter) or start-end position (fixed width) is given, then the x/y/z co-ordinate of the position on the string is written out (not the centre line x/y/z).

CL offset
if the column number (delimiter) or start-end position (fixed width) is given, then the offset of the string from the centre line is written out.

CL chainage
if the column number (delimiter) or start-end position (fixed width) is given, then the chainage of the centre line is written out.

CL x/y/z
if the column number (delimiter) or start-end position (fixed width) is given, then the x/y/z co-ordinate of the position on the centre line string is written out.
8.2.5.4 User X Y Z and Attributes Output

Position of option on menu: File I/O => Data output => x y z => x y z general

The xyzs output format is identical to the user specified input format - one point per line with the x y z s, point ID and attribute values in a user specified order separated by either delimiters or in fixed width columns.

In either case, the user specifies the order that the x, y, z, string name, point ID and attributes appear in the file. Only one or more of the items needs to be written out.

The set-ups for defining all the positions of all the data in the file can be written out to a file (.xyf) for re-use.

Super strings, 4d, interface and alignment strings are only output as 3d strings. The 12d Model 12da file format is used for writing out all string types.

Selecting xyz general brings up the Write X Y Z General File for panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

Data to write section
Data source type
Model

data selection type - for a full description go to 4.19.3 Data Source.

Data source
input

source of data is to be written out to a file.

Parameters section

Parameter file
input *.xyf files

name of the file containing the settings for how the data is positioned in the output file.

Read icon
button

read the parameter file in.

Write icon
button

write the setting in the panel out to a parameter file.

Output settings section

Number of decimal places
input box 3

number of decimal places to use in the x, y and z values.

Default for null value
input box -999

value to write out for z when it is a null value in 12d Model.

Include column names
tick box

if ticked, the names x, y, z etc. are written out in the appropriate columns as the first line of the file.

File
input *.dat files

name of the file for the information to be written out to.

Output mode
choice box Delimiter Delimiter, Fixed width

if Delimiter, the type of delimiter and the columns for the x, y, z, string name, attributes etc. are given (and are all optional).

If Fixed width, the start and end column positions are given for x, y, z, string name, attributes etc. which are all optional.

Delimiter
choice box tab \f one space, tab \t, semi colon, comma many spaces

if Output mode is Delimiter, then this is the type of delimiter to separate data in the output file.

Information Type Grid - Column number in file (Delimiter) or Start/ End (Fixed Width)

Information Type
choice box x coord, y coord, z coord, chainage, radius segment major, string name, string number string name/string number, point id vertex text, segment text

information to write out (x,y,z, attributes etc.) and this position in the output file.

Position # (Delimiter) or Start/ End (Fixed Width)

if Delimiter, the position number of the information in the tab separated file.

If Fixed Width, the start and end column position for the information.

Attribute Grid

Attribute Mode
choice box string, segment, vertex
Data Output

type of attribute to write out

Attribute Name

name of the attribute to write out

Position # (Delimiter) or Start/ End (Fixed Width)

if Delimiter, the position number of the information in the tab separated file.

If Fixed Width, the start and end column position for the information.

Write button

write out all the string data specified by the Data source to the given file.

Clipboard button

write out all the string data specified by the Data source to the clipboard.
8.2.6 Output DGN Binary Files

Position of menu: File I/O => Data output => DGN

DGN output is a separate chargeable module.
The options under DGN write DGN V7 and DGN V8 binary files.
There is also an option to create/edit a DGN output map file.
The DGN walk-right menu is

For DGN V8, go to
Output map file
DGN V7

write DGN V8 binary file
Create/edit Output map file for DGN V8 binary
write DGN V7 binary file

8.2.6.1 Output DGN V8
8.2.6.2 DGN V8 Output Map File Create/Edit
8.2.6.3 Output DGN V7
8.2.6.1 Output DGN V8

Position of option on menu: File I/O => Data output => DGN => DGN V8

DGN output is a separate chargeable module.

NOTE: the format of the DGN file has changed for DGN V8 but it is proprietary to Bentley and it has not been published. This is a beta version of the DGN V8 Writer to try and write DGN V8 binary files. At this stage it is better to use DWG I/O to go in and out of Microstation V8.

Note: this option is under development

On selecting the DGN V8 option, the Write DGN V8 File panel is displayed.

The fields and buttons used in this panel have the following functions.

Field Description	Type	Defaults	Pop-Up
Data source type | Model | | |
Data source | input | | |
DGN V8 file | file box | *.dgn files | |
Dimension | choice box | 2d, 3d | |
Template | file box | *.dgn files | |
DGN output map file | file box | *.dgnmfx files | |
Write | button | | read the data out as a DGN V8 binary file.
8.2.6.2 DGN V8 Output Map File Create/Edit

Position of option on menu: File I/O => Data Output => DGN => Output map file

The DGN output map file option creates or edits the map files used when writing data out to Microstation DGN V8 binary format using the DGN V8 option (not used for plotting to DGN V8).

Selecting DGN output map file brings up the DGN Export Map File Create/Edit panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map file</td>
<td>input</td>
<td>*.acadmf</td>
<td></td>
</tr>
</tbody>
</table>

name of the DGN output map file to be created or edited.

Read button

read in the DGN output map file given in the map file field and load the data into the fields of the table. If the file doesn’t exist, an error message is given.

Write button

write out the data in the table to the file name given in the map file field. If the file already exists, a Replace-Cancel panel checks to see if the existing file is to be over written - if no or cancel is selected, nothing is written out.

Grid Cells

12d Name

12d Model string names for the mapping to apply to - wild cards (*) and characters (!) can be used.

DGN level

Microstation level to send the selected strings to. Use * to write the 12d Model model of the string out

Dgn colour
Microstation colour to use for the selected strings. Use * for 12d Model colour number.

Dgn linestyle
Microstation linestyle to use for the selected strings. Use * for 12d Model linestyle

Dgn Textstyle
Microstation Textstyle to use for the selected strings. Use * for 12d Model text style

Dgn Lineweight
Microstation lineweight to use for the selected strings.
8.2.6.3 Output DGN V7

Position of option on menu: File I/O => Data output => DGN => DGN V7

DGN output is a separate chargeable module.

Using the DGN V7 option, 12d Model produces DGN binary files (*.dgn files - as defined in the public domain by Intergraph Corp) as used by Intergraph and Microstation. Since DGN V7 supports 3d faces, the triangles created in 12d Model can be transferred to DGN V7 for use in shaded models and walk-throughs.

DGN V7 files are either 2d or 3d. 12d Model can write either type of file. If a 3d file is being written, the 12d Model strings will be written out as three dimensional DGN lines. The alignment strings and arcs will be approximated by short lines.

If a 2d file is being written, arcs in alignment strings are written out as DGN plan arcs.

When creating a DGN V7 binary file, it is often convenient to append the information to an existing DGN file known as a *seed file* (the seed file usually contains set up information for the DGN V7 drawing).

In 12d Model the user can specify a folder containing seed files by pointing to it using the environment variable MS_SEEDFILES_4D. In the DGN V7 output option, the pop-up for the *seed file* panel field displays all the files ending in .dgn in the folder pointed to by MS_SEEDFILES_4D.

If the environment variable MS_SEEDFILES_4D has not been set, the pop-up uses the current working folder to search for seed files.

It is possible to use an output map file (called a table file) with string name as the key to set DGN V7 levels, colours, weight, style and special symbols (see next section). Because of the limitation of 64 levels in DGN V7, using a table file is normally the best method of getting data across to DGN V7.

On selecting the DGN V7 option, the Write DGN V7 File panel is displayed.

![Write DGN V7 File panel](image)

The fields and buttons used in this panel have the following functions.
<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type - for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source of data is to be written out to a DGN V7 binary file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DGN file</td>
<td>input</td>
<td>*.dgn</td>
<td></td>
</tr>
<tr>
<td>name of the DGN V7 file to write the model/view data out to. If the file exists, it is appended to, and the settings for TCB variables are read from the file. If the file does not exist, it is created with default TCB settings. The file is created either 2d or 3d depending on the DGN Dimension field.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DGN Dimension</td>
<td>input</td>
<td>3d</td>
<td>2d/3d</td>
</tr>
<tr>
<td>this field controls the dimension of DGN files created for the case where the file named in the Seed file does not exist.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seed file</td>
<td>input</td>
<td>files in the seed folder</td>
<td></td>
</tr>
<tr>
<td>if non-blank, this field gives the name of the DGN V7 file to be used as a seed file for the DGN V7 output. The folder containing the seed files, the seed folder, is given by the environment variable MS_SEEDFILES_4D.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table file</td>
<td>input</td>
<td>*.tbl file</td>
<td></td>
</tr>
<tr>
<td>if non-blank, the file is used as an output map file between 12d Model and the .dgn binary file. See 8.2.6.3.1 DGN V7 Output Mapping File (Table File).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map DGN Colours</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if not ticked, 12d Model colour number n is mapped to DGN V7 colour n. if ticked, some of the 12d Model colours are attempted to be mapped to DGN V7 colours.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point strings as DGN line</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, 12d Model points go out as DGN V7 two point strings with the same value for each point. if not ticked, 12d Model points go out to DGN V7 points.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TREE features as text</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked and their is a table file match for TREE, then 12d Model writes out feature strings of name "TREE" as text in DGN. Other feature strings go out as circles. if not ticked, all 12d Model feature strings go out as DGN V7 circles.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polylines as complex elements</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked and DGN dimension is 2d, 12d Model writes out polylines as complex elements made up of lines and arcs. if not ticked, the polyline goes out as individual lines and arcs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output view text</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, any view text turned on (point numbers, z-values etc.) are output as text in DGN V7. if not ticked, view text is not output.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>write out the all the data specified by the Data source to the file given in the DGN file field.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.2.6.3.1 DGN V7 Output Mapping File (Table File)

When using the output options to write out a DGN V7 file, a DGN V7 output mapping file (table file) can be used, with string names as the key, so that the user can specify DGN level, colour, weight, style and some information which is placed in an DGN attribute. The format is based on the VicRoads specification.

The key can have wild cards (*) and wild characters (?) as for the input map files.

The table consists of lines containing either 8 or 16 free format fields. Fields 9-16 can be left off if they are not needed.

The key for the map is the 12d Model string name which is given as the first field of a line. The rest of the fields on the line are used for .dgn information.

field 1 12d Model string name (any length but if field 2 is a *, only the first four characters are passed)
field 2 text of which the first four characters are used in a DGN V7 attribute. For example,
the VicRoads code
field 3 AS2482 feature code
field 4 description (any length but quotes needed if there are embedded spaces)
field 5 line level (between 1 and 64)
field 6 line colour (between 1 and 256)
field 7 line weight (between 1 and 7)
field 8 line style

fields 9-16 are only used for special symbols placed at points.
field 9 symbol font (between 0 and 7)
field 10 symbol character
field 11 symbol character justification
field 12 symbol character height
field 13 symbol character width
field 14 symbol level
field 15 symbol weight
field 16 symbol colour

Field 1, the 12d Model string name, can contain wild cards * or wild characters ?.

Field 2, a text string, and the first four characters of the text is inserted into a DGN V7 attribute. This DGN V7 attribute is used by the 12d Model DGN V7 reader for matching with a 12d Model input map file.

If field 2 is a * then the first four characters of the 12d Model string name is inserted as an Intergraph attribute.

Line strings and Text strings only use fields 1 to 8 and ignore fields 9-16 (if they exist).

Fields 9 through 16 are only used for 12d Model point strings which are then mapped with the specified Intergraph symbol at each point of the string.

If either field 12 or 13 is zero, then it is interpreted to mean that only the first 8 fields are used.

If any of the fields 5 through 16 (except 9 and 11) is a *, then that field is not used in the map.

Double quotes " are entered as text as ", a ' as \ and a \ as \\.

An example of a map table where the first four characters of the 12d Model string names are passed directly through to the DGN attribute.

<table>
<thead>
<tr>
<th>String</th>
<th>Code</th>
<th>Description</th>
<th>Level</th>
<th>Colour</th>
<th>Weight</th>
<th>Style</th>
<th>Symbol Font</th>
<th>Symbol Character</th>
<th>Justification</th>
<th>Height</th>
<th>Width</th>
<th>Level</th>
<th>Weight</th>
<th>Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONT</td>
<td>*</td>
<td>50020000</td>
<td>"Contour - Standard"</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOP</td>
<td>*</td>
<td>25060001</td>
<td>"Top - Cut/fill/bank"</td>
<td>2</td>
<td>11</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOE</td>
<td>*</td>
<td>25060002</td>
<td>"Toe - Cut/fill/bank"</td>
<td>3</td>
<td>11</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES*</td>
<td>*</td>
<td>50090001</td>
<td>"Existing surface-spot"</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>110</td>
<td>A</td>
<td>7</td>
<td>1000</td>
<td>1000</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>
An example of a map table where the 12d Model string names are used for mapping but different names go through to the DGN attribute.

CIND * 50080000 "Contour - Index" 2 4 1 0
101 CONT 50020000 "Contour - Standard" 2 4 0 0
102 TOP 25060001 "Top - Cut/fill/bank" 2 11 1 2
104 ES 50090001 "Existing surface-spot" 4 9 1 0 110 A 7 1000 1000 4 0 9

Return to 8.2.6.3 Output DGN V7
8.2.7 Output DWG/DFX/DXB Files

Position of menu: File I/O => Data output => DWG/DFX/DXB

DWG/DFX/DXB i/o is a separate chargeable module.

The option under DWG/DFX/DXB writes DWG, DXF and DXB files in a variety of AutoCAD formats.

There is also an option to create/edit an AutoCAD output map file.

The DWG/DFX/DXB walk-right menu is

- write DWG/DFX/DXB V8 files
- Create/edit Output map file for DWG

For DWG/DFX/DXB, go to

- Output map file 8.2.7.1 DWG/DFX/DXB Output
- 8.2.7.2 AutoCAD Output Map File Create/Edit
8.2.7.1 DWG/DXF/DXB Output

Position of option on menu: File I/O => Data output => DWG/DXF/DXB => DWG/DXF/DXB

DWG/DXF/DXB i/o is a separate chargeable module.

The DWG/DXF output format is for writing data out in a format compatible with AutoCAD versions 2.5 to 2010.

12d Model line strings are output as POLYLINEs, point strings as a series of AutoCAD POINTs and triangles as 3DFACEs.

By default, the string or triangle colour is used in the Autocad colour record.

Trimeshes can be written out to a DWG file as either Polyface Meshes, 3DFaces or not at all. The choice is set by the environment variable _TRIMESH_TO_DWG_MODE_4D_ in the _External Apps > AutoCAD_, node of the _Edit Environment Variables_ panel.

An AutoCAD Polyface Mesh can only have one colour so if the choice is **Polyface mesh** then the trimesh colour is used and any differently coloured trimesh triangles will only go out in the trimesh colour.

If the choice is **Faces** then each 3DFace is given the colour of the corresponding triangle of the trimesh.

The DXF layer used is the items model name with any spaces in the model name replaced by a minus (-). However, a DXF output map file with matches on string name can be used to give DXF layers, colours and line type (see next section).

Super strings, 4d, interface and alignment strings can only output as Autocad POLYLINES.

When creating an AutoCAD file, it is often convenient to use an existing AutoCAD file as a template or **seed file** (the seed file usually contains set up information for the AutoCAD drawing).

In **12d Model**, the user can specify a folder containing seed files by pointing to it using the environment variable ACAD_SEEDFILES_4D. In the AutoCAD DWG/DXF output option, the pop-up for the **seed file** panel field displays all the files with the appropriate ending in the folder pointed to by ACAD_SEEDFILES_4D.

If the environment variable ACAD_SEEDFILES_4D has not been set, the pop-up uses the current working folder to search for seed files.

It is also possible to use a label map file to create labels for vertex information such as z-values, symbols and point numbers which are written directly to the AutoCAD file. See the section 8.7.1 Create/Edit Label Map File and 8.7.2 Apply a Label Map File for more information on the label map file.

On selecting the **DWG/DXF** output option, the **Write DWG/DXF file for** panel is displayed.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data selection type - for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source of data is to be written out to a file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Format</td>
<td>choice</td>
<td>dwg</td>
<td>dwg, dxf, bdxf</td>
</tr>
<tr>
<td>AutoCAD format of the file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit</td>
<td>choice</td>
<td>Metric</td>
<td>Metric, English</td>
</tr>
<tr>
<td>AutoCAD units type.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AutoCAD release

choice

AutoCAD 2004
AutoCAD 12, 13, 14
AutoCAD 2000, 2002, 2004

AutoCAD version of the file to be produced.

File name

input

name of the ACAD file for the data to be written out to.

Template file

input

name of the file to use as the AutoCAD template

Button at Bottom

Write button

write out, in DWG/DXF format, all the data specified by the Data source, to the file given in the field.

General tab

Dimension

choice 3d 2d, 2d and contours 3d

if 2d, the z-value of all the data is set to zero and arcs and curves in alignment strings are written out as dxf polylines with bulges for the arcs.

If 2d and contours 3d, the z-value of all the non-contour data is set to zero and arcs and curves in alignment strings are written out as dxf polylines with bulges for the arcs. Contours are written out as 3d polylines.

If 3d, strings will be written out as three dimensional DXF polylines. Alignment strings and arcs will be approximated by short lines.

Null level value

input -999

AutoCAD z-value to use for any vertices with the 12d Model null value

Map file

input *.acadmf files

if non-blank, the name of an AutoCAD output map file to map the data. See 8.2.7.2 AutoCAD Output Map File Create/Edit.

Scale for paper/pixel text 1: input 1000

scale to use to convert 12d Model paper and pixel text to ACAD world units

Symbol colour

choice box default default, by block, by layer

if default, use the 12d Model colour.

If By block, write out as BY BLOCK.

If By layer, write out as BY LAYER.

Use blocks for point styles tick box

if ticked, write out blocks for symbols at vertices

Colour by layer

tick box no tick

if ticked, the colour is set to BY LAYER

Linetypes by layer

tick box no tick

if ticked, the linestyle is set to BY LAYER

Features as arcs

tick box no tick

if ticked, feature strings output as arcs in DXF.

if not ticked, the centre of the feature string is output as a point.
Create string super text tick box no tick
 if ticked, write out text for super string vertex text and segment text

Clockwise triangles tick box tick
 if ticked, the vertices for triangles in a tin are written out in clockwise order.

Text/Attributes

Label map file *.lmf files
 if not blank, the name of a file to be used as label map file for creating labels that will go out to the AutoCAD file.

Layer name for symbols
 if not blank, the name of the layer to place symbols in.

Text tick boxes tick boxes
 if Vertex is ticked, vertex text is written out
 if Vertex index is ticked, vertex indices are written out
 if Point id is ticked, point ids (vertex id’s) are written out
 if Height is ticked, the z-values at each vertex are written out
 if Code is ticked, the string name is written out

Att tick boxes tick boxes

Layer Name
 name of the AutoCAD layer to write text to

Write attributes: vertex tick box
 if ticked, write out vertex text

Write attributes: segment tick box
 if ticked, write out segment text

Advanced

Space in model name choice box space space, underscore, hyphen
 if space, then spaces in 12d Model names go out as spaces to ACAD layer names.
 If underscore, then spaces in 12d Model names go out as underscores to ACAD layer names.
 If hyphen, then spaces in 12d Model names go out as hyphens to ACAD layer names.

Acad point style choice style 0 Acad point styles

Point mode choice relative relative, absolute
 if relative, then
 If absolute, then.

Point size (%) input 5

Output view text tick box no tick
 if ticked, any view text turned on (point numbers, z-values etc.) are output as text in DXF.
 if not ticked, view text is not output.

Explode interface strings tick box no tick
 if ticked, interface strings are broken into separate strings for the cut or fill colour.
 If not ticked, interface strings are written out as one string in magenta.
Use model name for mapping tick box no tick
 if ticked,
 if not ticked.

Use symbol name for mapping tick box no tick
 if ticked,
 if not ticked.

Use textstyle_data name for mapping tick box no tick
 if ticked,
 if not ticked.

Associate vertex attributes with symbol tick box no tick
 if ticked,
 if not ticked.

Vertex attributes height input -999

Transition chainage interval
 since AutoCAD does not have a transition element (spirals etc.), a transition can only be approximated. This is the chainage length to break up transitions.

Transition chord to arc
 the chord-to-arc tolerance to use when approximating transitions.
8.2.7.2 AutoCAD Output Map File Create/Edit

Position of option on menu: File I/O => DWG/DXF/DXB => Output map file

The Output map file option creates or edits the map files used when writing data out to AutoCAD using the DWG Output option (not used for plotting to AutoCAD).

Selecting Output map file brings up the AutoCAD Export Map File Create/Edit panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map file</td>
<td>input</td>
<td>*.acadmf</td>
<td></td>
</tr>
</tbody>
</table>

name of the AutoCAD output map file to be created or edited. See 8.2.7.2.1 DWG/DXF Output Map File acadmf.

Read button

read in the AutoCAD output map file given in the map file field and load the data into the fields of the table. If the file doesn’t exist, an error message is given.

Write button

write out the data in the table to the file name given in the map file field. If the file already exists, a Replace-Cancel panel checks to see if the existing file is to be overwritten - if no or cancel is selected, nothing is written out.

Grid Cells

12d Name

12d Model string names for the mapping to apply to - wild cards (*) and characters (!) can be used.

Acad layer

AutoCAD layer to send the selected strings to. Use * to write the **12d Model** model of the string out.
Acad colour

AutoCAD colour to use for the selected strings - a number between 0 and 256. Use * for 12d Model colour number. Use BYLAYER for ACD BYLAYER

Acad linestyle

AutoCAD linestyle to use for the selected strings. Use * for 12d Model linestyle or BYLAYER for ACD BYLAYER

Acad Textstyle

AutoCAD Textstyle to use for the selected strings. Use * for 12d Model text style

Acad Lineweight

AutoCAD Lineweight to use for the selected strings.

Comment

Place comments in this field.
8.2.7.2.1 DWG/DXF Output Map File acadmf

See 8.2.7.2 AutoCAD Output Map File Create/Edit.

When using the output options to write out a DWG/DXF file, an output map file can be used, with 12d Model string names as the entity-name to match the key, so that the user can specify AutoCAD colour and style. BYLAYER can be used with colour and style.

The key can have wild cards (*) and wild characters (?) as for the input map files. The fields in the DWG/DXF output map file are (ACD = AutoCAD):

- **field 1** key - string name can include wild cards * and wild characters ?
- **field 2** ACD layer * for 12d Model name
- **field 3** ACD colour number between 0 and 256, * for 12d Model colour mapped to ACD, BYLAYER for ACD BYLAYER
- **field 4** ACD line type * for 12d Model linestyle, BYLAYER for ACD BYLAYER
- **field 5** ACD text style not yet used, * for 12d Model text style

An example of an DWG/DXF output map file is.

```
// 1 2 3                     4                               5
// key layer colour           linetype                  textstyle
cont* CONTOURS 1 1                                   *
EB* ROAD 2 CONTINUOUS *
103 * 3 * *
fe* FENCE * BYLAYER *
SURV* SURVEY BYLAYER DASH *
```

Return to 8.2.7.1 DWG/DXF/DXB Output.
8.2.8 Genio Output

Position of option on menu: File I/O => Data output => Genio

Genio i/o is a separate chargeable module.

The Genio output option write out the strings selected by the data source, to a genio file, the format used by MX (formerly Moss). A genio 001 option is used to specify the record format.

Because MX and in 12d Model have different data types, not all 12d Model data can be transferred to MX. The user must be aware of what data can be transferred to MX.

1. MX model names are limited to thirty two characters (in upper case). Hence the first thirty two characters of the 12d Model model name are converted to upper case and used as the MX model name.

2. MX string names can only be four characters and each string in MX must have a unique name. This limits MX to a maximum of 1,679,616 string. Strings can have the same name in the genio file but the strings will be *renamed* when read into MX to give each string a unique name.

Since 12d Model places no restrictions on string name length, the following rules are used to produce genio string names.

For a line-string, the first four characters of the string name are used as the genio string name. The four characters are mapped to upper case. Remember that MX line strings can not start with a P.

For a point-strings whose names start with P, the first four characters of the string name are used as the genio string name. Otherwise the genio string name is P plus the first three letters of the point-string name. The three letters are mapped to upper case.

3. 12d Model null heights go out as -999 to MX.

4. The four character limit and uniqueness for MX string names restricts the number of strings that can be read into MX. For example, since points strings must start with P so there can be a maximum of 46,656 point strings. Or if a MX string must start with ABB say, then there can only be 36 distinct ABB strings in the MX project.

5. All MX x and y co-ordinates have to be positive. That is, all co-ordinates must be in the first quadrant.

6. 12d text strings go out as MX text strings but there is a maximum of 44 characters in the MX text string. There is no unit for height in the MX text string as well as no font. The name of a MX text string must start with a * so 12d Model uses * and the first three characters of the text string’s name.

7. 2d and 3d strings in 12d Model go out to MX as 2d and 3d strings respectively.

8. 4d strings in 12d Model go out to MX as 4d strings except that the text is restricted to four characters.

9. Alignment and super alignments can be written out to MX as MX 3d, 6d or 12d string.

10. For super strings:

 Point id’s are ignored in all cases.

 On the Genio output panel, this is a tick box Include segment text and if it is ticked then segment text is written out as MX text strings, otherwise segment text is ignored.

 On the Genio output panel, this is a tick box Include vertex text and if it is ticked then the super string is written out as a MX 4d string and with the first four characters as the vertex text for a point.

 Attributes are ignored in all cases.

 Diameter and culvert width and height are ignored.

 Colour and segment colour are ignored.

 If there is an invisibility segment, the string is broken into two.

 Tinability is a real problem. MX has no such concept apart from the entire string being a point.
string or a line string. There is a tick box to write out non-tinable data. If a segment is non-tinable, the string is broken into two.

Arcs in super strings or arc strings or circles are broken into line segments using the chord to arc tolerance in the genio output panel, or the system default if there is no value in the panel. Super strings with a fixed z-value and no vertex text (i.e. that is no z-value at each point, just the one z for the entire string) go out at MX 2d strings.

Super strings with a z-value at each vertex and no vertex text (that is a z-value at each point) go out as MX 3d string

Super strings with a z-value at each vertex and vertex text (that is a z-value at each point and text at each point) go out as MX 4d strings with the four characters of the vertex text as the forth dimension.

On selecting the Genio output option, the Write Genio File for panel is displayed.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

data selection type - for a full description go to [4.19.3 Data Source](#).

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

source of data is to be written out to a file.

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>input</td>
<td>*.mos files</td>
</tr>
</tbody>
</table>
name of the genio file the model/view is to be written out to. If the file already exists, the data will be appended to the bottom of the file.

Alignment/arc dimension
input
3d
3d, 6d, 12d, 6d & 12d

If 3d is selected, alignment and arc strings as written out as MX 3d string as a series of straight lines (x, y, z at each point).
If 6d is selected, alignment and arc strings are written out as MX 6d strings (chainage, x, y, z, bearing, and radius at each point).
If 12d is selected, alignment and arc strings are written out as MX geometry strings (called 12d strings in MX). This is the only way that full horizontal and vertical geometry can be transferred to MX.
If 6d & 12d is selected, alignment and arc strings are written out as MX 6d strings and MX geometry strings.

Output super strings with arcs as 3d
tick box

If ticked,

Chainage interval
input

If 3d is selected as the **Alignment/arc dimension**, the alignments and arcs are approximated using the Chainage interval and the Chord/arc tolerance.

Chord/arc tolerance
input

If 3d is selected as the **Alignment/arc dimension**, the alignments and arcs are approximated using the Chainage interval and the Chord/arc tolerance.

Terminator value
input -999

value to use to terminate strings in the genio file.

Insert DELETE/CREATE
tick box tick

If ticked, the genio commands DELETE and CREATE are written at the top of the file to correctly define the moss models for the data.

77 format
tick box

If ticked, use the MX 77 formats for the genio strings.

Convert 2d to 3d
tick box tick

If ticked, write strings with a fixed z-value (2d strings) out in MX 3d string format in the genio file.

Include string numbers
tick box

If ticked, the MX string name includes the surveyors string number. Note - the MX string name can still only be four characters.

String numbers as base 36
tick box

If ticked, the surveyors string number is converted to Base 36 (that is user 0...9, A... Z). Note - the MX string name can still only be four characters.

Write non-tinable data
tick box tick

If ticked, strings that are not tinable are written out.
If not ticked, strings that are not tinable are not written out.

Output survey stations
tick box tick

If ticked,

Include vertex text
tick box tick

If ticked, write out strings with vertex text as MX 4d string with the first four characters of the vertex text as the text on the MX 4d string, otherwise do not write the text out.

Include segment text
tick box tick
if **ticked**, write out segment text as text strings otherwise do not write the text out.

Vertex text as 4d strings tick box tick

if **ticked**, vertex text is written out as a MX 4d string

Combine point strings tick box

if **ticked**, point strings of the same name in 12d are combined into one point string when written out.

Combine line strings tick box

if **ticked**, strings of the same name in 12d are combined into one MX string (using MX discontinuities to separate the strings) when written out. This is trying to get over the MX four character name limitation.

Combine text strings tick box tick

if **ticked**, text strings of the same name in 12d are combined into one MX text string when written out. This is trying to get over the MX four character name limitation.

Combine only when needed tick box tick

if **ticked**, when there are more strings of the same name in 12d than the MX four character name restriction would allow, the strings are combined into one MX string when written out. This is trying to get over the MX four character name limitation.

Allow non tangential alignments tick box

if **ticked**, alignments where some elements are not tangential are written out.

if **not ticked**, alignments with non tangential elements are not written out.

Divide text height by 10 tick box tick

if **ticked**, divide the text height by 10

Write button

write out in genio format all the data specified by the Data source, to the file given in the **file** field. If the file already exist, the data will be appended to the file.
8.2.9 LandXML Output

Position of option on menu: File I/O => Data output => LandXML.

LandXML i/o is a separate chargeable module.

LandXML is a format that attempts to cover some civil and surveying entities. It does not include any information such as colours, styles etc. but just some geometry definitions.

Unfortunately to make the format useful, every vendor has their own proprietary extensions which makes the format of only limited value. A different tailored LandXML writer is required for each vendor variation. The names and definitions of transitions vary from vendor to vendor. *(12d Model)* has special LandXML writers for LINZ-XML (for LandOnline NZ) and Leica-XML.

Finally the methodology behind the LandXML model is based on US ideas of using X-sections and not strings to model data. This makes is unsuitable except for simple civil models.

This option is under continual developed as the LandXML standard keep changing.

On selecting the LandXML option, the **Read LandXML File** panel is displayed.

![Read LandXML File panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td>data selection type - for a full description go to 4.19.3 Data Source.</td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td>source of data is to be written out to a file.</td>
<td></td>
</tr>
<tr>
<td>Include data for Tins</td>
<td>tick box</td>
<td>if ticked, tins are included in the LandXML output</td>
<td></td>
</tr>
<tr>
<td>File</td>
<td>input</td>
<td>*.xml</td>
<td>name of the LandXML file to write to</td>
</tr>
<tr>
<td>Transition mapping</td>
<td>input</td>
<td>*.trans_map files</td>
<td>file containing the mapping of transitions between the names of LandXML transitions and equivalent transitions in 12d Model</td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
write the selected data to a LandXML file.
8.2.10 Output MapInfo MID/MIF Files

Position of menu: File I/O => Data output => Mapinfo

MID/MIF i/o is a separate chargeable module.

The options under MapInfo write out MapInfo MID and MIF files.

The MapInfo walk-right menu is

For MID/MIF

MID/MIF (new)

- 8.2.10.1 Write Mapinfo Tab/Mif Files For (new)
- 8.2.10.2 Write Mapinfo Tab/Mif Files For (New)

write out MID/MIF data

another MID/MIF writer
8.2.10.1 Write Mapinfo Tab/Mif Files For

Position of option on menu: File I/O => Data output => Mapinfo => MapInfo MID/MIF

The MapInfo MID/MIF format is used for sending data to MapInfo.

On selecting the MapInfo MID/MIF option, the Write MapInfo Tab/Mif Files for panel is displayed.

![Write MapInfo Tab/Mif Files for (Old)](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type - for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source of data is to be written out to a file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File format</td>
<td>choice box</td>
<td>TAB</td>
<td>TAB, MIF</td>
</tr>
<tr>
<td>MapInfo format to use for writing out the data.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File</td>
<td>choice box</td>
<td></td>
<td>*.tab, *.mif files</td>
</tr>
<tr>
<td>name of the file to write the data out to.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour for white</td>
<td>colour box</td>
<td></td>
<td>available colours</td>
</tr>
<tr>
<td>colour to use in MapInfo for white in 12d Model (because MapInfo has a white background).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>write out, in MapInfo file format, all the string data specified by the Data source.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.2.10.2 Write Mapinfo Tab/Mif Files For (New)

Position of option on menu: File I/O => Data output => Mapinfo => MapInfo MID/MIF (new)

This section of documentation is a work in progress and will be updated in subsequent releases.

The MapInfo MID/MIF format is used for sending data to MapInfo.

On selecting the MapInfo MID/MIF option, the Write MapInfo Tab/Mif Files for panel is displayed.

![Write MapInfo Tab/Mif Files for panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data to write Tab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data selection type - for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source of data is to be written out to a file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MapInfo settings Tab</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coordinate system</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MapInfo file of coordinate definitions. The coordinate system that the current data is in is selected from the list.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note - data in MapInfo is stored in longitude and attitude. When MapInfo reads data in it needs to know the coordinate system that the data is in so that it can convert the data to longitude/attitude as it...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
reads the file. The list of coordinate systems in the **Coordinate system** pop-up is in the file mapinfo.4d. Mapinfo.4d has exactly the same format as the file MAPINFO.W.PJR used by MapInfo.

If there are any coordinate systems missing that are in your MapInfo system, simply copy the file MAPINFO.W.PJR from your MapInfo system into the **12d Model User** folder and give it the name mapinfo.4d instead of MAPINFO.W.PJR.

| **File format** | choice box | TAB | TAB, MIF | MapInfo format to use for writing out the data.
|----------------|------------|-----|----------|
| **File** | choice box | *.tab, *.mif files | name of the file to write the data out to.
| **Colour for white** | colour box | available colours | colour to use in MapInfo for white in **12d Model** (because MapInfo has a white background).
| **Scale for paper/pixel text 1**: | real box | 1000 | scale to use to map paper and pixel text sizes

String Info Tab

String Attributes Tab

Linestyles Tab

Symbols Tab

| **Write** | button | write out, in MapInfo file format, all the string data specified by the Data source. |
8.2.11 CivilCAD

Position of option on menu: File I/O => Data output => Civilcad V5

CivilCAD output is an unsupported option supplied to users with the CivilCAD input option. Civilcad input is a chargeable module.

Because of the limitations of the CivilCAD text format, the CivilCAD output option can only output a limited number of 12d Model data types.

The Civilcad output option writes some 12d Model data to a CivilCAD 5.0 text file. Because CivilCAD text can only take points, lines between two points and arcs, only 12d Model data that can output that way can be written out.

The only 12d Model data types that can be written out to Civilcad text are:

- 2d strings
- 3d strings
- arcs
- circles
- polylines
- the line work from super strings
- text

Note that the following 12d Model data that can not be output to CivilCAD text:

- alignments
- super alignments
- drainage/sewer strings
- pipeline strings
- pipe strings
- attributes
- most super string properties
- triangulations
- rasters

On selecting the Civilcad output option, the Write CivilCAD Ascii File panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Data to write</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civilcad file to write</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour mapping table</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Style mapping table</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processing</td>
<td>Write</td>
<td>Finish</td>
<td></td>
</tr>
</tbody>
</table>
Data source type
Model

data selection type - for a full description go to 4.19.3 Data Source.

Data source
input

source of data is to be written out to a file.

CivilCAD file to write
input *.as5 files

name of the file the model/view is to be written out to. If the file already exists, the data will be appended to the bottom of the file.

Colour mapping table
*.as5_colour_map files

mapping of 12d colours to CivilCAD colours

Style mapping table
*.as5_style_map files

mapping of 12d linestyles to CivilCAD linestyles

Write
button

write the selected data out in CivilCAD format
8.2.12 Geocomp

Position of option on menu: File I/O => Data output => Geocomp

Geocomp output is a unsupported option supplied to users with the Geocomp input option. Geocomp input is a chargeable module.

Because of the limitations of the Geocomp points and strings files, the Geocomp output option can only output a limited number of 12d Model data types.

The Geocomp output option writes some 12d Model data to Geocomp Points and Strings files. Because Geocomp can only take points, lines between two points and arcs, only 12d Model data that can output that way can be written out.

The only 12d Model data types that can be written out to Geocomp points and strings files are:

- 2d strings
- 3d strings
- arcs
- circles
- polylines
- the line work from super strings
- text

Note that the following 12d Model data types that can not be output to Geocomp:

- alignments
- super alignments
- drainage/sewer strings
- pipeline strings
- pipe strings
- attributes
- most super string properties
- triangulations
- rasters

On selecting the Geocomp output option, the write Geocomp ascii file panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data to write</td>
<td>choice box</td>
<td>Model</td>
<td>Model, View</td>
</tr>
<tr>
<td>Data type source</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

the type of data to be written out to a file.
source of data is to be written out to a file.

Output file file box *.pts/*.str files

name of the file the model/view is to be written out to. If the file already exists, the data will be appended to the bottom of the file.

Write button

write out Geocomp Points and Strings files the data in the model/view given in the model/view field, to the file given in the output file field.
8.2.13 TP Stakeout Triangles Output

Position of option on menu: File I/O => Data output => TP Stakeout triangles

The *TP Stakeout triangles* option writes out a tin as a TP Stakeout binary file.

On selecting the *TP Stakeout triangles* output option, the **Write TP Stakeout Binary Triangles** panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>name of the tin to write out in TP Stakeout binary format.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin polygon selection</td>
<td>poly string-select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if selected, only triangles with their centroid inside this string are written out</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP Stakeout binary file</td>
<td>input</td>
<td>*tsb</td>
<td></td>
</tr>
<tr>
<td>name of the file for the triangles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triangles per cell</td>
<td>a TP Stakeout parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copy to GradeSmart 3D</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, copy file to GradeSmart folder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GradeSmart 3D folder</td>
<td>folder box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>folder for GradeSmart files</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>write out the tin in TP Stakeout binary format.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.2.14 TP Stakeout Strings Output

Position of option on menu: File I/O => Data output => TP Stakeout strings

Note - this is a chargeable option

The TP Stakeout strings option writes out selected strings as a TP Stakeout binary file.

Selecting TP Stakeout strings brings up the **Write TP Stakeout Binary Strings** panel.

![Write TP Stakeout Binary Strings panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type - for a full description go to 4.19.3 Data Source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source of data is to be written out to a file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centreline</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>centreline string to use as the reference chainage for other strings.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HZA name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folder for strings</td>
<td>folder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>name of the folder to write out the strings to.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>write out the strings in TP Stakeout binary format.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.2.15 KML Output

Position of option on menu: File I/O => Data output => KML

The KML option writes out selected **super strings** and **tins** in the KML/KMZ file format which is used by Google Earth to load users data into the Google Earth environment.

The Google terrain can be significantly different to the terrain from survey data. If the terrain is ticked on in Google Earth it may be higher than the surveyed terrain and obscure the data from 12d.

Google Earth uses the WGS84 Ellipsoid so data must be in a projection based on either the WGS84 or GSR 80 ellipsoids, and the projection for the data known.

Google Earth does not display negative elevations.

If Google Earth does not initialise correctly and centre on the data written from **12d Model**, selecting a ‘model’ or ‘string’ will fit the data to the Google Earth display.

Selecting **KML** brings up the **Write KML** panel.

![Write KML panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type - for a full description go to 4.19.3 Data Source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions.
source of data is to be written out to a file. Only super strings and tins are output to the KML file

Projection name

Projection box

Google Earth uses Latitude and Longitude using the WGS84 spheroid (ellipsoid) to display information in its spatial location. This means that the data to be written to Google Earth should be in a coordinate system that is the same as the a mapping projection and is based on the WGS84 or GSR 80 spheroid. This field is a list of projections created from the users carto.4d file. Select the ‘projection name’ from the list that matches the coordinate system of the data.

NOTE - this projection must be based on the WGS84 or GSR80 ellipsoid (for example MGA and NOT AMG).

Project (Places) name

Enter the name to be shown in the Google Earth ‘Places’. If left blank, the file name from the KML file field is shown in the Google Earth ‘Places’.

Project Description

if non blank, this text will describe the project under the ‘Project Name’ in Google Earth.

Note:

One and only one of the next three options Follow Google terrain, Relative to Google terrain, and Actual elevation can be ticked on. Ticking one on will untick the other one that was set. You can’t untick one except by ticking on a different one.

Follow Google terrain

tick box

If ticked, the elevations of the data in 12d are ignored and the objects are ‘clamped’ to the terrain in Google Earth.

Relative to Google terrain

tick box

If ticked, the elevations of the 12d data are ignored and the objects are ‘clamped’ to the terrain in Google Earth plus the value given in the Relative offset value field.

Relative offset value

if Relative to Google terrain is ticked, the data is offset by this amount above the Google terrain. If this value is zero then it is the same as Follow Google terrain.

Actual elevation

tick box

if ticked, the z values from the 12d are used to display the objects in Google Earth
Extend objects to Google terrain tick box

if ticked the objects are displayed in Google Earth as a shape that extends from the Google terrain to
the object

KML file file box *.kmz files

name of the kmz file to be written. The kml file is an xml style of file and the kmz file is the kml file in the
‘zip’ compression format.

Process button

write out the data in KML format.
8.2.16 Export DAE

Position of option on menu: File I/O => Data output => DAE

The Collada Digital Asset Exchange (DAE) file format is a published format for writing out 3d shapes for interchange between various graphics packages.

Trimeshes, extrusions, pipes and drainage strings can be written to a DAE file.

Selecting DAE brings up the Write Collada DAE File panel:

![Write Collada DAE File panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Null z value</td>
<td>real box</td>
<td>0</td>
<td>measures menu</td>
</tr>
<tr>
<td>Output file</td>
<td>file box</td>
<td>folder browse</td>
<td>name of the file to write the DAE information to.</td>
</tr>
<tr>
<td>Origin</td>
<td>point select box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td>write out the DAE file.</td>
</tr>
</tbody>
</table>
8.2.17 Export OBJ

Position of option on menu: File I/O => Data output => OBJ

The OBJ file is a published format from Wavefront for writing out 3d shapes.

Trimeshes, extrusions, pipes and drainage strings can be written to the one OBJ file, or separate OBJ files.

Selecting OBJ brings up the **Write Wavefront OBJ Files** panel:

![Write Wavefront OBJ Files panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default colour</td>
<td>colour box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Null z value</td>
<td>real box</td>
<td>0</td>
<td>measures menu</td>
</tr>
<tr>
<td>Output files folder</td>
<td>folder box</td>
<td></td>
<td>folder browse</td>
</tr>
</tbody>
</table>

data selection type - for a full description go to 4.19.3 Data Source.
Files prefix text box
prefix to use in front of any names for the obj files.

File for whole data source tick box
if ticked, all the 3d shapes in the data source are written out as the one obj. The name of the file is File prefix.

File for each model tick box
if ticked, an obj file is written out for each model, and all the 3d shapes in the one model are written out as the one obj. The name of the file is the model name prefixed by File prefix.

File for each element tick box
if ticked, a separate obj file is written out for each model, and all the 3d shapes in the one model are written out as the one obj.

File for each element tick box
if ticked, a separate obj file is written out for 3d shapes in the data source.

Element naming rule choice box unique number
name followed by unique number
model name followed by unique number

if unique number, the File prefix followed by a unique number for each shape, is used for the name of each obj file.
If name followed by unique number, the File prefix followed by the string name of the 3d shape, followed by a unique number when two string names are the same, is used for the name of each obj file.
If model name followed by unique number, the File prefix followed by the name of the model that the 3d shape is in, followed by a unique number for each shape in the model, is used for the name of each obj file.

Digits in unique number integer box
number of digits in the unique number. The number will be 0 filled if it has less than this number of digits.

Write button
write out the data in OBJ format.
8.2.18 Export STL

Position of option on menu: File I/O => Data output => STL

The STL file is a format for driving 3D printers for stereolithography. The STL format only accepts solid shapes.

Trimeshes, extrusions, pipes and drainage strings can be written to an STL file.

Selecting Export STL brings up the Write StereoLithography STL panel:

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output file</td>
<td>folder box</td>
<td>* .stl files</td>
<td></td>
</tr>
<tr>
<td>Null z value</td>
<td>real box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Binary format</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default colour</td>
<td>colour box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Data source type - for a full description go to 4.19.3 Data Source.
- Binary format: if ticked, the binary STL format is written out. If not ticked, the ASCII STL format is used.
- Default colour: colour for the STL objects.
8.2.19 IFC Output

Position of menu: File I/O => Data output => IFC

Recommended related reading: 7.6.10 Tags.

The IFC Output options write out 12d Model data in the IFC STEP format, version IFC 2x3.

The Industry Foundation Classes (IFC) data model is intended to describe building and construction industry data.

It is a platform neutral, open file format specification that is not controlled by a single vendor or group of vendors.

It is an object-based file format with a data model developed by buildingSMART (formerly the International Alliance for Interoperability, IAI) to facilitate interoperability in the architecture, engineering and construction (AEC) industry, and is a commonly used collaboration format in Building Information Modeling (BIM) based projects.

For more information on BIMs, see 33 BIM and http://www.buildingsmart-tech.org

For more information on IFC’s, see 8.2.19.1 IFCs.

The data in 12d Model that can be written out to IFC’s includes super strings, TINs, drainage strings and trimeshes.

The IFC Output walk-right menu is

For the options:
- Project units 8.2.19.2 Project Units
- Extra project details 8.2.19.3 Extra Project Details
- Special tag structure 8.2.19.4 Defining and Assigning Spatial Structures
- IFC Writer 8.2.19.5 IFC 2x3 Writer

For general information on IFCs, see 8.2.19.1 IFCs.

For information on what 12d Model objects are written out to IFCs, and how they are written, see 8.2.19.1.3 Representation of 12d Objects as IFCs.
8.2.19.1 IFCs

The **IFC Output** options write out **12d Model** data in the IFC STEP format where IFC stands for **Industry Foundation Classes**.

The IFC data model is intended to describe building and construction industry data, and to date, only covers buildings although there are committees currently looking at extending it to other infrastructure areas such as bridges, roads, railways.

It is a platform neutral, open file format specification that is not controlled by a single vendor or group of vendors.

It is an object-based file format with a data model developed by **buildingSMART** (formerly the International Alliance for Interoperability, IAI) to facilitate interoperability in the architecture, engineering and construction (AEC) industry, and is a commonly used collaboration format in **Building Information Modeling** (BIM) based projects. See http://www.buildingsmart-tech.org.

It should be noted that from the ISO site, the following are outside the scope of ISO 16739:2013:

- exchange format definitions outside of the domain of construction and facility maintenance;
- project structure and component breakdown structures **outside of building engineering**;
- behavioural aspects of components and other information items.

Before trying to write out an IFC file, **12d Model** Users must be aware of how the IFC data model is structured so that the data to be written out is correct. And how this data is to be structured may vary from client to client wanting their data in an IFC file.

The IFC data model is very rich, as you would expect it to be to cover every aspect of a building, but we will only be using a small subset of its capabilities.

All the information and data is contained in **ifcProject** and there is only one of these. All the data in a **12d Model** project can only go out to the one **ifcProject**.

We will mainly be using **ifcProduct** which represents occurrences in space such as physical building elements and spatial locations.

ifcProduct is the **base class** for all physical objects and is subdivided into:

(a) spatial items

Spatial items include **ifcSite**, **ifcBuilding**, **ifcBuildingStorey** and **ifcSpace**.

The spatial structure elements are linked together, and to the **IfcProject**, by using the objectified relationships **IfcRelContainedInSpatialStructure** and **IfcRelAggregates**.

(b) physical elements

Physical building elements include **ifcWall**, **ifcBeam**, **ifcDoor**, **ifcWindow**, **ifcStair** etc.

(c) structural analysis items

(d) other concepts.

Products may have associated materials, shape representations, and placements in space.

For more information, see:

8.2.19.1.1 Spatial Structures
8.2.19.1.2 Some IFC 2x3 Definitions
8.2.19.1.3 Representation of 12d Objects as IFCs
8.2.19.1.1 Spatial Structures

Within the **ifcProject**, an overall Spatial Structure is defined which has a strict hierarchical structure.

At the top level is the **Project**.

Then within this **Project** are **Sites**, and each **instance** of a **Site** has a **unique name**.

A Site can contain other Sites (called Site Partialis) or Buildings, or Building Storeys or Spaces or Products.

A Building can contain Building Storeys, Spaces or Products.

Each instance of Site, Site Partial, Building, Building Storey, Space or Product has a unique name and is directly contained in only one other spatial structure.

The hierarchy of the overall Spatial Structure is specified by defining when each spatial structure \(B \) is directly contained in another spatial structure \(A \). It is expresses as the spatial structure \(B \) **aggregates to** the spatial structure \(A \).

So we only need to refer to a spatial structure by name and all the spatial structures contained beneath it are also uniquely specified.

In **12d Model** the Spatial Structure is constructed by the option

File => Data output => IFC => Spatial structure

which brings up the panel **IFC Spatial Structure**.

The spatial structures for the project, including the **Aggregates to**, are defined in the **Define** tab of the panel, and are stored as project attributes. See 8.2.19.4 Defining and Assigning Spatial Structures.

An IFC element is assigned to a spatial structure. Basic types of IFC elements are

(a) building element

(b) opening element

(c) furnishing element

(d) distribution element (including heating, ventilation, air conditioning, electrical and equipment elements)
(e) transportation element

12d Model data that is to be written out to an IFC file are written as physical elements and as such must belong to one spatial structure.

12d Model data is assigned a spatial structure by either defined a spatial structure for a whole model and/or for individual strings or trimeshes. The spatial structure for tins is taken to be that of the spatial structure of the model that the tin is in.

The IFC Writer panel writes out all the data of a user given spatial structure to a file. See 8.2.19.5 IFC 2x3 Writer.

Continue to the next section 8.2.19.1.2 Some IFC 2x3 Definitions or return to 8.2.19.1 IFCs or 8.2.19 IFC Output.
8.2.19.1.2 Some IFC 2x3 Definitions

For some information on definitions of some of the IFC 2x3 items used when writing the IFC file, see:

8.2.19.1.2.1 ifcProject
8.2.19.1.2.2 ifcSite
8.2.19.1.2.3 ifcElement
8.2.19.1.2.4 ifcSpatialStructureElement
8.2.19.1.2.5 ifcBuildingElement
8.2.19.1.2.6 ifcBuildingElementProxy
8.2.19.1.2.7 ifcFlowStorageDevice
8.2.19.1.2.8 ifcFlowStorageDeviceType
8.2.19.1.2.9 ifcFlowSegment
8.2.19.1.2.10 ifcFlowSegmentType
8.2.19.1.2.11 ifcRelContainedInSpatialStructure
8.2.19.1.2.12 ifcRelAggregates
8.2.19.1.2.13 ifcProduct

Do not be alarmed if the definitions need to be read a number of times to get your head around them. Remember they are only an extract of part of the definition and there are many more definitions that make up IFC’s.

For the complete information on IFC’s, see http://www.buildingsmart-tech.org/specifications

Or continue to the section 8.2.19.1.3 Representation of 12d Objects as IFCs or return to 8.2.19.1. IFCs or 8.2.19 IFC Output.
8.2.19.1.2.1 ifcProject

Definition from IAI: The undertaking of some design, engineering, construction, or maintenance activities leading towards a product. The project establishes the context for information to be exchanged or shared, and it may represent a construction project but does not have to.

All the information and data is contained in **ifcProject** and there is only one of these.

The **ifcProject** has information such as

(a) the default units used

For setting the **ifcProject** units in **12d Model**, see [8.2.19.2 Project Units](#).

(b) descriptive information about the project

For setting the **ifcProject** information in **12d Model**, see [8.2.19.3 Extra Project Details](#).

Within the **ifcProject**, a spatial structure is defined and it is a strict hierarchical structure. See [8.2.19.1.1 Spatial Structures](#).

Continue to [8.2.19.1.2.2 ifcSite](#) or return to [8.2.19.1 Some IFC 2x3 Definitions](#) or [8.2.19.1 IFCs](#).

8.2.19.1.2.2 ifcSite

Definition from ISO 6707-1:1989: Area where construction works are undertaken.

Definition from IAI: A defined area of land, possibly covered with water, on which the project construction is to be completed. A site may be used to erect building(s) or other AEC products.

The geometrical placement of the site, defined by the **IfcLocalPlacement**, shall be always relative to the spatial structure element, in which this site is included, or absolute, i.e. to the world coordinate system, as established by the geometric representation context of the project. The world coordinate system, established at the **IfcProject.RepresentationContexts**, may include a definition of the true north within the XY plane of the world coordinate system.

An IFC project may span over several connected or disconnected sites. Therefore **site complex** provides for a collection of sites included in a project.

A site can also be decomposed in parts, where each part defines a **site section**.

Whether it is a site, site complex or site section is defined by the Composition Type attribute of the supertype **IfcSpatialStructureElement** which is interpreted as follow:

- If the attribute value is **COMPLEX** then it is a **site complex**
- If the attribute value is **ELEMENT** then it is a **site**
- If the attribute value is **PARTIAL** then it is a **site section** (site partial).

Note that in **12d Model**, you can currently only have a **site** and **site partial**.

Continue to [8.2.19.1.2.3 ifcElement](#) or return to [8.2.19.1 Some IFC 2x3 Definitions](#) or [8.2.19.1 IFCs](#).

8.2.19.1.2.3 ifcElement

Definition from IAI: Generalization of all components that make up an AEC product. Those elements can be logically contained by a spatial structure element that constitutes a certain level within a project structure hierarchy (e.g., site, building, storey or space). This is done by using the **IfcRelContainedInSpatialStructure** relationship.

Elements are physically existent objects, although they might be void elements, such as holes.

EXAMPLEs of elements in a building construction context are walls, floors, windows and
recesses.

There are various type of Elements derived from ifcElement including ifcBuildingElement, idfFurnishingElement, ifcEleelectricalElement and ifcBuildingElementProxy (see 8.2.19.1.2.6 ifcBuildingElementProxy).

Note that in 12d Model, most data is written to the IFC file as ifcBuildingElementProxy.

Continue to 8.2.19.1.2.4 ifcSpatialStructureElement or return to 8.2.19.1.2 Some IFC 2x3 Definitions or 8.2.19.1 IFCs.

8.2.19.1.2.4 ifcSpatialStructureElement

Definition from IAI: A spatial structure element (**IfcSpatialStructureElement**) is the generalization of all spatial elements that might be used to define a spatial structure. That spatial structure is often used to provide a project structure to organize a building project.

A spatial project structure might define as many levels of decomposition as necessary for the building project. Elements within the spatial project structure are:

(a) site as **IfcSite**
(b) building as **IfcBuilding**
(c) storey as **IfcBuildingStorey**
(d) space as **IfcSpace**
or
(e) aggregations or parts thereof.

The Composition Type declares an element to be either an element itself, or an aggregation (complex) or a decomposition (part). The interpretation of these types is given at each subtype of **IfcSpatialStructureElement**. For example see 8.2.19.1.2.2 ifcSite.

The **IfcRelAggregates** is defined as an 1-to-many relationship and used to establish the relationship between exactly two levels within the spatial project structure.

Finally the highest level of the spatial structure is assigned to **IfcProject** using the **IfcRelAggregates**. See 8.2.19.1.2.12 IfcRelAggregates.

Continue to 8.2.19.1.2.5 ifcBuildingElement or return to 8.2.19.1.2 Some IFC 2x3 Definitions or 8.2.19.1 IFCs.

8.2.19.1.2.5 ifcBuildingElement

Definition from ISO 6707-1:1989: Major functional part of a building, examples are foundation, floor, roof, wall.

Definition from IAI: The building element comprises all elements that are primarily part of the construction of a building, i.e., its structural and space separating system.

EXAMPLEs of building elements are walls, beams, or doors, they are all physically existent and tangible things.

Continue to 8.2.19.1.2.6 ifcBuildingElementProxy or return to 8.2.19.1.2 Some IFC 2x3 Definitions or 8.2.19.1 IFCs.

8.2.19.1.2.6 ifcBuildingElementProxy

Definition from IAI: The **IfcBuildingElementProxy** is a proxy definition that provides the same functionality as an **IfcBuildingElement**, but without having a defined meaning of the special type
of building element, it represents.

NOTE1 The IfcBuildingElementProxy should be used to exchange special types of building elements for which the current IFC Release does not yet provide a semantic definition.

NOTE2 The IfcBuildingElementProxy can also be used to represent building elements for which the participating applications can not provide additional semantic classification.

Continue to 8.2.19.1.2.7 ifcFlowStorageDevice or return to 8.2.19.1.2 Some IFC 2x3 Definitions or 8.2.19.1 IFCs.

8.2.19.1.2.7 ifcFlowStorageDevice

The distribution flow element IfcFlowStorageDevice defines the occurrence of a device that participates in a distribution system and is used for temporary storage of a fluid such as a liquid or a gas (e.g., tank) or the voltage potential induced by the induced electron flow (such as a battery).

Its type is defined by IfcFlowStorageDeviceType or its subtypes. See 8.2.19.1.2.8 ifcFlowStorageDeviceType.

Continue to 8.2.19.1.2.8 ifcFlowStorageDeviceType or return to 8.2.19.1.2 Some IFC 2x3 Definitions or 8.2.19.1 IFCs.

8.2.19.1.2.8 ifcFlowStorageDeviceType

The element type IfcFlowStorageDeviceType defines a list of commonly shared property set definitions of a flow storage device and an optional set of product representations. It is used to define a flow storage device specification (the specific product information that is common to all occurrences of that product type).

A flow storage device is a device used for the temporary storage of a fluid (such as a tank) or the voltage potential induced by the induced electron flow (such as a battery). Flow storage types (or the instantiable subtypes) may be exchanged without being already assigned to occurrences.

Continue to 8.2.19.1.2.9 ifcFlowSegment or return to 8.2.19.1.2 Some IFC 2x3 Definitions or 8.2.19.1 IFCs.

8.2.19.1.2.9 ifcFlowSegment

The distribution flow element IfcFlowSegment defines the occurrence of a segment of a flow distribution system.

The IfcFlowSegment defines a particular occurrence of a segment inserted in the spatial context of a project. The parameters defining the type of the segment and/or its shape are defined by the IfcFlowSegmentType.

IFC2x4 CHANGE This entity has been deprecated for instantiation and will become ABSTRACT in a future release; new subtypes should now be used instead.

Material Use Definition

The material of the IfcFlowSegment is defined using one of the following entities:

IfcMaterialProfileSetUsage: for parametric segments, this defines the cross section and alignment to the 'Axis' representation, from which the 'Body' representation may be generated.

IfcMaterialProfileSet: for non-parametric segments (having fixed length or path), this may define the cross section for analysis purposes, however the 'Body' representation is independently generated.

IfcMaterialConstituentSet: for elements containing multiple materials where profiles are not
applicable, this indicates materials at named parts.

IfcMaterial: for elements comprised of a single material where profiles are not applicable, this indicates the material.

The material is attached by the RelatingMaterial attribute on the IfcRelAssociatesMaterial relationship. It is accessible by the HasAssociations inverse attribute. Material information can also be given at the IfcFlowSegmentType, defining the common attribute data for all occurrences of the same type. Standard names and material types are defined at subtypes.

Geometry Use Definition

Standard representations are defined at the supertype **IfcDistrubutionFlowElement**. For parametric flow segments where IfcMaterialProfileSetUsage is defined and an 'Axis' representation is defined, then the 'Body' representation may be generated using the 'SweptSolid' or 'AdvancedSweptSolid' representation types by sweeping the profile(s) along the axis.

Continue to 8.2.19.1.2.10 ifcFlowSegmentType or return to 8.2.19.1.2 Some IFC 2x3 Definitions or 8.2.19.1 IFCs.

8.2.19.1.2.10 ifcFlowSegmentType

The element type **IfcFlowSegmentType** defines a list of commonly shared property set definitions of a flow segment and an optional set of product representations.

It is used to define a flow segment specification (the specific product information, that is common to all occurrences of that product type).

A flow segment type is used to define the common properties of a flow segment that may be applied to many occurrences of that type. A flow segment is a section of a distribution system, such as a duct, pipe, or conduit, that typically has only two ports. Flow segment types (or the instantiable subtypes) may be exchanged without being already assigned to occurrences.

Material Use Definition

The material of the **IfcDistributionFlowSegmentType** is defined using one of the following entities:

- **IfcMaterialProfileSet**: This defines the material cross section which may be used to generate the 'Body' representation at occurrences (for parametric definitions not having representation), or for analysis purposes.

- **IfcMaterialConstituentSet**: For elements containing multiple materials where profiles are not applicable, this indicates materials at named aspects.

- **IfcMaterial**: For elements comprised of a single material where profiles are not applicable, this indicates the material.

Continue to 8.2.19.1.2.11 ifcRelContainedInSpatialStructure or return to 8.2.19.1.2 Some IFC 2x3 Definitions or 8.2.19.1 IFCs.

8.2.19.1.2.11 ifcRelContainedInSpatialStructure

Definition from IAI: This objectified relationship, **IfcRelContainedInSpatialStructure**, is used to assign elements to a certain level of the spatial project structure. Any element can only be assigned once to a certain level of the spatial structure. The question, which level is relevant for which type of element, can only be answered within the context of a particular project and might vary within the various regions.

EXAMPLE A multi-storey space is contained (or belongs to) the building storey at which its ground level is, but it is referenced by all the other building storeys, in which it spans. A lift shaft might be contained by the basement, but referenced by all storeys, through which it spans.

The containment relationship of an element within a spatial structure has to be a hierarchical relationship, an element can only be contained within a single spatial structure element.
The reference relationship between an element and the spatial structure may not be hierarchical, i.e. an element can reference many spatial structure elements.

NOTE The reference relationship is expressed by IfcRelReferencedInSpatialStructure. Predefined spatial structure elements to which elements can be assigned are:
(a) site as IfcSite. See 8.2.19.1.2.2 IfcSite.
(b) building as IfcBuilding
(c) storey as IfcBuildingStorey
(d) space as IfcSpace

Continue to 8.2.19.1.2.12 ifcRelAggregates or return to 8.2.19.1.2 Some IFC 2x3 Definitions or 8.2.19.1 IFCs.

8.2.19.1.2.12 ifcRelAggregates

Definition from IAI: The aggregation relationship IfcRelAggregates is a special type of the general composition/decomposition (or whole/part) relationship IfcRelDecomposes. The aggregation relationship can be applied to all subtypes of object. Some further specializations of decomposition may imply additional constraints and meanings, such as the requirement of aggregates to represent physical containment. In cases of physical containment the representation (within the same representation context) of the whole can be taken from the sum of the representations of the parts.

EXAMPLE: A roof is the aggregation of the roof elements, such as roof slabs, rafters, purlins, etc. Within the same representation context, e.g. the detailed geometric representation, the shape representation of the roof is given by the shape representation of its parts.

Decompositions imply a dependency, i.e. the definition of the whole depends on the definition of the parts and the parts depend on the existence of the whole. The behaviour that is implied from the dependency has to be established inside the applications.

Continue to 8.2.19.1.2.13 ifcProduct or return to 8.2.19.1.2 Some IFC 2x3 Definitions or 8.2.19.1 IFCs.

8.2.19.1.2.13 ifcProduct

Definition from IAI: Any object, or any aid to define, organize and annotate an object, that relates to a geometric or spatial context. Subtypes of IfcProduct usually hold a shape representation and a local placement within the project structure.

This includes manufactured, supplied or created objects (referred to as elements) for incorporation into an AEC/FM project. This also includes objects that are created indirectly by other products, as spaces are defined by bounding elements. Products can be designated for permanent use or temporary use, an example for the latter is formwork. Products are defined by their properties and representations.

In addition to physical products (covered by the subtype 8.2.19.1.2.3 IfcElement) and spatial items (covered by the subtype 8.2.19.1.2.4 IfcSpatialStructureElement) the IfcProduct also includes non-physical items, that relate to a geometric or spatial contexts, such as grid, port, annotation, structural actions, etc.

Continue to 8.2.19.1.2.14 ifcPropertySet or return to 8.2.19.1.2 Some IFC 2x3 Definitions or 8.2.19.1 IFCs.

8.2.19.1.2.14 ifcPropertySet

Definition from IAI: The IfcPropertySet defines all dynamically extensible properties. The
property set is a container class that holds properties within a property tree. These properties are interpreted according to their name attribute.

Property sets, defining a particular type of object, can be assigned an object type (IfcTypeObject). Property sets are assigned to objects (IfcObject) through an objectified relationship (IfcRelDefinedByProperties). If the same set of properties applies to more than one object, it should be assigned by a single instance of IfcRelDefinedByProperties to a set of related objects. Those property sets are referred to as shared property sets.

Use Definition

Instances of IfcPropertySet are used to assign named sets of individual properties (complex or single properties). Each individual property has a significant name string. Some property sets have predefined instructions on assigning those significant name. The naming convention "Pset_Xxx" applies to those property sets and shall be used as the value to the Name attribute.

In addition any user defined property set can be captured, those property sets shall have a Name value not including the Pset_prefix.

Continue to 8.2.19.1.2.15 IfcPropertySingleValue or return to 8.2.19.1.2 Some IFC 2x3 Definitions or 8.2.19.1 IFCs.

8.2.19.1.2.15 IfcPropertySingleValue

Definition from IAI: A property with a single value (IfcPropertySingleValue) defines a property object which has a single (numeric or descriptive) value assigned. It defines a property - single value combination for which the property name, the value with measure type (and optionally the unit) is given.

The unit is handled by the Unit attribute:
If the Unit attribute is not given, then the unit is already implied by the type of IfcMeasureValue or IfcDerivedMeasureValue. The associated unit can be found at the IfcUnitAssignment globally defined at the project level (IfcProject.UnitsInContext).
If the Unit attribute is given, then the unit assigned by the Unit attribute overrides the globally assigned unit.

Continue to 8.2.19.1.2.18 IfcCircleHollowProfileDef or return to 8.2.19.1.2 Some IFC 2x3 Definitions or 8.2.19.1 IFCs.

8.2.19.1.2.16 IfcShapeRepresentation

Definition from ISO/CD 10303-42:1992: The shape representation is a specific kind of representation that represents a shape.

Definition from IAI: The IfcShapeRepresentation represents the concept of a particular geometric representation of a product or a product component within a specific geometric representation context.

The inherited attribute RepresentationType is used to define the geometric model used for the shape representation, the inherited attribute RepresentationIdentifier is used to denote the part of the representation captured by the IfcShapeRepresentation (e.g. Axis, Body, etc.).

Several representation types for shape representation are included as predefined types:
- Curve2D 2 dimensional curves
- GeometricSet points, curves, surfaces (2 or 3 dimensional)
 - GeometricCurveSet points, curves (2 or 3 dimensional)
 - Annotation2D points, curves (2 or 3 dimensional), hatches and text (2 dimensional)
BoundingBox simplistic 3D representation by a bounding box
SectionedSpine cross section based representation of a spine curve and planar cross sections. It can represent a surface or a solid and the interpolations of the between the cross sections is not defined
MappedRepresentation representation based on mapped item(s), referring to a representation map. Note: it can be seen as an inserted block reference. The shape representation of the mapped item has a representation type declaring the type of its representation items.
SurfaceModel face based and shell based surface model
SolidModel including swept solid, Boolean results and Brep bodies. More specific types are:
 SweptSolid swept area solids, by extrusion and revolution
 Brep faceted Brep's with and without voids
 CSG Boolean results of operations between solid models, half spaces and Boolean results
 Clipping Boolean differences between swept area solids, half spaces and Boolean results
 AdvancedSweptSolid swept area solids created by sweeping a profile along a directrix

NOTE The definition of this entity relates to the STEP entity shape_representation. Please refer to ISO/IS 10303-41:1994 for the final definition of the formal standard.

Continue to 8.2.19.1.2.17 IfcCircleProfileDef or return to 8.2.19.1.2 Some IFC 2x3 Definitions or 8.2.19.1 IFCs.
8.2.19.1.2.17 IfcCircleProfileDef

Definition from IAI: The **IfcCircleProfileDef** defines a circle as the profile definition used by the swept surface geometry or by the swept area solid. It is given by its **Radius** attribute and placed within the 2D position coordinate system, established by the **Position** attribute.

Position
The parameterized profile defines its own position coordinate system. The underlying coordinate system is defined by the swept surface or swept area solid that uses the profile definition. It is the xy plane of either:

- IfcSweptSurface.Position
- IfcSweptAreaSolid.Position

or in case of sectioned spines the xy plane of each list member of IfcSectionedSpine.CrossSectionPositions.

By using offsets of the position location, the parameterized profile can be positioned centric (using x,y offsets = 0.), or at any position relative to the profile. Explicit coordinate offsets are used to define cardinal points (e.g. upper-left bound).

Parameter
The **Position** attribute defines the 2D position coordinate system of the circle.

The **Radius** attribute defines the radius of the circle.

ifc Attribute Definitions:

Radius: The radius of the circle.

Continue to 8.2.19.1.2.18 IfcCircleHollowProfileDef or return to 8.2.19.1.2 Some IFC 2x3 Definitions or 8.2.19.1 IFCs.
8.2.19.1.2.18 IfcCircleHollowProfileDef

Definition from IAI: The *IfcCircleHollowProfileDef* defines a section profile that provides the defining parameters of a circular hollow section (tube) to be used by the swept area solid.

Its parameters and orientation relative to the position coordinate system are according to the following illustration.

The centre of the position coordinate system is in the profile's centre of the bounding box (for symmetric profiles identical with the centre of gravity).

Position

The parameterized profile defines its own position coordinate system. The underlying coordinate system is defined by the swept area solid that uses the profile definition. It is the xy plane of:

IfcSweptAreaSolid.Position

by using offsets of the position location, the parameterized profile can be positioned centric (using x,y offsets = 0), or at any position relative to the profile. Explicit coordinate offsets are used to define cardinal points (e.g. upper-left bound).

Parameter

The parameterized profile is defined by a set of parameter attributes, see attribute definition below.

ifc Attribute Definitions:

WallThickness: Thickness of the material. It is the difference between the outer and inner radius.

The wall thickness must be smaller than the radius

Continue to 8.2.19.1.2.19 IfcRectangleProfileDef or return to 8.2.19.1.2 Some IFC 2x3 Definitions or 8.2.19.1 IFCs.
8.2.19.1.2.19 IfcRectangleProfileDef

Definition from IAI: The *IfcRectangleProfileDef* defines a rectangle as the profile definition used by the swept surface geometry or the swept area solid. It is given by its X extent and its Y extent, and placed within the 2D position coordinate system, established by the Position attribute. It is placed centric within the position coordinate system.

Position
The parameterized profile defines its own position coordinate system. The underlying coordinate system is defined by the swept surface or swept area solid that uses the profile definition. It is the xy plane of either:
- `IfcSweptSurface.Position`
- `IfcSweptAreaSolid.Position`

or in case of sectioned spines the xy plane of each list member of `IfcSectionedSpine.CrossSectionPositions`.

By using offsets of the position location, the parameterized profile can be positioned centric (using x,y offsets = 0.), or at any position relative to the profile. Explicit coordinate offsets are used to define cardinal points (e.g. upper-left bound).

Parameter
The *IfcRectangleProfileDef* is defined within the position coordinate system, where the `XDim` defines the length measure for the length of the rectangle (half along the positive x-axis) and the `YDim` defines the length measure for the width of the rectangle (half along the positive y-axis).

ifc Attribute Definitions:

- **XDim**: The extent of the rectangle in the direction of the x-axis.
- **YDim**: The extent of the rectangle in the direction of the y-axis.

Continue to the next section 8.2.19.1.2.20 IfcRectangleHollowProfileDef or return to 8.2.19.1.2 Some IFC 2x3 Definitions or 8.2.19.1 IFCs.
8.2.19.1.2.20 IfcRectangleHollowProfileDef

Definition from IAI: The *IfcRectangleHollowProfileDef* defines a section profile that provides the defining parameters of a rectangular (or square) hollow section to be used by the swept surface geometry or the swept area solid.

Its parameters and orientation relative to the position coordinate system are according to the following illustration.

A square hollow section can be defined by equal values for h and b.

The centre of the position coordinate system is in the profiles centre of the bounding box (for symmetric profiles identical with the centre of gravity).

Normally, the longer sides are parallel to the y-axis, the shorter sides parallel to the x-axis.

ifc Attribute Definitions:

WallThickness: Thickness of the material. The wall thickness shall be smaller than the X and Y dimension of the rectangle.

InnerFilletRadius: Radius of the circular arcs, by which all four corners of the outer contour of rectangle are equally rounded. If not given, zero (= no rounding arcs) applies.

The inner fillet radius (if given) shall be smaller than or equal to the X and Y dimension of the rectangle minus the wall thickness.

OuterFilletRadius: Radius of the circular arcs, by which all four corners of the outer contour of rectangle are equally rounded. If not given, zero (= no rounding arcs) applies.

The outer fillet radius (if given) shall be smaller than or equal to the X and Y dimension of the rectangle.

Continue to the next section 8.2.19.1.2.21 IfcArbitraryClosedProfileDef or return to 8.2.19.1.2 Some IFC 2x3 Definitions or 8.2.19.1 IFCs.
8.2.19.1.2.21 IfcArbitraryClosedProfileDef

Definition from IAI: The closed profile IfcArbitraryClosedProfileDef defines an arbitrary two-dimensional profile for the use within the swept surface geometry, the swept area solid or a sectioned spine. It is given by an outer boundary from which the surface or solid can be constructed.

Informal proposition:
1. The OuterCurve has to be a closed curve.
2. The OuterCurve shall not intersect.

Position
The OuterCurve is defined in the underlying coordinate system. The underlying coordinate system is defined by the swept surface or swept area solid that uses the profile definition. It is the xy plane of either:

- IfcSweptSurface.Position
- IfcSweptAreaSolid.Position

or in case of sectioned spines the xy plane of each list member of IfcSectionedSpine.CrossSectionPositions.

By using offsets of the position location, the parameterized profile can be positioned centric (using x,y offsets = 0.), or at any position relative to the profile. Explicit coordinate offsets are used to define cardinal points (e.g. upper-left bound).

Parameter
The OuterCurve attribute defines a two dimensional closed bounded curve.

Ifc Attribute Definitions:

OuterCurve: Bounded curve, defining the outer boundaries of the arbitrary profile.

Continue to the next section 8.2.19.1.3 Representation of 12d Objects as IFCs or return to 8.2.19.1.2 Some IFC 2x3 Definitions or 8.2.19.1 IFCs.
8.2.19.1.3 Representation of 12d Objects as IFCs

Currently IFCs do not support road elements such as alignments or the spatial structures that match a road or rail design but it is still possible to get most of the shape data in 12d Model output in ways that will fit in with the IFC schema.

For example, in the image below, a drainage network with circular and rectangular pipes and pits, with thicknesses, a tin and trimeshes for the pavement layers have been written out from 12d Model as an IFC and then read into Solibri and displayed.

See

8.2.19.1.3.1 Super Alignment
8.2.19.1.3.2 Super String
8.2.19.1.3.3 Drainage String
8.2.19.1.3.4 Sewer String
8.2.19.1.3.5 Tin
8.2.19.1.3.6 Trimesh

Old string types:
8.2.19.1.3.7 Alignment

8.2.19.1.3.1 Super Alignment

A Super Alignment is written out as an IFCBUILDINGELEMENTPROXY element.

The string attributes can be written out as an ifcPropertySet.

Continue to the 8.2.19.1.3.1 Super Alignment or return to 8.2.19.1.3 Representation of 12d Objects as IFCs or 8.2.19.1 IFCs.

8.2.19.1.3.2 Super String

A super string with a rectangular pipe is written out as an IfcRectangleProfileDef element.

A super string with a circular pipe is written out as an IfcCircleRectangleProfileDef element.

For a circular pit, the shape representation is ifcCircleHollowProfileDef. See 8.2.19.1.2.18
IfcCircleHollowProfileDef.

For a rectangular pit, the shape representation is IfcRectangleHollowProfileDef. Note however that this has only one wall thickness so when writing the pit out, the outer shape is correct but the maximum value of the top, bottom, left and right thicknesses is used for the wall thickness. So if the top, bottom, left and right thickness are not all the same value then the inner rectangle is smaller than it actually is. See 8.2.19.1.2.20 IfcRectangleHollowProfileDef.

Each Pipe is written out as an IFCFLOWSEGMENTS element.

For a circular pipe, the shape representation is IfcCircleHollowProfileDef. 8.2.19.1.2.18 IfcCircleHollowProfileDef.

For a rectangular pipe, the shape representation is IfcRectangleHollowProfileDef. Note however that this has only one wall thickness so when writing the pipe out, the outer shape is correct but the maximum value of the top, bottom, left and right thicknesses is used for the wall thickness. So if the top, bottom, left and right thickness are not all the same value then the inner rectangle is smaller than it actually is.

Continue to the 8.2.19.1.3.4 Sewer String or return to 8.2.19.1.3 Representation of 12d Objects as IFCs or 8.2.19.1 IFCs.

8.2.19.1.3.3 Drainage String

Each Pit is written out as an IFCFLOWSTORAGEDEVICE element.

For a circular pit, the shape representation is IfcCircleHollowProfileDef. See 8.2.19.1.2.18 IfcCircleHollowProfileDef.

For a rectangular pit, the shape representation is IfcRectangleHollowProfileDef. Note however that this has only one wall thickness so when writing the pit out, the outer shape is correct but the maximum value of the top, bottom, left and right thicknesses is used for the wall thickness. So if the top, bottom, left and right thickness are not all the same value then the inner rectangle is smaller than it actually is. See 8.2.19.1.2.20 IfcRectangleHollowProfileDef.

Each Pipe is written out as an IFCFLOWSEGMENTS element.

For a circular pipe, the shape representation is IfcCircleHollowProfileDef. 8.2.19.1.2.18 IfcCircleHollowProfileDef.

For a rectangular pipe, the shape representation is IfcRectangleHollowProfileDef. Note however that this has only one wall thickness so when writing the pipe out, the outer shape is correct but the maximum value of the top, bottom, left and right thicknesses is used for the wall thickness. So if the top, bottom, left and right thickness are not all the same value then the inner rectangle is smaller than it actually is.

Continue to the 8.2.19.1.3.4 Sewer String or return to 8.2.19.1.3 Representation of 12d Objects as IFCs or 8.2.19.1 IFCs.

8.2.19.1.3.4 Sewer String

Each Maintenance hole is written out as IFCFLOWSTORAGEDEVICE element.

For a circular maintenance hole, the shape representation is IfcCircleHollowProfileDef. 8.2.19.1.2.18 IfcCircleHollowProfileDef.

For a rectangular maintenance hole, the shape representation is
ifcRectangleHollowProfileDef. Note however that this has only one wall thickness so when writing the maintenance hole out, the outer shape is correct but the maximum value of the top, bottom, left and right thicknesses is used for the wall thickness. This may mean that the inner rectangle may be smaller than it actually is.

Each **Pipe** is written out as an **IFCFLOWSEGMENT** element.

For a circular pipe, the shape representation is **ifcCircleHollowProfileDef.** [8.2.19.1.2.18 IfcCircleHollowProfileDef](#).

For a rectangular pipe, the shape representation is **ifcRectangleHollowProfileDef.** Note however that this has only one wall thickness so when writing the pipe out, the outer shape is correct but the maximum value of the top, bottom, left and right thicknesses is used for the wall thickness. So if the top, bottom, left and right thickness are not all the same value then the inner rectangle is smaller than it actually is.

Continue to the [8.2.19.1.3.5 Tin](#) or return to [8.2.19.1.3 Representation of 12d Objects as IFCs](#) or [8.2.19.1 IFCs](#).

8.2.19.1.3.5 Tin

A **Tin** is written out as an **IFCBUILDINGELEMENTPROXY** element.

The tin attributes can be written out as an ifcPropertySet.

Continue to the [8.2.19.1.3.6 Trimesh](#) or return to [8.2.19.1.3 Representation of 12d Objects as IFCs](#) or [8.2.19.1 IFCs](#).

8.2.19.1.3.6 Trimesh

A **Trimesh** is written out as an **IFCBUILDINGELEMENTPROXY** element.

The Trimesh attributes can be written out as an ifcPropertySet.

Return to [8.2.19.1.3 Representation of 12d Objects as IFCs](#) or [8.2.19.1 IFCs](#).

8.2.19.1.3.7 Alignment

An **Alignment** is written out as an **IFCBUILDINGELEMENTPROXY** element.

The string attributes can be written out as an ifcPropertySet.

Continue to the [8.2.19.1.3.3 Drainage String](#) or return to [8.2.19.1.3 Representation of 12d Objects as IFCs](#) or [8.2.19.1 IFCs](#).
8.2.19.2 Project Units

Position of option on menu: File I/O => Data output => IFC => Project units

This option creates the Project attributes group `ifc_attributes/ifc_project_units` and the values of the attributes are written out when an IFC STEP file (IFC file) is created.

Note that this does not change the data stored inside 12d Model or written out to the IFC file.

The user must set the IFC Units to match what units they are been using inside 12d Model. And these by default are METRE, SQUARE_METRE, CUBIC_METRE and RADIAN.

Selecting Project units brings up the Project Units panel:

![Project Units panel](image)

and if the Project attributes group `ifc_attributes/ifc_project_units` exists, the values are displayed in the panel. If the Project attributes group `ifc_attributes/ifc_project_units` does not exist, then it is created when the Set button is pressed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length Unit</td>
<td>choice box</td>
<td>as per Project Attributes</td>
<td>MILLIMETRE, METRE, KILOMETRE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>length units used globally in the IFC file. Defined as SI units. This must match what you units data is in within 12d Model.</td>
</tr>
<tr>
<td>Area Unit</td>
<td>choice box</td>
<td>as per Project Attributes</td>
<td>SQUARE_MILLIMETRE, SQUARE_METRE, SQUARE_KILOMETRE</td>
<td>area units used globally in the IFC file. Defined as SI units. This must match what you units data is in within 12d Model</td>
</tr>
<tr>
<td>Volume Unit</td>
<td>choice box</td>
<td>as per Project Attributes</td>
<td>CUBIC_MILLIMETRE, CUBIC_METRE, CUBIC_KILOMETRE</td>
<td>volume units used globally in the IFC file. Defined as SI units. This must match what you units data is in within 12d Model</td>
</tr>
<tr>
<td>Plane Angle Unit</td>
<td>choice box</td>
<td>as per Project Attributes</td>
<td>Radian, Degrees</td>
<td>plane angle units used globally in the IFC file. Defined as SI units.</td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td></td>
<td></td>
<td>updates/creates the Project attribute group <code>ifc_attributes/ifc_project_units</code> with the values in the</td>
</tr>
</tbody>
</table>
Note
The attributes can be displayed (and modified) using the option

Project =>Utilities =>Attributes

which brings up panel *Project Attributes*.

Warning:
Be careful making any changes using *Project Attributes*. The attribute name can't be and the attribute values must be valid IFC values.

Continue to next section 8.2.19.3 Extra Project Details or go back to 8.2.19 IFC Output.
8.2.19.3 Extra Project Details

Position of option on menu: File I/O => Data output => IFC => Extra project details

This option

(a) defines the path name of the Spatial Schema File that defines the types of IFC spatial elements that 12d elements can be tagged as, and the relationship between the allowed IFC spatial elements.

and

(b) creates and updates the Project Attributes group

ProjectExtraDetails.

that collects information to be written out as part of ifcProject.

Selecting Extra project details displays the panel Project Extra Details:

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial Schema File</td>
<td>file box</td>
<td>available *.xml files</td>
<td></td>
</tr>
</tbody>
</table>
Aggregation panel (the next step before using the IFC Writer to create an IFC file). For more information on when and how this file is created, see [8.2.19.3.1 Spatial Schema File](#).

Grid

Property/Value

This grid allows the user to enter extra details about the IFC project and the information is stored as Project attributes in the group `ProjectExtraDetails`. The values of these attributes are written out to the IFC file as part of the `ifcProject` element.

Buttons at bottom

Set button

Set the value of the attribute `spatial_schema_file` in the `ProjectExtraDetails` group to the name given in the **File name** field.

Then use the values in the Property/Value Grid to create/update the values of the attributes in the Project attributes group `ProjectExtraDetails`. Note that these attributes are written out to the `ifcProject` element in any IFC file that is created by the IFC writer option (see [8.2.19.5 IFC 2x3 Writer](#)).

Continue to the next sub-section [8.2.19.3.1 Spatial Schema File](#) or the next section [8.2.19.4 Defining and Assigning Spatial Structures](#), or return to [8.2.19 IFC Output](#).
8.2.19.3.1 Spatial Schema File

The **Spatial Schema File** is an XML file which is used by the **Spatial tag structure** option (the **Spatial Tag Aggregation** panel to define defines types of IFC spatial elements, and the allowed hierarchical relationship between the types.

For example, the type **Site** (ifcSite) is allowed as a standalone entity.

The type **Site Partial** (ifcBuilding) can’t be standalone but must be associated with a specific **Site** and only a **Site**. Whereas **Building** (ifcBuilding) also can’t stand alone but it can be associated with a specific **Site** or a specific **Site Partial**. (See 8.2.19.1.1 **Spatial Structures**).

When **Extra project details** is selected the Project attribute:

```
ProjectExtraDetails/spatial_schema_file
```

is searched for and

(a) **if the attribute exists** then a file of the name of the value of the attribute is searched for.

 If the file does not exist, then a **Question?** panel comes up:

 ![Question Panel](image)

 If **OK** is pressed then a file of the given name is created and a default spatial schema written to the file.

OR

(b) **if the attribute doesn’t exist** then a file of the name called **12dSpatialSchema.XML** is searched for in **$USER_LIB**.

 If the file does not exist, then a **Question?** panel comes up:

 ![Question Panel](image)

 If **OK** is pressed then the file **$USER_LIB\12dSpatialSchema.XML**is created and a default spatial schema written to the file.

The panel **Project Extra Details** is then brought up displaying name of the **Spatial Schema File**, and also the grid of parameters that are stored in the Project attribute group **ProjectExtraDetails** for writing out to the **ifcProject** element in the IFC file.
8.2.19.4 Defining and Assigning Spatial Structures

Spatial Schema File

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Name</td>
<td>Design Data 41</td>
</tr>
<tr>
<td>Project Long Name</td>
<td></td>
</tr>
<tr>
<td>Project Description</td>
<td></td>
</tr>
<tr>
<td>Project Phase</td>
<td></td>
</tr>
<tr>
<td>User Identification</td>
<td>Jjg</td>
</tr>
<tr>
<td>User Family Name</td>
<td></td>
</tr>
<tr>
<td>User Given Name</td>
<td></td>
</tr>
<tr>
<td>User Middle Name</td>
<td></td>
</tr>
<tr>
<td>User Prefix Title</td>
<td></td>
</tr>
<tr>
<td>User Suffix Title</td>
<td></td>
</tr>
<tr>
<td>User Role</td>
<td>Designer</td>
</tr>
<tr>
<td>User Address</td>
<td></td>
</tr>
<tr>
<td>Organisation Identification</td>
<td>Americium</td>
</tr>
<tr>
<td>Organisation Name</td>
<td></td>
</tr>
<tr>
<td>Organisation Description</td>
<td></td>
</tr>
<tr>
<td>Organisation Role</td>
<td>Engineering</td>
</tr>
<tr>
<td>Organisation Address</td>
<td></td>
</tr>
<tr>
<td>Organisation Author</td>
<td></td>
</tr>
</tbody>
</table>

Continue to next section [8.2.19.4 Defining and Assigning Spatial Structures](#) or return to [8.2.19 IFC Output](#).
8.2.19.4 Defining and Assigning Spatial Structures

Position of option on menu: File I/O => Data output => IFC => Spatial structures

This option actually has three functions:

1. It creates the named structures as tags using the *Spatial Schema File* referred to by the attribute `spatial_schema_file` in the Project attribute group `ProjectExtraDetails` (see 8.2.19.3 Extra Project Details).
2. It tags models and/or strings with a spatial structure defined in 1.
3. It selects all items of given spatial structure and optionally removes the spatial structure tag from any of them.

See 8.2.19.1.1 Spatial Structures for more information on Spatial Structures.

Selecting *Spatial structure* brings up the IFC Spatial Structure panel:

![IFC Spatial Structure Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial structure name</td>
<td>input</td>
<td></td>
<td>Select/New Spatial structures</td>
</tr>
</tbody>
</table>

Clicking LB inside the text entry field brings up the Select Spatial Structure panel will bring up the New Spatial Structure panel is no spatial structures have been defined (8.2.19.4.1 Create New Spatial Structure), or if spatial structures have already been defined, a Select panel with the choices...
of existing spatial structures:

If New is selected then Create Spatial Structure panel is brought up to. See 8.2.19.4.1 Create New Spatial Structure.

If a Spatial Structure is double clicked on in the list, or a Spatial Structure highlighted in the list and Select pressed, then the rest of the panel is filled with the information for the selected Spatial Structure. the information can then be edited and then updated by clicking on the Update button.

For information on each Tab and the Buttons at the bottom, see:

Define Tab
Tag Objects Tab
Review Objects Tab
Buttons at Bottom

Define Tab
this tab is used when a new Spatial Structure is being created or an existing one edited.

Created by output
from selected Spatial Structure
cannot be edited from this tab.

Created on output
from selected Spatial Structure
cannot be edited from this tab.

Comments input/output
from selected Spatial Structure
displays the existing comments which can be edited and extra comments added.

Spatial structure type choice box
from selected Spatial Structure
displays the spatial structure types for the selected Spatial Structure. This can be changed and the
choices are defined in the spatial schema file. See 8.2.19.3.1 Spatial Schema File.

If Spatial structure type is set to Site, the following fields are displayed.

![Spatial Structure Type: Site](image)

The fields and names on the left had side of the panel are populated from the Spatial Schema File (see 8.2.19.3.1 Spatial Schema File). The values for the fields can be created/edited and when the Update button is pressed, the values are stored as a subgroup of the Tags group of the Project attributes. The subgroup has the name of the Site.

If the Spatial structure type is set to anything other than Site, only the Aggregates to and fields that are defined the Spatial Schema File (see 8.2.19.3.1 Spatial Schema File).

![Spatial Structure Type: Building](image)

Clicking in the Aggregates to field brings up a list of Spatial Structures that have already been created. The existing Spatial Structure that this new spatial structure is in is selected. See 8.2.19.1.1 Spatial Structures.

The values for the other fields can be created/edited and when the Update button is pressed, the values are stored as a subgroup of the Tags group of the Project attributes. The subgroup has the name of the Spatial Structure.
Tag Objects Tab

This tab is used to tag data being in a given Spatial Structure.

Data to tag
- Data selection type - for a full description go to 4.19.3 Data Source.

Data source
- Input source of data is to be selected for tagging.

Tag mode
- Choice box: Models only, Strings only, Strings and models
 - Creates attributes on the selected strings and/or models to indicate which spatial structure the strings and/or models belong to.

Tag objects
- Button:
 - Tags the selected strings and models with attributes so it is known that they belong to a spatial structure, and which structure it is.
Review Objects Tab

this tab selects data with a given Spatial Structure and can also remove selected items from the spatial structure.

Review Objects Grid

Remove tick box
if ticked, the string or model in that row will be removed when the Remove button is clicked.

Whether strings, models, or both are available is dependent on Tag mode selected in Tag objects tab.

Type output String, Model or Trimesh
the type of the object - string, model or trimesh.

Name output
the name of the object.

Retrieve button
adds a selected string or model.

Remove button
when pressed the data for the given Spatial Container is listed in the grid.

Buttons at Bottom

Update
applies each change. Hit **Update** after every change.

Delete Tag

deletes all objects with the selected tag.

Continue to next section [8.2.19.5 IFC 2x3 Writer](#) or return to [8.2.19 IFC Output](#).
8.2.19.4.1 Create New Spatial Structure

Selecting New brings up the Create Spatial Structure panel:

![Create Spatial Structure panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial structure name</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the name of the new spatial structure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Created by</td>
<td>input</td>
<td>user name</td>
<td></td>
</tr>
<tr>
<td>can be edited to show a different user name if need be</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Created on</td>
<td>input</td>
<td>current date and time</td>
<td></td>
</tr>
<tr>
<td>can be edited to show a different date and time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spatial structure type</td>
<td>choice box</td>
<td>as per the spatial schema file.</td>
<td></td>
</tr>
<tr>
<td>spatial structure types that are defined in the spatial schema file. See 8.2.19.3.1 Spatial Schema File.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td>input</td>
<td>as per New Container panel</td>
<td></td>
</tr>
<tr>
<td>allows user comments to be entered.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create</td>
<td>button</td>
<td>create the new Spatial Structure.</td>
<td></td>
</tr>
</tbody>
</table>

Return to 8.2.19.4 Defining and Assigning Spatial Structures.
8.2.19.5 IFC 2x3 Writer

Position of option on menu: File I/O => Data output => IFC => IFC Writer

The **IFC Writer** option writes out data with a given tag to a file in the IFC 2x3 format (see 8.2.19.1.2 Some IFC 2x3 Definitions).

Selecting **IFC Writer** brings up the **IFC Writer** panel.

![IFC Writer Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFC writer function</td>
<td>function box</td>
<td>available IFC functions</td>
<td></td>
</tr>
<tr>
<td>the name for the IFC Writer Function. Note that the IFC Writer is a function so that it can remember the settings in the panel and can be easily recalced as a function at any time.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What to Export</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spatial structure name</td>
<td>defined spatial structures</td>
<td>available spatial structures</td>
<td></td>
</tr>
<tr>
<td>All data with that has been tagged with this IFC spatial structure name, or has been tagged with an IFC spatial structure name that is in the Spatial Structure hierarchy under this spatial structure, is written out to the IFC file. See 8.2.19.1.1 Spatial Structures and 8.2.19.4 Defining and Assigning Spatial Structures.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>So only the name of one spatial structure is required and all the data in that spatial structure and the data in all those spatial structures under it are selected for writing out.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add comments to file</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
</tbody>
</table>

Add comments to file
if ticked, comments are added to the IFC file denoting what each group of data is in the IFC file. For example, IFC MODEl INFORMAITON, PROJECT INFORMATION and ELEMENTS CONTAINED IN SPATIAL STRUCTURES.

Export attributes tick box ticked

if ticked, the 12d Project Attributes will be exported to the IFC file to the ifcProject. For 12d Objects that are represented as ifcBuildingElementProxy elements, the string/tin/trimesh attributes are exported as an ifcPropertySet.

Export colour table tick box not ticked

if ticked, the Colour Table will be exported to the IFC file.

Colour Methodology

Pset_Drafting tick box ticked (if Export Colour Table is ticked)

if Export colour table is ticked then this is automatically ticked on.

Filename

IFC Filename file box available *.ifc files

the name of the IFC file to write all data tagged with the given Spatial Structure.

Buttons at bottom

Write File button

write the IFC 2x3 file.

Return to 8.2.19 IFC Output.
8.2.19.6 Products

Position of option on menu: File I/O => Data output => IFC => Products

This section of documentation is a work in progress and will be updated in subsequent releases.

Selecting **Products** brings up the **Products** menu.

![IFC Products Output](image)

For the options see;

- **Product create** [8.2.19.6.1 Writing 12d Solutions 12da Data with Place Nodes](#)
- **Product place** [8.2.19.6.2 Product Place](#)
- **Product place writer** [8.2.19.6.3 Product Place Writer](#)
8.2.19.6.1 Writing 12d Solutions 12da Data with Place Nodes

Position of option on menu: File I/O => Data output => IFC => Products => Product create

This section of documentation is a work in progress and will be updated in subsequent releases.

Selecting **Product create** brings up the **Write 12d Solutions Ascii Data with Place Nodes** panel.

Continue to next section 8.2.19.6.2 **Product Place** or go back to 8.2.19.6 **Products**.
8.2.19.6.2 Product Place

Position of option on menu: File I/O => Data output => IFC => Products => Product place

This section of documentation is a work in progress and will be updated in subsequent releases.

Selecting **Product place** brings up the **Product Place** panel.

Continue to next section [8.2.19.6.3 Product Place Writer](#) or go back to [8.2.19.6 Products](#).
8.2.19.6.3 Product Place Writer

Position of option on menu: File I/O => Data output => IFC => Products => Product place writer

This section of documentation is a work in progress and will be updated in subsequent releases.

Selecting Product place writer brings up the CSV Tag File Writer panel.

Go back to 8.2.19.6 Products or go back to 8.2.19 IFC Output.
8.2.20 Old Outputs

Position of menu: File I/O =>Data output =>Old

The Old menu contains superseded options. The Old walk-right menu is

- 12da/4da data
- DGN
- DXF 12-14
- DXF
- Genio V31

- For the option 12da/4da data, go to
 - DGN 8.2.20.1 DXF 12-14 Output
 - DXF 12-14 8.2.20.2 DXF Output
 - DXF 8.2.20.3 Genio V3.1 Output
 - Genio V31 8.2.20.3 Genio V3.1 Output
8.2.20.1 DXF 12-14 Output

Position of option on menu: File I/O => Data output => Old => DXF 12-14

SUPERSEDED OPTION

The DXF 12-14 output format is for writing data out in a format compatible with AutoCAD. The DXF file produced **does not** have a full DXF header with the required line types, text styles, fonts already defined. Hence the DXF file needs to be loaded into an existing Autocad drawing.

AutoCAD Release 10 introduced binary DXF files as a means of addressing the problems of large file sizes, slow processing and limited accuracy that occur when using the ASCII DXF format. 12d Model can write binary DXF files. See the **Precision** field below.

12d Model line strings are output as POLYLINEs, point strings as a series of AutoCAD POINTs and triangles as 3DFACEs.

By default, the string or triangle colour is used in the Autocad colour record. The DXF layer used is the item's model name with any spaces in the model name replaced by a minus (-). However, a DXF output map file with matches on string name can be used to give DXF layers, colours and line type (see next section).

At this stage, 4d, interface and alignment strings are only output as Autocad POLYLINES.

On selecting the **DXF 12-14** output option, the **Write DXF 12-14 File for** panel is displayed.

![Write DXF 12-14 File for](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
data selection type - for a full description go to 4.19.3 Data Source.

Data source input
source of data is to be written out to a file.

DXF File input *.dxf files
name of the file for the information to be written out to. If the file already exists, the data will be appended to the file.

DXF Dimension input 2d 2d, 3d
if 3d, strings will be written out as three dimensional DXF polylines. Alignment strings and arcs will be approximated by short lines.
If 2d, the z-value of all the data is set to zero and arcs and curves in alignment strings are written out as dxf polylines with bulges for the arcs.

Decimal places input 8
the number of decimal places to be used for co-ordinates etc. in the DXF file.
If this number is negative, a binary DXF file will be written. The actual number specified becomes irrelevant in this case, since full precision is preserved in a binary DXF file.

Map file input *.mf files
if non-blank, the name of a file to be used as a 12d Model to DXF output map file. See 8.2.20.1.1 DXF Output Map File.

Use linestyle names tick box
if ticked, a 12d Model string’s linestyle name is used as the DXF element’s line type (“1” goes to CONTINUOUS).
if not ticked, all DXF line types are CONTINUOUS.

Use blocks for point styles tick box
if ticked, for each 12d Model point string, an AutoCAD block of the same name as the 12d Model string’s linestyle is placed at each point.

Output table section tick box tick
if ticked, an AutoCAD table section is written out at the top of the DXF file.

Map DXF colours tick box tick
if ticked, a mapping is made between the first seven default 12d Model colours and the corresponding DXF colours. The other 12d Model colours are mapped to the DXF colour of the same colour number.
If not ticked, the nth 12d Model colour is mapped to the nth DXF colour.

Features as arcs tick box
if ticked, feature strings output as arcs in DXF.
if not ticked, the centre of the feature string is output as a point.

Output view text tick box
if ticked, any view text turned on (point numbers, z-values etc.) are output as text in DXF.
if not ticked, view text is not output.

Write button
write out, in DXF format, the data in the model/view given in the model/view field, to the file given in the file field.
8.2.20.1.1 DXF Output Map File

When using the output options to write out a DXF file, an output map file can be used, with 12d Model string names as the entity-name to match the key, so that the user can specify AutoCAD colour and style. BYLAYER can be used with colour and style.

The key can have wild cards (*) and wild characters (?) as for the input map files. The fields in the DXF output map file are (ACD = AutoCAD):

field 1 key - string name can include wild cards * and wild characters ?
field 2 new name not output to DXF
field 3 ACD layer * for 12d Model name
field 4 ACD colour number between 0 and 256, * for 12d Model colour mapped to ACD,
field 5 ACD line type * for 12d Model linestyle, BYLAYER for ACD BYLAYER
field 6 ACD text style not yet used, * for 12d Model text style

The DXF file produced needs to be loaded into an existing AutoCAD drawing which has the ACD layers and linestyles defined.

An example of an DXF output map file is.

```
//   1    2     3      4    5      6
// key  name  layer  colour  linetype  textstyle
cont* CONT CONTOURS 1 1 *
EB* TOP ROAD 2 CONTINUOUS *
103 TOP * 3 * *
fe* TOP FENCE * BYLAYER *
SURV* TOP SURVEY BYLAYER DASH *
```
8.2.20.2 DXF Output

Position of option on menu: File I/O => Data output => Old => DXF

SUPERSEDED OPTION

The DXF output format is for writing data out in a format compatible with AutoCAD version 15. The DXF file produced does not have a full DXF header with the required line types, text styles, fonts already defined. Hence the DXF file needs to be loaded into an existing AutoCad drawing. This option is the one used in 12d Model V3.1. It is now superseded by the DWG/DXF output option.

AutoCAD Release 10 introduced binary DXF files as a means of addressing the problems of large file sizes, slow processing and limited accuracy that occur when using the ASCII DXF format. 12d Model can write binary DXF files. See the Precision field below.

12d Model line strings are output as POLYLINEs, point strings as a series of AutoCAD POINTs and triangles as 3DFACEs.

By default, the string or triangle colour is used in the Autocad colour record. The DXF layer used is the items model name with any spaces in the model name replaced by a minus (-). However, a DXF output map file with matches on string name can be used to give DXF layers, colours and line type (see next section).

At this stage, 4d, interface and alignment strings are only output as Autocad POLYLINES.

On selecting the DXF output option, the **Write DXF file for** panel is displayed.

The fields and buttons used in this panel have the following functions.
<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source of data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DXF File</td>
<td>input</td>
<td>*.dxf files</td>
<td></td>
</tr>
<tr>
<td>name of the file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for the information</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to be written out to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DXF Dimension</td>
<td>input</td>
<td>3d, 2d, 3d</td>
<td></td>
</tr>
<tr>
<td>if 3d, strings will</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>be written out as</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>three dimensional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DXF polylines.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alignment strings and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>arcs will be</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>approximated by</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>short lines.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If 2d, the z-value of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>all the data is set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to zero and arcs and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>curves in alignment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>strings are written</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>out as dxf polylines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with bulges for the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>arcs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decimal places</td>
<td>input</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>the number of decimal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>places to be used for</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>co-ordinates etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in the DXF file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If this number is</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>negative, a binary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DXF file will be</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>written. The actual</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>number specified</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>becomes irrelevant in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>this case, since full</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>precision is preserved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in a binary DXF file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map file</td>
<td>input</td>
<td>*.mf files</td>
<td></td>
</tr>
<tr>
<td>if non-blank, the name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of a file to be used</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>as a 12d Model to DXF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>output map file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>See 8.2.20.1.1 DXF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Map File.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use linestyle names</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, a 12d Model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>string's linestyle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>name is used as the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DXF element's line</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>type ("1" goes to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTINUOUS).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if not ticked, all DXF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>line types are</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTINUOUS.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>**Use blocks for point</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>styles**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, for each</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12d Model point string</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>an AutoCAD block of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the same name as the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12d Model string's</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>linestyle is places at</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>each point.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output table section</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, an AutoCAD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>table section is</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>placed at the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>beginning of the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DXF file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map DXF colours</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, a mapping</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>is made between the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>first seven default</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12d Model colours and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the corresponding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DXF colours. The other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12d Model colours are</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mapped to the DXF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>colour of the same</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>colour number.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If not ticked, the nth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12d Model colour is</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mapped to the nth DXF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>colour.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Features as arcs</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, feature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>strings output as</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>arcs in DXF.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if not ticked, the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>centre of the feature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>string is output as</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a point.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output view text</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, any view</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>text turned on (point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>numbers, z-values etc.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>are output as text in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DXF.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if not ticked, view</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>text is not output.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>write out, in DXF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>format, the data in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the model/view given</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in the model/view</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>field, to the file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>given in the file field.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.2.20.3 Genio V3.1 Output

Position of option on menu:
File I/O => Data output => Old => Genio V31

SUPERSEDED OPTION

Genio i/o is a separate chargeable module.

This is the genio output module from 12d Model V3.1. This module has been replaced by the new genio module but the genio v3.1 will be left in V4.0 in case there are any problems with the new module.

The genio v3.1 output option uses a non-default format to write out the strings in a model or on a view, to a genio file. A genio 001 option is used to specify the record format.

The first thirty-two characters of the model name are converted to upper case and used as the Moss model name.

In Moss, string labels can have a maximum of four characters. Since 12d Model places no restrictions on string name length, the following rules are used to produce genio string labels.

For a line-string, the first four characters of its string name are used as the genio string label. The four characters are mapped to upper case.

Similarly for point-strings whose names start with `P`. Otherwise the genio string label is `P` plus the first three letters of the point-string name. The three letters are mapped to upper case.

The name of a Moss text string must start with a `*` so 12d Model uses `*` and the first three characters of the text string’s name.

An alignment string can be written out as either a moss 3d, 6d or 12 string.

On selecting the Genio V31 output option, the Write Genio File V31 for panel is displayed.

![Write Genio File V31 for panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type - for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source of data is to be written out to a file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File</td>
<td>input</td>
<td>*.mos files</td>
<td></td>
</tr>
</tbody>
</table>
name of the file the model/view is to be written out to. If the file already exists, the data will be appended to the bottom of the file.

Alignment dimension

- **input 3d**
 - 3d, 6d, 12d

 if 3d is selected, alignment strings as written out as a 3d string as a series of straight lines.
 If 6d is selected, alignment strings are written out as Moss 6d strings.
 If 12d is selected, alignment strings are written out as Moss geometry strings. This is the only way that full horizontal and vertical geometry can be transferred to Moss.

Insert DELETE/CREATE

- **tick box tick**

 if ticked, the genio commands DELETE and CREATE are written at the top of the file to correctly define the moss models for the data.

Write

- **button**

 write out in genio format the data in the model/view given in the model/view field, to the file given in the file field. If the file already exist, the data will be appended to the file.
8.2.20.4 Eagle Output

Position of option on menu: File I/O => Data output => Old => Eagle

Eagle is a 3D CAD package used throughout Australia, Asia and Europe.

Using the Eagle output option, 12d Model produces an Eagle command file which is used by Eagle to create an Eagle model. Since Eagle supports 3D faces, the triangles created in 12d Model can be transferred to Eagle for use in shaded models and walk-throughs.

Instead of colours, Eagle uses pens, dash styles, line thicknesses and frags. To allow the user to map 12d Model colours to appropriate Eagle settings, an Eagle map file setting out the 12d Model and Eagle relationships can be provided.

The eagle map file is a user created file consisting of a list of 12d Model colours and the Eagle pen, dash style, pen thickness and frag to be used for the colour.

The map file is set out with one 12d Model colour per line. The line begins with the 12d Model colour followed by the Eagle pen number, dash style, thickness and frag to be used for the 12d Model colour. Each item is separated by one or more spaces.

For example, if the 12d Model colour red is to be mapped to Eagle pen 3, dash style 4, thickness 2 and frag 1, then the line in the eagle map file would be

```
red  3 4 2 1
```

If a map file is used, as each string is written out, the map file is searched sequentially until a colour match is made.

If no match is found, the colour of the string is used as a pen number and default values used for dash, thickness and frag.

Comments can be included in the map file by preceding the comment with a double forward slash (i.e. `//`). Anything on the line following the `//` will be ignored.

For example,

```
// 12d colour  pen  dash  thick  frag
red    3 4  2 1
green  4 1  1 2
```

On selecting the Eagle option, the Write Eagle Command File for panel is displayed.

![Write Eagle Binary File for Panel](image)

The fields and buttons used in this panel have the following functions.
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>data selection type - for a full description go to 4.19.3 Data Source.</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>source of data is to be written out to a file.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eagle Command File</td>
<td>name of the Eagle command file to write the model/view out to. If the file already exists, the data will be appended to the bottom of it. To be consistent with the Eagle file naming convention, the file name should end in .cmd</td>
<td>input</td>
<td>*.cmd files</td>
<td></td>
</tr>
<tr>
<td>Eagle model</td>
<td>name of the Eagle model to be used for the data. Only the characters A-Z, a-z, 0-9 and - are allowed in an Eagle model name. Do not include a .mod in the name.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map file</td>
<td>if non-blank, the name of the map file to be used for all string colours. If blank, no map file is used.</td>
<td>input</td>
<td>*.emf files</td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>write out the data from the model/view given in the model/view field to the file given in the eagle command file field. The Eagle model has the name given in the Eagle model field. If the file already exists, the data is appended to the file.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.2.20.5 Eagle Binary Output

Position of option on menu: File I/O => Data output => Old => Eagle Binary

Eagle binary i/o is a separate chargeable module.

Using the Eagle binary output option, 12d Model produces Eagle binary models. Since Eagle supports 3D faces, the triangles created in 12d Model can be transferred to Eagle for use in shaded models and walk-throughs.

Since Eagle uses pens, dash styles, line thicknesses and frags rather than colours, an eagle map file is used to define the relationships between 12d Model colours and Eagle pens, dash styles, thickness and frags. The map file is the same as described in the eagle output option.

The 12d Model string name is written to the second attribute of the corresponding eagle item.

On selecting the Eagle binary option, the **Write Eagle Binary File for** panel is displayed.

![Write Eagle Binary File for panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eagle model</td>
<td>stem of the name of the eagle model</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to write the model/view data out to.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Because an eagle model has a maximum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>size, more than one model may be</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>created. The eagle model names will</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>have a sequence number appended to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the name stem given in the eagle model field.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map file</td>
<td>input</td>
<td>input</td>
<td>*.emf files</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if non-blank, the name of the map file to be used for all string colours. If blank, no map file is used.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimension</td>
<td>input</td>
<td>3d</td>
<td>2d/3d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if 3d, strings will be written out as three dimensional eagle lines. The alignment strings and arcs will be approximated by short lines.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If 2d, the z-value of all the data is set to zero and arcs and curves in alignment strings are written out as eagle plan arcs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precision</td>
<td>input</td>
<td>double</td>
<td>single/double</td>
<td></td>
</tr>
</tbody>
</table>
the precision of the eagle models.

Write button

write out the data from the model/view given in the Model/view field to the file given in the eagle model field.
8.3 Layouts

Position of menu: File I/O =>Layouts

The options under **Layouts** read and write screen layout files.

The screen layout format to use is the slx format (an XML format) introduced in **12d Model 10**.

There is also an option to convert the older format, slf, to slx.

The **Layouts** walk-right menu is:

- read in layout files from working folder, Lib or User Lib
- read in one or more layout files
- write out a screen layout file
- convert a pre V10 layout file (slf) to a V11 layout file (slx)

See

- **Layout input** 8.3.1 Layout Input
- **Layout input files** 8.3.2 Layout Input Files
- **Layout output** 8.3.3 Layout Output
- **Convert slf to slx** 8.3.4 Convert slf to slx Format
8.3.1 Layout Input

Position of option on menu: File I/O => Layouts => Layout input

Walking right on Layout input lists all screen layout files (files ending in .slx or .slf) in the working folder, or by further walking right on the [Lib] or [User lib], all screen layout files in [Lib] or [User lib] will be listed.

Clicking on a file in one of the list runs the selected screen layout file and places on the screen, the menus and panels recorded in the screen layout file.

If Clicking on reads in a screen layout file (*.slf) which can create most menus and panels and place them on the screen.

The screen layout file can be created by the layout output option, the Menu/Panel Dump option, or by any text editor.

Note

If the File I/O menu or the Layouts menu, is pinned, clicking LB on Layout input brings up the Read Screen Layout panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layout file</td>
<td>the name of the screen layout file to read the screen layout information from.</td>
<td>input</td>
<td>*.slx and *.slf</td>
<td></td>
</tr>
</tbody>
</table>

Read button

after selecting this button, the screen layout file will be read in.
8.3.2 Layout Input Files

Position of option on menu: File I/O => Layouts => Layout input files

The layout input files option reads in one or more screen layout files (files ending in .slx or .slf) which can create most menus and panels and place them on the screen.

The screen layout file can be created by the Layout output option or by any editor.

On selecting the Layout input files option, the Read Screen Layout Files panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
</tbody>
</table>

if ticked, a folder containing slx/slf files can be selected, an optional Wildcard given, and all the slx/slf files satisfying the Wildcard are displayed in a grid. Files in the grid can be selected/not selected.

When Read is pressed, all the selected files are read.

Layout file input *.slx and *.slf

the name of the file to read the screen layout information from.

Read button
after selecting this button, the screen layout file will be read in.
8.3.3 Layout Output

Position of option on menu: File I/O => Layouts => Layout Output

The layout output option writes out information on almost all the objects on the screen, and for views, their sizes, into what is called a screen layout file.

For any menus, its screen position is recorded, and for panels, its position and all the information set for the panel is also recorded.

The screen layout file can then be read back in by options such as layout input and Layout input files, to recreate on the screen the menus and panels recorded in the screen layout file (but not the views).

Since the screen layout file is editable, users can create their own special layout files.

The view size information is helpful in building up a set_up_file to define the initial screen layout.

On selecting the Layout output option, the Write Screen Layout panel is displayed.

![Write Screen Layout Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layout file</td>
<td>the name of the file to print the screen layout information to.</td>
<td>input</td>
<td>*.slf</td>
<td></td>
</tr>
<tr>
<td>Save</td>
<td>after selecting this button, the screen layout information will be printed out.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.3.4 Convert slf to slx Format

Position of option on menu: File I/O =>Layouts =>Layout Convert

The options on the Layout Convert walk-right menu convert the older screen layout format (*.slf) to the new xml format (*.slx) introduced in 12d Model 9.

Layout Convert walk-right menu containing these options is:

For the option One, go to 8.3.4.1 SLF Conversion Folder 8.3.4.2 Convert a Folder of Screen Layout Files

8.3.4.1 SLF Conversion

Position of option on menu: File I/O =>Layouts =>Layout Convert=> One

The One option is for converting a single slf to a slx file.

Selecting One brings up the SLF Conversion panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slf to convert</td>
<td>file box</td>
<td>*.slf</td>
<td></td>
</tr>
<tr>
<td>Destination slx</td>
<td>file box</td>
<td>*.slx</td>
<td></td>
</tr>
</tbody>
</table>

When a slf file is selected from the pop-up list, or types in and <enter> hit, then the slf file name, with the slf replaced by slx, is written to the Destination slx field.

The slf file is converted to an XML screen layout file and given the name in Destination slx.

After selecting this button, the slf file will be converted to a slx file.
8.3.4.2 Convert a Folder of Screen Layout Files

Position of option on menu: File I/O => Layouts => Layout Convert => Folder

The Folder option is for converting a folder of slf files to a slx files. Selecting Folder brings up the Screen Layout Folder Conversion panel.

![Screen Layout Folder Conversion panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folder to convert</td>
<td>the folder containing all the slf files to convert to slx files</td>
<td>input</td>
<td>*.slf</td>
<td></td>
</tr>
</tbody>
</table>

Convert button

After selecting this button, all the slf files in the folder Folder to convert are converted to slx files. The converted files are given the same name as the slf files except the slf is replaced by slx.
8.4 ADAC

Position of menu: File I/O =>ADAC

The options under ADAC enable use of the new ADAC functionality.

The ADAC walk-right menu is

For information on the ADAC menus, see 10.4 12d ADAC Menu
8.5 Digitizer

Position of menu: File I/O => Digitizer

The Digitizer option is used with a digitizing table to create 12d Model strings from existing maps or plans.

Contours (2d strings), feature strings (3d strings), spot heights (points strings), 4d strings, circles, arcs and text can all be digitized with this option.

The digitized data can be added to a new or existing 12d Model project.

The digitizing process consists of a number of steps.

• providing a digitizer definition file
• selecting the type of digitizer to be used
• registering a new plan or map on the digitizer, or continuing with a previously registered plan (resuming).
• selecting a default digitizing tolerance, default model, colour and name for digitized strings.
• digitizing the information

These steps are described totally in the next five sections and are then summarized.

A summary of the step is given in section 8.5.6 Summary.

The digitizer can be set up using WinTab which is preferred method, or by using a definition in the 12d digitizer definitions file, digitize.4d. A quick description of the digitizer definition file is given in the section 8.5.1 Digitizer Definitions. The format for the digitizers_definitions file is given in the section 8.5.7 Digitizer Definitions File.

The Digitizer walk-right menu is laid out to reflect the standard sequence of digitizer operations.

<table>
<thead>
<tr>
<th>Digitizer</th>
<th>define digitizers and plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setups</td>
<td>default tolerance, model, colour etc.</td>
</tr>
<tr>
<td>Defaults</td>
<td>digitize strings</td>
</tr>
<tr>
<td>Capture</td>
<td>some digitizer button operations</td>
</tr>
<tr>
<td>Buttons</td>
<td></td>
</tr>
</tbody>
</table>

For the option

- Setups, go to 8.5.2 Setups
- Defaults 8.5.3 Defaults
- Capture 8.5.4 Capture
- Buttons 8.5.5 Buttons
8.5.1 Digitizer Definitions

Most digitizers now support the WinTab definition for communicating with Windows and that is the preferred method to be used with 12d Model.

If the digitizer supports WinTab then the WinTab drivers need to be installed before the digitizer can be used by 12d Model. The WinTab drivers are supplied with the digitizer, not by 12d Solutions.

Once the WinTab drivers are installed, no further information is required by 12d Model and the rest of this section can be ignored.

Unfortunately if WinTab is not supported, each brand of digitizer has its own method of communicating with a computer and a software package.

To allow for a variety of digitizers not supported by WinTab, 12d Solutions has its own text format for defining the important features of a particular digitizer. The digitizer definitions file is also used to tailor digitizer button usage at a particular site.

For example, the digitizer file defines which buttons on the digitizer puck are used to:

- digitize new (add) points
- end the digitizing of a string
- turn tolerance on/off
- delete the last digitized point
- add button
- end button
- tolerance button
- delete point button

When 12d Model starts up, it checks to see if an environment variable called DIGITIZERS_4D exists and if it does, then the file it points to is used to provide the definitions for the digitizers.

If the environment variable is not set, then 12d Model searches for a file called digitize.4d in the standard 12d Model search sequence for set up files.

Only digitizers that have been defined in the digitizers definitions file can be selected for use from within 12d Model.

The format for the digitizers definitions file is given in the section 8.5.7 Digitizer Definitions File.

Return to 8.5 Digitizer or look at 8.5.6 Summary.
8.5.2 Setups

Position of menu: File I/O => Digitizer => Setups

The setups menu contains options to select the digitizer to be used, register the co-ordinate system on a new plan or map sheet and for resuming the registration for a plan or map sheet already registered.

The setups walk-right menu is

![Digitizer setups menu]

- Define which digitizer is being used
- Register a new plan
- Resume an existing registration

Each option will now be described in detail.

For the option

- **Digitizer selection** go to 8.5.2.1 Digitizer Selection
- **Register plan** 8.5.2.2 Register Plan
- **Resume** 8.5.2.3 Resume Plan

For a summary on using the digitizer go to 8.5.6 Summary.
8.5.2.1 Digitizer Selection

Position of option on menu: File I/O=>Digitizer=>Setups=>Digitizer selection

On selecting the digitizer selection option, the digitizer selection panel is displayed.

This panel displays the current digitizer selected and allows a different one to be selected from those defined in the digitizers definitions file.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Wintab drive</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digitizer</td>
<td>input</td>
<td>current digitizer</td>
<td>available digitizers</td>
</tr>
</tbody>
</table>

If ticked then user WinTab drivers. If not ticked, then the Digitizer field is enabled and must have a digitizer selected.

The name of the current digitizer is displayed in this field. The current digitizer is changed by selecting a different name from the pop-up for the digitizer field and then selecting the Set button.

This field is only used if Use WinTab driver is not ticked.

<table>
<thead>
<tr>
<th>Set button</th>
</tr>
</thead>
</table>
| if Use WinTab driver is set to tick and the Wintab drivers exist, then the Wintab Monitor panel is placed on the screen. The Wintab Monitor displays the digitizer co-ordinates and the digitizer button being used. The information describing the use of the digitizer buttons is written to the Output Window (see below). Do not close the Wintab Monitor panel or the digitizer will stop being read.
If Use WinTab driver is set to tick and the Wintab drivers don’t exist, an error message is displayed.
If Use WinTab driver is not set to tick, then after selecting this button, the digitizer given in the digitizer field will be used as the current digitizer.*
Typical Message to Output Window if WinTab Drivers are Installed

Interface: Wintab 32-bit Digitizer Services.
Number of devices: 1
Device 1: GTCO MM-compatible Tablet; Version 1.00.00.08; Format: MM; Firmware: MM III
12 x 12 Tablet by Summagraphics Firmware Version 1.91
The default device is device 1
Number of cursors is 3
Cursor 1: 2 button stylus
Cursor 2: 4 button puck - active
Cursor 3: 16 button puck
Number of buttons on active cursor is 4
Button 1: button 1
Button 2: button 2
Button 3: button 3
Button 4: button 4
Use Button 1 for Add point to string
Use Button 2 for End string
Use Button 3 for Delete point from string
Use Button 4 for Close string

Continue to the next section 8.5.2.2 Register Plan or return to 8.5.2 Setups.
8.5.2.2 Register Plan

Position of option on menu: File I/O => Digitizer => Setups => Register plan

Before the information on a plan or map can be digitized, the relationship between the coordinate system of the plan and the digitizer must be determined.

In 12d Model, this relationship is given by specifying the plan co-ordinates and then the position on the digitizer of three or more points. These special points are known as control points.

The affine transformation for the control points is then calculated and if accepted by the user, is used to convert digitizer co-ordinates to plan co-ordinates.

This process is called "registering a plan".

Once a plan has been registered, the information is saved to a file. This file can be used in the resume plan option to register the plan without having to re-enter the control points.

Warning

If the plan is moved on the digitizer, it must be re-registered since the current affine transformation will be invalid.

After selecting the register plan option, the digitizer register plan panel is displayed.

After selecting the register plan option, the digitizer register plan panel is placed on the screen and the option sits waiting for the user to enter the information for each control point.

This is achieved by

- selecting the control point with the mouse if it already exists in 12d Model, or by typing in its plan co-ordinates (easting northing)

and then

- selecting the control point's position on the digitizer tablet using the digitizers add point button.

Alternatively, if the control points already exist in 12d Model, they can be selected rather than using typed input.

This process is repeated for each control point and is terminated by selecting cancel from the pick ops pop-up menu instead of selecting a new control point.
The calculate button calculates the affine transformation for all the control points in the grid with the Use pt ticked on.

The affine parameters are

- the rotation of the x axis of the plan co-ordinates with respect to the digitizer x axis
- the rotation of the y axis of the plan co-ordinates with respect to the digitizer y axis
- the x and y scale factors for the plan co-ordinates with respect to the digitizer coordinates
- the x and y translations for the plan co-ordinates with respect to the digitizer coordinates

Once calculated, these values are displayed in the digitizer register plan panel.

If further control points are required, selecting the control button on the digitizer register plan panel will restart the control point picking mechanism. Each new control point will be added to the grid.

The new affine transformation can be calculated by selecting the calculate button on the digitizer register plan panel.

Finally, once the user is satisfied with the affine transformation, it can be registered and stored in an text file for future use by entering a filename into the file field of the digitizer register plan panel and then selecting the register button from that panel.

Summarising, the fields and buttons in the digitizer register plan panel have the following functions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotation x/y</td>
<td>the rotation of the x/y axis of the plan co-ordinates with respect to the digitizer x/y axis</td>
<td>output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scale x/y</td>
<td>the x/y scale factor for the plan co-ordinates with respect to the digitizer coordinates</td>
<td>output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Translation x/y</td>
<td>the x/y translation for the plan co-ordinates with respect to the digitizer coordinates</td>
<td>output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>File</td>
<td>the name of the file to record the affine parameters.</td>
<td>input</td>
<td>*.aff</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>restarts the selection process for choosing more control points.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculate</td>
<td>calculates the affine parameters based on the control point selection.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Register</td>
<td>write the affine transformation to the file given in the file field and register the affine transformation as the current one to be used for the digitising session.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finish</td>
<td>remove the panel from the screen.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Warning

The affine transformation must be registered using the register button before the finish button is selected or it will be lost.

Continue to the next section 8.5.2.3 Resume Plan or return to 8.5.2 Setups.
8.5.2.3 Resume Plan

Position of option on menu: File I/O => Digitizer => Setups => Resume

When digitising a large plan, it is often necessary to spread the digitising over more than one session in 12d Model.

If the plan has not been moved on the digitizer since it was registered, the affine transformation can be restored with the resume plan option rather than having to register the plan again.

On selecting the resume plan option, the digitizer resume panel is displayed.

To resume digitizing with an affine transformation recorded during an earlier registration session, simply enter the name of the affine file into the file field on the digitizer resume panel and then select the resume button.

Warning
If the plan is moved on the digitizer, it must be re-registered since the current affine transformation will be invalid.

Return to 8.5.2 Setups.
8.5.3 Defaults

Position of menu: File I/O =>Digitizer =>Defaults

The defaults menu sets default model, colour etc. and tolerance which are used when digitizing. The defaults walk-right menu is

- default model, colour etc.
- not yet used
- minimum distance between points
- set digitizer to stream mode

For the option
- Capture defaults, go to 8.5.3.1 Capture Defaults
- Bell 8.5.3.2 Bell
- Tolerance 8.5.3.3 Tolerance
- Stream 8.5.3.4 Stream

For a summary on using the digitizer go to 8.5.6 Summary.
8.5.3.1 Capture Defaults

Position of option on menu: File I/O =>Digitizer =>Defaults =>Capture defaults

For any new string a name, model, colour, breakline type and default height are needed. When digitizing, the same values are often required for a large number of the strings. The *capture defaults* panel is used to set default values for digitized strings.

On selecting the *capture defaults* option, the *digitizer capture defaults* panel is displayed.

In the digitizing *capture* options, whenever a new string is selected, the values for name, model, colour, breakline type and height are taken from the *digitizer capture defaults* panel.

Continue to the next section 8.5.3.2 Bell or return to 8.5.3 Defaults.
8.5.3.2 Bell

Not yet implemented

Continue to the next section 8.5.3.3 Tolerance or return to 8.5.3 Defaults.
8.5.3.3 Tolerance

Position of option on menu: File I/O =>Digitizer =>Defaults =>Bell

When points are being digitized, a new point is often only required when it is a certain distance from the previous point on the digitizer. This is especially important for steam digitizing when hundreds of points per second may be captured.

The **tolerance** option allows the user to specify the minimum plan distance (in millimetres) between successive digitized points in a string.

On selecting the **tolerance** option, the **digitizer tolerance defaults** panel is displayed.

![Digitizer Tolerance Defaults](image)

The fields and buttons used in this panel have the following meanings.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use tolerance</td>
<td>tick box</td>
<td>tick</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if tick</td>
<td>a new point taken from the digitizer is only accepted if it is at least the distance given in the distance field away from the previous recorded point in the string.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance (mm)</td>
<td>input</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the minimum separation distance, in millimetres, between successive digitized points in a string.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set the use tolerance and distance values.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section 8.5.3.4 Stream or return to 8.5.3 Defaults.
8.5.3.4 Stream

Position of option on menu: File I/O => Digitizer => Defaults => Stream

Not yet documented.

Return to [8.5.3 Defaults](#).
8.5.4 Capture

Position of menu: File I/O => Digitizer => Capture

The capture menu is for digitizing strings into 12d Model.

The capture walk-right menu is

```
Digitizer Capture
2d
digitize 2d strings
digitize 3d strings
digitize 4d strings
digitize arcs
digitize circles
digitize text
```

The first time any of the option from this menu is selected, the capture panel is placed on the screen.

```
Capture
error opening digitizer port
Finish Help
```

This panel is used to display the transformed co-ordinates for each digitized point that passes the tolerance test, and some special digitizer messages (for example, tolerance on/off).

To change the type of string being captured, simply select the new type from the digitize capture panel. This is normally only done at the end of capturing a string, not part way through.

To terminate the digitizing session, select finish on the capture panel.

Each of the methods for capturing data available in the digitizer capture menu will now be described.

```
Digitizer Capture
2d
digitize 2d strings
digitize 3d strings
digitize 4d strings
digitize arcs
digitize circles
digitize text
```

For the option

- **2d**, go to 8.5.4.1 2d
- **3d**, 8.5.4.2 3d
- **4d**, 8.5.4.3 4d
- **Arc**, 8.5.4.4 Arc
- **Circle**, 8.5.4.5 Circle
- **Text**, 8.5.4.6 Text

For a summary on using the digitizer go to 8.5.6 Summary.
8.5.4.1 2d

Position of option on menu: File I/O=>Digitizer=>Capture=>2d

This option is used to digitize 2d strings.

On selecting the 2d option, the **Digitize 2d string** panel is displayed.

![Digitize 2d string panel](diagram)

The fields and buttons in the **digitize 2d string** panel have the following meanings.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>name of new string</td>
<td>input</td>
<td>name from capture defaults</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>capture defaults model</td>
<td>input</td>
<td>available models</td>
<td>model for the new string</td>
</tr>
<tr>
<td>Colour</td>
<td>capture def colour</td>
<td>input</td>
<td>available colours</td>
<td>colour of the new string</td>
</tr>
<tr>
<td>Type</td>
<td>capture def type</td>
<td>input</td>
<td>point, line</td>
<td>breakline type of the new string.</td>
</tr>
<tr>
<td>Height</td>
<td>capture def height</td>
<td>input</td>
<td></td>
<td>height of the 2d string.</td>
</tr>
</tbody>
</table>

If the **digitize 2d string** panel is created by the 2d option, the values in the name, model, colour, type and height fields are taken from the **digitizer capture defaults** panel.

Any of the values in the **digitize 2d string** can be modified before digitizing the 2d string begins.

Digitizing begins by pressing the **add** button on the digitizer puck when the puck is above the first point of the new string.

The co-ordinates of the selected point are then displayed in the **capture** panel and the **digitize 2d string** panel removed from the screen.

Further points are digitized by either pressing the **add** button again or if stream mode is on, holding the **add** button down and moving along the string being digitized.

The 2d string is terminated when the **end** button is pressed on the digitizer puck.

After selecting the **end** button, the **digitize 2d string** panel is again placed on the screen with the filed values the same as the 2d string just digitized.

The digitizing process is repeated for the new 2d string.

Continue to the next section 8.5.4.2 3d or return to 8.5.4 Capture.
8.5.4.2 3d

Position of option on menu: File I/O=>Digitizer=>Capture=>3d

This option is used to digitize 3d strings.

Digitizing 3d strings is similar to 2d strings except that different z-values can exist at each of the digitized points.

On selecting the 3d option, the Digitize 3d string panel is displayed.

![Digitize 3d string panel](image)

The fields and buttons in the digitize 3d string panel are similar to the digitize 2d string panel except for the fields:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height prompt</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
</tbody>
</table>

If tick, after each point is digitized, an enter height box is placed on the screen. The height of the digitized point is typed into the box.

If not tick, the default height is used as the z-value for the digitized point.

<table>
<thead>
<tr>
<th>Default height</th>
<th>input</th>
<th>capture default height</th>
</tr>
</thead>
</table>

height of the point if the height prompt is set to no.

If the digitize 3d string panel is created by the 3d option, the values in the name, model, colour, type and height fields are taken from the digitizer capture defaults panel.

As for digitizing 2d strings, any of the values in the digitize 3d string can be modified before digitizing begins.

Digitizing begins by pressing the add button on the digitizer puck when the puck is above the first point of the new string.

The co-ordinates of the selected point are displayed in the capture panel and the digitize 3d string panel removed from the screen.

If the height prompt field is set to tick, an enter height box is placed on the screen with the previous typed height in it. The height for the digitized point in typed into the box, terminated by a <return>. The enter height box then disappears.

Further points are digitized by either pressing the add button again or if stream mode is on, holding the add button down and moving along the string being digitized.

Again, if the height prompt is set to yes, the enter height box will appear after each digitized point.

The 3d string is terminated when the end button is pressed on the digitizer puck.

After selecting the end button, the digitize 3d string panel is again placed on the screen with the field values the same as the 3d string just digitized.
The digitizing process is repeated for the new 3d string.

Warning
If stream digitizing is used for the 3d string, the height prompt should be set to not tick.

Continue to the next section [8.5.4.3 4d](#) or return to [8.5.4 Capture](#).
8.5.4.3 4d

Position of option on menu: File I/O=>Digitizer=>Capture=>4d

This option is used to digitize 4d strings.

Digitizing 4d strings is similar to 3d strings except that as well as a different z-value at each point, a text string also exits at each of the digitized points.

On selecting the 4d option, the **Digitize 4d string** panel is displayed.

![Digitize 4d string panel](image)

The fields and buttons in the **digitize 4d string** panel are similar to the **digitize 3d string** panel except for the fields

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text prompt</td>
<td>input</td>
<td>yes</td>
<td>yes, no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: if tick, after each point is digitized, an enter text box is placed on the screen. The text for the digitized point is typed into the box. If not tick, no text is used at the digitized point.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size (pix)</td>
<td>input</td>
<td>default text size</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>height (in pixels) of the text at each point</td>
<td></td>
</tr>
<tr>
<td>Angle</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>angle of the text at each point</td>
<td></td>
</tr>
<tr>
<td>Offset (pix)</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>offset (in pixels) of the text from the digitized point</td>
<td></td>
</tr>
</tbody>
</table>

The **digitize 4d string** panel created by the 4d option, the values in the name, model, colour, type and height fields are taken from the **digitizer capture defaults** panel.

As for digitizing 3d strings, any of the values in the **digitize 4d string** can be modified before digitizing begins.

Digitizing begins by pressing the **add** button on the digitizer puck when the puck is above the first point of the new string.

The co-ordinates of the selected point are displayed in the **capture** panel and the **digitize 4d string** panel removed from the screen.
If the **height prompt** field is set to **tick**, an enter height box is placed on the screen with the previous typed height in it. The height for the digitized point in typed into the box, terminated by a `<return>`. The enter height box then disappears.

If the **text prompt** field is set to **tick**, an enter text box is placed on the screen. The text for the digitized point is typed into the box, terminated by a `<return>`. The enter text box then disappears.

Further points are digitized by either pressing the **add** button again or if stream mode is on, holding the **add** button down and moving along the string being digitized.

Again, the enter height and enter text boxes will appear after each digitized point if the **height prompt** and **text prompts** are set to **tick**.

The 4d string is terminated when the **end** button is pressed on the digitizer puck.

After selecting the **end** button, the **digitize 4d string** panel is again placed on the screen with the values in the fields from the 4d string just digitized.

The digitizing process is repeated for the new 4d string.

Warning

If stream digitizing is used for the 4d string, the **height prompt** and text prompt should be set to **not tick**.

Continue to the next section *8.5.4.4 Arc* or return to *8.5.4 Capture*.
8.5.4.4 Arc

Position of option on menu: File I/O =>Digitizer =>Capture =>Arc

This option is used to digitize arcs by digitizing three points on the arc - the arc start point, a point on the arc and the arc end point.

On selecting the **arc** option, the Digitize arc panel is displayed.

![Digitize arc panel](image)

The fields and buttons in the **digitize arc** panel are similar to the **digitize 3d string** panel except for the field

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>input</td>
<td>capture default height</td>
</tr>
</tbody>
</table>

height given to the two end points of the arc.

If the **digitize arc** panel is created by the **arc** option, the values in the name, model, colour and height fields are taken from the **digitizer capture defaults** panel.

As for digitizing 3d strings, any of the values in the **digitize arc** panel can be modified before digitizing an arc begins.

Digitizing begins by pressing the **add** button on the digitizer puck when the puck is above the first point of the new arc.

The co-ordinates of the selected point are displayed in the **capture** panel and the **digitize arc** panel removed from the screen.

Next a point on the arc between the arc end points is digitized followed by the arc end point.

After the end point is digitized, the arc is automatically created and the **digitize arc** panel again placed on the screen with the field values the same as the arc just digitized.

The digitizing process is repeated for the new arc.

Warning

Stream digitizing should not be used for arcs.

Continue to the next section **8.5.4.5 Circle** or return to **8.5.4 Capture.**
8.5.4.5 Circle

Position of option on menu: File I/O =>Digitizer =>Capture =>Circle

The circle option is used to digitize circles by digitizing the centre point and one point on the circle.

On selecting the circle option, the **Digitize circle** panel is displayed.

![Digitize circle panel](image)

The fields and buttons in the **digitize circle** panel are the same as the **digitize arc** panel.

If the **digitize circle** panel is created by the circle option, the values in the name, model, colour and height fields are taken from the **digitizer capture defaults** panel.

As for digitizing arcs, any of the values in the **digitize circle** panel can be modified before digitizing of the circle begins.

Digitizing begins by pressing the **add** button on the digitizer puck when the puck is above the circle point of the new circle.

The co-ordinates of the selected point are displayed in the **capture** panel and the **digitize circle** panel removed from the screen.

Next a point on the circle is digitized. The circle is then fully defined and automatically created.

The **digitize circle** panel is again placed on the screen with the field values the same as the circle just digitized.

The digitizing process is repeated for the new circle.

Warning

Stream digitizing should **not** be used for circles.

Continue to the next section 8.5.4.6 Text or return to 8.5.4 Capture.
8.5.4.6 Text

Position of option on menu: File I/O => Digitizer => Capture => Text

Not yet implemented

Return to [8.5.4 Capture](#).

For a summary on using the digitizer go to [8.5.6 Summary](#).
8.5.5 Buttons

Position of menu: File I/O => Digitizer => Buttons

The various options on the Buttons menu can be used instead of pushing buttons on the digitizer puck.

The main use for this is when the digitizer puck has only a small number of buttons.

The Buttons walk-right menu is

- delete last point
- end string
- turn stream on/off
- turn tolerance on/off
- open string
- close string
- delete all points in string

Return to 8.5 Digitizer.

For a summary on using the digitizer go to 8.5.6 Summary.
8.5.6 Summary

The steps for digitizing are

1. Point to digitizers definitions file
 The file containing the definitions of the digitizers is created and either called `digitize.4d`, or the environment variable DIGITIZERS_4D is set to point to the file.

2. Select a digitizer
 Use the menu item File I/O => Digitizer => Setups => Digitizer selection.

3. Register a new plan or resume an old plan
 To register a new plan, use menu item File I/O => Digitizer => Setups => Register plan.
 After selecting the option, the software is waiting for the user to give the co-ordinates and position of control points on the digitizer.

 Control Point Loop

 (a) type in easting northing of the control point
 (b) pick point on the digitizer

 The loop is terminated by getting up the Pick Ops menu with the mouse and picking Cancel.

 Then select calculate from the digitizer control point table panel and check the calculated affine parameters in the digitizer register plan panel.

 Once happy with the affine parameters, save them away by typing a filename (ending in .aff) into the file field of the digitizer register plan panel and then select the register button.

 Alternatively, to resume digitizing a previously registered plan that has not moved on the digitizing tablet, use menu item File I/O => Digitizer => Setups => Resume plan.

 Type the affine file name into the file field of the digitizer resume panel and select resume.

4. Set the capture defaults
 Menu items under Digitizer => Defaults.

5. Digitize a bounding polygon for the area to be digitized
 Use the menu item Digitizer => Capture => 2d.

 This step is not strictly necessary, however, the polygon can be used to easily fit the digitized data onto a view.

6. Digitize the data
 Use the menu items under Digitizer => Capture.

Return to 8.5 Digitizer.
8.5.7 Digitizer Definitions File

Unfortunately, each brand of Digitizer has its own method of communicating with a computer and a software package.

To allow for a variety of digitizers, 4D Solutions has its own text format for defining the important features of a particular digitizer.

When 12d Model starts up, it checks to see if an environment variable called DIGITIZERS_4D exists and if it does, then the file it points to is used to provide the definitions for the digitizers.

DIGITIZERS_4D filename

If the environment variable is not set, then 12d Model searches for a file called digitize.4d in the standard 12d Model search sequence for setup files.

Only digitizers that have been defined in the digitizer definitions file can be selected for use from within 12d Model.

The digitizers definition file format is a simple text format and consists of one or more digitizer definitions. Each digitizer definition in the file begins with the key word digitizer followed by the digitizer name and then appropriate digitizer commands enclosed within curly braces { }.
8.5.7.1 Available Digitizer Commands

Commands to define communication with the digitizer:

- **port**: text
- **baud**: 300 | 600 | 1200 | 2400 | 4800 | 9600 | 19200 | 38400
- **charbits**: 5 | 6 | 7 | 8
- **parity**: none | even | odd
- **stopbits**: 1 | 2

Commands to define the size of the digitizing area:

- **xdimension**: integer // length of digitizer area in mm
- **ydimension**: integer // height of digitizer area in mm
- **resolution**: real // resolution in mm

Commands to define contents of the text string returned when digitizing:

- **stringlength**: integer // length of the text string returned
- **buttonstart**: integer // position in text for button id
- **buttonend**: integer
- **xstart**: integer // position for x value
- **xend**: integer
- **ystart**: integer // position for y value
- **yend**: integer

Command to define sequences to send to digitizer:

- **startup**: text // digitizer start up sequence
- **finishup**: text // digitizer finish up sequence
- **pointmode**: text // text to put digitizer into point mode
- **streammode**: text // text to put into stream mode (track mode)

Commands to define the meaning of the button values returned from the digitizer:

These commands may occur more than once since some digitizers have more than one return value for the same thing.

- **addpoint**: text // digitize a point
- **end**: text // end the string being digitized
- **delpoint**: text // delete the last point digitized
- **toggletol**: text // toggle tolerance
- **togglestream**: text // toggle stream mode
- **clearstr**: text // clear all points in the current string
- **openstr**: text // open the current string
- **closestr**: text // closes the current string

Notes

1. spaces in text - any text string that includes spaces or only numbers, must be enclosed in double quotes “”.
2. comments - anything after // until the end of the line is ignored.
3. blank lines - blank lines are ignored

Return to [8.5 Digitizer](#).

For a summary on using the digitizer go to [8.5.6 Summary](#).
8.6 GIS

Position of menu: File I/O => GIS

The **FDO (Feature Data Objects)** is used to communicate with external servers such as **GIS** packages and external databases, including **SQL Server**, **Oracle** and **MySQL**. Depending on the services provided by the external data source, vector data may be downloaded, updated or new data inserted. Raster images may also be dynamically downloaded and displayed via the WMS (Web Mapping Service).

The list of services **12d Model** currently supports includes:

- WFS (Web Feature Service)
- ArcSDE
- Oracle databases
- SQL Server databases
- MySQL databases
- Basic ODBC (Open Database Connectivity), such as Excel and Access
- PostGreSQL
- SQLite
- PostGIS
- Shape files
- SDF files
- OGR formats (see http://www.gdal.org/ogr/ogr_formats.html)
- WMS (Web Mapping Service) for Raster downloads

Some server types may not be available if you do not have the required third party components, as installed with the third party software. You may need to contact the vendors of the data source if you experience difficulty.

The **GIS** walk-right menu containing these options is:

For the option Servers, go to

- **8.6.1 Edit GIS Servers**
- **8.6.7 GIS Download**
- **8.6.10 GIS Download Wizard**
- **8.6.14 GIS Add Strings**
- **8.6.15 GIS Update Strings**
<table>
<thead>
<tr>
<th>Feature</th>
<th>Page Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete strings</td>
<td>8.6.16 GIS Delete Strings</td>
</tr>
<tr>
<td>Find</td>
<td>8.6.17 Find GIS Strings</td>
</tr>
<tr>
<td>Assign Attributes</td>
<td>8.6.18 GIS Assign Attributes</td>
</tr>
<tr>
<td>Attribute map file editor</td>
<td>8.6.19 Attribute Map File</td>
</tr>
<tr>
<td>Manage</td>
<td>8.6.20 Manage FDO</td>
</tr>
<tr>
<td>WMS</td>
<td>8.6.21 WMS</td>
</tr>
</tbody>
</table>

GIS
8.6.1 Edit GIS Servers

Position of option on menu: File I/O => GIS => Servers
Selecting Servers brings up the Edit FDO servers panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adds a new server</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deletes the selected server</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moves the server up in the list</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Down</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moves the server down in the list</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Save</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saves the list of servers</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.6.2 WFS Server Setup

This panel provides access to edit the required information for connection to a WFS (Web Feature Service) server.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server type</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Server name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeatureServer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Username</td>
<td>an optional username</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Password</td>
<td>an optional password</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connect</td>
<td>button</td>
<td></td>
<td>Tests the connection to the server</td>
</tr>
</tbody>
</table>
8.6.3 SDF Server Setup

This provides access to edit the required information for connection to a file in AutoDesk's SDF format (spatial database format).

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server type</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Server name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File</td>
<td>file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ReadOnly</td>
<td>choice box</td>
<td>True, False</td>
<td></td>
</tr>
<tr>
<td>MaxCacheSize</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connect</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field Description: The type of server

Server name: The name by which you will refer to the server

File: The file to read / write

ReadOnly: Whether or not to access the file in a read only fashion

MaxCacheSize: An optional setting to determine the maximum cache size used in SDF operations

Connect: Tests the connection to the file
8.6.4 SHP Server Setup

This provides access to edit the required information for connection to a file or set of files in ESRI's SHP file format.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server type</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Server name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DefaultFileLocation</td>
<td>file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TemporaryFileLocation</td>
<td>file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connect</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Server type: the type of server
- Server name: the name by which you will refer to the server
- DefaultFileLocation: where the SHP file(s) to read/write reside
- TemporaryFileLocation: an optional field to specify where the FDO should write any required temporary files
- Connect: Tests the connection settings
8.6.5 ArcSDE Server Setup

This provides access to edit the required information for connection to an ArcSDE server. If you do not know the data store name, you may need to connect to the server once to retrieve the list of names.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server type</td>
<td>the type of server</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Server name</td>
<td>the name by which you will refer to the server</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Server</td>
<td>the address of the remote ArcSDE server</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instance</td>
<td>the instance name or port number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Username</td>
<td>the username under which you will connect to the server</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Password</td>
<td>the required password for connecting to the server</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datasource</td>
<td>if a datastore is required, you must enter it here. If you do not know the name of the datastore, click Connect and the list of datastores will be retrieved</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Connect button

Tests the connection to the server and retrieves the list of datasstores
8.6.6 ODBC Server Setup

This provides access to setup a connection to a generic ODBC (Open Database Connectivity) data source, such as Microsoft Excel or Microsoft Access.

Because this is a generic connection type, you will be required to know the necessary combination of settings including DSN or Connection String. This may involve knowing the specific driver required to connect to the data source.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server type</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Server name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UserId</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Password</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DataSourceName</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ConnectionString</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GenerateDefaultGeometryProperty</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field Description:
- **Server type**: the type of server
- **Server name**: the name by which you will refer to the server
- **UserId**: an optional user id for the connection
- **Password**: an optional password for the connection
- **DataSourceName**: an optional data source name (or DSN)
- **ConnectionString**: an optional connection string
- **GenerateDefaultGeometryProperty**
whether or not to generate the default geometry property if one does not exist

Connect button

Tests connection to the data source
8.6.7 GIS Download

Position of option on menu: File I/O =>GIS =>Download

Selecting Download brings up the GIS download panel.

The fields and buttons used in this panel have the following functions.

Input tab

- **Function:** function box available GIS functions

 an optional function. A function is required for edits and inserts

- **Server:** the server you wish to connect to

For a description of the *Input* tab, see [Input tab](#)

For a description of the *Queries* tab, see [Queries tab](#)

For a description of the *Download* tab, see [Download tab](#)

For a description of the *Download* button, see [Download button](#)
Connect button
connects to the server and retrieves the list of features available for download. The list of features is displayed as a tree control on the left hand side of the panel.

Tree on left side
Allows you to pick one or more features for download. For a selected feature, there is then a Feature attributes tab and a Custom attributes tab to fill in for that feature.

Input tab: Feature Attributes Tab
The Feature attributes grid displays the set of attributes to be downloaded as part of the selected feature.

Name
the name of the downloaded feature attribute

Type
the type of the downloaded feature

Use as Z
whether or not this attribute should be used as a Z level on strings

Input tab: Custom Attributes tab
The Custom attributes grid defines the set of attributes to be downloaded as part of the selected feature.
feature.

Name

the name of the attribute to be downloaded

Expression

the expression to calculate the attribute (see 8.6.8 Query Building)
Queries tab

Feature Query
an optional query to send to the server for downloads

Build Query button
shows a helper panel for building queries (see 8.6.8 Query Building)
Download tab

Max # to download
the maximum number of strings to download

Model
model box
an optional model to download into

Num pts for head to tail
an optional number of points for head to tailing point strings

Map file
an optional map file to apply to downloaded strings

Attribute map file
an optional attribute map file to apply to attributes

Map direction
choice box Forward, Backward
the direction to apply to the attribute map file

Chain
file box available *.chain files
an optional chain to run after the download completes. This is only available if not run in a function.

Download button
downloads the requested features from the server
8.6.8 Query Building

This panel helps build queries for constraining feature downloads.

Note that the features, attributes and queries available are determined by the server you are connecting to and will not be documented here.

If the server publishes help information about the query operation, then it will be listed at the bottom of the panel.

Select **Build query** to bring up the FDO query builder panel.

Query feature

the feature to build a query for

Left side

the list of attributes, operators and functions available

Right side

the current query

Bottom
any description of the operator
8.6.9 Spatial Operators

Spatial operators are special operators that allow you to refer to an operation against existing geometry. Examples may include whether or not the geometry attribute contains, crosses, intersects or touches another piece of geometry.

For these operators, a panel in the following style will be presented.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data to query</td>
<td>String</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data to query

the data to operate against

Set

Sets the data for the query
8.6.10 GIS Download Wizard

Position of option on menu: File I/O => GIS => Download (Wizard)
This is a wizard style interface to assist in setting up an GIS download.
Selecting Download (Wizard) brings up the FDO Download Wizard panel.

The fields and buttons used in this panel have the following functions.

Field Description Type Defaults Pop-Up
_________________________ ______ _______ _______
Function
Server

Throughout the wizard, the following buttons **Back** and **Next** will be available

Back
- Takes you back to the last step

Next
- Takes you to the next step

Function
- an optional function to create for this FDO download

Server
- the server to connect to
8.6.11 Feature Selection Step

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Download?</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attribute as z</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.6.12 Query Step

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the query to send to the server to constrain features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Query Builder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>opens the FDO Query builder panel. See the section on 8.6.8 Query Building</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.6.13 Output Parameters Step

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Define the Output parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max # to download</td>
<td></td>
<td></td>
<td>the maximum number of strings to download</td>
</tr>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td>an optional model to download into</td>
</tr>
<tr>
<td>Num pts for head to tail</td>
<td></td>
<td>1000</td>
<td>an optional number of points for head to tailing point strings</td>
</tr>
<tr>
<td>Map file</td>
<td></td>
<td></td>
<td>an optional map file to apply to downloaded strings</td>
</tr>
<tr>
<td>Attribute map file</td>
<td></td>
<td></td>
<td>an optional attribute map file to apply to attributes</td>
</tr>
<tr>
<td>Map direction</td>
<td></td>
<td>Forward, Backward</td>
<td>the direction to apply to the attribute map file</td>
</tr>
<tr>
<td>Chain</td>
<td></td>
<td></td>
<td>an optional chain to run after the download completes. This is only available if not run in a function.</td>
</tr>
</tbody>
</table>
Download button

downloads the requested features from the server
8.6.14 GIS Add Strings

Position of option on menu: File I/O =>GIS =>Add strings

This allows a user to add strings to a known server. This is only allowed if the server permits the operation.

Selecting Add strings brings up the GIS Add Strings panel.

![GIS Add Strings Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data to add</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the data set to add to the server</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the existing FDO function to which strings will be added</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Server</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the server to connect to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the feature to add strings to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attribute map file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>an attribute map file to apply to any strings to be uploaded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map direction</td>
<td>choice box</td>
<td>Forward, Backward</td>
<td></td>
</tr>
<tr>
<td>the direction of mapping</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>uploads the new strings to the server. Disabled until the function and server are set.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.6.15 GIS Update Strings

Position of option on menu: File I/O => GIS => Update strings

This panel allows a user to upload / update strings on the remote server, if the server permits the operation.

Selecting **Update strings** brings up the **GIS Update Strings** panel.

![GIS Update Strings panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data to update</td>
<td>the data set of strings to update on the server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>the existing FDO function containing strings to be updated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td>the feature to update</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attribute map file</td>
<td>the attribute map file to apply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map direction</td>
<td>choice box</td>
<td>Forward, Backward</td>
<td></td>
</tr>
<tr>
<td>Update</td>
<td>button</td>
<td>Connects to the server and sends the strings to be updated</td>
<td></td>
</tr>
</tbody>
</table>
8.6.16 GIS Delete Strings

Position of option on menu: File I/O => GIS => Delete strings

This panel allows a user to delete strings from the FDO server, if the server permits the operation.

Selecting Delete strings brings up the GIS Delete Strings panel.

![GIS Delete Strings panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data to delete</td>
<td>the data set to delete from the server</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>the existing FDO function containing the strings to be deleted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td>the feature from which the strings will be deleted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connects to the server and deletes the specified strings
8.6.17 Find GIS Strings

Position of option on menu: File I/O => GIS => Find

This allows a user to find downloaded strings by a feature and an optional attribute / value pair. Selecting **Find** brings up the **Find GIS Strings** panel.

![Find GIS Strings panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the FDO function containing the strings. Once entered, the list of features will become available</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search feature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the feature to search through</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search attribute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>an optional attribute to search for. If not set, all strings in the feature will be found</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the value of the attribute to search for</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>View in data table?</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>whether or not to view in a separate data table or in the output window. The data table, below, will pan when the row is selected</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Auto zoom tick box
whether or not to zoom to the selected feature

Find by pick
finds a row based on a string selection

Find button
Finds the strings
8.6.18 GIS Assign Attributes

Position of option on menu: File I/O => GIS => Assign Attributes

This panel allows you to take the schema from a server and feature and create attributes with default values to a data set.

Selecting Assign Attributes brings up the GIS Assign Attributes panel.

![GIS Assign Attributes panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the server to connect to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the feature to use the schema from</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data to attribute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the data set to apply feature attributes to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear existing attributes</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>whether or not to clear existing attributes from the data set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the target data set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assign</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>assigns the feature attributes to the data source / target set</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.6.19 Attribute Map File

Position of option on menu: File I/O =>GIS =>Attribute map file editor

This panel allows you to define a mapping from one attribute format to another. This allows you to map from attributes defined by an external data source to meet your attribute schema requirements, or vice versa.

Selecting **Attribute map file editor** brings up the **Attribute map file** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>the attribute mapping file to edit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insert</td>
<td>adds a new mapping</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
deletes the select mapping

Up
Moves the mapping up in the list

Down
Moves the mapping down in the list

Write button
writes the mapping

After selecting insert the Source Mapping Type choice box and Target Mapping Type choice box appear on the screen.

Source Mapping Type choice box
the type of attribute to map from

Target Mapping Type choice box
the type of attribute to map to
For String attribute see
 String/Vertex/Segment attribute
Vertex attribute see
 String/Vertex/Segment attribute
Segment attribute see
 String/Vertex/Segment attribute
String property see
 String Property attribute

String/Vertex/Segment attribute

<table>
<thead>
<tr>
<th>Mapping type</th>
<th>String attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Expected type</td>
<td></td>
</tr>
<tr>
<td>Date format</td>
<td></td>
</tr>
<tr>
<td>Default value</td>
<td></td>
</tr>
</tbody>
</table>

Name
 the name of the attribute

Expected type
 choice box
 the type of attribute to be expected

Date format
 an optional date format (to convert to/from a date string)

Default value
 an optional default value to use if the attribute is not found

String Property attribute
 Maps to / from a property on a string, such as colour, name, height, weight etc.

<table>
<thead>
<tr>
<th>Mapping type</th>
<th>String property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties</td>
<td></td>
</tr>
<tr>
<td>Default value</td>
<td></td>
</tr>
</tbody>
</table>

Properties
 choice box
 the property to map to / from

Default value
 an optional default value to use if the value is not found
8.6.20 Manage FDO

Position of option on menu: File I/O => GIS => Manage

The Manage FDO walk-right menu containing these options is:

![Manage FDO Menu](image)

For the option Manage Schemas go to 8.6.20.1 GIS Schema Viewer
Create Schema 8.6.20.2 Create FDO Schema
Create Feature 8.6.20.3 Create GIS Feature

8.6.20.1 GIS Schema Viewer

Position of option on menu: File I/O => GIS => Manage => Manage Schemas

This panel allows you to view and edit schemas, if editing is permitted by the server.

Selecting Manage Schemas brings up the GIS Schema Viewer panel.

![GIS Schema Viewer](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
the server to view schemas for

Connect button
connects to the server and downloads all schema information available

When a schema is selected, the right side of the panel will display:

Delete button
deletes the selected schema - only available if permitted by the server

Create feature button
creates a new feature in this schema - only available if permitted by the server

When a feature is selected, the right side of the panel will display the list of attributes and their types.

Edit
edits the selected feature see 8.6.20.3 Create GIS Feature, only available if permitted by the server

Delete
deletes the current feature - only available if permitted by the server

8.6.20.2 Create FDO Schema
Position of option on menu: File I/O => GIS => Manage => Create Schema
This panel creates a new schema on a remote server, if the operation is permitted by the server.
Selecting Create Schema brings up the Create GIS Schema panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server</td>
<td>the name of the server to create a schema on</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schema name</td>
<td>the name of the schema</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>an optional description about the schema</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create</td>
<td>button</td>
<td></td>
<td></td>
<td>attempts to create the new schema on the remote server</td>
</tr>
</tbody>
</table>
8.6.20.3 Create GIS Feature

Position of option on menu: File I/O => GIS => Manage => Create feature

This panel creates a new feature in a schema, if the remote server permits the operation.

Selecting **Create feature** brings up the **Create GIS Feature** panel.

![Create GIS Feature Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server</td>
<td>The name of the server to create the feature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schema name</td>
<td>The name of the schema to create a feature in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feature name</td>
<td>The name of the feature to create</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grid Column Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions.
the name of the attribute to create

Grid Column Type

the type of attribute to make

Each row in the grid has a number of additional parameters to fill in.

The standard set of fields are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>a description of the attribute</td>
</tr>
<tr>
<td>Default value</td>
<td>an optional default value</td>
</tr>
<tr>
<td>Identifier?</td>
<td>whether or not this attribute is an identifier attribute</td>
</tr>
<tr>
<td>Nullable?</td>
<td>whether or not this attribute is nullable (can have a null value)</td>
</tr>
<tr>
<td>Auto generate?</td>
<td>whether or not the server should auto generate the value of the attribute</td>
</tr>
<tr>
<td>Read only?</td>
<td>whether or not the attribute is a read only attribute</td>
</tr>
</tbody>
</table>

Geometry attributes have the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>Has z values?</td>
<td></td>
</tr>
</tbody>
</table>
a description of the attribute

Has z values? tick box

whether or not the geometry contains z values
8.6.21 WMS

Position of option on menu: File I/O => GIS => WMS
Position of option on menu: Strings => WMS

The WMS walk-right menu containing these options is:

```
WMS
Create
Create (Wizard)
Edit
Delete
```

For the option Create go to 8.6.21.1 Download from a WMS
Create (Wizard) 8.6.21.2 WMS Wizard
Edit 8.6.22.1 Edit a WMS Image
Delete 8.6.22.2 Delete a WMS Image
8.6.21.1 Download from a WMS

Position of option on menu: File I/O =>GIS =>WMS =>Create

This panel allows you to set up an image to be downloaded from a WMS (Web Mapping Server), either dynamically or as a once off download.

Selecting Create brings up the Download from a WMS panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up arrow</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Server

the WMS server to download from

Connect

button

connects to the server and downloads the schema

Up arrow
moves the layer up in order in which they will be downloaded.

Down arrow
moves the layer down in order in which they will be downloaded.

Spatial ref system
the spatial reference system to use when downloading

Mode choice box Dynamic, Save as file
 Dynamic (update as you pan around), or Save as file

Model model box
the model to add a dynamic WMS image to

Name
the name of the image

Add to current plan view tick box
Whether or not to add to the current plan view

If the mode is Save as file, the following fields will be displayed:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Format</th>
<th>Bounding box</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maintain bounding box ratio

<table>
<thead>
<tr>
<th>Size</th>
<th>Width</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Save as
the target file for the image

Format
the format of the image to download

Bounding box
whether or not to define a bounding box

Maintain bounding box ratio
whether or not to maintain the ratio of the bounding box on the server

Size
defines the width and height of the image file

Save as
the target file for the image
8.6.21.2 WMS Wizard

Position of option on menu: File I/O => GIS => WMS => Create (Wizard)

This panel allows you to set up an image to be downloaded from a **WMS (Web Mapping Server)**, either dynamically or as a once off download, via a wizard like interface.

Selecting Create (Wizard) brings up the **WMS Wizard** panel.

![WMS Wizard panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Throughout the wizard, the following buttons will be available:

Server

the server to download from

Back

Takes you back to the last step

Next

Takes you to the next step
8.6.22 Layer Selection Step

This panel allows you to select the layers to be downloaded

Add layers button

shows the list of layers to be downloaded
Selecting Add layers bring up the Add WMS layers panel

Add WMS layers
Layers
the layer to add or view properties

Add
adds the layer
Spatial ref. system

the spatial reference system to use when downloading

Mode

Dynamic (update as you pan around), or Save as file

Model

model box

the model to add a dynamic WMS image to

Name

the name of the image

Add to current plan view

tick box

Whether or not to add to the current plan view

If the mode is set to 'Save as file', the following fields will be displayed:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Save as file</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format</td>
<td>image/png</td>
</tr>
<tr>
<td>Bounding box</td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>123</td>
</tr>
<tr>
<td>Height</td>
<td>123</td>
</tr>
<tr>
<td>Save as</td>
<td></td>
</tr>
</tbody>
</table>

Format

choice box

the format of the image to download

Bounding box

whether or not to define a bounding box

Width

the width of the image

Height

the height of the image

Save as

the target file for the image
8.6.22.1 Edit a WMS Image

Position of option on menu: File I/O => GIS => WMS => Edit

Edits a WMS image, as selected by picking or by specifying by model and image name.
Selecting Edit brings up the Edit a WMS Image panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit by Pick</td>
<td>Pick</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pick</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pick the WMS image to string, by picking its extent

Edit from list

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

the model to look for WMS images in

the WMS image within the model to edit

Edit button

edits the selected WMS image
8.6.22.2 Delete a WMS Image

Position of option on menu: File I/O => GIS => WMS => Delete

Deletes a WMS image, as selected by picking or by specifying by model and image name. Selecting Delete brings up the Delete a WMS Image panel.

![Delete a WMS Image panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete by pick</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pick the WMS image to string, by picking its extent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete from list</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>model box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the model to look for WMS images in</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the WMS image within the model to delete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>delete the selected WMS image</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.7 Label Map Files

Position of menu: File I/O => Label Map files

The option Create/edit creates and edits Label Map files which are then used in the Label Map File Apply option.

From 12d Model 10, the Label Map file had an XML format (the file ends in .label_mapfile). Before 12d Model 10 there was a format with files ending in .lmt so there is an option to convert from the older format, .lmt, to the newer .label_mapfile format.

Note: if the Create/edit option is used on an old format file, it is automatically converted to the new format.

The Map files walk-right menu is

- Create/edit a label mapfile
- Apply a label map file to data
- Convert pre-V10 label map file format to XML format label map files
- Create/edit a pre-V10 label map file

For Create/edit, go to

- Apply
- Convert .lmt to .label_mapfile
- Create/edit .lmt
8.7.1 Create/Edit Label Map File

Position of option on menu: File I/O => Label Map files => Create/edit

The label map file option creates or edits the label map files which is used in the Apply Label Map File option to create various labels at string vertices and segments.

Selecting Create/edit brings up the Label Map File Create/Edit panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label map file</td>
<td>input</td>
<td>*.label_mapfile and *.lmf</td>
<td></td>
</tr>
</tbody>
</table>

name of the label map file to be created or edited.

If it is a .lmf file, it is automatically converted to the new xml format and written out as a .label_mapfile file.

Bottom buttons

Read

read in the label map file given in the Label map file field and load the data into the fields of the table.

If the file doesn’t exist, an error message is given.

Write

write out the data in the table to the file name given in the Label map file field. If the file already exists, a Replace-Cancel panel checks to see if the existing file is to be over written - if no or cancel is selected, nothing is written out.

For information on Header

8.7.1.1 Header
8.7.1.2 Vertex Text Data
8.7.1.3 Vertex Index Text Data
8.7.1.4 Point Id Text Data
8.7.1.5 Height Text Data
8.7.1.6 Name Text Data
Symbols
Vertex Attribute Text Data
Segment Attribute Text Data
Element Attribute Text Data

8.7.1.7 Symbol Data
8.7.1.8 Vertex Attribute Text Data
8.7.1.9 Segment Attribute Text Data
8.7.1.10 Element Attribute Text Data
8.7.1.1 Header

Header just has lines of comment text. A common use is to document which client the file is to be used for, or the revision history.

The text written in the right hand side of the panel is written out as comments at the top of the Label Map file.

Go to the next section 8.7.1.2 Vertex Text Data or return to 8.7.1 Create/Edit Label Map File.
8.7.1.2 Vertex Text Data

Super strings can have text at each vertex of the super string. **Vertex Text Data** creates labels from the vertex text at each vertex.

The **Vertex Text Data** grid specifies which strings are selected and how a label containing the vertex text for each vertex of the selected strings is created.

For each selected string, a new super string is created with vertices at the same position as the vertices of the selected string, and with the labels created as vertex text at the appropriate vertices of the new super string.

Name

for the selected strings, labels are created from the vertex text at each vertex. See [Selecting Strings using Name:](#).

For each selected string, a new super string is created with vertices at the same position as the vertices of the selected string, and with the labels created as vertex text at the appropriate vertices of the new super string.

Selecting Strings using Name:

The text in the **Name** column is the name of the strings to be selected. **Name** can include wild cards * and wild characters ? to allow matching of multiple strings.

For each string, the string name is compared to the text in the **Name** column for this line and if there is a match then the string is selected to label using the parameters in this line of the Label Map file.

If a match occurs for a line, then this line of the Label Map file grid is used and no other lines are tested against.

If no match occurs, then this line of the Label Map file grid is ignored and a test for a match is made against the next line of the grid.

Hence the order of the text in the **Names** column in the grid is important, especially when wild cards and wild characters are used.

Textstyle data

Textstyle data for labels. This controls the units, size, colour, border etc for the created text.
Width

if non blank, the minimum number of number of characters that is allowed for the vertex text before applying the prefix and suffix.

If the number of characters in the vertex text is less than Width characters, then additional spaces are added to the left of the vertex text so that there are Width characters.

If the number of characters in the vertex text is greater than Width, then Width is ignored. Hence the vertex text is not truncated.

For example if Width is set to 20 and the vertex text has only ten characters, then an extra 10 spaces are added to the left of the vertex text before applying the Prefix/Suffix.

if blank, the vertex text is used with no space padding.

Precision

not applicable

Prefix/Suffix

prefix/suffix for the text

Label name

the created super strings are given this name

Comment and Active

See 8.8.2 Comment and Active Column in Grids.

Go to the next section 8.7.1.3 Vertex Index Text Data or return to 8.7.1 Create/Edit Label Map File.
8.7.1.3 Vertex Index Text Data

Vertex Index Text Data labels the vertex index at each vertex. The **Vertex Index Text Data** grid specifies which strings are selected and how a label containing the vertex index for each vertex of the selected strings is created.

For each selected string, a new super string is created with vertices at the same position as the vertices of the selected string, and with the labels created as vertex text at the appropriate vertices of the new super string.

Note: the vertex index is the position of the vertex in the string. For example if the vertex is the tenth vertex in the string, then the vertex index is 10.

Name

select name menu for fields for the selected strings, labels are created from the vertex index of each vertex. See [Selecting Strings](#).

using Name:

For each selected string, a new super string is created with vertices at the same position as the vertices of the selected string, and with the labels created as vertex text at the appropriate vertices of the new super string.

Textstyle data

select textstyle data menu for fields textstyle data for labels. This controls the units, size, colour, border etc for the created text

Width

if non blank, the minimum number of characters allowed for the vertex index (including Precision) before applying the prefix and suffix.

If the number of digits in the vertex index (including Precision) is less than Width characters, then additional spaces are added to the left of the text so that there are Width characters.

If the number of digits in the vertex index (including Precision) is greater than Width, then Width is ignored. Hence the vertex index value is not truncated.

As an example, if Width is set to 10 and the vertex index is 23 and Precision is 3, then the label is "023". That is, an extra seven spaces is added to the left of the vertex index value.
if blank, the vertex text is used with no modification.

Precision

if the number of digits in the vertex index is less than the absolute value of **Precision**, then left 0 padding is used to bring the number of digits in the text up to the absolute value of **Precision**.

As an example, if **Width** is set to 10 and the vertex index is 23 and **Precision** is 3, then the label is "023". That is, an extra seven spaces is added to the left of the vertex index value.

Prefix/Suffix

prefix/suffix for the text

Label name

the created super strings are given this name

Comment and Active

See 8.8.2 Comment and Active Column in Grids.

Go to the next section 8.7.1.4 Point Id Text Data or return to 8.7.1 Create/Edit Label Map File.
8.7.1.4 Point Id Text Data

Super strings can have a **Point ID** at each vertex of the super string. **Point ID Text Data** labels the Point ID at each vertex.

The **Point ID Text Data** grid specifies **which strings are selected** and how a label containing the Point ID’s for each vertex of the selected strings is created.

For each selected string, a new super string is created with vertices at the same position as the vertices of the selected string, and with the labels created as vertex text at the appropriate vertices of the new super string.

![Label Map File Create/Edit](image)

Name

select name menu for fields for the selected strings, labels are created from the Point ID of each vertex. See **Selecting Strings using Name**:

For each selected string, a new super string is created with vertices at the same position as the vertices of the selected string, and with the labels created as vertex text at the appropriate vertices of the new super string.

Textstyle data

select textstyle data menu for fields textstyle data for labels. This controls the units, size, colour, border etc for the created text

Width

if non blank, the minimum number of characters that is allowed for the Point ID text before applying the prefix and suffix.

If the number of characters in the Point ID text is less than **Width** characters, then additional spaces are added to the left of the Point ID so that there are **Width** characters.

If the number of characters in the Point ID text is greater than **Width**, then **Width** is ignored. Hence the Point ID text is not truncated.

For example if **Width** is set to 20 and the Point ID text has only ten characters, then an extra 10 spaces are added to the left of the Point ID text before applying the Prefix/Suffix.

if blank, the Point ID text is used with no space padding.
Precision
 not applicable

Prefix/Suffix
 prefix/suffix for the text

Label name
 the created super strings are given this name

Comment and Active
 See 8.8.2 Comment and Active Column in Grids.

Go to the next section 8.7.1.5 Height Text Data or return to 8.7.1 Create/Edit Label Map File.
8.7.1.5 Height Text Data

Height Text Data labels the height at each vertex.

The **Height Text Data** grid specifies **which strings are selected** and how a label containing the **height (z-value)** for each vertex of the selected strings is created.

For each selected string, a new super string is created with vertices at the same position as the vertices of the selected string, and with the labels created as vertex text at the appropriate vertices of the new super string.

Name

select name menu for fields

*for the selected strings, labels are created from the height (z-value) of each vertex. See **Selecting Strings using Name:**

Strings using Name:

For each selected string, a new super string is created with vertices at the same position as the vertices of the selected string, and with the labels created as vertex text at the appropriate vertices of the new super string.

Textstyle data

select textstyle data menu for fields

textstyle data for labels. This controls the units, size, colour, border etc for the created text

Width

*if non blank, the minimum number of characters allowed for the z-value (including **Precision**) before applying the prefix and suffix.

*If the number of digits in the z-value (including **Precision**) is less than **Width** characters, then additional spaces are added to the left of the text so that there are **Width** characters.

*If the number of digits in the z-value (including **Precision**) is greater than **Width**, then **Width** is ignored. Hence the z-value is not truncated (other than by **Precision**).

*As an example, if **Width** is set to 10 and the z-value is 23.2 and **Precision** is 3, then the label is "23.200". That is, an extra four spaces is added to the left of the z-value.

*if blank, the z-value with **Precision** is used with no further modification.*
Precision

if positive, the number of decimal places after the decimal point.

if negative, the absolute number is the number of decimal places to first calculate the text of the z-value for but then any trailing zeros after the decimal place are removed.

Important Note: this use of positive and negative for not eliminating/eliminating trailing zeros after the decimal place is the opposite to plot parameters.

Prefix/Suffix

prefix/suffix for the text

Label name

the created super strings are given this name

Comment and Active

See [8.8.2 Comment and Active Column in Grids](#).

Go to the next section [8.7.6 Name Text Data](#) or return to [8.7.1 Create/Edit Label Map File](#).
8.7.1.6 Name Text Data

Name Text Data labels the string name at each vertex.

The Name Text Data grid specifies which strings are selected and how a label containing the string name (often referred to as string Code by Surveyors) for each vertex of the selected strings is created.

For each selected string, a new super string is created with vertices at the same position as the vertices of the selected string, and with the labels created as vertex text at the appropriate vertices of the new super string.

Name

for the selected strings, labels are created from the string name. See Selecting Strings using Name:

For each selected string, a new super string is created with vertices at the same position as the vertices of the selected string, and with the labels created as vertex text at the appropriate vertices of the new super string.

Textstyle data

textstyle data for labels. This controls the units, size, colour, border etc for the created text

Width

if non blank, the minimum number of characters that is allowed for the string name text before applying the prefix and suffix.

If the number of characters in the string name is less than Width characters, then additional spaces are added to the left of the string name text so that there are Width characters.

If the number of characters in the string name is greater than Width, then Width is ignored. Hence the string name is not truncated.

For example if Width is set to 20 and the string name has only ten characters, then an extra 10 spaces are added to the left of the string name before applying the Prefix/Suffix.

if blank, the string name text is used with no space padding.
Precision
 not applicable

Prefix/Suffix
 prefix/suffix for the text

Label name
 the created super strings are given this name

Comment and Active
 See 8.8.2 Comment and Active Column in Grids.

Go to the next section 8.7.1.7 Symbol Data or return to 8.7.1 Create/Edit Label Map File.
8.7.1.7 Symbol Data

Symbol Data creates symbols at each vertex.

The **Symbol Data** grid specifies *which strings are selected* and what symbol is created at the position of each vertex of the selected strings.

For each selected string, a new super string is created with vertices at the same position as the vertices of the selected string, and with symbols created as vertex symbols at each vertex of the new super string.

Name

Select name menu for fields

For the selected strings, symbols are created at each vertex. See **Selecting Strings using Name**:

For each selected string, a new super string is created with vertices at the same position as the vertices of the selected string, and with symbols created as vertex symbols at each vertex of the new super string.

Symbol

Select symbol menu for fields

Symbol for the vertices. This controls the size, colour, rotation etc for the created symbol.

Label name

The created super strings are given this name

Comment and Active

See **8.8.2 Comment and Active Column in Grids**.

Go to the next section **8.7.1.8 Vertex Attribute Text Data** or return to **8.7.1 Create/Edit Label Map File**.
8.7.1.8 Vertex Attribute Text Data

Super strings can have attributes at each vertex of the super string. Vertex Attribute Text Data labels the value of vertex attributes at each vertex.

The Vertex Attribute Text Data grid specifies which strings and which vertex attributes are selected and how a label containing the value of the vertex attribute is created for each vertex of the selected strings.

For each selected string, a new super string is created with vertices at the same position as the selected vertices of the selected string, and with the labels created as vertex text at the appropriate vertices of the new super string.

Name for the selected strings and the selected vertex attributes of those strings, a label is created from the value of the vertex attribute using the parameters in this line of the Label Map file. See Selecting Strings and Attributes Using Name.

For each selected string, a new super string is created with vertices at the same position as the selected vertices of the selected string, and with the labels created as vertex text at the appropriate vertices of the new super string.

Selecting Strings and Attributes Using Name:

The text in the Name column is made up of the name of the string to be selected, followed by / and then the path name of the attribute (see Attribute Pathname) to be selected. Name can include wild cards * and wild characters ? to allow matching on multiple strings and/or multiple attributes.

For each string, the string name and attribute path is compared to the text in the Name column for this line and if there is a match then the label from the selected attribute is created using the parameters in this line of the Label Map file.

For example

Drain*/Adac/Pit/* would search any string with the name starting with "Drain" and gets matches for any third level attribute in the second level attribute group "Adac/Pit".

Note that it is the name of the attribute used for selection but it is the values of the selected attribute that are used in the labels.
If a match occurs for a line, then this line of the Label Map file grid is used and no other lines are
tested against.

If no match occurs, then this line of the Label Map file grid is ignored and a test for a match is made
against the next line of the grid.

Hence the order of the text in the Name column in the grid is important, especially when wild cards and
wild characters are used.

Textstyle data select textstyle data menu for fields
textstyle data for labels. This controls the units, size, colour, border etc for the created text

Width

If the attribute is type text:

if non blank, the minimum number of characters that is allowed for the attribute text before
applying the prefix and suffix.

If the number of characters in the attribute text is less than **Width** characters, then additional
spaces are added to the left of the attribute text so that there are **Width** characters.

If the number of characters in the attribute text is greater than **Width**, then **Width** is ignored. Hence
the attribute text is not truncated.

For example if **Width** is set to 20 and the attribute text has only ten characters, then an extra 10
spaces are added to the left of the attribute text before applying the Prefix/Suffix.

if blank, the attribute text is used with no space padding.

If the attribute is type real:

if non blank, the minimum number of characters allowed for the attribute real value (including
Precision) before applying the prefix and suffix.

If the number of digits in the attribute real value (including **Precision**) is less than **Width
characters, then additional spaces are added to the left of the text so that there are **Width
characters.

If the number of digits in the attribute real value (including **Precision**) is greater than **Width**, then
Width is ignored. Hence the attribute real value is not truncated (other than by **Precision**).

As an example, if **Width** is set to 10 and the attribute real value is 23.2 and **Precision** is 3, then the
label is ” 23.200”. That is, an extra four spaces is added to the left of the vertex index value.

if blank, the attribute real value with **Precision** is used with no further modification.

If the attribute is type integer:

if non blank, the minimum number of characters allowed for the attribute integer value (including
Precision) before applying the prefix and suffix.

If the number of digits in the attribute integer value (including **Precision**) is less than **Width
characters, then additional spaces are added to the left of the text so that there are **Width
characters.

If the number of digits in the attribute integer value (including **Precision**) is greater than **Width**, then
Width is ignored. Hence the attribute integer value is not truncated.

As an example, if **Width** is set to 10 and the attribute integer value is 23 and **Precision** is 3, then the
label is ” 023”. That is, an extra seven spaces is added to the left of the attribute integer value.

if blank, the attribute integer value text is used with no modification.

Precision

If the attribute is type text then not applicable.

If the attribute is type real:

if positive, the number of decimal places after the decimal point.

if negative, the absolute number is the number of decimal places to first calculate the text of the
attribute real value for but then any trailing zeros after the decimal place are removed.

Important Note: this use of positive and negative for not eliminating/eliminating trailing zeros
after the decimal place is the opposite to plot parameters.

If the attribute is type integer:

if the number of digits in the attribute integer value is less than the absolute value of Precision, then left 0 padding is used to bring the number of digits in the text up to the absolute value of Precision.

As an example, if Width is set to 10 and the attribute integer value is 23 and Precision is 3, then the label is "023". That is, an extra seven spaces is added to the left of the attribute integer value.

Prefix/Suffix
prefix/suffix for the text

Label name
the created super strings are given this name

Comment and Active
See 8.8.2 Comment and Active Column in Grids.

Go to the next section 8.7.1.9 Segment Attribute Text Data or return to 8.7.1 Create/Edit Label Map File.
8.7.1.9 Segment Attribute Text Data

Super strings can have attributes at each segment of the super string. Segment Attribute Text Data labels the segment attribute at each segment.

The Segment Attribute Text Data grid specifies which strings and which segment attributes are selected and how a label containing the value of the segment attribute is created for each segment of the selected strings.

For each selected string and selected segment attribute, text strings are created with vertices at the mid point of the selected segments of the selected string, and with the labels created as the text.

Name
select name menu for fields

for the selected strings and the selected segment attributes of those strings, a label is created from the value of the segment attribute using the parameters in this line of the Label Map file. See Selecting Strings and Attributes Using Name:

For each selected string and selected segment attribute, text strings are created with vertices at the mid point of the selected segments of the selected string, and with the labels created as the text.

Textstyle data
select textstyle data menu for fields
textstyle data for labels. This controls the units, size, colour, border etc for the created text

Width
If the attribute is type text:

if non blank, the minimum number of characters that is allowed for the attribute text before applying the prefix and suffix.

If the number of characters in the attribute text is less than Width characters, then additional spaces are added to the left of the attribute text so that there are Width characters.

If the number of characters in the attribute text is greater than Width, then Width is ignored. Hence the attribute text is not truncated.

For example if Width is set to 20 and the attribute text has only ten characters, then an extra 10
spaces are added to the left of the attribute text before applying the Prefix/Suffix.

if blank, the attribute text is used with no space padding.

If the attribute is type **real**:

if non blank, the minimum number of characters allowed for the attribute real value (including **Precision**) before applying the prefix and suffix.

If the number of digits in the attribute real value (including **Precision**) is less than **Width** characters, then additional spaces are added to the left of the text so that there are **Width** characters.

If the number of digits in the attribute real value (including **Precision**) is greater than **Width**, then **Width** is ignored. Hence the attribute real value is not truncated (other than by **Precision**).

As an example, if **Width** is set to 10 and the attribute real value is 23.2 and **Precision** is 3, then the label is " 23.200". That is, an extra four spaces is added to the left of the vertex index value.

if blank, the attribute real value with **Precision** is used with no further modification.

If the attribute is type **integer**:

if non blank, the minimum number of characters allowed for the attribute integer value (including **Precision**) before applying the prefix and suffix.

If the number of digits in the attribute integer value (including **Precision**) is less than **Width** characters, then additional spaces are added to the left of the text so that there are **Width** characters.

If the number of digits in the attribute integer value (including **Precision**) is greater than **Width**, then **Width** is ignored. Hence the attribute integer value is not truncated.

As an example, if **Width** is set to 10 and the attribute integer value is 23 and **Precision** is 3, then the label is "023". That is, an extra seven spaces is added to the left of the attribute integer value.

if blank, the attribute integer value text is used with no modification.

Precision

If the attribute is type **text** then not applicable.

If the attribute is type **real**:

if positive, the number of decimal places after the decimal point.

if negative, the absolute number is the number of decimal places to first calculate the text of the attribute real value for but then any trailing zeros after the decimal place are removed.

Important Note: this use of positive and negative for not eliminating/eliminating trailing zeros after the decimal place is the opposite to plot parameters.

If the attribute is type **integer**:

if the number of digits in the attribute integer value is less than the absolute value of **Precision**, then left 0 padding is used to bring the number of digits in the text up to the absolute value of **Precision**.

As an example, if **Width** is set to 10 and the attribute integer value is 23 and **Precision** is 3, then the label is " 023". That is, an extra seven spaces is added to the left of the attribute integer value.

Prefix/Suffix

prefix/suffix for the text

Label name

the created super strings are given this name

Relative angle

if yes, the angle of the label is the angle of the segment that the segment text is coming from **PLUS** the Angle of the text given in the Textstyle Data column.

if no, the angle of the label is the Angle of the text given in the Textstyle Data column.
Comment and Active

See 8.8.2 Comment and Active Column in Grids.

Go to the next section 8.7.1.10 Element Attribute Text Data or return to 8.7.1 Create/Edit Label Map File.
8.7.1.10 Element Attribute Text Data

Element Attribute Text Data labels the string attributes of string. The Element Attribute Text Data grid specifies which strings and which string attributes are selected and how a label containing the value of the string attribute is created for each string attribute of the selected strings.

For each selected string and selected string attribute, text strings are created with the label as the text and the position of the text string as:
- the position of the first vertex for a point string
- the centroid of the string for closed strings that are not point strings
- the mid chainage position for open strings that are not a point strings.

Name

For the selected strings and the selected string attributes of those strings, a label is created from the value of the string attribute using the parameters in this line of the Label Map file. See Selecting Strings and Attributes Using Name.

For each selected string and selected string attribute, text strings are created with the label as the text and the position of the text string as:
- the position of the first vertex for a point string
- the centroid of the string for closed strings that are not point strings
- the mid chainage position for open strings that are not a point strings.

Textstyle data

textstyle data for labels. This controls the units, size, colour, border etc for the created text.

Width

If the attribute is type text:
- if non blank, the minimum number of characters that is allowed for the attribute text before applying the prefix and suffix.
- If the number of characters in the attribute text is less than Width characters, then additional
spaces are added to the left of the attribute text so that there are Width characters.
If the number of characters in the attribute text is greater than Width, then Width is ignored. Hence
the attribute text is not truncated.
For example if Width is set to 20 and the attribute text has only ten characters, then an extra 10
spaces are added to the left of the attribute text before applying the Prefix/Suffix.
if blank, the attribute text is used with no space padding.
If the attribute is type real:
if non blank, the minimum number of characters allowed for the attribute real value (including
Precision) before applying the prefix and suffix.
If the number of digits in the attribute real value (including Precision) is less than Width
characters, then additional spaces are added to the left of the text so that there are Width
characters.
If the number of digits in the attribute real value (including Precision) is greater than Width, then
Width is ignored. Hence the attribute real value is not truncated (other than by Precision).
As an example, if Width is set to 10 and the attribute real value is 23.2 and Precision is 3, then the
label is " 23.200". That is, an extra four spaces is added to the left of the vertex index value.
if blank, the attribute real value with Precision is used with no further modification.
If the attribute is type integer:
if non blank, the minimum number of characters allowed for the attribute integer value (including
Precision) before applying the prefix and suffix.
If the number of digits in the attribute integer value (including Precision) is less than Width
characters, then additional spaces are added to the left of the text so that there are Width
characters.
If the number of digits in the attribute integer value (including Precision) is greater than Width, then
Width is ignored. Hence the attribute integer value is not truncated.
As an example, if Width is set to 10 and the attribute integer value is 23 and Precision is 3, then the
label is " 023". That is, an extra seven spaces is added to the left of the attribute integer value.
if blank, the attribute integer value text is used with no modification.

Precision
If the attribute is type text then not applicable.
If the attribute is type real:
if positive, the number of decimal places after the decimal point.
if negative, the absolute number is the number of decimal places to first calculate the text of the
attribute real value for but then any trailing zeros after the decimal place are removed.

Important Note: this use of positive and negative for not eliminating/eliminating trailing zeros
after the decimal place is the opposite to plot parameters.
If the attribute is type integer:
if the number of digits in the attribute integer value is less than the absolute value of Precision,
then left 0 padding is used to bring the number of digits in the text up to the absolute value of
Precision.
As an example, if Width is set to 10 and the attribute integer value is 23 and Precision is 3, then the
label is " 023". That is, an extra seven spaces is added to the left of the attribute integer value.

Prefix/Suffix
prefix/suffix for the text

Label name
the created super strings are given this name

Comment and Active
See 8.8.2 Comment and Active Column in Grids.

Go to the next section 8.7.2 Apply a Label Map File or return to 8.7.1 Create/Edit Label Map File.
8.7.2 Apply a Label Map File

Position of option on menu: File I/O => Label Map files => Apply

Use a *Label Map File* to create text labels for all strings in the selected data source and that match the criteria in the sections of the *Label Map File*.

Selecting **Apply** brings up the *Label Data by Label Map File* panel.

![Label Data by Label Map File panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type - for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source of data is to be selected and processed by the Label Map File.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Label map file</td>
<td>input</td>
<td>*.lmf</td>
<td></td>
</tr>
<tr>
<td>name of the Label Map File to process the selected data.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use models for labels</td>
<td>tick box</td>
<td></td>
<td>tick</td>
</tr>
</tbody>
</table>
if ticked, the Models for labels section is displayed and labels are only created for the type of data that has a non blank model name in the "Model for labels" area. The created labels go into that model.

If ticked, then the Vertex text field is the model for the text.

If not ticked, then the model for the created text is the original data source model name with the text in the Vertex text field used as pre*post text for the model name.

For example, Vertex text labels will only be created if the Vertex text field is not blank.

If not ticked, the Pre*Post for models section is displayed and labels are only created for the type of data that has a non blank Pre*post field. When it is non blank the created text goes into a model of the same name as the original data source, but with a prefix/-postfix given by the pre*post field.

Use vertex annotations tick box tick

Vertex text, Vertex index, Point id, Height, Name (code), Symbol, Vertex attribute, Segment attribute, Element attribute

If Use models for labels is ticked, the above panel fields are models for the created data.

If Use models for labels is not ticked, the above panel fields are used as Pre*Post text in conjunction with the original data source model name to create model names.

If the fields are blank, then no text is created by the Label Map File for that type of text.

Label button

process the selected strings and label them.
8.7.3 Convert .lmf Files to .label_mapfile

Position of option on menu: File I/O => Label Map files => Convert .lmf to .label_mapfile

The Label map file convert option converts a label map file in the pre-V9 format to the XML label map file format introduced in 12d Model 10.

Selecting Convert .lmf to .label_mapfile displays the Label Map File Convert .lmf to .label_mapfile panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field to convert from</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>File to convert from</td>
<td>file box</td>
<td>*.lmf</td>
<td></td>
</tr>
<tr>
<td>name of the pre-V10 label map file to be converted to the new label map file format</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| File to convert to | file box | *.label_mapfile | |
| name of the new converted label map file |

| Convert | button | | |
| convert a file in the pre-V10 label map file format to the new label map file format |

8.7.4 Create/Edit Pre-V10 Label Map File

Position of option on menu: File I/O => Label Map files => Create/edit .lmf

This option is for editing the superseded label map file format and should not be used. Please use the new Label Map File format Created/edit option (8.7.1 Create/Edit Label Map File).

![Label Map File Create/Edit (Gld)](image)
8.8 Map Files

Position of menu: File I/O => Map files

The main options under Map files is Create/edit which creates and edits **12d Map Files** which are used in many **12d Model** panels.

The Map File format uses is the `.mapfile` format (an XML format) introduced in **12d Model 10**. There is also an option to convert the older format, `.mf`, to the XML `.mapfile`.

Note: if the Create/edit option is used on an old format file, it is automatically converted to the new format.

The Map files walk-right menu is:

- Create/edit a Map File
- Apply a Map File
- Convert pre-V9 Map File format to XML format Map Files
- create/edit a pre-V9 Map File

For Create/edit, go to

- **8.8.1 Create/Edit a Map File**
- **8.8.5 Apply Map File**
- **8.8.6 Convert .mf Files to .mapfile**
- **8.8.7 Create/Edit .mf File**
8.8.1 Create/Edit a Map File

Position of option on menu: File I/O => Map files => Map File

The Map file option is used to create or edit 12d Map Files which are used in many 12d Model options for reading in data, reducing surveys, mapping existing data etc.

A 12d Map file consists of sections of tables or grids of keys or entity-masks which are used to select specific data to set many string properties such as string name, colours, linestyles, symbols, models, extrusions and tinability for the strings that are being created and/or modified by the 12d Model option.

For example, the 8.1.5.1 X Y Z S Input options reads in an XYS file and creates strings of (x,y,z) data with string names for the lines strings. A 12d Map File can be used in option to give the strings other properties such as colour, linestyle, colour fills, pipe diameters etc.

The Map File consists of sections such as Basic, Fills and Pipes, which are displayed as a tree. The strings are processed by each section of the tree, going in order from the top to the bottom of the Map File tree.

Each section of the Map File uses matching of specific string information against a Key to select strings and/or vertices and/or segments for processing by that section of the Map File.

The Basic section is the first section used and takes the data that had been created by the option and uses the Entity Name and string attributes created by the option to set string properties such as string name, colour, point-line type, linestyle, weight and model. What the Entity Name actually is depends on the particular option that the Map File is being used in. For example, the Survey Data Reduction option uses the field code as the entity-name, the xyzs reader uses the string name in the xyzs file as the entity-name but in the DWG reader, no entity name exists and the AutoCAD layer can be used as the entity-name. For the DGN reader, a combination of Level, Colour, Linestyle and Weight can be the entity name.

After the Basic section is applied, the string has a definite string name that is used as part of the matching key in all the other sections of the Map File.

In the other sections of the Map File, the Key is a combination of string names, and/or string attribute values Att key, and/or vertex attribute values Vertex Att key and/or segment attribute values Segment Att key.

Selecting Map file brings up the Map File Create/Edit panel:
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map file</td>
<td>input</td>
<td>*.mapfile, *.mf</td>
<td></td>
</tr>
</tbody>
</table>

name of the map file to be created or edited.
If it is a .mf file, it is automatically converted to the new xml format and written out as a .mapfile.

Read button
read in the map file given in the map file field and load the data into the fields of the table. If the file doesn’t exist, an error message is given.

Write button
write out the data in the table to the file name given in the Map file field. If the file already exists, a replace-cancel panel checks to see if the existing file is to be over written - if cancel is selected, nothing is written out.

For more information on Header, go to 8.8.1.1 Header
Basic 8.8.1.2 Basic
Fills 8.8.1.3 Fills
Symbols 8.8.1.4 Symbols
Tinable 8.8.1.5 Tinable
Vertex Text Data 8.8.1.6 Vertex Text Data
Segment Text Data 8.8.1.7 Segment Text Data
Pipes 8.8.1.8 Pipes
Boundaries 8.8.1.9 Boundaries
Visualization 8.8.1.10 Visualization
Attributes 8.8.1.11 Attributes
<table>
<thead>
<tr>
<th>Using attribute values</th>
<th>8.8.3 Map File Substitution by Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logging in the Map File</td>
<td>8.8.4 Map File Logging</td>
</tr>
</tbody>
</table>
8.8.1.1 Header

Header just has lines of comment text. A common use is to document which client the file is to be used for, or the revision history.

The text written in the right hand side of the panel is written out as comments at the top of the Map file.

Go to the next section [8.8.2 Basic](#) or return to [8.8.1 Create/Edit a Map File](#).
8.8.1.2 Basic

The **Basic** grid selects data using the **Key** and **Att Key** and sets the name, model, colour, linestyle, point-line type, and weight for the created strings.

Note: the final string name is the **Name** set by the **Basic** grid, or if none is set in the **Basic** grid, then it is the **Entity Name**.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing Using Key and Att Key for Basic Node</td>
<td>select colour pop-up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key and Att Key</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key</td>
<td>is a Text grid cell and the text entered into Key can include wild cards * and wild characters ?.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Att Key</td>
<td>is an Attribute Data grid cell which contains the definition of the attributes and their values that are to be matched against. There can be more than one attribute in the Attribute Data but they must have unique names.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Entity Name is matched against Key.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Entity Attributes are matched against the attribute details in Att Key.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To access Att Key, click LB on the Att Key field to highlight the field, then click LB again to bring up the Attribute Data panel. To enter data see Attribute Data Panel.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matching Using Key and Att Key:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Entity being mapped needs an Entity Name (which may be blank) and can also have Entity Attributes. The Entity may even have some other properties such as colour, linestyle etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting with the first line of the grid, matching and processing occurs as follows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If Key and Att Key are not blank, and a match of the Entity Name occurs with Key and a match of the Entity Attributes occurs with Att Key, then the rest of the fields for this line of the Map File grid are used on the created string.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If Key in not blank and Att Key is blank, and a match of the Entity Name occurs with Key, then the rest of the fields for this line of the Map File grid are used on the created string.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If Key in blank then no match occurs and this line of the Map File grid is ignored.
If a match occurs, then no tests for matches against Key and Att Key further down in the grid are made.

If no match occurs, then this line of the map file grid is ignored and a test for a match is made against the next line of the grid.

Note: all the fields on the line after Att Key can have attribute substitution from string attributes. See 8.8.3 Map File Substitution by Attributes.

Name
if non-blank, the created string is given this Name.
if blank, the original Entity Name (which matched against key) is used as the string name.

Important Note: the resulting string name is used for matching in all the subsequent Map File nodes (e.g. Fills, Symbols, Pipes, Visualisation etc).

Model
if non-blank, the model to be used for all strings produced by this line of the map file grid.
if blank, the string’s model is not modified. Note: some options may allow Model to be ignored.

Colour
if non-blank, the colour to be used for all strings produced by this line of the map file grid.
if blank, the string’s colour is not modified.

Point Line
if non-blank, the breakline type to be used for all strings produced by this line of the map file grid.
if blank, the string’s point-line type is not modified. If data is coming from a field file, then the data may be coded as a line or point string.

Linestyle
if non-blank, the linestyle to be used for all strings produced by this line of the map file grid.
if blank, the string’s linestyle is not modified.

NOTE: If the point-line type is point then the linestyle is used as a symbol at each vertex of the string. The size of the symbol at each point is given in the linestyle definition. If a symbol at each point is required whose size, colour and rotation may need to be modified at each point, then the Symbol section must be used to place a symbol at each vertex and a world style must be used in the symbol name field in the Symbol tab. See 8.8.1.4 Symbols.

Weight
if non-blank, the weight to be used for all strings produced by this line of the map file grid.
if blank, the string’s weight is not modified.

Comment and Active
See 8.8.2 Comment and Active Column in Grids.

Group
the optional Group column is not used in the Map File but is used in the Names.4d file which has the same XML structure.

If you don’t want the Group Column to be used in any grid then you have to set the environment variable USE_TREE_NAME_BOX_4D to 0. By default is has the value 1.

IMPORTANT NOTE:
Regardless of the group/subgroup structure, the search order for finding a match with the key in the Basic node of the Map File is still the order that the rows occur in the Basic grid.
Currently the Group Column will only be visible if you have the environment variable `USE_TREE_NAME_BOX_4D` set to 1.

To assist in debugging a Map File, match logging can be turned on. See 8.8.4 Map File Logging.

Go to the next section 8.8.1.3 Fills or return to 8.8.1 Create/Edit a Map File.
8.8.1.3 Fills

Fills creates fills for the selected super strings (closed and non-closed).

Super strings can support more than one fill type per string. For example, a super string can have a solid fill, and an I Acad fill at the same time.

The order of drawing the fill types is: solid, bitmap, pattern, hatch, acad.

For more information on **Solid Fill**, go to [8.8.1.3.1 Fills >Solid Fill](#).

- **Bitmap Fill** [8.8.1.3.2 Fills >Bitmap Fill](#)
- **Pattern Fill** [8.8.1.3.3 Fills >Pattern Fill](#)
- **Autocad Fill** [8.8.1.3.4 Fills >Autocad Fill](#)
- **Hatch Fill** [8.8.1.3.5 Fills >Hatch Fill](#)
- **Multiple Fills** [8.8.1.3.6 Multiple Fills](#)

Note: there are settings for Plan Views that determines how fills are drawn on plan views (see [9.1.1.4 Face Flags for View](#)).
8.8.1.3.1 Fills >Solid Fill

Solid Fill sets whether super strings (closed and non-closed) are filled with a "solid" colour, and optionally with some level of blending (transparency).

Processing Using Name and Att Key for Fills > Solid Fill Node

When a string finds a first match with **Name** and **Att Key** in the grid (see Matching Using Name and Att Key), the string is given a Solid Fill as defined in the parameters of the matching line.

Name and Att Key

Name is at Text grid and the text entered into **Name** can include wild cards * and wild characters ?. The string name is matched against **Name**.

Att Key is an Attribute Data grid cell which contains the definition of the attributes and their values that are to be matched against. There can be more than one attribute in the Attribute Data but they must have unique names.

The string attributes are matched against the attribute details in **Att Key**.

To access **Att Key** data, click LB on the **Att Key** field to highlight the field, then click LB again to bring up the Attribute Data panel. To enter data, see Attribute Data Panel.

Matching Using Name and Att Key:

Strings are first created via the **Basic** node and given a string name of either the Entity Name or the text given in the Name column of the Basic Map File grid.

Starting with the first line of the grid, matching and processing occurs as follows:

If **Name** and **Att Key** are not blank, and a match of the string name occurs with **Name** and a match of the string attributes occurs with **Att Key**, then the rest of the fields for this line of the Map File grid are used on the string.

If **Name** is not blank and **Att Key** is blank, and a match of the string name occurs with **Name**, then the rest of the fields for this line of the Map File grid are used on the string.

If **Name** is blank then no match occurs and this line of the Map File grid is ignored.

If a match occurs, then no tests for matches against **Name** and **Att Key** further down in the grid are
made.

If no match occurs, then this line of the map file grid is ignored and a test for a match is made against the next line of the grid.

Note: all the fields on the line after **Att Key** can have attribute substitution from string attributes. See 8.8.3 Map File Substitution by Attributes.

Colour

select colour pop-up

colour to use to fill the super string with. If the super string is not closed, the fill will apply as if the super string was closed.

This field can not be blank.

Blend

measures box

At Point, Point to Point, String from Point, String to Point)

if not blank, the blend value to use for the solid fill. This value is between 0.0 and 1.0 and controls the amount of transparency of the fill.

if blank the blend value of 1.0 is assumed.

TODO: measures box makes no sense....

Drape name

if not blank, the string is given this as a Drape name. That is, a name that is used to specify which strings are draped as the solid filled super string onto a tin.

This allows the plan shape of a polygon to be drawn on top of a tin. A good example would be a polygon defining the shape of a "left turn arrow" which the user wants drawn on top of the road design tin. If the user adds the road design tin (and the tin has a **Plan polygon drape name** set to the **Drape name** set here), then the model containing the polygon onto an OpenGL perspective view, the "left turn arrow" will be drawn after the tin and draped onto the tin.

If blank, no drape name is given to the string.

To access the render settings panel use **View=>Visualisation=>Tin Render Settings** (see 12.13.1 Tin Render Settings). To see the effect of the drape requires the visualisation module.

Drape mode

choice box

Colour, Colour to texture

if **Drape name** is blank this field is not used.

if non blank, and the value is

Colour, the solid fill colour of the super string is used to draw onto the surface of the tin.

Colour to texture, the value of the solid fill colour is mapped via the **Texture mapping** field of the **Tin Render Settings** panel and a texture drawn inside the polygon draped onto the tin.

Drape mode cannot be blank if **Drape name** is present.

To access the render settings panel use **View=>Visualisation=>Tin Render Settings** (see 12.13.1 Tin Render Settings). To see the effect of the drape requires the visualisation module.

Comment and Active

See 8.8.2 Comment and Active Column in Grids.

To assist is debugging a **Map File**, match logging can be turned on. See 8.8.4 Map File Logging.
Example of Solid Fill

Applying the following **Solid Fill** entries to polygons called *Road* and *Playground*:

<table>
<thead>
<tr>
<th>Name</th>
<th>Att Key</th>
<th>Colour</th>
<th>Blend</th>
<th>Drape name</th>
<th>Drape mode</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road*</td>
<td>concrete</td>
<td></td>
<td>1</td>
<td>drape</td>
<td></td>
<td>Colour to texture</td>
</tr>
<tr>
<td>Playground</td>
<td>purple</td>
<td></td>
<td>1</td>
<td>drape</td>
<td></td>
<td>Colour</td>
</tr>
</tbody>
</table>

produces the solid filled polygons

If the above solid fill details have been applied to a closed super string, and using the **Tin Render Settings** panel to set **Plan polygon** field to "drape" for the tin called "dtm"
the result will be
Go to the next section 8.8.1.3.2 Fills > Bitmap Fill or return to 8.8.1.3 Fills or 8.8.1 Create/Edit a Map File.
8.8.1.3.2 Fills > Bitmap Fill

Bitmap Fill sets whether super strings (closed and non-closed) are filled with a bitmap pattern.

![Map File Create/Edit](image)

Processing Using Name and Att Key for Fills > Bitmap Fill Node

when a string finds a first match with Name and Att Key in the grid (see Matching Using Name and Att Key), the string is given a Bitmap Fill as defined in the parameters of the matching line.

Name and Att Key

- **Name** is at Text grid. The string name is matched against Name.
- **Att Key** is an Attribute Data grid cell. The string attributes are matched against the attribute details in Att Key.

For further information on what is allowed in Name and Att Key, and how to access Att Key, see Name and Att Key.

Note: all the fields on the line after Att Key can have attribute substitution from string attributes. See 8.8.3 Map File Substitution by Attributes.

Filename

file .*bmp

The bitmap file to be used for filling. Only BMP files are currently supported.

Type

choice box

paper, world, device, screen (device), pixels (device)

The units of size. This means the bitmap can be drawn with either world size, paper size (mm) or device size.

X/Y Origin

measures box

At Point, Point to Point, String= from Point, String to Point)

The x/y co-ordinate of the origin point of the repeated pattern.

Width/Height

measures box

At Point, Point to Point, String= from Point, String to Point)
The width/height of the bitmap in the selected units.

Angle measures box

At Point, Point to Point, String= from Point, String to Point)

The orientation of the bitmap pattern relative to the x axis measured in the anti-clockwise direction. The units are dms (degrees minutes and seconds) and typed in using 4.17.1 HP Notation.

View Angle choice box

yes, no

if not blank, this field controls whether Angle is relative to the x axis or to the plotting x axis.

If yes and we are plotting, Angle is measured relative to the x axis of the plot rotation.

If no, Angle is measured absolute to the world x axis

If blank, Angle is measured absolute to the world x axis.

Stagger measures box

At Point, Point to Point, String= from Point, String to Point)

if not blank, this field allows each alternate row of bitmaps to be staggered (offset) by the specified value. Stagger is measured in the selected units along the x axis in the rotated system.

If blank, a Stagger of 0.0 is assumed.

Space X/Y measures box

At Point, Point to Point, String= from Point, String to Point)

The distance in the selected units along the x/y axis in the rotated system between each instance of the bitmap.

Transparent select colour pop-up

The transparency colour within the bitmap. This means any pixel of this colour within the bitmap is not drawn.

Solid Colour select colour pop-up

if not blank, when the bitmaps become too small to be legible, instead of drawing the bitmaps, the super string is solid filled with colour Solid colour.

Solid Blend measures box

At Point, Point to Point, String= from Point, String to Point)

if not blank, and Solid Colour is specified, the solid fill is drawn with blend value Solid Blend. The blend value is between 0.0 and 1.0.

If blank, Solid Blend is assumed to be 1.0.

Drape Name

reserved for future use

Comment and Active

See 8.8.2 Comment and Active Column in Grids.

To assist in debugging a Map File, match logging can be turned on. See 8.8.4 Map File Logging.
Examples of Bitmap Fill

<table>
<thead>
<tr>
<th>Name</th>
<th>Alt Key</th>
<th>Filename</th>
<th>Type</th>
<th>X Origin</th>
<th>Y Origin</th>
<th>Width</th>
<th>Height</th>
<th>Angle</th>
<th>Wave Angle</th>
<th>Stagger</th>
<th>Space X</th>
<th>Space Y</th>
<th>Transparent</th>
<th>Solid Colour</th>
<th>Solid Blend</th>
<th>Drape Name</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>WR05</td>
<td>NULL</td>
<td>world</td>
<td>100</td>
<td>100</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Definitions for Bitmap Fill

Polygon After Applying Map File

Go to the next section 8.8.3.3 Fills >Pattern Fill or return to 8.8.1.3 Fills or 8.8.1 Create/Edit a Map File.
8.8.1.3.3 Fills >Pattern Fill

Pattern Fill uses a pattern from the 12d Model pattern file, 12d.patttern, to fill the selected super strings.

Processing Using Name and Att Key for Fills>Pattern Fill Node

when a string finds a first match with **Name** and **Att Key** in the grid (see Matching Using Name and Att Key), the string is given a 12d Pattern Fill as defined in the parameters of the matching line.

Name and Att Key

Name is at Text grid. The **string name** is matched against **Name**.

Att Key is an Attribute Data grid cell. The **string attributes** are matched against the attribute details in **Att Key**.

For further information on what is allowed in **Name** and **Att Key**, and how to access **Att Key**, see Name and Att Key.

Note: all the fields on the line after **Att Key** can have attribute substitution from string attributes. See 8.8.3 Map File Substitution by Attributes.

Pattern

 select Pattern pop-up

The pattern name to be applied. These patterns are defined in the file patterns.12d

For more information on the 12d pattern definition please go to the section 42.2.5 12d Patterns File.

Type

choice box paper, world, device

The units of size. This means the pattern can be drawn with either world size, paper size (mm) or device size.

X/Y Origin

measures box

At Point, Point to Point, String=

The x/y co-ordinate of the origin point of the repeated pattern.

Size

measures box

At Point, Point to Point, String=
The size of the pattern in the selected units given in **Type**.

Angle

measures box

At Point, Point to Point, String=

(from Point, String to Point)

The orientation of the pattern relative to the x axis measured in the anti-clockwise direction. The units are dms (degrees minutes and seconds) and typed in using **4.17.1 HP Notation**.

View Angle

choice box

yes, no

If not blank, this field controls whether **Angle** is relative to the x axis or to the plotting x axis.

If **yes** and we are plotting, **Angle** is measured relative to the x axis of the plot rotation.

If **no**, **Angle** is measured absolute to the world x axis.

If blank, **Angle** is measured absolute to the world x axis.

Stagger

measures box

At Point, Point to Point, String=

(from Point, String to Point)

If not blank, this field allows each alternate row of patterns to be staggered (offset) by the specified value. **Stagger** is measured in the selected units along the x axis in the rotated system.

If blank, a **Stagger** of 0.0 is assumed.

Space X/Y

measures box

At Point, Point to Point, String=

(from Point, String to Point)

The distance in the selected units along the x/y axis in the rotated system between each instance of the pattern.

Solid Colour

select colour pop-up

If not blank, when the pattern become too small to be legible, instead of drawing the pattern, the super string is solid filled with colour **Solid colour**.

Solid Blend

measures box

At Point, Point to Point, String=

(from Point, String to Point)

If not blank, and **Solid Colour** is specified, the solid fill is drawn with blend value **Solid Blend**. The blend value is between 0.0 and 1.0.

If blank, **Solid Blend** is assumed to be 1.0.

Comment and Active

See 8.8.2 Comment and Active Column in Grids.

To assist in debugging a **Map File**, match logging can be turned on. *See 8.8.4 Map File Logging.*
Examples of Pattern Fill

<table>
<thead>
<tr>
<th>Name</th>
<th>Alt Key</th>
<th>Pattern</th>
<th>Type</th>
<th>X Origin</th>
<th>Y Origin</th>
<th>Size</th>
<th>Angle</th>
<th>View Angle</th>
<th>Stagger</th>
<th>Space X</th>
<th>Space Y</th>
<th>Solid Colour</th>
<th>Solid Blend</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.p46</td>
<td>star</td>
<td>with trim map dots</td>
<td>world</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>30</td>
<td>no</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Definitions for Pattern

Polygon After Applying Map File

Go to the next section 8.8.1.3.4 Fills >Autocad Fill or return to 8.8.1.3 Fills or 8.8.1 Create/Edit a Map File.
8.8.1.3.4 Fills >Autocad Fill

AutoCad Fill uses a pattern from the **AutoCAD pattern** file to fill the selected super strings.

![Image of AutoCAD Fill](image)

Processing Using Name and Att Key for Fills>AutoCAD Fill Node

When a string finds a first match with **Name** and **Att Key** in the grid (see **Matching Using Name and Att Key**), the string is given an AutoCAD Pattern Fill as defined in the parameters of the matching line.

Name and Att Key

Name is at Text grid. The string name is matched against **Name**.

Att Key is an Attribute Data grid cell. The string attributes are matched against the attribute details in **Att Key**.

For further information on what is allowed in **Name** and **Att Key**, and how to access **Att Key**, see **Name and Att Key**.

Note: all the fields on the line after **Att Key** can have attribute substitution from string attributes. See **8.8.3 Map File Substitution by Attributes**.

Pattern

The autocad pattern name to be applied. These patterns are defined via acad.pat.

This is an autocad file.

Type

The units of size. This means the pattern can be drawn with either world size, paper size (mm) or device size.

Size

The size of the pattern in the units given by **Type**.

Angle

measures box

At Point, Point to Point, String= from Point, String to Point)
The orientation of the pattern relative to the x axis measured in the anti-clockwise direction. The units are dms (degrees minutes and seconds) and typed in using 4.17.1 HP Notation.

View Angle
choice box yes, no
If not blank, this field controls whether **Angle** is relative to the x axis or to the plotting x axis.
If **yes** and we are plotting, **Angle** is measured relative to the x axis of the plot rotation.
If **no**, **Angle** is measured absolute to the world x axis
If blank, **Angle** is measured absolute to the world x axis.
This is an extension.

Colour
The colour of the pattern.

Comment and Active
See 8.8.2 Comment and Active Column in Grids.

To assist in debugging a **Map File**, match logging can be turned on. See 8.8.4 Map File Logging.

Example of AutoCAD Fill

<table>
<thead>
<tr>
<th>Name</th>
<th>Att Key</th>
<th>Pattern</th>
<th>Type</th>
<th>Size</th>
<th>Angle</th>
<th>View Angle</th>
<th>Colour</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>P04</td>
<td></td>
<td>ESCHER</td>
<td>world</td>
<td>10</td>
<td>30</td>
<td>no</td>
<td>dark blue</td>
<td></td>
</tr>
</tbody>
</table>

Go to the next section 8.8.3.5 Fills >Hatch Fill or return to 8.8.1.3 Fills or 8.8.1 Create/Edit a Map File.
8.8.1.3.5 Fills > Hatch Fill

Hatch Fill sets whether super strings (closed and non-closed) are filled with a hatch pattern. The hatch pattern consists of one or two sets of lines drawn at specified angles.

Processing Using Name and Att Key for Fills > Hatch Fill Node

When a string finds a first match with **Name** and **Att Key** in the grid (see Matching Using Name and Att Key), the string is given a Hatch Pattern Fill as defined in the parameters of the matching line.

Name and Att Key

Name is at Text grid. The *string name* is matched against **Name**. **Att Key** is an Attribute Data grid cell. The *string attributes* are matched against the attribute details in **Att Key**.

For further information on what is allowed in **Name** and **Att Key**, and how to access **Att Key**, see Name and Att Key.

Note: all the fields on the line after **Att Key** can have attribute substitution from string attributes. See 8.8.3 Map File Substitution by Attributes.

Type select choice box

The units of **Spacing 1** and **Spacing 2**. This means the pattern can be drawn with either world size, paper size (mm) or device size.

X/Y Origin

The x/y co-ordinate of the anchor point of the repeated pattern.

View Angle choice box yes, no

If not blank, this field controls whether **Angle 1** and **Angle 2** are relative to the x axis or to the plotting x axis.

If **yes** and we are plotting, **Angle 1** and **Angle 2** are measured relative to the x axis of the plot rotation.

If **no**, **Angle 1** and **Angle 2** are measured absolute to the world x axis.
If blank, **Angle 1** and **Angle 2** are measured absolute to the world x axis.

Angle 1 measures box

The orientation of the first set of lines relative to the x axis measured in the anti-clockwise direction. The units are dms (degrees minutes and seconds) and typed in using 4.17.1 HP Notation.

Spacing 1

The distance between the first set of lines (drawn at an angle **Angle 1**) in the units selected in the **Type** column.

Colour 1

The colour of the first set of lines.

Angle 2 measures box

The orientation of the second set of lines relative to the x axis measured in the anti-clockwise direction. The units are dms (degrees minutes and seconds) and typed in using 4.17.1 HP Notation.

Spacing 2

The distance between the second set of lines (drawn at an angle **Angle 2**) in the units selected in the **Type** column.

Colour 2

The colour of the second set of lines.

Comment and Active

See 8.8.2 Comment and Active Column in Grids.

To assist in debugging a **Map File**, match logging can be turned on. See 8.8.4 Map File Logging.
Example of Hatch Fill

<table>
<thead>
<tr>
<th>Name</th>
<th>Att Key</th>
<th>Type</th>
<th>X Origin</th>
<th>Y Origin</th>
<th>View Angle</th>
<th>Angle 1</th>
<th>Spacing 1</th>
<th>Colour 1</th>
<th>Angle 2</th>
<th>Spacing 2</th>
<th>Colour 2</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCD</td>
<td>world</td>
<td>0</td>
<td>0</td>
<td></td>
<td>30</td>
<td>10</td>
<td>cyan</td>
<td>120</td>
<td>10</td>
<td>magenta</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The first set of lines are cyan
The second set of lines are magenta

Polygon After Applying Map File

Go to the next section 8.8.1.3.6 Multiple Fills or return to 8.8.1.3 Fills or 8.8.1 Create/Edit a Map File.
8.8.1.3.6 Multiple Fills

Super strings support more than one fill type per string. For example, a super string can have a solid fill, and an I Acad fill at the same time.

The order of drawing the fill types is: solid, bitmap, pattern, hatch, acad.

Go to the next section 8.8.1.4 Symbols or return to 8.8.1.3 Fills or 8.8.1 Create/Edit a Map File.
8.8.1.4 Symbols

The **Symbols** node creates symbols at the vertices of the super strings.

There can only be one symbol at each vertex so if **Symbols > String** is used to set symbols for every vertex of a string, and **Symbols > Vertex** applies a different symbol to any of those vertices, then the symbols from **Symbols > Vertex** are used at the appropriate vertices.

Symbols > Vertex 2 can be used to generate a second symbol at a vertex position BUT **Symbols > Vertex 2** creates a new string with a vertex and the second symbol.

For more information on **String**, go to 8.8.1.4.1 **Symbols > String**

Vertex 8.8.1.4.2 **Symbols > Vertex**

Vertex 2 8.8.1.4.3 **Symbols > Vertex 2**
8.8.1.4.1 Symbols >String

String sets the same symbol at each vertex of a super string

IMPORTANT NOTE:
There can only be one symbol at each vertex so if **Symbols >String** is used to set symbols for every vertex of a string, and **Symbols >Vertex** applies a different symbol to any of those vertices, then the symbols from **Symbols >Vertex** are used at the appropriate vertices.

Processing Using Name and Att Key for Symbols >String Node

When a string finds a first match with **Name** and **Att Key** in the grid (see **Matching Using Name and Att Key**), each vertex of the string is given a Symbol as defined in the parameters of the matching line.

Name and Att Key

Name is at Text grid. The **string name** is matched against **Name**.

Att Key is an Attribute Data grid cell. The **string attributes** are matched against the attribute details in **Att Key**.

For further information on what is allowed in **Name** and **Att Key**, and how to access **Att Key**, see **Name and Att Key**.

Symbol

Symbol is an **Symbol Information** grid cell and sets parameters for creating a symbol on the vertices of super strings. The symbol is positioned about the vertex.

This field can not be blank.

To access **Symbol**, click LB on the **Symbol** field to highlight the field, then click LB again to bring up the **Symbol Information** panel. See **4.7.1 Symbol Data** for information about the field to enter.

Note: Fields in the **Symbol Information** can have attribute substitution from string attributes. See **8.8.3 Map File Substitution by Attributes**.

Hide vertex

Hide vertex tick box

If ticked, no default cross is placed at the vertex of the string.
Note: Hide Vertex can have attribute substitution from string attributes. See 8.8.3 Map File Substitution by Attributes.

Comment and Active

See 8.8.2 Comment and Active Column in Grids.

To assist in debugging a Map File, match logging can be turned on. See 8.8.4 Map File Logging.

Go to the next section 8.8.1.4.2 Symbols >Vertex or return to 8.8.1.4 Symbols or 8.8.1 Create/ Edit a Map File.
8.8.1.4.2 Symbols >Vertex

Vertex sets a given symbol for each vertex of a super string that matches a string name, a string attribute value and a vertex attribute value.

There can only be one symbol at each vertex so if **Symbols >String** is used to set symbols for every vertex of a string, and **Symbols >Vertex** applies a different symbol to any of those vertices, then the symbol from **Symbols >Vertex** is used at the appropriate vertices.

Processing Using Name, Att Key and Vertex Att Key

when a string finds a first match with **Name**, **Att Key** and **Vertex Att Key** in the grid (see **Matching Using Name, Att Key and Vertex Att Key**), each matching vertex of the string is given a Symbol as defined in the parameters of the matching line.

Name, Att Key and Vertex Att Key

Name is at Text grid and the text entered into **Name** can include wild cards * and wild characters ?. The string name is matched against **Name**. This field can not be blank.

Att Key is an Attribute Data grid cell which contains the definition of the attributes and their values that are to be matched against. There can be more than one attribute in the Attribute Data but they must have unique names.

The string attributes are matched against the attribute details in **Att Key**.

Vertex Att Key is an Attribute Data grid cell which contains the definition of the vertex attributes and their values that are to be matched against. There can be more than one vertex attribute in the Attribute Data but they must have unique names.

The vertex attributes are matched against the attribute details in **Vertex Att Key**.

To access **Att Key** or **Vertex Att Key** data, click LB on the **Att Key/Vertex Att Key** field to highlight the field, then click LB again to bring up the **Attribute Data Panel**. To enter data, see **Attribute Data Panel**.

Matching Using Name, Att Key and Vertex Att Key:

Strings are first created via the **Basic** node and given a string name of either the Entity Name or the text given in the Name column of the Basic Map File grid.

Starting with the first line of the grid, matching and processing occurs as follows
If Name, Att Key and Vertex Att Key are not blank, and a match of the string name occurs with Name, a match of the string attributes occurs with Att Key and a match of the string vertex attributes occurs with Vertex Att Key, then the rest of the fields for this line of the Map File grid are used on this string vertex.

If Name and Att Key are not blank, and Vertex Att Key is blank, and a match of the string name occurs with Name and a match of the string attributes occurs with Att Key, then the rest of the fields for this line of the Map File grid are used on each string vertex.

If Name and Vertex Att Key are not blank, and Att Key is blank, and a match of the string name occurs with Name and a match of a string vertex attribute occurs with Vertex Att Key, then the rest of the fields for this line of the Map File grid are used on this string vertex.

If Name is not blank and Att Key and Vertex Att Key are blank, and a match of the string name occurs with Name, then the rest of the fields for this line of the Map File grid are used on each string vertex.

If Name is blank then no match occurs and this line of the Map File grid is ignored.

If a match occurs, then no tests for matches against Name, Att Key and Vertex Att Key further down in the grid are made.

If no match occurs, then this line of the map file grid is ignored and a test for a match is made against the next line of the grid.

Symbol

Symbol is Symbol Information grid cell and sets parameters for creating a symbol on the vertices of super strings. The symbol is positioned about the vertex.

This field can not be blank.

To access Symbol, click LB on the Symbol field to highlight the field, then click LB again to bring up the Symbol Information panel.

Note: Fields in the Symbol Information can have attribute substitution from vertex attributes. See 8.8.3 Map File Substitution by Attributes.

Hide vertex

if ticked, no default cross is placed at the vertex of the string.

Note: Hide Vertex can have attribute substitution from string attributes. See 8.8.3 Map File Substitution by Attributes.

Comment and Active

See 8.8.2 Comment and Active Column in Grids.

To assist is debugging a Map File, match logging can be turned on. See 8.8.4 Map File Logging.

Go to the next section 8.8.1.4.3 Symbols >Vertex 2 or return to 8.8.1.4 Symbols or 8.8.1 Create/Edit a Map File.
8.8.1.4.3 Symbols >Vertex 2

Vertex 2 creates a new string with vertices and symbols at those super strings that match a string name, a string attribute value and a vertex attribute value in the Symbols >Vertex 2 grid.

IMPORTANT RESTRICTION:
Symbols >Vertex 2 does not work for Utilities =>H-Z =>Map.

Processing Using Name, Att Key and Vertex Att Key

When a string finds a first match with **Name**, **Att Key** and **Vertex Att Key** in the grid (see **Matching Using Name, Att Key and Vertex Att Key**), each matching vertex of the string is given a Symbol as defined in the parameters of the matching line.

Name, Att Key and Vertex Att Key

Name is at Text grid. The string **name** is matched against Name.

Att Key is an Attribute Data grid cell. The string attributes are matched against the attribute details in Att Key.

Vertex Att Key is an Attribute Data grid cell. The vertex attributes are matched against the attribute details in Att Key.

For further information on what is allowed in **Name** and **Att Key**, and how to access **Att Key**, see **Name, Att Key and Vertex Att Key**.

Symbol

Select symbol data

Symbol is Symbol Information grid cell and sets parameters for creating a symbol on the vertices of super strings. The symbol is positioned about the vertex.

This field can not be blank.

To access **Symbol**, click LB on the **Symbol** field to highlight the field, then click LB again to bring up the Symbol Information panel.

Note: Fields in the Symbol Information can have attribute substitution from vertex attributes. See 8.8.3 Map File Substitution by Attributes.

Hide vertex

Tick box
if ticked, no default cross is placed at the vertex of the string.

Note: Hide Vertex can have attribute substitution from string attributes. See 8.8.3 Map File Substitution by Attributes.

Comment and Active

See 8.8.2 Comment and Active Column in Grids.

To assist is debugging a Map File, match logging can be turned on. See 8.8.4 Map File Logging.

Go to the next section 8.8.1.5 Tinable or return to 8.8.1.4 Symbols or 8.8.1 Create/Edit a Map File.
8.8.1.5 Tinable

Tinable sets whether the vertices and segments are tinable (used in triangulations), not tinable (not used in triangulations) or only the vertices (points) are tinable.

Processing Using Name and Att Key for Tinable Node

When a string finds a first match with **Name** and **Att Key** in the grid (see [Matching Using Name and Att Key](#)), each vertex and segment of the string is given a tinability value as defined in the parameters of the matching line.

Name and Att Key

- **Name** is at Text grid. The string name is matched against **Name**.
- **Att Key** is an Attribute Data grid cell. The string attributes are matched against the attribute details in **Att Key**.

For further information on what is allowed in **Name** and **Att Key**, and how to access **Att Key**, see [Name and Att Key](#).

Tinable

- **yes**, the vertices and segments for all the strings matching the **Name** and **Att Key** are tinable.
- **no**, the vertices and segments for all the strings matching the **Name** and **Att Key** are not tinable.
- **points**, the segments are not tinable and the vertices are tinable for all the strings matching the **Name** and **Att Key**.

This field can not be blank.

Note: **Tinable** can have attribute substitution from string attributes. See [8.8.3 Map File Substitution by Attributes](#).

Comment and Active

See [8.8.2 Comment and Active Column in Grids](#).
To assist in debugging a *Map File*, match logging can be turned on. See 8.8.4 Map File Logging.

Go to the next section 8.8.1.6 Vertex Text Data or return to 8.8.1 Create/Edit a Map File.
8.8.1.6 Vertex Text Data

Vertex Text Data sets parameters for displaying vertex text on super strings.

Processing Using Name and Att Key

When a string finds a first match with **Name** and **Att Key** in the grid (see [Matching Using Name and Att Key](#)), a Textstyle Data for use with vertex text on the string is given in the parameters of the matching line.

Name and Att Key

- **Name** is at Text grid. The string name is matched against **Name**.
- **Att Key** is an Attribute Data grid cell. The string attributes are matched against the attribute details in **Att Key**.

For further information on what is allowed in **Name** and **Att Key**, and how to access **Att Key**, see [Name and Att Key](#).

Textstyle Data

Textstyle Data is a Textstyle Data grid cell. The Textstyle Data sets text parameters (see [4.6 Text Definitions](#)) for displaying vertex text on all strings matching **Name and Att Key**.

To access the **Textstyle Data**, click LB on the **Textstyle Data** field to highlight the field, then click LB again to bring up the **Textstyle Data** panel.

Note: Fields in the **Textstyle Data** can have attribute substitution from string attributes. See [8.8.3 Map File Substitution by Attributes](#).

Comment and Active

See [8.8.2 Comment and Active Column in Grids](#).

To assist in debugging a **Map File**, match logging can be turned on. See [8.8.4 Map File Logging](#).

Go to the next section [8.8.1.7 Segment Text Data](#) or return to [8.8.1 Create/Edit a Map File](#).
8.8.1.7 Segment Text Data

Segment Text Data sets parameters for displaying segment text on super strings.

Processing Using Name and Att Key

when a string finds a first match with **Name** and **Att Key** in the grid (see Matching Using Name and Att Key), a Textstyle Data for use with segment text on the string is given in the parameters of the matching line.

Name and Att Key

Name is at Text grid. The *string name* is matched against **Name**.
Att Key is an Attribute Data grid cell. The *string attributes* are matched against the attribute details in **Att Key**.
For further information on what is allowed in **Name** and **Att Key**, and how to access **Att Key**, see Name and Att Key.

Textstyle Data

Textstyle Data is a Textstyle Data grid cell. The Textstyle Data sets text parameters (see 4.6 Text Definitions) for displaying segment text on all strings matching **Name** and **Att Key**.
To access the Textstyle Data, click LB on the Textstyle Data field to highlight the field, then click LB again to bring up the Textstyle Data panel.

Note: Fields in the Textstyle Data can have attribute substitution from string attributes. See 8.8.3 Map File Substitution by Attributes.

Comment and Active

See 8.8.2 Comment and Active Column in Grids.

To assist in debugging a Map File, match logging can be turned on. See 8.8.4 Map File Logging.

Go to the next section 8.8.1.8 Pipes or return to 8.8.1 Create/Edit a Map File.
8.8.1.8 Pipes

The **Pipes** node turns the string into a super pipe and sets parameters for pipe justification, whether it is round pipe and its diameter, or a rectangular pipe (culvert) and its width and height.

For information on *String*, go to 8.8.1.8.1 Pipes > *String*
- *Vertex* 8.8.1.8.2 Pipes > *Vertex*
- *Segment* 8.8.1.8.3 Pipes > *Segment*
8.8.1.8.1 Pipes >String

Strings matches on string name and string attributes to make the selected string a pipe string with either a diameter (round pipe) or a width and height (rectangular pipe), and a justification for the z-values of the string.

Processing Using Name and Att Key for Pipes>String Node

When a string finds a first match with **Name** and **Att Key** in the grid (see **Matching Using Name and Att Key**), the super string is turned into a super pipe using the parameters of the matching grid line.

Name and Att Key

Name is at Text grid. The **string name** is matched against *Name*.

Att Key is an Attribute Data grid cell. The **string attributes** are matched against the attribute details in *Att Key*.

For further information on what is allowed in *Name* and *Att Key*, and how to access *Att Key*, see **Name and Att Key**.

Note: all the fields on the line after *Att Key* can have attribute substitution from string attributes. See **8.8.3 Map File Substitution by Attributes**.

Justify

invert, centre, obvert

The justification for the pipe string.

This field can not be blank.

Shape

diameter, culvert

Sets whether the pipe is a round pipe or a rectangular pipe (culvert).

If diameter, the string is made a round pipe.

If culvert, the string is made a rectangular pipe.

This field can not be blank.

Size 1

measures menu

For **Shape** choice diameter, the diameter of all the segments of the pipe are set to the value in **Size 1**.
For Shape choice culvert, the width of all the segments of the pipe are set to the value in Size 1. This field can not be blank.

Size 2

for Shape choice culvert, the height of all the segments of the pipe are set to the value in Size 2.
for Shape choice diameter, this field is ignored.
This field can only be blank for a Shape choice diameter.

Comment and Active

See 8.8.2 Comment and Active Column in Grids.

To assist in debugging a Map File, match logging can be turned on. See 8.8.4 Map File Logging.
Example of Pipes > String

select strings with a **string text** attribute named **Shape** and with the value "Rectangle"

use the value of the **string** attribute named **Width** as the value in **Size 1** to use for the string

Go to the next section [8.8.1.8.2 Pipes > Vertex](#) or return to [8.8.1.8 Pipes](#) or [8.8.1 Create/Edit a Map File](#).
8.8.1.8.2 Pipes > Vertex

Vertex sets parameters for the sizing and justification of the **segment starting** with the selected vertex of the super string.

Note: All the segments of a super pipe string must have the same **Shape**. That is, all the segments must be **Shape diameter** (round pipe segment) or all the segments must be **Shape culvert** (rectangular pipe segment). And **Shape** must be the same as any **Shape** set for the string in **8.8.1.8.1 Pipes > String**.

Processing Using Name, Att Key and Vertex Att Key

when a string finds a first match with **Name, Att Key** and **Vertex Att Key** in the grid (see **Matching Using Name, Att Key and Vertex Att Key**), the segment that starts with the matching vertex of the string, is given the pipe justification, pipe shape and pipe size as defined in the parameters of the matching line.

Name, Att Key and Vertex Att Key

Name is at Text grid. The **string name** is matched against **Name**.

Att Key is an Attribute Data grid cell. The **string attributes** are matched against the attribute details in **Att Key**.

Vertex Att Key is an Attribute Data grid cell. The **vertex attributes** are matched against the attribute details in **Att Key**.

For further information on what is allowed in **Name** and **Att Key**, and how to access **Att Key**, see **Name, Att Key and Vertex Att Key**.

Note: all the fields on the line after **Vertex Att Key** can have attribute substitution from vertex attributes. See **8.8.3 Map File Substitution by Attributes**.

Justify

invert, centre, obvert

the justification for this segment of the pipe string.

This field can not be blank.
Shape
diameter, culvert

sets whether this segment of the pipe is a round pipe or a rectangular pipe (culvert).
If diameter, the segment is made a round pipe.
If culvert, the segment is made a rectangular pipe.
This field can not be blank.

Note: the shape can not be different from a shape set by Pipes >String

Size 1 measures menu

for Shape choice diameter, the diameter of this segments of the pipe is set to the value in Size 1.
For Shape choice culvert, the width of this segments of the pipe is set to the value in Size 1.
This field can not be blank.

Size 2 measures menu

for Shape choice culvert, the height of this segment of the pipe is set to the value in Size 2.
for Shape choice diameter, this field is ignored.
This field can only be blank for a Shape choice diameter.

Comment and Active

See 8.8.2 Comment and Active Column in Grids.

To assist in debugging a Map File, match logging can be turned on. See 8.8.4 Map File Logging.

Go to the next section 8.8.1.8.3 Pipes >Segment or return to 8.8.1.8 Pipes or 8.8.1 Create/Edit a Map File.
8.8.1.8.3 Pipes >Segment

Segment sets parameters for the sizing and justification of the selected segment of the super string.

Note: All the segments of a super pipe string must have the same Shape. That is, all the segments must be **Shape diameter** (round pipe segment) or all the segments must **Shape culvert** (rectangular pipe segment). And **Shape** must be the same as any **Shape** set for the string in 8.8.1.8.1 Pipes >String.

Processing Using Name, Att Key and Segment Att Key

When a string finds a first match with **Name**, **Att Key** and **Segment Att Key** in the grid (see Matching Using Name, Att Key and Segment Att Key), each matching segment of the string is the pipe, justification, pipe shape and pipe size as defined in the parameters of the matching line.

Name, Att Key and Segment Att Key

Name is at Text grid and the text entered into **Name** can include wild cards * and wild characters ?. The string name is matched against **Name**. This field can not be blank.

Att Key is an Attribute Data grid cell which contains the definition of the attributes and their values that are to be matched against. There can be more than one attribute in the Attribute Data but they must have unique names.

The **string** attributes are matched against the attribute details in **Att Key**.

Segment Att Key is an Attribute Data grid cell which contains the definition of the segment attributes and their values that are to be matched against. There can be more than one segment attribute in the Attribute Data but they must have unique names.

The **segment** attributes are matched against the attribute details in **Segment Att Key**.

To access **Att Key** or **Segment Att Key** data, click LB on the **Att Key/Segment Att Key** field to highlight the field, then click LB again to bring up the **Attribute Data** panel. To enter data, see Attribute Data Panel.

Matching Using Name, Att Key and Segment Att Key:

Strings are first created via the **Basic** node and given a string name of either the Entity Name or the text given in the Name column of the Basic Map File grid.
Starting with the first line of the grid, matching and processing occurs as follows:

If `Name`, `Att Key` and `Segment Att Key` are not blank, and a match of the string name occurs with `Name`, a match of the string attributes occurs with `Att Key` and a match of the string segment attributes occurs with `Segment Att Key`, then the rest of the fields for this line of the Map File grid are used on this string segment.

If `Name` and `Att Key` are not blank, and `Segment Att Key` is blank, and a match of the string name occurs with `Name` and a match of the string attributes occurs with `Att Key`, then the rest of the fields for this line of the Map File grid are used on each string segment.

If `Name` and `Segment Att Key` are not blank, and `Att Key` is blank, and a match of the string name occurs with `Name` and a match of a string segment attribute occurs with `Segment Att Key`, then the rest of the fields for this line of the Map File grid are used on this string segment.

If `Name` is not blank and `Att Key` and `Segment Att Key` are blank, and a match of the string name occurs with `Name`, then the rest of the fields for this line of the Map File grid are used on each string segment.

If `Name` is blank then no match occurs and this line of the Map File grid is ignored.

If a match occurs, then no tests for matches against `Name`, `Att Key` and `Segment Att Key` further down in the grid are made.

If no match occurs, then this line of the map file grid is ignored and a test for a match is made against the next line of the grid.

Note: all the fields on the line after `Segment Att Key` can have attribute substitution from segment attributes. See 8.8.3 Map File Substitution by Attributes.

Justify
- invert, centre, obvert

the justification for this segment of the pipe string.

This field can not be blank.

Shape
- diameter, culvert

sets whether this segment of the pipe is a round pipe or a rectangular pipe (culvert).

If `diameter`, the segment is made a round pipe.

If `culvert`, the segment is made a rectangular pipe.

This field can not be blank.

Note: the shape can not be different from a shape set by Pipes > String Size measure menu

For `Shape` choice `diameter`, the diameter of this segments of the pipe is set to the value in `Size 1`.

For `Shape` choice `culvert`, the width of this segments of the pipe is set to the value in `Size 1`.

This field can not be blank.

Size 1
- measures menu

for `Shape` choice `diameter`, the diameter of this segments of the pipe is set to the value in `Size 1`.

For `Shape` choice `culvert`, the width of this segments of the pipe is set to the value in `Size 1`.

This field can not be blank.

Size 2
- measures menu

for `Shape` choice `culvert`, the height of this segment of the pipe is set to the value in `Size 2`.

for `Shape` choice `diameter`, this field is ignored.

This field can only be blank for a `Shape` choice `diameter`.

Comment and Active

See 8.8.2 Comment and Active Column in Grids.

To assist in debugging a Map File, match logging can be turned on. See 8.8.4 Map File Logging.
Example of Pipes >Segment

select segments with a *segment text* attribute named *Shape* and with the value "Rectangle"

use the value of the *segment* attribute named *Width* as the value in *Size 1* to use for this segment

Go to the next section 8.8.1.9 Boundaries or return to 8.8.1.8 Pipes or 8.8.1 Create/Edit a Map File.
8.8.1.9 Boundaries

Boundaries sets an attribute for the string so that when it is used for Nulling of triangles in a Tin, the triangles inside the string will either be set to null (exclude), or set back to not null (include).

Processing Using Name and Att Key

When a string finds a first match with **Name** and **Att Key** in the grid (see Matching Using Name and Att Key), the string is given a Boundaries value as defined in the parameters of the matching line.

Name and Att Key

- **Name** is at Text grid. The string name is matched against **Name**.
- **Att Key** is an Attribute Data grid cell. The string attributes are matched against the attribute details in **Att Key**.

For further information on what is allowed in **Name** and **Att Key**, and how to access **Att Key**, see Name and Att Key.

Boundaries: exclude, include

- If **exclude**, then any triangles inside the string are set to null.
- If **include**, then any triangles inside the string are reset so that they aren't null.

This field can not be blank.

Note: Boundaries can have attribute substitution from segment attributes. See 8.8.3 Map File Substitution by Attributes.

Comment and Active

See 8.8.2 Comment and Active Column in Grids.

To assist in debugging a Map File, match logging can be turned on. See 8.8.4 Map File Logging.

Go to the next section 8.8.1.10 Visualization or return to 8.8.1 Create/Edit a Map File.
8.8.1.10 Visualization

Note that when any Visualization mapping is applied, it is additive. This means that these mappings are added to any existing visualization element of the super string. This allows for a number of extrusions or billboards to be applied on a mapping. It does have the unexpected result that if you run Map File Apply more than once, multiple instances of Visualization mappings can end up on a same string. For more information on extrusions, see 12.13.6 Extrusions.

For Visualisation > Library Extrude, go to
 String Extrude 8.8.1.10.1 Visualisation > Library Extrude
 Interval Extrude 8.8.1.10.2 Visualisation > String Extrude
 Group Extrude 8.8.1.10.3 Visualisation > Interval Extrude
 Library Billboard 2d 8.8.1.10.4 Visualisation > Group Extrude
 Library Billboard 3d 8.8.1.10.5 Visualisation > Library Billboard
 Library Billboard Plan 8.8.1.10.6 Visualisation > Library Billboard
 Forest 8.8.1.10.7 Visualisation > Library Billboard
 Plan 8.8.1.10.8 Visualisation > Forest
8.8.1.10.1 Visualisation >Library Extrude

Library Extrude applies an extrude from the 12d library to selected super strings. Note that extrudes can only be applied to super strings.

![Map File Create/Edit](image)

Processing Using Name and Att Key

When a string finds a first match with **Name** and **Att Key** in the grid (see **Matching Using Name and Att Key**), the string is given the Library Extrude as defined in the parameter of the matching line.

Name and Att Key

- **Name** is at Text grid. The string name is matched against **Name**.
- **Att Key** is an Attribute Data grid cell. The string attributes are matched against the attribute details in **Att Key**.

For further information on what is allowed in **Name** and **Att Key**, and how to access **Att Key**, see **Name and Att Key**.

Extrude

Select extrudes menu

The library extrude to apply to the super string. This extrude can any extrude type, and is applied to the entire length of the string.

Note: Extrude can have attribute substitution from string attributes. See **8.8.3 Map File Substitution by Attributes**.

Comment and Active

See **8.8.2 Comment and Active Column in Grids**.

To assist in debugging a **Map File**, match logging can be turned on. See **8.8.4 Map File Logging**.

Go to the next section **8.8.10.2 Visualisation >String Extrude** or return to **8.8.10 Visualization** or **8.8.1 Create/Edit a Map File**.
8.8.1.10.2 Visualisation >String Extrude

String Extrude applies an extrude to selected super strings. Note that extrudes can only be applied to super strings or super alignments.

![Map Files](image)

Processing Using Name and Att Key

When a string finds a first match with **Name** and **Att Key** in the grid (see **Matching Using Name and Att Key**), the string is given the extrude as defined in the parameter of the matching line.

Name and Att Key

Name is at Text grid. The string name is matched against **Name**.

Att Key is an Attribute Data grid cell. The string attributes are matched against the attribute details in **Att Key**.

For further information on what is allowed in **Name** and **Att Key**, and how to access **Att Key**, see **Name and Att Key**.

Note: all the fields on the line after **Att Key** can have attribute substitution from string attributes. See **8.8.3 Map File Substitution by Attributes**.

Extrude

The library extrude to be applied. This extrude must be of the type **string extrude**.

If blank, no extrusion is applied.

Use Colour

If yes, the colours in the extrusion are used.

If no or blank, the colour of the super string is used.

Mirror X

If yes, the x values of the extrusion are mirrored. This allows for one extrusion definition to be used in both a left and right context.

If no or blank, not mirroring occurs.
Start Chainage

If not blank, the extrusion starts at this chainage.
If blank, the extrusion starts at the beginning of the string.

Final Chainage

If not blank, the extrusion ends at this chainage.
If blank, the extrusion end at the end of the string.

Comment and Active

See 8.8.2 Comment and Active Column in Grids.

To assist in debugging a Map File, match logging can be turned on. See 8.8.4 Map File Logging.

Go to the next section 8.8.1.10.3 Visualisation > Interval Extrude or return to 8.8.10 Visualization or 8.8.1 Create/Edit a Map File.
8.8.1.10.3 Visualisation > Interval Extrude

Interval Extrude applies an extrude to selected super strings. Note that extrudes can only be applied to super strings and super alignments. A typical use of interval extrudes is placing guide posts down the length of a string at a regular interval. The process here is that you reference an existing interval extrude, and can optionally apply one more components of a 3d transformation to it. For more information on transformations, see 12.13.8 3D Transformations.

Each **extrude** drawn at the interval will take the x,y,z, and direction from the string first, then any transformation is applied. So in the example of the post, if no transformation is applied, each post will be positioned on the string and oriented in the direction of the string.

![Interval Extrude](image)

Processing Using Name and Att Key

When a string finds a first match with **Name** and **Att Key** in the grid (see Matching Using Name and Att Key), the string is given the interval extrude as defined in the parameters of the matching line.

Name and Att Key

Name is at Text grid. The **string name** is matched against **Name**.

Att Key is an Attribute Data grid cell. The **string attributes** are matched against the attribute details in **Att Key**.

For further information on what is allowed in **Name** and **Att Key**, and how to access **Att Key**, see Name and Att Key.

Note: all the fields on the line after **Att Key** can have attribute substitution from string attributes. See 8.8.3 Map File Substitution by Attributes.

Extrude

the library extrude to be applied. This extrude must be of the type **interval extrude**.

If **blank**, no extrusion is applied.

Use Colour

if **yes**, the colours in the extrusion are used.
If **no** or **blank**, the colour of the super string is used.

Mirror X

if *yes*, the x values of the extrusion are mirrored. This allows for one extrusion definition to be used in both a left and right context.

If **no** or **blank**, not mirroring occurs.

Start Chainage

if **not blank**, the extrusion starts at this chainage.

If **blank**, the extrusion starts at the beginning of the string.

Final Chainage

if **not blank**, the extrusion ends at this chainage.

If **blank**, the extrusion end at the end of the string.

Interval

the spacing between instances of the extrude along the string.

Use grade

if **no** or **blank**, the interval extrude is drawn upright.

If *yes*, the interval extrude is on the same angle as the segment of the string it is on.

X/Y/Z rotation

the relative rotation about the x/y/z-axis.

If **blank**, no rotation is applied.

X/Y/Z factor

the factor applied to x/y/z coordinates of the extrusion.

If **blank**, no factor is applied.

X/Y/Z offset

the offset applied to the x/y/z coordinate of each interval point on the string.

If **blank**, no offset is applied.

Comment and Active

See 8.8.2 Comment and Active Column in Grids.

To assist in debugging a **Map File**, match logging can be turned on. See 8.8.4 Map File Logging.

Go to the next section 8.8.10.4 Visualisation >Group Extrude or return to 8.8.10 Visualization or 8.8.1 Create/Edit a Map File.
8.8.1.10.4 Visualisation >Group Extrude

Group Extrude applies a group extrude to selected super strings. Note that extrudes can only be applied to super strings, or super alignments.

Processing Using Name and Att Key

When a string finds a first match with **Name** and **Att Key** in the grid (see [Matching Using Name and Att Key](#)), the string is given the group extrude as defined in the parameter of the matching line.

Name and Att Key

Name is at Text grid. The string name is matched against **Name**. **Att Key** is an Attribute Data grid cell. The string attributes are matched against the attribute details in **Att Key**. For further information on what is allowed in **Name** and **Att Key**, and how to access **Att Key**, see [Name and Att Key](#).

Extrude

The library extrude to be applied. This extrude must be of the type **group extrude**. If **blank**, no extrusion is applied.

Note: Extrude can have attribute substitution from string attributes. See [8.8.3 Map File Substitution by Attributes](#).

Comment and Active

See [8.8.2 Comment and Active Column in Grids](#).

To assist in debugging a **Map File**, match logging can be turned on. See [8.8.4 Map File Logging](#).

Go to the next section [8.8.1.10.5 Visualisation >Library Billboard 2d](#) or return to [8.8.10 Visualization](#) or [8.8.1 Create/Edit a Map File](#).
8.8.1.10.5 Visualisation >Library Billboard 2d

This section of documentation is a work in progress and will be updated in subsequent releases.

The process here is that you reference a library billboard, and can optionally apply one more components of a 3d transformation to it. For more information on transformations, see 12.13.8 3D Transformations. For more information on library billboards, see 12.13.5 Billboards.

Processing Using Name and Att Key

when a string finds a first match with **Name** and **Att Key** in the grid (see Matching Using Name and Att Key), the string is given the a library 2d billboard as defined in the parameter of the matching line.

Name and Att Key

Name is at Text grid. The *string name* is matched against **Name**.

Att Key is an Attribute Data grid cell. The *string attributes* are matched against the attribute details in **Att Key**.

For further information on what is allowed in **Name** and **Att Key**, and how to access **Att Key**, see Name and Att Key.

Note: all the fields on the line after **Att Key** can have attribute substitution from string attributes. See 8.8.3 Map File Substitution by Attributes.

Billboard

Colour

Rotation

X/Y/Z offset
Comment and Active

See 8.8.2 Comment and Active Column in Grids.

To assist in debugging a Map File, match logging can be turned on. See 8.8.4 Map File Logging.

Go to the next section 8.8.10.6 Visualisation > Library Billboard 3d or return to 8.8.10 Visualization or 8.8.1 Create/Edit a Map File.
8.8.1.10.6 Visualisation >Library Billboard 3d

This section of documentation is a work in progress and will be updated in subsequent releases.

The process here is that you reference a library billboard, and can optionally apply one more components of a 3d transformation to it. For more information on transformations, see 12.13.8 3D Transformations. For more information on library billboards, see 12.13.5 Billboards.

Processing Using Name and Att Key

When a string finds a first match with Name and Att Key in the grid (see Matching Using Name and Att Key), the string is given the a library 3d billboard as defined in the parameter of the matching line.

Name and Att Key

Name is at Text grid. The string name is matched against Name.

Att Key is an Attribute Data grid cell. The string attributes are matched against the attribute details in Att Key.

For further information on what is allowed in Name and Att Key, and how to access Att Key, see Name and Att Key.

Note: all the fields on the line after Att Key can have attribute substitution from string attributes. See 8.8.3 Map File Substitution by Attributes.

Billboard

Colour

X/Y/Z rotation

X/Y/Z factor
X/Y/Z offset

Comment and Active

See 8.8.2 Comment and Active Column in Grids.

To assist is debugging a Map File, match logging can be turned on. See 8.8.4 Map File Logging.

Go to the next section 8.8.1.10.7 Visualisation >Library Billboard Plan or return to 8.8.1.10 Visualization or 8.8.1 Create/Edit a Map File.
8.8.1.10.7 Visualisation >Library Billboard Plan

This section of documentation is a work in progress and will be updated in subsequent releases.

The process here is that you reference a library billboard, and can optionally apply one more components of a 3d transformation to it. For more information on transformations, see 12.13.8 3D Transformations. For more information on library billboards, see 12.13.5 Billboards.

Processing Using Name and Att Key

when a string finds a first match with Name and Att Key in the grid (see Matching Using Name and Att Key), the string is given the a library plan billboard as defined in the parameter of the matching line.

Name and Att Key

Name is at Text grid. The string name is matched against Name.

Att Key is an Attribute Data grid cell. The string attributes are matched against the attribute details in Att Key.

For further information on what is allowed in Name and Att Key, and how to access Att Key, see Name and Att Key.

Note: all the fields on the line after Att Key can have attribute substitution from string attributes. See 8.8.3 Map File Substitution by Attributes.

Billboard

Colour

Rotation

X/Y/Z offset
Drape name

Comment and Active

See 8.8.2 Comment and Active Column in Grids.

To assist in debugging a Map File, match logging can be turned on. See 8.8.4 Map File Logging.

Go to the next section 8.8.1.10.8 Visualisation > Forest or return to 8.8.1.10 Visualisation or 8.8.1 Create/Edit a Map File.
8.8.1.10.8 Visualisation >Forest

Forest applies a Forest file to selected strings. If a string is open then it is taken as closed by joining the first and last points before applying the Forest file.

This section of documentation is a work in progress and will be updated in subsequent releases.

Processing Using Name and Att Key

When a string finds a first match with **Name** and **Att Key** in the grid (see Matching Using Name and Att Key), a forest file is applied to the string as specified by the parameter of the matching line.

Name and Att Key

Name is at Text grid. The string name is matched against Name.

Att Key is an Attribute Data grid cell. The string attributes are matched against the attribute details in Att Key.

For further information on what is allowed in Name and Att Key, and how to access Att Key, see Name and Att Key.

Note: all the fields on the line after Att Key can have attribute substitution from string attributes. See 8.8.3 Map File Substitution by Attributes.

Forest file

the name of the Forest file to use for the string.

Tin

the tin to put the base on the trees on

Density

the number of tries per hectare

Create canopy
Comment and Active

See 8.8.2 Comment and Active Column in Grids.

To assist in debugging a Map File, match logging can be turned on. See 8.8.4 Map File Logging.

Go to the next section 8.8.1.11 Attributes or return to 8.8.1.10 Visualization or 8.8.1 Create/Edit a Map File.
8.8.1.11 Attributes

The Attributes node in the Map File which is used to apply attributes to Strings, Vertices and/or Segments.

For information on String, go to 8.8.1.11.1 Attributes >String
Vertex 8.8.1.11.2 Attributes >Vertex/Pit
Segment 8.8.1.11.3 Attributes >Segment/Pipe
8.8.1.11.1 Attributes >String

Strings matches on string name and string attributes and adds the attributes in the **Map Attributes** column to the string.

Processing Using Name and Att Key for Attributes>String Node

When a string finds a first match with **Name** and **Att Key** in the grid (see **Matching Using Name and Att Key**), the Map Attributes are added as string attributes to the matching string.

Name and Att Key

- **Name** is at Text grid. The string name is matched against **Name**.
- **Att Key** is an Attribute Data grid cell. The string attributes are matched against the attribute details in **Att Key**.

For further information on what is allowed in **Name** and **Att Key**, and how to access **Att Key**, see [Name and Att Key](#).

Map Attributes

Attributes that are added as string attributes.
Comment and Active

See 8.8.2 Comment and Active Column in Grids.

To assist in debugging a Map File, match logging can be turned on. See 8.8.4 Map File Logging.

Go to the next section 8.8.11.1 Attributes >String or return to 8.8.11 Attributes or 8.8.1, Create/Edit a Map File.
8.8.1.11.2 Attributes > Vertex/Pit

Vertex/Pit matches on string name, string attributes and vertex attributes and adds the attributes in the Map Attributes column as vertex attributes to the selected vertex of the super string or drainage string.

Processing Using Name, Att Key and Vertex Att Key

when a string finds a first match with Name, Att Key and Vertex Att Key in the grid (see Matching Using Name, Att Key and Vertex Att Key), the selected vertex has the attributes in Map Attributes added to it.

Name, Att Key and Vertex Att Key

Name is at Text grid. The string name is matched against Name.
Att Key is an Attribute Data grid cell. The string attributes are matched against the attribute details in Att Key.
Vertex Att Key is an Attribute Data grid cell. The vertex attributes are matched against the attribute details in Att Key.
For further information on what is allowed in Name and Att Key, and how to access Att Key, see Name, Att Key and Vertex Att Key.

Map Attributes

attributes that are added as vertex/pit attributes.
Comment and Active

See 8.8.2 Comment and Active Column in Grids.

To assist in debugging a Map File, match logging can be turned on. See 8.8.4 Map File Logging.

Go to the next section 8.8.11.3 Attributes >Segment/Pipe or return to 8.8.11 Attributes or 8.8.1 Create/Edit a Map File.
8.8.1.11.3 Attributes > Segment/Pipe

Segment/Pipe matches on string name, string attributes and vertex attributes and adds the attributes in the **Map Attributes** column as segment attributes to the selected segment of the super string or drainage string.

Processing Using Name, Att Key and Segment Att Key

When a string finds a first match with **Name**, **Att Key** and **Segment Att Key** in the grid (see [Matching Using Name, Att Key and Segment Att Key](#)), the selected segments has the attributes in **Map Attributes** added to it.

Name, Att Key and Segment Att Key

- **Name** is at Text grid and the text entered into **Name** can include wild cards (*) and wild characters (?). The string name is matched against **Name**. This field can not be blank.
- **Att Key** is an Attribute Data grid cell which contains the definition of the attributes and their values that are to be matched against. There can be more than one attribute in the Attribute Data but they must have unique names.
- The **string** attributes are matched against the attribute details in **Att Key**.
- **Segment Att Key** is an Attribute Data grid cell which contains the definition of the segment attributes and their values that are to be matched against. There can be more than one segment attribute in the Attribute Data but they must have unique names.
- The **segment** attributes are matched against the attribute details in **Segment Att Key**.

To access **Att Key** or **Segment Att Key** data, click LB on the **Att Key**/**Segment Att Key** field to highlight the field, then click LB again to bring up the **Attribute Data** panel. To enter data, see the **Attribute Data Panel**.

Matching Using Name, Att Key and Segment Att Key:

Strings are first created via the Basic node and given a string name of either the Entity Name or the text given in the Name column of the Basic Map File grid.

Starting with the first line of the grid, matching and processing occurs as follows:

- If **Name**, **Att Key** and **Segment Att Key** are not blank, and a match of the string name occurs with **Name**, a match of the string attributes occurs with **Att Key** and a match of the string segment attributes occurs with **Segment Att Key**.
occurs with **Segment Att Key**, then the rest of the fields for this line of the Map File grid are used on this string segment.

If Name and Att Key are not blank, and Segment Att Key is blank, and a match of the string name occurs with Name and a match of the string attributes occurs with Att Key, then the rest of the fields for this line of the Map File grid are used on each string segment.

If Name and Segment Att Key are not blank, and Att Key is blank, and a match of the string name occurs with Name and a match of a string segment attribute occurs with Segment Att Key, then the rest of the fields for this line of the Map File grid are used on this string segment.

If Name in not blank and Att Key and Segment Att Key are blank, and a match of the string name occurs with Name, then the rest of the fields for this line of the Map File grid are used on each string segment.

If Name in blank then no match occurs and this line of the Map File grid is ignored.

If a match occurs, then no tests for matches against Name, Att Key and Segment Att Key further down in the grid are made.

If no match occurs, then this line of the map file grid is ignored and a test for a match is made against the next line of the grid.

Map Attributes

attributes that are added as segment/pipe attributes.

Comment and Active

See 8.8.2 Comment and Active Column in Grids.

To assist in debugging a **Map File**, match logging can be turned on. *See 8.8.4 Map File Logging.*

Go to the next section **8.8.3 Map File Substitution by Attributes** or return to **8.8.11 Attributes** or **8.8.1 Create/Edit a Map File** or **8.8 Map Files**.
8.8.2 Comment and Active Column in Grids

Comment

comment to be used in this line of the map file or names files.

When there is a comment in the names.4d file and Data tooltips are turned on (D snap) and a string matches a row in the Names.4d file with a comment, then the comment is displayed at the top of the Data Tool tip.

![Part of Names.4d file](image)

Comment taken from a match with L* in the Names.4d file

Active

There is an Active column in each grid so that the individual rows of the grid can be turned off and so not used. This means that the row does not have to be deleted.

If the value in the Active column for a row column is left blank, then the row is used.
If the value in the Active column for a row column is yes, then the row is used.
If the value in the Active column for a row column is no, then the row is not used.

![Active column](image)

Active column choices

Return to 8.8 Map Files.
8.8.3 Map File Substitution by Attributes

Once there has been a first match for an element with the Name and Att key (or Vertex Att key or Segment Att key) of a line in the grid, the remaining fields in the rest of the grid line are applied to the element.

To increase the usefulness of the remaining fields in the line, it is possible to use the value of an attribute from the element, rather than just the static value in the field.

To use the value of an attribute in the grid field, simply specify the attribute pathname prefixed by the $ sign.

For example, if it was the Tinable section of the Map File (see 8.8.1.5 Tinable,) and the tinability of the string is to be given by a string attribute called 12d Field/My Tinability, type

$12d Field/My Tinability

into the Tinable cell of the grid.

So $ denotes the start of the attribute substitution.

The value of the attribute must be a valid answer (in the case of the Tinable cell, it must be no, yes, or point). If the value of the attribute is not a valid answer, a logline in the output window will be generated to identify the element in error and the line in the mapfile.

Note that the $ character must be the first character in the field, and that the rest of the field is taken as the attribute pathname so quotes should not be used even if there are spaces in the attribute pathname. Hence only one attribute can be used in the substitution process for a grid cell.

Remember that attribute names are case sensitive and in the case where more than one attribute of the same name exists, the first attribute found will be used.

Note - Attribute substitution is valid in the Textstyle Data and Symbol Information panels on a grid line.

select strings with a string text attribute named Shape and with the value "Rectangle"

use the value of the string attribute named Width as the value in Size 1 to use for the string
An Important Restriction

There is currently no way of distinguishing between string, vertex or segment attributes in the grid cells.

So if you are in a section of the Map File that has:

(a) only an Att Key, then only string attributes can be used for substitution in the grid cells in that section. For example 8.8.1.5 Tinable.

(b) an Att Key and a Vertex Att Key then only vertex attributes can be used for substitution in the grid cells in that section. For example 8.8.1.4.2 Symbols >Vertex.

(c) an Att Key and a Segment Att Key then only segment attributes can be used for substitution in the grid cells in that section. For example 8.8.1.8.3 Pipes >Segment.

Go to the next section 8.8.4 Map File Logging or return to 8.8 Map Files.
8.8.4 Map File Logging

To help determine what is going on, or not going on, when using a Map File, Logging can be turned on.

When turned on, as a Map File processes the data and a match occurs, an entry is written to the Output Window giving in what section of the Map File section the match occurred, the line number of that section of the grid that the match occurred (written as item number), and by clicking onto the created log line, the mapped object will be highlighted.

To turn Map File Logging on or off, click LB or RB on the folder icon at the end of the Map File panel field to bring up the Folder *.mapfile *.mf pop up.

If [Logging off] is displayed then Logging is now turned on and clicking LB on [Logging off] will turn Logging off.

If [Logging on] is displayed then Logging is now turned off and clicking LB on [Logging on] will turn Logging on.

For example, when reading in a 12da file, clicking LB on the Map file panel field brings up the Folder *.mapfile *.mf pop up.

Note: Logging can generate a large number of log lines and this could affect the performance of 12d Model. So it is a good idea to save the project first, or run the logging in a temporary project.

Go to the next section 8.8.5 Apply Map File or return to 8.8 Map Files.
8.8.5 Apply Map File

Position of option on menu: File => Map file => Apply
Position of option on menu: Utilities => H-Z => Map

Map applies a 12d Model Map File to the selected strings. The map file can be used to change string attributes such as string names, models, colours, breakline type and style, apply extrudes, apply polygon fills etc.

The layout and operation of a Map File is described in the section 8.8.1 Create/Edit a Map File. Selecting Map displays the Map File Apply panel.

![Map File Apply panel](image)

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use map file models</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map file</td>
<td>map file box</td>
<td>* .mapfile, *.mf files</td>
<td></td>
</tr>
<tr>
<td>Prefix for models</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
</tbody>
</table>

If *non-blank*, the *prefix for models* field gives the characters to be prepended and appended to the model names given in the Map File. The prepended and appended characters are entered into the prefix for models field, separated by a *. For example, *pre*pos would add *pre* before each model name and pos after each model name. For prepend only, no * is required. The *pre* and pos can included spaces.
Target type

data selection type - for a full description go to 4.19.3 Data Source.

Target info

input

extra information required for the target.

Map

button

run the option - process the selected strings

Go to the next section 8.8.6 Convert .mf Files to .mapfile or return to 8.8 Map Files.
8.8.6 Convert .mf Files to .mapfile

Position of option on menu: File I/O => Map files => Convert .mf to .mapfile

The map file convert option converts a map file in the pre-V9 format to the XML map file format introduced in 12d Model 9.

Selecting Convert .mf to .mapfile displays the Map File Convert .mf to .mapfile panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>File to convert from</td>
<td>file box</td>
<td></td>
<td>*.mf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the pre-V9 map file to be converted to the new map file format</td>
<td></td>
</tr>
<tr>
<td>File to convert to</td>
<td>file box</td>
<td></td>
<td>*.mapfile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the new converted map file</td>
<td></td>
</tr>
<tr>
<td>Convert</td>
<td>button</td>
<td></td>
<td>convert a file in the pre-V9 map file format to the new map file format</td>
</tr>
</tbody>
</table>

Go to the next section 8.8.7 Create/Edit .mf File or return to 8.8 Map Files.
8.8.7 Create/Edit .mf File

Position of option on menu: File I/O => Map files => Create/edit .mf

The Create/edit .mf option creates and/or edit the 12d Map Files in the pre-V9 format.

This old format is now superseded so the user should use 8.8.6 Convert .mf Files to .mapfile to convert old .mf files to the .mapfile format, or the option 8.8.1 Create/Edit a Map File does this conversion when you select a .mf file. This editor is only supplied for a while and will be removed in a future version.

Vertex Text Data

The Vertex Text Data tab sets parameters for drawing text on the vertices of super strings.

Key

select name menu

dkey to match the string name against in the Vertex Text Data tab. The key can include wild cards (*) and wild characters (?).
If a match occurs, then the rest of the grid fields for this line of this tab of the map file are used and no other tests for matches against keys further down in the table are made.
If a match does not occur, then a test for a match is made against the key on the next line of this tab of the map file.

Textstyle

select text style menu

the textstyle used for any vertex text for all strings matching the key.
This field can not be blank.

Type

screen, paper, world
the textstyle type used for any vertex text for all strings matching the key. This field cannot be blank.

Size

the size of the vertex text to be used for each vertex of all strings matching the key. This field cannot be blank.

Colour

the colour of the vertex text to be used for each vertex of all strings matching the key. This field cannot be blank.

Angle

the angle of the vertex text to be used for each vertex of all strings matching the key. This field cannot be blank.

Offset

the distance to offset the text from each vertex of the strings matching the key. This field cannot be blank.

Raise

the distance to perpendicularly raise the text for each vertex of all strings matching the key. This field cannot be blank.

Slant

the slant for the vertex text of all strings matching the key. This field cannot be blank.

X factor

the x-factor for the vertex text of all strings matching the key. This field cannot be blank.

Justify

the justification for the vertex text of all strings matching the key. This field cannot be blank.

Comment

comment to be used in this line of the map file. A double slash // is written out to the text map file before the comment, and a comment in an text map file is read in and displayed without the double slash.

Segment Text Data

the Segment Text Data tab sets parameters for drawing text on the segments of super strings. The text is positioned about the mid point of the segment.
Key

key to match the string name against in the Segment Text Data tab. The key can include wild cards (*) and wild characters (?).

If a match occurs, then the rest of the grid fields for this line of this tab of the map file are used and no other tests for matches against keys further down in the table are made.

If a match does not occur, then a test for a match is made against the key on the next line of this tab of the map file.

Textstyle

the text style used for any segment text for all strings matching the key.

This field can not be blank.

Type

the text style type used for any segment text for all strings matching the key.

This field can not be blank.

Size

the size of the segment text to be used for each segment of all strings matching the key.

This field can not be blank.

Colour

the colour of the segment text to be used for each segment of all strings matching the key.

This field can not be blank.

Angle

the angle of the segment text to be used for each segment of all strings matching the key.
This field can not be blank.

Offset

measures menu

the distance to offset the text from each segment of the strings matching the key.

This field can not be blank.

Raise

measures menu

the distance to perpendicularly raise the text for each segment of all strings matching the key.

This field can not be blank.

Slant

measures menu

the slant for the segment text of all strings matching the key.

This field can not be blank.

X factor

measures menu

the x-factor for the segment text of all strings matching the key.

This field can not be blank.

Justify

Select Justification Choice menu

the justification for the segment text of all strings matching the key.

This field can not be blank.

Comment

comment to be to be used in this line of the map file. A double slash //_ is written out to the text map file before the comment, and a comment in an text map file is read in and displayed without the double slash.

Go to the next section 8.9 Range Files or return to 8.8 Map Files.
8.9 Range Files

Position on menu: *File* => *Range files*

Range files consist of a list of ranges and colours, one set per line

```
lower_value   upper_value   range_colour
```

where this line represents all values satisfying

```
lower_value <   value   <= upper_value.
```

See

- 8.9.1 Percent Slope Range File
- 8.9.2 Degrees Slope Range File
- 8.9.3 ‘1v in’ Slope Range File
- 8.9.4 Depth Range File
- 8.9.5 Aspect Range File
- 8.9.6 Height Range File
- 8.9.7 Area Range File
- 8.9.8 Creating Ranges in a Range File
8.9.1 Percent Slope Range File

For Percent slope colouring, the range file consists of a list of ranges of percent cross fall of the slopes, and colours, one set per line, in the grid

\[
\begin{align*}
\text{lower_value} & \quad \text{upper_value} & \quad \text{range_colour} \\
\end{align*}
\]

where this line represents all percentage slopes satisfying
\[
\text{lower_value} < \text{value} \leq \text{upper_value}
\]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range file</td>
<td>file box</td>
<td>file box</td>
<td>available *.srf files</td>
<td></td>
</tr>
<tr>
<td>Read button</td>
<td>read in the file in the Range file field</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write button</td>
<td>write out the file in the Range file field</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grid Cells

For Percent slope colouring, the range file consists of a grid of ranges and colours, one set per line, in the grid

\[
\begin{align*}
\text{lower_value} & \quad \text{upper_value} & \quad \text{range_colour} \\
\end{align*}
\]

where this line represents all percentage slopes satisfying
\[
\text{lower_value} < \text{value} \leq \text{upper_value}
\]

See 8.9.8 Creating Ranges in a Range File for quickly creating numbers of range file lines with colours.

From

real

the lower value for this line of the range file
To real
 the upper value for this line of the range file

Colour colour box available colours
colour for the range

Comment text
 a comment for this line of the grid

Go to the next section 8.9.2 Degrees Slope Range File or return to 8.9 Range Files.
8.9.2 Degrees Slope Range File

For Degrees slope colouring, the range file consists of a list of ranges of angles of the slopes (in degrees in 4.17.1 HP Notation), and colours, one set per line, in the grid

\[
\begin{array}{ccc}
\text{lower_value} & \text{upper_value} & \text{range_colour} \\
\end{array}
\]

where this line represents all degrees satisfying

\[
\text{lower_value} < \text{value} \leq \text{upper_value}.
\]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range file file box</td>
<td>available *.srf files</td>
<td>the name of the angles of the slope (in degrees) range file</td>
<td></td>
</tr>
<tr>
<td>Read button</td>
<td>button</td>
<td>read in the file in the Range file field</td>
<td></td>
</tr>
<tr>
<td>Write button</td>
<td>button</td>
<td>write out the file in the Range file field</td>
<td></td>
</tr>
</tbody>
</table>

Grid Cells

For Degrees slope colouring, the range file consists of a grid of ranges and colours, one set per line, in the grid

\[
\begin{array}{ccc}
\text{lower_value} & \text{upper_value} & \text{range_colour} \\
\end{array}
\]

where this line represents all angles (in degrees in 4.17.1 HP Notation) of slopes satisfying

\[
\text{lower_value} < \text{value} \leq \text{upper_value}.
\]

See 8.9.8 Creating Ranges in a Range File for quickly creating numbers of range file lines with colours.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>real</td>
<td></td>
<td></td>
</tr>
<tr>
<td>To</td>
<td>real</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>colour</td>
<td>colour box available colours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>comments</td>
<td>text</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

the upper value for this line of the range file

colour for the range

a comment for this line of the grid

Go to the next section [8.9.3 '1v in' Slope Range File](#) or return to [8.9 Range Files](#).
8.9.3 ’1v in’ Slope Range File

For 1v in slope colouring, the range file consists of a list of ranges of slopes (in "1 in" values) and colours, one set per line, in the grid

\[
\begin{array}{ccc}
\text{lower}_\text{value} & \text{upper}_\text{value} & \text{range}_\text{colour} \\
\end{array}
\]

where this line represents all "1 in" slopes satisfying

\[
\text{lower}_\text{value} < \text{value} \leq \text{upper}_\text{value}.
\]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range file</td>
<td>file box</td>
<td>available *.srf files</td>
<td></td>
</tr>
<tr>
<td>Read</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grid Cells

For 1v in slope colouring, the range file consists of a grid of ranges and colours, one set per line, in the grid

\[
\begin{array}{ccc}
\text{lower}_\text{value} & \text{upper}_\text{value} & \text{range}_\text{colour} \\
\end{array}
\]

where this line represents all "1 in" slopes satisfying

\[
\text{lower}_\text{value} < \text{value} \leq \text{upper}_\text{value}.
\]

See 8.9.8 Creating Ranges in a Range File for quickly creating numbers of range file lines with colours.

From

the lower value for this line of the range file
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>To</td>
<td>real</td>
</tr>
<tr>
<td></td>
<td>the upper value for this line of the range file</td>
</tr>
<tr>
<td>Colour</td>
<td>colour box available colours</td>
</tr>
<tr>
<td></td>
<td>colour for the range</td>
</tr>
<tr>
<td>Comment</td>
<td>text</td>
</tr>
<tr>
<td></td>
<td>a comment for this line of the grid</td>
</tr>
</tbody>
</table>

Go to the next section [8.9.4 Depth Range File](#) or return to [8.9 Range Files](#).
8.9.4 Depth Range File

For Depth colouring, the range file consists of a list of ranges of depths and colours, one set per line, in the grid

\[
\text{lower}_\text{value} \quad \text{upper}_\text{value} \quad \text{range}_\text{colour}
\]

where this line represents all depths satisfying

\[
\text{lower}_\text{value} < \text{value} \leq \text{upper}_\text{value}.
\]

Note: depths are measured with down being the positive direction.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range file</td>
<td>file box</td>
<td>available *.drf files</td>
<td></td>
</tr>
<tr>
<td>Read</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grid Cells

For Depth colouring, the range file consists of a grid of depth ranges and colours, one set per line, in the grid

\[
\text{lower}_\text{value} \quad \text{upper}_\text{value} \quad \text{range}_\text{colour}
\]

where this line represents all depths satisfying

\[
\text{lower}_\text{value} < \text{value} \leq \text{upper}_\text{value}.
\]

See 8.9.8 Creating Ranges in a Range File for quickly creating numbers of range file lines with colours.
the lower value for this line of the range file
To real
the upper value for this line of the range file
Colour colour box available colours
colour for the range
Comment text
a comment for this line of the grid

Go to the next section 8.9.5 Aspect Range File or return to 8.9 Range Files.
8.9.5 Aspect Range File

For Aspect colouring, the range file consists of a list of aspect ranges and colours, one set per line, in the grid

\[
\begin{array}{ccc}
\text{lower_value} & \text{upper_value} & \text{range_colour} \\
\end{array}
\]

where this line represents all aspect values satisfying
\[
\text{lower_value} < \text{value} \leq \text{upper_value}.
\]

\text{aspect} is in degrees in 4.17.1 HP Notation measured clockwise from North.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range file</td>
<td>file box</td>
<td>available *.arf files</td>
<td></td>
</tr>
<tr>
<td>Read</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grid Cells

for Aspect colouring, the range file consists of a grid of ranges of aspect and colours, one set per line, in the grid

\[
\begin{array}{ccc}
\text{lower_value} & \text{upper_value} & \text{range_colour} \\
\end{array}
\]

where this line represents all aspect values satisfying
\[
\text{lower_value} < \text{value} \leq \text{upper_value}.
\]

See 8.9.8 Creating Ranges in a Range File for quickly creating numbers of range file lines with colours.

From real
the lower value for this line of the range file

To real

the upper value for this line of the range file

Colour colour box available colours

colour for the range

Comment text

a comment for this line of the grid

Go to the next section 8.9.6 Height Range File or return to 8.9 Range Files.
8.9.6 Height Range File

For Height colouring, the range file consists of a list of height ranges and colours, one set per line, in the grid

\[
\begin{array}{ccc}
\text{lower_value} & \text{upper_value} & \text{range_colour} \\
\end{array}
\]

where this line represents all percentage slopes satisfying

\[\text{lower_value} < \text{value} \leq \text{upper_value}\]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range file</td>
<td>file box</td>
<td>available *.hrf files</td>
<td></td>
</tr>
<tr>
<td>Read</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grid Cells

for Height colouring, the range file consists of a grid of height ranges and colours, one set per line, in the grid

\[
\begin{array}{ccc}
\text{lower_value} & \text{upper_value} & \text{range_colour} \\
\end{array}
\]

where this line represents all heights satisfying

\[\text{lower_value} < \text{value} \leq \text{upper_value}\]

See 8.9.8 Creating Ranges in a Range File for quickly creating numbers of range file lines with colours.

From

real

the lower value for this line of the range file
To real

the upper value for this line of the range file

Colour colour box available colours

colour for the range

Comment text

a comment for this line of the grid.

Go to the next section 8.9.7 Area Range File or return to 8.9 Range Files.
8.9.7 Area Range File

For area colouring, the range file consists of a list of ranges of areas and colours, one set per line, in the grid

\[
\text{lower_value} \quad \text{upper_value} \quad \text{range_colour}
\]

where this line represents all percentage slopes satisfying

\[
\text{lower_value} < \text{value} \leq \text{upper_value}.
\]

When Area is selected, it brings up the Area Range File panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range file</td>
<td>file box</td>
<td>available *.arf files</td>
<td></td>
</tr>
<tr>
<td>Read</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grid Cells

For area colouring, the range file consists of a grid of ranges and colours, one set per line, in the grid

\[
\text{lower_value} \quad \text{upper_value} \quad \text{range_colour}
\]

where this line represents all percentage slopes satisfying

\[
\text{lower_value} < \text{value} \leq \text{upper_value}
\]

See 8.9.8 Creating Ranges in a Range File for quickly creating numbers of range file lines with colours.
the lower value for this line of the range file

To real

the upper value for this line of the range file

<table>
<thead>
<tr>
<th>Colour</th>
<th>colour box</th>
<th>available colours</th>
</tr>
</thead>
<tbody>
<tr>
<td>colour</td>
<td>for the range</td>
<td></td>
</tr>
</tbody>
</table>

| Comment | text | a comment for this line of the grid |

Go to the next section [8.9.8 Creating Ranges in a Range File](#) or return to [8.9 Range Files](#).
8.9.8 Creating Ranges in a Range File

To quickly create a number of lines of ranges in a Range file, when a Range File panel is displayed, click RB in the blank cell at the top left hand corner of the grid title area (to the left of the From text) to bring up the All Cells choices and select Populate Range.

Selecting Populate Range brings up the Populate Range panel which is used to insert a number of range lines into the grid of the Range File panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>real</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

the lower value for the generated range
To real
the upper value for the generated range

Interval measure box
the interval between values for the generated range

Start colour colour box available colours
the start colour for the generated range. The colours are interpolated in RGB between the Start colour and the End colour.

End colour colour box available colours
the end colour for the generated range. The colours are interpolated in RGB between the Start colour and the End colour.

Skip results on non selected row tick box not ticked

Populate button
generate the defined grid lines and insert them into the grid. The new lines will be inserted at the highlighted grid lines and can replace any highlighted lines in the grid.

The Populate Range panel can be used a number of times to generate range lines in various colours.

Return to 8.9 Range Files or continue to the next section 8.10 Screen Dump.
8.10 Screen Dump

Position of option on menu:
File I/O => Screen dump

The 12d Model screen can be dumped to disk in a variety of images formats, or as a screen layout file.

On selecting the Screen dump option, the Screen Dump panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format</td>
<td>choice box format to write the screen dump out in.</td>
<td>BMP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>File</td>
<td>file box file to write the screen dump to.</td>
<td>*.bmp files</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dump</td>
<td>button</td>
<td></td>
<td></td>
<td>after selecting this button, the screen/window is dumped out in the selected format.</td>
</tr>
</tbody>
</table>
8.11 Templates

Position of menu: File I/O => Templates

The option under Template read and write Design Template files.

The Templates walk-right menu is

![Templates I/O menu]

For Templates input, go to

- 8.11.1 Templates Input
- 8.11.2 Templates Output
8.11.1 Templates Input

Position of option on menu: File I/O => Templates => Templates Input

This option is used to read in templates from files in the special 12d Model template format.

On selecting the Templates input option, the Read Templates panel is displayed.

![Read Templates panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>input</td>
<td></td>
<td>*.tpl files</td>
<td></td>
</tr>
</tbody>
</table>

name of the 12d template file to be read in

Read button

read the data in.

Note: If a template already exists, then the template in the file is ignored.
8.11.2 Templates Output

Position of menu: File I/O => Templates => Templates Output

The templates output option writes out one or all templates in the 12d Model template format. The Output walk-right menu is

For the option One template, go to 8.11.3 One Template
For All templates go to 8.11.4 All Templates
8.11.3 One Template

Position of option on menu: File I/O =>Templates =>Templates Output =>One Template

This option is for writing a single template out in the special 12d template format.

On selecting the One template option, the **Write a Template** panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template</td>
<td>name of the template to be written out.</td>
<td>input</td>
<td>available templates</td>
<td></td>
</tr>
<tr>
<td>File</td>
<td>name of the file to write the template to.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>after selecting this button, the template given in the template field will be written out to the file with the name given in the file field.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.11.4 All Templates

Position of option on menu: File I/O => Templates => Templates output => All templates

This option is for writing all template output in the special 12d Model template format.

On selecting the All templates option, the **Write All Templates** panel is displayed.

![Write All Templates Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>input name of the file to write all the templates to.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button all the templates will be written out to the file with the name given in the file field.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.12 Textstyle Input

Position of option on menu: File I/O => Textstyle Input

When 12d Model starts up, a textstyles definition file can be automatically read in. The textstyles definitions file defines the textstyles and fonts used in the project.

It is possible to redefine the textstyles by reading in another textstyles definitions file using the Textstyle input option.

On selecting the Textstyle input option, the Read Textstyles Definitions panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textstyle file</td>
<td>input</td>
<td>*.tsf</td>
<td></td>
</tr>
</tbody>
</table>

the name of the file to read the textstyle information from.

Read button

after selecting this button, the textstyles definitions file will be read in.
8.13 Edit a File

Position of option on menu: File I/O =>Edit

Files can be searched for and then displayed in the editor using the browse option. Selecting Edit brings up the File Browse panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folder</td>
<td>input</td>
<td>current folder</td>
<td>Microsoft browser</td>
<td>folder to search for files with the extension given in the extension field.</td>
</tr>
<tr>
<td>Extension</td>
<td>input</td>
<td>* .dat</td>
<td></td>
<td>wild cards and extension to limit the search of files. An <enter> needs to be typed after changing the extension.</td>
</tr>
<tr>
<td>File</td>
<td>input</td>
<td></td>
<td>files satisfying the folder and extension fields.</td>
<td>select the file to be displayed in the editor.</td>
</tr>
<tr>
<td>Found</td>
<td>button</td>
<td></td>
<td></td>
<td>display in the editor the file of the name given in the file field.</td>
</tr>
</tbody>
</table>

Note

The editor is pointed to by the environment variable EDITOR_4D (see Appendix A).
9 Menus on Views

Views are the screen drawing areas for 12d Model and come in three flavours - plan, perspective and section. Views can be created and deleted as required by the user and there is no limit to the number of views on the screen. The views can overlap and be minimized.

Each view has a unique name of up to two hundred characters.

Each view has a view title area which is used to display the view name and a view button area which displays the view buttons.
The View Buttons are documented in the section 9.5 View Buttons.

If the Menu button is selected in the view button area of any view, or if RB is clicked in the view-title area or in the view-button area, a new menu called the View menu appears.

Because of the differences between plan, perspective and section views, the options on the View menu vary for each view type. The plan, perspective and section View menus are

Plan View Menu
- View "1"
- Models
- Settings
- Redraw
- Fit
- Previous
- Zoom
- Fan
- Utilities
- Clone
- Properties
- Delete

Perspective View Menu
- View "3"
- Models
- Settings
- Redraw
- Fit
- Previous
- Eye/Target
- Joy
- Orbit
- Plan camera
- Utilities
- Clone
- Properties
- Delete

Section View Menu
- View "2"
- Models
- Settings
- Redraw
- Fit
- Previous
- Zoom
- Pan
- Profile
- Regenerate
- Plotting
- Utilities
- Clone
- Properties
- Delete

The View menu is removed by selecting the [X] button or if the View menu hasn’t been moved, by simply clicking RB again in the view-title or view button area. If the View menu has been moved, clicking RB will warp the cursor to the moved View menu.

For further documentation on the items on each menu, please go to:
- 9.1 Plan View Menu
- 9.2 Perspective View Menu
- 9.3 Section View Menu
9.1 Plan View Menu

Position of menu: Plan View Menu

The Plan view menu is:

For the options:
- **Models** go to 9.4.1 Model Ops
- **Settings** go to 9.1.1 Plan View Settings
- **Redraw** go to 9.4.2 Redraw
- **Fit** go to 9.4.3 Fit
- **Previous** go to 9.4.4 Previous
- **Zoom** go to 9.1.2 Zoom
- **Pan** go to 9.1.3 Pan
- **Utilities** go to 9.1.4 Plan Utilities
- **Clone** go to 9.4.5 Clone
- **Properties** go to 9.4.6 Properties
- **Delete** go to 9.4.7 Delete
9.1.1 Plan View Settings

Position of menu: Plan View Menu View => Settings

If the Settings option is picked rather than moving onto the walking right, then the toggle menu from the Toggle walk-right menu is displayed on the screen. The Toggle menu will be described in the next section.

The View Settings walk-right menu for the plan view is

![View Settings Menu](image)

For the option:
- **Drawing engine** go to [9.1.1.1 Drawing Engine](#)
- **Drawing density**
- **Toggle** [9.1.1.2 Plan Toggle](#)
- **Culling** [9.1.1.3 Culling Plan View](#)
- **Faces** [9.1.1.4 Face Flags for View](#)
- **Linestyles** [9.1.1.5 Linestyles for Plan View](#)
- **Rotate** [9.1.1.6 Rotate Plan View](#)
- **Sewer** [9.1.1.7 Sewer Annotations for Plan View](#)
- **Plotting scale** [9.1.1.8 Plan Plotting Scale](#)
- **Text** [9.1.1.9 Text](#)
- **Tins** [9.1.1.10 Tins](#)
- **Vertices** [9.1.1.11 Vertices](#)
- **Vertex/Segment UID’s** [9.1.1.12 Vertex/Segment UID’s](#)
- **Point/Vertex id’s** [9.1.1.13 Point/Vertex Ids](#)
<table>
<thead>
<tr>
<th>Menus on Views</th>
<th>Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex indices</td>
<td>9.1.1.14 Vertex Indices</td>
</tr>
<tr>
<td>Z values</td>
<td>9.1.1.15 Z Values</td>
</tr>
<tr>
<td>Names</td>
<td>9.1.1.16 Names</td>
</tr>
<tr>
<td>Attributes</td>
<td>9.1.1.17 Attributes</td>
</tr>
<tr>
<td>Arc centres</td>
<td>9.1.1.18 Arc Centres for Plan View</td>
</tr>
<tr>
<td>Work plane</td>
<td>9.1.1.19 Work Plane</td>
</tr>
<tr>
<td>Rasters</td>
<td>9.1.1.20 Draw Rasters for Plan View</td>
</tr>
<tr>
<td>Clouds</td>
<td>9.1.1.21 Clouds</td>
</tr>
<tr>
<td>Cloud colouring</td>
<td></td>
</tr>
<tr>
<td>Cloud point size</td>
<td></td>
</tr>
<tr>
<td>Grid</td>
<td>9.1.1.22 Grid on View</td>
</tr>
<tr>
<td>Colour</td>
<td>9.1.1.23 View Background Colour</td>
</tr>
<tr>
<td>Drawing filter</td>
<td>9.1.1.24 View Drawing Filter</td>
</tr>
</tbody>
</table>
9.1.1.1 Drawing Engine

Position of option on menu: Plan View Menu → Settings → Drawing engine
Position of option on menu: Perspective View Menu → Settings → Drawing engine

The Drawing engine option allows the type of engine that draws the information on a perspective view to be changed.

You can draw in GDI or OpenGL drawing for Plan and Perspective views, and there are choices for the GDI or OpenGL engines,

Selecting Drawing engine brings up the View Drawing Engine panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>Engine</td>
<td>choice box</td>
<td>GDI Legacy</td>
<td></td>
</tr>
</tbody>
</table>

For views using GDI drawing

if GDI Legacy, drawing in GDI as in V10.

GDI, some improvements over GDI Legacy

GDI threaded, allows <Escape> to stop view drawing, and update on where the drawing is up to, it avoids application not responding (TDR), stops endless looping when an application takes too long, and better cooperating with GPU's.

For views using OpenGL drawing

if OpenGL Legacy, drawing in OpenGL as in V10.

OpenGL, some improvements over OpenGL Legacy

OpenGL threaded, allows <Escape> to stop view drawing, and update on where the drawing is up to, it avoids application not responding (TDR), stops endless looping when an application takes too long, and better cooperating with GPU's.

Return to 9.1.1 Plan View Settings or 9.2.1 Perspective View Settings or 9 Menus on Views.
9.1.1.2 Plan Toggle

Position of menu: Plan View Menu View => Settings => Toggle

The *Toggle* walk right brings up the *Toggle* plan view menu.

![Toggle menu](image)

Selecting any options from this menu will toggle the option on/off.

Continue to [9.1.3 Culling Plan View](#) or return to [9.1.4 Plan Utilities](#) or [9.1.1 Plan View Settings](#).
9.1.1.3 Culling Plan View

Position of option on menu: Plan View Menu View =>Settings => Culling

The Culling option is used to suppress the drawing of strings whose on-screen extent is less than a user defined pixel size.

Selecting Culling raises the Culling Plan View panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>input/output</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the view to set cutting for.</td>
<td></td>
</tr>
<tr>
<td>Use culling</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, a string is not drawn on the plan view whenever the string’s extent box when drawn on the view would be smaller than the culling size given in the culling size field.</td>
<td></td>
</tr>
<tr>
<td>Culling size</td>
<td>input</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pixel size used for culling</td>
<td></td>
</tr>
<tr>
<td>Use image culling</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image culling size</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cull</td>
<td></td>
<td></td>
<td>record the culling size given in the culling field. If the use culling field is set to tick, the recorded culling size will be used whenever the plan view is redrawn.</td>
</tr>
</tbody>
</table>

Continue to 9.1.1.4 Face Flags for View or return to 9.1.4 Plan Utilities or 9.1.1 Plan View Settings.
9.1.1.4 Face Flags for View

Position of option on menu: Plan View Menu View => Settings => Faces

The Faces option allows the user to specify how faces are displayed in the plan view and on any plan view plots.

Selecting Faces fires up the Face Flags for View panel.

![Face Flags for View panel](image)

The fields and buttons have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>input/output</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td></td>
<td>name of the view to set for drawing faces.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draw fill</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, all faces in the view are drawn in their fill colour.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draw edges</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, all face edges in the view are drawn.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draw hatch</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, all faces in the view are drawn in their hatch pattern.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>set the draw fill/edges/hatch fields to the value in the panel fields. The plan view is then redrawn using this value.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to 9.1.1.5 Linestyles for Plan View or return to 9.1.4 Plan Utilities or 9.1.1 Plan View Settings.
9.1.1.5 Linestyles for Plan View

Position of option on menu: Plan View Menu View => Settings => Linestyles

The **Linestyles** option allows the user to specify how linestyles (**styles**) are displayed in the plan view and on any plan view plots.

If linestyles are not used for drawing in a view then all strings are drawn according to their breakline type. That is, line strings are drawn with solid lines for each line in the string and point strings with only crosses at the string points. This style is the default style, 1.

Selecting **Linestyles** fires up the **Linestyles for View** panel.

![Linestyles for View Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>input/output</td>
<td>current view</td>
<td>available views</td>
</tr>
</tbody>
</table>

- **View**
 - *name of the view to modify draw linestyle flag for.*

- **Draw linestyles**
 - *tick box, tick*
 - *if ticked, all strings in the view are drawn with linestyles.*
 - *If not ticked, all lines strings are drawn as solid lines and point strings with crosses at their vertices.*

- **Set**
 - *button*
 - *set the draw linestyles field to the value in the panel field. The plan view is then redrawn using this value.*

Continue to 9.1.1.6 Rotate Plan View or return to 9.1.4 Plan Utilities or 9.1.1 Plan View Settings.
9.1.1.6 Rotate Plan View

Position of option on menu: Plan View Menu → Settings → Rotate

The rotate option is used to rotate a plan view through a user supplied angle about the centre point of the plan view.

After selecting the Rotate option, the Rotate Plan View panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>input/output</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>rotate angle</td>
<td>input</td>
<td>0</td>
<td>angles</td>
</tr>
</tbody>
</table>

The name of the view to set rotation angle for.

Angle (in degrees) to rotate the view to.

Rotate the view about the view centre point until the angle the view makes with the positive x axis is the angle given in the rotate angle field.

Continue to 9.1.1.7 Sewer Annotations for Plan View or return to 9.1.4 Plan Utilities or 9.1.1 Plan View Settings.
9.1.1.7 Sewer Annotations for Plan View

Position of option on menu: Plan View Menu View => Settings => Sewer

This is part of the optional sewer module.

The Sewer option allows the user to specify how sewer text is displayed in the plan view and on any plan view plots.

Selecting Sewer fires up the Sewer Annotations for Plan View panel.

![Sewer Annotations for Plan View panel](image)

The fields and buttons have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>input/output</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the view to set sewer annotation information for.</td>
<td></td>
</tr>
<tr>
<td>Draw text</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, sewer text annotation will be drawn for any sewer strings in the plan view.</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>input</td>
<td>red</td>
<td>available colours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the colour for any sewer text annotation.</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>input</td>
<td>default text height</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the height for any sewer text annotation.</td>
<td></td>
</tr>
<tr>
<td>Angle</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the angle for any sewer text annotation.</td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the offset for any sewer text annotation.</td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>set the values in the panel fields and then redraw the view.</td>
<td></td>
</tr>
</tbody>
</table>

Continue to 9.1.1.8 Plan Plotting Scale or return to 9.1.4 Plan Utilities or 9.1.1 Plan View Settings.
9.1.1.8 Plan Plotting Scale

Position of option on menu: Plan View Menu View => Settings => Plotting scale

The Plotting scale option is used to set a scale for the plan view which is used to determine the size to draw any paper text on the plan view.

After selecting Plotting scale, the Plan Plotting Scale panel is displayed.

![Plan Plotting Scale panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>name of the view to set the scale for.</td>
</tr>
<tr>
<td>Scale</td>
<td>"1 in" to use to calculate a drawing size for any paper text on the view.</td>
</tr>
<tr>
<td>Set</td>
<td>set the plotting scale for the view.</td>
</tr>
</tbody>
</table>

Field Description | Type | Defaults | Pop-Up |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>input/output</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>Scale</td>
<td>input</td>
<td>250</td>
<td></td>
</tr>
</tbody>
</table>

Continue to 9.1.1.9 Text or return to 9.1.4 Plan Utilities or 9.1.1 Plan View Settings.
9.1.1.9 Text

Position of menu: Plan View Menu View => Settings => Text

The text walk-right menu is

These items are only on the menu if PLAN_TABLE_SETTNGS_4D is non zero

The options on the Text menu allows

(a) **Text**

If the text is defined in world units, the user can specify whether the text is displayed in **full, quick mode or not** drawn at all depending on how the text height would be as pixels on the screen.

This setting also applies to the Z-values and Vertex ids controlled by Plan View Settings.

(a) **Single, Table, Toggle**

If the text is defined in pixel units, then when the screen scale is such that the height of the text in world units is too large, then the text is not drawn.

This stops the drawing of pixel text when its displaying world size is large in proportion to other world units. For example, this happens to pixel text when zooming out.

Hence the options on the Text menu tries to control the drawing of both pixel and world text in models on the view so that the text stops displaying in the view as the user zooms out.

For more information on each option on the menu, go to

Text 9.1.1.9.1 Plan Text

Single, Table and Toggle 9.1.1.9.2 Single, Table and Toggle for String Text on a Plan View
9.1.1.9.1 Plan Text

Position of option on menu: Plan View Menu View ⇒ Settings ⇒ Text ⇒ Text

The Text option allows the user to specify how text is displayed in the plan view and on any plan view plots.

For world text, there are also two text threshold values (**quick** and **none**) designed for use with world text. When the screen size of text in pixels drops below the thresholds, the mode of display is automatically adjusted.

Hence world text can be drawn either in

(a) **full**

(b) **quick mode** which consists of the top half of a rectangle indicating the height and the length of the text.

or

(c) **not drawn at all**.

So when the screen size of world text gets small, the text can automatically be drawn as quick text or even not displayed at all.

This setting also applies to the Z values and Vertex Ids controlled by View Settings.

Selecting Text brings up the Plan Text panel.

![Plan Text Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>Text draw mode</td>
<td>choice box</td>
<td>full</td>
<td>full, quick, none</td>
</tr>
<tr>
<td>Quick threshold (pix)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None threshold (pix)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

name of the view to modify text drawing flags for.

If full, all text in the plan view is tested against the **Quick threshold** and **None threshold** modes and if neither of them apply, the text is drawn in full.

If quick, all text in the plan view is tested against the **None threshold** modes and if it does not apply, the text characters are not drawn and the whole text strings is replaced by a three sided box to indicate where the text is.
If none, nothing is displayed on the plan view for text.

Quick threshold (pix) input 4.5

If Text draw mode is none then no text is drawn in the plan view.

If Text draw mode is full or quick then when text is displayed on the screen and the screen size of the displayed text in pixels would be below the Quick threshold value but above the None threshold, then the text is drawn in quick mode.

None threshold (pix) input 2

If Text draw mode is none then no text is drawn in the plan view.

If Text draw mode is full or quick, then when text is displayed on the screen and the screen size of the displayed text in pixels would be below the None threshold value, then the text is not drawn.

Set button

set the text draw mode and thresholds to the values given in the panel fields. The plan view is then redrawn using the new values.

Important Note

The Text => Text option applies to all text on the view. That is, for any text from strings in models on the view, or for the z-values and vertex ids text controlled by view settings (view text).

The Single and Table options of Text are only for text in models. There are Single and Table options for view text under the Vertex no.s and Z values Settings options.

Continue to 9.1.1.9.2 Single, Table and Toggle for String Text on a Plan View or return to 9.1.1.2 Plan Toggle or 9.1.1 Plan View Settings.
9.1.1.9.2 Single, Table and Toggle for String Text on a Plan View

The text for text strings, and the vertex text and segment text for super strings is known as **String Text**.

Plan View => Settings => Text has options **Single**, **Table** and **Toggle** for controlling the display of String Text and allow the user to specify whether **String Text** is

(a) not drawn at all

or

(b) if set to draw, then the **String Text** is only drawn if the equivalent world size of the text/vertex is not too large. This stops the drawing of the **String Text** when the displaying world size is large in proportion to other world units (e.g. when zooming out).

Hence the **String Text** options try to control the drawing of values/vertices on the view so that the **String Text** stop displaying as the user zooms out.

There is also an environment variable **PLAN_TABLE_SETTINGS_4D** that specifies whether the **Text** options draw the **String Text** for strings for **all models** on the view, or if the drawing of the **String Text** can be controlled for **individual models**.

In either

PLAN_TABLE_SETTINGS_4D = 1
Models can be individually controlled

PLAN_TABLE_SETTINGS_4D = 0
Models can't be individually controlled

For both values of **PLAN_TABLE_SETTINGS_4D** there is also a **Toggle** button on the **Plan View** that brings up the **Toggle** menu to make it easy to toggle the drawing of the **String Text** on and off. See **9.6.4 Toggle Menu for Values Text, Crosses and Text on Plan Views**.
The options **Single** and **Table** for the two cases of PLAN_TABLE_SETTINGS_4D documented in.

9.6 Displaying Values Text, Vertices and Text on a Plan View (the default)

9.6.5 Env Var PLAN_TABLESETTINGS_4D Set to 0:

Continue to 9.1.1.10 Tins or return to 9.1.1 Plan View Settings.
9.1.1.10 Tins

Position of menu: Plan View Menu

View => Settings => Tins

The options on the Tins walk-right menu control the display of tins on the view. The Tins walk-right menu is

For the options:
- Contours: 9.1.1.10.1 Tin Draw Contours for View
- Edges: 9.1.1.10.2 Tin Draw Edges for View
- Flow arrows: 9.1.1.10.3 Tin Draw Flow Arrows for View
- Mesh: 9.1.1.10.4 Tin Draw Mesh for View
- Solid: 9.1.1.10.5 Tin Draw Solid for View
- Tuflow

9.1.1.10.1 Tin Draw Contours for View

Position of option on menu: Plan View Menu

View => Settings => Tins => Contours

Position of option on menu: Perspective View Menu

View => Settings => Tins => Contours

The Contours option defines contour and bold increments and colours, and also whether these contours are displayed for the triangles from any tins on the view. Because the contours are just drawn separately for each triangle, they are known as quick or fast contours.

Selecting Contours fires up the Tin Draw Contours for View panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>input/output</td>
<td>current view</td>
<td>available views</td>
</tr>
</tbody>
</table>

name of the view to modify fast contour drawing parameters for.
Draw triangles contours tick box

if ticked, the contours for any triangles in any tins on the view are displayed.

Cont inc input 1.0

increment between contoured values.

Cont ref input 0.0

reference value for the contour increments.

Cont colour input cyan

available colours

colour of the contours

Bold inc input 5.0

increment for the bold contours. If the bold increment is blank or zero, then no bold contours are drawn. If the bold increment is non-zero, it must be an integer multiple of the contour increment

Bold colour input magenta

available colours

colour of the bold contours

Set button

set the value in the panel and then redraw the plan view.

Continue to 9.1.1.10.1 Tin Draw Contours for View or return to 9.1.1.10 Tins or 9.1.1 Plan View Settings or 9.1 Plan View Menu.
9.1.1.10.2 Tin Draw Edges for View

Position of option on menu: Plan View Menu View => Settings => Tins => Edges
Position of option on menu: Perspectives View Menu View => Settings => Tins => Edges

The Edges option allows the user to specify whether the edges of triangles from any tins on the view are displayed. Selecting Edges fires up the Tin Draw Edges for View panel.

![Tin Draw Edges for View Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>input/output</td>
<td>current view</td>
<td>available views</td>
</tr>
</tbody>
</table>

name of the view to modify tin edge drawing flag for:

Draw triangles edges tick box

if ticked, the edges of any triangles in any tins on the view are displayed.

Set button

set the value and then redraw the plan view.

Continue to 9.1.1.10.2 Tin Draw Edges for View or return to 9.1.1.10 Tins or 9.1.1 Plan View Settings or 9.1 Plan View Menu.
9.1.1.10.3 Tin Draw Flow Arrows for View

Position of option on menu: Plan View Menu View => Settings => Tins => Flow arrows

Position of option on menu: Perspective View Menu View => Settings => Tins => Flow arrows

The Flow arrows option defines the colour and length of flow arrows, and also whether the flow arrows are displayed for the triangles from any tins on the view. Selecting Flow arrows fires up the Tin Draw Flow Arrows for View panel.

![Tin Draw Flow Arrows for View panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>input/output</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>Draw triangles flow arrows</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrow length (w)</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour for arrows</td>
<td>input</td>
<td>cyan</td>
<td>available colours</td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

name of the view to modify tin arrow drawing flag for.

if ticked, the flow arrows for any triangles in any tins on the view are displayed.

length in world units to draw flow arrows.

colour for the arrows.

set the value in the panel and then redraw the plan view.

Continue to 9.1.1.10.3 Tin Draw Flow Arrows for View or return to 9.1.10 Tins or 9.1.1 Plan View Settings or 9.1 Plan View Menu.
9.1.1.10.4 Tin Draw Mesh for View

Position of option on menu: Plan View Menu View => Settings => Tins => Mesh

Position of option on menu: Perspective View Menu View => Settings => Tins => Mesh

The mesh option defines a rectangular mesh, and also whether the mesh is displayed for the triangles from any tins on the view. Selecting Mesh fires up the Tin Draw Mesh for View panel.

![Tin Draw Mesh for View panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>name of the view to modify tin mesh drawing flag for.</td>
<td>input/output</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>Draw triangles mesh</td>
<td>tick box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesh x</td>
<td>the distance between the x mesh lines. If this value is zero, the x mesh lines will not be drawn.</td>
<td>input</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Mesh y</td>
<td>the distance between the y mesh lines. If this value is zero, the y mesh lines will not be drawn.</td>
<td>input</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Bold x</td>
<td>the distance between the bold x mesh lines. If this value is zero, the bold x mesh lines will not be drawn.</td>
<td>input</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Bold y</td>
<td>the distance between the bold y mesh lines. If this value is zero, the bold y mesh lines will not be drawn.</td>
<td>input</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Mesh colour</td>
<td>colour that the mesh is drawn in.</td>
<td>input</td>
<td>dark green</td>
<td>available colours</td>
</tr>
<tr>
<td>Bold colour</td>
<td>colour that the bold mesh is drawn in.</td>
<td>input</td>
<td>dark green</td>
<td>available colours</td>
</tr>
</tbody>
</table>

Set button

set the value in the panel and then redraw the plan view.

Continue to 9.1.1.10.4 Tin Draw Mesh for View or return to 9.1.10 Tins or 9.1.1 Plan View Settings or 9.1 Plan View Menu.
9.1.10.5 Tin Draw Solid for View

Position of option on menu: Plan View Menu → View → Settings → Tins → Solid

The solid option allows the user to specify whether the triangles from any tins on the view are displayed as solid colour. Selecting Solid fires up the Tin Draw Solid for View panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>input/output</td>
<td>current view</td>
<td>available views</td>
</tr>
</tbody>
</table>

*name of the view to modify tin solid drawing flag for:

<table>
<thead>
<tr>
<th>Draw triangles solid</th>
<th>tick box</th>
<th></th>
</tr>
</thead>
</table>

if ticked, any triangles in any tins on the view are displayed in solid colour.

<table>
<thead>
<tr>
<th>Set</th>
<th>button</th>
<th></th>
</tr>
</thead>
</table>

set the value and then redraw the plan view.

Return to 9.1.10 Tins or 9.1.1 Plan View Settings or 9.1 Plan View Menu.
9.1.1.11 Vertices

Position of menu: Plan View Menu
View => Settings => Vertices

Vertices displays **crosses at the vertices of strings**. For a Text string, a cross is placed at the text justification position.

Plan View => Settings has an option **Text** to draw **String Text**, an option **Vertices** to draw **Crosses at all the Vertices** in a string (often just called **Vertices**) and the options **Vertex/Segment UIDs, Point/Vertex Id's, Vertex indices, Z values, Names and Attributes** for labelling specific values from a string as text (for these options we call the **text** of the **value**, the **Values Text**).

All these options work in a similar manner and are being documented together. For more information on each options, go to **9.6 Displaying Values Text, Vertices and Text on a Plan View**.

Continue to **9.1.1.12 Vertex/Segment UID's** or return to **9.1.1 Plan View Settings** or **9.1 Plan View Menu**.

9.1.1.12 Vertex/Segment UID's

Position of menu: Plan View Menu
View => Settings => Vertex/Segment UID's

Vertex/Segment UID's displays the **Vertex UID's** any **Segment UIDs** for the vertices and segments of super strings.

Plan View => Settings has an option **Text** to draw **String Text**, an option **Vertices** to draw **Crosses at all the Vertices** in a string (often just called **Vertices**) and the options **Vertex/Segment UIDs, Point/Vertex Id's, Vertex indices, Z values, Names and Attributes** for labelling specific values from a string as text (for these options we call the **text** of the **value**, the **Values Text**).

All these options work in a similar manner and are being documented together. For more information on each options, go to **9.6 Displaying Values Text, Vertices and Text on a Plan View**.

Continue to **9.1.1.13 Point/Vertex Ids** or return to **9.1.1 Plan View Settings** or **9.1 Plan View Menu**.

9.1.1.13 Point/Vertex Ids

Position of menu: Plan View Menu
View => Settings => Point/Vertex Id’s

Point/Vertex Ids displays the **Point/Vertex ID** (a point ID recorded for a vertex) for the vertices of super strings.

Note - Point/Vertex IDs are not to be confused with **Vertex Indices** which are simply the position of the vertex in the string.

Plan View => Settings has an option **Text** to draw **String Text**, an option **Vertices** to draw **Crosses at all the Vertices** in a string (often just called **Vertices**) and the options **Vertex/Segment UIDs, Point/Vertex Id’s, Vertex indices, Z values, Names and Attributes** for labelling specific values from a string as text (for these options we call the **text** of the **value**, the **Values Text**).

All these options work in a similar manner and are being documented together. For more information on each options, go to **9.6 Displaying Values Text, Vertices and Text on a Plan View**.

Continue to **9.1.1.14 Vertex Indices** or return to **9.1.1 Plan View Settings** or **9.1 Plan View Menu**.
9.1.1.14 Vertex Indices

Position of menu: Plan View Menu → Settings → Vertex indices

Vertex Indices displays the Vertex Indices (position of the vertex in the string) for all the vertices of strings.

Note - Vertex Indices are not to be confused with Point/Vertex IDs which may not even exist for a vertex in the string.

Plan View => Settings has an option Text to draw String Text, an option Vertices to draw Crosses at all the Vertices in a string (often just called Vertices) and the options Vertex/Segment UIDs, Point/Vertex Id’s, Vertex indices, Z values, Names and Attributes for labelling specific values from a string as text (for these options we call the text of the value, the Values Text.).

All these options work in a similar manner and are being documented together. For more information on each options, go to 9.6 Displaying Values Text, Vertices and Text on a Plan View.

Continue to 9.1.1.15 Z Values or return to 9.1 Plan View Settings or 9.1 Plan View Menu.

9.1.1.15 Z Values

Position of menu: Plan View Menu → Settings → Z values

Z values displays the z coordinate to a user specified number of decimal places, for all the vertices of strings.

Plan View => Settings has an option Text to draw String Text, an option Vertices to draw Crosses at all the Vertices in a string (often just called Vertices) and the options Vertex/Segment UIDs, Point/Vertex Id’s, Vertex indices, Z values, Names and Attributes for labelling specific values from a string as text (for these options we call the text of the value, the Values Text.).

All these options work in a similar manner and are being documented together. For more information on each options, go to 9.6 Displaying Values Text, Vertices and Text on a Plan View.

Continue to 9.1.1.16 Names or return to 9.1 Plan View Settings or 9.1 Plan View Menu.

9.1.1.16 Names

Position of menu: Plan View Menu → Settings → Names

Names displays the string name at each vertex of a string.

Plan View => Settings has an option Text to draw String Text, an option Vertices to draw Crosses at all the Vertices in a string (often just called Vertices) and the options Vertex/Segment UIDs, Point/Vertex Id’s, Vertex indices, Z values, Names and Attributes for labelling specific values from a string as text (for these options we call the text of the value, the Values Text.).

All these options work in a similar manner and are being documented together. For more information on each options, go to 9.6 Displaying Values Text, Vertices and Text on a Plan View.

Continue to 9.1.1.17 Attributes or return to 9.1 Plan View Settings or 9.1 Plan View Menu.
9.1.1.17 Attributes

Position of menu: Plan View Menu View => Settings => Attributes

Attributes displays the vertex attributes for all the vertices of super strings.

Plan View => Settings has an option **Text** to draw **String Text**, an option **Vertices** to draw **Crosses at** all the **Vertices** in a string (often just called **Vertices**) and the options **Vertex/Segment UIDs, Point/Vertex Id’s, Vertex indices, Z values, Names and Attributes** for labelling specific values from a string as text (for these options we call the **text** of the **value**, the **Values Text**).

All these options work in a similar manner and are being documented together. For more information on each options, go to 9.6 Displaying Values Text, Vertices and Text on a Plan View.

Continue to 9.1.1.18 Arc Centres for Plan View or return to 9.1.1 Plan View Settings or 9.1 Plan View Menu.

9.1.1.18 Arc Centres for Plan View

Position of option on menu: Plan View Menu View => Settings => Arc centres

The **arc centres** option allows the user to specify whether the centres of arcs and circles are displayed on the view.

Selecting **Arc centres** fires up the **Arc Centres for Plan View** panel.

![Arc Centres for Plan View panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>name of the view to modify arc centres flag for.</td>
<td>input/output</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>Draw arc centres</td>
<td>tick box is selected, any arcs or circles on the view will also have their centres drawn. Otherwise the centres are not displayed.</td>
<td>tick</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>set the draw arc centres mode to the value in the draw arc centre tick box panel box. The plan view is then redrawn using the mode.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to 9.1.1.19 Work Plane or return to 9.1.1 Plan View Settings or 9.1 Plan View Menu.
9.1.1.19 Work Plane

Position of option on menu: Plan View Menu View => Settings => Work plane

A plane not perpendicular to the (x,y) plane, can be used to define a unique z-value for any (x,y) co-ordinate pair. This fact is often invaluable when trying to defined three dimensional points using two-dimensional views.

In 12d Model, a **work plane** can be defined by giving three non-colinear points. If the work-plane is used in a plan or perspective view, then the (x,y,z) values are restricted to lie in the defined work plane.

The **Work plane** option is used to define and set work planes.

After selecting the **Work Plane** option, the **Work Plane** panel is displayed.

![Work Plane Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td>available views</td>
<td></td>
</tr>
<tr>
<td>User work plane</td>
<td>choice box</td>
<td>ignore work plane</td>
<td>ignore work plane</td>
</tr>
</tbody>
</table>

{name of the view to get or set the work plane in.}
use work plane

the work plane is used or not depending on this field value.

Use fixed height tick box

if ticked, all the created points are given the height from the Height panel field, instead of the z-value from the plane.

Height Real value

if User fixed height is ticked, this is the height to use for all the created points instead of the z-value from the plane.

Pt 1/2/3 xyz input/output 0 0 0

points in the work plane

Set button

A plane is defined by the three points given in the Pt xyz fields. This plane is set as the work plane for the view given by the view field. Although the work plane is set, it is not active unless the use work plane field is set to use work plane.

Get button

get the three points of the defined work plane for the view given in the view field. The points are displayed in the Pt xyz fields of the panel.

Continue to 9.1.1.20 Draw Rasters for Plan View or return to 9.1.1 Plan View Settings or 9.1 Plan View Menu.
9.1.1.20 Draw Rasters for Plan View

Position of option on menu: Plan View Menu View => Settings => Rasters

The Rasters option is used to turn on or off the drawing of any rasters in models on the view. After selecting the Rasters option, the Draw Rasters for Plan View panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>Draw rasters</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
</tbody>
</table>

name of the view to toggle the drawing of rasters on or off.

if ticked, draw any rasters in any models on the view.

set the draw rasters mode.

Continue to 9.1.1.21 Clouds or return to 9.1 Plan View Settings or 9.1 Plan View Menu.
9.1.1.21 Clouds

Position of option on menu: Plan View Menu View => Settings => Clouds

Point clouds can consist of millions, or even billions, of individual points. The drawing of them on a plan view may slow things considerably.

The **Clouds** option is used to optionally draw point clouds in any models on the view.

After selecting the **Clouds** option, the **Draw Clouds for View** panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>name of the view to toggle the drawing of point clouds on or off.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draw clouds</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td>if ticked, draw any point clouds in any models on the view.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if not ticked, don’t draw any point clouds in any models on the view.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sets the draw clouds mode.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to **9.1.1.22 Grid on View** or return to **9.1.1 Plan View Settings** or **9.1 Plan View Menu**.
9.1.1.22 Grid on View

Position of option on menu:

- Plan View Menu: View => Settings => Grid
- Section View Menu: View => Settings => Grid
- Perspective View Menu: View => Settings => Grid

A regular grid of x (East) and/or y (North) lines can be displayed in a view. The grid is set in a plane of constant z (the level of the grid). The x and y spacing for the grid lines can be set and labelled independently.

For a plan or section view, the grid covers the entire view. However, for a perspective view, the grid only covers the maximum extents of the models in the view.

If the grid mode is set to:

- **full lines**: solid lines are drawn at the grid x (East) and y (North) spacing
- **crosses**: crosses are drawn at the intersection of the grid x and y spacing
- **marks**: lines are drawn at the beginning/end of the grid at x and y spacing
- **marks and crosses**: marks and crosses are drawn

On selecting the option, the Grid on View panel is displayed.

![Grid on View Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>input/output</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>grid draw</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>grid mode</td>
<td>full lines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grid x</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grid y</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grid level</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grid colour</td>
<td>dark green</td>
<td></td>
<td></td>
</tr>
<tr>
<td>text x</td>
<td>text at bottom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>text y</td>
<td>text at left</td>
<td></td>
<td></td>
</tr>
<tr>
<td>text style</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre^postfix x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre^postfix y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>text height (pix)</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>text plot height (mm)</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>text colour</td>
<td>yellow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cross size (pixels)</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cross plot size (mm)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
the name of the view to define a grid for.

Grid draw
- tick box
- **if ticked**, the grid is drawn according to parameters in the rest of the panel.

Grid mode
- input
- full lines
- full lines, crosses, marks
- marks and crosses
- the style of the grid being drawn - full lines, crosses or marks.
- **If full lines**, then solid lines are drawn at the grid x and y spacing.
- **If crosses**, then crosses of size **cross size** are drawn at the intersection of the grid x and y spacing.
- **If marks**, then solid lines size **cross size** are drawn at the beginning/end of the grid at the x and y spacing.
- **If marks and crosses**, then marks at the beginning/end of the grid at the x and y spacing, and crosses are drawn.

Grid x
- input
- 100
- the distance between the x (East) grid lines. If this value is zero, the x grid lines will not be drawn.

Grid y
- input
- 100
- the distance between the y (North) grid lines. If this value is zero, the y grid lines will not be drawn.

Grid level
- input
- 0
- the (x,y) grid is set in a plane of constant z. The **grid level** is the value of the constant z. This will only be used for a perspective view.

Grid colour
- input
- dark green
- available colours
- colour that the grid is drawn in.

Text x
- input
- text at bottom
- text off,
- text at top,
- text at bottom,
- text at top and bottom
- the x (East) grid lines can be labelled with their x value. If the grid lines are labelled, the labels can be drawn on the top, the bottom or both ends of the x-grid lines.

Text y
- input
- text at left
- text off,
- text at left,
- text at right,
- text at left and right
- the y (North) grid lines can be labelled with their y value. If the grid lines are labelled, the labels can be drawn on the left, the right or both ends of the y-grid lines.

Text style
- input
- 1
- the text style of any grid labels.

Pre*postfix x
- input
- prefix/postfix (pre*post) to be applied to the value of x (East). If pretext only, just give the text. If post text is required, precede it by a *. For example E*m will place E before the x value and m after the number.

Pre*postfix y
- input
- prefix/postfix (pre*post) to be applied to the value of y (North). If pretext only, just give the text. If post text is required, precede it by a *. For example N*m will place N before the y value and m after the number.

Text height (pix)
- input
- 10.0
- height in screen pixels of any grid labels.

Text plot height (mm)
- input
- 10.0
- height in millimetres of any grid labels in a plot.
Text colour
 input yellow available colours
colour that any grid labels are drawn in.

Cross size (pixels)
 input 5.0
 size in screen pixels of grid crosses.

Cross plot size (mm)
 input 1.0
 size in millimetres of grid crosses in a plot.

Set
 button
 the grid parameters are set to the values given in the panel. The grid is then redrawn in the view.

Note - If the view name is selected from the pop-up, or a <enter> is done after the view name is entered into the view field, the data for the grid on the named view is placed in the panel fields.

Continue to 9.1.1.23 View Background Colour or return to 9.1.1 Plan View Settings or 9.1 Plan View Menu.

9.1.1.23 View Background Colour

Position of option on menu:
 Plan View Menu View => Settings => Colour

The Colour option is used to set the background colour for the view. After selecting the Colour option, the View Background Colour panel is displayed.

The fields and buttons used in this panel have the following functions.

Field Description Type Defaults Pop-Up
View
 input/output current view available views
 name of the view to set the background colour for.
Colour
colour box black available colours
 if ticked, draw any rasters in any models on the view.
Set
 button
 set the background colour.

Continue to 9.1.1.24 View Drawing Filter or return to 9.1.1 Plan View Settings or 9.1 Plan View Menu.
9.1.1.24 View Drawing Filter

Position of option on menu: Plan View Menu

Position of option on menu: Perspective View Menu

The *Drawing filter* option is used to set a filter on the view so that only the data satisfying the filter is drawn.

NOTE: the filter is not saved with the project.

After selecting the *Drawing filter* option, the View *Drawing Filter* panel is displayed.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>Data filter</td>
<td>view box</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td>apply the drawing filter to the view.</td>
<td></td>
</tr>
<tr>
<td>Clear</td>
<td>button</td>
<td>clear the drawing filter being applied to the view.</td>
<td></td>
</tr>
</tbody>
</table>

Return to 9.1.1 Plan View Settings or 9.2.1 Perspective View Settings.
9.1.2 Zoom

Position of menu: Plan View Menu View => Settings => Zoom
Position of menu: Section View Menu View => Settings => Zoom

The zoom option operates in the same way for Plan and Section views.

The zoom option can be selected in three ways. By clicking LB on zoom on a view button area, selecting the zoom option itself by clicking LB when the zoom option is highlighted on the zoom menu, or by activating the zoom option's walk-right menu, Zoom Ops.

The zoom uses either a dynamics zoom or a zoom box

For more information on zoom ops go to 9.1.2.3 Zoom Ops menu

9.1.2.1 Dynamic Zoom

After selecting the Zoom option, dynamic zoom is selected by clicking MB or by typing d.

Then press LB at the point that is to stay put during the dynamic zoom and then move the mouse up to zoom in or move the mouse down to zoom out. Another point can be selected to dynamically zoom in or out about.

The dynamic zoom continues until either RB is clicked, or MB is clicked (or d typed) to place the zoom option into zoom box mode.

9.1.2.2 Zoom Box

Position of option on menu: Plan View Menu View => Settings => Zoom => Zoom

After selecting the zoom option, the user can define the zoom box by

(a) pressing down LB at one corner of the box and dragging the mouse and releasing LB when at the other corner of the zoom box

or

(b) picking two points from any plan views (by clicking LB in a plan view for each point) to define the diagonally opposite points of the zoom box. Note that the two points do not have to be from the same plan view.

Next the user selects the view (by clicking LB in the view) which is to be redrawn using this rectangle as the new drawing limits.

Often the same view is chosen for both defining the rectangle and redrawing. However, the power of the option is that the area to be “zoomed in” or “blown up” can be selected from one view and the zoomed area displayed in another view. The other view may not only be different to the views used to define the zoom box, but may also have different models attached to it.
It is a useful technique to have a master view displaying the entire area of interest in one view, and use it to define zoom-rectangles for use in viewing smaller regions of data in other plan views.

To cancel the zoom after the zoom operation has been selected, click RB.

Next step messages - sent to the screen message area

![View Zoom] [Select][Select][Select]

select 1st corner of box - RB to cancel

![View Zoom] [Select][Select][Select]

select 2nd corner of box - RB to cancel

![View Zoom] [Select][Select][Select]

select destination view - RB to cancel

WARNING - this option can not be applied to a perspective view.

Please continue to the next section [9.1.2.3 Zoom Ops menu](#).

9.1.2.3 Zoom Ops menu

- **Position of menu:** Plan View Menu
 View => Settings => Zoom
- **Position of menu:** Section View Menu
 View => Settings => Zoom

The **Zoom** walk-right menu is

![Zoom Menu]

a string defines the extent of the view
a model defines the extent of the view
a view defines the extent of the view

two point zoom - see previous section
two point shrink

zoom by a user supplied factor

zoom into the view by factor of 2
zoom into the view by factor of 3
zoom into the view by factor of 4
zoom into the view by factor of 8
zoom out of the view by a factor of 8
zoom out of the view by a factor of 4
zoom out of the view by a factor of 3
zoom out of the view by a factor of 2

The **by String**, **by Model** and **by View** options use the x and y extents of the String, Model or View to define the display area for the view. These options will be described in more detail.

The option **zoom** is the same operation as the option just discussed, **factor** - to enlarge or reduce the view by a given magnification/reduction factor, and a number of preset view magnification and reduction factors.

9.1.2.3.1 By String, by Model and by View

- **Position of option on menu:** Plan View Menu
 View => Settings => Zoom => by string
- **Position of option on menu:** Plan View Menu
 View => Settings => Zoom => by model
- **Position of option on menu:** Plan View Menu
 View => Settings => Zoom => by view

The three zoom options **by String**, **by Model** and **by View** work in a similar manner. After selecting the option, the **Plan Zoom by String/ Model/ View** panel is brought up.
For **by String**, the user selects a string using the **String** button and the data on the view is redrawn so the selected string is fitted to the view, adjusted by the **Zoom factor given in the panel**.

Note that the selected string can be from a different view.

For **by Model**, the user enters a model name into the **Model** field and then selects the **Zoom** button. The data on the view is redrawn so the specified model is fitted to the view, adjusted by the **Zoom factor given in the panel**.

Note that the specified model does not have to be on the view.

For **by View**, the user enters a view name into the **View** field and then selects the **Zoom** button. The data on the view is redrawn so the specified view is fitted to the current view, adjusted by the **Zoom factor given in the panel**.

Note that the specified view does not have to be on the current view.
9.1.2.3.2 Shrink

Position of option on menu:

- Plan, Section, Perspective View Menu

 View => Settings => Zoom => Shrink

Shrink is the opposite of zoom: instead of the information in the view box being expanded to fill the view, the information in the view is shrunk to fit into the zoom box.

After selecting the shrink option, the user picks two points from the appropriate plan/section/perspective views (by clicking LB in a view for each point) to define the diagonally opposite points of a rectangle. Note that the two points **do not** have to be from the same plan/section/perspective view.

Next the user selects the view (by clicking LB in the view) which is to be redrawn by shrinking the data on the view to fit into this rectangle.

To cancel the zoom after the zoom operation has been selected, click RB.

9.1.2.3.3 Factor

Position of option on menu:

- Plan View Menu

 View => Settings => Zoom => Factor

- Section View Menu

 View => Settings => Zoom => Factor

In Plan View, when selecting the Factor option, the **Zoom Plan View** panel is displayed.

![Zoom Plan View Panel](image)

In Section View, when selecting the Factor option, the **Zoom Section View** panel is displayed.

![Zoom Section View Panel](image)

This option is used to magnify or reduce the information in the view by a user given amount.

The field and buttons in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>input/output</td>
<td>current view</td>
<td>available views</td>
</tr>
</tbody>
</table>

name of the view to set zoom factor for:

| Zoom factor | input | 1.0 |
factor to magnify/reduce the information inside the view by. The value can be greater than 1.0 (zoom in) or less than 1.0 (zoom out).

Zoom button

the information displayed in the view is magnified/reduced by the factor given in the **zoom factor** field.

WARNING - this option can not be applied to a perspective view.

9.1.2.3.4 Pre-set Zoom Factors

Upon selecting a particular zoom factor (e.g. 4 x in), the user is asked to indicate a point in a view which is to become the new view-centre. The user then indicates (by clicking LB in the view) which view is to be redrawn with this point as the new centre and with the selected zoom factor applied to that view.

To cancel the zoom after the zoom operation has been selected, click RB.

Next step messages - sent to the screen message area

< View Magnify > [Select]][]
9.1.3 Pan

Position of menu: Plan View Menu \(\Rightarrow \) Pan

Position of menu: Section View Menu \(\Rightarrow \) Pan

The Pan walk-right menu for Plan and Section views are

Plan View Pan Menu

- make selected point the new view centre
- pick a point and the place it is to be moved to on the screen
- repeated pan
- repeated pan delta
- autpan for plan locked to plan view

Section View Pan Menu

- make selected point the new view centre
- pick a point and the place it is to be moved to on the screen
- repeated pan
- repeated pan delta
- autpan for plan locked to section view
- autpan for section locked to section view

Pan operates the same way for Plan and Section views.

The pan option can be selected in four ways:

(a) by clicking LB on Pan on a view button area
(b) by clicking on <Control> LB whilst in the view
(c) selecting the Pan option itself by clicking LB when the Pan option is highlighted on the Pan menu
(d) by activating the Pan option's walk-right menu, Pan Ops.

The pan uses either a dynamics pan or two point mode.

9.1.3.1 Dynamic Pan

After selecting the pan option, dynamic pan is selected by clicking MB or by typing d.

Then press LB at the point that is to be dragged across the view during the dynamic pan and then move the mouse to the new position for the point. Another point can then be selected to dynamically pan.

The dynamic pan continues until either RB is clicked, or MB is clicked (or d typed) to place the pan option into two point mode.

After activating the Pan walk-right menu, the user is presented with the option Pan (which is the same operation as the option just discussed), Pan delta, and Many pans and Many pans delta.

9.1.3.1.1 Pan

Position of option on menu: Plan View Menu \(\Rightarrow \) Pan \(\Rightarrow \) Pan

Plan View Menu
Position of option on menu: Section View Menu View => Pan => Pan

After selecting Pan, the user is asked to indicate a point in a view which is to become the new view-centre. The user then indicates (by clicking LB in the view) which view is to be redrawn with this point as the new centre.

To cancel the Pan after the pan operation has been selected, click RB.

Next step messages - sent to the screen message area

```
<View Pan> [Select][[]] select new centre of view - RB to cancel
<View Pan> [Select][[]] select destination view - RB to cancel
```

9.1.3.1.2 Pan Delta

Position of option on menu: Plan View Menu View => Settings => Pan => Pan delta
Position of option on menu: Section View Menu View => Settings => Pan => Pan delta

After selecting the Pan delta option, the user is asked to indicate a point in a view and the point on a view where the first point will be moved to. The user then indicates (by clicking LB in the view) which view is to be redrawn with the new position of the point on the view.

To cancel the Pan delta after the pan delta operation has been selected, click RB.

Next step messages - sent to the screen message area

```
<View Pan> [Select][[]] select 1st position of pan - RB to cancel
<View Pan> [Select][[]] select 2nd position of pan - RB to cancel
<View Pan> [Select][[]] select destination view - RB to cancel
```

9.1.3.1.3 Many Pans

Position of option on menu: Plan View Menu View => Pan => Many pans
Position of option on menu: Section View Menu View => Pan => Many pans

The Many pans option is simply one pan operation followed by another. After one pan operation has been performed, a new pan operation is begun. The sequence is terminated by clicking RB.

9.1.3.1.4 Many Pans Delta

Position of option on menu: Plan View Menu View => Pan => Many pans delta
Position of option on menu: Section View Menu View => Pan => Many pans delta

The Many pans delta option is simply one pan delta operation followed by another. After one pan delta operation has been performed, a new pan delta operation is begun. The sequence is terminated by clicking RB.
9.1.3.1.5 Autopan Plan View Locked to a Plan View

Position of option on menu: Plan View Menu → View => Pan => Autopan plan view

The Autopan plan view option locks a target plan view to a source plan view. As the cursor is moved in the source plan view, the target plan view is automatically panned to keep the cursor in the middle of it. The target plan view keeps its scale.

Selecting Autopan plan view brings up the Autopan Plan View from Plan View panel.

![Autopan Plan View from Plan View panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lock to view</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td>Source plan view</td>
<td>view box</td>
<td>current view</td>
<td>available plan views</td>
</tr>
</tbody>
</table>

plan view to lock the target plan view to.

<table>
<thead>
<tr>
<th>Lock to view</th>
<th>tick box</th>
<th>tick</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Target plan view</td>
<td>view box</td>
<td>available plan views</td>
<td></td>
</tr>
</tbody>
</table>

plan view to lock the source plan view. As the cursor moves in the source plan view, the target view is automatically panned so that the cursor is in the centre of the target plan view.
9.1.3.1.6 Autopan Section View Locked to a Plan View

Position of option on menu: Plan View Menu → View → Autopan Section View

The Autopan section view option locks a target section view to a source plan view. As the cursor is moved in the source plan view, the cursor position is dropped onto the profiled string in the target section view and the target section view is automatically panned to keep the dropped cursor in the middle of it. The target section view keeps its scale.

Selecting Autopan section view brings up the Autopan Section View from Plan View panel.

![Autopan Section View from Plan View panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lock to view</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td>Source plan view</td>
<td>view box</td>
<td>current view</td>
<td>available plan views</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lock to view</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td>Target section view</td>
<td>view box</td>
<td></td>
<td>available section views</td>
</tr>
</tbody>
</table>

Field Description: Source plan view: view box, Lock to view: tick box.

The Source plan view field allows you to select the plan view to lock the section view to.

The Target section view field allows you to select the section view to lock the source plan view.

As the cursor is moved in the source plan view, the cursor position is dropped onto the profiled string in the target section view and the target section view is automatically panned to keep the dropped cursor in the middle of it. The target section view keeps its scale.
9.1.3.1.7 Autopan Plan View Locked to a Section View

Position of option on menu: Section View Menu → View → Settings → Pan → Autopan plan view

The Autopan plan view option locks a target plan view to a source section view. As the cursor is moved in the source section view, the target plan view is automatically panned to keep the cursor in the middle of it. The target plan view keeps its scale.

Selecting Autopan plan view brings up the **Autopan Plan View from Section View** panel.

![Autopan Plan View from Section View](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lock to view</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
</tbody>
</table>

Source section view

View box

Current view

Available plan views

section view to lock the target plan view to.

<table>
<thead>
<tr>
<th>Lock to view</th>
<th>tick box</th>
<th>tick</th>
</tr>
</thead>
</table>

Target plan view

View box

Available plan views

plan view to lock the source section view. As the cursor moves in the source section view, the target view is automatically panned so that the cursor is in the centre of the target plan view.
9.1.3.1.8 Autopan Section View Locked to a Section View

Position of option on menu: Section View Menu View => Pan => Autopan section view

The Autopan section view option locks a target section view to a source plan view. As the cursor is moved in the source section view, the cursor position is dropped onto the profiled string in the target section view and the target section view is automatically panned to keep the dropped cursor in the middle of it. The target section view keeps its scale.

Selecting Autopan section view brings up the Autopan Section View from Section View panel.

![Autopan Section View from Section View panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lock to view</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
</tbody>
</table>

Source section view

view box
current view
available section views

section view to lock the target section view to.

Lock to view

tick box
tick

Target section view

view box
available section views

section view to lock the source section view. As the cursor is moved in the source section view, the cursor position is dropped onto the profiled string in the target section view and the target section view is automatically panned to keep the dropped cursor in the middle of it. The target section view keeps its scale.
9.1.3.1.9 Autopan Perspective View Locked to a Section View

Position on menu: Section View Menu View => Settings => Pan => Autopan perspective view

The Autopan perspective view option locks a target perspective view to a source section view. As the cursor is moved in the source section view, the eye and target for the perspective view is automatically changed. Only the eye and target positions are modified for the target perspective view.

Selecting Autopan perspective view brings up the Autopan Perspective View from Section View panel.

![Autopan Perspective View from Section View panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lock to view</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, the source view is used.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source section view</td>
<td>view box</td>
<td>current view</td>
<td>available section views</td>
</tr>
<tr>
<td></td>
<td>section view to lock the target perspective view to.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lock to view</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, the target view is used.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target perspective view</td>
<td>view box</td>
<td>available perspective views</td>
<td>perspective view to lock to the source section view. As the cursor moves in the source section view, the eye and target position for the target perspective view is calculated from the (x,y,z) of the profiled string in the section view, and the eye and target information in the panel.*</td>
</tr>
</tbody>
</table>
9.1.4 Plan Utilities

Position of menu: Plan View Menu View => Settings => Utilities

The Utilities menu contains miscellaneous options involving the plan view. The Utilities walk-right menu is

![Plan Utilities Menu](image)

For the option:

- **Autosync plan view**, go to 9.1.4.1 Autosync Plan View Locked to a Plan View
- **New view settings** 9.1.4.2 New View Settings
- **Dump** 9.1.4.3 View Dump
- **Quick plot** 9.1.4.4 Quick Plan Plot
- **Quick sheet plot** 9.1.4.5 Quick Sheet Plot
- **Plot frames** 9.1.4.6 Plot Frames
- **View to raster** 9.1.4.7 Create Raster from Plan View
- **Info** 9.1.4.8 View Info

9.1.4.1 Autosync Plan View Locked to a Plan View

Position of option on menu: Plan View Menu View => Utilities => Autosync plan view

The Autosync plan view option locks a target plan view to a source plan view. As the cursor is moved in the source plan view, the same movement is made in the target plan view.

Selecting Autosync plan view brings up the Autosync Plan View from Plan View panel.

![Autosync Plan View from Plan View](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>
9.1.4.2 New View Settings

Position of option on menu: Plan View Menu =>Settings =>Utilities =>New view settings

The *new view settings* option displays the current view setting and permits the user to specify new x and y minimum and maximum values as the viewing parameters. Selecting *New view settings* fires up the **Plan View** panel.

![Plan View Panel](image)

Because the aspect ratio of the view may be different from the aspect ratio defined by the user supplied x and y minimums and maximums, slightly more data than the specified range may need to be drawn in the view. However, the view will always include the user given range.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>input/output</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>x min/max</td>
<td>input/output</td>
<td>current x min/max</td>
<td></td>
</tr>
<tr>
<td>y min/max</td>
<td>input/output</td>
<td>current y min/max</td>
<td></td>
</tr>
</tbody>
</table>

View button

define the view parameters according to the information in the panel. If the box given by the x and y values in the panel is not the same shape as the view itself (that is, has the same aspect ratio), the x and y values will be modified so that the x and y values match the view shape. The final x and y values are
displayed in the panel.
9.1.4.3 View Dump

Position of option on menu: Plan View Menu View => Settings => Utilities => Dump

This option is used to write the image of the view out to disk in a user selected format. Selecting **Dump** brings up the **View Dump** panel.

![View Dump Panel]

The fields and buttons have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>input</td>
<td>view option picked from available views</td>
<td></td>
</tr>
<tr>
<td>Include title</td>
<td>tick box</td>
<td>if ticked, the view title area is included in the dump.</td>
<td></td>
</tr>
<tr>
<td>Format</td>
<td>input</td>
<td>gif</td>
<td>gif, xwd, colour postscript</td>
</tr>
<tr>
<td>File</td>
<td>input</td>
<td>*.gif</td>
<td>the file to dump the view images out to</td>
</tr>
<tr>
<td>Dump</td>
<td>button</td>
<td>dump in the given format the image of the view given in the view field to the file given in the file field.</td>
<td></td>
</tr>
</tbody>
</table>
9.1.4.4 Quick Plan Plot

Position of option on menu: Plan View Menu → View → Settings → Utilities → Quick plot

The Quick plot option writes out all the information displayed in the plan view to either a plot file (in a user selected format) or to a 12d Model model. The user selects a scale for the plot and the sheet width and height are calculated by 12d Model.

Selecting Quick plot brings up the Plan Plot panel.

The fields and buttons have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>Plotter type</td>
<td>input</td>
<td>hp</td>
<td>hp, dxf, postscript etc.</td>
</tr>
<tr>
<td>Plot file</td>
<td>input</td>
<td>depends on plotter type</td>
<td></td>
</tr>
<tr>
<td>Clean model beforehand</td>
<td>choice box</td>
<td>do not clean</td>
<td>prompt for clean</td>
</tr>
<tr>
<td>Scale 1</td>
<td>input</td>
<td></td>
<td>always clean</td>
</tr>
<tr>
<td>Sheet width (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheet height (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plot Sheet Margin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title and border</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text style</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text height (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title line 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title line 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title colour</td>
<td></td>
<td>cyan</td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons have the following functions.

Field Description: View
Type: view box
Defaults: current view
Pop-Up: available views

View: view to plot.

Plotter type: input
Type: hp
Pop-Up: hp, dxf, postscript etc.

Plot file: input
Depends on plotter type

Clean model beforehand: choice box
Do not clean
Prompt for clean
Always clean

Scale 1: input
if a value is entered by the user and an <enter> given, the sheet width and height required by the plot are calculated and displayed in the sheet width and sheet height fields.

Sheet width (mm) output
if a value is entered by the user and an <enter> given, the scale and height required by the plot are calculated and displayed in the scale and sheet height fields. The units for sheet width are millimetres.

Sheet height (mm) output
if a value is entered by the user and an <enter> given, the scale and width required by the plot are calculated and displayed in the scale and sheet width fields. The units for sheet height are millimetres.

Title and border tick box
if ticked, a border and two lines of title are placed on the bottom of the plot.

Title line 1/2 input
first/second line of title information.

Title height (mm) input 10
height (in millimetres) to draw the two lines of title information.

Title colour input cyan available colours
colour used for the border and the title information.

Rectangle button
create a rectangle (parallel to the x,y axis) that the plot is restricted to.

Rotated Rectangle button
create a rotated rectangle that the plot is restricted to.

Plot button
write out the plot of the information displayed in the view to the file given in the plot file field. The format of the file is given by the plotter type.
9.1.4.5 Quick Sheet Plot

Position of option on menu: Plan View Menu View => Settings => Utilities => Quick sheet plot

The Quick sheet plot option takes a user selected plot sheet and writes out all the information displayed in the plan view in the sheet to either a plot file (in a user selected format) or to a 12d Model model. The user selects the plot sheet and a scale for the plot.

Selecting Quick sheet plot displays the Quick Sheet Plot panel.

![Quick Sheet Plot panel](image)

The fields and buttons have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>Plotter type</td>
<td>choice box</td>
<td>hp</td>
<td>hp, dxf, postscript etc.</td>
</tr>
<tr>
<td>Plot file</td>
<td>input</td>
<td>depends on plotter type</td>
<td>stem of the name of the file to write the plot of the view to. The name ending is added automatically and</td>
</tr>
</tbody>
</table>
depends on the plotter type.

Clean model beforehand choice box

do not clean
prompt for clean
always clean

only applicable if plotting to a model.

If **always clean**, the model is cleaned before the plot is created.

If **prompt for clean**, the user is prompted that the model will be cleaned before the plot is created.

If **do not clean**, the model is not cleaned before the plot is created.

Scale 1: real value

the plot scale.

Sheet size wd ht (mm) sheet box defined sheet sizes

a sheet is selected from the pop-up or the width and height (in mm) are entered, separated by a space.

Rotation angle dms value

the anti-clockwise rotation (in dms) for the plot sheet.

Origin
select or type in the position of the bottom left hand corner of the plot region.

View controlled/ Data controlled radio buttons

If **Data controlled**, the plot sheet maintains its size and position with respect to the data in the view. That is, the plot sheet origin is locked to the selected data co-ordinates, and the plot scale is fixed so that the plot sheet then has a set size in world (data) units. If pans and zooms are made to the data in the view, the plot sheet will then move/zoom with data.

If **View controlled**, the plot sheet maintains its size and position with respect to the view itself. That is, the plot sheet is locked in size and position with respect to the view itself. If pans and zooms are made to the data in the view, the sheet scale and origin are automatically modified to keep the plot frame in exactly the same position and size in the view.

Title and border tick box

If **ticked**, a border and two lines of title are placed on the bottom of the plot.

Title line 1/2 input

Title height (mm) input 10

height (in millimetres) to draw the two lines of title information.

Title colour input cyan available colours

colour used for the border and the title information.

Rectangle button

if selected, the plot frame is placed by selecting a cursor position from a view. This defines the Origin of the plot sheet. The sheet size, plot sheet scale and sheet rotation are taken from the panel fields.

Centre and Rotate button

if selected, a centre of for the plot sheet is selected and then an second point to define the rotation of the plot sheet. This defines the Origin and Rotation of the plot sheet. The sheet size and scale are taken from the panel fields.

Plot button

write out the plot of the information displayed in the plot sheet to the file given in the plot file field. The format of the file is given by the plotter type.
9.1.4.6 Plot Frames

Position of option on menu: Plan View Menu → Settings → Utilities → Plot frames

To create plan plots of an arbitrary size, rotation and scale, 12d Model uses plot frames. Basically a plot frame consists of a sheet size (in mm), margins within the sheet and a scale for the plot. This will define a plotting area in world co-ordinates (the plot frame).

The plot frame can be arbitrarily positioned and rotated on a plan view.

This option is documented in the section 25.8.12 Plotting Old Plot Frames.
9.1.4.7 Create Raster from Plan View

Position of option on menu: Plan View Menu View => Settings => Utilities => View to raster

Position of option on menu: Strings => Raster => Plan to raster

This option creates a 12d raster of a user specified pixel size, for the image on a plan view. This is useful for creating a 12d raster from an ECW file to use in draping on a tin in visualisations.

On selecting the View to Raster option, the Create Raster from Plan View panel is displayed.

The fields and buttons have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Details</td>
<td>Source Details</td>
<td>View</td>
<td>Null Colour</td>
</tr>
<tr>
<td>View</td>
<td>view box</td>
<td>current view</td>
<td>black</td>
</tr>
<tr>
<td>Null colour</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td>World Location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotation</td>
<td>angle box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X coordinate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y coordinate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Raster details</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for raster</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raster name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raster pixel size</td>
<td></td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Width in Pixels</td>
<td></td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Height in Pixels</td>
<td></td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Show border</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour for border</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons have the following functions.

Source Details

View

view to create raster from.

Null colour
colour to set to no pixel in the raster

World Location

Anticlockwise rotation
the world rotation of the selected rectangle.
X/Y co-ordinate
real box
the world x/y co-ordinate of the corner of the bottom left corner of the rectangle.

Width/height
real box
the width/height in world units of the rectangle.

New Raster Details

Model for raster
model box available models
name of the model for the raster element.

Raster name
text box
the name for the raster.

Raster pixel size
input
the size (in world units) for each pixel in the created raster.

Width/Height in pixels
output only
the width/height in pixels of the created raster.

Show border
tick box tick
if ticked then the border of the created raster element is displayed.

Colour for border
input default colour available colours
the colour of the border for the created raster.

Rectangle
button
create a rectangle (parallel to the x,y axis) that the created raster is restricted to.

Rotated Rectangle
button
create a rotated rectangle that the created raster is restricted to.

Create
button
create a 12d raster from the image on the plan view.
9.1.4.8 View Info

Position of option on menu: Plan View Menu View => Utilities => Info

This option displays information about the world and pixel size of a plan view.

On selecting the Info option, the Plan Viewing Information panel is displayed.

![Plan Viewing Information Panel]

The fields and buttons have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td>current view</td>
<td>available plan views</td>
</tr>
</tbody>
</table>

When activated from the Plan View menu, the name of the view is placed into this field and the information about this view is displayed in the panel fields.

Once the panel is up, a different Plan View name can be selected and the information will be displayed for that view.

World viewport

- **Minimum, Maximum x** display only
 - display the world minimum and maximum x coordinates for the view.

- **Minimum, Maximum y** display only
 - display the world minimum and maximum y coordinates for the view.

Pixel viewport

- **Minimum, Maximum x** display only
 - display the minimum and maximum x pixels coordinates for the view.
Minimum, Maximum y
display only

display the world minimum and maximum y pixels coordinates for the view.

Note - for pixels coordinates, (0,0) is at the top left hand corner of the view and positive x goes to the right, and positive y goes down the view.

Scaling

X
display only
the ratio of x pixel length of the view to the x world unit length of the view. That is,

\[
\frac{\text{maximum x pixels} - \text{minimum x pixels}}{\text{maximum x world units} - \text{minimum x world units}}
\]

Y
display only
the ratio of y pixel length of the view to the y world unit length of the view. That is,

\[
\frac{\text{maximum y pixels} - \text{minimum y pixels}}{\text{maximum y world units} - \text{minimum y world units}}
\]
9.2 Perspective View Menu

Position of menu: Perspective View Menu → View

The Perspective view menu is

For the options
- Models, go to 9.4.1 Model Ops
- Settings 9.2.1 Perspective View Settings
- Redraw 9.4.2 Redraw
- Fit 9.4.3 Fit
- Previous 9.4.4 Previous
- Eye/Target 9.2.2 Eye/Target
- Joy 9.2.3 Joy for View
- Orbit 9.2.4 Orbit
- Plan Camera 9.2.5 Plan Camera
- Utilities 9.2.6 Perspective Utilities
- Clone 9.4.5 Clone
- Properties 9.4.6 Properties
- Delete 9.4.7 Delete
9.2.1 Perspective View Settings

Position of menu: Perspective View Menu Vew => Settings

If the Settings option is picked rather than moving onto the walking right, then the Toggle menu from the Toggle walk-right menu is displayed on the screen. The Toggle menu will be described in the next section.

The Settings walk-right menu for the perspective view is

![View Settings Menu](image)

For the options:

- **Drawing engine** go to 9.1.1.1 Drawing Engine
- **Drawing density**
- **Toggle** 9.2.1.2 Perspective Toggle
- **Culling** 9.2.1.3 Culling
- **Faces** 9.2.1.4 Face Flags for View
- **Hide** 9.2.1.5 Hide View
- **Planes** 9.2.1.6 Clipping Planes for View
- **Exaggeration** 9.2.1.7 Perspective View Exaggeration
- **Shade** 9.2.1.9 Shade
- **Text**
- **Tins** 9.2.1.8 Tins
- **Work Plane** 9.1.1.19 Work Plane
- **Grid** 9.1.1.22 Grid on View
- **Colour** 9.1.1.23 View Background Colour
- **Drawing filter** 9.1.1.24 View Drawing Filter
9.2.1.1 Drawing Engine

This is documented in 9.2.1.1 Drawing Engine.

Continue to 9.2.1.2 Perspective Toggle or return to 9.2.1 Perspective View Settings.
9.2.1.2 Perspective Toggle

Position of menu: Perspective View Menu
View => Settings => Toggle

The *Toggle* walk right brings up the *Toggle* perspective view menu.

![Toggle "3"]

Selecting any options from this menu will toggle the option on/off.

Continue to 9.2.1.3 Culling or return to 9.2.1 Perspective View Settings.
9.2.1.3 Culling

Position of option on menu: Perspective View Menu View => Settings => Culling

The Culling option is used to suppress the drawing of strings whose on-screen extent is less than a user defined pixel size.

Selecting Culling raises the Culling Perspective View panel.

![Culling Perspective View Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>input/output</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>Use culling</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Culling size</td>
<td>input</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Use culling

If ticked, a string is not drawn on the perspective view whenever the string's extent box when drawn on the view would be smaller the culling size given in the culling size field.

Culling size

*pixel size used for culling

Cull

record the culling size given in the culling field. If the use culling field and redraw the view.

Continue to 9.2.1.4 Face Flags for View or return to 9.2.1 Perspective View Settings.
9.2.1.4 Face Flags for View

Position of option on menu: Perspective View Menu → Settings → Faces

The faces option allows the user to specify how faces are displayed in the perspective view and on any perspective view plots.

Selecting Faces fires up the **Face Flags for View** panel.

![Face Flags for View panel](image)

The fields and buttons have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>View to face flags for</td>
<td>input/output</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>Draw fill</td>
<td>if ticked, all faces in the view are drawn in their fill colour.</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td>Draw edges</td>
<td>if ticked, all face edges in the view are drawn.</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draw hatch</td>
<td>if ticked, all faces in the view are drawn in their hatch pattern.</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>set the draw fill/edges/hatch fields to the value in the panel fields. The plan view is then redrawn.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to 9.2.1.5 Hide View or return to 9.2.1 Perspective View Settings.
9.2.1.5 Hide View

Position of option on menu: Perspective View Menu View => Settings => Hide

When looking across a landscape, part of the terrain is often hidden by other parts of the terrain. For example, hills in the foreground will hide hills behind them.

In 12d Model, a landscape is represented by a triangulated surface (a tin) and a tin can be used by a hidden line algorithm to determine what is visible in a scene.

The hide option in 12d Model uses a tin to define a surface and processes any strings on the perspective against the tin to determine what is visible or hidden.

Only strings that lie on the tin can be sensibly processed. For example, contours, meshes, draped strings and any of the data that was used to create the tin.

When viewing a terrain from an eye point, the ridge lines are the edges of transition between visible and invisible areas. The hide option displays the ridge lines to delineate the hidden regions.

Once the hide option is set on, a hide will be done on the view whenever the view parameters are changed. If a model is added to the view when hide is set on, the strings in the model are processed and only the visible sections displayed in the view.

Note - Strings can still be selected in a hidden view.

Selecting Hide raises the Hide View panel.

![Hide View Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view to set hide parameters for:</td>
<td>input/output</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>Tin</td>
<td>the name of the triangulated surface (tin) to be used for determining what is visible or not.</td>
<td>input</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Hide view</td>
<td>if ticked, then the view is processed when the set button is selected.</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ridges colour</td>
<td>the colour for the ridge lines.</td>
<td>input</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>record the answers for the hide view, tin and ridges colour fields and then process the perspective view using the new parameters. The view type will be changed to hidden.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WARNING - a hide can be very slow for large tins and/or large data sets.

Continue to 9.2.1.6 Clipping Planes for View or return to 9.2.1 Perspective View Settings.
9.2.1.6 Clipping Planes for View

The perspective viewing direction is defined by specifying an eye and target point. The three dimensional view is then projected onto a plane at right angles to the eye-target line, and at a user defined distance from the eye-point. This plane is called the focal plane and the distance from the eye-point to the focal plane is the focal distance.

The projection of all the data onto the focal plane is what is seen on the screen in a perspective view. Moving the focal plane has the same effect as varying the telephoto lens on a camera - it gives the impression of zooming into and out of the view.

It is not always desirable to include all the data in the perspective view. For example, data behind the viewer is not normally required to be seen. The user can specify the position of two planes (called the front and back clipping planes) parallel to the focal plane. Only data lying between the clipping planes will be seen. Thus the view is "clipped" using the front and back clipping planes.

The distance to the clipping planes is measured from the eye point along the line joining the eye and target points (the eye-target line).

Selecting Planes fires up the Clipping Planes for View panel. This panel allows the user to set the focal distance and the front and back clipping plane distances.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>View to set clipping plane for.</td>
<td>input/output</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>Front dist</td>
<td>Distance from the eye point to the front clipping plane. If this field is blank, no front clipping plane is used.</td>
<td>input/output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Back dist</td>
<td>Distance from the eye point to the back clipping plane. If this field is blank, no back clipping plane is use.</td>
<td>input/output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Focal dist</td>
<td>Distance from the eye point to the focal plane. This distance must be non-zero.</td>
<td>input/output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>Set the distances to the front and back clipping planes and the focal plane. If the front or back clipping distance is blank, that plane is not set. After the set button is chosen, the view is redrawn using the new parameters,</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Continue to 9.2.1.7 Perspective View Exaggeration or return to 9.2.1 Perspective View Settings.
9.2.1.7 Perspective View Exaggeration

Position of option on menu: Perspective View Menu View => Settings => Exaggeration

The exaggeration option allows the user to specify the vertical exaggeration in the perspective view. The heights (z values) are multiplied by the vertical exaggeration value before drawing on the perspective view.

Selecting Exaggeration fires up the Perspective View Exaggeration panel.

![Perspective View Exaggeration Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>input/output</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>Vertical exaggeration</td>
<td>input</td>
<td>10</td>
<td>1,5,10</td>
</tr>
</tbody>
</table>

The Field View is used to specify the view to set exaggeration for. The Vertical exaggeration is used to specify the value to multiply the heights (z values) by before drawing in the perspective view. The Set button is used to set the vertical exaggeration to the value in the vertical exaggeration field.

Continue to 9.2.1.8 Tins or return to 9.2.1 Perspective View Settings.
9.2.1.8 Tins

Position of menu: Perspective View Menu View => Settings => Tins

The options on the Tins walk-right menu control the display of tins on the view. The Tins walk-right menu is

For the option Contours, go to 9.2.1.8.1 Contours
Edges 9.2.1.8.2 Edges
Flow arrows 9.2.1.8.3 Flow Arrows
Mesh 9.2.1.8.4 Mesh
Shade 9.2.1.8.5 Shade

9.2.1.8.1 Contours

Position of option on menu: Perspective View Menu View => Settings => Tins => Contours

The contours option defines contour and bold increments and colours, and also whether these contours are displayed for the triangles from any tins on the view. The panel is the same as for the plan view option. If Shade is set on, the triangles will be drawn in back to front order.

Continue to 9.2.1.8.2 Edges or return to 9.2.1.8 Tins or 9.2.1 Perspective View Settings.

9.2.1.8.2 Edges

Position of menu: Perspective View Menu View => Settings => Tins => Edges

The Edges option allows the user to specify whether the edges of triangles from any tins on the view are displayed. The panel is the same as for the plan view option. If Shade is set on, the triangles will be drawn in back to front order.

Continue to 9.2.1.8.3 Flow Arrows or return to 9.2.1.8 Tins or 9.2.1 Perspective View Settings.

9.2.1.8.3 Flow Arrows

Position of option on menu: Perspective View Menu View => Settings => Tins => Flow arrows

The Flow arrows option defines the colour and length of flow arrows, and also whether the flow arrows are displayed for the triangles from any tins on the view. The panel is the same as for the plan view option. If Shade is set on, the triangles will be drawn in back to front order.

Continue to 9.2.1.8.4 Mesh or return to 9.2.1.8 Tins or 9.2.1 Perspective View Settings.

9.2.1.8.4 Mesh

Position of option on menu: Perspective View Menu View => Settings => Tins => Mesh

The Mesh option defines a rectangular mesh, and also whether the mesh is displayed for the triangles from any tins on the view. The panel is the same as for the plan view option. If Shade is set on, the triangles will be drawn in back to front order.
9.2.1.8.5 Shade

Position of option on menu: Perspective View Menu View => Settings => Tins => Shade

Position of option on menu: Perspective View Menu View => Settings => Shade

This is exactly the same option as the Shade described in the section 9.2.1.9 Shade.

Return to 9.2.1.8 Tins or 9.2.1 Perspective View Settings.
9.2.1.9 Shade

Position of option on menu: Perspective View Menu View => Settings => Tins => Shade

Position of option on menu: Perspective View Menu View => Settings => Shade

In 12d Model, a landscape is represented by a triangulated surface - a tin. Each triangle in the tin is a part of a plane and has its own colour.

In a perspective view, each triangle can be drawn with a colour that is modified depending on the angle that the triangle makes with the sun (a point light source at infinity). This is called a flat shade.

If the triangles are drawn in a back to front order, then when the shaded landscape is drawn, any triangles in the foreground obscure triangles in the background and it looks like a hidden view.

If shade is set for a view, all the triangles in all the tins on the view are drawn as shaded triangles and the triangles are drawn in a back to front order.

Once the Shade is set on, a shade will be done on the view whenever the view parameters are changed. A plot of the shaded view can be made using the dump option on the view.

Selecting Shade fires up the Shade View panel:

The fields and buttons used in this panel have the functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>input/output</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>Shade tins</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle</td>
<td>input</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

Set button

record and redraw the view using the current parameters.

Return to 9.2.1 Perspective View Settings.
9.2.2 Eye/Target

Position of option on menu: Perspective View Menu

The Eye/Target option displays the current eye and target co-ordinates and also allows the user to specify new eye and target points. The points can be chosen from any plan view using the cursor or by typed-input.

The view is projected onto a focal plane using a perspective transformation, and clipped using front and back clipping planes. The focal distance and the front and back clipping plane distances are set and modified in the planes option.

Selecting Eye/Target fires up the Perspective View panel.

![Perspective View Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view to set perspective parameters for.</td>
<td>view box</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>Eye X Y Z</td>
<td>co-ordinates of the eye viewing point. New values can be typed, or a point selected using the xyz ops pop-up menu.</td>
<td>XYZ select</td>
<td>current eye position</td>
<td>xyz ops menu</td>
</tr>
<tr>
<td>Target X Y Z</td>
<td>co-ordinates of the target viewing point. New values can be typed, or a point selected using the xyz ops pop-up menu.</td>
<td>XYZ select</td>
<td>current target position</td>
<td>xyz ops menu</td>
</tr>
<tr>
<td>Move dist</td>
<td>distance to move the eye point along the eye-target line in the direction of the target point. The target point is also moved the same distance along the eye-target line so that the eye-target distance is kept constant.</td>
<td>input/output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>View button</td>
<td>define the perspective parameters according to the information in the panel. If the move distance is</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
non-zero, then the eye and target points are both moved along the eye-target line by the distance given in the Move field. In this case, the new eye and target positions will be written to the eye and target fields.

Eye Target button
allows the user to define the (x, y) position of the eye and target points using the cursor and views.

After selection the button, the user is asked to select the eye position from a view by clicking LB in a view. A level input box is then displayed on the screen for the user to enter the level (z value) for the eye point. The level is recorded and the level box removed after a <enter> is entered in the level input box.

The user is then asked to select the target point from any view by clicking LB at the position of the target point. A level input box is then displayed for the user to enter the level (z value) for the target point.

After the target point is defined, the view is redrawn using the new eye and target positions.

How to Use the Panel and Panel Messages
(a) The eye and target points are set by using typed-input, or by selection in either the eye XYZ or target XYZ fields, or the Eye Target button.

(b) When the View button is selected, the perspective viewing parameters are calculated according to the information in the panel. If a non-zero move distance is given, the eye and target points are both moved along the eye-target line through the move distance. The new values for the eye and target points are written into the panel. If no errors are detected in calculating the new viewing parameter, the view is redrawn using the new parameters.

Continue to 9.2.3 Joy for View or return to 9.2 Perspective View Menu.
9.2.3 Joy for View

Position of option on menu: Perspective View Menu ➔ View ➔ Joy

The hardest thing in a perspective view is finding a good viewing position. The Joy option makes it easy to construct a new perspective viewing position relative to the existing position.

The panel can be used to move the eye or target point by rotating them through a given angle to the left, right, up or down, or to move one towards or away from the other. It is also possible to move the eye and target points keeping the distance between them the same.

Selecting Joy fires up the Joy view panel.

![Joy View Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view to set joy parameters for</td>
<td>view box</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>Move</td>
<td>move the eye point, the target point or both</td>
<td>choice box</td>
<td>eye</td>
<td>eye, target, eye & target</td>
</tr>
<tr>
<td>Mode</td>
<td>in step mode, the view is modified each time an appropriate button is picked. In continuous mode, after the view is redrawn, the picked joy option is continually re-applied until either a new joy button is picked, button LB is clicked anywhere else in the joy panel.</td>
<td>choice box</td>
<td>step</td>
<td>step, continuous</td>
</tr>
<tr>
<td>Hz angular step</td>
<td>angle in degrees (in 4.17.1 HP Notation) that is used with the joy buttons Left and Right when moving just the eye or target point.</td>
<td>angle box</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Vt angular step</td>
<td>angle in degrees (in 4.17.1 HP Notation) that is used with the joy buttons Up and Down when moving just the eye or target point.</td>
<td>angle box</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
Joy Buttons

The Joy buttons Up, Down, Left, Right, In and Out are used to modify the perspective parameters and then redraw the view with the new parameters.

The effect of each joy button depends on whether the Move field is set to eye, target or eye & target.

Up, Down, Left, Right buttons

Move field set to eye

Up/Down button
rotate the eye-target line about the target point up/down by the angle given in the Angle step field. That is, the eye point is moved upwards/downwards, the target point kept fixed.

Left/Right button
rotate the eye-target line about the target point to the left/right by the angle given in the Angle step field. The target point kept fixed.

In/Out button
move the eye point towards/away the target point along the eye-target line by the distance given in the Distance field. The target point kept fixed.

Move field set to target

similar to the movements when the Move field is set to eye except the eye point is kept fixed and the target point is moved.

Move field set to eye & target

Up/Down/Left/Right button
the eye and target points are both moved up/down/left/right by the distance given in the Distance field. That is, the entire eye-target line is moved up/down/left/right and neither the eye or target point is kept fixed.

Distance input 100
distance used to move the eye or target point.

In, Out button
move the eye and target points along the eye-target line by the distance given in the Distance field. The direction is towards/away the target point.

How to Use the Panel

(a) The move, mode, angular step and distance field are given the desired values and then one of the joy buttons (up, down, left, right, in or out) is selected. The perspective view is then redrawn

(b) If the mode is set to continuous, once drawing is completed, the selected joy option will be re-applied. This sequence is repeated until either a new joy button is picked, button LB is clicked anywhere else in the joy panel or a c key is typed.

Continue to 9.2.4 Orbit or return to 9.2 Perspective View Menu.
9.2.4 Orbit

Position of option on menu: Perspective View Menu
View => Orbit

The orbit option quickly rotates the data around in the perspective view.

Selecting *Orbit* fires up the *Orbit* panel.

To use Orbit:

Orbit radio button **on:** **Flip orbit direction** radio button **off:**

- *when the left button is clicked in the perspective view, the orbit circle appears and holding LB down and moving up in the orbit circle tilts the object up*
- *holding LB down and moving down in the orbit circle tilts the object down*
- *holding LB down and moving left rotates the object to the left*
- *holding LB down and moving right rotates the object to the right*

Orbit radio button **on:** **Flip orbit direction** radio button **on:** the movement is reversed
Pan radio button on:

holding LB down and moving up in the view raises the object
holding LB down and moving down in the view lowers the object
holding LB down and moving left in the view pans the object to the left
holding LB down and moving right in the view pans the object to the right

Zoom radio button on:

holding LB down and moving up in the view zooms into the object
holding LB down and moving down in the view zooms out from the object

Zoom to window radio button on:

when a zoom box is drawn on the view, the perspective is modified so that the contents of the zoom box fill the entire view.

Shrink to window radio button on:

when a zoom box is drawn on the view, the perspective is modified so that the contents of the window are shrunk to fit into the zoom box.

Swivel camera radio button on:

holding LB down moves the target point.

Continue to 9.2.5 Plan Camera or return to 9.2 Perspective View Menu.
9.2.5 Plan Camera

Position of option on menu: Perspective View Menu → View → Plan Camera

This creates a camera for the current perspective OpenGL view, which can be controlled from a plan view. This allows you to see where a camera is and where it is looking and move those points together or independently.

Selecting Plan Camera brings up the Plan Camera panel.

![Plan Camera Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td>view box</td>
<td>select view</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>colour box</td>
<td>colour box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Create the plan camera

Setting the plan camera will create two symbols on your plan view, as shown below:

![Camera and Target Symbols]

To move the camera, simply click on one of these images and drag it. The perspective OpenGL view will move with it. If you wish to lift or lower the selected component, use the scroll wheel on your mouse. The distance you move is proportional to the zoom level on your plan view.

Key Strokes

There are a number of key strokes available when running the plan camera.

(S)et

sets a component (x, y, z) coordinate of the camera to be equal to the target or vice versa

(L)ock

locks the camera and target together, so they will maintain the same distance from each other when
either one or the other is moved.

Continue to 9.2.6 Perspective Utilities or return to 9.2 Perspective View Menu.
9.2.6 Perspective Utilities

Position of option on menu: Perspective View Menu View => Utilities

The **Utilities** menu contains miscellaneous options involving the perspective view. The **Utilities** walk-right menu is

```
View Utilities "3"  
String drive   String walk   String movie   Tin shade   Dump   Plot
```

For the option **String drive**, go to

- 9.2.6.1 String Drive
- 9.2.6.2 String Walk
- 9.2.6.3 String Movie
- 9.2.6.4 Tin Shade
- 9.2.6.5 Dump
- 9.2.6.6 Perspective Plot

9.2.6.1 String Drive

Position of menu: Perspective View Menu View => Utilities => String drive

The string drive option makes it easy to construct the perspective view one gets when moving along a string (for example, driving along a road centre line).

The two options on the **String drive** walk-right menu are

```
String Drive 3"  
Along string   Fixed target
```

and they specify the positioning of eye and target points by:

- **along string** - the eye and target points are automatically moved along the selected string
- **fixed target** - the eye point automatically moves along the selected string but the target point is a selected fixed point.

Note - the string drive option can be aborted by pressing the <esc> key or clicking RB.

For the option Along string, go to

- 9.2.6.1.1 String Drive - Along String
- 9.2.6.1.2 String Drive - Fixed Target

Or return to 9.2 Perspective View Menu.
9.2.6.1.1 String Drive - Along String

Position of option on menu: Perspective View Menu ➞ Utilities ➞ String drive ➞ Along string

Selecting Along string fires up the String Drive for View panel.

For string drive along a string, a selected string is used to provide the \((x, y, z)\) positions for the eye and target points.

The z-values can be adjusted by typing in a non-zero value for the eye and target heights in the string drive panel. These heights are relative to the z-values of the points on the string and are added to the z-values.

Like the new view option, the view is projected onto a focal plane and “clipped” using front and back clipping planes.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>Eye height</td>
<td>input</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>height of the eye viewing point above the picked string</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye offset</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>offset of the eye viewing point from the picked string</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target height</td>
<td>input</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>height of the target viewing point above the picked string</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target offset</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>offset of the target viewing point from the picked string</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target distance</td>
<td>input</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>
distance (in string chainage) from the eye point to the target point.

Speed (kph)

Input 100

Speed in kilometres per hour (that is, one thousand base units per hour) that the eye-target points move along the string.

String to drive along

String select box

A string to drive along is selected from any view. The string must have z-values.

Chainage

Input/output 0

The chainage that the eye point is at on the string. The chainage is updated as the eye and target points are automatically moved along the string. The drive can be set to start at a specific start chainage by simply entering the start chainage into the chainage field and then selecting the **Drive** button.

Repeat

Tick box

If ticked, the drive starts again at the beginning of the string.

Drive

Button

When the drive button is selected, the eye and target points are placed above the string as specified in the panel fields, and the view redrawn. The eye and target points are then moved along the string at the given speed until either reaches the end of the string. The chainage of the eye point is continually updated.

Notes

- The target distance and speed can be positive or negative.
- The eye and target points are shown on any view displaying the string being driven along. The eye point is drawn as a red cross, the target point, a green cross.
- If the front distance for the clipping plane of the perspective view is set to zero by the user, it is automatically reset to 2 so that the red cross drawn at the eye point is not visible in the perspective view.

Return to [9.2.6 Perspective Utilities](#) or [9.2 Perspective View Menu](#).
9.2.6.1.2 String Drive - Fixed Target

Position of option on menu: Perspective View Menu View \=> Utilities \=> String drive \=> Fixed target

Selecting Fixed target fires up the String Drive Fixed Target for View panel.

For string drive fixed target, a selected string is used to provide the (x, y, z) positions for the eye point, and the target is a selected fixed point. The z-value for the eye is adjusted by adding to it the eye height in the eye height field in the String Drive Fixed Target for View panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>view to set drive parameters for:</td>
</tr>
<tr>
<td>Target</td>
<td>xyz select box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a fixed target point is selected from any view. The point’s co-ordinates are displayed in the X, Y, Z coordinates panel fields.</td>
</tr>
<tr>
<td>Eye height</td>
<td>input</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>height of the eye viewing point above the picked string</td>
</tr>
<tr>
<td>Eye offset</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>offset of the eye viewing point from the picked string</td>
</tr>
<tr>
<td>Speed (kph)</td>
<td>input</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>speed in kilometres per hour (that is, in one thousand of the base units per hour that the eye point moves along the string.</td>
</tr>
<tr>
<td>String to drive along</td>
<td>string select box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a string to drive along is selected from any view. The string must have z-values.</td>
</tr>
</tbody>
</table>
Chainage

The chainage that the eye point is at on the string. The chainage is updated as the eye point automatically moves along the string. The drive can be set to start at a specific start chainage by simply entering the start chainage into the **chainage** field and then selecting the **Drive** button.

Target

A fixed target point is selected from any view. The point’s co-ordinates are displayed in the **target panel** field.

Repeat

If **ticked**, the drive starts again at the beginning of the string.

Drive

When the **drive** button is selected, the eye point is placed above the string at the chainage given in the **chainage** field, and the view redrawn. The eye point is then moved along the string at the given speed until it reaches the end of the string. The chainage of the eye point is continually updated.

Notes

- The speed can be positive or negative.
- The eye point is shown on any view displaying the string being driven along. The eye point is drawn as a red cross, the target point, a green cross.
- If the front distance for the clipping plane of the perspective view is set to zero by the user, it is automatically reset to 2 so that the red cross drawn at the eye point is not visible in the perspective view.

Return to [9.2.6 Perspective Utilities](#) or [9.2 Perspective View Menu](#).
9.2.6.2 String Walk

Position of menu: Perspective View Menu → View → Utilities → String walk

The *string walk* option makes it easy to construct the perspective view one gets when walking along a string (for example, walking along a road centre line).

The two options on the *String Walk* walk-right menu are

![String Walk options](image)

and they specify the positioning of eye and target points by:

- **along string** - the eye and target points are automatically moved along the selected string
- **fixed target** - the eye point automatically moves along the selected string but the target point is a selected fixed point.

For the option *Along string*, go to 9.2.6.2.1 String Walk - Along String

For the option *Fixed target*, go to 9.2.6.2.2 String Walk - Fixed Target

Or to 9.2.6 Perspective Utilities or 9.2 Perspective View Menu.
9.2.6.2.1 String Walk - Along String

Position of option on menu: Perspective View Menu View => Utilities => String walk => Along string

Selecting along string fires up the string walk for view panel

For string walk along a string, a selected string is used to provide the (x, y, z) positions for the eye and target points.

The z-values can be adjusted by typing in a non-zero value for the eye and target heights in the string walk panel. These heights are relative to the z-values of the points on the string and are added to the z-values.

Like the new view option, the view is projected onto a focal plane and "clipped" using front and back clipping planes.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td>current</td>
<td>available</td>
<td>views</td>
</tr>
<tr>
<td>Eye height</td>
<td>height of the eye viewing point above the picked string</td>
<td>input</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Eye offset</td>
<td>offset of the eye viewing point from the picked string</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Target height</td>
<td>height of the target viewing point above the picked string</td>
<td>input</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Target offset</td>
<td>offset of the target viewing point from the picked string</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Target distance</td>
<td>distance (in string chainage) from the eye point to the target point.</td>
<td>input</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>String to walk along</td>
<td>string select box</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
a string to walk along is selected from any view. The string must have z-values.

Walk dist

input 10

distance to move the eye point along string from the previous eye point chainage. The target point is also moved the same distance along the eye-target line so that the eye-target distance is kept constant.

Chainage

input/output 0

the chainage that the eye point is at on the string. The chainage is updated whenever the walk button is activated. The eye point can be set to a specific chainage by simply entering the chainage into the chainage field and selecting the walk button.

Walk button

the perspective parameters are defined according to the information in the panel. The first time the Walk button is selected, the eye point is placed above the string at the chainage given in the chainage field. For subsequent selections of the Walk button, the eye and target points are moved along the eye-target line by the chainage distance given in the walk dist field.

The view is redrawn with the new view parameters and the new eye-chainage displayed in the panel message area and the chainage field.

Notes

- the target and move distances can be positive or negative.
- the eye and target points are shown on any view displaying the string being walked along. The eye point is drawn as a red cross, the target point, a green cross.
- if the front distance for the clipping plane of the perspective view is set to zero by the user, it is automatically reset to 2 so that the red cross drawn at the eye point is not visible in the perspective view.

Return to 9.2.6 Perspective Utilities or 9.2 Perspective View Menu.
9.2.6.2 String Walk - Fixed Target

Position of option on menu: Perspective View Menu View => Utilities => String walk => Fixed target

Selecting Fixed target fires up the String Walk Fixed Target for View panel.

For string walk fixed target, a selected string is used to provide the (x, y, z) positions for the eye point, and the target is a selected fixed point. The z-value for the eye is adjusted by adding to it the eye height in the eye height field in the String Walk Fixed target for View panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>Target</td>
<td>xyz box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye height</td>
<td>input</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Eye offset</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Walk dist</td>
<td>input</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>String to walk along</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chainage</td>
<td>input/output</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

For string walk fixed target, a selected string is used to provide the (x, y, z) positions for the eye point, and the target is a selected fixed point. The z-value for the eye is adjusted by adding to it the eye height in the eye height field in the String Walk Fixed target for View panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>Target</td>
<td>xyz box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye height</td>
<td>input</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Eye offset</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Walk dist</td>
<td>input</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>String to walk along</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chainage</td>
<td>input/output</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
entering the start chainage into the chainage field and then selecting the Walk button.

the perspective parameters are defined according to the information in the panel. The first time the Walk button is selected, the eye point is placed above the string at the chainage given in the chainage field. For subsequent selections of the Walk button, the eye point is moved along the string by the chainage distance given in the walk dist field.

The view is redrawn with the new view parameters and the new eye-chainage displayed in the panel message area and the chainage field.

Notes
s the walk distance can be positive or negative.
s the eye point is shown on any view displaying the string being walked along. The eye point is drawn as a red cross, the target point, a green cross.

s if the front distance for the clipping plane of the perspective view is set to zero by the user, it is automatically reset to 2 so that the red cross drawn at the eye point is not visible in the perspective view

Return to 9.2.6 Perspective Utilities or 9.2 Perspective View Menu.
9.2.6.3 String Movie

Position of menu: Perspective View Menu ➔ Utilities ➔ String movie

The *String movie* option makes it easy to construct and save to disk the sequence of perspective views one gets when walking along a string (for example, walking along a road centre line).

The screen images are automatically written out to disk in gif format so that they can be replayed at a later time.

This is especially useful when it takes a while to construct each view, for example, when hidden line is turned on.

Under NT/95, the screen images are written to an *avi* file.

Under Unix, the screen images are written to a *gif* file and there can be up to 99,999 of them in the one movie.

The two options on the *String movie* walk-right menu are

![String Movie Options](image)

and they specify the positioning of eye and target points by:

- **along string** - the eye and target points are automatically moved along the selected string
- **fixed target** - the eye point automatically moves along the selected string but the target point is a fixed selected point.

Note - the *string movie* option can be aborted by pressing the `<esc>` key or clicking RB.

For the option Along string, go to 9.2.6.3.1 String Movie - Along String

Fixed target 9.2.6.3.2 String Movie - Fixed Target

Or return to 9.2.6 Perspective Utilities or 9.2 Perspective View Menu.
9.2.6.3.1 String Movie - Along String

Position of option on menu: Perspective View Menu → Utilities → String movie → Along string

Selecting Along string fires up the **String Movie for View** panel.

For **string movie along a string**, a selected string is used to provide the \((x, y, z)\) positions for the eye and target points.

The z-values can be adjusted by typing in a non-zero value for the eye and target heights in the **string movie** panel. These heights are relative to the z-values of the points on the string and are added to the z-values.

Like the new view option, the view is projected onto a focal plane and “clipped” using front and back clipping planes.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View view box</td>
<td>current view</td>
<td>available views</td>
<td></td>
</tr>
<tr>
<td>Eye height</td>
<td>input</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Eye offset</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Target height</td>
<td>input</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Movie string</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start chainage</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>End chainage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed km/h</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Frames/sec</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Movie file stem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Show movie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn off screen saver</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Movie

Show

Finish

Help

View to set movie parameters for:

- **Eye height**: Height of the eye viewing point above the picked string.
- **Eye offset**: Offset of the eye viewing point from the picked string.
- **Target height**: Height of the target viewing point above the picked string.
Target offset
offset of the target viewing point from the picked string

Target distance
distance (in string chainage) from the eye point to the target point.

Movie string
a string to drive along is selected from any view. The string must have z-values.

Start chainage
the chainage that the eye point starts on the string for the movie.

End chainage
the chainage to stop the movie at.

Speed (kph)
speed in kilometres per hour (that is, one thousand base units per hour) that the eye-target points move along the string.

Frames/sec)
number of frames per second to produce for the movie.

Movie file stem
each frame of the drive in the view is written to disk in avi format using the movie file stem plus the ending .avi as the file name.

Show movie
if ticked, after all the views along the string are written to disk, a new window, the same size as the perspective view, will be created and movie then run.

Turn off screen saver
if ticked, the screen saver is disabled so it doesn’t come on whilst creating the movie.

Movie button
the perspective parameters are defined according to the information in the panel. When the Movie button is selected, the eye point is placed above the string at the chainage given in the chainage field. The view is drawn with these view parameters. After that view is processed and written to disk, the eye and target points are moved along the eye-target line and frames written out to simulate the given speed.

Show button
This button is used to display a previously created movie. If selected, the movie created with the stem given in the movie file stem field is displayed. If Unix, there is a pause between each frame by the number of seconds given in the delay field.

Displaying the Movie
If a movie has just been created and the show movie field is set to tick, or an existing movie name is given in the movie file stem field and the show button is selected, then a new window will be created and the movie will be displayed frame by frame. Outside of 12d Model, the movie can be displayed by simply double clicking on the avi file.

Notes
s the target and move distances can be positive or negative.
s the eye and target points are shown on any view displaying the string being walked along. The eye point is drawn as a red cross, the target point, a green cross.
s if the front distance for the clipping plane of the perspective view is set to zero by the user, it is
automatically reset to 2 so that the red cross drawn at the eye point is not visible in the perspective view.

The movie can also be displayed from outside 12d Model by simply double clicking on the avi file movie-file-stem.avi.

Return to 9.2.6 Perspective Utilities or 9.2 Perspective View Menu.
9.2.6.3.2 String Movie - Fixed Target

Position of option on menu: Perspective View Menu → Utilities → String movie → Fixed target

Selecting Fixed target fires up the String Movie Fixed Target for View panel.

For string movie fixed target, a selected string is used to provide the (x, y, z) positions for the eye point, and the target is a selected fixed point. The z-value for the eye is adjusted by adding to it the eye height in the eye height field in the String Movie Fixed Target for View panel.

The fields and buttons used in this panel have the following functions.

For string movie fixed target, a selected string is used to provide the (x, y, z) positions for the eye point, and the target is a selected fixed point. The z-value for the eye is adjusted by adding to it the eye height in the eye height field in the String Movie Fixed Target for View panel.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td></td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>Eye height</td>
<td>input</td>
<td></td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Eye offset</td>
<td>input</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Target</td>
<td>xyz box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Movie string</td>
<td>string select</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chainage: input/output 0
the chainage that the eye point starts on the string for the movie.

Speed (kph): input 10
speed in kilometres per hour (that is, one thousand base units per hour) that the eye-target points move along the string.

Frames/sec: input 5
number of frames per second to produce for the movie.

Movie file stem: input 4d-
each frame of the drive in the view is written to disk in avi format using the movie file stem plus the ending .avi as the file name.

Show movie: tick box tick
if ticked, after all the views along the string are written to disk, the movie is then run.

Turn off screen saver: tick box tick
if ticked, the screen saver is disabled so it doesn’t come on whilst creating the movie.

Movie button
the perspective parameters are defined according to the information in the panel. When the Movie button is selected, the eye point is placed above the string at the chainage given in the chainage field. The view is drawn with these view parameters. After that view is processed and written to disk, the eye and target points are moved along the eye-target line by the chainage distance given in the step distance field and the new view drawn and processed.

This sequence is repeated until the end of the string is reached or the c key is pressed.

Show button
This button is used to display a previously created movie. If selected, the movie created with the stem given in the movie file stem field is displayed.

Return to 9.2.6 Perspective Utilities or 9.2 Perspective View Menu.
9.2.6.4 Tin Shade

Position of option on menu: Perspective View Menu → Utilities → Tin shade

In **12d Model**, a landscape is represented by a triangulated surface - a tin. Each triangle in the tin is a part of a plane and has its own colour.

In a perspective view, each triangle can be drawn with a colour that is modified depending on the angle that the triangle makes with the sun (a point light source at infinity). This is called a flat shade.

If the triangles are drawn in a back to front order, then when the shaded landscape is drawn, any triangles in the foreground obscure triangles in the background and it looks like a hidden view.

If Shade is set for a view, all the triangles in all the tins on the view are drawn as shaded triangles and the triangles are drawn in a back to front order.

Once the Shade is set on, a shade will be done on the view whenever the view parameters are changed. A plot of the shaded view can be made using the Dump option on the view.

The Tin shade option draws the selected tin over the perspective view as a shade. The selected tin does not have to be on the view for the shade to function.

When the view is refreshed, the shade is lost (the Shade option under settings is used for setting a shade permanently on). A plot of the shaded view can be made using the Dump option on the view.

Selecting Tin shade fires up the Tin Shade View panel.

![Tin Shade View Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td>current view</td>
<td>available views</td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>input</td>
<td>available tins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle</td>
<td>input</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shade</td>
<td>button</td>
<td>draw the given tin on the view as a shaded tin.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Return to [9.2.6 Perspective Utilities](#) or [9.2 Perspective View Menu](#).
9.2.6.5 Dump

Position of option on menu: Perspective View Menu View => Utilities => Dump

This option is used to write the view image out to disk in a user selected format. It is the same as the Dump option for a plan view.

Return to 9.2.6 Perspective Utilities or 9.2 Perspective View Menu.

9.2.6.6 Perspective Plot

Position of option on menu: Perspective View Menu View => Utilities => Perspective plot

The Perspective plot option is used to make a plot file of all the information displayed in the perspective view.

The user simply gives a sheet width and height and **12d Model** calculates the scaling factor required to best fit the plot of the view to the sheet.

Selecting Plot displays the Perspective Plot panel.

![Perspective Plot Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>Plotter type</td>
<td>input</td>
<td>hp</td>
<td>hp, dxf, postscript etc.</td>
</tr>
<tr>
<td>Plot file</td>
<td>input</td>
<td>depends on plotter type</td>
<td></td>
</tr>
</tbody>
</table>
depends on the plotter type.

Clean model beforehand choice box
do not clean
prompt for clean
always clean

only applicable if plotting to a model.

if always clean, the model is cleaned before the plot is created.

If prompt for clean, the user is prompted that the model will be cleaned before the plot is created.

If do not clean, the model is not cleaned before the plot is created.

Sheet width/height (mm) input

if a value is entered by the user and an <enter> given, the height/width required by the plot is calculated and displayed in the *sheet height/width* field. The units for sheet width and height are millimetres.

If both sheet width and height are given with no <enter>, then a scaling factor is calculated by 12d Model to best fit the plot of the view to a rectangle of size given by the sheet width and height.

Title and border tick box

if ticked, a border and two lines of title are placed on the bottom of the plot

Title line 1/2 input

first/second line of title information

Title height (mm) input 10

height (in millimetres) to draw the two lines of title information

Title colour input cyan available colours

colour used for the border and the title information

Plot button

write out the plot of the information displayed in the view to the file given in the *plot file* field. The format of the file is given by the *plotter type*.

Return to [9.2.6 Perspective Utilities](#) or [9.2 Perspective View Menu](#).
9.3 Section View Menu

Position of menu: Section View Menu View

The section view is used to display string profiles and sections through tins and service items. The horizontal units are taken to be the chainage along a particular string called the primary string for the view. The z-values (heights) are the vertical units for the section. Hence, the section view is a (chainage, z-value) diagram with respect to the primary string on the view. The primary string's model and name is displayed in the view title area of the section view.

Since a tin represents a two dimension continuous surface, sectioning through a tin along a string appears as a continuous line string in a section view. For example, the natural surface on a road long-section is the section of the road centre-line through the natural surface tin.

When a corridor is set, any strings in models added to the section view (service items) will be drawn on the section view wherever they are inside the corridor.

A section view has a vertical exaggeration and whenever a string is profiled on the view, the vertical exaggeration is displayed inside square brackets after the view name in the view title area. For example [10x] is a vertical exaggeration of 10.

When in a Section view that has a string profiled on it, the chainage, height, and (x,y) coordinates of the cursor position are also displayed in the View Coordinate box in the Screen Message Area at the bottom of the 12d Model window.

![Screen Message area](image)

![View Coordinate box](image)
The Section views menu is

![Diagram of Section views menu]

For the options:

- **Models**, go to [9.4.1 Model Ops](#)
- **Settings** [9.3.1 Section View Settings](#)
- **Redraw** [9.4.2 Redraw](#)
- **Fit** [9.4.3 Fit](#)
- **Previous** [9.4.4 Previous](#)
- **Zoom** [9.1.2 Zoom](#)
- **Pan** [9.1.3 Pan](#)
- **Profile** [9.3.2 Profile](#)
- **Regenerate** [9.3.3 Regenerate](#)
- **Plotting** [9.3.4 Section Plotting](#)
- **Utilities** [9.3.5 Section Utilities](#)
- **Clone** [9.4.5 Clone](#)
- **Properties** [9.4.6 Properties](#)
- **Delete** [9.4.7 Delete](#)
9.3.1 Section View Settings

Position of menu: Section View Menu View => Settings

If the **Settings** option is picked rather than moving onto the walking right, then the **Toggle** menu from the **Toggle** walk-right menu is displayed on the screen. The **Toggle** menu will be described in the next section.

The **Settings** walk-right menu for the section view is

For the option:

- **Toggle** go to 9.3.1.1 Section View Toggle
- **Corridor** 9.3.1.2 Corridor
- **Draw tolerance** 9.3.1.3 Draw Tolerance
- **Drainage** 9.3.1.4 Drainage HGL
- **Extend** 9.3.1.5 Extend
- **Geom annot** 9.3.1.6 Geometry Annotation
- **Grade annot** 9.3.1.7 Grade Annotation
- **Exaggeration** 9.3.1.8 Section View Exaggeration
- **Grid** 9.1.1.22 Grid on View
- **Colour** 9.1.1.23 View Background Colour
9.3.1.1 Section View Toggle

Position of menu: Section View Menu \(\Rightarrow\) View \(\Rightarrow\) Settings \(\Rightarrow\) Toggle

The Toggle walk right brings up the **Toggle** section view menu.

![Toggle menu example]

Selecting any options from this menu will toggle the option on/off.

Continue to 9.3.1.2 Corridor or return to 9.3.5 Section Utilities to 9.3 Section View Menu.
9.3.1.2 Corridor

Position of option on menu: Section View Menu → View => Settings => Corridor

The standard section view is designed to profile any selected string and create and display sections along the profiled string through any tins in any models added to the section view. Hence the section view is like a vertical ribbon tracing out the path of the primary string.

The **Corridor** option extends the ribbon to the left and right and projects any strings in any models added to the section view back onto the section view. Consequently, the section view will display any strings or parts of strings that cross the corridor, run parallel to the primary string but stay within the corridor as well as displaying the standard sections through any tins in any models added to the section view.

The corridor is particularly useful for examining any **clashes** of strings with the primary string. For example, services such as telephone cables, water and gas pipes and electricity cables could be modelled as 3d or pipe strings and added to the section view.

The section view with non-zero corridor widths would then display any of the services that lie within the corridor about the chosen primary string.

Selecting **Corridor** fires up the **Section Corridor** panel.

![Section Corridor panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td>view box</td>
<td>current view</td>
</tr>
<tr>
<td>Width left/right</td>
<td>width of the corridor to the left/right of the primary string.</td>
<td>input</td>
<td>0.01</td>
</tr>
<tr>
<td>Overlap left/right</td>
<td>for each straight/arc in the primary string, extend the straight/arc to the left/right by the value of the overlap left/right field before drawing the straight/arc. Section through the extended string.</td>
<td>input</td>
<td>0.01</td>
</tr>
<tr>
<td>Chord/Arc tolerance</td>
<td>value of the chord to arc ratio to be used when approximating circles in alignments, arcs and pipeline strings.</td>
<td>input</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Set button define the corridor parameters according to the information in the panel. The section view for the new corridor will then be calculated and displayed.
Defaults button

reset the corridor settings to the default values.

Continue to 9.3.1.3 Draw Tolerance or return to 9.3.5 Section Utilities to 9.3 Section View Menu.
9.3.1.3 Draw Tolerance

Position of option on menu: Section View Menu View => Settings => Draw tolerance

It is possible for the bits of services displayed on a section view to be very small and possibly too small to be easily seen. This is often the case for strings that are perpendicular to the corridor. To overcome this visualization difficulty, a tolerance can be defined for the section view and when the size of any piece of a service is below the tolerance, it will be drawn as a cross.

Selecting Draw tolerance fires up the Service Draw Tolerance panel.

![Service Draw Tolerance Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td>current view available views</td>
</tr>
<tr>
<td>Tolerance (pix)</td>
<td>input</td>
<td>4</td>
</tr>
</tbody>
</table>

view to set service parameters for.

if the size of any piece of a service is below this tolerance, it will be drawn as a cross.

set the service draw tolerance.

Continue to 9.3.4 Drainage HGL or return to 9.3.5 Section Utilities to 9.3 Section View Menu.
9.3.1.4 Drainage HGL

Position of option on menu: Section View Menu View => Settings => Drainage

If the data exists in the drainage string, the HGL line can be drawn when profiling a drainage string.

Selecting Drainage fires up the Drainage Annotations panel.

![Drainage Annotations Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>input/output</td>
<td>current view, available views</td>
</tr>
<tr>
<td>Show HGL</td>
<td>tick box</td>
<td>tick</td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked then the HGL line is drawn for any drainage strings that are profiled (and have HGL data)</td>
</tr>
<tr>
<td>HGL colour</td>
<td>colour box</td>
<td>available colours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>colour to draw the HGL line</td>
</tr>
<tr>
<td>Show surface HGL</td>
<td>tick box</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked then the surface HGL (the HGL of any bypass channels) will be shown on the long section</td>
</tr>
<tr>
<td>Surface HGL colour</td>
<td>colour box</td>
<td>available colours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>colour to draw the HGL surface</td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td>set the HGL drawing parameters.</td>
</tr>
</tbody>
</table>

Note: not available for the Rational Method

Continue to 9.3.1.5 Extend or return to 9.3.5 Section Utilities to 9.3 Section View Menu.
9.3.1.5 Extend

Position of option on menu: Section View Menu View => Settings => Extend

When displaying the profile of a string on a section view, the user often wishes to see sections through the information before the string begins and after the string ends. This is particularly useful if it is intended to extend the string in either direction.

The Extend option allows the user to extend the profile length.

Selecting Extend fires up the Section Profile Extend panel.

![Section Profile Extend panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td>current view available views</td>
</tr>
<tr>
<td>pre-extend the profile by this distance before sectioning through any tins or models on the view.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extend left</td>
<td>input</td>
<td>0</td>
</tr>
<tr>
<td>post-extend the profile by this distance before sectioning through any tins or models on the view.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extend right</td>
<td>input</td>
<td>0</td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td>define the profile length according to the length of the primary string plus the two extend lengths. The section view for the new length will then be calculated and displayed.</td>
</tr>
</tbody>
</table>

Continue to 9.3.1.6 Geometry Annotation or return to 9.3.5 Section Utilities to 9.3 Section View Menu.
9.3.1.6 Geometry Annotation

Position of option on menu: Section View Menu View => Settings => Geom annot

The Geom annot option allows the user to specify whether horizontal geometry and/or vertical geometry is displayed for any alignment and pipeline strings profiled in the section view and hence on any section view plots.

Selecting Geom annot fires up the Section Geometry Annotations panel.

![Section Geometry Annotations Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td>current view</td>
<td>available views</td>
<td></td>
</tr>
<tr>
<td>Show HG</td>
<td>tick box</td>
<td>tick</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Show VG</td>
<td>tick box</td>
<td>tick</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text style</td>
<td>input</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

View

- **View**: Use the view box to set alignment geometry parameters for.

Show HG

- **Show HG**: If ticked, the value of the radii and spiral lengths for any horizontal curves selected as the primary string will be shown plus an arrow indicating the chainage extent of the radii.
- **Not ticked**: The horizontal geometry will not be displayed in the section view or on any plots of the section view.

Show VG

- **Show VG**: If ticked, the value of the curve length for any vertical curves selected as the primary string will be shown, plus an arrow indicating the chainage extent of the curve length. The percentage grades for any vertical straight will also be displayed with an arrow indicating the chainage extent of the vertical straight.
- **Not ticked**: The vertical curve lengths and percentage grades will not be displayed in the section view or on any plots of the section view.

Text style

- **Text style**: The text style to be used for all text in the geometry annotation.
View text ht (pix) input 10

height (in pixels) to draw the geometry annotation values in the section view (the screen width is approximately 1000 pixels).

Plot text ht (mm) input 10

height (in mm) to draw the geometry annotation values on any plots of the section view.

Text colour input cyan available colours

colour of the geometry annotation values drawn on the screen and any plots.

Arrow colour input green available colours

colour of the HG arrows drawn on the screen and any plots.

HG view arrow ht (pix) input 3

height (in pixels) of the arrow head above the arrow line when drawing the HG arrows in the view.

HG plot arrow ht (mm) input 1.5

height (in mm) of the arrow head above the arrow line when drawing the HG arrows on any plots of the section view.

VG view arrow ht (pix) input 3

height (in pixels) of the arrow head above the arrow line when drawing the VG arrows in the view.

VG plot arrow ht (mm) input 1.5

height (in mm) of the arrow head above the arrow line when drawing the VG arrows on any plots of the section view.

Draw grades as 1 in tick box

if ticked, grades are drawn as 1:in values.
if not ticked, grades as drawn as percent (%)

Set button

set the section settings values to the values in the above panel fields. The section view is then redrawn using these values.

Continue to 9.3.1.7 Grade Annotation or return to 9.3.5 Section Utilities to 9.3 Section View Menu.
9.3.1.7 Grade Annotation

Position of option on menu: Section View Menu View => Settings => Grade annot

The grade annot option allows the user to specify whether the grades and plan widths of string links are displaced for strings profiled in the section view.

Selecting Grade annot fires up the Section Grade Annotations panel.

![Section Grade Annotations panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td>current view</td>
<td>available views</td>
</tr>
</tbody>
</table>

view to set grade annotation parameters for.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show grade</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
</tbody>
</table>

if ticked, the value of the grades (in percent grade) and plan widths of string links for any strings selected as the primary string will be shown plus an arrow indicating the chainage extent of the grade.

If no ticked, the grades and widths will not be displayed in the section view or on any plots of the section view.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Text style</td>
<td>input</td>
<td>1</td>
<td>text style to be used for all text in the grade annotation.</td>
</tr>
<tr>
<td>Text ht (pix)</td>
<td>input</td>
<td>8</td>
<td>height (in pixels) to draw the grade annotation values in the section view (the screen width is approximately 1000 pixels).</td>
</tr>
<tr>
<td>Text colour</td>
<td>input</td>
<td>cyan</td>
<td>available colours</td>
</tr>
</tbody>
</table>

colour of the grade annotation values drawn on the screen and any plots.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrow ht (pix)</td>
<td>input</td>
<td>3</td>
<td>height (in pixels) of the arrow head above the arrow line when drawing the arrows in the section view.</td>
</tr>
<tr>
<td>Arrow colour</td>
<td>input</td>
<td>cyan</td>
<td>available colours</td>
</tr>
</tbody>
</table>

colour of the arrows drawn on the screen.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Set</td>
<td>button</td>
<td></td>
<td>set the section settings values to the values in the above panel fields. The section view is then redrawn</td>
</tr>
</tbody>
</table>

Section View Menu
using these values.

Continue to 9.3.1.8 Section View Exaggeration or return to 9.3.5 Section Utilities to 9.3 Section View Menu.

9.3.1.8 Section View Exaggeration

Position of option on menu: Section View Menu View => Settings => Exaggeration

The Exaggeration option allows the user to specify the vertical exaggeration for the section view. The heights (z values) are multiplied by the vertical exaggeration value before drawing on the section view.

Whenever a string is profiled on the section view, the vertical exaggeration is displayed inside square brackets after the view name in the view title area. For example \([10x]\) is a vertical exaggeration of 10.

Selecting Exaggeration fires up the Section View Exaggeration panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td>current view</td>
<td>available views</td>
</tr>
</tbody>
</table>

view to set exaggeration parameters for:

Vertical exaggeration input 10 1,5,10

value to multiply the heights (z values) by before drawing in the section view.

Set button

set the vertical exaggeration to the value in the vertical exaggeration field.

Return to 9.3.5 Section Utilities to 9.3 Section View Menu.
9.3.2 Profile

Position of menu: Section View Menu View => Profile

The Profile option is used to display a long-section view of a selected string. That is, the coordinate system for the section view is defined in terms of the chosen string by
(a) the chainage along the selected string defines the horizontal axis for the section view
(b) the vertical axis is the z-axis (heights).

Hence a (chainage,height) diagram of the selected string is drawn in the section view. The scale is automatically chosen so that all of the selected string fits into the section view.

The string selected to be profiled is called the primary string for the section view.

The model and name of the primary string is displayed in the section view's title area (after the vertical exaggeration).

The primary string is drawn on the section view in the primary string's colour.

If the primary string is an alignment or pipeline string, the radii and chainage extent of any horizontal curves can be displayed in the section view plus any vertical curve lengths and percent-grades of vertical straights. For other strings, the grade and widths of each string link can be displayed.

For any tins in the models added to the section view, the section along the primary string through the tin will be calculated and drawn on the section view in the same colour as the tin colour.

Any strings (service items) in models added to the section view, the parts of the strings in any corridor defined for the primary string will be calculated and drawn on the section view in the same colour as the strings.

For any extrusions, trimeshes and meshes in models added to the section, the section along the primary string through the objects will be calculated and drawn on the section view.
Each time a new primary string is chosen with the profile option, the sections along the new primary string are calculated and displayed for all the tins and strings in the models added to the section view.

The Profile walk-right menu is

![Profile Menu](image)

The **One string** option allows one string to be profiled and then the option terminates (see 9.3.2.1 One String).

The **Many strings** option profiles one string and then allows the user to select another string to be profiled without leaving the profile option. The Many strings option is very useful when a number of strings need to be examined one after another in a section view (see 9.3.2.2 Many Strings).

The **Model strings** option profiles the strings from a given model, one at a time. For example, it is used to sequentially examine each cross-section down a road when all the cross-sections are stored in one model (see 9.3.2.3 Model Strings).

The **2 points** option dynamically profiles between two selected points. The profile between the first selected point and the cursor position is dynamically recalculated as the cursor is moved around the view (see 9.3.2.4 2 Points).

The **Perpendicular to CL** option dynamically profiles along a cross-section which is perpendicular to a selected string. The cross section profile is dynamically recalculated as the cursor is moved along the selected string (see 9.3.2.5 Perpendicular to CL).

The **One substring** and **Many substrings** options are used to section along house connections and property controls for sewer and drainage strings (see 9.3.2.6 One Substring, 9.3.2.7 Many Substrings).

For the option One String, go to 9.3.2.1 One String

Many strings 9.3.2.2 Many Strings

Model strings 9.3.2.3 Model Strings

2 points 9.3.2.4 2 Points

Perpendicular to CL 9.3.2.5 Perpendicular to CL

One substring 9.3.2.6 One Substring

Many substrings 9.3.2.7 Many Substrings

Super alignment 9.3.2.8 Super alignment
9.3.2.1 One String

Position of option on menu: Section View Menu View => Profile => One string

After choosing the One string option, the user selects the string to be profiled. The option then terminates.

To cancel the option without selecting any string, click LB to bring up the Pick Ops menu and select Cancel.

Return to 9.3.2 Profile or 9.3 Section View Menu.

9.3.2.2 Many Strings

Position of option on menu: Section View Menu View => Profile => Many strings

The many strings option is designed for profiling a number of strings one after another. After selecting Many strings, a string is selected for profiling. After the string has been profiled, another string is selected for profiling.

The option will keep profiling selected strings until the option is terminated by clicking LB to get the Pick Ops menu and selecting Cancel.

Return to 9.3.2 Profile or 9.3 Section View Menu.

9.3.2.3 Model Strings

Position of option on menu: Section View Menu View => Profile => Model strings

After selecting Model strings, the Profile Model on Section panel is displayed.

![Profile Model on Section Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>View to set profile parameters for</td>
<td>view box</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>Model</td>
<td>Name of the model containing the strings to be profiled one at a time</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Dynamic profile</td>
<td></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
if ticked, as you move over each string in the given model in a plan or perspective view, the string under the mouse is selected and profiled on the section view.

Item no.

input/output

number of the string in the model being profiled.

Item chainage

input/output

only applicable if the selected strings are X-section strings

The chainage of the section string in the model being profiled. Also if a chainage is typed in followed by an <Enter> then the model will be searched for a X-section of that chainage and if it exists, it will be profiled.

Highlight

tick box
tick

if ticked, the string being profiled in the section view is locked and highlighted on any views where it is visible.

Fit view

tick box
tick

if ticked, the string being profiled is fitted to the section view.
if not ticked, the same scale is used for the next section being profiled.

Autopan

tick box

if ticked, then if the profiled string is not visible on any plan views that the model containing the string is on, then the plan view is modified so that the profiled string is in the centre of the plan view.

Pick

button

after selecting the pick button, a string is selected. The string is automatically profiled and its model becomes the model being profiled and item no. is set to the string’s number in the model.

Prev

button

the previous string given by the item no. field is profiled and the item no. field decremented by one.

Next

button

the next string given by the item no. field is profiled and the item no. field incremented by one.

How to Use the Panel

(a) Either a string is picked after selecting the Pick button, or the name of the model containing the strings to be profiled is entered into the model field.

(b) The item no. field is initially set to the picked strings item no. or 0, but can be set to the number of any string in the model.

(c) When the Prev or Next button is selected, the string given by the number in the item no. field is decremented or incremented and the string given by the new item no. is profiled in the section view.

Hence with the Model strings option, a number of strings in the one model can be profiled (one after another) by simply repeatedly selecting the Prev or Next buttons.

Return to 9.3.2 Profile or 9.3 Section View Menu.

9.3.2.4 2 Points

Position of option on menu: Section View Menu View => Profile => 2 points

After selecting 2 points, the Two Point Profile on Section panel is displayed.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>input/output</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td></td>
<td></td>
<td>view to set profile parameters for.</td>
<td></td>
</tr>
</tbody>
</table>

Start X Y Z

- input/output
- xyz ops menu
- co-ordinates of the start section point. New values can be typed, or a point selected using the xyz ops pop-up menu.

End X Y Z

- input/output
- xyz ops menu
- co-ordinates of the end section point. New values can be typed, or a point selected using the xyz ops pop-up menu.

Dynamic

- tick box
- tick
- if ticked, the profile will be dynamically calculated between the first selected point and the cursor position.

Keep section on finish

- tick box
- if ticked, the two point profile will be remembered by the section view when the Finish button is selected.
- if not ticked, the definition of the two points to profile is lost when the Finish button is selected.

Start End pts

- button
- after selecting the Start End pts button, the first point of the section to be profiled is selected and its value written to the start xyz field. If dynamic is set on, then a profile from the first point to the cursor position is automatically calculated as the cursor is moved around the view. Selecting the second points finalises the section and the co-ordinates of the final point is written to end xyz field.

Profile

- button
- after selecting the Profile button, a section is calculated between the start xyz and end xyz points.

Return to 9.3.2 Profile or 9.3 Section View Menu.
9.3.2.5 Perpendicular to CL

Position of option on menu: Section View Menu View => Profile => Perpendicular to CL

After selecting Perpendicular to CL, the Centreline Profile on Section panel is displayed.

![Centreline Profile on Section Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view to set profile parameters for.</td>
<td>view box</td>
<td>current view</td>
<td>available views</td>
</tr>
<tr>
<td>LHS offset</td>
<td>distance (in world units) to take the section to the left of the selected string.</td>
<td>input</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>RHS offset</td>
<td>distance (in world units) to take the section to the right of the selected string.</td>
<td>input</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>String</td>
<td>the selected string is used to specify the position where a cross-section is defined. Once the string is selected, then as the cursor is moved around in a view, its position will be dynamically be dropped perpendicularly onto the selected string, and a cross-section defined at right angle to the selected string. A profile along the cross-section will then be drawn in the section view. The cross-section profile will be dynamically modified as the cursor position is modified.</td>
<td>string-select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keep section on finish</td>
<td>tick box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chainage</td>
<td>dynamically displays the centreline chainage of the selected string</td>
<td>output</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Return to 9.3.2 Profile or 9.3 Section View Menu.
9.3.2.6 One Substring

Position of option on menu: Section View Menu View =>Profile =>One substring

As well as profiling strings, the One substring option can profile a house connection or property control (substrings) in a drainage or sewer string.

After choosing One substring from the menu, the user selects a substring for profiling. After the string or substring has been profiled, the option terminates.

Return to 9.3.2 Profile or 9.3 Section View Menu.

9.3.2.7 Many substrings

Position of option on menu: Section View Menu View =>Profile =>Many substrings

The Many substrings option is designed for profiling a number of substrings, one after another.

After choosing Many substring, the user selects a substring for profiling. After the substring has been profiled, another string or substring can be chosen for profiling.

The option is terminated by clicking LB to get the pick ops menu and selecting cancel.

Return to 9.3.2 Profile or 9.3 Section View Menu.

9.3.2.8 Super alignment

Position of option on menu: Section View Menu View =>Profile =>Super alignment

A super alignment contains one horizontal string but can have more than one vertical dimension. For example, vertical geometry, super elevation, widening and sight distance.

When a super alignment is being profiled on the section view, this option allows you to specify which of the vertical dimensions is displayed on the section view.

Selecting Super alignment brings up the Select Super Alignment Profile panel.

![Select Super Alignment Profile]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>input/output</td>
<td>current section view</td>
<td>all views</td>
</tr>
</tbody>
</table>

The view that the super alignment is profiled on.

| Profile Name | choice box | super alignment dimensions on the profiled super alignment |

If profile name is blank, all profiles are shown or the user can select an individual profile to display from the choice box.

The possible vertical dominions are Left Super Elevation, Right Super Elevation, Left Widening, Right...
Widening, Sight Distance and Stopping Distance.

Set

profile the super alignment with the selected vertical dimension.

Return to 9.3.2 Profile or 9.3 Section View Menu.
9.3.3 Regenerate

Position of option on menu: Section View Menu ➞ View ➞ Regenerate

The *Regenerate* option is used to re-calculate and re-display the profile of the primary string of the section view. This is necessary because modifications to the primary string or any strings or tins one the view may make the initial profile invalid. A *Regenerate* is a quick method of bringing the profile up to date.

Continue to [9.3.4 Section Plotting](#) or return to [9.3 Section View Menu](#).
9.3.4 Section Plotting

Position of menu: Section View Menu View =⇒ Plotting

The Plotting walk-right menu contains the options Plot, Long plot, X plot, Drainage/Sewer, Melbourne Water and Pipeline.

The Plot option is used to make a plot file of all the information displayed in the section view.

The Long plot option is used to make a traditional long section plot with string chainages and elevations displayed for each of the strings in the section view. The form of the long plot can be finely controlled by a file of plot parameters.

The X plot creates the traditional stacked x-section plots for each x-section string in a given model. The form of the x-plot can be finely controlled by a file of plot parameters.

![Plotting menu]

For the options:

- **Plot** 9.3.4.1 Section Plot
- **Long plot** 25.8.4 Long Plot
- **X plot** 25.8.3 X Plot
- **Drainage/Sewer** 22.9.2 Drainage Longsections
- **Melbourne water** 22.9.3 Melbourne Water
- **Pipeline** 22.5 Plots

Or continue to 9.3.5 Section Utilities or return to 9.3 Section View Menu.
9.3.4.1 Section Plot

Position of option on menu: Section View Menu → View → Plotting → Plot

The Plot option writes out all the information displayed in the section view to either a plot file (in a user selected format) or to a 12d Model model. The user selects a scale for the plot and the sheet width and height are calculated by 12d Model.

After selecting Plot plot, the **Section Plot** panel is displayed.

![Section Plot Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>input/output</td>
<td>current view</td>
<td>available views</td>
<td></td>
</tr>
<tr>
<td>Plotter type</td>
<td>input</td>
<td>hp</td>
<td>hp, dxf, postscript etc.</td>
<td></td>
</tr>
<tr>
<td>Plot file</td>
<td>input</td>
<td>depends on plotter type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean model beforehand</td>
<td>choice box</td>
<td>do not clean</td>
<td>prompt for clean</td>
<td>always clean</td>
</tr>
<tr>
<td>Scale 1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheet width (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheet height (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plot Sheet Margin</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title and border</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text style</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text height (mm)</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title line 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title line 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title colour</td>
<td></td>
<td>cyan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The plotter option can be set to plot to a 12d Model model.

If **always clean**, the model is cleaned before the plot is created.

If **prompt for clean**, the user is prompted that the model will be cleaned before the plot is created.
If do not clean, the model is not cleaned before the plot is created.

Scale 1: input
if a value is entered by the user and an <enter> given, the sheet width and height required by the plot are calculated and displayed in the sheet width and sheet height fields.

Sheet width (mm) output
if a value is entered by the user and an <enter> given, the scale and height required by the plot are calculated and displayed in the scale and sheet height fields. The units for sheet width are millimetres.

Sheet height (mm) output
if a value is entered by the user and an <enter> given, the scale and width required by the plot are calculated and displayed in the scale and sheet width fields. The units for sheet height are millimetres.

Title and border tick box tick
if ticked then a border and two lines of title are placed on the bottom of the plot

Text style input 1
text style for the title information

Text Height (mm) input 10
height (in millimetres) to draw the two lines of title information

Title line 1/2 input
first/second line of title information

Title colour input cyan available colours
colour used for the border and the title information

Plot button
write out the plot of the information displayed in the view to the file given in the plot file field. The format of the file is given by the plotter type

Continue 9.3.4.2 Long Plot or return to 9.3.4 Section Plotting or 9.3 Section View Menu.
9.3.4.2 Long Plot

Position of option on menu: Section View Menu, View => Plotting => Long plot

The option is for creating long section plots.

The *Long plot* option is documented in the section 25.8.4 *Long Plot*.

Continue 9.3.4.3 *X Plot* or return to 9.3.4 *Section Plotting* or 9.3 *Section View Menu*.

9.3.4.3 X Plot

Position of option on menu: Section View Menu, View => Plotting => X plot

The *X plot* option is for creating x-section plots.

The option is documented in the section 25.8.3 *X Plot*.

Continue 9.3.4.4 *Drainage/Sewer Plot* or return to 9.3.4 *Section Plotting* or 9.3 *Section View Menu*.

9.3.4.4 Drainage/Sewer Plot

Position of option on menu: Section View Menu, View => Plotting => Drainage/Sewer

The *Drainage/Sewer plot* option is used to make the long section plots for a drainage or sewer network.

This option is documented in the section 22.9.2 *Drainage Longsections*.

Continue 9.3.4.5 *Melbourne Water Plot* or return to 9.3.4 *Section Plotting* or 9.3 *Section View Menu*.

9.3.4.5 Melbourne Water Plot

Position of option on menu: Section View Menu, View => Plotting => Melbourne Water

The *Melbourne Water plot* option is used to make the long section plots for a sewer network to Melbourne Water standards.

This option is documented in the section 22.9.3 *Melbourne Water*.

Continue 9.3.4.6 *Pipeline Plot* to return to 9.3.4 *Section Plotting* or 9.3 *Section View Menu*.

9.3.4.6 Pipeline Plot

Position of option on menu: Section View Menu, View => Plotting => Pipeline

The *Pipeline plot* option is used to make the long section plots for a sewer network to Melbourne Water standards.

This option is documented in the section 22.5.1 *Longsections*.

Return to 9.3.4 *Section Plotting* or 9.3 *Section View Menu*.
9.3.5 Section Utilities

Position on menu: Section View Menu → View ➔ Utilities

The Utilities menu contains miscellaneous options involving the section view. The **Utilities** walk-right menu is

![Utilities Menu]

For the option *New view settings*, go to the section

- 9.3.5.1 New View Settings
- 9.3.5.2 Report
- 9.3.5.3 VG Edit
- 9.3.5.4 View Dump

Or return to 9.3 Section View Menu.
9.3.5.1 New View Settings

Position of option on menu: Section View Menu View =>Utilities =>New view settings

The New view settings option displays the current minimum and maximum chainage and height values for the view, and permits the user to specify new values as the section's viewing parameters.

Selecting New view settings fires up the Section View panel.

![Section View Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view to set section parameters for:</td>
<td>input/output</td>
<td>current view available views</td>
</tr>
<tr>
<td>chain min/max</td>
<td>minimum/maximum string chainage for the view. Chainage is used as the x-axis co-ordinates in a section view.</td>
<td>input/output</td>
<td>current chainage min/max</td>
</tr>
<tr>
<td>Ht min/max</td>
<td>minimum/maximum height (z value) for the view. Height is used as the y-axis co-ordinates in a section view.</td>
<td>input/output</td>
<td>current height min/max</td>
</tr>
<tr>
<td>View button</td>
<td>define the section view parameters according to the information in the panel. If the box given by the chainage and height values in the panel is not the same shape as the view itself, the chainage and height values will be modified so that the chainage and height values match the view shape. The final chainage and height values are displayed in the panel.</td>
<td>button</td>
<td></td>
</tr>
</tbody>
</table>

Continue to 9.3.5.2 Report or return to 9.3.5 Section Utilities or 9.3 Section View Menu.
9.3.5.2 Report

Position of option on menu: Section View Menu View => Utilities => Report

This Report option is for producing information on all the items displayed in the section view.

After selecting Report, the Service Items Report on Section View panel is displayed.

For the profiled string, this option generates a report which includes the

- section through any tins on the section view
- name and model of any services in the corridor defined by the section view
- co-ordinates and chainages of the parts of the service in the corridor, and the chainage and offset for each of the point of the parts projected onto the profiled string.
- clearance at the point where any service goes under or over the profiled string.

Continue to 9.3.5.3 VG Edit or return to 9.3.5 Section Utilities or 9.3 Section View Menu.
9.3.5.3 VG Edit

Position of option on menu: Section View Menu View => Utilities => VG Edit

The VG edit option is used to interactively create and modify the vertical geometry of a 12d Model alignment string, or the vertical information of any string that can be edited in a section view (e.g. drainage string). Vertical geometry can only be created for an existing string.

After selecting the VG edit option, the VG edit string panel is placed on the screen.

The option is already in Pick mode and the user simply picks and accepts the string whose vertical geometry is to be created and/or edited. The Pick Edit button only needs to be used if the pick was cancelled from the Pick Ops menu.

Once the string has been selected, it is automatically made the primary string for the section view and a string profile created along the string.

As discussed in the section view profile options, for each tin in a model added to the section view, the section through the tin along the primary string (the selected string) is calculated and displayed in the section view.

The VG edit option then fires up the standard string editor which is described in detail in the string edit options.

Continue to 9.3.5.4 View Dump or return to 9.3.5 Section Utilities or 9.3 Section View Menu.
9.3.5.4 View Dump

Position of option on menu: Section View Menu View => Utilities => Dump

This option is used to write the view out in a user selected format. It is the same as the dump option for the plan view and is fully documented in the plan View => Utilities section.

For more information on this option please go to 12.7 Dump.

Return to 9.3.5 Section Utilities or 9.3 Section View Menu.
9.4 Options Common to All Views

Some options are common to all view types and will be documented in the one place rather than for each View type.

See

9.4.1 Model Ops
9.4.2 Redraw
9.4.3 Fit
9.4.4 Previous
9.4.5 Clone
9.4.6 Properties
9.4.7 Delete
9.4.1 Model Ops

Position of menu: Plan View Menu View => Models
Position of menu: Section View Menu View => Models
Position of menu: Perspective View Menu View => Models

Walking right on Models brings up the Model Ops walk-right menu which is used to add and remove models from the view.

These options are the same for Plan, Perspective and Section views.

The Model Ops walk-right is

For the option:
- Models, go to 9.4.1.1 Models
- Add model 9.4.1.2 Add Model
- Add all models 9.4.1.3 Add All Models
- Remove model 9.4.1.4 Remove Model
- Remove all models 9.4.1.5 Remove All Models
- Add tin models 9.4.1.6 Add Tin Models
- Remove tin models 9.4.1.7 Remove Tin Models
- Add tagged models 9.4.1.8 Add Tagged Models
- Remove tagged models 9.4.1.9 Remove Tagged Models
- Model order 9.4.1.10 Model Order
- Models to front 9.4.1.11 Models to Front
- Models to back 9.4.1.12 Models to Back
- Calc extents 9.4.1.13 Calc Extents

Or return to 9 Menus on Views
9.4.1.1 Models

Position of menu: Plan View Menu
View => Models => Models

Position of menu: Section View Menu
View => Models => Models

Position of menu: Perspective View Menu
View => Models => Models

Models is a walk-right option which lists the models currently attached to that view.

If a model is selected from the displayed list, the model will be redrawn on the view. It will also be brought to the top of the display list, i.e., it is in the foreground and all the other models on the view are drawn before it.

Continue to 9.4.1.2 Add Model or return to 9 Menus on Views
9.4.1.2 Add Model

Position of menu: Plan View Menu View => Models => Add model
Position of menu: Section View Menu View => Models => Add model
Position of menu: Perspective View Menu View => Models => Add model

The Add model menu item operates two ways.

The Add model walk-right brings up the Models to Add list which is a list of all the models not currently added to the view.

By double clicking on one of the models from the Models to Add list, it is added to the view. The list is then removed. To add a number of models from the list to the view, select the models in the list in the standard Microsoft way and then click on Select.

If the Models to Add list has been moved or pinned, models can be selected from the list and added to the view and the Models to Add list will remain with the selected models removed from the list. When all the required models have been added, delete the list using the [X] button.

If Add model itself is activated (by clicking LB when Add model is highlighted), the Add Model to a
View panel appears. The Add Model to a View panel can be used to create new models as well as add existing models to any view. Wild cards and characters are allowed for adding models.

Any models added to a view are immediately drawn on the view.

Continue to 9.4.1.3 Add All Models or return to 9 Menus on Views.
9.4.1.3 Add All Models

Position of option on menu: Plan View Menu View => Models => Add all models
Position of option on menu: Section View Menu View => Models => Add all models
Position of option on menu: Perspective View Menu View => Models => Add all models

The Add all models option adds all the models to the view.

Continue to 9.4.1.4 Remove Model or return to 9 Menus on Views
9.4.1.4 Remove Model

<table>
<thead>
<tr>
<th>Position of menu:</th>
<th>Plan View Menu</th>
<th>View => Models => Remove model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position of menu:</td>
<td>Section View Menu</td>
<td>View => Models => Remove model</td>
</tr>
<tr>
<td>Position of menu:</td>
<td>Perspective View Menu</td>
<td>View => Models => Remove model</td>
</tr>
</tbody>
</table>

The Remove model menu item also operates in two ways. The Remove model walk-right brings up the Models to Remove list which is a list of all the models currently added to the view.

By double clicking on one of the models from the Models to Remove list, it is removed from the view. The list is then removed. To remove a number of models on the list from the view, select the models in the list and then click on Select.

If the Models to Remove list has been moved or pinned, models can be selected from the list and removed from the view and the Models to Remove list will remain with the selected models removed from the list. When all the required models have been removed, delete the list using the [X] button.

If Remove model itself is activated, the Remove Model from a View panel appears. The Remove Model from a View panel can be used to remove any models from any view. Wild cards and characters are allowed for removing models.

NOTE
Models still exist after they are removed from a view. Models can only be deleted from 12d Model by using the Models=>Delete option.

Continue to 9.4.1.5 Remove All Models or return to 9 Menus on Views
9.4.1.5 Remove All Models

Position of option on menu:
- Plan View Menu View => Models => Remove all models
- Section View Menu View => Models => Remove all models
- Perspective View Menu View => Models => Remove all models

The Remove all models option removes all the models from the view and clears the view.

Continue to 9.4.1.6 Add Tin Models or return to 9 Menus on Views

9.4.1.6 Add Tin Models

Position of menu:
- Plan View Menu View => Models => Add tin models
- Section View Menu View => Models => Add tin models
- Perspective View Menu View => Models => Add tin models

The Add tin models walk-right brings up the Tin Models to Add list of all tins in the project whose models have not been added to the view.

By double clicking on one of the tins from the Tin Models to Add list, all the models in the tin are added to the view. The list is then removed. To add the models from a number of tins from the list to the view, select the tins in the list in the standard Microsoft way and then click on Select.

If the Tin Models to Add list has been moved or pinned, tins can be selected from the list and their models added to the view and the Tin Models to Add list will remain with the selected tins removed from the list. When all the required tins have been added, delete the list using the [X] button.

Any models added to a view are immediately drawn on the view.

Continue to 9.4.1.7 Remove Tin Models or return to 9 Menus on Views
9.4.1.7 Remove Tin Models

Position of menu:
- Plan View Menu: View => Models =>Remove tin models
- Section View Menu: View => Models =>Remove tin models
- Perspective View Menu: View => Models =>Remove tin models

The **Remove tin models** walk-right brings up the **Tin Models to Remove** list of all tins whose models are currently added to the view.

By double clicking on one of the tins from the **Tin Models to Remove** list, all the models in the tin are removed from the view. The list is then removed. To remove the models from a number of tins on the list from the view, select the tins in the list and then click on **Select**.

If the **Tin Models to Remove** list has been moved or pinned, tins can be selected from the list and removed from the view and the **Tin Models to Remove** list will remain with the selected tins removed from the list. When all the required tins have been removed, delete the list using the [X] button.

Continue to [9.4.1.8 Add Tagged Models](#) or return to [9 Menus on Views](#).
9.4.1.8 Add Tagged Models

Position of menu: Plan View Menu \ View \ Models \ Add tagged models

Position of menu: Section View Menu \ View \ Models \ Add tagged models

Position of menu: Perspective View Menu \ View \ Models \ Add tagged models

The Add tagged models walk-right brings up the Tagged Models to Add list of all the tags (first level and subtags) defined in the project.

![Tagged Models to Add](image)

By double clicking on one of the tag names from the Tagged Models to Add list, all the models with that tag name, or models whose tag is a subtag of the tag name, are added to the view. The list is then removed. To select a number of tags from the list, select the tags in the standard Microsoft way and then click on Select.

If the Tagged Models to Add list has been moved or pinned, tags can be selected from the list and their models added to the view and the Tagged Models to Add list will remain with the selected tags removed from the list. When all the required tags have been added, delete the list using the [X] button.

Any models added to a view are immediately drawn on the view.

Continue to 9.4.1.9 Remove Tagged Models or return to 9 Menus on Views.
9.4.1.9 Remove Tagged Models

Position of menu: Plan View Menu View => Models => Remove tagged models
Position of menu: Section View Menu View => Models => Remove tagged models
Position of menu: Perspective View Menu View => Models => Remove tagged models

The Remove tagged models walk-right brings up the Tagged Models to Remove list of all tins whose models are currently added to the view.

By double clicking on one of the tag name from the Tagged Models to Remove list, all the models with that tag name, or models whose tag is a subtag of the tag name, are removed from the view. The list is then removed. To select a number of tags from the list, select the tags in the standard Microsoft way and then click on Select.

If the Tagged Models to Remove list has been moved or pinned, tags can be selected from the list and removed from the view and the Tagged Models to Remove list will remain with the selected tags removed from the list. When all the required tags have been removed, delete the list using the [X] button.

Continue to 9.4.1.10 Model Order or return to 9 Menus on Views
9.4.1.10 Model Order

Position of menu: Plan View Menu View => Models => Model order
Position of menu: Section View Menu View => Models => Model order
Position of menu: Perspective View Menu View => Models => Model order

The Model order options displays the list of all models on a view in the reverse model drawing order. That is, the first model on the list is the last model drawn and hence the most visible model.

Selecting Model order brings up the Model Order panel.

The fields and buttons used in this panel have the following functions.

Field Description	Type	Defaults	Pop-Up
Model | list of models on the view in the reverse drawing order. That is, the first model on the list is drawn last and so is the most visible. | | |
Up Arrow, Down Arrow | when a model name is highlighted, clicking the Up/Down arrow will change the order of the model. | | |
Delete | when a model name is highlighted, clicking the Delete icon will remove the model from the view. when a model name is highlighted, clicking on the Cross will remove the model from the view. | | |
Auto update view tick box tick
if ticked then the view is redrawn each time a model is moved in the list or added/removed from the list.

Update button
redraws the view using the new model order.

Continue to 9.4.1.11 Models to Front or return to 9 Menus on Views
9.4.1.11 Models to Front

Position of menu: Plan View Menu View => Models => Models to front

Position of menu: Section View Menu View => Models => Models to front

Position of menu: Perspective View Menu View => Models => Models to front

Models to front is a walk-right option. When the walk-right is chosen, the list of models currently attached to that view is displayed.

If a model is selected from the displayed list, the model will be the last to be drawn on the view. Hence, it is in the foreground and all the other models on the view are drawn before it.

Continue to 9.4.1.12 Models to Back or return to 9 Menus on Views
9.4.1.12 Models to Back

Position of menu: Plan View Menu View => Models => Models to back
Position of menu: Section View Menu View => Models => Models to back
Position of menu: Perspective View Menu View => Models => Models to back

Models to back is a walk-right option. When the walk-right is chosen, the list of models currently attached to that view is displayed.

If a model is selected from the displayed list, the model will be the first to be drawn on the view. Hence, it is in the background and all the other models on the view are drawn after it.

Continue to 9.4.1.13 Calc Extents or return to 9 Menus on Views
9.4.1.13 Calc Extents

Position of option on menu: Plan View Menu View => Models => Calc extents
Position of option on menu: Section View Menu View => Models => Calc extents
Position of option on menu: Perspective View Menu View => Models => Calc extents

For each model on the view, the size of the x, y, z box required to enclose the data in the model is calculated. That is, the option calculates the model bounding box for each model on the view.

Return to 9 Menus on Views
9.4.2 Redraw

Position of option on menu: Plan View Menu View => Models =>Redraw

Position of option on menu: Section View Menu View => Models =>Redraw

Position of option on menu: Perspective View Menu View => Models =>Redraw

As its name implies, this option redraws all the models on the view using the current drawing parameters. This is the same as clicking MB in the view title area.

NOTES

1. When a model is removed from a view, it is "undrawn", that is, drawn in black. This may also black out important details of other models still attached to the view. If this happens, use the **redraw** option to refresh the view.

2. Clicking MB in the view-title area is the easiest method of redrawing a view.

Return to **9 Menus on Views**

9.4.3 Fit

Position of option on menu: Plan View Menu View => Models =>Fit

Position of option on menu: Section View Menu View => Models =>Fit

Position of option on menu: Perspective View Menu View => Models =>Fit

When the **Fit** option is chosen,**12d Model** calculates viewing parameters which will allow all the models attached to the view to be fully displayed. The view is then redrawn using these new drawing parameters.

Note if the data does not fill the view after a fit, then a **Calc Extents** may be needed to re-calculate the model bounding boxes.

Return to **9 Menus on Views**

9.4.4 Previous

Position of option on menu: Plan View Menu View => Models =>Previous

Position of option on menu: Section View Menu View => Models =>Previous

Position of option on menu: Perspective View Menu View => Models =>Previous

Each time a view has its viewing parameters changed, the old set is recorded as the previous parameter set. The previous option sets the viewing parameters back to this previous parameter set.

The view is then redrawn using those settings. The last set then becomes the old set.

Return to **9 Menus on Views**
9.4.5 Clone

Position of option on menu: Plan View Menu View => Models =>Clone

Position of option on menu: Section View Menu View => Models =>Clone

Position of option on menu: Perspective View Menu View => Models =>Clone

If LB is clicked on Clone, then a new view identical to the original view with all the same models on the new plus and apart form the view name, all the new view setting are identical to the original view.

The view name of the Cloned view is the name of the original view with " Copy" appended to it.

A Plan/Perspective/Section View Properties panel for the new view is then brought up so that any of the View properties (for example the view name) can be quickly changed. See 9.4.6 Properties

Return to 9 Menus on Views
9.4.6 Properties

Position of option on menu: Plan View Menu View => Models => Properties
Position of option on menu: Section View Menu View => Models => Properties
Position of option on menu: Perspective View Menu View => Models => Properties

Clicked LB on the on Properties button brings up the Plan View Properties, Perspective View Properties, or Section View Properties panel for that view and view type.

The View Properties panels display all the settings for the view in a tree structure and clicking on a node brings up various settings on the right hand side of the panel. Many of the settings can then be changed, and the changes take place immediately without having to press another button.
Options Common to All Views

Return to 9 Menus on Views
9.4.7 Delete

<table>
<thead>
<tr>
<th>Position of option on menu:</th>
<th>Plan View Menu</th>
<th>View =>Delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position of option on menu:</td>
<td>Section View Menu</td>
<td>View =>Delete</td>
</tr>
<tr>
<td>Position of option on menu:</td>
<td>Perspective View Menu</td>
<td>View =>Delete</td>
</tr>
</tbody>
</table>

This option is used to delete the view and remove it from the screen. After selecting the Delete option, a Delete View yes-no panel appears. If Yes is selected, the view is deleted and removed from the screen. Selecting No removes the Yes-No pop-up and leaves the view as it is.

Return to 9 Menus on Views
9.5 View Buttons

For each view type, there are a number of selected View menu options available as buttons (view buttons) in the view title area.

The options on each view type are

To select one of the view buttons, click LB whilst the cursor is over the button. Note that the view buttons do not highlight when the cursor passes over them.

If RB is clicked over any view button other than Profile on the section view, the View menu for the view type will be displayed.

For documentation on the view buttons see:

9.5.1 Plan View Buttons.
9.5.2 Perspective View Buttons.
9.5.3 Section View Buttons.
9.5.1 Plan View Buttons

Menu

If the **Menu** button is selected in the *view button area* of any view, or if **RB** is clicked in the *view-title area* or in the *view-button area*, a new menu called the **View** menu appears.

Because of the differences between plan, perspective and section views, the options on the **View** menu vary for each view type.

The plan **View** menus is

![Image of View menu]

The **View** menu is removed by selecting the **[X]** button or if the **View** menu hasn't been moved, by simply clicking **RB** again in the *view-title* or *view button* area. If the **View** menu has been moved, clicking **RB** will warp the cursor to the moved View menu.

+ or Add

The **+** view button works in four modes.

- clicking **LB** whilst the cursor is over the **+** brings up the **Models to Add** list. This list contains all of the models not yet added to the view.
- typing a keyboard character whilst the cursor is over the **+** brings up a **Models to Add** list containing only those models not on the view with names beginning with the typed character.
- typing a ***** character whilst the cursor is over the **+** brings up a **Add Models to View** panel which can then be used with wild cards and characters.
- clicking **MB** whilst the cursor is over the **+** brings up the **Add Models to View by Pick** panel and starts up a **same as** for a view. Models to add to the view are then selected by simply picking a string from the model. See 4 Tools and Concepts for further documentation on **same as**.
- clicking **RB** whilst the cursor is over the **+** brings up the **View** panel documented earlier in this...
For the Same as option for the + and - view buttons, go to 9.5.4 Same As for Views.

-or Remove

The - view button works in four modes.

s clicking LB whilst the cursor is over the - brings up the Models to Remove list. This menu lists all of the models on the view.

s typing a keyboard character whilst the cursor is over the - brings up a Models to Remove list containing only those models on the view with names beginning with the typed character.

s typing a * character whilst the cursor is over the - brings up a Remove Models from View panel which can then be used with wild cards and characters.

s clicking MB whilst the cursor is over the - brings up the Remove Models from View by Pick panel and starts up a Same as for a view. Models to remove from the view are then selected by simply picking a string from the model. See the next chapter for further documentation on Same as.

s clicking RB whilst the cursor is over the - brings up the View panel documented earlier in this chapter.

For the Same as option for the + and - view buttons, go to 9.5.4 Same As for Views.

Fit
This is the same as Fit from the view menu.
If LB is clicked on the Fit, then the Fit option is activated.
If RB is clicked on the Fit, then the View option is activated.

Pan
This is the same as Pan from the View=>Pan menu.
If LB is clicked on the Pan, then the Pan option is activated.

Zoom
This is the same as the two point Zoom option from the plan View=>Zoom menu.
If LB is clicked on the Zoom, then the zoom option is activated.

Shrink
This is the same as the two point Shrink option from the plan View=>Zoom menu.
If LB is clicked on the Shrink, then the Shrink option is activated.

Previous
This is the same as Previous from the view menu.
If LB is clicked on the Prev, then the Previous option is activated.
If RB is clicked on the Prev, then the View option is activated.

Toggle
This is the same as Toggle from the View=>Settings menu.
If LB is clicked on the Toggle, then the Toggle menu is activated.
If RB is clicked on the Toggle, then the View option is activated.

The Toggle menu for the plan view types is:
Refresh
As its name implies, this option redraws all the models on the view using the current drawing parameters. This is the same as clicking MB in the view title area.

Plot
If LB is clicked on Plot, then the View Plotting menu for the plan view is activated.

Clone
See 9.4.5 Clone.

Properties
See 9.4.6 Properties.
9.5.2 Perspective View Buttons

Menu
If the Menu button is selected in the view button area of any view, or if RB is clicked in the view-title area or in the view-button area, a new menu called the View menu appears.

Because of the differences between plan, perspective and section views, the options on the View menu vary for each view type.

The Perspective View menus is

See
Menu
+ or Add
- or Remove
Fit
Previous
Toggle
Eye
Orbit
Plan Camera
Joy
Walk
Drive
Redraw
Plot
9.4.5 Clone
9.4.6 Properties
The View menu is removed by selecting the [X] button or if the View menu hasn't been moved, by simply clicking RB again in the view-title or view button area. If the View menu has been moved, clicking RB will warp the cursor to the moved View menu.

+ or Add

The + view button works in four modes.

- clicking LB whilst the cursor is over the + brings up the Models to Add list. This list contains all of the models not yet added to the view.
- typing a keyboard character whilst the cursor is over the + brings up a Models to Add list containing only those models not on the view with names beginning with the typed character.
- typing an * character whilst the cursor is over the + brings up a Add Models to View panel which can then be used with wild cards and characters.
- clicking MB whilst the cursor is over the + brings up the Add Models to View by Pick panel and starts up a Same as for a view. Models to add to the view are then selected by simply picking a string from the model. See 4 Tools and Concepts for further documentation on Same as.
- clicking RB whilst the cursor is over the + brings up the View panel documented earlier in this chapter.

For the Same as option for the + and - view buttons, go to 9.5.4 Same As for Views.

- or Remove

The - view button works in four modes.

- clicking LB whilst the cursor is over the - brings up the Models to Remove list. This menu lists all of the models on the view.
- typing a keyboard character whilst the cursor is over the - brings up a Models to Remove list containing only those models on the view with names beginning with the typed character.
- typing an * character whilst the cursor is over the - brings up a Remove Models from View panel which can then be used with wild cards and characters.
- clicking MB whilst the cursor is over the - brings up the Remove Models from View by Pick panel and starts up a Same as for a view. Models to remove from the view are then selected by simply picking a string from the model. See the next chapter for further documentation on Same as.
- clicking RB whilst the cursor is over the - brings up the View panel documented earlier in this chapter.

For the Same as option for the + and - view buttons, go to 9.5.4 Same As for Views.

Fit
View Buttons

This is the same as Fit from the View menu.
If LB is clicked on the Fit, then the Fit option is activated.
If RB is clicked on the Fit, then the View option is activated.

Previous
This is the same as Previous from the View menu.
If LB is clicked on the Prev, then the Previous option is activated.
If RB is clicked on the Prev, then the View option is activated.

Toggle
This is the same as Toggle from the View=>Settings menu.
If LB is clicked on the Toggle, then the Toggle menu is activated.
If RB is clicked on the Toggle, then the View option is activated.

The Toggle menu for the perspective view is:

Eye
This is the same as eye/target from the View menu.
If LB is clicked on the Eye, then the Eye-target option is activated.
For more information please see 9.2.2 Eye/Target

Orbit
For more information please see 9.2.4 Orbit

Plan Camera
For more information please see 9.2.5 Plan Camera

Joy
This is the same as Joy from the View menu.
If LB is clicked on the Joy, then the Joy option is activated.
For more information please see 9.2.3 Joy for View

Walk
This is the same as String walk =>Along string from the View =>Utilities menu.
If LB is clicked on the Walk, then the Walk along string option is activated.

Drive
This is the same as String drive => Along string from the View => Utilities menu. If LB is clicked on the Drive, then the Drive along string option is activated.

Redraw

As its name implies, this option redraws all the models on the view using the current drawing parameters. This is the same as clicking MB in the view title area.

Plot

If LB is clicked on Plot, then the View Plotting menu for the perspective view is activated.

Clone

See 9.4.5 Clone.

Properties

See 9.4.6 Properties.
9.5.3 Section View Buttons

If the Menu button is selected in the view button area of any view, or if RB is clicked in the view-title area or in the view-button area, a new menu called the View menu appears.

Because of the differences between plan, perspective and section views, the options on the View menu vary for each view type.

The Section View menus is

The View menu is removed by selecting the [X] button or if the View menu hasn't been moved, by simply clicking RB again in the view-title or view button area. If the View menu has been moved, clicking RB will warp the cursor to the moved View menu.

+ or Add

The + view button works in four modes.

- clicking LB whilst the cursor is over the + brings up the Models to Add list. This list contains all of the models not yet added to the view.
- typing a keyboard character whilst the cursor is over the + brings up a Models to Add list containing only those models not on the view with names beginning with the typed character.
- typing a * character whilst the cursor is over the + brings up a Add Models to View panel which can then be used with wild cards and characters.
- clicking MB whilst the cursor is over the + brings up the Add Models to View by Pick panel and starts up a Same As for a view. Models to add to the view are then selected by simply picking a string from the model. See 4 Tools and Concepts for further documentation on Same As.
- clicking RB whilst the cursor is over the + brings up the View panel documented earlier in this
chapter.

For the **Same As** option for the + and - view buttons, go to 9.5.4 Same As for Views.

- or Remove

The - view button works in four modes.

- clicking LB whilst the cursor is over the - brings up the **Models to Remove** list. This menu lists all of the models on the view.

- typing a keyboard character whilst the cursor is over the - brings up a **Models to Remove** list containing only those models on the view with names beginning with the typed character.

- typing an * character whilst the cursor is over the - brings up a **Remove Models from View** panel which can then be used with wild cards and characters.

- clicking MB whilst the cursor is over the - brings up the **Remove Models from View by Pick** panel and starts up a **Same As** for a view. Models to remove from the view are then selected by simply picking a string from the model. See the next chapter for further documentation on **Same As**.

- clicking RB whilst the cursor is over the - brings up the **View** panel documented earlier in this chapter.

For the **Same as** option for the + and - view buttons, go to 9.5.4 Same As for Views.

[Exagg]

This is the vertical exaggeration for the view.

If LB is clicked on the exaggeration, then the **Toggle** option for the section view is activated. This has options to quickly change the vertical exaggeration.

Profile

If LB is clicked on **Profile**, then the **Profile** option is activated. This option is the same as **View=>Profiling=>One string**. If a string is being profiled, then the string name is displayed after the Section view name.

If RB is clicked on **Profile**, then the **Profiling** menu is activated.

<<

Profile previous string.

>>

Profile next string.

Regen

This is the same as the option **Regenerate** option from the section view menu. If LB is clicked on the **Regen**, then the **regen** option is activated.

Fit

This is the same as **Fit** from the view menu.
If LB is clicked on the **Fit**, then the **Fit** option is activated.
If RB is clicked on the **Fit**, then the **View** option is activated.

Pan
This is the same as **Pan** from the **View=>Pan** menu.
If LB is clicked on the **Pan**, then the **Pan** option is activated.

Zoom
This is the same as the two point **Zoom** option from the plan **View=>Zoom** menu.
If LB is clicked on the **Zoom**, then the **Zoom** option is activated.

Shrink
This is the same as the two point **Shrink** option from the plan **View=>Zoom** menu.
If LB is clicked on the **Shrink**, then the **Shrink** option is activated.

Previous
This is the same as **Previous** from the **View** menu.
If LB is clicked on the **Prev**, then the **Previous** option is activated.
If RB is clicked on the **Prev**, then the **View** option is activated.

Toggle
This is the same as **Toggle** from the **View=>Settings** menu.
If LB is clicked on the **Toggle**, then the **Toggle** menu is activated.
If RB is clicked on the **Toggle**, then the **View** option is activated.

The **Toggle** menu for the section view is:

![Toggle menu]

Refresh
As its name implies, this option redraws all the models on the view using the current drawing parameters. This is the same as clicking MB in the view title area.

Plot
If LB is clicked on **Plot**, then the **View Plotting** menu for the section view is activated.

![View Plotting menu]

Clone
See [9.4.5 Clone](#).
Properties
See 9.4.6 Properties.
9.5.4 Same As for Views

Clicking the middle mouse button (MB) over the + or - view buttons will activate a Same As pick which allows the user to select the model to add to (+) or remove from (-) the view by simply picking any string from the model to be added or removed.

After clicking MB over the + or - view button, the Add Models to View by Pick or Remove Models from View by Pick panel is brought up.

The option is already running and when a string is picked, the model containing the string is added to/removed from the view. Further strings can then be selected to add or remove another model.

The option is terminated by selecting [X] or Finish from the panels, or Cancel from the Pick Ops menu.
9.6 Displaying Values Text, Vertices and Text on a Plan View

Plan_View_Vertex_Segment_UIDs_Settings_Menu

On Plan View => Settings there are a number of options that work in a similar way and control the drawing of string text, drawing crosses at vertices and the labelling of a number of string properties such as vertices, z-values, string name etc.

The first two of these Plan View => Settings options are:

1. **Text** for controlling the drawing of Text strings and any other text drawn on the view.
2. **Vertices** for drawing crosses at all the vertices in a string. For a text string, a cross is placed at the text justification position.

The other options draw string values as text on the view and are:

3. **Vertex/Segment UID's** for displaying the Vertex UID's any Segment UID's for the vertices and segments of super strings.
4. **Point/Vertex IDs** for displaying the Point/Vertex ID (a point ID recorded for a vertex) for the vertices of super strings.
 - **Note** - Point/Vertex IDs are not to be confused with Vertex Indices which are simply the position of the vertex in the string.
5. **Vertex Indices** for displaying the Vertex Indices (position of the vertex in the string) for all the vertices of strings.
 - **Note** - Vertex Indices are not to be confused with Point/Vertex IDs which may not even exist for a vertex in the string.
6. **Z values** for displaying the z coordinate to a user specified number of decimal places, for all the vertices of strings.
7. **Names** for displaying the string name at each vertex of a string.
8. **Attributes** for displaying the vertex attributes for all the vertices of super strings.

Vertex/Segment UID's, Point/Vertex Id's, Vertex indices, Z values, Names and **Attributes** that draw specific values from a string as text on the view.

For the options 3 to 8 we refer to the **text** of the **value** that will be drawn as the **Values Text**.

For each of the options there is a setting (the default setting) to say whether the text/crosses are displayed/not displayed and also a table that lists any models that user wants to individually control the draw/don’t draw. So each option has a walk-right menu with the items **Single**, **Table** and **Toggle** where

(a) **Single** specifies the **defaults** for drawing the **Value Text/Crosses at Vertices/Text** for any model on the view.

(b) **Table** contains a list of any models that have their own settings to use instead of the **defaults**, plus the settings for that model. Each model in the list also has its own **Draw** field that overrides the **Draw** tick box in **Single**.

If a model is not listed in **Table** then it uses the **defaults** set by **Single**.
The **Single** options also have settings so that **Values Text/crosses at vertices/Text** are only drawn if the equivalent world size of the cross/text is not too large. This stops the drawing of the text/cross when the displaying world size is large in proportion to other world units (e.g. when zooming out).

For a description of the options:

- **Single**, go to 9.6.1 Single for Values Text, Crosses and Text on Plan Views
- **Table** 9.6.2 Table for Values Text, Crosses and Text on Plan Views
- **Toggle** 9.6.3 Toggle Walk-Right for Value Text, Crosses and Text on Plan Views

Note

Using the environment variable **Env.4d > General > Plan table settings** (see General and PLAN_TABLE_SETTINGS_4D) it is possible to turn off the control by individual models of the **Values Text/Crosses at Vertices/Text** drawing. In that case, apart from the Text, there is no walk-right menus. See 9.6.5 Env Var PLAN_TABLE_SETTINGS_4D Set to 0:
9.6.1 Single for Values Text, Crosses and Text on Plan Views

Vertex/Segment UIDs for Plan View has the option *Text* to draw *String Text*, the option *Vertices* to draw *Crosses at all the Vertices* in a string (often just called *Crosses*) and the options *Vertex/Segment UIDs*, *Point/Vertex Id’s*, *Vertex indices*, *Z values*, *Names* and *Attributes* for labelling specific values from a string as text (the *Values Text*). For information on these options see 9.6 Displaying Values Text, Vertices and Text on a Plan View.

All these options work similarly and will be documented together.

The *Single* option is used to set default parameters for drawing the *Value Text/Crosses at Vertices/Text* for strings in all models not mentioned in the *Table*, or for an individual model on the plan view.

The *Single* options also have setting so that *Values Text/Crosses/Text* are only drawn if the equivalent world size of the cross/text is not too large. This stops the drawing of the text/cross when the displaying world size is large in proportion to other world units (for example when zooming out).

Selecting *Single* on the walk-right menu for the *Settings* option brings up the appropriate panel:
Displaying Values Text, Vertices and Text on a Plan
The fields and buttons used in these panels have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>View box - input/output</td>
<td>current view</td>
<td>available views</td>
</tr>
</tbody>
</table>

name of the view to modify the drawing parameters for Values Text/Crosses/Text.

Model

model box

If not blank, then the String Text/Vertices/Values Text will only be displayed for this model.

If blank, then all models not mentioned in the Table option use these parameters for drawing String Text/Vertices/Values Text on a view.

Note that his field will not be present if PLAN_TABLE_SETTINGS_4D is zero.

For Text

Draw text

tick box

If ticked, then Text for strings (text strings, vertex text, segment, text, values text etc) will be drawn (as long as it passes the check against Height max (w)).

If not ticked, then no Text is drawn for strings on the plan view.

For Crosses at Vertices

Draw Crosses

tick box

If ticked, then the Crosses at Vertices will be drawn (as long as it passes the check against Size max (w)).

If not ticked, then no Crosses at vertices are drawn for strings on the plan view.

Colour

colour box | default pt colour | available colours

colour of the crosses at the vertices.

Size (p)

real box | default text height

size in pixels that the crosses are drawn on a plan view

Size max (w)

real box | 0

when you have a plan view, then for the current zoom settings of the view, the vertices which are drawn at a screen size (pixels) has an equivalent size in world units.

As you zoom in, the equivalent size in world units decreases. That is, the screen crosses gets smaller in equivalent world units.

As you zoom out, the equivalent size in world units increases. That is, the screen crosses gets larger in equivalent world units.

If Size max (w) is non-zero then when the zoom settings on the plan view is such that the equivalent height of the crosses in world units is greater than Size max (w), then the crosses are not drawn. Consequently as one zooms out, the crosses at the vertices will eventually stop drawing.

If Size max (w) is zero, the crosses at the vertices are always drawn.

Summarising: if non-zero: when the plan view is such that the height of the crosses in world units is greater than Size max (w), then the crosses are not drawn. Hence as one zooms out, the crosses will eventually stop drawing.

Size (w)

real box | 0

size in world units of the cross when plotted or output.

Angle

angle box | 0

the angle of rotation of the cross about the (x,y) position of the string vertices.

The angle is measured in a counterclockwise direction from the positive x-axis. The units for angle are degrees minutes and seconds and it is entered in 4.17.1 HP Notation.
For Values Text only

Draw Values Text
tick box

If ticked, then the Values Text will be drawn (as long as it passes the check against **Height max (w)**).
If not ticked, then no Values Text is drawn for strings on the plan view.

Draw textstyle data
textstyle data box
available textstyle datas

textstyle data used when drawing the Values Text on the plan view. The height, offset and raise are given in screen units (pixels).

Plot textstyle data
plot textstyle data box
available textstyle datas

a special plot textstyle data to define the height, offset and raise values to use when the Values Text is plotted or output (using the File =>Data output options).
*When the Values Text is plotted, the units are millimetres (paper size).
When the data is Values Text, the units are world (world size).*

![Plot textstyle data](image)

For String Text and Values Text

Height max (w)
real box
0

when you have a plan view, then for the current zoom settings of the view, the String Text/Values Text which is drawn at a screen size (pixels), has an equivalent size in world units.
As you zoom in, the equivalent size in world units decreases. That is, the screen texts gets smaller in equivalent world units.

As you zoom out, the equivalent size in world units increases. That is, the screen texts gets larger in equivalent world units.

If Height max (w) is non-zero then when the zoom settings on the plan view is such that the equivalent height of the String Text/Values Text in world units is greater than Height max (w), then the Strings Text/Values Text is not drawn. Consequently as one zooms out, the Strings Text/Values Text will eventually stop drawing.
If Height max (w) is zero, the Strings Text/Values Text is always drawn.

Summarising: *if non-zero: when the plan view is such that the height of the Strings Text/Values Text in world units is greater than Height max (w), then the Strings Text/Values Text is not drawn. Hence as one zooms out, the Strings Text/Values Text will eventually stop drawing.*

For Z Values and Attributes

Decimal places
real box
3

number of decimal places when displaying the Values Text for Z values and any real Attributes.

Note - this field only appears when the Values are a real number.

Show null z’s
tick box

if ticked, null z values and null real attributes values are displayed as null.
If not ticked, no null z value or null real attributes are displayed.

Note - this field only appears when the Values Text are z values or Attributes.

Buttons at Bottom

Set button
set the values in the panel and then redraw the plan view.

Size max button
when clicked, the Size max (w) or Height max (w) field is given the current equivalent world size of the String Text/Crosses at Vertices/Values Text displayed on the given plan view. Hence if any further zoom out is done, the String Text/Crosses at Vertices/Values Text will stop drawing.

After clicking Size max, the Set button must then be clicked to set the new Size max (w) or Height max (w) value for the view.

Reset button
reset all the parameters to the defaults for plan views.

Note
Even though some of the drawing is controlled by the models in Table, the drawing for the models that are not controlled by Table can be quickly turned on and off by using the Toggle menu. See 9.6.4 Toggle Menu for Values Text, Crosses and Text on Plan Views.

Go to the next section 9.6.2 Table for Values Text, Crosses and Text on Plan Views or return to 9.6 Displaying Values Text, Vertices and Text on a Plan View.
9.6.2 Table for Values Text, Crosses and Text on Plan Views

Vertex_Segment_UID_s_Table_for_Plan_View Plan View => Settings has the option Text to draw String Text, the option Vertices to draw Crosses at all the Vertices in a string (often just called Crosses) and the options Vertex/Segment UID, Point/Vertex Id's, Vertex indices, Z values, Names and Attributes for labelling specific values from a string as text (the Values Text). For information on these options see 9.6 Displaying Values Text, Vertices and Text on a Plan View.

All these options work similarly and will be documented together.

The Table option displays a list of models on the view with their Values Text/Crosses/Text drawing parameters. These parameters can then be modified in the table.

Selecting Table brings up the panel appropriate to the Settings option:
Crosses at String Vertices Table for Plan View

<table>
<thead>
<tr>
<th>Draw</th>
<th>Model</th>
<th>Height</th>
<th>Height Max (w)</th>
<th>Colour</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>view</td>
<td>Furniture</td>
<td>8</td>
<td>0</td>
<td>cyan</td>
</tr>
<tr>
<td>2</td>
<td>view</td>
<td>Trees</td>
<td>8</td>
<td>0</td>
<td>cyan</td>
</tr>
<tr>
<td>3</td>
<td>view</td>
<td>base</td>
<td>8</td>
<td>0</td>
<td>cyan</td>
</tr>
<tr>
<td>4</td>
<td>view</td>
<td>terrain</td>
<td>8</td>
<td>0</td>
<td>cyan</td>
</tr>
</tbody>
</table>

- **View <1> exists**

Vertex/Segment UID's Table for Plan View

<table>
<thead>
<tr>
<th>Draw</th>
<th>Model</th>
<th>Textstyle draw data</th>
<th>Textstyle plot data</th>
<th>Height Max (w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>view</td>
<td>Furniture</td>
<td>1 ...</td>
<td>1 ...</td>
</tr>
<tr>
<td>2</td>
<td>view</td>
<td>Trees</td>
<td>1 ...</td>
<td>1 ...</td>
</tr>
<tr>
<td>3</td>
<td>view</td>
<td>base</td>
<td>1 ...</td>
<td>1 ...</td>
</tr>
<tr>
<td>4</td>
<td>view</td>
<td>terrain</td>
<td>1 ...</td>
<td>1 ...</td>
</tr>
</tbody>
</table>

- **View <1> exists**

Displaying Values Text, Vertices and Text on a Plan
Displaying Values Text, Vertices and Text on a Plan

VertexID's Table for Plan View

<table>
<thead>
<tr>
<th>Draw</th>
<th>Model</th>
<th>Textstyle draw data</th>
<th>Textstyle plot data</th>
<th>Height Max (w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>view</td>
<td>Furniture</td>
<td>1 ...</td>
<td>1 ...</td>
<td>0</td>
</tr>
<tr>
<td>view</td>
<td>Trees</td>
<td>1 ...</td>
<td>1 ...</td>
<td>0</td>
</tr>
<tr>
<td>view</td>
<td>base</td>
<td>1 ...</td>
<td>1 ...</td>
<td>0</td>
</tr>
<tr>
<td>view</td>
<td>terrain</td>
<td>1 ...</td>
<td>1 ...</td>
<td>0</td>
</tr>
</tbody>
</table>

Optional

Vertex Indices Table for Plan View

<table>
<thead>
<tr>
<th>Draw</th>
<th>Model</th>
<th>Textstyle draw data</th>
<th>Textstyle plot data</th>
<th>Height Max (w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>view</td>
<td>Furniture</td>
<td>1 ...</td>
<td>1 ...</td>
<td>0</td>
</tr>
<tr>
<td>view</td>
<td>Trees</td>
<td>1 ...</td>
<td>1 ...</td>
<td>0</td>
</tr>
<tr>
<td>view</td>
<td>base</td>
<td>1 ...</td>
<td>1 ...</td>
<td>0</td>
</tr>
<tr>
<td>view</td>
<td>terrain</td>
<td>1 ...</td>
<td>1 ...</td>
<td>0</td>
</tr>
</tbody>
</table>

Optional
Z Values Table for Plan View

<table>
<thead>
<tr>
<th>Draw</th>
<th>Model</th>
<th>Textstyle draw data</th>
<th>Textstyle plot data</th>
<th>Height Max (w)</th>
<th>Precision</th>
<th>Nulls</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>view</td>
<td>Furniture</td>
<td>1 ...</td>
<td>1 ...</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>view</td>
<td>Trees</td>
<td>1 ...</td>
<td>1 ...</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>view</td>
<td>base</td>
<td>1 ...</td>
<td>1 ...</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>view</td>
<td>terrain</td>
<td>1 ...</td>
<td>1 ...</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>optional</td>
<td></td>
</tr>
</tbody>
</table>

View <1> exists

Set Finish Help

String Names Table for Plan View

<table>
<thead>
<tr>
<th>Draw</th>
<th>Model</th>
<th>Textstyle draw data</th>
<th>Textstyle plot data</th>
<th>Height Max (w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>view</td>
<td>Furniture</td>
<td>1 ...</td>
<td>1 ...</td>
</tr>
<tr>
<td>2</td>
<td>view</td>
<td>Trees</td>
<td>1 ...</td>
<td>1 ...</td>
</tr>
<tr>
<td>3</td>
<td>view</td>
<td>base</td>
<td>1 ...</td>
<td>1 ...</td>
</tr>
<tr>
<td>4</td>
<td>view</td>
<td>terrain</td>
<td>1 ...</td>
<td>1 ...</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

View <1> exists

Set Finish Help
The fields and buttons used in these panels have the following functions.

Field Description	**Type**	**Defaults**	**Pop-Up**
View | input/output | current view | available views

name of the view to modify the parameters for displaying the Values Text/Crosses/Text.

Grid

Draw

choice box on, off, view

If set to on, then regardless of the Single value, if that model is on the view, the Values Text/Crosses/Text for the model are drawn (as long as it passes the check against Height max (w)).

If set to off then regardless of the Single value, if that model is on the view, the Values Text/Crosses/Text for the model are not drawn.

If set to view, then this row is ignored and if that model is on the view, the Values Text/Crosses/Text for the model obey the values set by Single.

So the Draw column in Table is an override for Single.

For information on changing the values of the cells in the Draw column, see Changing the Values in the Draw Column.

Model

model box

*If not blank, then the display of String Text/Crosses at Vertices/Values Text for the strings in this model will obey the choice for this row of the Draw column.**

For Crosses at Vertices

Colour

colour box default pt colour available colours
colour of the crosses at the vertices
Height

Real box

default text height

size in pixels that the crosses are drawn on a plan view.

Height max (w)

Real box

0

If non-zero:

then if the size of the crosses in world units is greater than \textbf{Size max (w)}, the crosses are not drawn. Hence zooming out will eventually stop the crosses from drawing.

Angle

Angle box

0

the angle of rotation of the cross about the (x,y) position of the string vertices.

The angle is measured in a counterclockwise direction from the positive x-axis. The units for angle are degrees minutes and seconds and it is entered in \textbf{4.17.1 HP Notation}.

For Values Text

\textbf{Textstyle draw data}

textstyle data box

available textstyle datas

textstyle data to define the drawing on the view of the Values Text in this model. The height, offset and raise are given in screen units (pixels).

\textbf{Textstyle plot data}

plot textstyle data box

available textstyle datas

a plot textstyle data to define the height, offset and raise values to use when the Values Text in the model is plotted or output (using the File => Data output options).

When the Values Text in the model is plotted, the units are millimetres (paper size).

When the Values Text in the model is output, the units are world (world size).

Height max (w)

Real box

0

when you have a plan view then for the current settings for the Values Text, the Values Text which is drawn at a screen size (pixels), will have an equivalent size in world units.

As you zoom in, the equivalent size in world units will decreases. That is, the screen texts gets smaller in equivalent world units.

As you zoom out, the equivalent size in world units increases. That is, the screen texts gets larger in equivalent world units.

\textit{If Height max (w) is non-zero then when the zoom settings on the plan view is such that the equivalent height of the Values Text in world units is greater than Height max (w), then the Values Text is not drawn. Consequently as one zooms out, the Values Text will eventually stop drawing.}

\textit{If Height max (w) is zero, the Values Text is always drawn.}

\textit{Summarising: if non-zero: when the plan view is such that the height of the Values Text in world units is greater than Height max (w), then the Values Text is not drawn. Hence as one zooms out, the Values Text will eventually stop drawing.}

Precision

Real box

3
number of decimal places when displaying the Values Text.

Note - this column only appears when the Values are a real number.

Nulls

- **tick box**
 - *if ticked*, null z values are displayed as null.
 - *if not ticked*, no z value is displayed at null z-values.

Note - this column only appears when the Values Text are z values.

Buttons at Bottom

- **Set** button
 - set the values in the panel and then redraw the plan view.

Changing the Values in the Draw Column

To change the values in a cell in the Draw column, you can type into the cell, or it is better (and safer if you can’t type very well) to click RB over the cell and bring up the Select Choice menu and select off, on or view from the menu.

If for some reason you do not get the menu with the choices on it coming up, the menu you do get will have Browse on it and clicking on Browse will bring up the choices off, on and view.

To set all, or a number of the values in the Draw column at once, highlight the ones to change and click RB to bring up the Cells menu and select Browse. The choice of off, on and view will be made to all the highlighted cells.

Note that clicking on the word Draw at the top of the Draw column highlights all the cells in the column. Holding down <Ctrl> and clicking LB when over a cell highlights/unhighlights individual cells.

If for some reason you do not get the menu with the choices on it coming up, the menu you do get will have Browse on it and clicking on Browse will bring up the choices Draw, Don’t draw and Ignore.

Go to the next section [9.6.3 Toggle Walk-Right for Value Text, Crosses and Text on Plan Views](#) or return to [9.6 Displaying Values Text, Vertices and Text on a Plan View](#).
9.6.3 Toggle Walk-Right for Value Text, Crosses and Text on Plan Views

Plan_View_Toggle_Vertex_Segment_UID_s

Plan View =>Settings has the option Text to draw String Text, the option Vertices to draw Crosses at all the Vertices in a string (often just called Crosses) and the options Vertex/Segment UIDs, Point/Vertex Id's, Vertex indices, Z values, Names and Attributes for labelling specific values from a string as text (the Values Text). For information on these options see 9.6 Displaying Values Text, Vertices and Text on a Plan View.

All these options work similarly and will be documented together.

Walking-right on the Toggle option displays a list of models on the view with their Value Text/Crosses/Text Draw flag from the Table for that Setting.

The String Text/Crosses at Vertices/Values Text Draw flag can be set to yes, no or view for the model by selecting the model on the list, where

If State is set to on, then if that model is on the view, the Values Text/Crosses/Text for the model are drawn regardless of the Single value. Green is displayed beside the state when it is on.

If State is set to off, then if that model is on the view, the Values Text/Crosses/Text for the model are not drawn regardless of the Single value. Red is displayed beside the state when it is off.

If State is set to view, then this row is ignored and if that model is on the view, Values Text/Crosses/Text for the model obey the Single value. Green is displayed beside the state when it is view.
Clicking RB in a row in the State column will bring up a Select Choice menu.

Selecting on, off or view changes the value for the appropriate row in the associated Table and also redraws the view using the modified values.

Go to the next section 9.6.4 Toggle Menu for Values Text, Crosses and Text on Plan Views or return to 9.6 Displaying Values Text, Vertices and Text on a Plan View.
9.6.4 Toggle Menu for Values Text, Crosses and Text on Plan Views

Plan View =>Settings has the option Text to draw *String Text*, the option Vertices to draw *Crosses at* all the *Vertices* in a string (often just called *Vertices* or *Crosses*) and the options *Vertex/Segment UIDs, Point/Vertex Id’s, Vertex indices, Z values, Names and Attributes* for labelling specific values from a string as text (the *Values Text*). For information on these options see *9.6 Displaying Values Text, Vertices and Text on a Plan View*.

All these options work similarly and will be documented together.

To make it easy to toggle the *Draw* tick box in the *Single* panel for any of the *Setting* without having to bring the *Single* panel up, there is a *Toggle* button on the *Plan View* to bring up the *Toggle* menu for the view.

Each item on the *Toggle* menu can be clicked to toggle the *Draw* tick box for that particular *Setting*.

On the *Toggle* menu there is an *[on]* and *[off]* after the menu item to indicate the default state for the view (the value of *Single*). And if there is also a (*) after the *[on]* or *[off]* to indicate there are models in Table that are different to the *Single* state (an *exception*).

That is:

* [on] means that the default for all models on the view is to draw the value, and that the default is applying to all the models currently on the view.

* [on] (*) means that the default for all models on the view is to draw the value, BUT there are some models in Table that will not draw the value.

* [off] means that the default for all models on the view is to not draw the value, and that the default is applying to all the models currently on the view.
[off] (*) means that the default for all models on the view is to not draw the value, BUT there are some models in Table that will draw the value.

There are also walk-right on each of the appropriate menu items and the walk-right menu is the Toggles walk-right menu for that Setting.

Unlike the Toggle walk-right menus where there a walk-right menu for each of the Settings and they toggle the Draw mode for the models in the Table for that Setting, the Toggle menu has one line on the menu for each of the Settings. And the walk-rights on the Toggle menu are the individual Toggle walk-right menus.

So the Toggle menu toggles the Draw mode in the Single panel for each Setting, and the Toggle walk-rights toggle the Draw modes for each model in the Table for that Setting.

Warning for the Toggle Menu

Although clicking on an item in the Toggles menu immediately reverses the [on]/[off] state of the view and updates the view accordingly, the [on]/[off] on the Toggles menu does NOT dynamically change.

So if the Toggles menu is pinned up, it does not refresh itself and show the change in the [on]/[off] state. You only see the change if you close the Toggle menu and then bring it up again.

The [off] indicates that the default for all models not mentioned in the Table it to not have z-values labelled. This is the Single setting.

The (*) indicates that there are some models in the Table that have their z-values labelled.
9.6.5 Env Var PLAN_TABLE_SETTINGS_4D Set to 0:

Plan View =>Settings has an option Text to draw *String Text*, an option Vertices to draw *Crosses* at all the *Vertices* in a string (often just called *Vertices*) and the options *Vertex/Segment UIDs*, *Point/Vertex Id’s*, *Vertex indices*, *Z values*, *Names* and *Attributes* for labelling specific values from a string as text (for these options we call the text of the value, the *Values Text*).

Normally the drawing of the *Values Text/Crosses/Text* is controlled by a setting with optional model overrides but it is possible to turn off the control for individual models by setting the environment variable PLAN_TABLE_SETTINGS_4D to 0. This is done in *Env.4d > General >Plan table settings* (see General and PLAN_TABLE_SETTINGS_4D).

When individual model control is turned off, in the Plan View Setting menu there are no options Table or Toggle on the Text walk right menu, and no walk right menu on the Values menu items.

When PLAN_TABLE_SETTINGS_4D is 0, clicking on Vertices/Values item brings up the Model Text for Plan View, Crosses at String Vertices for Plan View or Values for Plan View panels, without the Model field. The fields in the panels then apply to the strings in all models on the view.
Displaying Values Text, Vertices and Text on a Plan
These panels are identical to those when PLAN_TABLE_SETTINGS_4D is non zero except that there is no Model field. The fields in these panels then apply to the strings in all models on the view.

So the documentation for these panels is only given in the case where PLAN_TABLE_SETTINGS_4D is non zero and the Model field needs to be ignored. See §9.6.1 Single for Values Text, Crosses and Text on Plan Views.
10 ADAC

ADAC - Asset Design and As Constructed

The **ADAC XML Schema** is a vendor independent XML format introduced to help solve the problems of collecting and exchanging Asset data.

The purpose of ADAC XML is to allow many different Authorities to work with one standardised file format. The format is fully defined and accessible to everyone.

See

- [10.1 ADAC.XML Overview](#)
- [10.2 12d Approach to ADAC XML](#)
- [10.4 12d ADAC Menu](#)
10.1 ADAC.XML Overview

See

10.1.1 ADAC XML Structure
10.1.2 ADAC Assets
10.1.3 ADAC Geometry Element
10.1.4 Guidelines from an Authority Requesting ADAC.XML

10.1.1 ADAC XML Structure

The ADAC Schema is fully described by the ADAC XSD (XML Schema Definition), which formally defines the structure and all the elements inside an ADAC XML file. That means that any ADAC.XML can be validated against the ADAC Schema XSD to see that it conforms to the Schema.

The ADAC.XML Schema and the ADAC.XSD are controlled and published by the IPWEA. ADAC Version 4.1.0 is the latest version and IPWEA publishes the ADAC Schema Help Files for Version 4.1 (and also the earlier 4.0) (see www.engicom.com.au/products/adac2/).

The ADAC XML Schema is best thought of as a root or folder structure where the Project element encloses all data that is common to the whole project. So it is the root element or top folder.

The ADAC standard currently says there can only be one Project in an ADAC.XML file.

Elements inside the Project element can be single values or multi-levelled structures (nodes) containing other single elements and substructures.

At the first level inside Project, the elements are:

 Version, ExportDateTime, Name, Owner, Receiver, DrawingNumber, Drawing Revision, ConstructionDate, CoordinageSystem, Drawing Extents, Description, Status, Software, Surveyor, Engineer and ProjectData.

Some of these element are just single values (for example, ExportDateTime and Owner, and others, contain multi-levelled substructures of data (for example, Surveyor, Engineer and ProjectData).
We will refer to all of these elements except ProjectData as Header Data.

The Header Data occurs only once and is at the beginning of the ADAC file.

The ProjectData element may appear insignificant in the expansion of the first level of Project, BUT it is the element that contains all the physical items covered by ADAC.

Expanding the ProjectData node shows it has the nine subelements Sewerage, Transport, WaterSupply, OpenSpace, Cadastre, Surface, Enhancements and Supplementary.

And each of the nine subelements have their own substructures.
For example, Sewerage has the sub elements MaintenanceHoles, PipesNonPressure, PipesPressure, Valves, Fittings and Connections.

The + indicates that the element MaintenanceHoles contains a multi-levelled substructure.

And MaintenanceHoles has a substructure that can be expanded out although it has only the one substructure, MaintenanceHole.

MaintenanceHole itself can be further expanded and part of MaintenanceHole is .

All the structures and substructures are totally defined in the ADAC XML Schema and the structures must be strictly adhered to.

The ADAC XML Schema not only completely defines all the structures and substructures, but also has the full definition of all the elements, including the elements that can't be expanded any further (the final elements).

For the final elements, the ADAC Schema specifies everything. For example,
(a) their type - text, integer, real (float) or choices of these.
(b) what ranges the values may, or may not have
(c) if choices, then the list of possible choices (enumerations)
(d) if the item is optional (nillable = true) or mandatory (compulsory nillable = false)

For example, for the expansion of **MaintenanceHole**, the extract from the **ADAC XML 4.1.0 Schema** is

For example, for the expansion of **MaintenanceHole**, the extract from the **ADAC XML 4.1.0 Schema** is

Hence this is how the **ADAC Schema** defines the **structure** of an ADAC.XML file and the definition of every element in the **ADAC Schema**.

If an XML file does not obey all the rules in the **ADAC Schema**, then the file is an **invalid XML file with respect to the ADAC Schema**.

Continue to the next section **10.1.2 ADAC Assets**, or return to **10.1 ADAC.XML Overview** or **10 ADAC**.
10.1.2 ADAC Assets

Expanding substructures can go on at every level until no more expansions can occur. But there is one important time to stop further expanding an element and that is when one of the substructures is Geometry.

The presence of Geometry indicates that the element is a fundamental ADAC element that represents an ADAC Asset or ADAC Feature.

So although MaintenanceHole has the substructure ChamberSize that can be further expanded, the presence of the Geometry element says that MaintenanceHole is a fundamental ADAC element representing an ADAC Asset.

For the ADAC 4.1.0 Schema, there are sixty-eight (68) such ADAC Assets including MaintenanceHole, PipeNonPressure, Pavement, RoadEdge, SubSoilDrain, Hydrant, RetainingWall, ElectricalConduit, Tree, Sign, Lot, Easement, SpotHeight and Contour.

Everything that is being recorded in an ADAC.XML file must be classified as one of the 68 ADAC Assets.

To further define what an ADAC Asset is, most of the ADAC Asset elements have a Use or Type which provides further information about that particular instance of an ADAC Asset.

For example, MaintenanceHole has a Use which must exist and must have one of the values (enumerations):
10.1.3 ADAC Geometry Element

Like everything in ADAC, the ADAC Geometry element is fully defined, but it is different for each of the ADAC Assets.

An ADAC Geometry can only be one of:

1. a Point. That is, an (x,y,z) coordinate.

 For example, ADAC Assets with a Point Geometry include Sewer/MaintenanceHoles/MaintenanceHole, WaterSupply/Hydrants/Hydrant, OpenSpace/Barbecues/Barbecue.

2. a Polyline. That is, a string made up of (x,y,z) points with straights and/or arcs between them (segments).

 How many segments can be in the string, and whether arcs are allowed, can be different for each ADAC Asset with a Polyline Geometry. This can also vary with ADAC versions.

 For example, in ADAC 4.0, Sewerage/PipesNonPressure/PipeNonPressure can only have one segment, and that segment must be a straight.

 In ADAC 4.1, Transport/PipesNonPressure/PipeNonPressure can have any number of segments, and they can be straights or arcs.

3. a Polygon. That is, a closed polyline.

 Whether arcs are allowed as segments of the polygon is specified for each ADAC Asset with a Polygon Geometry. This can also vary with ADAC versions.

 ADAC Assets with a Polygon Geometry include Transport/PavementAreas/Pavement and OpenSpace/LandscapeAreas/LandscapeArea. Both of these can have any number of segments, and the segments can be straights or arcs.

If in an ADAC XML file, the Geometry written out for an ADAC Asset does not match the definition of the Geometry for that ADAC Asset, then it is breaking the rules and is an invalid XML file with respect to the ADAC Schema.
10.1.4 Guidelines from an Authority Requesting ADAC.XML

Although ADAC XML has sixty-eight Assets, which extends to hundreds of different objects once Use and Type are considered, not every ADAC Asset is required by every Authority.

Even when an ADAC Asset is required by an Authority, not every element within that ADAC Asset may be wanted by that Authority.

Also for any ADAC Assets that are required for a particular Authority, what exactly does that Geometry represent?

For example, in the ADAC version 4.1.0 Schema, an OpenSpace/RetainingWalls/RetainingWall is defined as

"Represents a continuous retaining wall feature. Includes terrestrial, freshwater and marine revetment walls."

And so the Geometry is a polyline with straight and arc segments.

But for, say, a Terrestrial RetainingWall, are the (x,y,z) coordinates of the Geometry the top of the retaining wall, the bottom of the retaining wall, or it doesn’t matter?

So when asked to provide an ADAC XML file to an Authority, you need to ascertain from the Authority the following:

1. What ADAC Version is required. It will be either 4.0 or 4.1.
2. What ADAC Assets are required.
For example, Unity Water in Queensland is a Water Authority using ADAC 4.1 but they only require the ADAC Assets in WaterSupply.

3. What elements inside the required ADAC Assets are required.

4. What the geometry represents for the required ADAC Asset.

For example

StormWater

From the ADAC.XML Guidelines from Bundaberg, Gladstone and Rockhampton Regional Councils

EndStructure

Asset Capture: Simple point feature representing the top of the headwall.

Spatial Relationship: Headwall “floats” adjacent to the end of a StormWater pipe feature.

![Figure 5](image-url)
Transport

From the ADAC.XML Guidelines from Moreton Bay Regional Council

- Roadways, including seals and pavement to be captured from “Nominal kerb line to Nominal kerb line” as a closed polyline as per “red-dashed” example pictured in figures 1 & 2 below. Note: Separate polygons will be required at changes in pavement and/or surfacing.
- Kerb line is captured on the nominal kerb line (invert of kerb and channel, face of kerb only) as shown by “yellow-dashed” line shown in figures 1 and 2 shown below.
- Sub-soil drains, where installed, are to be captured at kerb/seal junction as per the “blue-dashed” examples shown in figures 1 and 2.
- Road Islands are captured as closed polyline/object from back of kerb. Individual sub-sections of traffic islands to be identified by different material types (i.e. paving, concrete, grassed) as per “green-dashed” line in figure 1.

Figure 1

Figure 2

Return to 10.1 ADAC.XML Overview or 10 ADAC.
10.2 12d Approach to ADAC XML

Creating an ADAC XML file could be approached as a spreadsheet type exercise where you type the values into a document, but this is little more than a manual data collection exercise, performed (usually as an extra expense) after the design or as-built surveys are completed. This is NOT the 12d Model approach.

The guiding principles to the 12d Model approach are:

1. ADAC Data Fidelity
 The ADAC Schema needs to be completely reflected inside 12d Model so there is no ADAC data loss when writing and reading ADAC XML files.

2. 3D Engineering Data
 All data is held as 3D Engineering data.

3. Round Tripping of Data
 12d Model must be able to write out and read in ADAC data.
 That is
 WRITE OUT an ADAC XML file from data in 12d Model
 and
 READ IN an ADAC XML file to 12d Model.

4. Data Reuse
 Data reuse must be maximised. That is, wherever possible, any required ADAC data that is already part of the 12d Model data should NOT have to be re-entered for the ADAC XML.
 So manual editing is to be minimised.

5. Integrated Work Flow
 The creation/collection of the ADAC data must be integrated into the normal 12d Model design-construct-as built workflow so that there is minimal extra work involved in producing ADAC XML files.

Continue to the next section 10.3 12d ADAC Workflow, or return to 10 ADAC.
10.3 12d ADAC Workflow

In 12d Model, the source of the data to write out to an ADAC XML is usually from either a design or a survey.

1. For Design - the design has been created in 12d Model and it is some of the data from the Design that is to be written out as an ADAC XML file.

2. For Survey - the assets have been constructed and surveyed, and the survey data has been read into 12d Model. And it is some of the survey data that is to be written out as an ADAC XML file.

Although the type of data from a Design or a Survey can be totally different, the approach and steps inside 12d Model for producing the ADAC XML file are very similar.

Step 0. Before Doing any ADAC Projects - this is only done once, by one or two people

Before doing any 12d-ADAC processing, the first thing to do is set up the Company procedures that everyone will use for ADAC Design or ADAC Survey project. This is usually done once, by one or two people, before a company starts doing ADAC work with 12d Model.

It involves:

(a) deciding what Data Preparation is needed for your company’s survey or design before it is ready to produce an ADAC XML file.

(b) setting up the Company User ADAC menu.

(c) to allow for fast bulk processing, set up an ADAC 12d Map File for Design and/or an ADAC 12d Map File for Survey to assign the ADAC Asset type to a string from design or survey.

This is not essential and can be done, or added to, as you get more ADAC experience. But using an ADAC Map File is where the big benefits come from on most projects.

For information on each of these activities, see 10.6 Setting Up for ADAC.

Step 1. Setting Up a New ADAC Project - this is done once for each new ADAC project

For a new 12d Model project, the first step is to set it up as either an ADAC Design or an ADAC Survey project.

This is done once for a new project and only involves clicking a menu item:

File I/O =>ADAC =>User =>Setting up for survey - for surveys

For more information on what this option does, see 10.4.9.1.1 Setting Up for Survey.

File I/O =>ADAC =>User =>Setting up for design - for designers.

For more information on what this option does, see 10.4.9.1.2 Setting Up for Design.
Step 2. Creating the ADAC Header Data - only done once for each ADAC project.

The ADAC Header Data is only entered once for a project. This requires only a small amount of information such as the ADAC project name, the Owner and Receiver, the coordinate system used and (optionally) the Surveyor and the Engineer. See 10.4.1 Create Header.

If a Header template is used then most of the Header Data is automatically loaded.

Step 3. Preparing the Data to go to ADAC - done as required in each ADAC project

The design or survey data may need some preparation before it can go out to an ADAC XML file.

There is a variety of tools provided in 12d Model ranging from setting Lot numbers, Plan Numbers and Areas, to splitting up a road edge into separate kerb types as required by ADAC.

See 10.4.9.2 Data Prep

Step 4. For Some Items, Assigning the ADAC Asset Type by Hand

Some data may be selected by hand to assign its ADAC Asset type using the Create ADAC Asset option. See 10.4.2 Create ADAC Asset.

As your ADAC Map Files are created and extending, less data will need to be selected by hand. Instead the ADAC Asset type it will be automatically assigned.

Step 5. Running a Design or Survey Chain - run regularly in an ADAC project

All the hard work for ADAC is done by either running an ADAC Design Chain or an ADAC Survey Chain. And to do that only involves clicking a menu item such:

File I/O => ADAC => User => Appropriate Client Survey chain - for surveys

File I/O => ADAC => User => Appropriate Client Design chain - for designers.

For more information on these chains, see 10.5 ADAC Design and Survey Chains.

In summary, what the ADAC Design or ADAC Survey chain does is:

(a) Uses the ADAC Map File to Assign the ADAC Asset Type

Any data going out to ADAC must be one of the ADAC Assets.
So either the ADAC Asset type has been assigned by hand, or the assignment is automatically done using an ADAC Map File that has already been set up.

(b) Sets ADAC values from the 12d String Geometry and User Attributes.

Much of the required ADAC data is already contained within the 12d strings or in User Attributes.

For example, if the Drainage or Sewer was designed with 12d Model, then much of the ADAC data can come directly from the drainage and sewer strings. For example, maintenance holes and chambers, depths, and pipe dimensions come directly from the drainage string, and any required 2D and 3D lengths are calculated from the drainage string.

User attributes picked up in the field by the surveyors, or added in the Data Prep step, are also loaded into the specified ADAC attributes.

(c) Creates the ADAC Geometry.

For each ADAC Asset, the ADAC Geometry is automatically generated from the 12d string geometry. For example, if the ADAC Asset has Polyline Geometry, the (x,y,z) coordinates for each vertex of the string are loaded into the ADAC Geometry.

Step 6. Validating the Data, Generating Reports, Generating the ADAC Geometry - done as required

A Validation option checks the data against the ADAC Schema, and any errors are flagged and easily found using 12d Model’s Intelligent logs lines. This is a simple process and is done by running only one panel. See 10.4.4 Validate.

A report of the ADAC Data can be produced in HTML, Text or PDF format. This could be for your records or used as another checking tool. This is a simple process and is done by running only one panel. See 10.4.5 Report.

Step 7. Writing the Data out to ADAC XML - done as required

This is a simple process and is done by running just the one panel. See 10.4.6 Write ADAC XML File

Continue to the next section 10.4 12d ADAC Menu or return to 10 ADAC.
10.4 12d ADAC Menu

Position of menu: File I/O => ADAC

See

10.4.1 Create Header
10.4.2 Create ADAC Asset
10.4.3 Edit ADAC Header/Asset
10.4.4 Validate
10.4.5 Report
10.4.6 Write ADAC XML File
10.4.7 Import ADAC XML File
10.4.8 ADAC Utilities
10.4.9 User ADAC
10.4.1 Create Header

Position of option on menu: File I/O =>ADAC =>Create header

To produce an ADAC XML file, **12d Model** needs exactly one string with the ADAC Header data, and zero or more strings representing ADAC Asset data.

The **Create header** option takes a one vertex string, and creates as string attributes, the attributes needed to make it an ADAC Header. A user selected ADAC Header Template can be used to set the values for any of the ADAC attributes in the ADAC Header.

The **ADAC Header Editor** is then brought up so any of the created ADAC Header attributes can be edited.

Selecting **Create header** brings up the **Create ADAC Header** panel:

![Create ADAC Header panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header string</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>select a one vertex string to set up with the ADAC Header Data attributes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADAC version</td>
<td>choice box</td>
<td>from env.4d</td>
<td>4.0.0, 4.1.0</td>
</tr>
<tr>
<td>the version of ADAC to use when creating the ADAC Header data.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The default value is set by the environment variable ADAC_VERSION_4D which is set in the Edit Environment Variables panel at External Apps >ADAC. See 7.6.3 env.4d.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Header template</td>
<td>ADAC Header box</td>
<td>available ADAC Header templates</td>
<td></td>
</tr>
<tr>
<td>the name of an ADAC Header template that is used to fill in some of the ADAC Header information for the Header string.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>clicking Create creates an ADAC Header structure as 12d ADAC attributes for the string, and if there is a Header template, it loads the string’s ADAC attributes with values from the Header Template.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The 10.4.2 Create ADAC Asset panel is then brought up so that the ADAC Header data can be create/edited.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section **10.4.2 Create ADAC Asset**, or return to **10.4 12d ADAC Menu**, or **10 ADAC**.
10.4.2 Create ADAC Asset

Position of option on menu: File I/O => ADAC => Create Asset

To produce an ADAC XML file, 12d **Model** needs one string with the ADAC Header data, and zero or more strings with ADAC Asset data.

The **Create ADAC Asset** option takes a string with the appropriate geometry and creates as string attributes the ADAC Asset attributes for the user selected ADAC Asset type. This is referred to as **assigning the ADAC Asset type**, or **assigning the ADAC type**, to the string.

Also, a user selected ADAC Asset Template can be used to set the values for any of the ADAC attributes.

After creating the appropriate ADAC Asset attributes, the ADAC Asset Editor for the particular ADAC Asset is then brought up so any of the created ADAC Asset attributes can be edited.

Selecting **Create asset** brings up the **Create ADAC Asset** panel:

![Create ADAC Asset panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>String</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>select a string that is to be set up with the ADAC Asset.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADAC version</td>
<td>choice box</td>
<td>from env4d</td>
<td>4.0.0, 4.1.0</td>
</tr>
<tr>
<td>the version of ADAC to use when creating the ADAC Header data.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The default value is set by the environment variable ADAC_VERSION_4D which is set in the env4d editor at External Apps > ADAC.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADAC Asset</td>
<td>choice box</td>
<td>depends on the string geometry</td>
<td></td>
</tr>
<tr>
<td>If the geometry of the string selected is a:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point (a one vertex string), then the pop-up only shows those ADAC Assets that have a Point Geometry.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For example, for ADAC 4.1, the only ADAC Assets in Sewerage with a Point Geometry are</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sewerage>MaintenanceHoles>MaintenanceHole, Sewerage>Valves>Valve and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sewerage>Fittings>Fitting</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Polyline then the pop-up only shows those ADAC Assets that have Polyline Geometry. For example, for ADAC 4.1, the only ADAC Assets in Sewerage with a Polyline Geometry are Sewerage>PipesNonPressure>PipeNonPressure, Sewerage>PipesPressure>PipePressure and Sewerage>Connections>Connection

Polygon then the pop-up only shows those ADAC Assets that have Polygon Geometry. For example, for ADAC 4.1, there are NO ADAC Assets in Sewerage with a Polygon Geometry. In Transport there are Transport>PavementAreas>Pavement, Transport>ParkingAreas>Parking and Transport>RoadIslands>RoadIsland
Asset template

ADAC Asset box

available ADAC Asset templates

the name of an ADAC Asset template that if selected, is used to fill in some of the ADAC Asset attributes for the string.

The pop-up looks at the ADAC Asset and only displays the templates for that type of ADAC Asset and for the ADAC version.

Create button

clicking Create creates an ADAC Asset structure as 12d ADAC attributes and if there is an Asset template, it loads the string’s attributes with values from the Asset Template.

The 10.4.3 Edit ADAC Header/Asset panel is then brought up so that the ADAC Header data can be create/edited.

Continue to the next section 10.4.3 Edit ADAC Header/Asset or return to 10.4 12d ADAC Menu or 10 ADAC.
10.4.3 Edit ADAC Header/Asset

Position of option on menu: File I/O => ADAC => Edit header/asset

The ADAC Editor edits a string and looks at its ADAC attributes and determines whether it is an ADAC Header string or an ADAC Asset string (and then which Asset type), or is not an ADAC string at all.

Selecting Edit brings up the Edit ADAC panel:

![Image of Edit ADAC panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>String</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- select a string to have its ADAC attributes edited.

- Edit button

 - if the selected string is a ADAC Header string, then the 10.4.2 Create ADAC Asset is brought up.
 - If the selected string is an ADAC Asset string, the 10.4.3 Edit ADAC Header/Asset panel is brought up for its ADAC Asset type.
 - If the selected string is not an ADAC Header or an ADAC Asset string, then an error message is written to the panel message area.

Continue to the next section 10.4.3.1 ADAC Header Editor or return to 10.4.3 Edit ADAC Header/Asset, 10.4 12d ADAC Menu or 10 ADAC.
10.4.3.1 ADAC Header Editor

Position of option on menu: File I/O => ADAC => Edit

When a string is selected with the ADAC Editor and the string has ADAC Header Data attributes, then the ADAC Project Header Editor panel is brought up with any ADAC Header Data already with the string loaded into the Editor.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schema path</td>
<td>the path to the ADAC Schema that is used to generate all the items under Project.</td>
<td>output only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attribute path</td>
<td>the path in the ADAC Schema to the ADAC element being edited. In this case it is the ADAC Project element.</td>
<td>output only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>String</td>
<td>displays the string that has the ADAC Header Data attributes that are being displayed and edited. This will already be set when the panel is brought up by the ADAC Editor or the ADAC Create Header panel.</td>
<td>output only</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADAC Tree

What is displayed in this tree, from the substructure definitions to all the field types, pop-up choices, etc., is all controlled by the ADAC XML Schema.

Even what is shown in these images may vary with the ADAC Version.

If you don’t have the ADAC Schema Help File, please contact IPWEA.
The **Drawing extents** and **Software** do not have to be filled out because they are updated by **12d Model**.

For information about all the other ADAC elements in the **ADAC Tree**, please see the **ADAC XML Schema Help file**.

Drawing extents these do not have to be filled in
these fields do not have to be filled in. The drawing extents will be calculated and updated when the data is written out to an ADAC XML file.

Software these do not have to be filled in
these fields do not have to be filled in. The **Software product** and **Version** will be updated when the data is written out to an ADAC XML file.

Buttons at Bottom

Set button

Clicking **Set** updates the ADAC Header attributes for the string being edited, using the values in this panel.

Continue to the next section **10.4.3.2 ADAC Asset Editor** or return to **10.4.3 Edit ADAC Header/Asset**, **10.4 12d ADAC Menu**, or **10 ADAC**.
10.4.3.2 ADAC Asset Editor

Position of option on menu: File I/O => ADAC => Edit

When a string is selected with the ADAC Editor and the string has ADAC Asset Data attributes, then the ADAC Asset Editor for that particular ADAC Asset is brought up, with any ADAC Asset Data already on the string, loaded into the Editor.

For example, for the ADAC Asset Sewerage>MaintenanceHoles>MaintenanceHole, the Editor panel is

The fields and buttons used in this panel have the following functions.

Field Description	Type	Defaults	Pop-Up
Schema path | output only | the path to the ADAC Schema that is used to generate all the items for this ADAC Asset.
Attribute path | output only | the path in the ADAC Schema to the ADAC element being edited. In this case it is the ADAC Sewerage MaintenanceHole element.
String | output only | displays the string that has the ADAC Asset Data attributes that are being displayed and edited. This will already be set when the panel is brought up by the ADAC Editor or the ADAC Create Asset panel.

ADAC Tree
What is displayed in this tree, from the substructure definitions to all the field types, pop-up choices, etc., is all controlled by the ADAC XML Schema.

Even what is shown in these images may vary with the ADAC Version.

If you don't have the ADAC Schema Help File, please contact [IPWEA](#).
If you don’t have the ADAC Schema Help File for the ADAC Version you are creating, please contact IPWEA.

For information about all the ADAC elements in the ADAC Tree for an ADAC Asset, please see the ADAC XML Schema Help file.

Geometry

this do not have to be filled in
the Geometry is generated by 12d Model from the strings geometry.

Buttons at Bottom

Set button

clicking Set updates the ADAC Asset attributes for the string being edited, with the values in this panel.

Continue to the next section 10.4.3.3 Common Features of ADAC Editors, or return to 10.4.3 Edit ADAC Header/Asset, 10.4 12d ADAC Menu, or 10 ADAC.
10.4.3.3 Common Features of ADAC Editors

The *ADAC Schema* is fully described by the *ADAC XSD (XML Schema Definition)*, which formally defines the structure and all the elements inside an *ADAC XML* file.

And the *ADAC Header Editor* and the *ADAC Asset Editors* for each of the different *ADAC Assets*, are also fully defined by the *ADAC Schema XSD*.

What that means is that everything in the *ADAC Editors*, and how they behave, follows the *ADAC XSD*.

That starts with *Create ADAC Asset* panel:

![Create ADAC Asset panel]

where once a string is selected, the choice of *ADAC Asset* choices is totally determined by which *ADAC Assets* in the *ADAC XSD* have that geometry.

Once in the *Editors* (*ADAC Asset* or *ADAC Header*), every item in the *Editor* is again controlled by the *ADAC XSD*.

So to know why each items exists, and what it is, you need to refer to the *ADAC Schema*.

What we'll now do is look at how the Editor is structured, navigated and used.

See

- 10.4.3.1 Editor Tree, Nodes and Elements
- 10.4.3.2 Delete Icon
- 10.4.3.3 Add Sibling and Add Child Icons
- 10.4.3.4 Nillable Elements and Nodes
- 10.4.3.5 Nodes with Choices for Subnodes
10.4.3.3.1 Editor Tree, Nodes and Elements

When the ADAC Editors start up, they have a tree structure on the left hand side.

Each item in the tree are known as nodes and nodes contain ADAC elements or can have their own substructure of nodes and elements. A node with a substructure is identified by having either a + or a - to the left of it.

The + indicates that the node has a substructure that has not been expanded and by clicking on the +, the first level of the sub structure is displayed.

The - indicates that the node contains a substructure and it has been expanded in the tree. Clicking on the - will collapse the expansion back into just the node.

When a node is clicked on and hence highlighted, all the element that belong to the first level of the node that are not other nodes, are displayed on the right hand side of the panel.

It is the non-node elements displayed on the right that hold the data about the ADAC Asset.

The elements on the right hand side of the panel mainly consist of choice, text, real, integer and date boxes and they are all defined in the ADAC XSD. Where ever possible, the icons at the end of each field are the same as those used in 12d Model panels.

Where it is a Choice box, the allowable choices (which are in the pop up) are all defined in the ADAC XSD where they are known as Enumerations.

Continue to the next section 10.4.3.3.2 Delete Icon or return to 10.4.3.3 Common Features of ADAC Editors, 10.4.3 Edit ADAC Header/Asset, 10.4 12d ADAC Menu or 10 ADAC.
10.4.3.3.2 Delete Icon

There is a Delete icon on the ADAC Editors but most of the time is disabled because there are only a few places in the ADAC Schema that data can be deleted.

If a node in the tree is selected and highlighted, and the Delete icon is enabled and then clicked, the node is deleted.

The Delete icon is enabled when the ADAC Asset itself has been selected as in the image above but deleting the ADAC Asset itself is rarely done.

The one time when the Delete is usable is when a node has choices for one of its subnodes (for example, ChamberSize). In that case to change the choice of subnode, the existing subnode needs to be deleted and then a new one created. replaced by a new one. This process is documented in the section 10.4.3.3.5 Nodes with Choices for Subnodes.

Continue to the next section 10.4.3.3.3 Add Sibling and Add Child Icons, or return to 10.4.3.3 Common Features of ADAC Editors, 10.4.3 Edit ADAC Header/Asset, 10.4 12d ADAC Menu or 10 ADAC.
10.4.3.3 Add Sibling and Add Child Icons

There is are two Add icons - Add a sibling and Add a child.

The Add a sibling icon adds a new item at the same level (a sibling) as the highlighted node. The Add a child icon adds a node as a subnode of the highlighted node.

As in the Delete icon case, most of the time the Add a sibling and Add a child icons are disabled because there are only a few places in the ADAC Schema that it makes sense to add a new sibling or child node.

The Add a sibling icon is enabled when the ADAC Asset itself has been selected as in the image above but adding a second ADAC Asset is not useful because a second or subsequent ADAC Asset on the one string will be ignored in the 12d-ADAC process.

One time when the Add a child is usable is when a node has choices for one of its subnodes (for example, ChamberSize). In that case to change the choice of subnode, the existing subnode needs to be deleted and then a new one created, replaced by a new one using Add a child. This process is documented in the section 10.4.3.3.5 Nodes with Choices for Subnodes.

Continue to the next section 10.4.3.4 Nillable Elements and Nodes, or return to 10.4.3.3 Common Features of ADAC Editors, 10.4.3 Edit ADAC Header/Asset, 10.4 12d ADAC Menu or 10 ADAC.
10.4.3.3.4 Nillable Elements and Nodes

One concept used in the ADAC XSD that has not been expressed in the same way in other 12d Model panels, is nillable.

In the ADAC XSD, if a node or element is nillable (i.e. has nil set to true in the XSD), then the node or element may or may not have a value. So it is optional.

If a node or element is not nillable (i.e. has nil set to false in the XSD) then the node or element is not optional and must have values.

See

10.4.3.3.4.1 Nillable Elements.
10.4.3.3.4.2 Nillable Node

Or return to 10.4.3 Common Features of ADAC Editors, 10.4.3 Edit ADAC Header/Asset, 10.4 12d ADAC Menu or 10 ADAC.
10.4.3.3.1 Nillable Elements

In the ADAC Editor, if an element is nillable (and hence optional) then it is listed on the right hand side of the panel under the title Nillable and with a tick box beside its name.

If the tick box is ticked then the item is not to be filled in and the panel field for it is greyed out so nothing can be entered.

If the tick box is not ticked then the item is to be filled in and the panel field is no longer greyed out. In this is the case a value must be entered.

All elements not mentioned in the Nillable area are not nillable and must always be filled in.

ObjectId is nil? is ticked so the ObjectId field is greyed out and nothing can be entered.

Lining is nil? is not ticked so the Lining field is not greyed out, and must be filled in.

Continue to the next section 10.4.3.4.2 Nillable Node, or return to 10.4.3.4 Nillable Elements and Nodes.
10.4.3.3.4.2 Nillable Node

In the ADAC Editor, if an node is nillable (and hence optional) then on top of the listing of the elements for the node is a tick box Set as nil.

If the tick box is ticked then none of the elements can be filled in.

If the tick box is not ticked then the element have the potential of being filled it. Whether they are to be filled in depends on if the individual element is nillable or not.

Return to 10.4.3.3.4 Nillable Elements and Nodes.
10.4.3.3.5 Nodes with Choices for Subnodes

In the ADAC Schema, there are some nodes that have choices for subnodes.

For example, Sewerage>MaintenanceHoles>MaintenanceHole>ChamberSize is not just a simple value but is a choice of subnodes - Rectangular, Circular and Custom - which each contain one or more elements.

To change the subnode choice, you need to click on the **subnode** to highlight it and then click on the **Delete** icon.

To create a new subnode now that one no longer exists, click on the **node** to highlight it and then click on the **Add Child** icon. A **Select Element** panel will then appear with the available choices.

For example, for the Sewerage>MaintenanceHoles>MaintenanceHole>ChamberSize, the choices are Rectangular, Circular and Custom.
Select the choice from the Select Element panel and the new subnode is created for the highlighted node.

For example, if Circular is chosen as the choice of subnode of ChamberSize

Return to 10.4.3.3 Common Features of ADAC Editors.
10.4.4 Validate

Position of option on menu: **File I/O => ADAC => Validate**

The **ADAC Validator** validates a *Data Source* of string against the ADAC XML Schema. Selecting **Validate** brings up the **ADAC Validator** panel:

![ADAC Validator Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type - for a full description go to 4.19.3 Data Source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source of data to be validated against the ADAC Schema.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report type</td>
<td>choice box</td>
<td>ADAC pdf, ADAC html, original xml, custom</td>
<td></td>
</tr>
<tr>
<td>output format for the report. An XML file will be produced and then if required, converted to the selected report.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For information on setting up custom reports from the generated XML file using xslts, see 4.30 Setting Up XML Reports</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if not blank, an XML file will be created and a report of this name, and of the type given by Report type will be generated from the XML file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If blank, no report is created but errors are still written to the panel’s message area.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Validate</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>when Validate is pressed, the string in the Data Source is validated against the ADAC XML Schema.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If no errors are found, then No errors found! is written to the panel’s message area.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For each error found, an error message is written to the area on the panel for error messages as an intelligent log line, and if Report file is not blank, written in XML to the report file.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Clicking on an error line will highlight and pan to the offending ADAC Asset in any Plan view the asset is on.
Double clicking on the log line, brings up the ADAC Asset Editor with the data for the string loaded into it.
Clicking on the error line highlights the offending ADAC asset on Plan views. Double clicking on the error line brings up the offending ADAC asset in the ADAC Editor.

Continue to the next section 10.4.5 Report, or return to 10.4 12d ADAC Menu.
10.4.5 Report

Position of option on menu: File I/O => ADAC => Report

Report produces a report in a variety of formats of an ADAC Header string and a user selection of ADAC Asset strings.

Selecting Report brings up the ADAC Report panel:

![ADAC Report Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td>Defaults</td>
<td></td>
</tr>
<tr>
<td></td>
<td>data selection type - for a full description go to 4.19.3 Data Source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>source of data to be included in the ADAC report.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Header string</td>
<td>string select</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>select the string that has the ADAC Header information for this report.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report type</td>
<td>choice box</td>
<td>ADAC pdf, ADAC html, original xml, custom</td>
<td>output format for the report. An XML file will be produced and then if required, converted to the selected report.</td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td>file box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if not blank, an XML file will be created and a report of this name, and of the type given by Report type will be generated from the XML file. If blank, no report is created.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>writes out the report.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Continue to the next section 10.4.6 Write ADAC XML File or return to 10.4 12d ADAC Menu.
10.4.6 Write ADAC XML File

Position of option on menu:
File I/O => ADAC => Write ADAC file

Write ADAC file produces an ADAC XML file using a user selected ADAC Header string and a user selection of ADAC Asset strings.

Selecting Write ADAC file brings up the Write ADAC XML file panel:

![Write Adac XML File Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Header string</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Data source type: Model
- Data selection type - for a full description go to 4.19.3 Data Source.
- Data source: input
- Header string: string select
- Report file: file box
- Write: button

write out the ADAC XML file using the Header string as the ADAC Header data and the Data source of ADAC Asset strings.

Continue to the next section 10.4.7 Import ADAC XML File, or return to 10.4 12d ADAC Menu.
10.4.7 Import ADAC XML File

Position of option on menu: File I/O => ADAC => Import ADAC file

Import ADAC file reads in an ADAC XML file and

(a) For the ADAC Header Information, creates a 12d Model one vertex string with an identical attribute structure to an ADAC Header string created in 12d Model. All the ADAC Header data in the ADAC XML file is placed in the attribute structure.

(i) The string is given the string name header.

(ii) This string is placed in the model adac project header with a Pre*postfix for models from the panel applied to the model name.

(b) For each ADAC Asset in the file, creates a 12d Model string with the same geometry as the ADAC Asset has in the ADAC XML file.

(i) The 12d Model string is given an identical attribute structure to an ADAC Asset created within 12d Model. All the ADAC Asset data in the ADAC XML file for that asset is read in and placed in the attribute structure.

(ii) The created string is given the final part of the ADAC Asset name as a string name. For example, A Transport>RoadEdges>RoadEdge is given the name RoadEdge.

(iii) The string is placed in the model adac project data with a Pre*postfix for models from the panel applied to the model name.

It is unfortunate that with only sixty-eight ADAC Assets, there is a double up in such names because it is much easier to refer to MaintenanceHole than Sewerage>MaintenanceHoles>MaintenanceHole.

In ADAC 4.1, the double ups are:

- MaintenanceHole - in both Sewerage and WaterSupply
- Valve - in both Sewerage and WaterSupply
- Fitting - in all three of Sewerage, WaterSupply and StormWater
- Pipe - in both WaterSupply and StormWater
- Connection - in both Sewerage and Cadastre.

To allow them to be distinguished, when 12d Model reads the ADAC Asset data, the full name of the ADAC Asset is stored in the string text attribute Adac>Path. So if a Map File is used when reading in the ADAC.MXL file, using this attribute as the Att Key in the Basic node allows the string’s ADAC Asset type to be uniquely identified, and the string renamed.

Selecting Import ADAC file brings up the Import ADAC XML file panel:
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAC XML file to import</td>
<td>file box</td>
<td>available .XML files</td>
<td></td>
</tr>
<tr>
<td>name of the ADAC XML file to import.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The default model names (with the **Pre*postfix for models** applied) to hold the data read in are:

- **adac project header** for the string containing the ADAC Header data.
- **adac project data** for the strings for each ADAC Asset

Map file

- **file box**
- *.*mapfile, *.*mf files

If **blank**, no **12d Map File** is used.

If **not blank**, the name of the **Map File** to be used when importing data from the ADAC.XML file.

When using a **Map File**, the short **ADAC Asset** name in the ADAC.XML file is used as the entity-name for matching with the key in the Map File. Example, a **Transport>RoadEdges>RoadEdge** is given the name **RoadEdge**.

That is, when the ADAC Asset is read in, it can be mapped by having an entry in the **Base** node of the Map File with short ADAC Asset name as the **Key**.

For example, **RoadEdge**, or **RoadEdge*** as the **Key** will map all the **Transport>RoadEdges>RoadEdge** that are read in.

When importing, all the ADAC elements associated with the ADAC Asset are placed in a 12d attribute structure identical to that used when ADAC Assets are created within **12d Model**. So the ADAC Asset attributes are also available to use in the **Base** node of the Map File as an **Att Key** when importing the ADAC.XML file.

Note that the **full ADAC Asset name** is stored in the string attribute **Adac>Path** so this is available to use as the **Att Key** to distinguish between ADAC Assets with the same short name.

Pre*postfix for models

- **pre*postfix box**
- name of xml file (without the XML)

When an XML is selected, the file name (without the .xml) plus " * " is written to this field as the default.

If **not blank**, a prefix and a postfix applied to the default model names that are created.

If there is a 12d Map File then this will also be applied to any models created by the map file.

Go to the section **4.19.2 Pre*Postfix in Panel Fields** for information on using pre*postfix.

Null value for Z

- **real box**
- -999

If in the ADAC geometry there is no z-coordinate, then the coordinate is given this value in 12d Model.
Create ss pipes and drainage pits tick box

If not ticked, the string created by ADAC are super strings with no diameters.
If ticked, ADAC pipes are created as super strings with round or box sections.

If ticked and you have the drainage module, Sewerage MaintenanceHoles and Stormwater Pits create a pit on a one vertex drainage string, and the pit geometry is defined by the ADAC elements.

Create drainage network tick box

If ticked and you have the drainage module, 12d Model will try to join the Sewerage MaintenanceHoles and NonPressurePipes into Sewer lines, and the Stormwater Pits and Pipes into drainage lines.

However, ADAC has no information about which Pits/MaintenanceHoles go with which Pipes, so the results can only be a best guess.

If the ADAC XML file was created by 12d Model from 12d Model drainage and sewer strings, then extra information is added to the ADAC XML data so that the original networks can be reconstructed.

When drainage strings are created, they are given a name starting with StormWater so to map them when reading in the data you will need an entry in the Base node of the Map File with StormWater* as the Key.

When sewer strings are created, they are given a name starting with Sewerage so to map them when reading in the data you will need an entry in the Base node of the Map File with Sewerage* as the Key.

Keep temporary 12da file tick box

when an ADAC XML file is being imported, a temporary 12da file is created.
If not ticked, the temporary 12da file is deleted.
If ticked, the temporary 12da file is not deleted.

Import button

when clicked, the ADAC XML file is processed and the ADAC data imported into 12d Model.

Continue to the next section 10.4.8 ADAC Utilities, or return to 10.4 12d ADAC Menu.
10.4.8 ADAC Utilities

Position of menu: File I/O => ADAC => Utilities

See

10.4.8.1 ADAC Strings to Map File
10.4.8.2 XSD to Map File
10.4.8.3 XSD to Model
10.4.8.4 Sync Geometry
10.4.8.5 Create/Edit User Attributes to ADAC File
10.4.8.6 Apply User Attributes to ADAC Elements
10.4.8.7 ADAC XML File Editor
10.4.8.1 ADAC Strings to Map File

Position of option on menu: File I/O => ADAC => Utilities => ADAC strings to Map File

ADAC strings to Map File takes the selected strings representing ADAC Assets and creates a Map File from them in the following way:

For applications that don’t have 12d Model drainage or sewer strings:

each ADAC string creates a row in the Attributes>String grid of the Map File with the string name followed by a * placed in the Name column. The first string attribute’s name, type, and value is placed in the Att Key column, and the ADAC attribute group placed in the Map Attributes column.

For applications that do have 12d Model drainage or sewer strings then have the User Vertex and segment attributes tick box ticked and

(a) each ADAC Sewerage>MaintenanceHoles>MaintenanceHole string creates a row in the Attributes>Vertex/Pit grid of the Map File with * placed in the Name column, an Integer attribute named sewertype with value 1, placed in the Att Key column. The first string attribute’s name, type, and value is placed in the Vertex Att Key column and the ADAC attribute group placed in the Map Attributes column. The string name is written to Comment column.

(b) each ADAC StormWater>Pits>Pit string creates a row in the Attributes>Vertex/Pit grid of the Map File with * placed in the Name column, an Integer attribute named sewertype with value 0, placed in the Att Key column. The first string attribute’s name, type, and value is placed in the Vertex Att Key column and the ADAC attribute group placed in the Map Attributes column. The string name is written to Comment column.

(c) each ADAC Sewerage>PipesNonPressure>PipeNonPressure string creates a row in the Attributes>Segment/Pipe grid of the Map File with * placed in the Name column, an Integer attribute named sewertype with value 1, placed in the Att Key column. The first string attribute’s name, type, and value is placed in the Segment Att Key column and the ADAC attribute group placed in the Map Attributes column. The string name is written to Comment column.

(d) each ADAC StormWater>Pipes>Pipe string creates a row in the Attributes>Segment/Pipe grid of the Map File with * placed in the Name column, an Integer attribute named sewertype with value 0, placed in the Att Key column. The first string attribute’s name, type, and value is placed in the Segment Att Key column and the ADAC attribute group placed in the Map Attributes column. The string name is written to Comment column.

(e) all other ADAC strings create a row in the Attributes>String grid of the Map File with the string name followed by a * placed in the Name column, and the first string attribute’s name, type, and value placed in the Att Key column, and the ADAC attribute group placed in the Map Attributes column.

For example, if you had a model with three ADAC Assets in it

(a) a Road Edge with the string name EB

(b) an ElectricalConduit with string name NEW ENERGEX

and

(c) a Lot with string name RP Boundary

then running the option Assets to Map File creates a Map File with three entries in the Attributes>Strings section:
Assets to Map File is the best method for creating a 12d Map File to be used in the ADAC Survey and Designers Chains.

Selecting Assets to Map file brings up the Create Map File from ADAC Data panel:

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data selection type - for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source of ADAC Asset data to create a 12d Map File from.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ADAC version choice box from env.4d 4.0.0, 4.1.0
this field is optional, but if it is set, then only strings representing ADAC Assets of this version of the ADAC XML Schema will have entries created in the Map File.

Map file file box *.mapfile, *.mf files
the name of the 12d Map File that is created and has the Attributes >String section.
For each string that is an ADAC Asset of the ADAC version given in the Version field, create a row in the Attributes >String section of the this Map File with the name of the string followed by an * in the Name column, and in the same row, all the string’s string attributes in the Adac group are copied to the Map Attributes column
See the section 8.8.1 Create/Edit a Map File for information about 12d map files.

User vertex and segment attributes tick box not ticked
if not ticked, each ADAC string creates an entry in the Attributes >String section of the Map File.
If ticked, ADAC Sewerage>MaintenanceHoles>MaintenanceHole and StormWater>Pits>Pit create entries in the Attributes>Vertex/Pit section of the Map File, ADAC Sewerage>PipesNonPressure>PipeNonPressure and StormWater>Pipes>Pipe create entries in the Attributes>Segment/Pipe section of the Map File, and all other ADAC strings create entries in the Attributes >String section of the Map File.

Create button
when clicked, the Map File is created.

Continue to the next section 10.4.8.2 XSD to Map File or return to 10.4.8 ADAC Utilities.
10.4.8.2 XSD to Map File

Position of option on menu: File I/O => ADAC => Utilities => XSD to Map File

XSD to Map File takes the ADAC XML Schema XSD for a given version and creates a 12d Map File (or just Map file), and in the Attributes > String section, creates a row for each Asset type in the XSD (sixty-eight of them) with the short name of the ADAC Asset followed by an * in the Name column, and in the same row, creates an ADAC group of attributes for that Asset type in the Map Attributes column with default values for each of the ADAC elements in the ADAC group.

For example, running the XSD to Map File option for ADAC XML version 4.1.0 Schema, creates the Map File:

Selecting XSD to Map file brings up the Create Map File from ADAC XSD panel:

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAC version</td>
<td>choice box</td>
<td>from env.4d</td>
<td>4.0.0, 4.1.0</td>
</tr>
</tbody>
</table>

this is the ADAC XML XSD to create the 12d Map File from.
Map file file box *.mapfile, *.mf files

the name of the Map File that is created. And in the Attributes >String section, for each ADAC Asset in the XSD a row is created with the short name for the ADAC asset followed by an * in the Name column, and in the same row, an ADAC group is created in the Map Attributes column of the type, and all the elements in the XSD for that ADAC Asset are copied as attributes into the ADAC group.

See the section 8.8.1 Create/Edit a Map File for information about 12d map files.

Create button
when clicked, the Map File is created.

Continue to the next section 10.4.8.3 XSD to Model or return to 10.4.8 ADAC Utilities.
10.4.8.3 XSD to Model

Position of option on menu: File I/O => ADAC => Utilities => XSD to model

XSD to Model takes a given version of the ADAC XML Schema XSD and, for each ADAC Asset in the XSD, creates a super string using:

(a) the short name of the ADAC Asset as the string name
(b) in the string attributes, an ADAC group with default values for each of the ADAC elements
(c) the ADAC Asset Geometry with default values as the string geometry
(d) green for the string colour.

So there will be sixty-eight strings created for ADAC versions 4.1 or 4.0.

For example, running the XSD to model option for ADAC XML version 4.1.0 Schema creates a model, and the first three strings in that model are:

Selecting XSD to model brings up the Create Model from ADAC XSD panel:

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAC version</td>
<td>choice box</td>
<td>from env.4d</td>
<td>4.0.0, 4.1.0</td>
</tr>
<tr>
<td>Model</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
</tbody>
</table>

this is the ADAC XML XSD to create the strings for:

for each ADAC Asset in the XSD, a super string is created using:

(a) the short name of the ADAC Asset as the string name
(b) in the string attributes, an ADAC group with default values for each of the ADAC elements
(c) the ADAC Asset Geometry with default values as the string geometry
(d) green for the string colour.
These ADAC strings are added to this model.

See the section 8.8.1 Create/Edit a Map File for information about 12d map files.

Create button

when clicked, the model of strings for ADAC Assets in the XSD is created.

Continue to the next section 10.4.8.4 Sync Geometry or return to 10.4.8 ADAC Utilities.
10.4.8.4 Sync Geometry

Position of option on menu: File I/O =>ADAC =>Utilities =>Sync geometry

Sync geometry takes selected strings representing ADAC Assets and updates the Geometry section of the ADAC attributes for the string with the actual geometry of the string. Selecting Sync geometry brings up the ADAC Synchronise Geometry panel:

![ADAC Synchronise Geometry panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADAC version</td>
<td>choice box from env.4d 4.0.0, 4.1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sync</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section 10.4.8.5 Create/Edit User Attributes to ADAC File or return to 10.4.8 ADAC Utilities.
10.4.8.5 Create/Edit User Attributes to ADAC File

Position of option on menu: File I/O => ADAC => Utilities => Create/Edit User Attributes to ADAC file

This option creates and edits a 12duaf file which defines what 12d string, vertex or segment User attributes are used to update user specified ADAC Asset element values.

The 12duaf file is used to update the values in ADAC Assets by the Apply User Attributes to ADAC panel (see 10.4.8.6 Apply User Attributes to ADAC Elements).

Selecting Create/Edit User Attributes to ADAC file brings up the Create/Edit User Attributes to ADAC panel:

![Create/Edit User Attributes to ADAC panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAC version</td>
<td>choice box</td>
<td>from env.4d</td>
<td>4.0.0, 4.1.0</td>
</tr>
<tr>
<td>the version of the ADAC XML Schema that the ADAC Asset elements are from. The version is necessary because the names can change between versions.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADAC Attributes file</td>
<td>file box</td>
<td>*.12duaf files</td>
<td></td>
</tr>
<tr>
<td>name of the 12d User Attribute to ADAC file to read or write.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>click on this button and the file given in the ADAC Attribute file field is read in and loaded into the editor.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>writes out the data in the editor to the file given in the ADAC Attribute file field.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12duaf File Grid

when an 12duaf file is read in, it is displayed in the 12duaf tree.
ADAC Element text column
the full name of the ADAC element to have its value updated.
For example,

WaterSupply/Pipes/Pipe/Diameter_mm

The name can be typed in but it is easiest to select it from the ADAC Schema by clicking RB in the ADAC Element row and expanding the tree and double clicking on the required ADAC element.

This ADAC element is given the value from the same row of the following 12d Attribute, multiplied, when appropriate, by Factor when Factor is non zero.

12d Attribute text column
the full path name of the 12d User Attribute with
- String/ preceding the name if it is a String Attribute.
- Vertexn/ preceding the name if it is a Vertex Attribute on the n’th vertex.
- Segmentn/ preceding the name if it is a Segment Attribute on the n’th segment.

For example,

Vertex1/Survey/Diameter

is the Vertex attribute called Survey/Diameter on vertex 1

Note that case is important in User Attribute names. That is, upper and lower case characters are considered different.

Factor real column
for a row where Factor is non zero, the value of the ADAC Element column is set equal to the value in the 12d Attribute column multiplied by the value in the Factor column.

For example, Factor would be set to 1000 if the 12d Attribute was in metres and the ADAC Element was in millimetres.

Active tick box tick
if ticked, use this row of the grid.
If not ticked, do not use this row of the grid.

Comment text

a comment for this row of the grid
Buttons at Bottom

Validate button
when clicked, check that the ADAC Element names against the appropriate ADAC Schema.

Continue to the next section 10.4.8.6 Apply User Attributes to ADAC Elements, or return to 10.4.8 ADAC Utilities.
10.4.8.6 Apply User Attributes to ADAC Elements

Position of option on menu: File I/O => ADAC => Utilities => Apply User Attributes to ADAC elements

This option applies a 12duaf file to ADAC Assets to update the ADAC elements with values from the 12d User Attributes of the ADAC Asset string.

The 12duaf file is created and edited by the Create/Edit User Attributes to ADAC panel (see 10.4.8.5 Create/Edit User Attributes to ADAC File).

Selecting Apply User Attributes to ADAC elements brings up the Apply User Attributes to ADAC Elements panel:

![Apply User Attributes to Adac Elements Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADAC Attributes file</td>
<td>file box</td>
<td>*.12duaf files</td>
<td></td>
</tr>
<tr>
<td>Model for results</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Clean model first?</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apply</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- If **ticked**, the model Model for results is cleaned before any strings are added to it.
- If **not ticked**, the model Model for results is NOT cleaned.

Continue to the next section 10.4.8.7 ADAC XML File Editor or return to 10.4.8 ADAC Utilities.
10.4.8.7 ADAC XML File Editor

Position of option on menu: File I/O => ADAC => Utilities => ADAC file editor

ADAC XML file editor reads an ADAC XML file and loads it into the ADAC XML File Editor. Selecting ADAC file editor brings up the ADAC XML File Editor panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAC XML file</td>
<td>name of the XML file to read or write.</td>
<td>file box</td>
<td>*.XML files</td>
<td></td>
</tr>
<tr>
<td>Read</td>
<td>click on this button and the file given in the ADAC XML file field is read in and loaded into the editor.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADAC tree</td>
<td>when an ADAC XML file is read in, it is displayed in the ADAC tree. Elements in the tree can be edited according to the ADAC XSD. New ADAC Assets can also be added.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>writes out the data in the editor to the file given in the ADAC XML file field.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As an example,
Return to 10.4.8 ADAC Utilities.
10.4.9 User ADAC

Position of menu: File I/O => ADAC => User

The easiest way to run the ADAC Survey or Design chains with specific pvf files is to run them from a menu. This can be done in two ways:

(a) Running Specific Map and 12duaf files from Local and User_Lib

12d Model provides options on the walk right menu Run 12d ADAC 4.1 Chains on the option 12d 4.1 chains to run ADAC Survey or Design chains for ADAC 4.1 with specially named Map and 12duaf files in the working folder for the project (local), or User_Lib or Library.

See 10.4.9.4 12d 4.1 Chains.

(b) Running Client Specific Map and 12duaf files

Once you are producing ADAC files for different Clients, you may need to produce different ADAC versions, or need different Map or 12duaf files.

For example you may need to use a different naming convention, or the information required in the ADAC assets is different.

For these situations, you can add your own options to User Adac menu.

The user options can run either the ADAC Base Survey or Design chains with Client specific chain pvf files.

For information on setting up your own options on the User ADAC menu, see 10.4.9.5 Client Specific ADAC Design & Survey Menus.

Or return to 10.4.8 ADAC Utilities.
10.4.9.1 Setting Up a New ADAC Project

Position of menu: File I/O => ADAC => User => Setting up a new ADAC Project

A new project for producing ADAC XML needs to be set up a certain way for the ADAC Chains to work.

There is a different setup for a **Survey** Project to that for a **Design** Project.

ADAC Header and Asset templates can also be read in from the file **ADAC_Templates.12da** in User_Lib.

See

10.4.9.1.1 Setting Up for Survey
10.4.9.1.2 Setting Up for Design
10.4.9.1.3 Reading in Templates from User_Lib
10.4.9.1.1 Setting Up for Survey

Position of option on menu:

File I/O => ADAC => User => Setting up a new ADAC Project => Setting up for survey

Setting up for survey runs the Chain *ADAC_Set_up_for_survey.chain*, which is in LIB.

This chain creates some new Plan views and some models which are added to the views, and the views then minimised.

The Plan views and models are used by the ADAC Survey Chain.

Continue to the next section 10.4.9.1.2 Setting Up for Design, or return to 10.4.9.1 Setting Up a New ADAC Project.
10.4.9.1.2 Setting Up for Design

Position of option on menu:
File I/O => ADAC => User => Setting up a new ADAC Project => Setting up for design

Setting up for design runs the Chain **ADAC_Set_up_for_design.chain** which is in $LIB

This chain creates some new Plan views and some models which are added to the views, and the views then minimised.

The Plan views and models are used by the ADAC Design Chain.

Continue to the next section 10.4.9.1.3 Reading in Templates from User_Lib, or return to 10.4.9.1 Setting Up a New ADAC Project.
10.4.9.1.3 Reading in Templates from User_Lib

Position of option on menu:
File I/O => ADAC => User => Setting up a new ADAC Project => Read in templates from User_Lib

Reading Templates from User_Lib runs the Chain `ADAC_Read_in_Templates.chain` which is in Library.

This chain reads in the file `ADAC_Templates.4da` from User_Lib.

So if you have created Header and Assets Templates then by writing the models **ADAC Header Templates** and **ADAC Asset Templates** which contain the Templates out to this then this option can be used to read them into a new project.

For information on ADAC Header and Asset Templates, see 10.6.4 Setting Up ADAC Templates.

Return to 10.4.9.1 Setting Up a New ADAC Project.
10.4.9.2 Data Prep

Position of menu:
File I/O => ADAC => User => Data prep

When you start with a Survey and Design in 12d Model, not all the information required for ADAC will necessarily be there. In fact, some of the ADAC information may even be added at a later stage by someone other than the Surveyor or Designer.

Similarly, some of the strings may not be of the correct type to become an ADAC Asset. For example, a string may not have the correct geometry as defined for the ADAC Asset in the ADAC XML Schema XSD.

So before running an ADAC Survey or ADAC Design chain, one or more of the ADAC Data Prep options may need to be run to prepare the strings that will become ADAC Assets.

See

10.4.9.2.1 Providing Extra Data for ADAC
10.4.9.2.2 Providing Lot and Plan Numbers and Areas for ADAC
10.4.9.2.3 Generate ADAC Road Edge Types
10.4.9.2.4 Create Points from Other Data
10.4.9.2.5 Create Pipes from Points
10.4.9.2.6 Set Stormwater/Sewer Property
10.4.9.2.7 Set a Drainage-Sewer Pit and Pipe Type Attribute
10.4.9.2.1 Providing Extra Data for ADAC

Position of option on menu: File I/O => ADAC => User => Data prep => Providing extra ADAC data

This option creates, as string attributes, information that is required for ADAC but is not normally part of a survey or a design.

The extra information is stored as attributes with the string, but not as ADAC attributes. A macro in the ADAC Survey or ADAC Design chain moves them into ADAC attributes. See (10.5.1.2.4 Update ADAC Elements from 12d Created Attributes on the String - Survey)

A major reason not to create ADAC attributes straightaway is that although this option allows you to enter the values, in the future the values might already exist in another form and routines written to automatically get them. In this case it will be much easier for anyone to put them into a simpler attribute structure and not have to know anything about the complex ADAC attribute structure.

Another reason is that at this stage the ADAC Survey and Design chains have not been run to mark strings as ADAC Assets and set up the ADAC attributes group.

And when the ADAC Survey and Design chains are run, at each step in the chain they work with copies of the original data and clean out the models from a previous run rather than updating the original data. This is for safety so that it is easy to see that each step in the chain has worked, and if there is a problem, the chains can be run again and again.

So placing the attributes on the original data ensures they will still be there when the ADAC Survey or Design chains are rerun.

One important thing to keep in mind when running this option is that although you are using it to set up attributes that will go to ADAC, when you are picking the strings they are not yet marked as ADAC Assets. So you have to know what ADAC Asset the string is going to become.

Selecting Providing extra data for ADAC brings up the ADAC Common Editor panel

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAC version</td>
<td>choice box</td>
<td>from env.4d</td>
<td>4.0.0, 4.1.0</td>
</tr>
</tbody>
</table>

because the strings to be picked have not yet been marked as ADAC Assets, you need to let the option know what the ADAC version is going to be. This is required so that the correct ADAC Schema XSD is used to get information for the choices.
ADAC asset choice box

the ADAC Asset that this string will become.

Pick to Create or Edit button

click on the button and then pick a string.

If the picked string already has attributes set by this option then those values will be displayed and can be edited.

If the picked string has not yet had attributes set by this option AND ADAC asset has a value, then a panel with the attributes that this option can set for the given ADAC asset is displayed and then created for the picked string.

10.4.9.2.1.1 Transport RoadIsland
10.4.9.2.1.2 Transport Pavement
10.4.9.2.1.3 Transport Pathway
10.4.9.2.1.4 Transport Subsoil Drain
10.4.9.2.1.5 Stormwater Pit
10.4.9.2.1.6 Stormwater Surface Drain
10.4.9.2.1.7 Stormwater WSUD Area
10.4.9.2.1.8 Sewerage Maintenance Hole
10.4.9.2.1.9 Sewerage Pipe Non Pressure
10.4.9.2.1.10 Sewerage Pipe Pressure Editor
10.4.9.2.1.11 Sewerage Valve Editor
10.4.9.2.1.12 Sewerage Connection Editor
10.4.9.2.1.13 Water Supply Meter Editor
10.4.9.2.1.14 Water Supply Pipe Editor
10.4.9.2.1.15 Water Supply Hydrant Editor
10.4.9.2.1.16 Water Supply Valve Editor
10.4.9.2.1.1 Transport RoadIsland

The choice of **Transport RoadIsland** brings up a panel for setting parameters that will become the values for the ADAC attributes **Type** and **InfillType** for the ADAC Asset **Transport>RoadIslands>RoadIsland**.

Because the option knows the ADAC Schema version and the ADAC Asset, the choices for **Type** and **InfillType** come from the ADAC XSD.

The selected string must be a Polygon with straight or arc segments.

Set writes the values in the panel as string attributes.

Clicking **Finish** removes the panel and replaces it with the ADAC Common Editor panel so another value of ADAC Asset can be chosen.

Continue to the next section 10.4.9.2.1.2 Transport Pavement or return to 10.4.9.2.1 Providing Extra Data for ADAC.
10.4.9.2.1.2 Transport Pavement

The choice of *Transport Pavement* brings up a panel for setting some of the parameters for the ADAC Asset *Transport>Pavement Areas>Pavement*.

Because the option knows the ADAC version and the ADAC Asset, the types for the attributes and any pop-up choices all come from the ADAC XSD.

The selected string must be a Polygon with straight or arc segments.

![ADAC Transport Pavement Editor Panel]

Set writes the values in the panel as string attributes.

Clicking **Finish** removes the panel and replaces it with the ADAC Common Editor panel so another value of ADAC Asset can be chosen.

Continue to the next section 10.4.9.2.1.3 Transport Pathway or return to 10.4.9.2.1 Providing Extra Data for ADAC.
10.4.9.2.1.3 Transport Pathway

The choice of **Transport Pathway** brings up a panel for setting some of the parameters for the ADAC Asset **Transport>Pathways>Pathway**.

Because the option knows the ADAC version and the ADAC Asset, the types for the attributes and any pop-up choices all come from the ADAC XSD.

The selected string must be a Polyline with straight or arc segments.

Set writes the values in the panel as string attributes.

Clicking **Finish** removes the panel and replaces it with the ADAC Common Editor panel so another value of ADAC Asset can be chosen.

Continue to the next section 10.4.9.2.1.4 Transport Subsoil Drain or return to 10.4.9.2.1 Providing Extra Data for ADAC.

10.4.9.2.1.4 Transport Subsoil Drain

The choice of **Transport Subsoil Drain** brings up a panel for setting some of the parameters for the ADAC Asset **Transport>SubSoilDrains>SubSoilDrain**

Because the option knows the ADAC version and the ADAC Asset, the types for the attributes and any pop-up choices all come from the ADAC XSD.

The selected string must be a Polyline with only straight segments.

Set writes the values in the panel as string attributes.

Clicking **Finish** removes the panel and replaces it with the ADAC Common Editor panel so another value of ADAC Asset can be chosen.

Continue to the next section 10.4.9.2.1.5 Stormwater Pit or return to 10.4.9.2.1 Providing Extra Data for ADAC.
10.4.9.2.1.5 Stormwater Pit

The choice of *Stormwater Pit* brings up a panel for setting some of the parameters for the ADAC Asset *StormWater>Pits>Pit*

Because the option knows the ADAC version and the ADAC Asset, the types for the attributes and any pop-up choices all come from the ADAC XSD.

The selected string must be a one vertex string.

Set writes the values in the panel as string attributes.

Clicking Finish removes the panel and replaces it with the ADAC Common Editor panel so another value of ADAC Asset can be chosen.

Continue to the next section 10.4.9.2.1.6 Stormwater Surface Drain, or return to 10.4.9.2.1 Providing Extra Data for ADAC.

10.4.9.2.1.6 Stormwater Surface Drain

The choice of *Stormwater Surface Drain* brings up a panel for setting some of the parameters for the ADAC Asset *StormWater>SurfaceDrains>SurfaceDrain*

Because the option knows the ADAC version and the ADAC Asset, the types for the attributes and any pop-up choices all come from the ADAC XSD.

The selected string must be a Polyline with only straight segments.

Set writes the values in the panel as string attributes.

Clicking Finish removes the panel and replaces it with the ADAC Common Editor panel so another value of ADAC Asset can be chosen.

Continue to the next section 10.4.9.2.1.7 Stormwater WSUD Area, or return to 10.4.9.2.1 Providing Extra Data for ADAC.
10.4.9.2.1.7 Stormwater WSUD Area

The choice of **Stormwater WSUD Area** brings up a panel for setting some of the parameters for the ADAC Asset **StormWater>WSUDAreas>WSUDArea**.

Because the option knows the ADAC version and the ADAC Asset, the types for the attributes and any pop-up choices all come from the ADAC XSD.

The selected string must be a Polyline with straight or arc segments.

Set writes the values in the panel as string attributes.

Clicking Finish removes the panel and replaces it with the ADAC Common Editor panel so another value of ADAC Asset can be chosen.

Continue to the next section **10.4.9.2.1.8 Sewerage Maintenance Hole**, or return to **10.4.9.2.1 Providing Extra Data for ADAC**.

![StormWater>WSUDArea>TreatmentMeasure](image)
StormWater>WSUDArea>TreatmentMeasure

10.4.9.2.1.8 Sewerage Maintenance Hole

The choice of **Sewerage Maintenance Hole** brings up a panel for setting some of the parameters for the ADAC Asset **Sewerage>MaintenanceHoles>MaintenanceHole**

Because the option knows the ADAC version and the ADAC Asset, the types for the attributes and any pop-up choices all come from the ADAC XSD.

The selected string must be a one vertex string.

Set writes the values in the panel as string attributes.

Clicking Finish removes the panel and replaces it with the ADAC Common Editor panel so another value of ADAC Asset can be chosen.

Continue to the next section **10.4.9.2.1.9 Sewerage Pipe Non Pressure**, or return to **10.4.9.2.1 Providing Extra Data for ADAC**.
10.4.9.2.1.9 Sewerage Pipe Non Pressure

The choice of **Sewerage Pipe Non Pressure** brings up a panel for setting some of the parameters for the ADAC Asset **Sewerage>PipesNonPressure>PipeNonPressure**

Because the option knows the ADAC version and the ADAC Asset, the types for the attributes and any pop-up choices all come from the ADAC XSD.

The selected string must be a polyline, including arcs.

```plaintext
PipeNonPressure >LineNumber
```

Set writes the values in the panel as string attributes.

Clicking **Finish** removes the panel and replaces it with the ADAC Common Editor panel so another value of ADAC Asset can be chosen.

Continue to the next section 10.4.9.2.1.10 Sewerage Pipe Pressure Editor, or return to 10.4.9.2.1 Providing Extra Data for ADAC.

10.4.9.2.1.10 Sewerage Pipe Pressure Editor

The choice of **Sewerage Pipe Pressure** brings up a panel for setting some of the parameters for the ADAC Asset **Sewerage>PipesPressure>PipePressure**

Because the option knows the ADAC version and the ADAC Asset, the types for the attributes and any pop-up choices all come from the ADAC XSD.

The selected string must be a polyline which may include arcs.

```plaintext
PipePressure>Use
PipePressure>Diameter_mm
PipePressure>Material
PipePressure>Class
```

Set writes the values in the panel as string attributes.

Clicking **Finish** removes the panel and replaces it with the ADAC Common Editor panel so another value of ADAC Asset can be chosen.

Continue to the next section 10.4.9.2.1.11 Sewerage Valve Editor, or return to 10.4.9.2.1 Providing Extra Data for ADAC.
10.4.9.2.1.11 Sewerage Valve Editor

The choice of **Sewerage Valve** brings up a panel for setting some of the parameters for the ADAC Asset **Sewerage>Valves>Valve**

Because the option knows the ADAC version and the ADAC Asset, the types for the attributes and any pop-up choices all come from the ADAC XSD.

The selected string must be a one vertex string.

Set writes the values in the panel as string attributes.

Clicking Finish removes the panel and replaces it with the ADAC Common Editor panel so another value of ADAC Asset can be chosen.

Continue to the next section 10.4.9.2.1.12 Sewerage Connection Editor or return to 10.4.9.2.1 Providing Extra Data for ADAC.

10.4.9.2.1.12 Sewerage Connection Editor

The choice of **Sewerage Connection** brings up a panel for setting some of the parameters for the ADAC Asset **Sewerage>Connections>Connection**

Because the option knows the ADAC version and the ADAC Asset, the types for the attributes and any pop-up choices all come from the ADAC XSD.

The selected string must be a polyline which may include arcs.

Set writes the values in the panel as string attributes.

Clicking Finish removes the panel and replaces it with the ADAC Common Editor panel so another value of ADAC Asset can be chosen.

Continue to the next section 10.4.9.2.1.13 Water Supply Meter Editor or return to 10.4.9.2.1 Providing Extra Data for ADAC.
10.4.9.2.1.13 Water Supply Meter Editor

The choice of WaterSupply Meter brings up a panel for setting some of the parameters for the ADAC Asset WaterSupply>Meters>Meter

Because the option knows the ADAC version and the ADAC Asset, the types for the attributes and any pop-up choices all come from the ADAC XSD.

The selected string must be a one vertex string.

Pick lot - after clicking on Pick lot, if a polygon is selected that has Lot and Plan attributes set using the Provide lot numbers, plan numbers and areas option (see 10.4.9.2.2 Providing Lot and Plan Numbers and Areas for ADAC), then the values for LotNo and PlanNo are written into the LotNo and PlanNo fields.

Set writes the values in the panel as string attributes.

Clicking Finish removes the panel and replaces it with the ADAC Common Editor panel so another value of ADAC Asset can be chosen.

Continue to the next section 10.4.9.2.1.14 Water Supply Pipe Editor or return to 10.4.9.2.1 Providing Extra Data for ADAC.
10.4.9.2.1.14 Water Supply Pipe Editor

The choice of **WaterSupply Pipe** brings up a panel for setting some of the parameters for the ADAC Asset **WaterSupply>Pipes>Pipe**.

Because the option knows the ADAC version and the ADAC Asset, the types for the attributes and any pop-up choices all come from the ADAC XSD.

The selected string must be a polyline but only with straight segments.

Set writes the values in the panel as string attributes.

Clicking Finish removes the panel and replaces it with the ADAC Common Editor panel so another value of ADAC Asset can be chosen.

Continue to the next section 10.4.9.2.1.15 Water Supply Hydrant Editor or return to 10.4.9.2.1 Providing Extra Data for ADAC.

10.4.9.2.1.15 Water Supply Hydrant Editor

The choice of **WaterSupply Hydrant** brings up a panel for setting some of the parameters for the ADAC Asset **WaterSupply>Hydrants>Hydrant**.

Because the option knows the ADAC version and the ADAC Asset, the types for the attributes and any pop-up choices all come from the ADAC XSD.

The selected string must be a one vertex string.

Set writes the values in the panel as string attributes.

Clicking Finish removes the panel and replaces it with the ADAC Common Editor panel so another value of ADAC Asset can be chosen.

Continue to the next section 10.4.9.2.1.16 Water Supply Valve Editor or return to 10.4.9.2.1 Providing Extra Data for ADAC.
10.4.9.2.1.16 Water Supply Valve Editor

The choice of **WaterSupply Valve** brings up a panel for setting some of the parameters for the ADAC Asset **WaterSupply>Valves>Valve**

Because the option knows the ADAC version and the ADAC Asset, the types for the attributes and any pop-up choices all come from the ADAC XSD.

The selected string must be a one vertex string.

Set writes the values in the panel as string attributes.

Clicking **Finish** removes the panel and replaces it with the ADAC Common Editor panel so another value of ADAC Asset can be chosen.

Continue to the next section 10.4.9.2.2 Providing Lot and Plan Numbers and Areas for ADAC or return to 10.4.9.2 Data Prep.
10.4.9.2.2 Providing Lot and Plan Numbers and Areas for ADAC

Position of menu:

File I/O =>ADAC =>User =>Data prep =>Providing lot numbers, plan numbers and areas

This option creates as string attributes: Plan numbers, Lot numbers and areas of lots. The area is calculated from the lot polygon, but that can be manually changed. However, having the actual area there to start with usually means that only the last couple of digits need to be entered.

The extra information is stored as attributes with the string, but not as ADAC attributes. A macro in the ADAC Survey or ADAC Design chain moves them into ADAC attributes. See (10.5.1.2.4 Update ADAC Elements from 12d Created Attributes on the String - Survey)

A major reason not to create ADAC attributes straightaway is that although this option allows you to enter the values, in the future the values might already exist in another form and routines written to automatically get them. In this case it will be much easier for anyone to put them into a simpler attribute structure and not have to know anything about the complex ADAC attribute structure.

Another reason is that at this stage the ADAC Survey and Design chains have not been run to mark strings as ADAC Assets and set up the ADAC attributes group.

Also, when the ADAC Survey and Design chains are run, at each step in the chain they work with copies of the original data and clean out the models from a previous run rather than updating the original data. This is for safety so that it is easy to see that each step in the chain has worked, and if there is a problem, the chains can be run again and again.

So placing the attributes on the original data ensures they will still be there when the ADAC Survey or Design chain is rerun.

One important thing to keep in mind when running this option is that although you are using it to set up Lot attributes that will go to ADAC, when you are picking the strings they are not yet marked as ADAC Cadastre>LandParcels>Lot Assets. So you have to know what ADAC Asset that the string is going to become in ADAC Cadastre>LandParcels>Lot.

Selecting Providing lot number, plan numbers and areas brings up the Lot Numbering and Areas panel:

Selecting Providing lot number, plan numbers and areas brings up the Lot Numbering and Areas panel:
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field/Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data selection type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan number</td>
<td>text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next lot number</td>
<td>text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auto increment</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lot increment</td>
<td>number box</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Selected lot area</td>
<td>real box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pick to Create or Edit</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data source type
- Model data selection type - for a full description go to [4.19.3 Data Source](#).

Data source
- Source of data that be searched for any existing lot numbers and if they exist, the minimum and maximum existing lot numbers are written to the panel’s message area and the highest lot number plus the Lot increment is written to the Next lot no. field.

If a Model is selected by MB same as, you need to type <Enter> after it for the search to go ahead.

Display lot number
- Tick box
 - If ticked, the lot numbers for existing lots are temporarily displayed on the view.
 - If not ticked, the lot numbers are not temporarily displayed on the view.

Plan number
- Text box
 - Number of the plan the lots are from.

Next lot number
- Text box
 - The next lot number to use.

Auto increment
- Tick box
 - If ticked, as each lot number is labelled, the Next lot number is incremented by the Lot increment.
 - If not ticked, the Next lot number field is not incremented.

Lot increment
- Number box
 - The amount to increment the Next lot number by.

Selected lot area
- Real box
 - When a string that is not already a lot is selected, the area of the string is calculated and written to this field. If a different area is required, change the value in this field and click Update.

Pick to Create or Edit
- Button
 - Click on the button and then pick a string.
 - If the picked string already has Lot attributes set by this option (or other options) then those values will be displayed in the Lot Edit panel, and modified and saved by clicking Update on that panel.

If the picked string has not yet had Lot attributes set by this option then the string will be given Lot attributes using the Plan number, Next lot number and Selected lot area fields.

Continue to the next section [10.4.9.2.3 Generate ADAC Road Edge Types](#), or return to [10.4.9.2 Data Prep](#).
10.4.9.2.3 Generate ADAC Road Edge Types

Position of menu:
File I/O => ADAC => User => Data prep => Generate ADAC Road Edge types

There is an ADAC Asset Transport>RoadEdges>RoadEdge and it has the element **Type** with the choices

<table>
<thead>
<tr>
<th>Enumeration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Barrier Kerb Type 5</td>
</tr>
<tr>
<td>B2</td>
<td>Barrier Kerb with Channel Type 6</td>
</tr>
<tr>
<td>B3</td>
<td>Barrier Kerb with Channel Type 7</td>
</tr>
<tr>
<td>B4</td>
<td>Barrier Kerb with Tray Type 23</td>
</tr>
<tr>
<td>B5</td>
<td>Barrier Kerb with Tray Type 24</td>
</tr>
<tr>
<td>SM1</td>
<td>Semi-Mountable Kerb Type 8</td>
</tr>
<tr>
<td>SM2</td>
<td>Semi-Mountable Kerb Type 10</td>
</tr>
<tr>
<td>SM3</td>
<td>Semi-Mountable Kerb Type 12</td>
</tr>
<tr>
<td>SM4</td>
<td>Semi-Mountable Kerb with Channel Type 14</td>
</tr>
<tr>
<td>SM5</td>
<td>Semi-Mountable Kerb with Channel Type 15</td>
</tr>
<tr>
<td>M1</td>
<td>Mountable Kerb and Channel</td>
</tr>
<tr>
<td>M2</td>
<td>Mountable Kerb and Channel</td>
</tr>
<tr>
<td>M3</td>
<td>Mountable Kerb and Channel</td>
</tr>
<tr>
<td>M4</td>
<td>Mountable Kerb</td>
</tr>
<tr>
<td>M5</td>
<td>Mountable Kerb</td>
</tr>
<tr>
<td>M6</td>
<td>Mountable Kerb</td>
</tr>
<tr>
<td>ER1</td>
<td>Edge Restraint</td>
</tr>
<tr>
<td>ER2</td>
<td>Edge Restraint</td>
</tr>
<tr>
<td>ER3</td>
<td>Edge Restraint</td>
</tr>
<tr>
<td>ER4</td>
<td>Edge Restraint</td>
</tr>
<tr>
<td>ER5</td>
<td>Edge Restraint</td>
</tr>
<tr>
<td>NV600</td>
<td>Concrete Channel Type 22</td>
</tr>
<tr>
<td>NV900</td>
<td>Concrete Channel Type 20</td>
</tr>
<tr>
<td>Bitumen</td>
<td>Bitumen Road Edge treatment</td>
</tr>
<tr>
<td>Concrete</td>
<td>Concrete Road Edge treatment</td>
</tr>
</tbody>
</table>

However, many companies do not have a naming convention that differentiates between the choices and may use just the one string name for all of them. So there is no way to automatically know the **Type** which is **mandatory** for an ADAC Transport> RoadEdges> RoadEdge Asset.

To help get over this problem, this option takes a file which contains any number of string names and for each string, a list of chainage ranges and kerb types.

For each string listed in this file, the option creates new strings for each of the chainage ranges and kerb types. The new strings also have a User string attribute called **RoadEdge_Type** created, and it is given the value of **Type**.

It is the strings produced by this 12dPL, and not the original strings, that ADAC requires, and they are the ones added to the **Design to map to ADAC** or view **Survey to map to ADAC** for processing.

Selecting Generate ADAC Road Edge types brings up the **ADAC Kerb Splitting** panel
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source selection type</td>
<td>for a full description go to 4.19.3 Data Source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chainage range file</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of split strings</td>
<td>text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for split strings</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field Description:

- **Data source type**
 - Model
 - Data selection type - for a full description go to 4.19.3 Data Source

- **Data source**
 - Input
 - Source of strings that is searched for strings to split.

- **Chainage range file**
 - File box
 - The file giving the names of the strings to be split and the chainage ranges to split the string into and the Type that goes with that chainage range. Each new string is given a text string attribute called RoadEdge_Type which has the given kerb_type_i.

 In the file, the format for giving the chainage ranges and kerb types for a string is:

  ```plaintext
  STRING model_name ->string_name
  start_chainage_1  end_chainage_1  kerb_type_1
  start_chainage_2  end_chainage_2  kerb_type_2
  ...                     ...
  start_chainage_i  end_chainage_i  kerb_type_i
  ```

 For example,

  ```plaintext
  STRING MC01 DESIGN->KIR
  0 100 M1
  100 9999 B1
  ```

- **Name of split strings**
 - Text box
 - If blank, the original string name is used for the new strings.
 - If not blank, the created split strings will be given this name.

- **Model for split strings**
 - Model box
 - Available models

- **Process**
 - Button
 - Go and create the split strings.

Continue to the next section 10.4.9.2.4 Create Points from Other Data or return to 10.4.9.2 Data Prep.
10.4.9.2.4 Create Points from Other Data

Position of menu:

File I/O => ADAC => User => Data prep => Create points from other data

Sometimes strings are not suitable to go straight to ADAC but can be used to create suitable strings without the user having to do anything manually.

For example, ADAC only has a one point object for signs and a user picks up large signs as a two vertex string. This option takes the two vertex large sign and creates a new one vertex string that can be mapped to ADAC as an ADAC sign.

This option has various methods of creating ADAC suitable data.

Selecting Create points from other data brings up the Construct Data from Field Pick Up Shots panel

![Construct Data From Field Pick Up Shots](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Provider</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for results</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean model first ?</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

data selection type - for a full description go to 4.19.3 Data Source.

Data source: source of strings that is process to generate strings suitable for ADAC.

Data Provider: available data providers

Model for results: model that the processed strings are added to.

Clean model first?:

If ticked, the model Model for results is cleaned before any strings are added to it.

If not ticked, the model Model for results is NOT cleaned.

Run: process the data.

Continue to the next section 10.4.9.2.5 Create Pipes from Points, or return to 10.4.9.2 Data Prep.
10.4.9.2.5 Create Pipes from Points

Position of menu:
File I/O => ADAC => User => Data prep => Create pipes from points

Sometimes pipes can not be picked up as string in the field and only one vertex strings are picked up at say the ends of the pipes. This option joins two selected one vertex strings to create a two vertex pipe string.

Selecting Create pipes from points brings up the Build Pipe from Field Shots panel

![Build Pipe from Field Shots panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model for results</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>model that the create pipes are added to.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipe name</td>
<td>text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if not blank, the created string is given this name.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If blank,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour for pipe</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if not blank, the created string is given this colour.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If blank,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Provider</td>
<td>choice box</td>
<td>available data providers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>selects the table of attributes to use for diameter etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Only join points with same name</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, after picking the first one vertex string, the second one vertex string must have the same name as the first picked string.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create super pipe</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, and there is an attribute specified in the selected Data provider for diameter, then a super string pipe with the given diameter is created.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Justify
choice box
invert, centre, obvert
justification to use if a super pipe is created.

Multi pick
tick box
if ticked, once one pipe is created, the option starts asking for the first point of a new pipe.

Run
button
start the option.

Continue to the next section 10.4.9.2.6 Set Stormwater/Sewer Property or return to 10.4.9.2 Data Prep.
10.4.9.2.6 Set Stormwater/Sewer Property

Position of menu:

File I/O => ADAC => User => Data prep => Set stormwater/sewer purpose

Up to 12d Model 10, there was no way of easily differentiating between a drainage or sewer string. Users normally kept them in different models.

In 12d Model 11, there is a string property (called Purpose on the Create Drainage String menu) which is set to either stormwater/drainage or wastewater/sewer. So the string itself now knows if it is a drainage or a sewer string.

This option sets the Purpose for drainage/sewer strings that have come from 12d Model 10 and so do not have a Purpose already set, or may have it defaulted to stormwater/drainage.

Selecting Set stormwater/sewer purpose brings up the Set Drainage/Sewer Purpose panel

![Set Drainage-Sewer Purpose panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type - for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source of strings to process.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainage/Sewer purpose</td>
<td>choice box</td>
<td>stormwater/drainage, wastewater/sewer</td>
<td></td>
</tr>
<tr>
<td>the Purpose property of the selected strings are set to this value.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>set the Purpose property of the selected strings.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section 10.4.9.2.7 Set a Drainage-Sewer Pit and Pipe Type Attribute, or return to 10.4.9.2 Data Prep.
10.4.9.2.7 Set a Drainage-Sewer Pit and Pipe Type Attribute

Position of menu:
 File I/O => ADAC => User => Data prep => Set pit type, pipe type attribute

When drainage and sewer strings are created, the vertices can have a Pit Type and the segments a Pipe Type.

When the Drainage Network Editor (DNE) is used, for each vertex, a vertex attribute called pit_type is created with the vertex value of Pit Type. Similarly for each segment, a segment attribute called pipe_type is created with the segment value of Pipe Type.

So after using the DNE, the attributes pit_type and pipe_type are available to be used in the ADAC Map File. However if the DNE is not run, the attributes pit_type and pipe_type will not exist.

This option does the same thing as the DNE for creating the pit_type and pipe_type attributes. That is, for each vertex, a vertex attribute called pit_type is created with the vertex value of Pit Type and for each segment, a segment attribute called pipe_type is created with the segment value of Pipe Type.

So in case the DNE has not been run, this option creates the attributes pit_type and pipe_type so they can be used in the Map File.

Selecting Set pit type, pipe type attribute brings up the Set Attribute for Drainage/Sewer Pit and Pipe Types panel

![Set Drainage-Sewer pit and pipe type](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overwrite existing type</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Data source type**
 - Data selection type - for a full description go to [4.19.3 Data Source](#).

- **Data source**: input
 - Source of strings to process.

- **Overwrite existing type**: tick box
 - If ticked and a pit_type/pipe_type already exists for a vertex/segment, then it is over written by the value of Pit type/Pipe Type for the vertex/segment.
 - If not ticked then if a pit_type/pipe_type already exists for a vertex/segment, then it is not modified.

- **Run**: button
 - Set the pit_type and pipe_type's of the selected strings vertices and segments.

Return to [10.4.9.2 Data Prep](#) or [10.4.9 User ADAC](#).
10.4.9.3 User ADAC Utilities

Position of menu: File I/O => ADAC => User => Utilities

A new project to be set up for producing ADAC XML needs to be set up a certain way for the ADAC Chains to work.

There is a different setup for a Survey Project than for a Design Project.

See

10.4.9.3.1 ADAC Clean Up
10.4.9.3.2 Find Object Id
10.4.9.3.3 Label Design/Survey Object Id
10.4.9.3.4 Show Attributed/Not Attributed
10.4.9.3.5 Delete ADAC Attributes
10.4.9.3.6 12dPL’s in Chains
10.4.9.3.1 ADAC Clean Up

Position of option on menu: File I/O => ADAC => User => Utilities => ADAC clean up

This option runs a chain that deletes all the models created by the Setting up for survey and Setting up for design options.

The chain also deletes all the views, except for the views Design to map to ADAC and Survey to map to ADAC, created by the Setting up for survey and Setting up for design options.

Selecting ADAC clean up runs the chain

$LIB/ADAC_clean_up.chain

- Commands
 - Delete models
 - Delete all models
 - Delete model design mapped data
 - Delete model design string properties data
 - Delete model design drainage data
 - Delete model design adac data
 - Delete model survey mapped data
 - Delete model survey string properties data
 - Delete model survey adac data
 - Delete model ADAC defaults
 - Delete model ADAC Project Defaults
 - Delete views created for ADAC design and survey
 - Delete view Design to map to ADAC
 - Delete view Design mapped data
 - Delete view Design string properties
 - Delete view Design drainage data
 - Delete view Design ready for ADAC
 - Delete view Open GL
 - Delete view Section
 - Delete view Survey to map to ADAC
 - Delete view survey mapped data
 - Delete view survey string properties
 - Delete view Survey ready for ADAC

The chain needs no interaction with the user; it just runs and ends.

Continue to the next section 10.4.9.3.2 Find Object Id, or return to 10.4.9.3 User ADAC Utilities.
10.4.9.3.2 Find Object Id

Position of option on menu: File I/O => ADAC => User => Utilities => Find Objectid

From the ADAC XML Schema, the Objectid

Represents a place for an object identifier, usually generated by the data creation software. Also useful as a placeholder for record ID generated by back-end databases or GIS.

The Objectid is permitted to be nil because the capturing system may not have the capacity to generate one. If features are exported from a GIS or Asset Management system, however, it is highly recommended to carry them out into this element.

When the ADAC Survey and ADAC Design chains are run, the ADAC Assets are all given a unique ADAC Objectid by 12d Model and this is given in the ADAC Report (see 10.4.5 Report) and any ADAC XML file that is created (see 10.4.6 Write ADAC XML File).

The Find Objectid option lists as log lines the Objectid of all ADAC Assets whose ObjectIds start with given text. Clicking on an Objectid in the list highlights it in any Plan view that it is on.

Selecting Find Objectid brings up the Find Strings with ADAC Objectid panel:

Data source type Model
data selection type - for a full description go to 4.19.3 Data Source.

Data source input
source of data to be searched for any with ObjectIds that start with the characters in Objectid start characters.

ObjectId start characters text box
the characters the ObjectIds of the strings must start with.

List Area

the ObjectID of each string that starts with the characters in the Objectid start characters is listed in this area as a log line. Clicking on an ObjectId in the list will pan to and highlight the string in any Plan views that the string is on.

Search button
search for all ADAC strings that start with the characters in Objectid start characters.

Continue to the next section 10.4.9.3.3 Label Design/Survey Object Id or return to 10.4.9.3 User ADAC Utilities.
10.4.9.3.3 Label Design/Survey Object Id

[check why it is not working]

Position of option on menu: File I/O => ADAC => User => Utilities => Label design Objectid
Position of option on menu: File I/O => ADAC => User => Utilities => Label survey Objectid

From the ADAC XML Schema, the ObjectId

Represents a place for an object identifier, usually generated by the data creation software. Also useful as a placeholder for record ID generated by back-end databases or GIS. The ObjectId is permitted to be nil because the capturing system may not have the capacity to generate one. If features are exported from a GIS or Asset Management system, however, it is highly recommended to carry them out into this element.

This option runs an Interactive chain that includes a Label Data by Label Map File panel that creates labels for all the ADAC assets in the model design adac data or survey adac data and cleans and adds them to the model ObjectId.

Note: the model design adac data/survey adac data is the model that the ADAC Design/Survey chain puts all the ADAC Assets in.

Selecting Label design/survey ObjectId runs the Interactive chain

$LIB/ADAC_Label_design_ObjectId.chain
$LIB/ADAC_Label_survey_ObjectId.chain

The chain first cleans out the model ObjectId
It then runs a Label Data by Label Map File panel in Interactive mode so the panel is placed on the screen.
Click on **Label** and when the labelling is finished, click on **Finish**.

The chain then ends.

Continue to the next section [10.4.9.3.4 Show Attributed/Not Attributed](#) or return to [10.4.9.3 User ADAC Utilities](#).
10.4.9.3.4 Show Attributed/Not Attributed

Position of option on menu: File I/O => ADAC => User => Utilities => Show attributed/not attributed

When checking whether your 12d Map File is doing the correct thing, it is often necessary to know which strings have been given an ADAC attribute group and hence represent an ADAC Asset, and which ones weren’t.

This option searches for all strings that are either ADAC Assets, or are not ADAC Assets, and make copies of the string and adds them to a given model.

Selecting Show attributes/not attributes brings up the Show ADAC Attributed Data panel

![Show ADAC Attributed Data panel](image)

Data source type Model

Data selection type - for a full description go to 4.19.3 Data Source.

Data source input

source of data to be check if it has/doesn’t have ADAC attributes.

Show choice box

ADAC data ADAC data ADAC data, non ADAC data

if **ADAC data**, for each string in the data source that is an ADAC Asset (i.e. has the ADAC attributes), a copy of the string is made in the colour given in Colour for results and is added to the model in Model for results.

if **non ADAC data**, for each string in the data source that is NOT an ADAC Asset (i.e. doesn’t have the ADAC attributes), a copy of the string is made in the colour given in Colour for results and is added to the model in Model for results.

Model for results model box

available models

the model for the created strings.

Clean model first tick box

If ticked, the model Model for results is cleaned before any strings are added to it. If not ticked, the model Model for results is NOT cleaned.

Colour for results colour box

available colours

the colour to give the created strings.

Run button

finds all the ADAC/not ADAC strings.

Continue to 10.4.9.3.5 Delete ADAC Attributes or return to 10.4.9.3 User ADAC Utilities.
10.4.9.3.5 Delete ADAC Attributes

Position of option on menu: File I/O => ADAC => User => Utilities => Delete attributes

This option removes the ADAC attributes from strings (and only those attributes).
Selecting Delete attributes brings up the Delete ADAC Attributes panel:

![Delete ADAC Attributes panel]

Data source type Model

Data selection type - for a full description go to 4.19.3 Data Source.

Data source input

Source of data to process for deleting ADAC attributes.

Processing type choice box Create new strings Use existing strings

Create new strings, for each string in the data source that is an ADAC Asset (i.e. has the ADAC attributes), a copy of the string is made and the ADAC attributes deleted from the copy of the string and added to the model Model for results.

Use existing strings, for each string in the data source that is an ADAC Asset (i.e. has the ADAC attributes), the ADAC attributes are deleted from the string.

Model for results model box available models

When Processing type is Create New Strings this is the model for the created strings.

Clean model first? tick box

If ticked, the model Model for results is cleaned before any strings are added to it.

If not ticked, the model Model for results is NOT cleaned.

Pass other data? tick box

If ticked and Processing type is Create new strings, then any strings that are not ADAC Assets are also copied and added to the model Model for results.

Otherwise nothing is done with strings that are not ADAC Assets.

Run button

Removed the ADAC attributes from the selected strings.

Continue to 10.4.9.3.6 12dPL’s in Chains, or return to 10.4.9.3 User ADAC Utilities.
10.4.9.3.6 12dPL’s in Chains

Position of menu: File I/O => ADAC => User => Utilities

There are the options used in the ADAC Design and Survey chains. See

10.4.9.3.6.1 Separate Assigned/Unassigned ADAC Data
10.4.9.3.6.2 Set ADAC Attributes from String Properties
10.4.9.3.6.3 Set ADAC Attributes from Drainage & Sewer Data
10.4.9.3.6.4 Set ADAC Attributes from User Attributes
10.4.9.3.6.5 Set ADAC ObjectId from String UID
10.4.9.3.6.5 Set ADAC ObjectId from String UID
10.4.9.3.6.1 Separate Assigned/Unassigned ADAC Data

Position of option on menu:
File I/O => ADAC => User => Utilities => 12dPLs in chains => Separate assigned data

This option looks at the data in the given Data Source and copies the strings that have been assigned (marked) as ADAC Assets to one model and all the data that has not yet been assigned to another model.

Selecting Separate Assigned data brings up the ADAC Separate Assigned and Unassigned Data panel.

Data source type
Model
data selection type - for a full description go to 4.19.3 Data Source.

Data source
input
source of data to process.

Model for ADAC assigned strings
model box
available models
any strings that have been assigned (marked) as ADAC assets are copied to this model.

Clean ADAC assigned model first?
tick box
if ticked, the model Model for ADAC assigned strings is cleaned before any strings are added to it.
If not ticked, the model Model for ADAC assigned strings is NOT cleaned.

Model for ADAC unassigned strings
model box
available models
any strings that have NOT been assigned (marked) as ADAC assets are copied to this model.

Clean ADAC unassigned model first?
tick box
if ticked, the model Model for ADAC unassigned strings is cleaned before any strings are added to it.
If not ticked, the model Model for ADAC assigned strings is NOT cleaned.

Run
button
separate the strings that have been assigned/unassigned as ADAC Assets into separate models.
The copied strings are added to the model Model for results.

Continue to the next section 10.4.9.3.6.2 Set ADAC Attributes from String Properties, or return to 10.4.9.3.6.1 12dPL’s in Chains.
10.4.9.3.6.2 Set ADAC Attributes from String Properties

Position of option on menu:
File I/O => ADAC => User => Utilities => 12dPLs in chains => Set ADAC attributes from string properties

Many of the ADAC entities can be calculated directly from the 12d strings and some z values may be taken from a tin.

Selecting Set ADAC attributes from 12d properties brings up the Update ADAC Data from 12d String Properties panel.

Data source type
Model
data selection type - for a full description go to 4.19.3 Data Source.

Data source
input
source of data to process.

Model for results
model box available models
model that the processed strings are added to.

Clean model first?
tick box
if ticked, the model Model for results is cleaned before any strings are added to it.
If not ticked, the model Model for results is NOT cleaned.

Tin
tin box available tins
tin that can be used to get z-values from.

Run
button
update the ADAC Asset attributes with values from the 12d string’s properties.
If the string has been marked as an ADAC Asset then it is copied and then for the copied string, any relevant ADAC elements updated from the properties of the 12d string and the tin.
Strings that are not marked as ADAC Assets are NOT copied
The copied strings are added to the model Model for results.
12d ADAC Menu

12.4 Model Reference Manual 10

ADAC Attributes Generated from 12d String Geometry

Feature name	Action
Z value from vertex | Z value from string
Z value from string |
In the ADAC Survey and Design chains, this option is called and passed arguments for all the panel field and so runs without needing to display a panel.

See 10.5.1.2.3 Update ADAC Elements from Non Drainage/Sewer String Properties - Survey and 10.5.2.2.3 Update ADAC Elements from Non Drainage/Sewer String Properties - Design.

Continue to the next section 10.4.9.3.6.3 Set ADAC Attributes from Drainage & Sewer Data or return to 10.4.9.3.6 12dPL’s in Chains.
10.4.9.3.6.3 Set ADAC Attributes from Drainage & Sewer Data

Position of option on menu:
File I/O => ADAC => User => Utilities => 12dPLs in chains => Set ADAC attributes from drainage/ sewer data

The documentation for this section is a work in progress.

Drainage and sewer strings have an incredible amount of data that can go directly into the ADAC StormWater Pits and Pipes and the Sewerage Maintenance Holes and NonPressure Pipes.

Many of the ADAC entities can be calculated directly from the 12d strings and some values may be taken from the tins survey_finished_tin or design_finished_tin.

Selecting Set ADAC attributes from Drainage & Sewer Data brings up the Update ADAC Data from Drainage Data panel:

[Image: Update ADAC attributes from drainage data]

Data source type
- Model data selection type - for a full description go to 4.19.3 Data Source .

Data source
- input source of data to process.

Model for results
- model box available models model that the processed strings are added to.

Clean model first ?
- tick box if ticked, the model Model for results is cleaned before any strings are added to it. If not ticked, the model Model for results is NOT cleaned.

Process
- button update the ADAC Asset attributes with values from the 12d strings properties.

If the string has been marked as an ADAC Asset then it is copied and then for the copied string, any relevant ADAC elements updated from the properties of the 12d string and the tin.

Strings that are not marked as ADAC Assets are NOT copied
The copied strings are added to the model Model for results.

In the ADAC Design chain, this option is called and passed arguments for all the panel field and so runs without needing to display a panel.

See 10.5.2.2.4 Update ADAC Elements from Drainage/Sewer String Properties .

Continue to the next section 10.4.9.3.6.5 Set ADAC Objectld from String UID or return to 10.4.9.3.6.4 12dPL’s in Chains.
10.4.9.3.6.4 Set ADAC Attributes from User Attributes

NO LONGER USED

Position of option on menu:
File I/O => ADAC => User => Utilities => 12dPLs in chains => Set ADAC attributes from user attributes

The option is no longer used and had been replaced by a 12d supplied 12duaf file. See 10.4.8.5 Create/Edit User Attributes to ADAC File and 10.4.8.6 Apply User Attributes to ADAC Elements.

There are a number of 12d options, mainly in the ADAC => User => Data prep menu, that create User attributes that are to pass data to ADAC Assets. These 12d created user attributes update the ADAC Assets by running this option with the Data Provider set to 12d.

Similarly a user can create their own user attributes by running their own 12dPLs, or collecting attributes in the field, or even by hand editing and entering them.

However because these attributes are not known known to 12d Solutions, the user must set up a Data Provider table so the option knows what user attributes to use and what ADAC Assets to update.

Selecting Set ADAC attributes from user attributes brings up the Update ADAC Data from User Attributes panel.

![Update ADAC Data From User Attributes](image)

Data source type
Model
data selection type - for a full description go to 4.19.3 Data Source.

Data source
input
source of data to process.

Data Provider
choice box
available data providers
selects the table of User Attributes to use.

Model for results
model box
available models
model that the processed strings are added to.

Clean model first?
tick box
if ticked, the model Model for results is cleaned before any strings are added to it.
if not ticked, the model Model for results is NOT cleaned.

Run
button
update the ADAC Asset attributes with values from User attributes.
If the string has been marked as an ADAC Asset then it is copied and then for the copied string, any relevant ADAC elements updated from the user attributes.

Strings that are not marked as ADAC Assets are NOT copied

The copied strings are added to the model Model for results.

Continue to 10.4.9.3.6.5 Set ADAC ObjectId from String UID, or return to 10.4.9.3.6 12dPL's in Chains.
10.4.9.3.6.5 Set ADAC ObjectId from String UID

Position of option on menu:
File I/O => ADAC => User => Utilities => 12dPLs in chains => Set ADAC ObjectId from UID

From the ADAC XML Schema, the ObjectId

Represents a place for an object identifier; usually generated by the data creation software. Also useful as a placeholder for record ID generated by back-end databases or GIS.

The ObjectId is permitted to be nil because the capturing system may not have the capacity to generate one. If features are exported from a GIS or Asset Management system, however, it is highly recommended to carry them out into this element.

Every string in 12d Model has a unique identifier called a UID, so 12d Model creates a unique ObjectId by:

(a) for drainage and sewer strings, creating ObjectIds for
 (i) each pit/manhole. The ObjectId is made up of the string UID, the pit/manhole vertex index and information about the to help connect the string together.
 (ii) each pipe. The ObjectId is made up of the string UID, the pipe segment index and information about which pits are at the ends of the pipe.

 This is only relevant for designers and not surveyors.

(b) for all other strings, setting the ObjectId to the string UID.

Selecting Set ADAC ObjectID from UID brings up the Update ADAC objectID from UID panel:

Data source type
Model
data selection type - for a full description go to 4.19.3 Data Source.

Data source
input
source of data to process.

Replace existing values
tick box
if ticked, the model Model for results is cleaned before any strings are added to it.
If not ticked, the model Model for results is NOT cleaned.

Process
button
update the ADAC Asset attributes with values from the 12d string’s properties.
If the string has been marked as an ADAC Asset then it is copied and then for the copied string, any relevant ADAC elements updated from the properties of the 12d string and the tin.
Strings that are not marked as ADAC Assets are NOT copied.
The copied strings are added to the model Model for results.

In the ADAC Survey and Design chains, this option is called and arguments are passed from the chain for all the panel fields and so the option runs in the chain without needing to display a panel.

See 10.5.1.2.6 Update ADAC ObjectId - Survey and 10.5.2.2.7 Update ADAC ObjectId - Design.

Return to 10.4.9.3.6 12dPL’s in Chains.
10.4.9.4 12d 4.1 Chains

Position of menu: File I/O => ADAC => User => 12d 4.1 chains

There is a base ADAC Design chain and a base ADAC Survey chain that does all the work of taking 12d Model strings and producing ADAC Assets ready to be validated, reported on, or written out to an ADAC XML file.

12d Model provides options on the walk right menu Run 12d ADAC 4.1 Chains to run the base ADAC Survey or Design chains for ADAC 4.1 with specially named Map and 12duaf files in either:

(a) the working folder for the project (local)
(b) User_Lib
(c) Library.

12d supplied menu

![Client specific menus - these are added by the user](image)

See

1. [10.4.9.4.1 Local Survey to ADAC 41 chain](#)
2. [10.4.9.4.2 Local Design to ADAC 41 chain](#)
3. [10.4.9.4.3 Userlib Survey to ADAC 41 chain](#)
4. [10.4.9.4.4 Userlib Design to ADAC 41 chain](#)
5. [10.4.9.4.5 Lib Survey to ADAC 41 chain](#)
6. [10.4.9.4.6 Lib Design to ADAC 41 chain](#)

Note: Client Specific ADAC Design and Survey Menus

The above options are to make it easy to get up and running with ADAC when you have only one or two different Map files.

However, different Clients may do some things differently. For example each company may have its own survey and/or design naming convention or different Authorities may require different information in the ADAC Assets.

For these situations, you can add your own options to User Adac menu.

The user options can run either the ADAC Base Survey or Design chains with specific chain pvf files.

For information on setting up your own options on the User ADAC menu, see [10.4.9.5 Client Specific ADAC Design & Survey Menus](#).
10.4.9.4.1 Local Survey to ADAC 41 chain

Position on menu:
File I/O => ADAC => User => 12d 4.1 chains => Local Survey to ADAC 41 chain

The option Local Survey to ADAC 41 chain runs ADAC_Survey_Base chain but with a pvf file that looks in the working folder for the project (local) for the files:

- ADAC_Local_Map_Survey_to_ADAC_41.mapfile
- Local_41.12duaf

this file is optional

and uses the a tin called ground to get surface levels.

So to use this menu item, you only need to create the two files and have them in the folder containing the project. This means they are only available for that project.

Continue to 10.4.9.4.2 Local Design to ADAC 41 chain or return to 10.4.9.4 12d 4.1 Chains.

10.4.9.4.2 Local Design to ADAC 41 chain

Position on menu
File I/O => ADAC => User => 12d 4.1 chains => Local Design to ADAC 41 chain

The option Local Design to ADAC 41 chain runs ADAC_Design_Base Base chain but with a pvf file that looks in the working folder for the project (local) for the files:

- ADAC_Local_Map_Design_to_ADAC_41.mapfile
- Local_41.12duaf

and uses the a tin called ground to get surface levels.

So to use this menu item, you only need to create the two files and have them in the folder containing the project. This means they are only available for that project.

Continue to 10.4.9.4.3 Userlib Survey to ADAC 41 chain or return to 10.4.9.4 12d 4.1 Chains.
10.4.9.4.3 Userlib Survey to ADAC 41 chain

Position on menu:
File I/O => ADAC => User => 12d 4.1 chains => Userlib Survey to ADAC 41 chain

The option **Userlib Survey to ADAC 41 chain** runs `ADAC_Survey_Base` chain but with a pvf file that looks in the User_Lib folder for the files:

```
ADAC_Userlib_Map_Survey_to_ADAC_41.mapfile
Userlib_41.12duaf  this file is optional
```

and uses the a tin called **ground** to get surface levels.

So to use this menu item, you only need to create the two files and have them in the User_Lib folder. This means they can be used with any project.

Note the word Userlib and not User_Lib in the name of the Map and 12duaf files.

Continue to 10.4.9.4.4 Userlib Design to ADAC 41 chain or return to 10.4.9.4 12d 4.1 Chains.

10.4.9.4.4 Userlib Design to ADAC 41 chain

Position on menu:
File I/O => ADAC => User => 12d 4.1 chains => Userlib Design to ADAC 41 chain

The option **Userlib Design to ADAC 41 chain** runs `ADAC_Design_Base` chain but with a pvf file that looks in the User_Lib folder for the files:

```
ADAC_Userlib_Map_Design_to_ADAC_41.mapfile
Userlib_41.12duaf  this file is optional
```

and uses the a tin called **ground** to get surface levels.

So to use this menu item, you only need to create the two files and have them in the User_Lib folder. This means they can be used with any project.

Note the word Userlib and not User_Lib in the name of the Map and 12duaf files.

Continue to 10.4.9.5 Lib Survey to ADAC 41 chain, or return to 10.4.9.4 12d 4.1 Chains.
10.4.9.4.5 Lib Survey to ADAC 41 chain

Position on menu:
File I/O =>ADAC =>User =>12d 4.1 chains =>12d Survey to ADAC 41 chain

The option 12d Survey to ADAC 41 chain runs ADAC_Survey_Base chain but with a pvf file that looks in the Library folder that is installed with 12d Model for the files:

```
ADAC_12d_Map_Survey_to_ADAC_41.mapfile
12d_41.12duaf
```
and uses the a tin called ground to get surface levels.

WARNING: This option is for demonstration and training purposes only because the files will be overwritten whenever a new version of 12d Model 11 is installed.

Note the word 12d and not Library or Lib in the name of the Map and 12duaf files.

Continue to 10.4.9.4.6 Lib Design to ADAC 41 chain, or return to 10.4.9.4 12d 4.1 Chains.

10.4.9.4.6 Lib Design to ADAC 41 chain

Position on menu:
File I/O =>ADAC =>User =>12d 4.1 chains =>Lib Design to ADAC 41 chain

The option 12d Design to ADAC 41 chain runs ADAC_Design_Base chain but with a pvf file that looks in the Library folder that is installed with 12d Model for the files:

```
ADAC_12d_Map_Design_to_ADAC_41.mapfile
12d_41.12duaf
```
and uses the a tin called ground to get surface levels.

WARNING: This option is for demonstration and training purposes only because the files will be overwritten whenever a new version of 12d Model 11 is installed.

Note the word 12d and not Library or Lib in the name of the Map and 12duaf files.

Return to 10.4.9.4 12d 4.1 Chains.
10.4.9.5 Client Specific ADAC Design & Survey Menus

Position of menu: File I/O => ADAC => User => Client chains

There is a base ADAC Design chain and a base ADAC Survey chain that does all the work of taking 12d Model strings and producing ADAC Assets ready to be validated, reported on, or written out to an ADAC XML file.

However different Clients may do things differently. For example some Clients may have their own survey or design naming convention and some Clients may need ADAC 4.1 data whilst others want ADAC 4.0.

To allow for such variations, the base ADAC Design chain and Survey chains have parameters passed down to them via a chain pvf file. And you can add your own items to the User Adac menu that use the base ADAC Survey or Design chains with different chain pvf files.

For these situations, you can add your own options to User Adac menu.

A User ADAC menu with extra Client specific items would then look like:

![User Adac menu with extra Client specific items](image)

How to set up these user defined ADAC menus for your company is described in 10.6.3.2 Setting Up Your User ADAC Menu.

Note: 12d Supplied ADAC 4.1 Design and Survey Menu

If you are only have one or two different Map files, 12d Model supplies options on the walk right menu Run 12d ADAC 4.1 Chains of the option 12d 4.1 chains, to run the base ADAC Survey or Design chains for ADAC 4.1 with specially named Map and 12duaf files in either the working folder for the project (local), User_Lib or Library.

For information on the 12d supplied walk-right menu Run 12d ADAC 4.1 Chains, see 10.4.9.4 12d 4.1 Chains.

Return to 10.4.9.3 User ADAC Utilities.
10.5 ADAC Design and Survey Chains

The full explanation of the ADAC Design and ADAC Survey chains is usually only needed for the one or two people in a company who are setting up the ADAC procedures in the company. Other users do not need to read it but may find it interesting to read.

In the steps outlined in 12d ADAC Workflow (see 10.3 12d ADAC Workflow) it states that the ADAC Design and ADAC Survey chains:

(a) Assign the ADAC Asset Type

Any data going out to ADAC must be one of the ADAC Assets.

The assignment may already have been done by the user with the Create ADAC Asset option (see 10.4.2 Create ADAC Asset) but it can also be done automatically using a 12d Map File. This ADAC Map File must have already been set up for the company.

(b) Sets ADAC attribute values from the 12d String Geometry and User Attributes

Much of the required ADAC data is already contained within the 12d strings or in User Attributes.

For example, if the Drainage or Sewer was designed with 12d Model then much of the ADAC data can come directly from the drainage and sewer strings. For example, maintenance holes and chambers, depths, and various pipe dimensions are used, required 2D and 3D lengths and areas are calculated.

User attributes picked up in the field by the surveyors, or added in the Data Prep Step, are also loaded into the required ADAC attributes.

(c) Creates the ADAC Geometry

For each ADAC Asset, the ADAC Geometry is automatically generated from the 12d string geometry.

For example, if the ADAC Asset has Polyline Geometry, the (x,y,z) coordinates for each vertex of the string are loaded into the ADAC Geometry.

To go through the workings of the ADAC Design and ADAC Survey chains, see

10.5.1 Survey to ADAC Chains
10.5.2 Design to ADAC Chains
10.5.1 Survey to ADAC Chains

The ADAC Survey Chain takes all the string on the view Survey to map to adac and produces ADAC Asset strings in a model survey adac data which is added to the view Survey ready for ADAC.

So the user simply adds all the strings that are to go into the ADAC XML file onto the view called Survey to map to adac and clicks on the appropriate button on a walk right menu on the User ADAC menu, to run the chain for a particular customer and ADAC version.

There is actually no Survey to ADAC Chain and what the menu option does is run the chain ADAC_survey_base.chain with a particular chain parameter value file (pvf file).

So to fully understand the process, you first need to look at the pvf file for the chain ADAC_survey_base.chain, and then examine in detail the ADAC_survey_base.chain itself.

See

10.5.1.1 ADAC Survey Base Chain pvf File
10.5.1.2 ADAC Survey Base Chain

10.5.1.1 ADAC Survey Base Chain pvf File

The pvf file for the ADAC_survey_base chain passes nine parameters to the chain - five that the user must set and four that are constructed from these five parameters.

1. The text parameter company which has as its value an abbreviated customer name. For example, BCC.
 This is used to build up the name of the ADAC 12d Map File to use.
2. The text parameter adac_version_by_ten, which has the value 41 if you are generating ADAC 4.1.0 files, or 40 if you are generating ADAC 4.0 files.
 This is used to build up the name of the ADAC Survey Base Chain pvf File to use.
3. The text parameter user_attributes_conversion_type
4. The text parameter survey_finished_tin
5. The text parameter design_finished_tin is not used in the ADAC_survey_base chain and can be left blank.

There are two parameters to define which 12d Map Files to use but they are fully determined once company and adac_version_by_ten have values.

6. The text parameter survey_map_file has the value
 $USER_LIB\ADAC_[company]_Map_Survey_to_ADAC_[adac_version_by_ten].mapfile
7. The text parameter design_map_file has the value
 $USER_LIB\ADAC_[company]_Map_Design_to_ADAC_[adac_version_by_ten].mapfile
 design_map_file is not actually used in the ADAC_survey_base chain.

There are two parameters to define which 12d User Adac to ADAC Elements Files to use and again they are fully determined once company and adac_version_by_ten have values.

8. The text parameter adac_attribute_file has the value
 $USER_LIB\[company]_[adac_version_by_ten].12duaf
 This file is different for each company and must exist (it can contain no information).
9. The text parameter adac_12d_attribute_file has the value
 $USER_LIB\ADAC_12d_[adac_version_by_ten].12duaf
 This file is the same for each company and is for user attributes that 12d Solutions has created.
The `pvf` file is passed to the `ADAC_survey_base.chain` by having the chain run as a menu option on one of the walk right menus on the User ADAC menu.

ADAC_Survey_base.chain is discussed in detail in 10.5.1.2 ADAC Survey Base Chain.
10.5.1.2 ADAC Survey Base Chain

The chain `ADAC_survey_base.chain` takes all the data on the view **Survey** to map to **adac** and ends up producing ADAC Assets in a model **survey adac data** which is added to the view **Survey** ready for ADAC.

- **Clean out the models that the chain will use**
 - See 10.5.1.2.2 Separate the Assigned/Unassigned ADAC Data - Survey
 - See 10.5.1.2.2 Apply the Survey Map File
 - See 10.5.1.2.3 Update ADAC Elements from Non Drainage/Sewer String Properties - Survey
 - See 10.5.1.2.4 Update ADAC Elements from 12d Created Attributes on the String - Survey
 - See 10.5.1.2.5 Update ADAC Elements from User Created Attributes on the String - Survey
 - See 10.5.1.2.6 Update ADAC ObjectId - Survey
 - See 10.5.1.2.7 Update ADAC Geometry - Survey
10.5.1.2.1 Separate the Assigned/Unassigned ADAC Data - Survey

Some strings on the View called Survey to map to ADAC may have already been assigned (marked) as ADAC Assets and so should not have the ADAC Map file applied to them.

So the data is first processed to separate the assigned and unassigned data into separate models.

This is achieved by running the 12dPL (macro)

`$LIB/ADAC_separate_assigned_and_unassigned_adac_data_panel.4do`

which looks at all the data on the View called Survey to map to ADAC and copies the strings that have been assigned as ADAC Assets to the model survey mapped data and all the data that has not yet been assigned to the model survey unassigned data.

The model survey mapped data is on the view called survey ready for adac.

Note - this 12d PL program is described in more detail in 10.4.9.3.6.1 Separate Assigned/Unassigned ADAC Data

Continue to the next section 10.5.1.2.2 Apply the Survey Map File or return to 10.5.1.2 ADAC Survey Base Chain, or 10.5.1 Survey to ADAC Chains.
10.5.1.2.2 Apply the Survey Map File

This section of the chain applies the 12d Map File

\[\text{\$USER_LIB/ADAC}_{\text{[company]}\text{]}_\text{Map Survey to ADAC}_{\text{[adac_version_by_ten]}},\text{mapfile}\]

to the data in the model survey unassigned data and copies all of the string to the model survey mapped data.

Most importantly, the 12d Map File also assigns (marks) some strings as ADAC Assets by giving them ADAC Attributes as defined by the 12d Map File.

The model survey mapped data is on the view called survey mapped data and a fit is done on the view.

The model survey unassigned data is deleted.

Continue to the next section 10.5.1.2.3 Update ADAC Elements from Non Drainage/Sewer String Properties - Survey or return to 10.5.1.2 ADAC Survey Base Chain, or 10.5.1 Survey to ADAC Chains.
10.5.1.2.3 Update ADAC Elements from Non Drainage/Sewer String Properties - Survey

Many of the ADAC entities can be calculated directly from the 12d strings and some values may be taken from the tin `survey_finished_tin` that is passed into the chain by the `pvf` file.

This is achieved by running the 12dPL (macro)

```
$LIB\ADAC_update_from_12d_properties_panel.4do
```

which looks at all the data in the model produced in the previous step and if a string has been marked as an ADAC Asset, then it is copied and any relevant ADAC elements updated from the properties of the 12d string itself and the tin `survey_finished_tin`.

The copied string is added to the model `survey adac data`.

Only ADAC Assets are added to the model `survey adac data`.

The model `survey adac data` is on the view called `survey ready for adac`.

Note - this 12d PL program is described in more detail in 10.4.9.3.6.2 Set ADAC Attributes from String Properties.

Continue to the next section 10.5.1.2.4 Update ADAC Elements from 12d Created Attributes on the String - Survey or return to 10.5.1.2 ADAC Survey Base Chain or 10.5.1 Survey to ADAC Chains.
10.5.1.2.4 Update ADAC Elements from 12d Created Attributes on the String - Survey

Some of the values for ADAC elements can be taken from attributes that 12d options have placed on the string. For example, using the ADAC Common Editor panel documented in the section 10.4.9.2.1 Providing Extra Data for ADAC.

This is achieved by running the panel

ADAC User Attributes to ADAC Element

with a 12d Solutions supplied 12duaf file for the required version of ADAC.

The option looks at all the data in the model produced in the previous step and each string is copied and then any relevant ADAC elements updated from User attributes of the string according to the given 12duaf file.

Note that these User attributes have been created by 12d Model options that 12d Solutions knows about and hence can provide the 12duaf file.

The copied strings are added to the model survey 12d attributes data.

![Diagram of the process]

The model survey 12d attributes data is on the view called survey 12d attributes data and a fit is done on the view.

Note - this option is described in more detail in 10.4.8.6 Apply User Attributes to ADAC Elements.

Continue to the next section 10.5.1.2.5 Update ADAC Elements from User Created Attributes on the String - Survey, or return to 10.5.1.2 ADAC Survey Base Chain, or 10.5.1 Survey to ADAC Chains.
10.5.1.2.5 Update ADAC Elements from User Created Attributes on the String - Survey

Some of the values for ADAC elements can be taken from attributes that users have placed on the string. For example, from attributes picked up by surveyors in the field.

Because these User attributes are defined by the user, 12d Solutions has no idea of what they are so the user must set up their own 12duaf file that can be used to updated the appropriate ADAC elements from these user created User Attributes.

This user supplied 12duaf file is placed in the users User_Lib.

The user supplied 12duaf file is used by running the panel ADAC User Attributes to ADAC Element with the user supplied 12duaf file for the required version of ADAC.

(This is the option ADAC => Utilities => Apply User Attributes to ADAC elements).

The option looks at all the data in the model produced in the previous step and each string is copied and then any relevant ADAC elements updated from User attributes of the string according to the given 12duaf file.

The copied strings are added to the model survey user attributes data.

The model survey user attributes data is on the view called survey string properties data.

Note - this option is described in more detail in 10.4.8.6 Apply User Attributes to ADAC Elements.

Continue to the next section 10.5.1.2.6 Update ADAC ObjectId - Survey, or return to 10.5.1.2 ADAC Survey Base Chain, or return to 10.5.1 Survey to ADAC Chains.
10.5.1.2.6 Update ADAC ObjectId - Survey

From the ADAC XML Schema, the ObjectId

Represents a place for an object identifier, usually generated by the data creation software. Also useful as a placeholder for record ID generated by back-end databases or GIS.

The ObjectId is permitted to be nil because the capturing system may not have the capacity to generate one. If features are exported from a GIS or Asset Management system, however, it is highly recommended to carry them out into this element.

Every string in 12d Model has a unique identifier called a UID, so 12d Model creates a unique ObjectId by:

(a) for drainage and sewer strings, creating ObjectIds for

(i) each pit/manhole. The ObjectId is made up of the string UID, the pit/manhole vertex index and information about them to help connect the string together.

(ii) each pipe. The ObjectId is made up of the string UID, the pipe segment index and information about which pits are at the ends of the pipe.

This is only relevant for designers and not surveyors.

(b) for all other strings, setting the ObjectId to the string UID.

The ObjectId is created by running the 12dPL (macro)

$LIB/ADAC_update_ObjectId_from_UID_panel.4do

The 12dPL looks at all the strings in the model produced in the previous step, survey adac data, and updates the string’s own ADAC ObjectId attribute. So unlike the previous sections, the string is not copied.

The model survey adac data is on the view called survey ready for adac.

Note - this 12dPL program is described in more detail in 10.4.9.3.6.5 Set ADAC ObjectId from String UID.

Continue to the next section 10.5.1.2.7 Update ADAC Geometry - Survey, or return to 10.5.1.2 ADAC Survey Base Chain, or 10.5.1 Survey to ADAC Chains.
10.5.1.2.7 Update ADAC Geometry - Survey

The final step is for every ADAC Asset, updating its ADAC Geometry attributes from the string geometry.

This is done by running in the chain, the option in 12d

File I/O => ADAC => Utilities => Sync geometry

The model **survey adac data** is on the view called **survey ready for adac** and a fit is done on the view.

Note - this 12d PL program is described in more detail in 10.4.8.4 Sync Geometry

Return to 10.5.1.2 ADAC Survey Base Chain, or 10.5.1 Survey to ADAC Chains.
10.5.2 Design to ADAC Chains

The ADAC Design Chain takes all the strings on the view Design to map to adac and produces ADAC Asset strings in a model design adac data which is added to the view Design ready for ADAC.

So the user simply adds all the strings that are to go into the ADAC XML file onto the view called Design to map to adac and clicks on the appropriate button on a walk right menu on the User ADAC menu, to run the chain for a particular customer and ADAC version.

There is actually no Design to ADAC Chain and what the menu option does is run the chain ADAC_design_base.chain with a particular chain parameter value file (pvf file).

So to fully understand the process, you first need to look at the pvf file for the chain ADAC_design_base.chain, and then examine in detail the ADAC_design_base.chain itself.

See 10.5.2.1 ADAC Design Base Chain pvf File

10.5.2.1 ADAC Design Base Chain pvf File

The pvf file for the ADAC_design_base chain passes nine parameters to the chain - five that the user must set and four that are constructed from these five parameters.

1. The text parameter company which has as its value an abbreviated customer name. For example, BRC.
 This is used to build up the name of the ADAC 12d Map File to use.
2. The text parameter adac_version_by_ten, which has the value 41 if you are generating ADAC 4.1.0 files, or 40 if you are generating ADAC 4.0 files.
 This is used to build up the name of the ADAC 12d Map File to use.
3. The text parameter user_attributes_conversion_type
4. The text parameter survey_finished_tin
5. The text parameter design_finished_tin is not used in the ADAC_survey_base chain and can be left blank.

There are two parameters define which 12d Map Files to use but they are fully determined once company and adac_version_by_ten have values.

6. The text parameter survey_map_file has the value
 $USER_LIB\ADAC_[company]_Map_Survey_to_ADAC_[adac_version_by_ten].mapfile
 survey_map_file is not actually used in the ADAC_design_base chain.
7. The text parameter design_map_file has the value
 $USER_LIB\ADAC_[company]_Map_Design_to_ADAC_[adac_version_by_ten].mapfile
 design_map_file is not actually used in the ADAC_survey_base chain.

There are two parameters to define which 12d User Adac to ADAC Elements Files to use and again they are fully determined once company and adac_version_by_ten have values.

8. The text parameter adac_attribute_file has the value
 $USER_LIB\[company]_[adac_version_by_ten].12duaf
 This file is different for each company and must exist (it can contain no information).
9. The text parameter adac_12d_attribute_file has the value
 $USER_LIB\ADAC_12d_[adac_version_by_ten].12duaf
 This file is the same for each company and is for user attributes that 12d Solutions has
created.

The `pvf` file is passed to the `ADAC_design_base.chain` by having the chain run as a menu option on one of the walk right menus on the User ADAC menu.

```
Menu "ADAC BRC 4.1 Chains" {
    Button "BCC Survey to ADAC 41 chain" {
        Command "chain -pvf $USER/BRC/ADAC_BRC_41.pvf $LIB/ADAC_survey_base.chain"
    }
    Button "BRC Survey to ADAC 41 chain" {
        Command "chain -pvf $USER/BRC/ADAC_BRC_41.pvf $LIB/ADAC_design_base.chain"
    }
}
```

`pvf` file to set the parameters for customer BRC and ADAC 4.1 base chain

`ADAC_Design_base.chain` is discussed in detail in 10.5.2.2 ADAC Design Base Chain.
10.5.2.2 ADAC Design Base Chain

The chain `ADAC_design_base.chain` takes all the data on the view `design to map to adac` and ends up producing ADAC Assets in a model `design adac data` which is added to the view `Design ready for ADAC`.

Clean out the models that the chain will use

See 10.5.2.2.1 Separate the Assigned/Unassigned ADAC Data - Design

Apply the Design Map File

See 10.5.2.2.2 Applying the Design Map File

Update ADAC Elements from Non Drainage/Sewer String Properties - Design

See 10.5.2.2.3 Update ADAC Elements from Non Drainage/Sewer String Properties - Design

Update ADAC Elements from User Created Attributes - Design

See 10.5.2.2.4 Update ADAC Elements from User Created Attributes - Design

Update ADAC Elements from Drainage/Sewer String Properties

See 10.5.2.2.5 Update ADAC Elements from 12d Created Attributes on the String - Design

Update Geometry section of ADAC from string coordinates

See 10.5.2.2.6 Update ADAC ObjectId from string UID

Adac Synchronise Geometry

See 10.5.2.2.7 Update ADAC ObjectId - Design

Parameters

See 10.5.2.2.8 Update ADAC Geometry - Design
10.5.2.2.1 Separate the Assigned/Unassigned ADAC Data - Design

Some strings on the View called Survey to map to ADAC may have already been assigned (marked) as ADAC Assets and so should not have the ADAC Map file applied to them.

So the data is first processed to separate the assigned and unassigned data into separate models.

This is achieved by running the 12dPL (macro)

$LIB/ADAC_separate_assigned_and_unassigned_adac_data_panel.4do

which looks at all the data on the View called Design to map to ADAC and copies the strings that have been assigned as ADAC Assets to the model design mapped data and all the data that has not yet been assigned to the model design unassigned data.

The model design mapped data is on the view called design ready for adac.

Note - this 12d PL program is described in more detail in 10.4.9.3.6.1 Separate Assigned/Unassigned ADAC Data

Continue to the next section 10.5.2.2.2 Applying the Design Map File, or return to 10.5.2.2 ADAC Design Base Chain, or 10.5.2 Design to ADAC Chains.
10.5.2.2.2 Applying the Design Map File

First the 12dPL option `Create_or_delete_temporary_sewerage_attribute_panel.4do` is run on the data in the model called **design unassigned data** and for each

(a) drainage string, creates a string attribute called **sewertype** of type Integer with 0.

(b) sewer string, create a string attribute called **sewertype** of type Integer with value 0.

Next the chain applies the **Map File**

```
$USER_LIB\ADAC_[company]_Map_Design_to_ADAC_[adac_version_by_ten].mapfile
```

to the data on the **View** called **Design to map to ADAC** and copies all of the string and adds to the model **design mapped data**.

Most importantly the **Map File** marks some strings, and the vertices and segments for drainage and sewer strings, as ADAC Assets by giving them ADAC Attributes as defined by the **Map File**.

Next the model **design unassigned data** is deleted.

The 12dPL option `Create_or_delete_temporary_sewerage_attribute_panel.4do` is then run on the data on the view called **Design to map to ADAC** and on the model **design mapped data** to remove the string attribute **sewertype**.

The model **design mapped data** is on the view called **design mapped data** and a fit is done on that view.

Continue to the next section 10.5.2.2.3 Update ADAC Elements from Non Drainage/Sewer String Properties - Design or return to 10.5.2 ADAC Design Base Chain or 10.5.2 Design to ADAC Chains.
10.5.2.2.3 Update ADAC Elements from Non Drainage/Sewer String Properties - Design

Many of the ADAC entities can be calculated directly from the 12d strings, and some values may be taken from the tin design_finished_tin that is passed into the chain by the pvf file.

This is achieved by running the 12dPL (macro)

$LIB\ADAC_update_from_12d_properties_panel.4do

which looks at all the data in the model produced in the previous step and if a string has been marked as an ADAC Asset, then it is copied and any relevant ADAC elements updated from the properties of the 12d string itself and the tin design_finished_tin.

The copied string is added to the model design string properties data.

Only ADAC Assets are added to the model design string properties data.

The model design adac data is on the view called design ready for adac.

Note - this 12d PL program is described in more detail in 10.4.9.3.6.2 Set ADAC Attributes from String Properties.

Continue to the next section 10.5.2.4 Update ADAC Elements from Drainage/Sewer String Properties, or return to 10.5.2.2 ADAC Design Base Chain or 10.5.2 Design to ADAC Chains.
10.5.2.2.4 Update ADAC Elements from Drainage/Sewer String Properties

Many of the ADAC entities can be calculated directly from the maintenance holes/pits and pipes from the 12d drainage and sewer strings.

This is achieved by running the 12dPL (macro)

`$LIB\ADAC_update_from_drainage_data_panel.4do`

which looks at all the drainage and sewer strings in the model produced in the previous step and if the pits and pipes have been marked as ADAC Assets, then the string is copied and any relevant ADAC pits and pipes in the strings updated from the pits and pipes properties of the 12d string itself.

The copied string is added to the model design drainage data.

Only ADAC Assets are added to the model design drainage data.

The model design drainage data is on the view called design drainage data and a fit is done on the view.

Note - this 12d PL program is described in more detail in 10.4.9.3.6.3 Set ADAC Attributes from Drainage & Sewer Data

Continue to the next section 10.5.2.2.5 Update ADAC Elements from 12d Created Attributes on the String - Design, or return to 10.5.2.2 ADAC Design Base Chain or 10.5.2 Design to ADAC Chains.
10.5.2.2.5 Update ADAC Elements from 12d Created Attributes on the String - Design

Some of the values for ADAC elements can be taken from User attributes that 12d options have placed on the string. For example, using the ADAC Common Editor panel documented in the section 10.4.9.2.1 Providing Extra Data for ADAC.

This is achieved by running the panel

ADAC User Attributes to ADAC Element

with a 12d Solutions supplied 12duaf file for the required version of ADAC.

(this is the option ADAC =>Utilities =>Apply User Attributes to ADAC elements).

The option looks at all the data in the model produced in the previous step and each string is copied and then any relevant ADAC elements updated from User attributes of the string according to the given 12duaf file.

Note that these User attributes have been created by 12d Model options that 12d Solutions knows about and hence can provide the 12duaf file.

The copied strings are added to the model design 12d attributes data.

The model design 12d attributes data is on the view called design 12d attributes data and a fit is done on the view.

Note - this option is described in more detail in 10.4.8.6 Apply User Attributes to ADAC Elements.

Continue to the next section 10.5.2.2.4 Update ADAC Elements from Drainage/Sewer String Properties, or return to 10.5.2.2 ADAC Design Base Chain, or 10.5.2 Design to ADAC Chains.
10.5.2.2.6 Update ADAC Elements from User Created Attributes - Design

Some of the values for ADAC elements can be taken from attributes that users have placed on the string.

Because these User attributes are defined by the user, 12d Solutions has no idea of what they are so the user must set up their own 12duaf file that can be used to updated the appropriate ADAC elements from these user created User Attributes.

This user supplied 12duaf file is placed in the users User_Lib.

The user supplied 12duaf file is used by running the panel ADAC User Attributes to ADAC Element with the user supplied 12duaf file for the required version of ADAC.

The option looks at all the data in the model produced in the previous step and each string is copied and then any relevant ADAC elements updated from User attributes of the string according to the given 12duaf file.

The copied strings are added to the model design user attributes data.

The model design user attributes data is on the view called design string properties data.

Note - this option is described in more detail in 10.4.8.6 Apply User Attributes to ADAC Elements.

Continue to the next section 10.5.2.7 Update ADAC ObjectId - Design, or return to 10.5.2.2 ADAC Design Base Chain, or 10.5.2 Design to ADAC Chains.
10.5.2.2.7 Update ADAC ObjectId - Design

From the ADAC XML Schema, the ObjectId

Represents a place for an object identifier, usually generated by the data creation software. Also useful as a placeholder for record ID generated by back-end databases or GIS. The ObjectId is permitted to be nil because the capturing system may not have the capacity to generate one. If features are exported from a GIS or Asset Management system, however, it is highly recommended to carry them out into this element.

Every string in 12d Model has a unique identifier called a UID, so 12d Model creates a unique ObjectId by:

(a) for drainage and sewer strings, creating ObjectIds for
 (i) each pit/manhole. The ObjectId is made up of the string UID, the pit/manhole vertex index and information about the to help connect the string together.
 (ii) each pipe. The ObjectId is made up of the string UID, the pipe segment index and information about which pits are at the ends of the pipe.
 This is only relevant for designers and not surveyors.

(b) for all other strings, setting the ObjectId to the string UID.

The ObjectId is created by running the 12dPL (macro)

```
$LIB\ADAC_update_ObjectId_from_UID_panel.4do
```

The 12dPL looks at all the strings in the model produced in the previous step, design adac data, and updates the string’s own ADAC ObjectId attribute. So unlike the previous sections, the string is not copied.

The model design adac data is on the view called design ready for adac.

Note - this 12d PL program is described in more detail in 10.4.9.3.6.5 Set ADAC ObjectId from String UID.

Continue to the next section 10.5.2.2.8 Update ADAC Geometry - Design or return to 10.5.2.2 ADAC Design Base Chain or 10.5.2 Design to ADAC Chains.
10.5.2.2.8 Update ADAC Geometry - Design

The final step is for every ADAC Asset, updating its ADAC Geometry attributes from the string geometry.

This is done by running in the chain, the option 12d
 File I/O => ADAC => Utilities => Sync geometry

The model design adac data is on the view called design ready for adac and a fit is done on the view.

Note - this 12d PL program is described in more detail in 10.4.8.4 Sync Geometry

Return to 10.5.2.2 ADAC Design Base Chain, or 10.5.2 Design to ADAC Chains.
10.6 Setting Up for ADAC

This section is only for the one or two people in a company who are setting up the ADAC procedures in the company. Other users should probably avoid reading it.

See

10.6.1 Setting Up Map Files for ADAC
10.6.2 What Data Prep is Needed for ADAC
10.6.3.2 Setting Up Your User ADAC Menu
10.6.4 Setting Up ADAC Templates
10.6.5 Setting Up Your User Keys
10.6.1 Setting Up Map Files for ADAC

For a 12d Model string to represent an ADAC Asset, it must have
(a) string geometry that matches the ADAC Geometry for the ADAC Asset
(b) as part of its string attributes, the ADAC attribute Group for the particular ADAC Asset.

Picking each string and giving it the correct ADAC attributes for an ADAC Asset can be done using the ADAC =>Create asset option and although templates can be used to speed up the process, it is still very time consuming and hence slow.

So in 12d Model, a 12d Map File is used to automatically give the appropriate ADAC Asset attributes to strings using the Attributes section of the 12d Map File.

To do this you need to be able to identify each ADAC Asset by a combination of the string name and the string attributes.

This process is usually much easier for surveyors because when picking up in the field, you could easily set up coding system with a unique string name for each ADAC Asset.

For designers the process can be more difficult and they may need changes to their string naming convention, or some data preparation steps. On the other hand, designers already have most of the information for the ADAC Assets Sewerage>MaintenanceHoles>MaintenanceHole, Sewerage>NonPressurePipes>NonPressurePipe, StormWater>Pits>Pit and StormWater>Pipes>Pipe as part of their drainage and sewer strings and we’ll be able to use that without manual intervention.

First we’ll look at ADAC in general and then follow on with sections on setting up the ADAC 12d Map File.

See

10.6.1.1 Know What ADAC XML Is
10.6.1.2 Know What Your Client Wants in the ADAC XML File
10.6.1.3 How the ADAC Map File is Used
10.6.1.4 Creating the ADAC Attributes for Map Files
10.6.1.5 Notes On Creating the ADAC Attribute Structure
10.6.1.6 Setting Up the Map File Selection Criteria
10.6.1.7 More on Creating the ADAC Map Files
10.6.1.1 Know What ADAC XML Is

There is no magic way of being able to set up a Map File for ADAC without knowing what the ADAC Assets actually are, what key elements they contain and what Geometry they require.

For example, if you need WaterSupply>Pipes>Pipe in the ADAC XML file, then it is critical to know that a WaterSupply>Pipes>Pipe can only be a polyline with straight segments. So no arcs.

Or an OpenSpace>BoatingFacilities>BoatingFacility, which has Type choices of Jetty, Pier, Ramp or Spillways, can only be a single Point.

Or that a Transport>RoadEdges>RoadEdge must have a Type and it can only be one of B1, B2, B3, B4, B5, SM1, SM2, SM3,SM4,SM5, M1, M2, M3, M4, M5, M6, ER1, ER2, ER3, ER4, ER5, INV660, INV90o0, Bitumen and Concrete (as per DMR drawing 1033 - now TMR).

In all cases, any variations from the ADAC Schema will make it an invalid ADAC XML file.

The authorised version of ADAC Asset Design and As Constructed Schema Help File (for Version 4.1.0 or Version 4.0.0) is controlled by the IPWEA and available on their web site www.engicom.com.au/products/adac2/. This is read to learn what the ADAC Assets all are.

To help in the learning process, a very useful 12d tool is the option XSD to Model which takes a given version of the ADAC XML Schema XSD and for each ADAC Asset in the XSD, creates a green super string with the short ADAC Asset name as its string name, for it string geometry an example of the Geometry in the XSD for the ADAC Asset, and in its string attributes, an ADAC group with default values for each of the ADAC element in the ADAC Asset in the XSD. See 10.4.8.3 XSD to Model.

For example, the first three strings in that model are:

The 12d string geometry shows graphically what type of Geometry is allowed for that ADAC Asset, and editing any of the strings with the ADAC Edit will display the entire ADAC element structure for the ADAC Asset and see what choices are available, which elements, whether elements are nillable, etc.
10.6.1.2 Know What Your Client Wants in the ADAC XML File, or return to 10.6.1 Setting Up Map Files for ADAC.

Continue to the next section 10.6.1.2 Know What Your Client Wants in the ADAC XML File, or return to 10.6.1 Setting Up Map Files for ADAC.
10.6.1.2 Know What Your Client Wants in the ADAC XML File

The next step is to find out for the Authority you are supplying the ADAC XML file to:

(a) exactly which ADAC Assets you have to supply in the ADAC XML file
(b) for each ADAC Asset, what Types/Uses are wanted
(c) for an ADAC Asset, exactly which elements of the asset they want
(d) for an ADAC Asset and a compulsory (not nillable) element they do not want, what default value can you put in for it.
(e) what exactly are the coordinates in the Geometry.

From this you may discover that you only have a small subset of ADAC Assets, and an even smaller subset of the elements of those ADAC Assets, to worry about.

Now that you know exactly what ADAC Assets you need to provide, and what specific elements inside those ADAC Assets, you are ready to set up a 12d Map File to apply to your strings to mark them as particular ADAC Assets.

Continue to the next section 10.6.1.3 How the ADAC Map File is Used or return to 10.6.1 Setting Up Map Files for ADAC.
10.6.1.3 How the ADAC Map File is Used

In 12d ADAC, the 12d Map File (or just Map File) is the major method to create an ADAC Asset group of attributes for a string (the process referred to as marking the string with an ADAC Asset).

The power of this method is that once the Map File has been set up to mark all the required strings as ADAC Assets, it runs on any number of strings with no manual intervention.

And once set up, the Map File is used for every job without modification.

In 12d Model 11, a new section called Attributes was added to the Map File and the 12d Map Create/File panel has a section called Attributes which is used to create String, Vertex and Segment attributes for a string.

As with the other sections of the 12d Map Create/File panel, for each of Attributes>String, Attributes>Vertex and Attributes>Segment, there is a grid.

And for each row in the grid, criteria to check strings being processed against.

If the criteria are satisfied by a string, then the Attributes in the Map Attributes column are applied as string/vertex/segment attributes to that string. The next string is then processed.

Once a match to the criteria for a row is made, no more rows of the grid are checked against for that string and the processing starts again for the next string.

The selection criteria for creating String, Vertex or Segment attributes are all different.

(a) Creating String attributes

The selection criteria for creating String attributes is by string name and string attributes.

Apart from drainage and sewer strings, this is the only way strings are marked with and ADAC Asset by a Map File.
The string names are those created during the Design process, or for Surveyors from the field codes when a survey is reduced in 12d Model.

String attributes can be added by 12d Model options, 12dPLs (macros), by hand, or picked up in the field by surveyors and brought in by the survey reduction.

(b) Vertex Attributes

The selection criteria for creating Vertex attributes is by string name, string attributes and vertex attributes.

In 12d ADAC, this is only used for processing drainage and sewer strings. Their vertices are often referred to as pits or maintenance holes.

(c) Segment attributes

The selection criteria for creating Segment attributes is by string name, string attributes and segment attributes.

In 12d ADAC, this is only used for processing drainage and sewer strings. Their segments are often referred to as pipes.
So there are two distinct things that need to be looked at when using a Map File to mark strings as ADAC Asset:

(a) How to set up the ADAC attributes to go in the Map Attributes section of the Map File that will be applied to a string once it passes the section criteria.

See 10.6.1.4 Creating the ADAC Attributes for Map Files.

(b) How to set up the selection criteria to uniquely determine the ADAC Asset that the string belongs to.

See 10.6.1.6 Setting Up the Map File Selection Criteria.

Continue to the next section 10.6.1.4 Creating the ADAC Attributes for Map Files, or return to 10.6.1 Setting Up Map Files for ADAC.
10.6.1.4 Creating the ADAC Attributes for Map Files

The common thing to each of the Attributes>String, Attributes>Vertex and Attributes>Segment grids is that they need sets of ADAC Asset attributes to go in the Map Attributes column for each row of the grids.

So we now look at how to best create those ADAC Asset attributes.

You will have noticed when looking at the ADAC XML Schema Help File, that its structure is very complex, especially with nillability being used.

And this means that the attribute structure required to replicate the ADAC Schema faithfully inside 12d Model must also be very complex and definitely not the sort of thing you want to do by hand.

So 12d Model has two powerful tools that simplify the process of creating the ADAC attributes so that the user never has to know the details of how they are stored inside 12d Model.

1. XSD to Map File

The option

File I/O => ADAC => Utilities => XSD to Map File

takes the user specified version of the ADAC XML Schema XSD and creates a Map File with an ADAC group of attributes in the Attributes>String section for each ADAC Asset (see 10.4.8.2 XSD to Map File for more details on how the option works).

Although attribute and attribute substructures can be edited, copied, deleted, etc. in the Attributes>String section of the Map File, it is cumbersome when you are dealing with such a complex attribute structure like ADAC.

Also, as a user, you don't want to learn the complex details of how 12d Model is holding the ADAC data just so that you can make modifications to it.

So although this method is very direct, it is NOT recommended.

2. Using XSD to Model and ADAC strings to Map File

At first this method may appear more roundabout but it is much more powerful and needs no knowledge of how the ADAC Attributes are stored in 12d Model.

First the option

File I/O => ADAC => Utilities => XSD to model

is used to take a user specified version of the ADAC XML Schema XSD and produces a model with a 12d string for each of the ADAC Assets (so sixty eight strings) and each string has

(a) a set of ADAC attributes that are typical for that ADAC Asset
(b) the appropriate string geometry that is allowed for the ADAC Asset Geometry.

See 10.4.8.3 XSD to Model for more information.

For example, running the XSD to model option for ADAC XML version 4.1.0 Schema, creates a model containing sixty-eight strings and the first three strings in that model are:
You can create an ADAC **12d Map File** from this model by using the option
File I/O => ADAC => Utilities => ADAC strings to Map File
and you’ll get exactly the same Map File that the option XSD to Map file produced.

But what we will be doing is creating new ADAC Assets in the model by making a copy of one of the sixty eight, and then using the ADAC => Edit header/asset option to bring up the Edit ADAC panel (10.4.3 Edit ADAC Header/Asset) and make changes to the copied ADAC Asset.

The benefit of using this editor is that it is totally driven by the ADAC XML Schema and so knows all about the ADAC structures and all the ADAC elements.

When you run ADAC Strings to Map File, each ADAC string creates an entry in either the Attributes> String, Attributes> Vertex/Pit or Attributes> Segment/ Pipe section of the Map File (see 10.4.8.1 ADAC Strings to Map File).

As an example, the Sewerage>MaintenanceHoles>MaintenanceHole created in the model has a rectangular chamber and Use is Overflow. So we want to create a new MaintenanceHole that has a circular chamber with Use as MaintenanceHole.

The first step is to copy and translate the existing Maintenancehole using
Strings => Strings edit => Translate
so it isn’t on top of the original one, and give the copied string the name SEWRND.
Edit the string SEWRND with the ADAC => Edit header/asset option, and because SEWRND is an ADAC Asset, the ADAC Asset Editor for Sewerage>MaintenanceHoles>MaintenanceHole is brought up.

Of course because it is a copy, the ADAC attributes are all identical to the string MaintenanceHole which had a Rectangular chamber.

To change from Rectangular to Circular chamber, you need to highlight Rectangular and then click on the Delete icon.

Then click on the Add Child icon and select Circular from the Select Element panel that pops up.

A Circular chamber is then added.

A Circular chamber has only the one value Diameter_mm and type in a value 1.

Note that the ADAC Schema says that Diameter_mm is a positive integer, so you must have a valid value in the field or you get an error message when you move to another node.
Similarly, click on the node **MaintenanceHole** and you'll get the first level of ADAC attributes for **MaintenanceHole** displayed on the right hand side, and you'll see that **Use** is one of them with the value **Overflow**.

Click on the **Choice** icon for **Use** and choose **MaintenanceHole** from the list.

Clicking on **Set** will save the new ADAC attributes to SEWRND.

We will now run the option

File I/O => ADAC => Utilities => ADAC strings to Map File

and select the model containing the SEWRND string, the Map file name as **MH_Test** and the tick box **Use vertex and segment attributes** not ticked:
Clicking \textit{Create} produces the \textit{Map File} \texttt{MH_Test.mapfile}.

\textbf{Don't} click on \textit{Finish}.

After creating the \textit{Map File}, clicking on the folder icon to the right of the \textit{Map file} field and selecting \textit{Open} will bring up the \textit{Map File} \texttt{MH_Test} in the \textit{Map File Create/Edit} panel.

Click on \textit{Attributes>String} and scroll to the bottom of the grid and you’ll see the entry for SEWRND.

\textbf{Note}: the grid is filled in the order that the strings are added to the model and SEWRND was the last one added. If needed, the row can be moved up by clicking on the up arrow icon on the right hand side.

This \textit{Map file} is now set up with ADAC Asset attributes in the \textit{Map Attributes} column.

\textbf{Note}

If this map file is applied to a string starting with \texttt{SEWRND} then the string will be given the ADAC Asset attributes for \texttt{Sewerage>MaintenanceHoles>MaintenanceHole} and it has a circular chamber and \textit{Use MaintenanceHole}.

Continue to the next section \texttt{10.6.1.5 Notes On Creating the ADAC Attribute Structure} or return to \texttt{10.6.1 Setting Up Map Files for ADAC}.
10.6.1.5 Notes On Creating the ADAC Attribute Structure

1. Although the process just outlined produced an entry in the Map File for SEWRND, the more important thing is that it created an ADAC Attributes structure in the Map Attributes column.

And we had total control over what was in the ADAC attribute structure simply by using the ADAC Editor to set the attributes up exactly as we wanted them without ever needing to know how the attribute structure is stored in 12d Model.

So this is the process we suggest for creating all the ADAC Attribute structures, even if they are never used with the string name you used to create them.

Permanently keep the model (or models) of the strings with their Attribute Structures so they can be used to generate new Map Files at any time, and as examples to copy when you are creating new Attribute Structures in the future.

2. In the example we only created a Map File with an Attributes>String section, but the panel Create Map File from ADAC Data can also produce entries in the Attributes>Vertex/Pit and Attributes>Segment/Pipe section for special ADAC strings (see 10.4.8.1 ADAC Strings to Map File).

However, the important thing is that the ADAC Attribute structure has been created for a MaintenanceHole. It can then be copied and pasted to other Map Attributes columns as required.

Continue to the next section 10.6.1.6 Setting Up the Map File Selection Criteria or return to 10.6.1 Setting Up Map Files for ADAC.

10.6.1.6 Setting Up the Map File Selection Criteria

There are three ways we select strings for ADAC in the Attributes section of the Map File.

(a) Use the string name only

This is for not for drainage and sewer strings.

See 10.6.1.6.1 Using String Names to Select Strings.

(b) Using the string name and/or a string attribute

This is for not for drainage and sewer strings.

See 10.6.1.6.2 Using String Name and/or String Attributes to Select Strings.

(c) For drainage and sewer strings only

Using vertices and segments of the drainage and sewer strings and vertex names and segment names.

See 10.6.1.6.3 Using Vertices and Segments - Drainage/Sewer Strings.
10.6.1.6.1 Using String Names to Select Strings

This is only for strings that are not Drainage or Sewer strings

See 10.6.1.6.1.1 Designers’ Approach

See 10.6.1.6.1.2 Surveyor Approach - Using Survey Codes in the Field

10.6.1.6.1.1 Designers’ Approach

The first question to ask, for a string that is not a drainage or sewer string, is:

for a string in the design, is the string name enough to uniquely identify it as a particular ADAC Asset, or even better, identify it as a particular ADAC Asset and one of its choices for Type (or Use)?

For example, the string name Kerb is enough to identify it as being a Transport>RoadEdges>RoadEdge but it would not be enough to identify it as a RoadEdge of Type B1 as opposed to being Type B2 or Type Bitumen.

The easiest way of overcoming that problem is to have a different string name for each RoadEdge and Type that is required.

For example, EB for RoadEdge of type Bitumen (a common one), EB1 for RoadEdge of Type B1 and so on.

So wherever possible, try and adopt a string naming convention that has a unique name for each of the ADAC Assets of a particular Type (or Use) that are required by the Authority.

The Map File already created works for this situation - just have a model with a string of each of the names and the attributes that go with it and the ADAC Strings to Map File option will create the Map File.

What if that is not possible and the string naming convention cannot be changed?

For example, the one string name Kerb is used for all the RoadEdge of Type B1, B2, B3, SM1, etc.

In that case, it would be necessary to use the string name and a User string attribute, or just a User string attribute. See 10.6.1.6.2 Using String Name and/or String Attributes to Select Strings.

10.6.1.6.1.2 Surveyor Approach - Using Survey Codes in the Field

Once you know exactly what ADAC Assets, and what parts of those ADAC Assets, you need information on, can you code the information in the field so that once it is read into 12d Model, a Map File using the string name and if that is not enough, string attributes, to determine which ADAC Asset the string represents?

This assignment is often much easier for surveyors because you may be able to easily add extra field codes to distinguish the different ADAC Assets. And you will know what geometry is required for the ADAC Asset, even though in other circumstances you would have picked it up another way.

For example, for OpenSpace>BoatingFacilities>BoatingFacility, it only can have a single Point. So if all you are giving is ADAC XML, you only have to pick up one point.

Also think about the code being able to determine what the ADAC Asset is, but it may provide more information about the ADAC Asset.

In the OpenSpace>BoatingFacilities>BoatingFacility example, a compulsory element is Type with the choices of Jetty, Pier, Ramp or Spillways.

You could set up your codes so not did you know it was a BoatingFacility but also what Type.
For example, the codes could be

- **BFJ** is an `OpenSpace>BoatingFacilities>BoatingFacility` of Type Jetty.
- **BFP** is an `OpenSpace>BoatingFacilities>BoatingFacility` of Type Pier.
- **BFR** is an `OpenSpace>BoatingFacilities>BoatingFacility` of Type Ramp.
- **BFS** is an `OpenSpace>BoatingFacilities>BoatingFacility` of Type Spillway.

The **Map File** already created works for this situation - just have a model with a string of each of the names and the attributes that go with it and the **ADAC Strings to Map File** option will create the **Map File**.

What if that is not possible and the string naming convention can not be changed?

For example, the one string name **Kerb** is used for all the **RoadEdge** of Type B1, B2, B3, SM1, etc.

In that case, it would be necessary to use the **string name and a User string attribute**, or just a **User string attribute**. See [10.6.1.6.2 Using String Name and/or String Attributes to Select Strings](#).
10.6.1.6.2 Using String Name and/or String Attributes to Select Strings

A string has three types of User defined attributes:

(a) string attributes - there is one set of these for the whole string
(b) vertex attributes - there is a set for each vertex
(c) segment attributes - there is a set for each segment.

However only string attributes are used by the ADAC Map File.

User string attributes can be created by 12d Model options, 12PLs (macros), manually, or if you are a surveyor, by picking them up in the field.

See:
- 10.6.1.6.2.1 Entering User Attributes in the Field
- 10.6.1.6.2.2 Running a 12d Option or 12dPL that Produce User Attributes
- 10.6.1.6.2.3 Manually Entering User Attributes
- 10.6.1.6.2.4 Using the Name and Att Key in the ADAC Map File
10.6.1.6.2.1 Entering User Attributes in the Field

As well as using field codes, a surveyor may also have the capability of picking up attributes in the field.

An example of when attributes are useful is when picking up a WaterSupply>Pipes>Pipe - its diameter may be entered as an attribute.

Or when picking up a Sewerage>MaintenanceHoles>MaintenanceHole, which can only have a Point for its Geometry, you could enter the width and length as attributes.

Note that some other survey software can only produce vertex attributes. So if any of those attributes are to be used with the Map File, a method must be found to turn them into string attributes.

If you can do field pick ups with attributes, even if the attributes are not used with the ADAC Map File, they may be very useful in the step Update ADAC Elements from User Attributes that is further along in the ADAC chain. See 10.5.1.2.5 Update ADAC Elements from User Created Attributes on the String - Survey.

Continue to the next section 10.6.1.6.2.2 Running a 12d Option or 12dPL that Produce User Attributes, or return to 10.6.1.6.2 Using String Name and/or String Attributes to Select Strings.

10.6.1.6.2.2 Running a 12d Option or 12dPL that Produce User Attributes

Any 12d Model options that create User Attributes will be documented with what those User attributes are.

For example, 10.4.9.2.3 Generate ADAC Road Edge Types, splits a string into user defined chainage ranges and adds a User string attribute named RoadEdge_Type for each chainage range. That is, the 12dPL splits the Kerb into distinct parts, each with the same name Kerb but each part having a User string attribute called RoadEdge_Type which has only one of the RoadEdge Types as its value.

So this is a method for transcending the problem of having only the single string name of Kerb.

Hopefully any 12dPLs (macros) that you use are also documented, and in that it describes how the 12dPL works and what User string attributes it sets.

Continue to the next section 10.6.1.6.2.3 Manually Entering User Attributes, or return to 10.6.1.6.2 Using String Name and/or String Attributes to Select Strings.
10.6.1.6.2.3 Manually Entering User Attributes

If you are adding a *User string attribute* manually, (or wanting to display existing attributes for the string), pick the option

Strings =>Properties =>Attributes

This brings up the **Strings Attributes** panel

Click on **Pick** and then select the string to add attributes to. Any existing string, vertex or segment attributes are displayed by clicking on the **String**, **Vertex** or **Segment** tabs.

With **String Attributes**, User string attributes of virtually any name and value can be created to distinguish between Types of an **ADAC Asset**.

But this is a very manual process.

If you need to do it regularly, then it is best to write a small 12d PL (macro) that lets you pick a string, asks for the value for the attribute and then updates the string attribute. This will save lots of time and errors.

User string attributes are used to uniquely identify the type of **ADAC Asset** that a string represents, but they are also very useful for supply values for elements inside an ADAC Asset as well. See 10.5.1.2.5 Update ADAC Elements from User Created Attributes on the String - Survey and 10.5.2.2.6 Update ADAC Elements from User Created Attributes - Design.

Continue to the next section 10.6.1.6.2.4 Using the Name and Att Key in the ADAC Map File or return to 10.6.1.6.2 Using String Name and/or String Attributes to Select Strings.
10.6.1.6.2.4 Using the Name and Att Key in the ADAC Map File

The Map File that is created with the option ADAC Strings to Map File automatically creates a Map File for matching the string name against the Name in the Map File.

But when using a string name AND a string attribute, or just a string attribute, then you need to use both the Name column and the Att Key (Attribute key) column in the grid for the Attributes>String of the Map File.

Luckily, there is a way of setting up an ADAC string so that the ADAC string to Map File option creates both the Name column and the Att Key column entries - you simply need to add the required Att Key attribute with its type and value as the string attribute of the ADAC string.

So creating the row of the Map File when the criteria involves a string name and a string attribute is a two step process.

Step 1. Create the required ADAC attribute structure

This has already been described in the section 10.6.1.4 Creating the ADAC Attributes for Map Files.

Step 2. Edit the ADAC string and add the Att Key criteria

Here we take the ADAC string produced in Step 1 and manually edit it with the Strings Attributes panel and add the required string attribute that will be copied to the Att Key column, and hence used as part of the criteria for selecting a string.

To explain the process of adding a string attribute that becomes an Att Key, we will build on the previous example and

Instead of having a string name SEWRND to indicate the Sewerage>MaintenanceHoles>MaintenanceHole has a circular chamber, we only have the nondescript name SEWER and a string attribute called Chamber which has the text value of Circular or Rectangular.

To do the Circular case, copy and translate the existing ADAC Sewerage>MaintenanceHoles>MaintenanceHole called SEWRND using the option Strings =>Strings edit =>Translate

and name the copied string SEWER.

The ADAC string SEWER already has a Circular chamber so we now only have to add the text string attribute Chamber with the value Circular.

So the add attributes to the SEWER string, bring up String Attributes panel selecting the option Strings =>Properties =>Attributes

Click on Pick and select the string SEWER.
Highlight the node [Top] and then click on the Add Row Below icon to create a new row to use for the attribute Circular.

Type in the attribute name Chamber and the value Circular and then click on the Apply button twice to add the attribute to the string.
To create the Map File, we repeat the process used in 10.6.1.4 Creating the ADAC Attributes for Map Files, which is to run the option

File I/O => ADAC => Utilities => ADAC strings to Map File

to create the Map File and then open the Map File and go to the bottom of the Attributes>String grid and hover over the Att Key column to see that the attribute Chamber is defined.

So this Map File will select any string with the string name starting with SEWER and with a text attribute called Chamber with the value Circular, and give it the ADAC attributes for a Sewerage>MaintenanceHoles>MaintenanceHole with a Circular chamber.

As an alternative to having the attribute Chamber as part of the ADAC string SEWER, it is possible to add the Att Key values into the Map File by hand. So Step 2 would be replaced by:

Step 2’.Edit the Map File and add the Att Key criteria

Here we take the Map File produced in Step 1 and manually edit it with the Map File Create/Edit panel and add the required Att Key in for the string attribute that is to be used as part of the criteria for selecting a string. This will now be described.

The problem with this approach is this that if the Map File is generated again from the ADAC strings, any manual edits such as in Step 2’ will be lost and have to be repeated, or some other more complicated strategy employed such a keeping ADAC strings that require an Att Key for identification in a separate model.

So it is recommended NOT to use Step 2’ but to use Step 2 where a string attribute is added to the to the ADAC string.

Continue to the next section 10.6.1.6.3 Using Vertices and Segments - Drainage/Sewer Strings or return to 10.6.1.6 Setting Up the Map File Selection Criteria.
10.6.1.6.3 Using Vertices and Segments - Drainage/Sewer Strings

The Designers drainage and sewer strings are unique in that they hold data for four different ADAC Assets and the four ADAC Assets are known straight away.

1. Each pit of a Drainage string is a StormWater>Pits>Pit.
2. Each pipe of a Drainage string is a StormWater>Pipes>Pipe.
3. Each pit (maintenance hole) of a Sewer string is a Sewerage>MaintenanceHoles>MaintenanceHole.
4. Each pipe of a Sewer string is a Sewerage>PipesNonPressure>PipeNonPresssure.

So for drainage or sewer string, each vertex and each segment of the string needs to be marked as a ADAC Asset. Consequently, unlike all the other strings for ADAC, the Attributes>Vertex and Attributes>Segment sections of the Map File are used.

Unfortunately a Map File doesn't know the difference between a drainage and a sewer string as it is an internal property of the string so just before the Map File is applied in the Design Chain, the 12dPL Create_or_delete_temporary_sewerage_attribute_panel is run and for each drainage and sewer string, it creates a string attribute called sewertype of type Integer with the value 0 if it is a drainage string, or 1 if it a sewer string.

Being a string attribute, the attribute sewertype CAN be used in a Map File.

So when going through drainage and sewer strings, if it is a

(i) vertex with an integer string attribute sewertype of value 1 then it is a Sewerage>MaintenanceHoles>MaintenanceHole
(ii) vertex with an integer string attribute sewertype of value 0 then it is a StormWater>Pits>Pit
(iii) segment with an integer string attribute sewertype of value 1 then it is a Sewerage>PipesNonPressure>PipeNonPresssure.
(iv) segment with an integer string attribute sewertype of value 0 then it is a StormWater>Pipes>Pipe.

Important Note - Actually a Map File can’t tell the difference between ANY string types, so the presence of a string attribute called sewertype with value 0 or 1 can be used in a Map File to select only a sewer string or a drainage string.

Knowing this we can now set up the Attributes>Vertex and Attributes>Segment sections of the Map File to mark the vertices and segments of drainage and sewer strings as ADAC Assets

So far we have only used the option

File I/O =>ADAC =>Utilities =>ADAC strings to Map File

to create rows in the Attributes>String section of the Map File but if we click on the tick box Use vertex and segment attributes in the Create Map File from ADAC Data panel,
then

the ADAC attributes for ADAC Sewerage>MaintenanceHoles>MaintenanceHole’s and ADAC StormWater>Pits>Pit’s will be placed in the Attributes>Vertex/Pit section of the Map File with the Att Key set with the appropriate sewertype attribute value

and

the ADAC attributes for ADAC Sewerage>PipesNonPressure>PipeNonPressure’s and ADAC StormWater>Pipes>Pipe’s will be placed in the Attributes>Segment/Pipe section of the Map File with the Att Key set with the appropriate sewertype attribute value

(For more information on Use vertex and segment attributes in the Create Map File from ADAC Data panel see 10.6.1.4 Creating the ADAC Attributes for Map Files.)

A string attribute on the ADAC Asset with also go through as a Vertex Att Key or Segment Att Key, and the string name is written as a comment.

For examples of the vertex and the segment cases, see

10.6.1.6.3.1 Setting Up the Attributes>Vertex Section of the Map File
10.6.1.6.3.2 Setting Up the Attributes>Segment Section of the Map File
10.6.1.6.3.3 Bonuses for Drainage and Sewer Strings
10.6.1.6.3.1 Setting Up the Attributes>Vertex Section of the Map File

The strings for ADAC Assets that create an entry in the Attributes>String section of the Map File use the string name and Att Key as a method of deciding which strings have the Map Attributes applied to them.

But the ADAC strings for Sewerage>MaintenanceHoles>MaintenanceHole or StormWater>Pits>Pit which create an entry in the Attributes>Vertex/Pit section of the Map File, already have the Name column set to * and the Att Key is used with sewertype to select only drainage or sewer strings.

So the only part of the Attributes>Vertex/Pit row left help to differentiate between different types of maintenance holes/pits, is the Vertex Att Key.

Luckily the vertices of 12d Model drainage and sewer string usually have a text Vertex attribute called pit_type, or some other vertex attributes set during creation, and these can be used to select Map Attributes that are more appropriate to that vertex.

With that in mind, the Create Map File from ADAC Data panel with Use vertex and segment attributes ticked on, copies the string attribute of the ADAC Asset Sewerage>MaintenanceHoles>MaintenanceHole or StormWater>Pits>Pit, to the Vertex Att Key.

Note: To allow the user to identify which ADAC Asset string creates a particular row in the Attributes>Vertex/Pit grid, the string name is copied into the Comment column.

For example, if you wanted the ADAC Attribute group on the string SEWER to be applied only to vertices of a sewer string with the pit_type attribute equal to B3, we would use the String Attributes panel to create a text string attribute called pit_type with value B3.

To add attributes to the SEWER string, bring up String Attributes panel by selecting the option Strings =>Properties =>Attributes

Click on Pick and select the string SEWER.
For the String tab, highlight the node [Top] and then click on the Add Row Below icon to create a new row to use for the attribute pitType.

Note: if there are other first level attributes other than ADAC, highlight delete them.

Type in the attribute name `pit_type` and the value `B3` and then click on the Apply button twice to add the attribute to the string.

To create the Map File, we repeat the process used in 10.6.1.4 Creating the ADAC Attributes for Map Files, which is to run the option

File I/O => ADAC => Utilities => ADAC strings to Map File

to create the Map File and then open the Map File and go to the bottom of the Attributes>Vertex grid and hover over the Vertex Att Key column to see that the attribute `pit_type` is defined.

Note that the string name SEWER is displayed in the Comment column.

So this combination of Name, Att Key and Vertex Att Key in the Map File will select the vertex of any sewer string with a text attribute called `pit_type` with the value `B3`, and give it the ADAC attributes in the Map Attributes column.

The ADAC Asset attributes for a pit on a drainage string are set up the same way except that the value for `sewertype` is 0 and the ADAC Asset attributes to use are those of a StormWater>Pits>Pit.

Continue to the next section 10.6.1.6.3.2 Setting Up the Attributes>Segment Section of the Map File, or return to 10.6.1.6.3 Using Vertices and Segments - Drainage/Sewer Strings.
10.6.1.6.3.2 Setting Up the Attributes>Segment Section of the Map File

The strings for ADAC Assets that create an entry in the Attributes>String section of the Map File use the string name and Att Key as a method of deciding which strings have the Map Attributes applied to them.

But the ADAC strings for Sewerage>PipesNonPressure>PipeNonPressure or StormWater>Pipes>Pipe which create an entry in the Attributes>Segment/Pipe section of the Map File, already have the Name column set to * and the Att Key is used with sewertype to select only drainage or sewer strings.

So the only part of the Attributes>Segment/Pipe row left help to differentiate between different types of pipes, is the Segment Att Key.

Luckily the segments of 12d Model drainage and sewer string usually have a text Segment attribute called pipe_type, or some other segment attributes set during creation, and these can be used to select Map Attributes that are more appropriate to that segment.

With that in mind, the Create Map File from ADAC Data panel with Use vertex and segment attributes ticked on, copies the string attribute of the ADAC Asset Sewerage>PipesNonPressure>PipeNonPressure or StormWater>Pipes>Pipe, to the Segment Att Key.

Note: To allow the user to identify which ADAC Asset string creates a particular row in the Attributes>Segment/Pipe grid, the string name is copied into the Comment column.

For example, if you wanted the ADAC Attribute group on the string called PipeNonPressure to be applied only to segments of a sewer string with the pipe_type attribute equal to P3, we would use the String Attributes panel to create a text string attribute called pipe_type with value P3.

To add attributes to the PipeNonPressure string, bring up String Attributes panel by selecting the option Strings =>Properties =>Attributes

Click on Pick and select the string PipeNonPressure.
For the **String** tab, highlight the node [Top] and then click on the **Add Row Below** icon to create a new row to use for the attribute **pipe_type**.

Note: if there are other first level attributes other than ADAC, highlight delete them.

Type in the attribute name **pipe_type** and the value **P3** and then click on the **Apply** button **twice** to add the attribute to the string.

To create the **Map File**, we repeat the process used in 10.6.1.4 Creating the ADAC Attributes for Map Files, which is to run the option **File I/O =>ADAC =>Utilities =>ADAC strings to Map File** to create the **Map File** and then open the **Map File** and go to the bottom of the **Attributes>Segment** grid and hover over the **Segment Att Key** column to see that the attribute **pipe_type** is defined.

Note that the string name PipeNonPressure is displayed in the **Comment** column.

So this combination of **Name**, **Att Key** and **Segment Att Key** in the **Map File** will select the segment of any sewer string with a text attribute called **pipe_type** with the value **P3**, and give it the ADAC attributes in the **Map Attributes** column.

The ADAC Asset attributes for a **pipe** on a **drainage** string are set up the same way except that the value for **sewertype** is **0** and the ADAC Asset attributes to use are those of a **StormWater>Pipes>Pipe**.

Continue to the next section 10.6.1.6.3.3 Bonuses for Drainage and Sewer Strings, or return to 10.6.1.6.3 Using Vertices and Segments - Drainage/Sewer Strings.
10.6.1.6.3.3 Bonuses for Drainage and Sewer Strings

An ADAC bonus for designers with drainage and sewer strings is that each pit and pipe already has most of the values needed for the ADAC Assets.

For example, a sewer string pit (maintenance hole) knows if the chamber is rectangular or circular, and in both cases, what the dimensions of the chamber and the invert level and the surface level are. The pit name usually contains the MH_Number and the string name is the LineNumber.

Also from its pit type, the Use and most of the other elements of the ADAC Asset Sewerage>MaintenanceHoles>MaintenanceHole are known.

Similarly for a sewer string pipe, and the pits and pipes of a drainage string.

And a further bonus is that many of the extra attribute values do not have to be the values set for the ADAC Asset set by the Map File because later on in the Design chain, the 12dPL ADAC_Update_attributes_from_drainage_data_panel.4do is run and it updates as many of the ADAC elements for the asset as possible.

For example, it doesn't matter if the Map File marked a vertex as having a Circular chamber or a Rectangular chamber because the 12dPL ADAC_Update_attributes_from_drainage_data_panel.4do will look at the actual chamber type of the pit and update the ADAC Asset attributes on the pit with the proper chamber type and size.

For more information on ADAC_Update_attributes_from_drainage_data_panel.4do, see 10.5.2.2.4 Update ADAC Elements from Drainage/Sewer String Properties.

Continue to the next section 10.6.1.7 More on Creating the ADAC Map Files or return to 10.6.1.6.3 Using Vertices and Segments - Drainage/Sewer Strings, or 10.6.1.6 Setting Up the Map File Selection Criteria.
10.6.1.7 More on Creating the ADAC Map Files

In the examples, many of the ADAC Asset values were set by the Map File, but others were not and they need to be set in the steps in the Design and Survey chains that occur after the Map File has been applied.

Good procedures and some data preparation before running the Design or Survey chains, will mean that most of the values will be set by the chains and any manual filling in of the missing values by using the ADAC Editor will be avoided.

How values such as Diameter_mm are set will vary from Asset to Asset, but they can also vary within the 'same Asset.

For example, for a surveyor picking up MaintenanceHoles, they can come prefabricated in standard sizes with known Chamber type and sizes. In fact almost all of the elements for the MaintenanceHole would be known - FloorConstruction, FloorMaterial, WallConstruction, WallMaterial, RoofMaterial, LidMaterial. Similarly for Pipes.

So if the surveyor had a special code (string name) for each of the standard MaintenanceHoles or Pipes, then the ADAC Asset attributes for them can be set up with all the known standard values. Then using the special string name in the Map File means that all the values are already set correctly just by applying the Map File.

Even if things are not totally standard, some attributes may have a certain value most of the time. If that is the case, the "most likely" value is the one that should be used in ADAC Asset in the Map File and then only the few that vary from the "most likely" value need to be modified at a later stage.

There may also be elements in an ADAC Asset that the Authority is not interested in so whatever value they are given by the Map File won’t have to be changed at any time.

Continue to the next section 10.6.2 What Data Prep is Needed for ADAC or return to 10.6.1 Setting Up Map Files for ADAC.
10.6.2 What Data Prep is Needed for ADAC

The Data Preparation that is needed on strings before they become ADAC Assets is different for each company. The options that are supplied are on the menu

File I/O =>ADAC =>User =>Data prep. See 10.4.9.2 Data Prep.

Continue to the next section 10.6.3 Setting up and Running ADAC Chains from the Menus, or return to 10.6 Setting Up for ADAC.
10.6.3 Setting up and Running ADAC Chains from the Menus

The easiest way to run the ADAC Survey or Design chains with specific pvf files is to run them from a menu. This can be done in two ways:

(a) Running Specific Map and 12duaf files from Special areas

12d Model provides options on the walk right menu Run 12d ADAC 4.1 Chains to run ADAC Survey or Design chains for ADAC 4.1 with specially named Map and 12duaf files in either the working folder for the project (local), or User_Lib or Library.

See 10.6.3.1 Using the 12d Supplied Menu to Run ADAC Chains.

(b) Running Client Specific Map and 12duaf files

Once you are producing ADAC files for different Clients, you may need to produce different ADAC versions, or need different Map or 12duaf files.

For example you may need to use a different naming convention, or the information required in the ADAC assets is different.

For these situations, you can add your own options to User Adac menu.

The user options can run either the ADAC Base Survey or Design chains with specific chain pvf files.

For information on setting up your own options on the User ADAC menu, see 10.6.3.2 Setting Up Your User ADAC Menu.

Or return to 10.6 Setting Up for ADAC.

10.6.3.1 Using the 12d Supplied Menu to Run ADAC Chains

12d Model provides options on the walk right menu Run 12d ADAC 4.1 Chains for the option 12d 4.1 chains to run the base ADAC Survey or Design chains for ADAC 4.1 with specially named Map and 12duaf files in either the working folder for the project (local) or User_Lib.

These options also use a tin called ground for surface levels.

(a) for the working folder for the project (local)

Local Survey to ADAC 41 chain runs ADAC_Survey_Base chain using the files from the working folder for the project (local):

- ADAC_Local_Map_Survey_to_ADAC_41.mapfile
- Local_41.12duaf this file is optional

Local Design to ADAC 41 chain runs ADAC_Design_Base chain using the files from the working folder for the project (local):

- ADAC_Local_Map_Design_to_ADAC_41.mapfile
- Local_41.12duaf

Both options use the a tin called ground to get surface levels.

So to use the Local menu items you only need to create the two files and have them in the folder containing the project. This means that they are only available for that project.

(b) for User_Lib

Userlib Survey to ADAC 41 chain runs ADAC_Survey_Base chain using the files from the USER_LIB folder:

- ADAC_Userlib_Map_Survey_to_ADAC_41.mapfile
- Local_41.12duaf this file is optional

Userlib Design to ADAC 41 chain runs ADAC_Design_Base chain using the files from the USER_LIB folder:

- ADAC_Userlib_Map_Design_to_ADAC_41.mapfile
- Local_41.12duaf

Both options use a tin called ground to get surface levels.

So to use the Userlib menu items, you only need to create the two files and have them in the User_Lib folder. This means they can be used with any project.
Consequently you can use the **Userlib** options for any project and just set up **Local** ones for certain projects.

Continue to the next section [10.6.3.2 Setting Up Your User ADAC Menu](#) or return to [10.6 Setting Up for ADAC](#).
10.6.3.2 Setting Up Your User ADAC Menu

To make it easy for your users to run the ADAC chains for either Survey or Design, or for different versions of ADAC, the easiest way is for the running of the options to be on a menu.

And since what is required could vary from Authority to Authority, and string naming conventions could differ between 12d Model users, each user needs to set up their own ADAC menus.

The menu ADAC User can be modified by users so that is the one we will use.

To allow for all the variations, parametrised base ADAC Design and Survey chains are supplied in the 12d Model Set_Ups folder (which most users do not have permission to access) and the variations required for all the different customer cases will be handled by passing parameter values through to these parametrised chains.

Placing the options on the User ADAC menu is done by setting up some folders and files in User which most users have access to.

To help explain things and the ease of setting up ADAC to work with multiple customers who may vary in what ADAC Assets they require in their ADAC XML files, we will set up a system to satisfy the following scenario:

You have three customers with the abbreviated names BCC, BRC and GCCC.

BRC started with ADAC 4.0 but are now moving to ADAC 4.1 and you have jobs in both versions. On some jobs you are providing BRC with Design ADAC XML files and on other jobs you providing BRC with Survey ADAC XML files.

BCC are using ADAC 4.1 only and you are providing them with Design and Survey ADAC XML files.

GCCC are using ADAC 4.1 only and at this stage and you are only providing them with Survey ADAC XML files.

Due to the nature of design and survey data, the 12d Map Files required for ADAC are always different. But for various reasons, the 12d Map files need to be different for each of the your customers as well.

Of course in real life your customers would never want something totally different but it is good for the scenario.

Note: If you are lucky enough that you can use the same configuration for all your customers (or you are an Authority that only has to supply itself) then you only need to set up the one subfolder and it is easiest to use your own abbreviated company name.

What we want to easily set up is an User ADAC menu with walk-rights:
The steps to achieve this are:

(a) In the file usermenu.4d (which is usually in User), add the following line at the top of the file.

```cpp
#include "ADAC_customer_user_menu.4d"
```

(b) Create subfolders of User with the abbreviated name for each of your customers.

(c) Inside the subfolder (for example, inside User\BCC) there will be an appropriate ADAC pvf file

The ADAC pvf file is a parameter value file which is used in to pass parameters to both the ADAC Design chain and ADAC Survey chain.

In the ADAC pvf files themselves, there is five parameters that you have to set the values for:

(i) For the text parameter company, the Value which is the abbreviated company name. For example, BCC.

(ii) For the text parameter adac_version_by_ten, the Value 41 if you are generating ADAC 4.1.0 files, or 40 if you are generating ADAC 4.0 files.

(iii) user_attributes_conversion_type

(iv) For the text parameter survey_finished_tin, the name of a tin which is used to get some z-values for some tins in some macros.

(v) For the text parameter design_finished_tin. The name of a tin which may be used to get some z-values for some Assets in some macros.

There are four other parameters in the pvf files, survey_map_file, design_map_file, adac_attribute_file and adac_12d_attribute_file but they are fully defined once company and adac_version_by_ten have values.

(vi) survey_map_file is
$USER_LIB\ADAC_[company]_Map_Survey_to_ADAC_[adac_version_by_ten].mapfile

(vii) design_map_file is
$USER_LIB\ADAC_[company]_Map_Design_to_ADAC_[adac_version_by_ten].mapfile

(viii) adac_attribute_file is
$USER_LIB\[company]_[adac_version_by_ten].12duaf

(ix) adac_attribute_file is
$LIB\adac_12d_[adac_version_by_ten].12duaf

To easily tell the different pvf files apart when you have them for different companies and ADAC versions, the abbreviated company name and the adac_version_by_ten are used in the name of the pvf file.

So for company with value BCC and adac_version_by_ten with value 41, the pvf file is called

ADAC_BCC_41.pvf

And this pvf file must have the following contents:

<Chain_Parameters>
<Text_Parameter>
>Name"company"</Name>
<Comment"></Comment>
<Value">BCC</Value>
</Text_Parameter>
<Text_Parameter>
>Name"design_map_file"</Name>
<Comment"></Comment>
<Value">$USER_LIB\ADAC_[company]_Map_Design_to_ADAC_[adac_version_by_ten].mapfile</Value>
</Text_Parameter>
<Text_Parameter>
>Name"survey_map_file"</Name>
<Comment"></Comment>
<Value">$USER_LIB\ADAC_[company]_Map_Survey_to_ADAC_[adac_version_by_ten].mapfile</Value>
</Text_Parameter>
<Text_Parameter>
>Name"user_attributes_conversion_type"</Name>
<Comment"></Comment>
<Value">BCC</Value>
</Text_Parameter>
<Text_Parameter>
>Name"design_finished_tin"</Name>
<Comment">ground</Comment>
<Value"></Value>
</Text_Parameter>
<Text_Parameter>
>Name"survey.finished.tin"</Name>
<Comment"></Comment>
<Value">ground</Value>
</Text_Parameter>
<Text_Parameter>
>Name"adac_version_by_ten"</Name>
<Comment"></Comment>
<Value">41</Value>
</Text_Parameter>
<Text_Parameter>
>Name"adac.attribute.file"</Name>
<Comment"></Comment>
<Value">$USER_LIB\[company]_[adac_version_by_ten].12duaf</Value>
</Text_Parameter>
The different pvf files can be created by copying the ADAC_BCC_41.pvf file and changing the BCC and 41 to what is needed. This can be done using a text editor, or the 12d Model options

Utilities =>Chains => Parameters => Create or Copy or Edit.

So in the folder User\BCC, you need two pvf files - ADAC_BCC_41.pvf and ADAC_BCC_40.pvf
In the folder User\BRC, you need the one pvf file - ADAC_BRC_41.pvf
And in the folder User\GCC, you need the one pvf file - ADAC_GCCC_41.pvf.

(d) Inside each customer subfolder (for example, inside User\BCC) there must be a file called ADAC_customer_user_menu.4d which creates the walk right menus for that customer that go on your User menu.
In our example, BCC requires both ADAC 4.1 and ADAC 4.0 so two walk right menus are needed.
So in the folder User\BCC, the contents for

ADAC_customer_user_menu.4d

are:

Button "BCC 4.1 Chains" {
 Walk_Right "ADAC BCC 4.1 Chains"
}
Button "BCC 4.0 Chains" {
 Walk_Right "ADAC BCC 4.0 Chains"
}

BRC only required ADAC 4.1 so only one walk right menu is required. and

ADAC_customer_user_menu.4d in the folder User\BRC is

Button "BRC 4.1 Chains" {
 Walk_Right "ADAC BRC 4.1 Chains"
}

In the folder User\GCC, the ADAC_customer_user_menu.4d file is almost identical to that for BRC that BRC is replaced by GCCC.
So now we need to define walk-right menus mentioned in the
ADAC_customer_user_menu.4d files.

(e) Inside each customer folder, the walk right menus are defined in a file called
ADAC_customer_walk_right_menu.4d

The walk right menus contain the options that run the required ADAC Design and ADAC Survey chains.

In our example, **BCC** has two walk right menus and they both need options to run Design and Survey chains.

So in the folder **User\BCC**, the contents of **ADAC_customer_walk_right_menu.4d** are

```plaintext
Menu "ADAC BCC 4.1 Chains" {
    Button "BCC Design to ADAC 41 chain" {
        Command "chain -pvf $USER/BCC/ADAC_BCC_41.pvf $LIB/ADAC_design_base.chain"
    }
    Button "BCC Survey to ADAC 41 chain" {
        Command "chain -pvf $USER/BCC/ADAC_BCC_41.pvf $LIB/ADAC_survey_base.chain"
    }
}

Menu "ADAC BCC 4.0 Chains" {
    Button "BCC Design to ADAC 40 chain" {
        Command "chain -pvf $USER/BCC/ADAC_BCC_40.pvf $LIB/ADAC_design_base.chain"
    }
    Button "BCC Survey to ADAC 40 chain" {
        Command "chain -pvf $USER/BCC/ADAC_BCC_40.pvf $LIB/ADAC_survey_base.chain"
    }
}

**BRC** only require ADAC 4.1 but do need both Design and Survey so only one walk right menu is required but it needs an option for Design and an option for Survey on it. So the **ADAC_customer_walk_right_menu.4d** in the folder **User\BRC** is

```plaintext
Menu "ADAC BRC 4.1 Chains" {
 Button "BRC Design to ADAC 41 chain" {
 Command "chain -pvf $USER/BRC/ADAC_BRC_41.pvf $LIB/ADAC_design_base.chain"
 }
 Button "BRC Survey to ADAC 41 chain" {
 Command "chain -pvf $USER/BRC/ADAC_BRC_41.pvf $LIB/ADAC_survey_base.chain"
 }
}
```

**GCC** only require ADAC 4.1 and only need Survey so only one walk right menu is required with just the one option for Survey on it. So the **ADAC_customer_walk_right_menu.4d** in the folder **User\GCC** is

```plaintext
Menu "ADAC GCCC 4.1 Chains" {
 Button "GCC Design to ADAC 41 chain" {
 Command "chain -pvf $USER/GCC/ADAC_GCCC_41.pvf $LIB/ADAC_design_base.chain"
 }
 Button "GCC Survey to ADAC 41 chain" {
 Command "chain -pvf $USER/GCC/ADAC_GCCC_41.pvf $LIB/ADAC_survey_base.chain"
 }
}
```
(f) Finally the `ADAC_customer_user_menu.4d`'s for each of the customers needs to be included in the **ADAC User** menu

This is done by having a file in the **User** folder called `ADAC_customer_user_menu.4d`.

(Aside: Yes this is the same name as in the customer folders. If it causes confusion then we will change it. Maybe it should have an s in it `ADAC_customers_user_menu.4d`.)

This is the file that was included in the **User** menu by the

```#
#include "ADAC_customer_usr_menu.4d"
```

This file first includes all the walk right menus for the different customers on the **User ADAC** menu, and then includes the definitions of the walk right menus.

```
Menu "User Adac" {

#include "BCC\ADAC_customer_user_menu.4d"
#include "BRC\ADAC_customer_user_menu.4d"
#include "GCCC\ADAC_customer_user_menu.4d"

} #include "BCC\ADAC_customer_walkright_menu.4d"
#include "BRC\ADAC_customer_walkright_menu.4d"
#include "GCCC\ADAC_customer_walkright_menu.4d"
```

Continue to the next section 10.6.4 Setting Up ADAC Templates, or return to 10.6.3 Setting up and Running ADAC Chains from the Menus, or 10.6 Setting Up for ADAC.
10.6.4 Setting Up ADAC Templates

When creating ADAC Header using the ADAC =>Create Header, or ADAC Assets using the ADAC =>Create Asset option, Templates can be used to automatically fill in many of the values of ADAC elements.

See
10.6.4.1 ADAC Header Templates
10.6.4.2 ADAC Asset Templates

10.6.4.1 ADAC Header Templates

In most firms, many of the values in an ADAC Header would be the same for each new ADAC job.

For example, all your jobs could be in MGA zone 56, using the Horizontal Datum GDA 94 and Vertical Datum AHD. Or you always have the three surveyor names in the ADAC Header.

To prevent having to reenter this data every time you create a new ADAC Header, users can create ADAC Header Templates with information for any new ADAC Header already filled in.

When you have ADAC Header Templates, the Template field pop up in the Create ADAC Header panel lists all your ADAC Header Templates for the selected ADAC version, as a folder structure.

When the new ADAC Header is created, it will have all the values from the selected Header Template.

So for the new ADAC Header, only those values not covered by the Header Template need to be entered.

To create an ADAC Header Template, you

1. create an ADAC Header for the required ADAC version, and with the ADAC values that you want the Header Template to have
2. place it in the model ADAC Header Templates
3. in the string attributes, add a Text attribute called Template into the top level of the ADAC attribute group, with its value being the required folder structure for displaying the Header Template with the names for each folder level being separated by a forward slash (/).
For example, to have a **Header Template** called **MGA 96** and have it display in a folder called **BCC**, the value for the attribute **Template** is **BCC/MGA 96**

![String Attributes](image)

To use the **Header Templates** in another project you can either:

(a) write the model **ADAC Header Templates** out as a 12da file and read it into new ADAC projects.

(b) have the model **ADAC Header Templates** in a project and share that project into your new ADAC projects.

(c) write the models **ADAC Header Templates** and **ADAC Asset Templates** out to the 12da file **ADAC_Templates.4da** and place the file in **User_Lib**.

The option:

`ADAC =>User =>Setting up a new ADAC Project =>Read in templates from User_Lib`

...can then be used in any project to read **User_Lib\ADAC_Templates.4da** in, and hence the models **ADAC Header Templates** and **ADAC Asset Templates** into the new project.

See [10.4.9.1.3 Reading in Templates from User_Lib](#).  

Continue to the next section [10.6.4.2 ADAC Asset Templates](#), or return to [10.6.4 Setting Up ADAC Templates](#).
10.6.4.2 ADAC Asset Templates

When creating ADAC Assets by hand, there would be some the values in an ADAC Asset that would be the same each time the ADAC Asset was used in ADAC job.

For example, a Transport>RoadEdges>RoadEdge with Type Bitumen and Owner Council may be regularly required.

To prevent having to reenter this data every time you create a new ADAC Asset, users can create ADAC Asset Templates with information for any new ADAC Asset already filled in.

When you have ADAC Asset Templates, the Template field pop up in the Create ADAC Asset panel, lists all your ADAC Asset Templates for the selected ADAC version and the selected ADAC Asset, in a folder structure.

When the new ADAC Asset is created, it will have all the values from the selected Asset Template.

So for the new ADAC Asset, only those values not covered by the Asset Template need to be entered.

To create an ADAC Asset Template, you

1. create an ADAC Asset for the required ADAC version, and with the ADAC values that you want the Asset Template to have
2. place it in the model ADAC Asset Templates
3. in the string attributes, add a Text attribute called Template into the top level of the ADAC attribute group, with its value being the required folder structure for displaying the Asset Template with the names for each folder level being separated by a forward slash (/).

For example, to have an Asset Template for a Road Edge called Bitumen, and have it display in a folder called BCC, the value for the attribute Template is BCC/Bitumen
To use the Asset Templates in another project you can either:

(a) write the model ADAC Asset Templates out as a 12da file and read it into new ADAC projects.

(b) have the model ADAC Asset Templates in a project and share that project into your new ADAC projects.

(c) write the models ADAC Header Templates and ADAC Asset Templates out to the 12da file ADAC_Templates.4da and place the file in User_Lib.

The option:

ADAC => User => Setting up a new ADAC Project => Read in templates from User_Lib

can then be used in any project to read User_Lib/ADAC_Templates.4da in, and hence the models ADAC Header Templates and ADAC Asset Templates into the new project.

See 10.4.9.1.3 Reading in Templates from User_Lib.

Continue to the next section 10.6.5 Setting Up Your User Keys or return to 10.6 Setting Up for ADAC.
10.6.5 Setting Up Your User Keys

Two things you will do regularly when doing ADAC work is to bring up the ADAC menu and to bring up the **String Attributes** panel.

So in the standard *12d Model 11* installation, the function keys are assigned so that:

- Pressing **F12** brings up the **ADAC** menu.
- Pressing **F8** brings up the **Strings Attributes** panel.

If you wish to change the use of functions keys then you can define the way you want the **function keys** to work.

For example, you may want

- Press **F11** to bring up the **ADAC** menu.
- Press **F12** to bring up the **String Attributes** panel.

In *12d Model* the actions of the function keys is controlled by **userkeys.4d**. There may already be a copy in your **User** folder. If not, copy it over from the folder in **Program Files**:

```
12d\12dmodel\11.00\set_ups.
```

Then just replace the existing lines for defining **f11** and **f12** with (lines preceded by `//` are comment lines).

```
// mod for f11

f11 panel "ADAC"

// mod for f12

f12 panel "String Attributes"
```

Return to **10.6 Setting Up for ADAC**.
11 Edit

The Edit menu contains the Undo and Redo options.

Infinite Undo and Redo facilities have been implemented for many of the 12d Model options. However, because much of the power of 12d Model comes from being able to leave options hanging and editing more than one string at a time, this made the standard concept of Undo/Redo of limited benefit to 12d Model users.

Consequently, the following methodology has been adopted for Undo and Redo in 12d Model:

Independent undo and redo lists are maintained for each string being edited and these list are cleared once the editor is left.
There is also a main undo/redo list which is used for all other options that can be undone. The main undo/redo lists are cleared when the 12d Model session is exited.
Please continue to the next section Undo and Redo for Editors.
11.1 Undo and Redo for Editors

Each editor contains its own Undo/Redo option on its nd Edit menu and whilst a string is being edited, the editor maintains its own undo/redo lists.

For example, for a 2d string, the Undo/Redo option is just above the Quit option.

As each edit is made to the string, the state of the string before the edit is added to the top of the string’s undo list and the redo list is emptied.

If undo is selected from the nd edit menu, the last edit operation for that string will be undone and the undone operation added to the top of the string’s redo list.

If another undo is selected before another edit is made to the string, what is now was last operation on the string will be undone (is was the second last operation before the previous undo) and the undone operation added to the top of the string’s redo list.

If redo is selected from the nd edit menu, then the top operation on the redo list is redone, and the state of the string before the redo is added to the top of the undo list.

Hence edits for the string can be undone and redone whilst in the edit session for the string.

When the edit session is completed by selecting either quite or finish from the nd edit menu, the undo and redo lists for the edit session are deleted and the operations for the edit session can no longer be undone or redone.

Note

If more than one string is being edited at the same time, each string editor maintains its own undo/redo lists so that the undo/redo operations for the different strings do not get intertwined.

Hence if undo or redo is selected from a particular strings nd edit menu, the undo or redo applies only to the operations performed on that particular string, no matter what other nd edit options where performed on other strings.

Please continue to the next section Undo and Redo for other Options.
11.2 Undo and Redo for other Options

As well as the undo/redo lists maintained by the string editors, there is another set of undo/redo list maintained for all other options that support undo and redo. These are called the main undo and redo lists.

For a description of the undo in 12d Model, please go to the section Edit.

The undo option which controls the main undo/redo lists, is the on the Edit menu from the main menu.

If undo is selected from the undo menu, the last undoable option performed (apart from editor operation on strings) will be undone and the undone operation added to the top of the main redo list.

If another undo is selected before another undoable option is performed, what is now was last operation will be undone (is was the second last operation before the previous undo) and the undone operation added to the top of the main redo list.

If redo is selected from the undo menu, then the top operation on the main redo list is redone, and the state before the redo is added to the top of the undo list.

Hence many operations can be undone and redone.

When the 12d Model session is completed by selecting either exit from the 12d Model menu, the undo and redo lists for the session are deleted and the operations for the session can no longer be undone or redone.

For the option Undo, go to the section

For some restrictions on the Undo/Redos, please continue to the section Some Restrictions on Undo and Redo.
11.2.1 Undo

If undo is selected from the undo menu, the undo panel showing the last operation to undo is displayed.

For some restrictions on the Undo/Redos, please continue to the section Some Restrictions on Undo and Redo.
11.2.2 Redo

If redo is selected from the undo menu, the redo panel showing the last operation to redo is displayed.

For some restrictions on the Undo/Redos, please continue to the section Some Restrictions on Undo and Redo.
11.2.3 Undo List

If undo list is selected from the undo menu, a list of all the items on the undo list is displayed in the undo list panel.

![Undo List Dialogue Box]

No Undo's or Redo's

OK
11.2.4 Clear all Undos

Selecting clear all undo from the undo menu will bring up a clear all undo's/redo's yes-no panel.

If yes is selected, the main undo and redo lists will be cleared.
11.2.5 Some Restrictions on Undo and Redo

Undo and Redo are available for most of the Strings options and most of the Utilities options. Undo is available for all File=> Input options but there are no Redos for these Undos.

Undo is available for all Utilities=>Global options that use the Output option with the Mode set to one of the three copy modes. There are no Redos with these Undos.

There are no Undos for Models=>Delete and Models=>Clean.
12 View

Position of menu: View

Views are the drawing display areas in 12d Model.

The View walk-right menu contains options to list existing views and create new views. The view drawing and manipulation options are in the View menus attached to each view.

The Views walk-right menu is

- On Main menu:
  - create new views
  - turn Toolbars on/off
  - toggle Status Bar on/off

- On 12d Model menu and floating Views menu:
  - list of defined views
  - info about the data on the view
  - table of info on all models on view
  - create plan, perspective, section views
  - write out a view in raster format
  - write out view in selected raster format
  - rename a view
  - delete a view
  - save/restore list of models on view
  - transfer models between views
  - send tins/rasters to back of drawing list
  - helpful visualisation options
  - display Views User menu

For the option New, go to:

- 12.1 New
- 12.2 Toolbars
- Status Bar
- 12.3 Views
- 12.4 View Info
- 12.5 View Information Table
- 12.6 Create
- 12.7 Dump
- 12.8 Rename
- 12.9 Delete
- 12.10 Models Save/Restore
- 12.11 Models Transfer
- 12.12 Send Tins/Rasters to Back
- 12.13 Visualisation
- View Redraw Settings ALG??
12.1 New

Position of option on menu: View => New

The New walk-right menu provides options to create views of type Plan, Section, Perspective, Perspective OpenGL and Perspective Hide.

After selecting one of the options, a new view of the appropriate type with the next sequential view number is created in the Views Area.
12.2 Toolbars

**Position of option on menu:** View => Toolbars
Clicking on Toolbars brings up the Customize Toolbars panel

![Customize Toolbars panel]

Clicking the tick on/off for a given toolbar or controlbar in the Toolbars list turns the toolbar or controlbar on/off.

Status Bar

**Position of option on menu:** View => Status Bar
Toggles the Status Bar on/off.

For more information please see 4.3.8 Status Bar.

12.3 Views

**Position of option on menu:** View => Views
The Views walk-right menu provides a list of the all the views defined in this session of 12d Model.
For each view in the list, a further walk-right menu lists all the models added to that view.

![View List panel]
12.4 View Info

Position of option on menu: View => View Info

Selecting View info fires up the View information panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>input</td>
<td>available views</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>input the name of the view to get information about</td>
</tr>
<tr>
<td>Point id info</td>
<td>tick box</td>
<td>tick</td>
<td>if ticked, the Point id min and Point id max fields are shown on the panel and when the Info button is pressed, their values calculated for the data on the view. If not ticked, the Point id min and Point id max fields are not shown on the panel.</td>
</tr>
<tr>
<td>Null level info</td>
<td>tick box</td>
<td>tick</td>
<td>if ticked, the Num null vertices field is shown on the panel and when the Info button is pressed, the value calculated for the data on the view. If not ticked, the Num null vertices field is not shown on the panel.</td>
</tr>
<tr>
<td>xmin/ymin/zmin, xmax/ymax/zmax</td>
<td>output</td>
<td></td>
<td>returns the limits of all the models on the view</td>
</tr>
<tr>
<td>Point id min/max</td>
<td>output</td>
<td></td>
<td>minimum/maximum integer point id in the model</td>
</tr>
<tr>
<td>Elements</td>
<td>output</td>
<td></td>
<td>returns the number of elements in all the models on the view</td>
</tr>
<tr>
<td>Num vertices</td>
<td>output</td>
<td></td>
<td>returns the number of points in all the models on the view</td>
</tr>
<tr>
<td>Point id min</td>
<td>output</td>
<td></td>
<td>the minimum Point id for the data on the view.</td>
</tr>
<tr>
<td>Point id max</td>
<td>output</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
the maximum Point id for the data on the view.

**Num null vertices** output

returns the number of null vertices in all the models on the view

**Info** button

get the information for the view given in the view field.

**Calc Extent** button

recalculate the x, y, z bounding box for the models on the view given in the view field.

**How to Use the Panel**

The view information for the view given in the view field is retrieved and placed in the appropriate panel fields when the view name is entered into the view field from the pop-ups, or a <enter> is entered after entering the view name into the view field, or on selecting the **info** button.
12.5 View Information Table

**Position of option on menu:** View => View info table

The View information table option displays the minimum and maximum x, y and z values for every model on the view, and by double-clicking on a model name in the list, brings up a String Information Table that lists all the strings in that model (see 13.3 Model Information Table).

The models and minimum and maximum columns can be sorted into ascending or descending order by using bringing up the sort menu on the column header fields.

Selecting View info table fires up the View Information Table panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td>available views</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>column</td>
<td>sort menu</td>
<td></td>
</tr>
<tr>
<td>Read only</td>
<td>column</td>
<td>sort menu</td>
<td></td>
</tr>
<tr>
<td>Loaded</td>
<td>column</td>
<td>sort menu</td>
<td></td>
</tr>
<tr>
<td>Min X, Min Y, Min Z</td>
<td>columns</td>
<td>sort menu</td>
<td></td>
</tr>
<tr>
<td>Max X, Max X, Max Z</td>
<td>columns</td>
<td>sort menu</td>
<td></td>
</tr>
</tbody>
</table>

The name of the view to list all the models for.

All the models in the view are listed in the model column.

If no, in this current opening of the project, the model has not yet been fully loaded into 12d Model.

The minimum/maximum values for the model are displayed in the columns.
Created/Updated columns dates
dates the model was first created/updated

Update button
recalculate the minimum/maximum information in the table.

Notes
1. This is a scrolling panel. If there is too much information to fit into the table, then the scrolling arrow on the right hand side of the table must be used to display the extra information.
2. The grid can be sorted by any of the columns.
12.6 Create

Position of menu: View => Create

The floating Create menu item operates in two ways.

First, if Create itself is activated (by clicking LB when Create is highlighted), the New View panel appears. The New View panel can be used to create plan, perspective and sections views.

Secondly, the Create walk-right brings up a the View Create menu. This walk-right menu has separate options for creating plan, perspective and section views.

The Main menu option View => Create will only work the second way.

The Create walk-right menu is

![Create Menu]

The New View panel obtained by clicking LB on the Create menu item and the three options on the View Create menu will now be described.

For the option New view, go to

<table>
<thead>
<tr>
<th>View</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan view</td>
<td>create a plan view</td>
<td>12.6.1 New View</td>
</tr>
<tr>
<td>Plan OpenGL view</td>
<td>create a plan OpenGL view</td>
<td>ALG??</td>
</tr>
<tr>
<td>Perspective view</td>
<td>create a perspective view</td>
<td>12.6.2 Plan, Perspective and Section</td>
</tr>
<tr>
<td>Perspective OpenGL view</td>
<td>create a perspective OpenGL view</td>
<td>12.6.2 Plan, Perspective and Section</td>
</tr>
<tr>
<td>Section view</td>
<td>create a section view</td>
<td>12.6.2 Plan, Perspective and Section</td>
</tr>
</tbody>
</table>
12.6.1 New View

On selecting the **Create** option, the **New View** panel is displayed.

![New View Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>View name</strong></td>
<td>name of the new view to be created.</td>
<td>view box</td>
<td>next view number</td>
<td></td>
</tr>
<tr>
<td><strong>View type</strong></td>
<td>type of the view to be created.</td>
<td>choice box</td>
<td>plan</td>
<td>plan, persp, section, persp openGL</td>
</tr>
</tbody>
</table>

*type of the view to be created. There are three types of views - plan, perspective, perspective openGL and sections views.*

**Create** button

*after selecting this button, a new view of the name and type given in the panel is created in the Views Area. The panel then disappears.*
12d Model Reference Manual

12.6.2 Plan, Perspective and Section Views

Position of option on menu: View => Create => Plan/Perspective/Perspective OpenGL/Section view

On the Plan/ Perspective/ Perspective OpenGL/ Section view option, the New Plan/ Perspective/ Perspective OpenGL/ Section view panel is displayed.

The fields and buttons used in this panels have the following functions.

Field Description      Type     Defaults     Pop-Up

View name             input     next view number

name of the new plan/perspective/section view to be created.

Create                  button

after selecting this button, the new view of the specified name is created in the Views Area. The panel then disappears.
12.7 Dump

Position of option on menu: View => Dump

This option is used to write the view out in a user selected raster format. The option is identical to the Dump option on the View System menu.

![View Dump dialog box](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td></td>
<td>available views</td>
<td>name of the view to be dumped</td>
</tr>
<tr>
<td>Include title</td>
<td>tick box</td>
<td></td>
<td></td>
<td>if ticked, include the view title area in the dump</td>
</tr>
<tr>
<td>Format</td>
<td>choice box</td>
<td>jpeg</td>
<td>bmp, gif, jpeg, jpeg 2000, png, tga</td>
<td>format of the dump of the view</td>
</tr>
<tr>
<td>File</td>
<td>file box</td>
<td></td>
<td></td>
<td>name of the file for the dump of the view</td>
</tr>
<tr>
<td>Dump</td>
<td>button</td>
<td></td>
<td></td>
<td>dump the view in the given format</td>
</tr>
</tbody>
</table>
12.8 Rename

Position of option on menu:  View => Rename

This option renames an existing view.

Selecting Rename brings up the View Rename panel:

![View Rename panel]

The fields and buttons used in this panels have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original view name</td>
<td>view box</td>
<td>current name of the view</td>
<td>available views</td>
</tr>
<tr>
<td>New view name</td>
<td>view box</td>
<td>new name for the view</td>
<td>available views</td>
</tr>
<tr>
<td>Rename</td>
<td>button</td>
<td>rename the view</td>
<td></td>
</tr>
</tbody>
</table>
12.9 Delete

**Position of option on menu:** View => Delete

This option deletes an existing view.

Since the easiest method to delete a view is to use the [X] in the top right hand corner of the view, the Delete View option is mainly used in rare cases such as when the view is not responding due a graphics card problem.

Selecting Delete brings up the Delete View panel:

![Delete View panel]

The fields and buttons used in this panels have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td>available views</td>
<td></td>
</tr>
<tr>
<td><em>name of the view to delete</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>delete the view</em></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### 12.10 Models Save/Restore

**Position of option on menu:** View => Models save/restore

This option is used to write out a list of models on the view and also to read in a list of models and add them to a given view.

On selecting the Models save/restore option, the View save/restore models panel is displayed.

![View (Save / Restore Models) panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Save tab</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File name for save</td>
<td>file for model list.</td>
<td>file</td>
<td>*.vml files</td>
<td></td>
</tr>
<tr>
<td>View to save</td>
<td>view to write out list of model for.</td>
<td>view</td>
<td>available views</td>
<td></td>
</tr>
<tr>
<td>Save</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Save tab**
- *after selecting this button, the names of all the model on the view are written out to the file.*

**Restore tab**				
File name to restore	file of model list.	file	*.vml files	
View to add	view to add the models in the model list to.	view	available views	
Read	button			
Read	read the list of models.			
Restore	button			

**Restore tab**
- *add the models in the list just read in to the given view.*
12.11 Models Transfer

Position of option on menu: View => Models transfer

This option is used to add all the models on one view to a different view.

Selecting Models transfer brings up the Models Transfer panel:

![Models transfer panel]

The user is then asked to click in the view to get the models from (source view) and then to select the destination view where the models are to be added to.

Note - if the destination view is a new view, click on Fit first to give the new view a valid coordinate system.
12.12 Send Tins/Rasters to Back

**Position of option on menu:**  View => Send tins/rasters to back

This option is used to send tins and rasters to the back of the drawing list.
12.13 Visualisation

**Position of menu:** View => Visualisation

This is a chargeable module which uses the Perspective OpenGL view to create realistic 3d pictures using raster drapes, bitmaps and extrusions along super strings.

The Visualisation walk-right menu is

![Visualisation Menu]

- **Tin render settings**
- **Tin height render settings**
- **View height render settings**
- **Render drape**
- **Texture map edit**
- **Billboards**
- **Extrusions**
- **Meshes**
- **Timelines**

For **Tin render settings**, go to

- 12.13.1 Tin Render Settings
- 12.13.2 Tin Height Render Settings
- **Render drape**
- 12.13.3 Render Drape
- **Texture map edit**
- 12.13.4 Texture Map Edit
- **Billboards**
- 12.13.5 Billboards
- **Extrusions**
- 12.13.6 Extrusions
- **Meshes**
- 12.13.9 Meshes
- **Timelines**
- 12.13.10 Timelines
- **Utilities**
- 12.13.35 Utilities
12.13.1 Tin Render Settings

Position of option on menu:  View => Visualisation => Tin render settings
Position of option on menu:  Tins => Edit => Render settings

For a tin added to a Perspective OpenGL view with Shade ticked on, the triangles of the tin can be displayed as solid colour or various degrees of transparency depending of the Blending value for the tin which can vary between 1 and 0. If Blending is 1 the tin is opaque and triangles display as a solid colour, and Blending of 0 means the triangles are totally transparent.

A tin can be one sided and only viewable from above, or two sided and viewable from above or below.

Rasters, such as photos, can also be associated with a tin and when the tin is displayed in a Perspective OpenGL view with the shade turned on, the rasters are draped onto the tin wherever the triangles are still the base colour.

For triangles that are not the base tin colour, textures can be applied to the triangle using a Texture mapping file where the triangle colour is the index into the mapping file.

Finally text, filled polygons, text, billboards and images in models added to any Perspective OpenGL view that the tin is on can also be attributed so that they can be draped and displayed on the tin.

All these properties are known as Tin Render Settings and are set using this option.

IMPORTANT NOTE: the Visualisation module is required for the Tin Render Settings to be used on a Perspective OpenGL view.

Selecting Tin render settings brings up the Tin Render Settings panel
The fields and buttons used in this panel have the following functions.

**Field Description**	**Type**	**Defaults**	**Pop-Up**
**Tin to apply settings** | tin box | available tins | name of the tin to apply/modify the Tin Render Settings. Any existing Tin Render Settings of the tin are loaded into the appropriate panel fields so that they can be modified.

**Blending** | input | | Blending control the level of transparency of the tin.
0 means the tin is totally transparent (and hence invisible) and 1 means that the tin is opaque (non-transparent) and can’t be seen through at all.
If blank, then the Blending value defaults to 1 and the tin is opaque (non-transparent).

**Texture mapping** | texture mapping file box | | if non blank, the name of the set of colour-to-texture mappings that is defined in the file `textures_maps.4d`. The Texture Mapping set defines for a colour, what texture from the `textures.4d` file is applied to the triangles of the tin that have been coloured this colour (and the colour in no the base tin), rather than applying any raster to those triangles.

**Two sided tins** | tick box | | if ticked, the tin is visible when viewed from both above and below. For example, the tin used for the bottom of a bridge needs to be two-sided.
If non-tick, then the tin is one sided and only shows when viewed from above.

**Drape Rasters**

**Model of rasters** | model box | available models | if not blank, the model of ortho-rectified rasters to be associated with the tin and draped onto the tin when the tin is on a Perspective OpenGL view. The raster images will only be draped onto triangles that have the base tin colour.
Raster name

if non blank, the name of an ortho-rectified raster to be associated with the tin (and hence draped onto the tin when the tin is on an Perspective OpenGL view).

Drape Names

WARNING WHEN USING DRAPE NAMES
Because draped text, billboards, images and textures can all occur at the same (x,y) value and hence have the same z-value at that point, there are certain ordering rules controlling what you see.

First the model containing the tin needs to be brought to the FRONT of the view using Perspective OpenGL View Menu: Models => Models to front.

Then textures using the tin colour and the Texture mapping file will be drawn first, draped text will be next, then draped polygons and draped images fight it out.

Plan text

if not blank, when the tin is on a Perspective OpenGL view, then for all super strings in models also added to that view, all vertex text that is using a true type font are draped onto the tin.

Plan polygons

when the tin is on a Perspective OpenGL view, then for all super strings in models also added to that view, if a super string in the model has an Integer string attribute with this name then it is draped onto the tin and if the value of the attribute is zero (0) the super string is draped and coloured using the strings fill colour, or if the value is one (1), a texture is draped onto the tin and the fill colour is used as the reference to the Texture mapping file given in the Texture mapping field, to specify which texture to drape.

The Integer string attribute name and value can be set using the option View => Visualisation => Render drape (see 12.13.3 Render Drape) or by setting an Integer string attribute of the required name and value using the option Strings => Properties => Attributes (see 14.12.8 Attributes).

Plan billboards

when the tin is on a Perspective OpenGL view, then for all super strings in models also added to that view, if a super string in the model has an Integer string attribute with this name and any value, all horizontal billboards (i.e. have Vertical turned off) are draped onto the tin.

The Integer string attribute with this name can be set using the Drape name field in the option View => Visualisation => Billboards => Add/Remove (ss) (see 12.13.5.2 Add and Remove Billboard from Super String) or by setting an Integer string attribute of the required name using the option Strings => Properties => Attributes (see 14.12.8 Attributes).

Plan images

when the tin is on a Perspective OpenGL view, then for all super strings in models also added to that view, if a super string in the model has an Integer string attribute with this name and any value, all images on the super string are draped onto the tin.

The Integer string attribute of this name is set using the option Strings => Properties => Attributes (see 14.12.8 Attributes).

Set button

apply the data in the panels fields to the tin.
visualisation textures draped on tin using base tin colour and texture mapping file
textures draped on tin using triangle colour and texture mapping file
texture draped on tin within a polygon using polygon fill colour as key to texture in texture mapping file
image draped on tin
polygon draped on tin using polygon fill colour
vertex text draped on tin

textures draped on tin using base tin colour and texture mapping file
12.13.2 Tin Height Render Settings

Position of option on menu: View => Visualisation => Tin height render settings

For a tin (that is not a super tin) the Tin Height Render Setting option sets the texture map and parameters that can be stretched over the specified height range.

To see the effect, the tin must be on a Perspective OpenGL view with Shade ticked on, and you have the Visualisation module.

Notes
1. this only displays when you have the Visualisation module.
2. This option does not work for a Super Tin.

Selecting Tin height render settings brings up the Tin Height Render Settings panel:
The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin to apply settings</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the tin to apply the height texture map to. This can then be toggle on/off with the Draw tick box.</td>
<td></td>
</tr>
<tr>
<td>Draw</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, the height texture map will be applied to the tin when it is on an Perspective OpenGL view. If not ticked, the height texture map is not applied to the tin. However the height texture map is still associated with the tin and Draw can be ticked back on at any time.</td>
<td></td>
</tr>
<tr>
<td>Height map texture</td>
<td>file box</td>
<td>.bmp, png file</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the texture map to stretched over the height range given in the Minimum height and Maximum height fields. The texture map is a bitmap that is one pixel high by n pixels wide, usually with a colour gradation going from left to right. The bitmap is stretched over the minimum and maximum height with the left side of the texture map being at the minimum height and the right side of the texture map being at the maximum height. For example, the file Height_map_texture.bmp from Library.</td>
<td></td>
</tr>
<tr>
<td>Minimum height</td>
<td>measure box</td>
<td>available measures</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the minimum height to stretch the height map texture over.</td>
<td></td>
</tr>
<tr>
<td>Maximum height</td>
<td>measure box</td>
<td>available measures</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the maximum height to stretch the height map texture over.</td>
<td></td>
</tr>
<tr>
<td>Clip to heights</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, the tin is only displayed where the height map texture is applied. That is, the tin is only displayed between the Minimum height and the Maximum height. If not ticked, the tin is displayed over the entire range of the tin.</td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>set the values in the panel for the tin given in Tin to apply settings.</td>
<td></td>
</tr>
</tbody>
</table>
12.13.3 Render Drape

**Position of option on menu:**  View => Visualisation => Render drape

Selecting Render drape brings up the Change Polygon Drape panel.

![Change Polygon Drape panel](image)

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source type</strong></td>
<td>Model</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Data source</strong></td>
<td>source of data to be processed.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Action</strong></td>
<td>choice box [ignore, set, clear, ignore]</td>
<td>choice box</td>
<td>ignore</td>
<td>set, clear, ignore</td>
</tr>
</tbody>
</table>

If **set**, for each selected polygon, an Integer string attribute is created with the attribute name Drape name and the value of the attribute is

- 0 if Drape mode is Colour and
- 1 if Drape mode is Colour to texture.

If **clear**, for each selected polygon the Integer string attribute with name Drape name is removed.

If **ignore**, nothing is done.

**Drape name**

name of the Integer attribute that is set for the string. The attribute name is used to identify these polygon in the View->Visualisation->Tin Render Settings 16.6.7 Render Settings (see Plan polygons in the Drape Names section)

**Drape mode**

choice box [Colour, Colour to texture]

If Colour - the fill colours of the selected polygons are used for the drape

If Colour to texture - the fill colours of the selected polygons are used to reference the texture in the Texture Mapping file
Target type
Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target.

Target info
input
extra information required for the target.

Change
button
process the selected strings.
12.13.4 Texture Map Edit

Position of option on menu:  Visualisation => Texture map edit

This option edits the texture mapping file (texture_map.4d) which contains the texture map tables that can be applied to the coloured triangles of a tin in renderings.

Each texture map table must have a unique name.

On selecting the Text map edit option, the Texture Map Create/Edit/Delete panel is displayed.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texture map table</td>
<td>name of the texture map table inside the texture map file.</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>colour to apply the texture to.</td>
<td>available colours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texture name</td>
<td>texture to apply to all triangles with the specified colour</td>
<td>available textures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New</td>
<td>to create a new texture map table, click on the New button and then type the texture map table name into the Texture map table field. Then start filling in the Colour and Texture name columns.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Update</td>
<td>update the given Texture map table with the values in the Colour and Texture name columns.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td>Delete the texture map table named in the Texture map table field.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>write out the texture map information to the texture map file, texture_map.4d.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
12.13.5 Billboards

Position of menu: View => Visualisation => Billboards

The billboard options plane an image onto a rectangular billboard. This can be used to display background scenes, signs etc.

The Billboard walk-right menu is

- Create and add
- Add/Remove (ss)
- Create many
- Create Forest
- Trees/shrubs
- Create from EXIF JPEG files

For the option Create and add, go to 12.13.5.1 Create and Place Billboard.

Add/Remove (ss) 12.13.5.2 Add and Remove Billboard from Super String

Create many 12.13.5.3 12D - Billboard Signs Create
Create forest 12.13.5.4 Create Forest
Trees/shrubs 12.13.5.5 Trees/Shrubs as Faces and Billboards
Create from EXIF JPEG files 12.13.5.6 Create Billboards from EXIF JPEG Files
12.13.5.1 Create and Place Billboard

**Position of option on menu:** View => Visualisation => Billboards => Create and add

This option defines a billboard (its size and position, the image on the billboard, etc.) and adds it to a super string and can also add it to the file billboards.4d which is used by other options.

The option always creates a super string with the billboard on it, so if you just wanted to add a billboard definition to the billboards.4d file, then use this option which creates a super string with the billboard, but then delete the created super string.

On selecting the Create and add option, the Create and Place Billboards panel is displayed.

![Create and Place Billboard panel](image)

The fields and buttons used in this panels have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naming tab</td>
<td>tab</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Shared billboard</strong></td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td><em>if ticked,</em> the information about the billboard is added to the billboards.4d file and then when the super string is created, it only references the required billboard information from the billboards.4d file. Note: the <strong>Write</strong> button needs to be clicked to write out the billboards.4d file with the new billboard definition. If <strong>not ticked</strong>, all the information about the billboard is saved with the super string and nothing is written to, or used from, the billboards.4d file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Name for billboard</strong></td>
<td>billboard box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the name of the billboard to use in the billboards.4d file. This must be unique amongst all the billboard names in the billboards.4d file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Folder for billboard</strong></td>
<td>text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the billboard folder in which to place the billboard named above. This is just a grouping mechanism for all the billboard names. If the Folder does not exist in the billboards.4d file, it will be created.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Image Data tab                     | tab             |          |        |
| **Image file**                     | file box        |          |        |
| name of the file containing the image to place on the billboard |
| **Alpha file**                     | file box        |          |        |
| currently not supported |


Image polygon
This polygon is used to crop the image. The billboard origin (0,0) is at the centre of the image and the world size of the image is determined by the Width and Height fields below. The Image polygon must also be drawn with the same (0,0) reference and in world units.

Number of fans
The billboard can consist of multiple copies of the image rotated equally around 180 degrees of the z-axis at x=0. This is mainly used for trees so that you see a tree no matter which direction you look from.
If Number of fans = 1, then the image is used on both sides of the billboard.
If Number of fans is left blank, then the image is used on one side of the billboard and the side is given the colour specified in the Colour field on the Positioning tab.

Width
The width in world units for the billboard (before the billboard it is cropped by any Image polygon).

Height
The height in world units for the billboard (before the billboard is cropped by any Image polygon).

Positioning tab
Model
Model for the created super string with the billboard.

Coordinate
The (x,y,z) coordinate of the vertex of the super string which has the billboard placed on it.

Colour
The colour used for the back of a billboard when Number of fans is left blank. Note if number of fans is 1 or more then the same image is used on both sides of the blades of the fan.

Billboard type
If Vertical, the string is placed vertically (upright) and nothing else is needed.
If Threed, a grid for entering Factor, Rotate and Offset values is displayed and these are used to control the position of the billboard in 3d.
If Plan, the billboard is a horizontal billboard and will draw on a Plan view. A billboard must be a Plan (or Horizontal) billboard when using Drape names for Plan billboards in the Tin Render Settings panel to drape horizontal billboards onto a tin (see 12.13.1 Tin Render Settings).

Angle
The angle the billboard is rotated in the (x,y) plane. Angle is measured counterclockwise in degrees in 4.17.1 HP Notation with zero along the x-axis.

Offset x, Offset y, Offset z
x/y/z distance to place the billboard away from the super string vertex.

Buttons at Bottom
Create
Creates the super string with the billboard on it.

Write
Writes out the new billboards.4d file.
12.13.5.2 Add and Remove Billboard from Super String

Position of option on menu: View => Visualisation => Billboards => Add/Remove (ss)

Each vertex of a super string can have its own billboard.

A billboard consists of an image and a width and height.

The Add/remove from super string option places a selected billboard either in a vertical plane or as a plan image at a user given distance from each vertex of a super string. The image it at a given angle or perpendicular to a selected string. An example could be the image on a stop sign which is in the vertical plane.

Selecting Add/Remove (ss) brings up the Change Super String Billboard panel.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type - for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source of data to be processed.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**Action**

- choice box
- ignore
- set, clear, ignore

  *If set*, the billboard is placed at each vertex in the super string.
  *If clear*, the billboard information at each vertex is cleared.
  *If ignore*, nothing is done to the billboard information.

**Billboard**

- billboard box

  *Billboard box* to be used.

**Angle**

- angle box

  *Angle box* - angle to rotation the billboard - positive is counter clockwise. *This is ignored if Perpendicular is used.*

**Colour**

- colour box

  *Colour box* - colour for the back of the billboard.

**Offset x, Offset y, Offset z**

- x/y/z distance to place the billboard away from the super string vertex.

**Vertical**

- tick box

  *If ticked*, the string is placed vertically and nothing else is needed.
  *If not ticked*, the billboard is a horizontal billboard and will draw on a Plan view. *This is also needed when using Drape names for Plan billboards in the Tin Render Settings panel to drape horizontal billboards onto a tin (see 12.13.1 Tin Render Settings).*

**Drape name**

- input

  *If Vertical is not ticked, then this field can be modified.*
  *If not blank, an Integer string Attribute is created with this name. The Drape name is used in the Tin Render Settings panel (see 12.13.1 Tin Render Settings) for draping horizontal billboards onto a tin.*

**Perpendicular**

- string select box

  *If a string is selected, then the billboard is placed on the line going through the vertex and perpendicular to the selected string. Angle is ignored.*

**Target type**

*Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target.*

**Target info**

- input

  *Extra information required for the target.*

**Change**

- button

  *Process the selected strings.*
12.13.5.3 12D - Billboard Signs Create

Position of option on menu: View => Visualisation => Billboards => Create Many

This option takes images and creates entries in the billboards.4d file. Note that it does not create a super string with a billboard on it.

The option requires that you rename your images in the appropriate format:

Name   Width (m)   Height (m)  -> space separated.

For example, "sign 20 5.jpg" creates a billboard with the name "sign" which is 20 units wide and 5 units high.

Selecting Create Many displays the 12D - Billboard Signs Create panel:

![12D - Billboard Signs Create panel]

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>choice box</td>
<td>JPG</td>
<td>BMP, JPG, PNG, TGA, ALL</td>
</tr>
<tr>
<td>Image Format</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image Folder</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group Name</td>
<td>text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fan</td>
<td>number box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Type of image files to read in.
- Browse to a dedicated folder. File names are used to create the billboard name, width and height, e.g. sign 20 5.jpg creates a billboard with the name sign 20 units wide and 5 units high.
- The billboard group to add the selected images to.
- If not blank, the number of extra fans to add to the billboard. If blank, no extra fans will be added to the billboard.
Read button

*Loads all the images of the specified type into 12d and adds them to the Group specified in the billboards.4d file. If the Group does not exist it is created.*

Write button

*Appends the new group to the billboards.4d file. You must restart 12d load the new billboards.4d file.*
12.13.5.4 Create Forest

**Position of option on menu:** Visualisation => Billboards => Create forest

Create forest creates randomly placed trees and shrubs in a selected polygon.

The forest make up is controlled by a user defined forest file which gives the types and distribution of trees, and variation in size and spread.

Selecting Create forest displays the Create Forest panel

![Create Forest panel](image)

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field/Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest boundary polygon</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forest floor tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Forest file</td>
<td>file box</td>
<td>.forests files</td>
<td></td>
</tr>
<tr>
<td>Trees per hectare</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for forest</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Model for canopy data</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
</tbody>
</table>

**Clean model (s) beforehand**  
*If ticked*, the forest and forest canopy models are cleaned before the option is run

**Run**  
*Runs the option*
12.13.5.5 Trees/Shrubs as Faces and Billboards

**Position of option on menu:** View => Visualisation => Billboards => Trees/shrubs

**Position of option on menu:** View => Visualisation => Utilities => Trees/shrubs faces

The Trees/shrubs - faces option inserts the trees and shrubs as face elements. This means that each tree may consist of hundreds or thousands of faces.

The Trees/shrubs option inserts the images of trees and shrubs as a fanned billboard. This means that each tree consists of only one point.

On selecting the Trees/shrubs option, the **3D Tree Insertion** panel is displayed and on selecting the Trees/shrubs faces option, the **3D Tree Insertion - Faces** panel is displayed.

The fields and buttons used in these panels have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tree and Shrub tabs</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>click on the tab to display the type of tree/shrub to be inserted. The picture shows the tree height and spread.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**Model**  
model box  
model to add the tree/shrub to.

**Height and Spread**  
real value  
varies  
parameters for scaling

**Single**  
radio button  
if ticked then the tree is placed at the selected position.

**Along a string**  
radio button  
if ticked then the tree is placed along a string. When the string is selected then a Tree Interval panel is brought up to specify how the trees are placed along the string.

**Select**  
button  
select the string or position for the tree.

**Process**  
button  
insert the trees/shrubs.

## Tree Interval

This panel is for specifying how often the trees/shrubs are to be inserted along the string.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interval type</td>
<td>choice box</td>
<td>by number</td>
<td>by number</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>by distance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>by special chg file</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>by vertex</td>
</tr>
</tbody>
</table>

- **by number**: an Interval number field is displayed on the panel and the tree is inserted that many times along the string.
- **by distance**: an Interval distance field is displayed on the panel and the tree is inserted with that distance separation along the string.
- **by special chg file**: a Special chg file field is displayed on the panel and the tree is inserted along the string at the chainages given in the file.
- **by vertex**: the tree is inserted at every vertex of the string.

**Set**  
button  
set the parameters for tree interval to those in the panel.
12.13.5.6 Create Billboards from EXIF JPEG Files

Position of option on menu: View => Visualisation => Billboards => Create from EXIF JPEG Files

This option reads in JPEG files which must include EXIF and GPS information. This information is then used to create and position a billboard with the image on the billboard.

If a Projection is selected by the user, then it is used to convert the lat/long of the GPS values to the XYZ co-ordinates. If no Projection is given, then the co-ordinates are left as lat/long.

Note: EXIF is short for Exchangeable Image File, a format that is a standard for storing interchange information in digital photography image files using JPEG compression. Almost all new digital cameras use the EXIF annotation, storing information on the image such as shutter speed, exposure compensation, F number, what metering system was used, if a flash was used, ISO number, date and time the image was taken, white balance, auxiliary lenses that were used and resolution.

Selecting Create from EXIF JPEG Files brings up the Create Billboards from JPEG Files panel.

The fields and buttons in this panel have the following functions.

Field Description	Type	Defaults	Pop-Up
JPEG files | Advanced | tick box | not ticked |
File to read | file box | available *.jpg files |
Projection | choice box |
Colour | colour box | available colours |
Add plan images | if not blank and Add plan images is not ticked, then this colour is used for the back of the billboard. If blank, the colour is white.
Add plan images tick box not ticked
   if **ticked**, plan images are created instead of billboards.

Rotate plan images tick box not ticked
   if **ticked** and **Add plan images** is ticked, the rotate value from the EXIF will be used to rotate the image.

Pixel to mm measure box
   the units for images are pixels (width and height). The pixel width and height of the image are multiplied by the **Pixel to mm** (mm being millimetres) value to give width and height size in world unit (metres) which is needed when inserting the image.

Model for billboards model box
   the model for the image to be inserted into.

Create button
   when all the fields have been entered, the **Create** button creates images from the selected files.
12.13.6 Extrusions

Position of menu: View => Visualisation => Extrusions

In its basic form, an extrusion is taking a cross-section and pushing it (extrude it, or sweep it) along a string to create a 3D object. For example, a circle extruded along a string creates a pipe. For more information, go to the section 12.13.7 Defining Extrudes and Extrusions.

There is a library of extrusions read in for the project, usually stored in the file extrusions.4d.

The Extrusions walk-right menu is:

For the option String along string, go to 12.13.8.1 String Extrude
Library extrude 12.13.8.2 Change Library Extrude
Roadside furniture 12.13.8.3 Roadside Furniture
Create 12.13.8.4 Create Group Extrusions
Fences 12.13.35.3 Fences
Tutorial 12.13.8.5 Tutorial to Create Group Extrusions

More information on extrudes is found in the section 12.13.7 Defining Extrudes and Extrusions.
12.13.7 Defining Extrudes and Extrusions

In its basic form, an extrusion is simply taking a cross-section and pushing it (extrude it) along a string to create a 3d object. For example, a circle extruded along a string creates a pipe.

The string that is pushed along the string is called the **extrude**.

**Note:** this is also known as a Sweep or Swept Path.

![Diagram of extrusion](image)

Only the \((x,y)\) co-ordinates of the string used as the extrude are used and that gives the shape of the cross-section with the \((0,0)\) point being the point where the string being extruded along sits.

So the \((x,y)\) co-ordinates of the extrude are being taken as \((\text{offset}, \text{height})\) in the plane perpendicular to the string being extruded along. So extrudes are normally defined around \((0,0)\) in the \((x,y)\) plane.

**Interval extrude**

The interval extrude can be seen as a series of string extrudes applied along the string at a specified interval distance. Here is an example of a 'Ring' interval extrude:
This extrude is defined by a diamond being extruded along a circle, and finally being instanced along the super string at the specified interval.
The extrusions.4d fragment defining this extrude is:

```
interval_extrude {
 name "Vertical Ring"
 colour true
 mirror_x false
 interval 4.0
 factor_x 1.0
 factor_y 1.0
 factor_z 1.0
 rotate_x 0.0
 rotate_y 90.0
 rotate_z 0.0
 offset_x 0.0
 offset_y 0.0
 offset_z 0.0
}
```
at_grade false

path {

// the string that the extrude is drawn along

  name   "circle path"
  breakline line
  colour  white
  style   1
  closed  1

  data_3d { // note must be defined with x,y,z data
    0 0.0 0.0
    1 0.0 0.0
  }
  radius_data {
    0.5
    0.5
  }
  interval {
    chord_arc  0.005
    distance  -999
  }
}

data {

// the shape of the extrude

  name   "path data"
  breakline line
  colour  magenta
  style   1
  closed  1

  data_2d {
    -0.1  0.0
    0.0  0.1
    0.1  0.0
    0.0 -0.1
  }
  interval {
    chord_arc  0.001
    distance  -999
  }
}
}

TODO: define group extrude:

A group extrude is a combination of string and interval extrudes.
12.13.8 3D Transformations

This transformation consists of factor (scale), rotation, and offset (translation) for x, y, and z. Transformations are always applied in the following order:

rotate, factor, offset about the axes z, y, x

rotate z occurs in the x-y plane (plan rotation)
rotate y occurs in the x-z plane (slope rotation)
rotate x occurs in the y-z plane (super-elevation rotation)
factor z
factor y note: factors are commutative (any order is the same)
factor x
offset z
offset y note: offsets are commutative (and order is the same)
offfset x

Note that the rotations about each axis are in the local coordinate system of the object being rotated. So after each rotation, the axes are also rotated.

12.13.8.1 String Extrude

Position of option on menu: View => Visualisation => Extrude along string

The String along string option extrudes a selected super string along a super string. It can also be used to extrude a library extrude along string. But if a library extrude is to be applied to many strings, the Library Extrude option is more appropriate (12.13.8.2 Change Library Extrude).

More information on extrudes is found in the section 12.13.7 Defining Extrudes and Extrusions.

On selecting the Extrude option, the String Extrude panel is displayed.
The fields and buttons in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>String</strong></td>
<td>super string to extrude along</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Use library extrude</strong></td>
<td>if ticked, an existing extrusion is selected from the extrusion library. The extrude from the library is selected in the Extrude name field. If not ticked, the Extrude string and Scale panel fields are used.</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Extrude name</strong></td>
<td>select the name of the extrude to use from the extrude library.</td>
<td>extrude box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Extrude string</strong></td>
<td>if a library extrude is not being used, then a string is selected to define the extrusion shape.</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Scale</strong></td>
<td>value to multiply the extrude string co-ordinates by.</td>
<td>real value input 0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Use extrude colour</strong></td>
<td>if ticked, the placement uses the information in the grid on the panel. If no ticked, then the string segment colour is used for the extrusion.</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Reflect extrude</strong></td>
<td>if ticked, the extrude is reflected in the local y axis before it is applied.</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Replace existing extrudes</strong></td>
<td>if ticked, all existing extrudes are cleared before the new one is applied.</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Extrude</strong></td>
<td>Create the extrusion.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
12.13.8.2 Change Library Extrude

Position of option on menu: Visualisation => Library extrude

This option can apply an extrusion from the extrusions library, extrusions.4d, to a super string, or change the extrusion applied to a super string, or remove an extrusion from a super string.

Selecting Library extrude brings up the Change Library Extrude panel.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*data selection type - for a full description go to 4.19.3 Data Source.*
**Action**

Choice box: set, clear

*If clear,* all existing extrusions are removed from the selected super strings. The only other fields to be filled in is the Target.

*If set,* a library extrude is applied to the selected super strings.

**Extrude name**

Extrude box: list of extrusions

Extrude to be applied to the super strings.

**Overwrite library properties**

Tick box

*If ticked,* the placement of the extrude uses the information in the grid on the panel. If not ticked, the placement properties are taken from the extrude in the library.

**Start/end chainage**

Chainage box

Start/end chainage for applying the extrusion.

**Start/end chainage**

Chainage box

Start/end chainage for applying the extrusion. If blank, use the strings start/end.

**Chainage interval**

For an interval extrude only - interval to use for the extrude.

**Grid of X,Y,X against Factor, Rotate, Offset**

Placement information for applying the extrude.

**Use extrude colour**

Tick box

*If ticked,* the placement uses the information in the grid on the panel. If no ticked, then the string segment colour is used for the extrusion.

**Reflect extrude**

Tick box

*If ticked,* the extrude is reflected in the local y axis before it is applied.

**Replace existing extrudes**

Tick box

*If ticked,* all existing extrudes are cleared before the new one is applied.

**Target type**

Data target type - where to put the processed strings. For a full description go to 4.19.4 *Data Target*.

**Target info**

Input

Extra information required for the target.

**Change**

Button

Process the selected string
12.13.8.3 Roadside Furniture

Position of option on menu: View => Visualisation => Extrusions => Roadside furniture

This option is for inserting extruded objects that have been supplied by 12D Solutions Pty Ltd. It includes street lights, log barriers, park bench, posts and columns, walls, timber fences, guard rails, signs etc.

The list of items that can be inserted is being continuously upgraded by 12D Solutions.

Selecting Roadside furniture brings up the Roadside Furniture panel.

Clicking on the tabs brings up the information required for that piece of roadside furniture.

For all the tabs other than Park Bench, Street Light and Guard Rail, once a tab had been selected, moving the cursor over the picture brings up a special panel for the extra information required.

For example, for the Sign tab, moving the cursor over the picture brings up the Sign Details panel:
New 12D Ascii

This option is similar to the others e.g. Street Light, but allows the user to create their own features and place them in the same manner as the others on the panel.

Specifications for an ascii file:

The stem of the ascii file name, the model name in the ascii file and the stem of the bitmap name showing the picture of the object..... "MUST" be the same e.g. File: User Street Light.12da Model: User Street Light Bitmap: User Street Light.bmp

Bitmap size to be 345W x 250H pixels

Place the 12da file and the bitmap in your User_Library
12.13.8.4 Create Group Extrusions

Position of option on menu: View => Visualisation => Extrusions => Create

The Create option creates groups extrusions and saves them to the extrusions.4d file.

Selecting Create brings up the Create - Group Extrusions panel.
12.13.8.5 Tutorial to Create Group Extrusions

**Position of option on menu:**  View =>Visualisation => Extrusions =>Tutorial

The Tutorial option demonstrates how to creates groups extrusions and will also create groups extrusions.

Selecting Tutorial brings up the **Tutorial - Group Extrusions** panel.
12.13.9 Meshes

**Position of menu:** View => Visualisation => Meshes

The Meshes walk-right menu is

```
Meshes
Mesh library
Place mesh
Convert to 12dmesh
```

For the option Mesh library go to 12.13.9.1 Mesh Library

Place Mesh 12.13.9.3 Place a Mesh

Convert to 12dmesh 12.13.9.4 Convert to 12dMesh Format

12.13.9.1 Mesh Library

**Position of option on menu:** View => Visualisation => Meshes => Mesh Library

**Position of option on menu:** View => Visualisation => Timelines => Mesh Library

The Mesh Library allows you to predefine meshes and the standard transformations required to get them into a world co-ordinate system. As meshes may come from a variety of packages that use arbitrary scales, rotations or offsets, this may be necessary.

It can also be used to define anchors, to anchor a mesh to the tin. This can be useful to get your mesh to conform to a terrain, such as a vehicle running down a road.

The mesh can then be written to the mesh library file, mesh_library.4d

Selecting Mesh Library brings up the Mesh Library panel.
The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Library file</td>
<td>file</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>the mesh library file to read/write</em></td>
<td></td>
</tr>
<tr>
<td>Read</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>reads a mesh library file</em></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>writes a mesh library file</em></td>
<td></td>
</tr>
<tr>
<td>+ (Add)</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>adds a new mesh</em></td>
<td></td>
</tr>
</tbody>
</table>
Folder (Create Folder)

Creates a new folder for categorising meshes

Delete

Deletes a mesh or folder

Name

the name of the current mesh

Mesh file

the mesh file, in OBJ format

General tab

<table>
<thead>
<tr>
<th>General</th>
<th>Anchors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset X</td>
<td>Offset Y</td>
</tr>
<tr>
<td>Scale X</td>
<td>Scale Y</td>
</tr>
<tr>
<td>Rotate X</td>
<td>Rotate Y</td>
</tr>
</tbody>
</table>

Offset x

an optional offset along the x axis to apply

Offset y

an optional offset along the y axis to apply

Offset z

an optional offset along the z axis to apply

Scale x

an optional scale to apply to the x scale of the object

Scale y

an optional scale to apply to the y scale of the object

Scale z

an optional scale to apply to the z scale of the object

Rotate x

an optional rotation around the x axis

Rotate y

an optional rotation around the y axis

Rotate z

an optional rotation around the z axis

Anchors tab

The Anchors tab is used to define anchors, for anchoring a mesh to a tin. To do this, you must
define four anchors, at each corner of the mesh.

Back left

defines the co-ordinates of the back left point of the mesh

Back right

defines the co-ordinates of the back right point of the mesh

Front left

defines the co-ordinates of the front left point of the mesh

Front right

defines the co-ordinates of the front right point of the mesh

Find anchors button

As you may not know the co-ordinates, you may use the **Find Anchors** button to see a list of a number of the lowest points on the mesh. For more information see 12.13.9.2 Find Anchors

Update Preview button

updates the preview based on the transformation settings

Draw? tick box

whether or not to draw the mesh in the viewer at the bottom

Auto rotate? tick box

whether or not to automatically rotate the mesh

Auto scale? tick box

whether or not to scale the mesh based on supplied transformations

12.13.9.2 Find Anchors
The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point</td>
<td>a known anchor point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anchor</td>
<td>the anchor to set. You only need to set four anchors.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When you select a row, the preview on the [12.13.9.1 Mesh Library](#) will show a symbol to indicate where that co-ordinate is located.
12.13.9.3 Place a Mesh

Position of option on menu: View => Visualisation => Meshes => Place a mesh

This panel allows you to place a mesh as the vertex of a super string.

Selecting Place a mesh brings up the Place a mesh panel.

The fields and buttons used in the panel have the following functions.

Field Description	Type	Defaults	Pop-Up
Source | choice box | | Library, File

Whether the mesh comes from the Mesh Library or a separate file

if Sources is Library:

Mesh
the name of the mesh (from the mesh library) to place

Anchor tin
an optional tin to anchor the mesh to

if Source is File:

Mesh file
the file (containing the mesh definition) to use

Model
model box

the model to place the mesh in

Coordinate
the co-ordinate to place the mesh at
Offset x
   an optional offset along the x axis to apply

Offset y
   an optional offset along the y axis to apply

Offset z
   an optional offset along the z axis to apply

Scale x
   an optional scale to apply to the x scale of the object

Scale y
   an optional scale to apply to the y scale of the object

Scale z
   an optional scale to apply to the z scale of the object

Rotate x
   an optional rotation around the x axis

Rotate y
   an optional rotation around the y axis

Rotate z
   an optional rotation around the z axis

Place button
   places the mesh
12.13.9.4 Convert to 12dMesh Format

Position of option on menu: View => Visualisation => Meshes => Convert to 12dmesh

This option converts most files in OBJ format to the 12dmesh format. Selecting Convert to 12dmesh brings up the Convert to 12dmesh format panel.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJ file</td>
<td>file box</td>
<td>file box</td>
<td>available *.obj files</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>the OBJ file to convert to 12dmesh format</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12dmesh file</td>
<td>file box</td>
<td>file box</td>
<td>available *.12dmesh files</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>the name of the new .12dmesh file</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convert</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>converts the OBJ file</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
12.13.10 Timelines

Position of menu: View => Visualisation => Timelines

The Timelines walk-right menu is

![Timelines menu]

For the option Create go to 12.13.10.1 Timeline Editor

- Edit 12.13.30.1 Edit a Timeline
- Play 12.13.30.2 Play a Timeline
- Quick timeline 12.13.34.1 Quick Timeline Create
- Mesh library 12.13.9.1 Mesh Library

12.13.10.1 Timeline Editor

Position of menu: View => Visualisation => Timelines => Create

This is the main Timeline Editor. The left side shows the tree of timelines. The right side shows the time, in seconds, during which any given timeline will be active. To edit a timeline, simply double click it.

Selecting Create brings up the Timeline Editor panel.
The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeline file</td>
<td>file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the timeline file to edit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reads the supplied timeline file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>writes the current timeline file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>adds a new timeline at the current level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add Child button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>adds a child to the current timeline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>deletes the current timeline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move Up button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>moves the current timeline up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move Down button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>moves the current timeline down</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Copy button
  copies the current timeline
Paste button
  pastes the last copied timeline
Enable / Disable button
  enables or disables the current timeline
Set button
  sets the current timeline details
Run button
  runs the current timeline
12.13.11 Timeline Common Fields and Buttons

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sets the type of timeline to edit. For more information on each Type, see 12.13.12 Edit Timeline Types

Name

the name of the timeline

Start Time

the time this timeline should start playing

End Time

the time this timeline should stop playing

Loop

choice box
the loop mode to apply for this timeline

No - no looping

Loop operation until local time ends - if the operation of the timeline takes less time than the supplied duration, you may nominate for it to repeat the operation until the end time is reached

Loop until parent ends - loop this timeline until the parent time completes

Enabled tick box
whether or not it is enabled

Can Toggle? tick box
whether or not this timeline can be toggled on or off during playback

Set button
sets the details for the timeline
12.13.12 Edit Timeline Types

For Group, go to 12.13.13 Group Timeline
Camera 12.13.14 Camera Timeline
3d Object 12.13.16 3d Object Timeline
2d Symbol 12.13.17 2d Symbol Timeline
Linear path 12.13.18 Linear Path Timeline
Chainage 12.13.19 Chainage Timeline
Fixed Position 12.13.20 Fixed Position Timeline
Transformation string 12.13.22 Transformation String Timeline
Transform reference 12.13.23 Transform Reference Timeline
Chain event 12.13.24 Chain Event Timeline
Macro event 12.13.25 Macro Event Timeline
Overlay 12.13.26 Overlay Timeline
Static text 12.13.27 Static Text Timeline
Text profile string 12.13.28 Text Profile String Timeline
Text vertex string 12.13.29 Text Vertex String Timeline
Text variable 12.13.30 Text Variable Timeline
12.13.13 Group Timeline

The editor for a group timeline, which consists of other timelines.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are no fields other than common fields and buttons. For more information on common fields and buttons please see 12.13.11 Timeline Common Fields and Buttons.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
12.13.14 Camera Timeline

The **Camera Timeline** directs a perspective view where to look at a given time. It is defined by two other timelines - an **eye** and a **target**. There are several different types of timelines available for both **eye** and **target**. When the details are set, two children timelines will be created, one for the **eye** and one for the **target**.

The details for how the **eye** and **target** should behave should be accessed through these two children timelines.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Eye timeline</strong></td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Target timeline</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The **Eye timeline** choice box defines how a view will look at a particular point in time. You must define a timeline for both an **eye** (where the camera is) and a **target** (where the camera is looking).
**Linear Path** - See 12.13.18 Linear Path Timeline

**Chainage String** - See 12.13.19 Chainage Timeline

**Fixed Position** - See 12.13.20 Fixed Position Timeline

**Transformation String** - See 12.13.22 Transformation String Timeline

**Offset from Target** - Offsets the eye from the target. See 12.13.21 Manual Transform Timeline

**Transform Reference** - See 12.13.23 Transform Reference Timeline

**Floating Camera** - See 12.13.15 Floating Eye Timeline

**Target timeline** choice box

the type of target timeline

For all other fields and buttons please see 12.13.11 Timeline Common Fields and Buttons.
12.13.15 Floating Eye Timeline

A **Floating Eye** allows the camera to be fixed on a known target, but the user can retain control over the position of the eye. The **Floating Eye** is a camera type. It can only be accessed by first setting the eye type of a camera to **Floating Camera**.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>an optional x offset from the target. If not set, the current x offset from the target will be used.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>an optional y offset from the target. If not set, the current y offset from the target will be used.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>an optional z offset from the target. If not set, the current y offset from the target will be used.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For all other fields and buttons please see [12.13.11 Timeline Common Fields and Buttons](#).
12.13.16 3d Object Timeline

The **3d Object Timeline** draws a 3d object on any number of views at a given time. A 3d object may include a mesh from another package, in the OBJ (Alias Wavefront) format.

Creating a **3d Object Timeline** will create two sub timelines automatically - the initial transformation and other transformations.

Initial transformations should be used to convert your mesh into world co-ordinates, as meshes may come from a number of packages with arbitrary scale, offsets or rotations.

![Edit Timeline](image)

The fields and buttons used in the panel have the following functions.

Field Description	Type	Defaults	Pop-Up
View Grid | the list of OpenGL perspective views to draw on | | |
Load From | choice box | From library, From file | |
Mesh file | file | | when loading from file, the mesh file to use
Anchor to tin

a tin to anchor the mesh to - useful for vehicles on terrain. Note that this will only work for a library mesh that has anchor points defined.

<table>
<thead>
<tr>
<th>Load from</th>
<th>From library</th>
</tr>
</thead>
<tbody>
<tr>
<td>Library mesh</td>
<td></td>
</tr>
<tr>
<td>Anchor to tin</td>
<td></td>
</tr>
<tr>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td>Can toggle?</td>
<td></td>
</tr>
</tbody>
</table>

Display a 3d Object and any textures.
The object should be in the open .OBJ format.

Library mesh

this field is displayed when From Library is selected from the Load From choice box.

when loading from a library, the mesh to use

For all other fields and buttons please see 12.13.11 Timeline Common Fields and Buttons.
12.13.17 2d Symbol Timeline

This allows you to define the settings for drawing a 2d symbol on a number of plan views.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
<td>symbol box</td>
<td>the symbol to draw</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>colour box</td>
<td>the colour for the symbol</td>
<td></td>
</tr>
<tr>
<td>View grid</td>
<td></td>
<td>the list of plan views to draw the symbol</td>
<td></td>
</tr>
</tbody>
</table>

For all other fields and buttons please see 12.13.11 Timeline Common Fields and Buttons.
12.13.18 Linear Path Timeline

This editor defines the settings for a Linear Path Timeline. A Linear Path Timeline returns the position and direction on a string linearly, to fit the amount of time supplied.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Path string</strong></td>
<td>string select</td>
<td>the string to follow</td>
<td></td>
</tr>
<tr>
<td><strong>Start chainage</strong></td>
<td></td>
<td>the optional start chainage</td>
<td></td>
</tr>
<tr>
<td><strong>End chainage</strong></td>
<td></td>
<td>the optional end chainage</td>
<td></td>
</tr>
<tr>
<td><strong>Offset</strong></td>
<td></td>
<td>an offset from the path string</td>
<td></td>
</tr>
<tr>
<td><strong>Reverse?</strong></td>
<td>tick box</td>
<td>whether or not to reverse the direction (start at end)</td>
<td></td>
</tr>
</tbody>
</table>

For all other fields and buttons please see 12.13.11 Timeline Common Fields and Buttons.
12.13.19 Chainage Timeline

This editor allows you to define the settings for a Chainage Timeline. The Chainage Timeline follows a string or path by querying another string that defines the chainage to use at a given time. For the Chainage Timeline, the chainage string should be defined with X being time and Y being the chainage.

The Chainage Timeline will return the position and direction at the current chainage of the path string.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path string</td>
<td>the string to follow</td>
<td>string</td>
<td>select</td>
<td></td>
</tr>
<tr>
<td>Chainage string</td>
<td>the string that defines what chainage to use at what time</td>
<td>string</td>
<td>select</td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td>an offset from the path string</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in the panel have the following functions.

For all other fields and buttons please see 12.13.11 Timeline Common Fields and Buttons.
12.13.20 Fixed Position Timeline

This editor allows you to define the settings for a Fixed Position Timeline. A Fixed Position Timeline will always return the supplied position.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinate</td>
<td></td>
<td>null null</td>
<td></td>
</tr>
</tbody>
</table>

Coordinate
the coordinate of the fixed position

For all other fields and buttons please see 12.13.11 Timeline Common Fields and Buttons.
12.13.21 Manual Transform Timeline

This editor defines the settings for a **Manual Transform Timeline**. A manual transform is either an offset, rotation or scale on the current transformation being applied to a timeline.

![Edit Timeline Panel]

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>choice box</td>
<td></td>
<td>Offset, Rotate, Scale</td>
</tr>
</tbody>
</table>

*the mode of transformation: offset, rotate or scale*

**Offset** defines the parameters for an offset transformation
Offset X
the optional offset to x

Relative? tick box
whether or not Offset X is a relative or absolute offset

Offset Y
the optional offset to y

Relative? tick box
whether or not Offset Y is a relative or absolute offset

Offset Z
the optional offset to z

Relative? tick box
whether or not Offset Z is a relative or absolute offset

Offset in local co-ordinates tick box
whether or not the offset should be applied before or after the transformation to local co-ordinates

Rotate defines the parameters for a rotation transformation

Rotate X
the optional rotation around the x axis

Relative? tick box
whether or not the X rotation is relative or absolute

Rotate Y
the optional rotation around the y axis

Relative? tick box
whether or not the $Y$ rotation is relative or absolute

**Rotate Z**
the optional rotation around the $z$ axis

**Relative?** tick box
whether or not the $Z$ rotation is relative or absolute

**Scale** defines the parameters for a scaling transformation

![Scale Interface]

**Scale X**
the optional $x$ scale

**Relative?** tick box
whether or not the $x$ scale is relative

**Scale Y**
the optional $y$ scale

**Relative?** tick box
whether or not the $y$ scale is relative

**Scale Z**
the optional $z$ scale

**Relative?** tick box
whether or not the $z$ scale is relative

For all other fields and buttons please see 12.13.11 Timeline Common Fields and Buttons.
12.13.22 Transformation String Timeline

The Transformation String Timeline modifies one parameter of a transformation, based on a profile string. The profile string should be created such that x is time and y is the value of the parameter.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>the parameter to update.</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profile string</td>
<td>the profile string to use to modify the parameter</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**Use Y as Radians** tick box  
enabled when the parameter is a rotation parameter.  
if ticked, the value of Y will be considered to be radians rather than degrees.

For all other fields and buttons please see 12.13.11 Timeline Common Fields and Buttons.
12.13.23 Transform Reference Timeline

This editor defines the settings for a Transform Reference Timeline. A Transform Reference Timeline uses the transformation as supplied by another timeline. It is useful, for example, to make the target of a camera follow a vehicle, as it will return all the transformations from the reference timeline.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference mode</td>
<td>choice box</td>
<td>Timeline, View</td>
<td></td>
</tr>
</tbody>
</table>

whether to reference another timeline or a view

Timeline

the timeline to reference, if Reference mode is set to Timeline
View

the view to reference, if Reference mode is set to View

Use Parameters

defines which of the parameters to use from the transformation

For all other fields and buttons please see 12.13.11 Timeline Common Fields and Buttons.
12.13.24 Chain Event Timeline

This allows you to define the settings for a Chain Event Timeline. A Chain Event Timeline runs a chain at discrete intervals or specific times.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>choice box</td>
<td>Specific times, On interval</td>
<td></td>
</tr>
<tr>
<td>Run every (seconds)</td>
<td>if mode is set to On Interval, the interval, in seconds, between runs of the chain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Grid</td>
<td>if mode is set to Specific times, the list of times, in seconds, the chain should be run</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chain file</td>
<td>file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter file</td>
<td>file</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
the optional parameter file to pass to the chain

For all other fields and buttons please see 12.13.11 Timeline Common Fields and Buttons.
12.13.25 Macro Event Timeline

This allows you to define the settings for a Macro Event Timeline. A Macro Event Timeline runs a macro at discrete intervals or specific times.

![Edit Timeline Panel]

The fields and buttons used in the panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mode</strong></td>
<td>choice box</td>
<td>Specific times, On interval</td>
<td></td>
</tr>
<tr>
<td><strong>Run every (seconds)</strong></td>
<td>if mode is set to <strong>On interval</strong>, the interval, in seconds, between runs of the macro</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Time Grid</strong></td>
<td>if mode is set to <strong>Specific times</strong>, the list of times, in seconds, the macro should be run</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Macro file</strong></td>
<td>file</td>
<td>the macro file to run</td>
<td></td>
</tr>
<tr>
<td><strong>Arguments</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

At some time, either at an interval or specific times, run a macro.
Two command line arguments will be passed down to the macro.
1) The time of the event
2) The actual time the event is run
the optional arguments to pass to the macro

For all other fields and buttons please see 12.13.11 Timeline Common Fields and Buttons.
12.13.26 Overlay Timeline

This editor defines the setting for an **Overlay Timeline**. An **Overlay Timeline** draws a model as an overlay, or on a 2 dimensional plane, on top of a number of perspective views. Any children timelines will also appear in the overlay plane.

An **Overlay Timeline** is quite useful for showing diagnostic or other information.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>View Grid</strong></td>
<td><em>the set of views to draw the overlay plane on</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Overlay model</strong></td>
<td><em>the model to draw as an overlay plane</em></td>
<td>model box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For all other fields and buttons please see [12.13.11 Timeline Common Fields and Buttons](#).
12.13.27 Static Text Timeline

This editor edits the settings for a **Static Text Timeline**. A **Static Text Timeline Draws** user defined text on a perspective view.

![Edit Timeline](image)

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View Grid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the list of perspective views to draw on</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the text to draw</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text style</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the style of the text</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre*Post</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>an optional pre*post to apply to the text</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For all other fields and buttons please see 12.13.11 Timeline Common Fields and Buttons.
12.13.28 Text Profile String Timeline

This edits the settings for a **Text Profile String Timeline**. A **Text Profile String Timeline** displays text as defined by a profile string, at each time step in the timeline. The profile string should be created with X being time and Y being the value to display.

![Edit Timeline](image)

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View grid</td>
<td>the list of OpenGL views to draw text on</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text style</td>
<td>the style of the text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profile string</td>
<td>the profile string to use</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in the panel have the following functions.

**View grid**
- the list of OpenGL views to draw text on

**Text style**
- the style of the text

**Profile string**
- string select
Pre*Post

*an optional Pre*Post to be applied to the text*

Width

*an optional width of the text*

Precision

*an optional precision for the text - used when displaying variables of type Real*

For all other fields and buttons please see 12.13.11 Timeline Common Fields and Buttons.
12.13.29 Text Vertex String Timeline

This editor allows you to define the settings for a Text Vertex String Timeline. A Text Vertex String Timeline draws the text on the vertex of a supplied profile string at the given time. The string should be created such that X is time.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View Grid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>String</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enabled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Can toggle?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text style</td>
<td>&quot;1&quot; left bottom red 10 0 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*View Grid*

the list of OpenGL views to draw the text on

*String*

the string to draw

*Text style*
the style of the text

Pre*Post

an optional Pre*Post to be applied to the text

Width

an optional width of the text

Precision

an optional precision for the text - used when displaying variables of type Real

For all other fields and buttons please see 12.13.11 Timeline Common Fields and Buttons.
12.13.30 Text Variable Timeline

This edits the settings for a **Text Variable Timeline**. A **Text Variable Timeline** displays text on a number of OpenGL perspective views, by specifying a variable or property of another timeline.

Each timeline publishes a number of variables or properties that can be used - such as start time, end time or other context specific items.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>View grid</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Source timeline</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Variable</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Text style</strong></td>
<td>“1” left bottom red 10 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Pre”Post</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Width</strong></td>
<td></td>
<td>123</td>
<td></td>
</tr>
<tr>
<td><strong>Precision</strong></td>
<td></td>
<td>123</td>
<td></td>
</tr>
<tr>
<td><strong>Enabled</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Can toggle?</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Display text, based on some variable of another timeline.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in the panel have the following functions.

- **View grid**: the list of OpenGL views to draw the text on
- **Source timeline**
the timeline whose variable you wish to draw as text

Variable choice box
the variable to be drawn

Text style
the style of the text

Pre*Post
an optional Pre*Post to be applied to the text

Width
an optional width of the text

Precision
an optional precision for the text - used when displaying variables of type Real

For all other fields and buttons please see 12.13.11 Timeline Common Fields and Buttons.

12.13.30.1 Edit a Timeline

Position of option on menu:  View =>Visualisation =>Timelines => Edit

This panel creates a new timeline file or edits an existing one.
Selecting Edit brings up the Edit a timeline panel.

The fields and buttons used in the panel have the following functions.

Field Description Type Defaults Pop-Up
Timeline file
the file to edit or create
Create button
creates the new file
Edit button
edits an existing timeline file

12.13.30.2 Play a Timeline

Position of option on menu:  View =>Visualisation =>Timelines => Play

This panel plays a timeline file.
Selecting Play brings up the Play a timeline panel.
The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

**Timeline tab**

- **Timeline**
  - file
  - the timeline file to run

- **Start time**
  - the time at which to start playing the file

- **Time multiplier**
  - an optional multiplier (for example, setting this to 2 would run the timeline at 2x, meaning each second would take half a second to play)

- **Auto play**
  - tick box
  - whether or not to start playing the timeline when it is run

**Movie tab**

- **Create movie?**
  - tick box
  - if ticked, a movie is generated

- **Movie file**
  - file box
  - available *.avi files
  - name of the movie file

- **Record whole application**
  - tick box
  - if ticked, the whole application will be recorded, rather than just a selected view

- **View**
  - view box
  - (only if Record whole application is not ticked) the view of which to record the movie

- **Frames per second**
  - number box
  - 10
  - the number of frames per second

**Buttons at bottom**

- **Run**
  - button
  - runs the timeline
12.13.31 Timeline Playback Control Bar

The timeline playback control bar appears when a timeline is running. It offers playback controls while the timeline runs.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restart</td>
<td>Restarts the timeline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step back</td>
<td>Steps back by the nominated time step (the input box on the right)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Play / Pause</td>
<td>Plays or pauses the playback of the timeline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stop</td>
<td>stops running the timeline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step forward</td>
<td>Steps forward by the nominated time step (the input box on the right)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time multiplier</td>
<td>Sets the time multiplier. For more information on the Change Timeline Multiplier panel, please see 12.13.32 Change Timeline Multiplier</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interactive camera</td>
<td>Defines interactive cameras at runtime</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toggle</td>
<td>Toggles timelines enabled state on or off. For more information on the Enable/ Disable Timelines panel, please see 12.13.33 Enable / Disable Timelines</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
12.13.32 Change Timeline Multiplier

This sets the current time multiplier for the timeline. For example, setting this to 2 would run the timeline at 2x, meaning each second would take half a second to play.

Clicking \( \text{X} \) on the Timeline Playback Control Bar brings up the Change timeline multiplier panel.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Multiplier</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Set</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\( \text{the multiplier to apply} \)

\( \text{sets the multiplier} \)
12.13.33 Enable / Disable Timelines

This panel provides a list of the timelines currently running and allows you to enable or disable them quickly. They can only be enabled or disabled if they are set to Can toggle?. Note that if you disable a parent, all child timelines will also be disabled. The Can toggle? tick box is found on the editor for each timeline.

To disable, simply tick off the required timeline and vice versa to enable them again. Clicking on the Timeline Playback Control Bar brings up the Enable/ disable timelines panel.
12.13.34 Timeline Camera

This panel allows you to define cameras for a supplied view during run time. Clicking on the Timeline Playback Control Bar brings up the Timeline Camera panel.

![Timeline Camera Panel]

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>the perspective view to control</td>
<td>view box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target</td>
<td>a target timeline to reference</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye Mode</td>
<td>the mode for the eye of the camera, either fixed, offset or floating</td>
<td>choice box</td>
<td>Fixed, Offset, Floating</td>
<td></td>
</tr>
</tbody>
</table>

**Fixed**

\[Position X coordinate\]
the x coordinate of the fixed eye

\[Position Y coordinate\]
the y coordinate of the fixed eye

\[Position Z coordinate\]
the z coordinate of the fixed eye

Use view eye button
loads the eye settings from the supplied view

Offset

Offset X
the x offset of the eye from the target

Offset Y
the y offset of the eye from the target

Offset Z
the z offset of the eye from the target

Floating
Float mode sets the timeline camera into a floating mode. This means the camera will be set to a fixed target, but the user will retain control over the camera. When started, the camera will start at the current offset from the target.

Set button
Creates and sets the details for the camera
**12.13.34.1 Quick Timeline Create**

**Position of option on menu:** View => Visualisation => Timelines => Quick timeline

This option creates a timeline along a selected Drive String, with the choice of a set of vehicles and/or a floating camera.

An optional Start and End chainage can be entered to limit the length of travel.

Enter a speed for the drive and an anchor tin for the four tyre anchor points of the vehicles.

The Calc Time button will calculate, in seconds, the travel time Duration at the selected speed.

Vehicles are defined as meshes and can be Grouped together under a Name and a start time (in seconds)....optional.

Upon completing your selections (Drive String, Speed, Vehicles etc).... Save the selection using the Append button, and Write the file out.

Note: More than one Drive string and set of vehicles can be selected, appended and finally all written out in the same timeline file. Depending on the location of your drive string selection and its direction, you may have to enter an offset for the vehicles, and/or tick Reverse.

Once the timeline is written, it can be played under View=>Visualisation=>Timelines=>Play

Selecting Quick timeline brings up the 12d Quick timeline create panel.
The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floating Camera</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
</tbody>
</table>

A floating camera allows you to specify the floating eye component of a camera.

The target is defined as the Drive String, but during the playing of the timeline, the eye can be moved independently by the user (e.g. using the Orbit).

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicles</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
</tbody>
</table>
Ticking this option on turns on appropriate fields for setting up timelines for vehicles.

**Timeline File**
- file box
- available files
  - If non-blank, entry used as timeline file name.

**Drive String**
- string select
  - If selected, string is used as timeline drive string and timeline duration can be calculated.
  - If non-blank, entry used as timeline file name.

**Start Ch**
- real
  - If non-blank, entry used as start of timeline...optional.

**End Ch**
- real
  - If non-blank, entry used as end of timeline...optional.

**View for display**
- view box
- available views
  - If non-blank, entry used to play back the timeline (an Open GL Perspective View is required).

**Speed for journey (km/h)**
- real
  - If non-blank, entry used to calculate the timeline duration in seconds.

**Anchor Tin**
- tin box
  - If non-blank, entry used as the location for the four vehicle tyre points.

**Global Options**

**Duration**
- real
  - If non-blank, entry used as timeline length (can be calculated initially via the Calc Time button).

**Loop Vehicles?**
- tick box
  - If ticked, the set of vehicles will be replayed during the timeline.

**Group Options**

**Name**
- name box
  - If non-blank, entry used for the grouping of the vehicles under that name and can be toggled off during the playing of the timeline...optional.

**Start**
- real
  - If non-blank, entry used for start time of the group (in seconds)...optional.

**Vehicle Mesh <Group Files>**

**File**
- file box
  - If non-blank, entry used for populating the grid selection of vehicle meshes.
  - Refer library for standard examples.

**Read**
- button
  - Reads in the file above and populates the vehicle grid.

**Write**
- button
  - Writes out the data currently in the vehicle grid to the file.

**Vehicle Mesh Grid:**

**Vehicle Mesh**
- Vehicle choices (can be viewed under View=>Visualisation=>Meshes=>Mesh library
**Offset**
Real

*If non-blank entry used for offset from drive string*

**Reverse**
tick box not ticked

*If ticked, vehicles will run in the opposite direction to the drive string direction.*

**Calc Time**
button

*Calculates the time of travel in seconds using the Drive String and Speed of journey.*

**Append**
button

*One or more timelines (Drive String, speed, vehicle etc) can be appended, before finally being written out to the timeline file.*

**Write**
button

*After appending, the Timeline File is written out.*
12.13.35 Utilities

Position of menu: View => Visualisation => Utilities

The Utilities walk-right menu is

- create box of clouds as background
- create sky dome of clouds as background
- change billboards on super strings
- inserting fences
- create forest
- insert houses
- create strings for line marking
- insert fences, guard rails, signs, walls etc.
- insert trees and shrubs as billboards
- insert trees and shrubs as faces
- colour within a polygon
- explode text into vectors so it can be draped onto surface
- create plan images from JPEG files which include EXIF and GPS data

For the options, see

- Clouds 12.13.35.1 Clouds
- Sky dome 12.13.35.2 Sky dome
- Billboards on strings 12.13.5.1 Create and Place Billboard
- Fences 12.13.35.3 Fences
- Forest 12.13.5.4 Create Forest
- Houses 12.13.35.4 Houses
- Line marking 12.13.35.5 Line Marking
- Line marking (New) 12.13.35.6 Line Marking (New)
- Roadside furniture 12.13.8.3 Roadside Furniture
- Trees/shrubs billboards 12.13.5.5 Trees/Shrubs as Faces and Billboards
- Trees/shrubs faces 12.13.5.5 Trees/Shrubs as Faces and Billboards
- Traffic signals 12.13.35.7 Traffic Lighting Placement

- Colour within polygon 16.8.2 Colour Within Polygon
- Explode (text) 28.9.18 Explode Text
- Head to tail faces 12.13.35.10 Head to tail faces
- Create plan images from JPEG’s 12.13.35.11 Create Plan Images from JPEG Files
12.13.35.1 Clouds

Position of option on menu: View => Visualisation => Utilities => Clouds

This option is used to create a square box around the view with the cloud image on the inside of it. From within a scene, this will then appear as a sky with clouds as the background.

On selecting the Clouds option, the Visualisation Clouds panel is displayed:

![Image of the Visualisation Clouds panel]

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Centre of cloud square</td>
<td>xyz box</td>
<td>position select</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*model to place the cloud square in.*

*give the x y z co-ordinates for the centre of the cloud square.*

*create the cloud square.*
12.13.35.2 Sky dome

Position of option on menu: View => Visualisation => Utilities => Sky dome

This option reads in a 12da of a triangulation and a raster image to form a dome, that represents the sky.

On selecting the Sky dome option, the Visualisation Sky Dome panel is displayed:

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sky Dome Type</td>
<td>choice box</td>
<td></td>
<td>Drop down selection available, with a preview above.</td>
</tr>
<tr>
<td>12d Sky Dome 1 (Cloud - Dark Blue)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12d Sky Dome 2 (Cloud - Haze)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12d Sky Dome 3 (Cloud - Light Blue)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12d Sky Dome 4 (Cloud - Snow Mtns)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12d Sky Dome 5 (Clear Sky)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centre of Sky Dome</td>
<td>valid x,y,z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td>Read in data from Library and translate to centre coords</td>
</tr>
</tbody>
</table>

Model Format
12d Sky Dome Data  (3 dimensional data for the triangulation)
12d Sky Dome Tin  (3 dimensional triangulation)
12d Sky Dome 1 Raster  (2 dimensional raster for the triangulation)

Note:

More than one sky type can be read in and used but the selected raster is then applied to the same tin.

To view the sky dome in the OpenGL perspective view, add the 12d Sky Dome Tin model only to the view.
12.13.3.5 Fences

**Position of option on menu:**  View => Visualisation => Extrusions => Fences

This option is for extruded 12d Solutions supplied fences along strings. The list of fences is being continuously upgraded by 12d Solutions. Selecting the Fences brings up the Visualisation Fence Extrusions panel.

![Visualisation Fence Extrusions panel]

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clicking on the tabs brings up the type of fence to be extruded along selected super strings.

*Data source type - for a full description go to 4.19.3 Data Source.*

source of super string to extrude fences along

apply the fence to the selected super strings
12.13.35.4 Houses

Position of option on menu: View => Visualisation => Utilities => Houses

This option is for inserting 12d Solutions supplied houses. The list of houses is being continuously upgraded by 12d Solutions. Selecting the Houses brings up the Visualisation 3D Buildings panel.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre of building</td>
<td>xyz box</td>
<td>position select</td>
<td>give the x y z co-ordinates for the centre of the base of the inserted building</td>
</tr>
<tr>
<td>Orientation</td>
<td>angle box</td>
<td>angle select</td>
<td>give the angle to orient the building</td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td>insert the selected building</td>
</tr>
</tbody>
</table>

Clicking on the tabs brings up the type of house to be inserted.
12.13.35.5 Line Marking

Position of option on menu: View => Visualisation => Utilities => Line marking

This option is used to create polygon data in 3D representing the line marking on a road. The polygons can then be included in the design tin for triangulating and the "Colour Triangles Within a Polygon" option used to colour the triangles for use in shades and renderings.

The line marking polygons created by the option represents a dashed line style centred around the selected line marking string marking the position of the dashed line. The length and separation of the dashed lines are user defined and the width of the dash is defined by a width to the left and a width to the right of the line marking string.

![Line Marking Panel]

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>line marking position string</td>
<td>string select</td>
<td>select the string to define the position of the line marking on the road. The string will also provide z-values for use in creating the line marking.</td>
<td></td>
</tr>
<tr>
<td>Colour for line marking</td>
<td>input box</td>
<td>green</td>
<td>available colours</td>
</tr>
<tr>
<td>Length of the line marking</td>
<td>input box</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Gap to next line marking</td>
<td>input box</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Width of line marking on lhs of line</td>
<td>input box</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Width of line marking on rhs of line</td>
<td>input box</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Crossfall (%) on lhs of line</td>
<td>input box</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>Crossfall (%) on rhs of line</td>
<td>input box</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>Model for line marking polygons</td>
<td>line marking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for line marking centre</td>
<td>line marking ctr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The crossfall for the part of the line marking on the left hand side of the line marking position string (so z-
values for the polygon can be calculated).

**Crossfall (%) on rhs of line** input box -3
cross fall for the part of the line marking on the right hand side of the line marking position string (so z-values for the polygon can be calculated).

**Model for line marking polygons** model box line marking available models
model for the polygons representing the line marking.

**Model for line marking centre** model box line marking ctr available models
model for a string with just the part of the line marking position string which is inside the line marking polygons.

**Create** button
run the option and create the line marking polygons.

**Undo** button
undo the last set of polygons created since the panel was up.

### 12.13.35.6 Line Marking (New)

**Position of option on menu:** View => Visualisation => Utilities => Line marking (New)

This option is made up of several parts.

1. **Create line marking polygons:**
   - The drop down menu has a list of linemarking definitions, that match the linestyles in 12d.
   - The length, gap and width values are used to create polygons along the strings selected.
   - Fill in the Linemarking model, colour and the optional tin (used to drape the polygons).

2. **Apply Extrusions Only:**
   - In this option extrusions are matched to linestyles, rather than producing individual polygons.

3. **Pavement Arrows:**
   - In this option polygons are created from the symbol definition.

Single Arrows can be placed, using the **Dynamic Orientation** button to select an x,y point on screen.

**Multiple Arrows:**

- **Arrow Edge Line Reference** "Pick with direction" along a string
- **Arrow Spacing** Distance apart
- **Arrow Offset** Relative to the directional pick
- **Arrow Start Point** If you select a right turn lane string, picking with direction towards an intersection, then the start point would be at the intersection and subsequent arrows placed at the Arrow Spacing away from the intersection.

Selecting **Line marking (New)** brings up the **Linemarking Create (Visualisation)** panel.
The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Linemarking Menu</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linemarking Definition</td>
<td>choice box</td>
<td>Separation Line 3x9</td>
<td>various</td>
</tr>
<tr>
<td></td>
<td></td>
<td>selected definition is displayed in draw box above</td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linemarking Model</td>
<td>model box</td>
<td>select model</td>
<td></td>
</tr>
<tr>
<td>Linemarking Colour</td>
<td>input</td>
<td>white</td>
<td>available colours</td>
</tr>
</tbody>
</table>
the colour of linemarking polygons or arrows

**Tin to Drape**
- input select tin

if non-blank, then the strings created are draped onto this tin

**Box Offset**
- input 10

Distance to place the IP Info boxes from the IP

**Apply Extrusions Only (Linestyle => Extrusion)**
- tick box

If ticked, extrusions are matched to linestyles in the data source, rather than producing individual polygons

---

**Field Description**	**Type**	**Defaults**	**Pop-Up**
**Pavement Arrows Menu**

**Pavement Arrows**
- choice box Right Turn Arrow various

selected arrow type is displayed in draw box above
Single Placement:

**Bearing**
real
*enter bearing if doing a single arrow placement, rather than dynamic*

**Dynamic Orientation**
xyz pick
*select point, look for rotating arrow if auto process ticked on*

**Auto Process after Dynamic Orientation**
tick box
*If ticked, auto rotation activated after insertion point is accepted*

Multiple Placement:

**Arrow Number**
integer
*number of arrows required*

**Arrow Spacing**
measures box
*interval distance along arrow edge string to place arrows*

**Arrow Offset**
measures box
*offset from arrow edge string*

**Arrow Start Point**
xyz pick
*Example: If you select a right turn lane string, picking with direction towards an intersection, then the start point would be at the intersection and subsequent arrows placed at the Arrow Spacing away from the intersection.*

**Arrow Edge Line Reference**
select pick
*reference and orientation string for arrows..."pick with direction"*
### Definitions

A default file `12d_linemarking.def` is read in from the library and saved to the project area. Edits can be carried out to the following definitions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Definition</strong></td>
<td><strong>Linestyle</strong></td>
<td><strong>Len</strong></td>
<td><strong>Gap</strong></td>
</tr>
<tr>
<td>Separation Line 3x9</td>
<td>Separation lines 3x9</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Separation Line 6x6</td>
<td>Separation lines 6x6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Separation Edge Line</td>
<td>Separation lines full 100</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Continuity Line</td>
<td>Continuity lines 1x3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Turn Line</td>
<td>Turn lines 600x600</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Holding Line</td>
<td>Holding line 600x600</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Give Way Line</td>
<td>Give way line 600x600</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Cross Walk Line</td>
<td>Cross Walk Lines 1x0.3</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>Double line</td>
<td>No overtaking</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Stop Line</td>
<td>Stop line</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Right Turn Arrow</td>
<td>R_</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left Turn Arrow</td>
<td>L_</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr Ahead Arrow</td>
<td>ST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr Left Turn Arrow</td>
<td>ST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr Right Turn Arrow</td>
<td>ST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U Turn Arrow</td>
<td>U_</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merge Arrow</td>
<td>ME</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>Double Line</td>
<td>No overtaking</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Stop Line</td>
<td>Stop line</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

**Arrow Symbol**

- Right Turn Arrow: R_TURN
- Left Turn Arrow: L_TURN
- Str Ahead Arrow: ST_AHEAD
- Str Left Turn Arrow: ST_L_TURN
- Str Right Turn Arrow: ST_R_TURN
- U Turn Arrow: U_TURN
- Merge Arrow: MERGE

**Write** button

*Write out any definition changes to 12d_linemarking.def*

**Process** button

*Runs and creates the linemarking*
12.13.35.7 Traffic Lighting Placement

Position of option on menu: View => Visualisation => Utilities => Traffic signals

This section of documentation is a work in progress and will be updated in subsequent releases.

On selecting the Traffic signals option, the Traffic Lighting Placement panel is displayed:

![Traffic Lighting Placement Panel]

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Traffic Signals</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Traffic Type</td>
<td>choice box</td>
<td>SIGNAL POST</td>
<td>available choices</td>
</tr>
<tr>
<td>User_Lib Ascii File:</td>
<td>file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location xyz</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotate</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### 12.13.35.8 Colour Within Polygon

**Position of option on menu:** View => Visualisation => Utilities => Colour within polygon

This option colours triangles in a tin. It has already been documented as Tins => Colour => Colour within polygon in the section 16.8.2 Colour Within Polygon.

### 12.13.35.9 Explode Text

**Position of option on menu:** View => Visualisation => Utilities => Explode text

This option explodes text into lines and arcs. It has already been documented as Utilities => A-G => Explode text in the section 28.9.18 Explode Text.

### 12.13.35.10 Head to tail faces

**Position of option on menu:** View => Visualisation => Utilities => Head to tail faces

This section of documentation is a work in progress and will be updated in subsequent releases.

Selecting Head to tail faces brings up the Head to Tail Face Strings panel.

![Head to Tail Face Strings panel](image)

### 12.13.35.11 Create Plan Images from JPEG Files

**Position of option on menu:** View => Visualisation => Utilities => Create plan images from JPEG’s

Selecting Create plan images from JPEG’s brings up the Create Plan Images from JPEG Files panel.
The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>clicking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>brings up a grid to allow the user to enter many JPEG files.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File to read</td>
<td>file box</td>
<td>available *.jpg files</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the JPEG files to read in and create images from. The JPEG file must include EXIF and GPS information, which is used to position the image. If Projection is not blank, then it is used to convert the lat/long of the GPS values to the XYZ co-ordinates. If Projection is blank, then the co-ordinates are left as lat/long.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projection</td>
<td>choice box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if a Project Projection is set, then it is placed in the Projection field. This can be changed to any other projection. The projection is used to convert the lat/long of the GPS values to the XYZ co-ordinates. If no projection is set, then the co-ordinates are left as lat/long.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotate images</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, the rotate value from the EXIF will be used to rotate the image.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pixel to mm</td>
<td>input box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the units for images are pixels (width and height). The pixel width and height of the image are multiplied by the Pixel to mm (mm being millimetres) value to give width and height size in world unit (metres) which is needed when inserting the image.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for images</td>
<td>input box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the model for the image to be inserted into.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>when all the fields have been entered, the Create button creates images from the selected files.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
13 Models

Position of menu:  Model

In 12d Model, models contain all the terrain and design information in the form of strings, tins and trimeshes.

The Models menu contains the options needed to create new models, rename models, report, clean models and delete models from the project.

The Models walk-right menu is

For the option Models, go to section 13.1 Models
Model info 13.2 Model Information
Model manager
Model info table 13.3 Model Information Table
String info table 13.4 String Information Table
Create
Rename
Global rename
Utilities 13.8 Utilities
Sharing 13.9 Sharing
Clean 13.10 Clean
Delete 13.11 Delete
13.1 Models

**Position of menu:**  Model => Models

The Models walk-right menu provides options to list all the models in the project, and list all the models in the project area but not added to the project (removed models).

If a model is selected from the project model list, then it is automatically loaded into the Model Information panel.

The Models walk-right menu is

![Model List](image)

- List of models in project
- List of non-project models

For Project models go to

13.1.1 Project Models

For Removed models

13.1.2 Removed Models
13.1.1 Project Models

Position of option on menu:  Model => Models => Project models

The project models walk-right menu provides a list of all the models in the project and if a model name is selected from the list, a model information panel is fired up with the selected model name already in the model field.
13.1.2 Removed Models

**Position of option on menu:**  Model => Models => Removed Models

The removed models walk-right menu provides a list of all the models in the project area that are not in the project.

They would be mainly models that were in the project but have been removed from the project but not deleted from the disk.
13.2 Model Information

Position of option on menu:  Model => Model Info
Selecting Model info fires up the Model Information panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>xmin/ymin/zmin, xmax/ymax/zmax</td>
<td>output</td>
<td></td>
<td>returns the model limits</td>
</tr>
<tr>
<td>point id min/max</td>
<td>output</td>
<td>minimum/maximum integer point id in the model</td>
<td></td>
</tr>
<tr>
<td>Elements</td>
<td>output</td>
<td></td>
<td>returns the number of elements in the model</td>
</tr>
<tr>
<td>num vertices</td>
<td>output</td>
<td></td>
<td>returns the number of vertices in the model</td>
</tr>
<tr>
<td>num null vertices</td>
<td>output</td>
<td></td>
<td>returns the number of null vertices in the model</td>
</tr>
<tr>
<td>Info</td>
<td>button</td>
<td></td>
<td>get the information for the model given in the Model field.</td>
</tr>
<tr>
<td>Calc Extent</td>
<td>button</td>
<td></td>
<td>recalculate the x, y, z bounding box for the model given in the Model field.</td>
</tr>
</tbody>
</table>

How to Use the Panel
The model information for the model given in the model field is retrieved and placed in the appropriate panel fields when the model name is entered into the model field from the pop-ups, or a <return> is entered after entering the model name into the model field, or on selecting the Info button.
13.3 Model Information Table

**Position of option on menu:**  Model => Model Info Table

The Model info table option displays the minimum and maximum x, y and z values for every model in the project in one scrolling table.

The models and minimum and maximum columns can be sorted into ascending or descending order by using bringing up the sort menu on the column header fields.

Selecting Model info table fires up the Model Information Table panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>column</td>
<td></td>
<td>sort menu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>all the models in the project are listed in the model column.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read only</td>
<td>column</td>
<td></td>
<td>sort menu</td>
</tr>
<tr>
<td>Loaded</td>
<td>column</td>
<td></td>
<td>sort menu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if no, in this current opening of the project, the model has not yet been fully loaded into 12d Model.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min X, Min Y, Min Z</td>
<td>columns</td>
<td></td>
<td>sort menu</td>
</tr>
<tr>
<td>Max X, Max Y, Max Z</td>
<td>columns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the minimum/maximum values for the model are displayed in the columns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Created/Updated</td>
<td>columns</td>
<td>dates</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>date the model was first created/updated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Update</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>recalculate the minimum/maximum information in the table.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Notes
1. This is a scrolling panel. If there is too much information to fit into the table, then the scrolling arrow on the right hand side of the table must be used to display the extra information.
2. The grid can be sorted by any of the columns.
13.4 String Information Table

Position of option on menu:  Model => String info table

The String info table option displays the minimum and maximum x, y and z values for every string in a given model in one scrolling table.

The models and minimum and maximum columns can be sorted into ascending or descending order by using bringing up the sort menu on the column header fields.

Selecting String info table fires up the String Information Table panel.

The greyed out icons Edit, Properties, Delete only appear when a model has been selected and a row of the table selected.

![String Information Table](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>column</td>
<td></td>
<td>sort menu</td>
</tr>
<tr>
<td>Type, Colour, Linestyle</td>
<td>column</td>
<td></td>
<td>sort menu</td>
</tr>
<tr>
<td>Chainage</td>
<td>column</td>
<td></td>
<td>sort menu</td>
</tr>
<tr>
<td>Length</td>
<td>column</td>
<td></td>
<td>sort menu</td>
</tr>
<tr>
<td>Pt/Line</td>
<td>column</td>
<td></td>
<td>sort menu</td>
</tr>
<tr>
<td>Min X, Min Y, Min Z</td>
<td>columns</td>
<td></td>
<td>sort menu</td>
</tr>
</tbody>
</table>
Max X, Max Y, Max Z

the minimum/maximum values for each string in the model are displayed in the columns

Created/Updated columns dates
date the string was first created/updated

Update button
recalculate the minimum/maximum information in the table.

When data has been read in for a model, the three icons, Edit, Properties, Delete appear

After clicking on a row in the table (and hence specifying a string), the specified string is highlighted on any plan views it is on, and the icons can be used to edit the string, bring up the string properties table or delete the string.

Notes
1. This is a scrolling panel. If there is too much information to fit into the table, then the scrolling arrow on the right hand side of the table must be used to display the extra information.
2. The grid can be sorted by any of the columns.
13.5 Create

Position of option on menu:  Model => Create

On selecting the Create option, the Create Model, and/or View panel is displayed. This panel can be used to create new models and add a model to a view.

![Create Model, and/or View panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>name of the model to be created and/or added to a model and/or view.</td>
<td>model box</td>
<td>all models</td>
<td></td>
</tr>
<tr>
<td>Add to view</td>
<td>if non-blank, the name of the view to which the model given in the model-field will be added.</td>
<td>view box</td>
<td>all views</td>
<td></td>
</tr>
<tr>
<td>Create</td>
<td>If the model given in the Model field does not exist, it will be created. If the add to view field is non-blank, then the model given in the model field will be added to the view given in the add to view field.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
13.6 Rename

Position of option on menu: Model ➔ Rename

On selecting the rename option, the Model Rename panel is displayed. This panel can be used to change the names of existing models.

![Model Rename Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old model</td>
<td>name of the model to be renamed.</td>
<td>model box</td>
<td>all models</td>
<td></td>
</tr>
<tr>
<td>New model</td>
<td>new name for the model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rename button

Change the name of the model in the old model field to the name given in the new model field.
13.7 Global Rename

Position of option on menu:  Model => Global rename

Selecting the Global rename, displays the Global Model Rename panel. This panel is used to change the names of many existing models by matching according to a pattern expression or a regular expression.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Match sub strings</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>if ticked,</strong> the Search expression is used to match against part of each model name. <strong>If not ticked,</strong> the Search expression is used to match against the entire model name.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pattern expression</td>
<td>radio button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>if set on</strong>, then Pattern expressions given in the Search and Replace fields are used to modify model names. Pattern expressions include the standard wild card * and wild character !.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pattern to search for in the model names. For example &quot;* tin&quot; will select all models with a name ending with &quot; tin&quot;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replace</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>replacement for the search pattern found in the model name. For example, &quot;tin &quot; in the Replace field, takes the matched part of the model name and adds &quot;tin &quot; to the front of it. Hence the Search pattern &quot;* tin&quot; and Replace pattern &quot;tin *&quot; finds all models with names ending in &quot; tin&quot; and renames them with the name starting with &quot;tin &quot; (and the &quot; tin&quot; at the end of the name is dropped off).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regular expression</td>
<td>radio button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>if set on</strong>, then Regular expressions given in the Search and Replace fields are used to modify model names.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Search  input
regular expression to search for in the model names.

Replace  input
replacement for the search expression found in the model name.

Test data  grid
The Test data grid shows the effect of the Search and Replace on all the model names in the project.

The Input column shows the existing model name.
The Output column shows the name after applying the Search and Replace.
The Status column displays if there has been a match or no match.

Rename  button
change the name of all the models in the project according to the selected Search and Replace fields.
13.8 Utilities

Position of menu:  Model => Utilities

The utilities menu contains miscellaneous options involving models.

The utilities walk-right menu is

Model Utilities	Create/edit attributes for models
Add	Add removed and other project models to project
Copy project models	Copy model from another project
Remove	Remove models from project
Save	Save models to disk
Project models utilities	Add/removes, saves, cleans, deletes models
User	

For the option Attributes, go to  13.8.1 Attributes
    Add  13.8.2 Add
    Copy project models  13.8.3 Copy Project Models
    Remove  13.8.4 Remove
    Save  13.8.5 Save
    Project model utilities  13.8.6 Project Model Utilities
13.8.1 Attributes

Position of option on menu: Model => Utilities => Attributes

The Attributes options displays, creates and edits attributes for models.

On selecting Attributes, the Model Attributes panel is displayed.

![Model Attributes Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>model box</td>
<td>all available models</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>name of the attribute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>integer, real, text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>value for the attribute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apply</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

set the attributes to the values in the panel and then exit the panel.

set the attributes to the values in the panel but don't exit the panel.
13.8.2 Add

Position of menu:  Model => Utilities => Add

Models can be added to the project and to views.

The model adds walk-right menu is

![Menu screenshot]

For the option Add to project go to

Add all to project  13.8.2.1 Add To Project
Add to view  13.8.2.3 Add to View

13.8.2.1 Add To Project

Position of option on menu:  Model => Utilities => Add => Add to project

The add to project option is used to add a removed model back into the project.

On selecting the add to project option, the add model to the project panel is displayed.

![Add Model to the Project screenshot]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removed model</td>
<td>input</td>
<td>removed models</td>
<td>name of the model not in the project that is to be added to the project.</td>
</tr>
<tr>
<td>Add</td>
<td>button</td>
<td></td>
<td>add the model given in the removed model field to the working project.</td>
</tr>
</tbody>
</table>

13.8.2.2 Add All To Project

Position of option on menu:  Model => Utilities => Add => Add all to Project

The add all to project option is used to add all the removed models back into the project.

On selecting the add all to project option, the add all models to project panel is displayed.

![Add All Models To Project screenshot]
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*after selecting this button, all removed models in the working project will be added to the project.*

### 13.8.2.3 Add to View

**Position of option on menu:**  Model => Utilities => Add => Add to view

On selecting the *add to view* option, the *add model to a view* panel is displayed.

![Add Model to a View Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
</tbody>
</table>

*name of the model to be added to a view.*

| Add to view       | input         | available views |                              |

*name of the view to which the model given in the model field will be added.*

| Add               | button        |                              |                              |

*add the model given in the model field to the view given by the add to view field.*
13.8.3 Copy Project Models

Position of option on menu: Model =>Utilities =>Copy Project Models

Selecting copy project models brings up the Copy Project Models panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folder</td>
<td>input</td>
<td>Select folder panel</td>
<td></td>
</tr>
<tr>
<td>Project</td>
<td>input</td>
<td>projects in the folder</td>
<td></td>
</tr>
</tbody>
</table>

name of the folder that the project to get the model from, is in.

name of the project in the folder given in the folder field, that the model is to be copied from.

Once a project is selected, all the models from that project will be listed in the Original Model Name.
Add data to existing models  tick box
if ticked, if the model that the data is being read into already exists, the new data is copied into the model.

Clean data in existing models  tick box
if ticked, any existing data in the models being read into, is first cleaned out.
NOTE - If neither tick box is ticked then if the model already exists, no data is copied.

Search/Replace
section for renaming models from the selected project

Match sub strings  tick box
if ticked, the Search expression is used to match against part of each model name.
If not ticked, the Search expression is used to match against the entire model name.

Pattern expression  radio button
if set on, then Pattern expressions given in the Search and Replace fields are used to modify model names. Pattern expressions include the standard wild card * and wild character !.

Search  input
pattern to search for in the model names. For example "* tin" will select all models with a name ending with "tin ".

Replace  input
replacement for the search pattern found in the model name. For example, "tin " takes the matched part of the model name and adds " tin " to the front of it.
Hence the Search pattern "* tin" and Replace pattern "tin *" finds all models with names ending in " tin " and renames them with the name starting with "tin " (and the " tin" at the end of the name is dropped off).

Regular expression  radio button
if set on, then Regular expressions given in the Search and Replace fields are used to modify model names.

Search  input
regular expression to search for in the model names.

Replace  input
replacement for the search expression found in the model name.

Model Names Grid
The models selected by the Search and Replace expressions are shown in the Original Model Name column. Note that if the model already exists in the current project, then the cell for that model in Original Model Name column will be displayed in yellow.

Copy  tick box
if ticked, the model will be copied.
If not ticked, the model will not be copied.
Clicking RB on Copy at the top of the column brings up a menu to Clear which turns all the ticks off.

Original Model Name  column
name of the existing model in the selected project

New Model Name  column
if non-blank, the new name to be given to the copied model.
If blank, the original model name is used.
The New Model Names can be from applying the Search and Replace, or just typing them in.
<table>
<thead>
<tr>
<th>Status</th>
<th>column displays if there has been a match or no match for the search/replace for renaming models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy</td>
<td>button copy to this project, the model given in the model field from the project given in the project field.</td>
</tr>
<tr>
<td>Refresh</td>
<td>button refresh the list of all models in the selected project</td>
</tr>
</tbody>
</table>
13.8.4 Remove

**Position of menu:** Model => Utilities => Remove

Models can be removed from the project and from views.

The model removes walk-right menu is

![Model Removes](image)

The options in the menu will now be described.

For the option Remove from project go to 13.8.4.1 Remove Model from Project
- Remove all from project 13.8.4.2 Remove All Models From Project
- Remove from view 13.8.4.3 Remove From View

### 13.8.4.1 Remove Model from Project

**Position of option on menu:** Model => Utilities => Remove => Remove from project

On selecting the remove from project option, the remove model from project panel is displayed.

![Remove Model From Project](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
</tbody>
</table>

*name of the model to be remove from the working project.*

Remove button

*after selecting this button, the model given in the model field will be removed from the working project.*

### 13.8.4.2 Remove All Models From Project

**Position of option on menu:** Model => Utilities => Remove => Remove from all projects

On selecting the remove all option, the remove all models from project panel is displayed.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove button</td>
<td></td>
<td>after selecting this button, all models in the working project will be removed. Next, all views will be refreshed. Finally, unless an error occurs, the panel will be removed.</td>
<td></td>
</tr>
</tbody>
</table>

13.8.4.3 Remove From View

Position of option on menu:    Model => Utilities => Remove => Remove from view

On selecting the remove from view option, the remove model from a view panel is displayed.

The fields and buttons used in this panel have the following functions.

Field Description	Type	Defaults	Pop-Up
Model                   | input      | available models  |                 |
                        |            | name of the model to be removed from a view. |
Remove from view        | input      | available views   |                 |
                        |            | name of the view from which the model given in the model field will be removed. |
Remove button           |            |                   |                 |
                        | remove the model given in the model field from the view given in the remove from view field. |
13.8.5 Save

Position of menu:  Model => Utilities => Save

Models can be saved on disk so that they can be used for future project work or in other projects.

The model saves walk-right menu is

![Model Saves](image)

The options in the menu will now be described.

For the option Save a model go to 13.8.5.1 Save a Model

Save all models 13.8.5.2 Save All Models

13.8.5.1 Save a Model

Position of option on menu:  Model => Utilities => Save => Save a model

On selecting the save a model option, the save model panel is displayed.

![Save Model](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
</tbody>
</table>

name of the model to be saved.

Save  button

after selecting this button, the model given in the model field will be saved to disk.

13.8.5.2 Save All Models

Position of option on menu:  Model => Utilities => Save => Save all models

On selecting the save all models option, the save all models panel is displayed.

![Save All Models](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

Utilities  Page 1693
Save button

After selecting this button, all models in the working project that have been modified since they were last saved, will be saved to disk. Unless an error occurs, the panel will be removed after the saving is completed.
13.8.6 Project Model Utilities

Position of option on menu:  Model => Utilities => Project model utilities

The Project Model Utilities panels can add/remove models from the project, clean and delete models, add/remove models from views.

On selecting Project model utilities, the Project Model Utilities panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Disk Models section</strong></td>
<td>options to add removed models to the project and delete removed models</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Project Models section</strong></td>
<td>options to save/remove/clean/delete models, add/remove models from a view</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Display empty models only</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Refresh</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **List of models removed from the project**
- **List of models in the project**
- **Tick displayed if model is on the view listed below**
- **Add the ticked models to the view**
- **Remove the ticked models from the view**
- **Save the ticked models**
- **Remove the ticked models from the project**
- **Clean the ticked models**
- **Delete the ticked models**

refresh the model properties displayed in the panel
13.9 Sharing

**Position of menu:** Model => Sharing

Sharing allows models from a project (the server project) to be added to other projects (client projects).

Before any models can be added to a client project, they must first be tagged in the server project as allowed to be shared.

The Sharing walk-right menu is

![Shared Models menu]

- Share: allow models in this project to be used by other projects
- Add: add a shared model from another project
- Remove: remove a model shared from another project
- Synchronize: updated models shared from other projects

For the option *Share*, go to

- 13.9.1 Share Models
- 13.9.2 Add Shared Models
- 13.9.3 Remove Shared Models
- 13.9.4 Synchronize Shared Models
13.9.1 Share Models

**Position of option on menu:**  Model => Sharing => Share

Before models in a server project can be added to client projects, the models must be made available for sharing in the server project by using the Share option.

All models that have been made available for sharing are displayed in model lists in a colour defined by an environment variable. The default colour is a yellow (RGB of (255,166,0)).

This option also can reverse the process. That is, remove the availability of a model for sharing. If this is done then clients who have shared this model will be warned when starting up their project and/or synchronizing occurs.

Selecting Share displays the Share Project Models panel.

![Share Project Models panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pattern</td>
<td>if a pattern is typed then all the models matching the pattern will have a tick placed in the Share column. If * is typed then all models are ticked for sharing.</td>
<td>grid column</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All the models in the project are listed in the Share Project Models panel and if a model has been tagged for Sharing, a tick will be displayed in the Share column of the grid.
tick if the model is to be made available for sharing when the Set button is pressed.

All models that have been made available for sharing are displayed in model lists in a colour defined by an environment variable. The default colour is a yellow (RGB of (255,166,0)).

Clicking RB on Share at the top of the column brings up a menu to Toggle the ticks, Set all the ticks on, Clear to turn all the ticks off.

Model grid column
this column lists all the models in the project

Share as grid column
an optional name with which the model will be shared out to clients. Leave it blank to share under the original name.

Only show project models tick box
if ticked, only the models which originated from the current project are shown.

Set button
clicking Set marks all the models with a tick in the Tick column as being available for sharing. Those models without a tick will not be available for sharing.
13.9.2 Add Shared Models

Position of option on menu: Model => Sharing => Add

The Add option is used to add shared models from a server project, to this project (a client project).

All models that have been added as shared models are displayed in model lists in a colour defined by an environment variable. The default colour is blue.

Selecting Add displays the Add Shared Models to Project panel.

The fields and buttons used in this panel have the following functions.

Field Description	Type	Defaults	Pop-Up
Folder            | folder box             | select folder

Folder to look for 12d Model projects. When a folder is selected, all the 12d Model projects in the
folder will be displayed in a Projects pop-up list.

Project folder box select folder

name of the 12d Model project in the folder given in the Folder field, to search for models marked for sharing. Once a project is selected, all the models marked for sharing from that project will be listed in the Original Model Name column.

Search/Replace section for renaming models from the selected project

Match sub strings tick box

if ticked, the Search expression is used to match against part of each model name.

If not ticked, the Search expression is used to match against the entire model name.

Pattern expression radio button

if set on, then Pattern expressions given in the Search and Replace fields are used to modify model names. Pattern expressions include the standard wild card * and wild character !.

Search pattern to search for in the model names. For example "* exist" will select all models with a name ending with " exist"

Replace input replacement for the search pattern found in the model name. For example, "exist " in the Replace field takes the matched part of the model name and adds " exist " to the front of it.

Hence the Search pattern "* exist" and Replace pattern "exist *" finds all models with names ending in " exist" and renames them with the name starting with "exist " (and the " exist" at the end of the name is dropped off).

Regular expression radio button

if set on, then Regular expressions given in the Search and Replace fields are used to modify model names.

Search regular expression to search for in the model names.

Replace input replacement for the search expression found in the model name.

Model Names Grid

The models available for sharing in the selected project are shown in the Original Model Name column. Any renaming by the Search and Replace expressions are shown in the New Model Name column. Note that if the model already exists in the current project, then the cell for that model in Original Model Name column will be displayed in yellow.

Add tick box

if ticked, the model will be added to this project as a shared model. If not ticked, the model will not be added to this project as a shared model.

Clicking RB on Add at the top of the column brings up a menu to Clear which turns all the ticks off.

Note - a shared model that has been previously added can only be removed by using the Model => Sharing => Remove option.

Original Model Name column

this column lists all the models in the server project available for sharing.

New Model Name column

if non-blank, the new name to be given to shared model in this project. If blank, the original model name is used.
The New Model Names can be from applying the **Search and Replace**, or by just typing them in.

**Status** output column displays if their has been a match or no match for the search/replace for renaming models.

**Add** button adds to this project (a client project) as a shared model, the ticked models given in the Original Model Name field from the project given in the **Project** field.

**Refresh** button refreshes the list of all models available for sharing in the selected server project.
13.9.3 Remove Shared Models

Position of option on menu: Model =>Sharing =>Remove

The Remove option is used to remove shared models from the project. The shared models would have been previously added to the project with the Model =>Sharing =>Add option.

Selecting Remove displays the Remove Shared Models from Project panel.

![Remove Shared Models from Project panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>DefaultsPop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search/Replace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Match sub strings</td>
<td>tick box</td>
<td></td>
</tr>
<tr>
<td>Pattern expression</td>
<td>radio button</td>
<td>Pattern expressions given in the Search fields are used to select shared model names. Pattern expressions include the standard wild card * and wild character !.</td>
</tr>
</tbody>
</table>
pattern to search for in the model names. For example "* exist" will select all models with a name ending with " exist"

**Regular expression** radio button

If set on, then **Regular** expressions given in the **Search** field are used to select shared model names.

**Search** input

Regular expression to search for in the shared model names.

**Model Names Grid**

list of all shared models added to the project.

**Remove** tick box

If ticked, the model will be removed from this project as a shared model.

If not ticked, the model will not be removed.

Clicking RB on **Remove** at the top of the column brings up a menu to **Clear** which turns all the ticks off.

**Model Name** column

this column lists all the models added as shared models from other server projects

**Share path**

this column lists the path name to the server project and the original model name in the server project

**Status** column

displays if their has been a match or no match for the Search for selecting shared models

**Remove** button

clicking **Remove** removes as shared models from this project, all the models with a tick.

**Refresh** button

clicking **Refresh** refreshes the list of all shared models previously added to the project
13.9.4 Synchronize Shared Models

Position of option on menu:  Model =>Sharing =>Synchronize

The Synchronize option is used to updated any added shared models. The shared models would have been previously added to the project with the Model =>Sharing =>Add option.

Three environment variables control the synchronization of updates of added shared models and tins. For more information on synchronizing, go to the section 7.6.13.4 Project Share Settings.

Selecting Synchronize displays the Synchronize Shared Models panel.

![Synchronize Shared Models Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronize</td>
<td>tick boxes in grid column</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked and the model has changed in the server project, then it will be re-copied from the server project when the Synchronize button is pressed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clicking RB on Copy at the top of the column brings up a menu to Toggle the ticks, Set all the ticks on, Clear to turn all the ticks off.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>grid column</td>
<td></td>
<td></td>
</tr>
<tr>
<td>this column lists all the models in this project that have been added from other (server) projects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synchronize</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>clicking Synchronize re-copies any models with a tick from the server projects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Status will either be **Ok** or **No Longer Shared** to reflect the status of the model on that row.

**Redraw views** tick box

Whether or not to redraw all the views any of the synchronized models are on.

**Refresh** button

clicking **Refresh** refreshes the list of all shared models previously added to the project.
13.10 Clean

**Position of option on menu:**  Model => Clean

The clean option is used to delete all the strings in a model but the model itself is not deleted. The model is still attached to any views it had been added to.

To help protect the user against disasters, when a model is selected for cleaning, a yes-no pop-up menu is invoked to confirm that the user did intend cleaning out the model.

Wild cards (*) and wild characters (!) can be used to select the models to clean and then a list of selected models is displayed for confirmation.

If cleaning is confirmed, all the strings in the selected models are deleted.

Selecting Clean displays the **Clean Model** panel.

![Clean Model panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>name of the model to be cleaned out. Wild cards (*) and characters (?) can be used to give a list of models to be cleaned.</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Permanently clean?</td>
<td>if ticked, the cleaned strings will not go to the trash bin but will be permanently deleted.</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean</td>
<td>after selecting this button, all strings in the model given in the model field will be deleted. A yes-no pop-up is used to confirm that cleaning is required.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
13.11 Delete

Position of menu: Model => Delete

Using the delete option, models can be deleted from disk so that they no longer can be accessed or take up disk space.

To help protect the user against disasters, when a model is selected for deletion, a yes-no pop-up menu is used to confirm that deleting the model is intended. If deletion is confirmed, the selected model is deleted from the project and the disk. For extra security, there is also a Trash Bin (see 7.6.15 Trash Bin) where models can automatically be moved to on delete before being permanently deleted from disk.

The model delete walk-right menu is

```
Model Deletes
Delete a model
Delete empty models
Delete all models
```

For the option Delete a model, go to 13.11.1 Delete a Model
Delete empty models 13.11.2 Delete Empty Models
Delete all models  13.11.3 Delete All Models
13.11.1 Delete a Model

Position of option on menu:  Model => Delete => Delete a Model

The delete a model option is used to delete a model in the working project.

Wild cards (*) and wild characters (!) can be used to select the models to delete and then a list of selected models is displayed for confirmation.

If a 12d Model trash bin is being used, the deleted models may be moved to the trash bin rather than deleted from disk (see 7.6.15 Trash Bin).

Selecting Delete a model brings up the Delete Model panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>name of the model to be deleted. Wild cards * and characters ? can be used to give a list of models to be deleted.</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Permanently delete</td>
<td>if ticked, the deleted models will not go to the trash bin but will be permanently deleted from disk.</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td>after selecting this button, the model given in the model field will be deleted from the computer disk. A yes-no pop-up is used to confirm that deletion is required.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### 13.11.2 Delete Empty Models

**Position of option on menu:**  
Model => Delete => Delete Empty Models

The **delete empty models** option displays a list of all the empty models in the project and can delete selected empty models or all of them.

Selecting **Delete empty models** brings up the **Delete Empty Models** panel.

![Delete Empty Models Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>List of empty models</strong></td>
<td>models</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><em>the pop-up brings up a list of all the empty models in the project. A model can be selected from the list and it will be deleted after selecting the delete button.</em></td>
</tr>
<tr>
<td><strong>Delete</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>delete the model given in the list of empty models field.</em></td>
<td></td>
</tr>
<tr>
<td><strong>Delete all</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>delete all the empty models in the project.</em></td>
<td></td>
</tr>
</tbody>
</table>
13.11.3 Delete All Models

Position of option on menu:  Model => Delete => Delete All Models

The delete all models option will delete all the models in the project. It does not delete models that are in the project area but not yet added to the project.

If a 12d Model trash bin is being used, the deleted models may be moved to the trash bin rather than deleted from disk (see 7.6.15 Trash Bin).

On selecting the Delete all models option, the Delete All Models panel is displayed.

![Delete All Models panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanently delete</td>
<td>tick box</td>
<td></td>
<td>if ticked, the deleted models will not go to the trash bin but will be permanently deleted from disk.</td>
</tr>
<tr>
<td>Delete</td>
<td>button</td>
<td></td>
<td>after selecting this button, a yes-no pop-up is used to confirm that deletion is required. If it is, all models in the working project will be deleted from disk. All views will be refreshed and unless an error occurs, the panel will be removed.</td>
</tr>
</tbody>
</table>
14 Strings

Position of menu:  **Strings**

Strings are the basic modelling elements of 12d Model.

The Strings walk-right menu contains options to create, edit and manipulate strings in a variety of ways including copying, moving strings between models and deleting strings.

The Strings walk-right menu is

For the options:

- **Create**
- **Super alignments**
- **Trimesh**
- **Editor**
- **Points edit**
- **Strings edit**
- **Texts edit**
- **Convert**
- **Grids**
- **Inquire**
- **Properties**
- **Label**
- **Rasters**
- **Point clouds**
- **WMS**

create strings
create/edit super alignments
create/edit trimeshes
edit strings
points edit
whole string edits
edit text
convert between string types
create/edit grids
inquire on a string
modifying string properties
label strings
rasters
LAS settings
WMS

various string utilities
User Strings menu
delete a string

on Main menu

- Create
- Super alignments
- Trimesh
- Editor
- Points edit
- Strings edit
- Texts edit
- Convert
- Grids
- Inquire
- Properties
- Label
- Rasters
- Point clouds
- WMS
- Utilities
- User
- Delete

on 12d Model menu and floating Strings menu

create strings
create/edit super alignments
create/edit trimeshes
edit strings
points edit
whole string edits
edit text
convert between string types
create/edit grids
inquire on a string
modifying string properties
label strings
rasters
LAS settings
WMS

various string utilities
User Strings menu
delete a string

For the options:

- Create
- Super alignments
- Trimesh
- Editor
- Points edit
- Strings edit
- Texts edit
- Convert
- Grids
- Inquire
- Properties
- Label
- Rasters
- Point clouds
- WMS

14.1 Create
14.2 Super Alignments
14.3 Trimesh
14.4 Editor
14.5 Points Edit
14.6 Strings Edit
14.8 Texts Edit
14.9 Convert
14.10 Grids
14.11 Inquire
14.12 Properties
14.13 Label
14.14 Rasters
14.15 Point Clouds
14.16 WMS
Note
For the floating menu, the Strings option has another mode of operation. Rather than moving onto the walk-right arrow, if LB is clicked when the Strings button is highlighted on the 12d Model menu, the String inquire panel is displayed on the screen. Unfortunately this does not work on the Main menu.
14.1 Create

Position of option on menu:  
Strings => Create

The Create option is used to produce new strings. If a string already exists, the Editor option is used to modify it.

The Create walk-right menu contains options to create 2d, 3d, 4d, super alignment, circles, arcs, feature, pipe, polyline, super and text strings.

Each string type has its own special information so by choosing the appropriate type to be created, only information needed for that type of string is asked for.

Note that the 2d, 3d, 4d, pipe and polyline strings are actually super strings but automatically set some of the properties of the super string. For example a 2d string is a super string with just one constant z-value. Any of these strings can be made a full super string by clicking on the Advanced Mode icon in the string editor.

Once a string has been created, it can be converted to most of the other string types using the string Convert option.

To create a new string of the same type and with similar header information as an existing string, the same as option is selected from the String Create menu.

Notes
1. Depending on its breakline (point-line) type, a string with default style ("1") is displayed with crosses at each of its vertex (point type) or with straight lines joining the vertices (line type).

   Linestyles can be defined that drawn lines between the points even though the breakline type is point.
2. The string vertices are also called intersection points (IP’s).

The String Create walk-right menu is

The string creation process is similar for each string type and for editing strings as well.

For the option 2d, go to  
14.1.1 Create - 2d Super

For the option 3d, go to  
14.1.2 Create - 3d Super
4d  14.1.3 Create - 4d Super
Super alignment  14.1.4 Create Arcs
Arcs  14.1.4 Create Arcs
Circles  14.1.5 Create - Circles
Feature  14.1.6 Create - Feature
Pipe  14.1.7 Create - Pipe Super
Polyline  14.1.8 Create - Polyline Super
Super  14.1.9 Create - Super
Text  14.1.10 Create - Text
Ellipse  14.1.11 Create - Ellipse
Xfall and grade  20.8.11 String by Xfall and Grade
Control stations  14.1.12 Create - Control Stations
Old  14.20.1 Old
New  14.1.13 New
Same as  14.1.14 Create - Same As
14.1.1 Create - 2d Super

Position of option on menu:  Strings =>Create =>2d

A 2d super string is a super string with the restriction that it has:

(a) vertices of (x,y) co-ordinates joined by straight segments only
(b) One z-value for the entire string

That is, a 2d string consists of a series of (x,y) vertices joined only by straight segments, and all with the same z-value (height). 2d strings are often referred to as "contour strings" because contours are the most common example of a string with a constant height.

The Many strings tick-box is used when more than one string of the same type is to be created, if many strings is set to tick, when the current string creation is Finished or Quit, a new Create Super 2d String panel is placed on the screen with the same information in it as the string just created. If any of the information needs to be modified for the new string, simply change it in the Create Super 2d String panel fields before selecting the Create button for the new string. Hence a new string of the same type can be created without going back to the Create menu.

The Same as button is used to obtain information from and existing string (not necessarily of the same type) and pipe it into the name, model, colour, type, linestyle, weigh of the Create Super 2d String panel.

From 12d Model 8 onwards, the default is to create 2d super strings rather than the 2d strings used up to 12d Model 7. A 2d super string is a super string with Constant height. That is, there is only one z-value for the entire string. The advantage is using a 2d super string is that all the CAD options will work for it, vertices and segments can be assigned tinability and it can have point id's for setout.

The older 2d string create options are still available under Strings =>Create =>Old (go to the section 14.20.1.2 Create - 2d (pre V8))

On selecting 2d the Create Super 2d String panel is displayed.

The default values for the panel fields are taken from the CAD Controlbar (see 15.1 Controlbars)

To create a new 2d super string (a 2d super string is a super string with the constant height flag set on), the panel fields are filled in and the Create button selected.

The fields and buttons used in the Create Super 2d String panel have the following functions.
Create

Field Description	Type	Defaults	Pop-Up
Name | input | from CAD controlbar | the name of the new string
Model | model box | from CAD controlbar | available models
name of the model that the new string is in
Colour | colour box | from CAD controlbar | available colours
the colour of the new string
Type | choice box | line | line, point
breakline type (point-line type) of the string
Linestyle | input | from CAD controlbar | available line styles
line style of the string
Weight | input | from CAD controlbar | thickness of the string
Height | input | from CAD controlbar | for a 2d super string, there is only one height (z-value) for the entire string.
Tinability | choice box | Points and segments | Points only
Points and segments
Not tinable
if Vertices and segments, all the vertices and segments of the string are set to tinable.
If Vertices only, all the vertices are set to tinable and the segments to not tinable.
If Not tinable, all the vertices or segments are set to not tinable.
Allow point ids | tick box | if ticked, the 2d super string can have point ids for each vertex.
If not ticked, the 2d super string will not have point ids. This can be reversed if point ids are required in the future.
Many strings | tick box | if ticked then after the current string is finished, a new create panel is placed on the screen with all the same values for the panel fields as the current string.
Create | button | After the Create button is chosen, the Edit 2d menu is displayed.
Same as | button | After the Same as button is chosen, another string is selected and information about it is used for the fields in this panel.
Finish | button | end the option, don't proceed to the edit stage.

Start Edit - 2d Super

On selecting the Create button in the Create Super 2d String panel the Edit 2d menu is placed on the screen. The Edit 2d menu for a 2d super string is
To create a new 2d super string, select the Append icon.

The Append option is used to add vertices to either end of an existing string, or in the case of a new string, places the first vertex and then begins appending vertices to the first vertex.

For all 2d strings, a cross is then drawn in each plan view that the string's model is on, and the cross follows the cursor around the screen. If the string's model is not added to any plan view, the model is automatically added to all plan views.

After the cross is on the screen (moving with the cursor), clicking LB and accepting with MB selects the first vertex of the string (using the appropriate snaps).

The string is then drawn from the first vertex to the cursor position, which represents the second vertex of the string. Clicking LB and accepting with MB selects the second string vertex and the process repeats for subsequent string vertices.

Now that the string is created, all the edit option on the string's Edit 2d menu are usable.

The options in the Edit 2d menu are not only used for placing the initial vertices of the string, but for editing the string once it is created. Since the Append and other options in the Edit 2d menu are identical to the options used when editing an existing string, they will be discussed in detail in the string Editor section.

For full information in the 2d Editor, go to the section 14.4.2 Edit 2d
14.1.2 Create - 3d Super

Position of option on menu:  Strings => Create => 3d

A 3d super string consists of a series of (x,y,z) vertices, joined only by straight segments.
The difference between a 2d and a 3d string is that for a 3d string, the z-value (height) can vary at each
string vertex, whereas a 2d string has a constant height for the entire string. Hence a 2d string is simply a
special case of a 3d string where the heights at all the vertices are the same.

Creating and editing a 3d string is very similar to a 2d string. The only major difference is that a height is
required at each string vertex.

The Many strings tick-box is used when more than one string of the same type is to be created, If many
strings is set to tick, when the current string creation is Finished or Quit, a new Create Super 3d String
panel is placed on the screen with the same information in it as the string just created. If any of the
information needs to be modified for the new string, simply change it in the Create Super 3d String panel
fields before selecting the Create button for the new string. Hence a new string of the same type can be
created without going back to the Create menu.

The Same as button is used to obtain information from and existing string (not necessarily of the same type)
and pipe it into the name, model, colour, type, linestyle and weight of the Create Super 3d String panel.
From 12d Model 8 onwards, the default is to create 3d super strings rather than the 3d strings used up to
12d Model 7. The advantage is using a 3d super string is that all the CAD options will work for it, vertices
and segments can be assigned tinability and it can have point id’s for setout.

The older 3d string create option is still available under
Strings => Create => Old (go to the section 14.20.1.3 Create - 3d (pre V8))

On selecting the 3d option, the Create Super 3d String panel is displayed.

The default values for the panel fields are taken from the CAD Controlbar (see 15.1 Controlbars)

To create a new 3d super string, the panel fields are filled in and the Create button selected.

The fields and buttons used in the Create Super 3d String panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>input</td>
<td>from CAD controlbar</td>
<td>the name of the new string</td>
</tr>
</tbody>
</table>
Model
- model box from CAD controlbar available models
  name of the model that the new string is in

Colour
- colour box from CAD controlbar available colours
  the colour of the new string

Type
- choice box line line, point
  breakline type (point-line type) of the string

Linestyle
- input from CAD controlbar available line styles
  line style of the string

Weight
- input from CAD controlbar
  thickness of the string

Tinability
- choice box Points and segments Points and segments
  Points only Not tinable
  if Vertices and segments, all the vertices and segments of the string are set to tinable.
  If Vertices only, all the vertices are set to tinable and the segments to not tinable.
  If Not tinable, all the vertices or segments are set to not tinable.

Allow point ids
- tick box
  if ticked, the super string can have point ids for each vertex.
  If not ticked, the super string will not have point ids. This can be reversed if point ids are required in the future.

Many strings
- tick box
  if ticked then after the current string is finished, a new create panel is placed on the screen with all the same values for the panel fields as the current string.

Create
- button
  after the Create button is chosen, the Edit 3d menu is displayed

Same as
- button
  after the Same as button is chosen, another string is selected and information about it is used for the fields in this panel

Finish
- button
  end the option, don’t proceed to the edit stage

Start Edit - 3d Super

On selecting the Create button in the Create Super 3d String panel the Edit 3d menu is placed on the screen. The Edit 3d menu for a 3d super string is

```
model ->string_name for the 3d super string being edited
```

append or prepend an IP
delete an IP
To create a new 3d super string, select the Append icon.

The Append option is used to add vertices to either end of an existing string, or in the case of a new string, places the first vertex and then begins appending vertices to the first vertex.

For all 3d strings, a cross is then drawn in each plan view that the string's model is on, and the cross follows the cursor around the screen. If the string's model is not added to any plan view, the model is automatically added to all plan views.

After the cross is on the screen (moving with the cursor), clicking LB and accepting with MB selects the first vertex of the string (using the appropriate snaps).

The string is then drawn from the first vertex to the cursor position, which represents the second vertex of the string. Clicking LB and accepting with MB selects the second string vertex and the process repeats for subsequent string vertices.

Now that the string is created, all the edit option on the string’s Edit 3d menu are usable.

The options in the Edit 3d menu are not only used for placing the initial vertices of the string, but for editing the string once it is created. Since the Append and other options in the Edit 3d menu are identical to the options used when editing an existing string, they will be discussed in detail in the string Editor section.

For full information in the 3d Editor, go to the section 14.4.3 Edit 3d.
14.1.3 Create - 4d Super

Position of option on menu:  Strings => Create => 4d

A 4d super string consists of a series of (x,y,z) co-ordinates joined only by straight segments, and a text label at each vertex.

Creating and editing a 4d string is very similar to a 3d string - the major difference is that a height and a text label is required at each string vertex.

The Many strings tick-box is used when more than one string of the same type is to be created, If many strings is set to tick, when the current string creation is Finished or Quit, a new Create Super 4d String panel is placed on the screen with the same information in it as the string just created. If any of the information needs to be modified for the new string, simply change it in the Create Super 4d String panel fields before selecting the Create button for the new string. Hence a new string of the same type can be created without going back to the Create menu.

The Same as button is used to obtain information from an existing string (not necessarily of the same type) and pipe it into the name, colour, model, type, linestyle and weight of the Create Super 4d String panel.

From 12d Model 8 onwards, the default is to create 4d super strings rather than the 4d strings used up to 12d Model 7. The advantage is using a 4d super string is that all the CAD options will work for it, vertices and segments can be assigned tinability and it can have point id's for setout.

The older 4d string create option is still available under

Strings => Create => Old

(Pre V8)

On selecting the 4d option, the Create Super 4d String panel is displayed.

![Create Super 4d String panel](image)

The default values for the panel fields are taken from the CAD Controlbar (see 15.1 Controlbars).

To create a new 4d super string, the panel fields are filled in and the Create button selected.

The fields and buttons used in the Create Super 4d String panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>input</td>
<td>input</td>
<td>from CAD controlbar</td>
<td>the name of the new string</td>
</tr>
<tr>
<td>Model</td>
<td>model box</td>
<td>model box</td>
<td>from CAD controlbar</td>
<td>available models</td>
</tr>
<tr>
<td>Colour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linestyle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text style</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tinability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allow point ids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Many strings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The default values for the panel fields are taken from the CAD Controlbar (see 15.1 Controlbars).

To create a new 4d super string, the panel fields are filled in and the Create button selected.

The fields and buttons used in the Create Super 4d String panel have the following functions.

Field Description | Type | Defaults | Pop-Up
Name              | input | from CAD controlbar | the name of the new string
Model             | model box | from CAD controlbar | available models | name of the model that the new string is in
Colour: colour box from CAD controlbar available colours

Type: choice box line, point

Linestyle: linestyle box from CAD controlbar available line styles

Weight: input from CAD controlbar

Text style: textstyle box

Tinability: choice box Points and segments Points only Not tinable

if Vertices and segments, all the vertices and segments of the string are set to tinable.
If Vertices only, all the vertices are set to tinable and the segments to not tinable.
If Not tinable, all the vertices or segments are set to not tinable.

Allow point ids: tick box

if ticked, the super string can have point ids for each vertex.
If not ticked, the super string will not have point ids. This can be reversed if point ids are required in the future.

Many strings: tick box

if ticked then after the current string is finished, a new create panel is placed on the screen with all the same values for the panel fields as the current string.

Create: button

after the Create button is chosen, the Edit 4d menu is displayed

Same as: button

after the Same as button is chosen, another string is selected and information about it is used for the fields in this panel

Finish: button

end the option, don't proceed to the edit stage

Start Edit - 4d Super

On selecting the Create button in the Create Super 4d String panel the Edit 4d menu is placed on the screen. The Edit 4d menu for a 4d super string is
To create a new 4d super string, select the Append or Append + Text icon.

The Append and or Append + Text option are used to add vertices to either end of an existing string, or in the case of a new string, places the first vertex and then begins appending vertices to the first vertex. Append + Text also asks for text at each vertex.

For all 4d strings, a cross is then drawn in each plan view that the string's model is on, and the cross follows the cursor around the screen. If the string's model is not added to any plan view, the model is automatically added to all plan views.

After the cross is on the screen (moving with the cursor), clicking LB and accepting with MB selects the first vertex of the string (using the appropriate snaps).

If Append + text was selected, the user will then be prompted for the text to be placed at that vertex.

The string is then drawn from the first vertex to the cursor position, which represents the second vertex of the string. Clicking LB and accepting with MB selects the second string vertex and the process repeats for subsequent string vertices.

Now that the string is created, all the edit option on the string’s Edit 4d menu are usable.

The options in the Edit 4d menu are not only used for placing the initial vertices of the string, but for editing the string once it is created. Since the Append and other options in the Edit 4d menu are identical to the options used when editing an existing string, they will be discussed in detail in the string Editor section.

For full information in the 4d Editor, go to the section 14.4.4 Edit 4d
14.1.4 Create Arcs

Position of menu:  Strings => Create => Arcs

The Create arcs option is used to create 12d Model arcs.

A 12d Model arc consists of a radius, a centre point, and a start and end point on the arc.

The radius can be positive or negative. If the radius is positive, the arc is drawn from the start-point to the end-point in a clockwise direction. If the radius is negative, the arc is drawn from the start-point to the end-point in counter-clockwise direction.

The height at the start point and at the end point can be different. In that case, the arc is still a plan arc but the z- value varies linearly from the start point to the end point as one moves around the arc. Hence the 12d Model arc string is actually a helix with its centre-line perpendicular to the xy-plane.

For convenient 12d Model includes a variety of methods for creating arcs.

On selecting the Arcs option, the Create arcs menu is displayed giving all the different methods for creating arcs.

![Create Arcs Menu]

Each option in the Create arcs menu fires up its own special panel to collect the necessary information for defining the arc.

The mouse is used to select the special points required for the arc and circle definitions. For example, in the arc - 3 points on arc option, the three points are selected using the mouse.

Unlike the other strings created under strings=>create, the arc can be created immediately without needing any options from the arc editors.

Consequently, after an arc is defined, the create panel is not removed and is left on the screen to create another arc. Any information that needs modifying is changed in the arc panel and is used for the new create.

New arcs are created until either the panel is removed by selecting the finish or [X] button, or the create terminated by selecting cancel from the pick ops menu in which case the panel will be left on the screen. In the last case, the arc button is then used to begin a new create sequence.

Each of the methods for creating arcs will now be described.

For the option

<table>
<thead>
<tr>
<th>Arc, go to</th>
<th>14.1.4.1 Create - Arc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre, start, sweep</td>
<td>14.1.4.2 Create Arc - Centre Point, Start Point and Sweep</td>
</tr>
<tr>
<td>Centre, 2 pts on arc</td>
<td>14.1.4.3 Create Arc - Centre Point, Start and End Points</td>
</tr>
<tr>
<td>Centre, radius, 2 pts</td>
<td>14.1.4.4 Create Arc - Centre, Radius, Start and End Points</td>
</tr>
<tr>
<td>3 pts on arc</td>
<td>14.1.4.5 Create Arc - Three Points on Arc</td>
</tr>
<tr>
<td>Start, rad, arc l, bearing</td>
<td>14.1.4.6 Create Arc - Start Point, Radius, Arc Length and Start Bearing</td>
</tr>
<tr>
<td>Start, rad, arc l, chord bearing</td>
<td>14.1.4.7 Create Arc - Start Point, Radius, Arc Length and Chord Bearing</td>
</tr>
</tbody>
</table>
14.1.4.1 Create - Arc

Position of option on menu:  Strings => Create => Arcs => Create Arcs

Arcs and circles are normally created using the strings=>create => arcs or strings=>create => circles menu. Please see the documentation on that option for creating arcs and circles.

This option is a special arc creator so that a menu exists if the strings=>create =>same as option is used on an arc. It creates an arc with an initial sweep angle of 360 degrees.

The Many strings tick-box is used when more than one string of the same type is to be created, if many strings is set to tick, when the current string creation is Finished or Quit, a new Create Arc String panel is placed on the screen with the same information in it as the string just created. If any of the information needs to be modified for the new string, simply change it in the Create Arc String panel fields before selecting the Create button for the new string. Hence a new string of the same type can be created without going back to the Create menu.

The Same as button is used to obtain information from and existing string (not necessarily of the same type) and pipe it into the name, colour, model, style breakline type and height field of the Create Arc String panel.

After selecting the option, the Create arc string panel is displayed.

The new fields and buttons used in the create arc string panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>the name of the new string.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>name of the model that the new string is in.</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>the colour of the new string.</td>
<td>input</td>
<td>default colour</td>
<td>available colours</td>
</tr>
<tr>
<td>Style</td>
<td>line style of the string.</td>
<td>input</td>
<td>1</td>
<td>available line styles</td>
</tr>
<tr>
<td>Weight</td>
<td>thickness of the string.</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Centre</td>
<td>co-ordinates of the centre of the arc.</td>
<td>input</td>
<td></td>
<td>xyz ops menu</td>
</tr>
</tbody>
</table>
Radius input

the radius for the arc.

Many strings tick

if ticked then after the current string is finished, a new create panel is placed on the screen with all the same values for the panel fields as the current string.

Create button

After the create button is chosen, the arc edit menu and arc edit info panel are displayed.

Same as button

After the same as button is chosen, another string is selected and information about it is used for the fields in this panel.

Note - the centre co-ordinates can either be typed into the centre panel field, or if LB is clicked on [+] for the centre panel field, the xyz ops menu comes up and the pick xyz option used to select a point as the arc centre.

Continue to the next section 14.1.4.2 Create Arc - Centre Point, Start Point and Sweep or go back to 14.1.4 Create Arcs.
Start Edit - Arc

Unlike the other string creates, on selecting the Create button the arc string is immediately created with a sweep angle of 360 degrees. The arc edit menu and arc edit info panel are also placed on the screen at the same time.

The arc edit menu and arc edit info panel for an arc string are

For full information in the Arc Editor, go to the section 14.4.5 Arc Edit

14.1.4.2 Create Arc - Centre Point, Start Point and Sweep

Position of option on menu: Strings => Create => Arcs => Centre, Start, Sweep

This option defines an arc by selecting a centre point, the start point of the arc and the sweep angle of the arc. The sweep angle is measured in the clockwise direction.

The radius is calculated by the option and is simply the distance between the centre and start points. The arc end point is also automatically calculated using the known points, radius and sweep angle.

After selecting the option, the arc - centre, start point and sweep angle panel is displayed.

To create an arc, the name, colour, model, chainage interval and sweep angle are entered into the appropriate fields and then the centre point and start point of the arc are selected with the cursor. The arc is
then created using the information provided in the panel. The new fields and buttons used in the **arc - centre, start point and sweep angle** panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>the name of the new string.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>name of the model that the new string is in.</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>the colour of the new string.</td>
<td>input</td>
<td>default colour</td>
<td>available colours</td>
</tr>
<tr>
<td>Style</td>
<td>line style of the string.</td>
<td>input</td>
<td>1</td>
<td>available line styles</td>
</tr>
<tr>
<td>Weight</td>
<td>thickness of the string.</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>z mode</td>
<td>the method of specifying the z-value for the end points of the arc. It can be typed in or taken from the z-value of the selected end points.</td>
<td>input</td>
<td>typed, snap, typed</td>
<td></td>
</tr>
<tr>
<td>z value</td>
<td>if the z mode method is typed, then the height (z-value) of the end points is the value in the field.</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ch interval</td>
<td>the chainage interval used when a chord approximation is needed for the arc.</td>
<td>input</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Sweep angle</td>
<td>sweep angle for the arc - Note: clockwise is positive for sweep angles</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arc</td>
<td>button</td>
<td></td>
<td></td>
<td>The <strong>arc</strong> button is used to begin a new create if the previous one was cancelled.</td>
</tr>
<tr>
<td>Same as</td>
<td>button</td>
<td></td>
<td></td>
<td>After the same as button is chosen, another string is selected and information about it is used for the fields in this panel.</td>
</tr>
</tbody>
</table>

Panel Messages

Next step messages sent to the screen message area when selecting and accepting the centre point

- `<Arc centre> [picks][][menu]`
- `<Arc centre> [picks][accepts][menu]`

When selecting the start point of the arc

- `<Arc start> [picks][][menu]`
- `<Arc start> [picks][accepts][menu]`

Continue to the next section **14.1.4.3 Create Arc - Centre Point, Start and End Points** or go back to **14.1.4 Create Arcs**.

### 14.1.4.3 Create Arc - Centre Point, Start and End Points

**Position of option on menu:** Strings => Create => Arcs => Centre, 2 pts on arc

This option defines an arc by selecting a centre point, a start and end points for the arc and the direction (clockwise, anti-clockwise) that the arc travels in. The radius is calculated by the option and is simply the distance between the centre and start points.

It is difficult to choose the end point correctly so that it lies exactly on the arc since it only occurs when the
距离中心和选定端点之间的距离正好是圆弧的半径。

因此，选定的端点和圆弧方向用于确定从起点到“端点到中心点”线的扫掠角度。这是定义圆弧所需的足够信息。实际端点然后被计算出来，使其位于圆弧上。

在选择选项后，圆弧 - 中心、起点和终点面板显示。

要创建一个圆弧，必须将名称、颜色、模型、链距间隔和方向输入到相应的字段中，然后选择中心点、起点和终点。然后使用面板上提供的信息创建圆弧。

圆弧 - 中心、起点和终点面板中使用的字段和按钮具有以下功能。

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>input</td>
<td></td>
<td>the name of the new string.</td>
</tr>
<tr>
<td>Model</td>
<td>input</td>
<td>available models</td>
<td>name of the model that the new string is in.</td>
</tr>
<tr>
<td>Colour</td>
<td>input</td>
<td>default colour</td>
<td>available colours</td>
</tr>
<tr>
<td>Style</td>
<td>input</td>
<td>1</td>
<td>available line styles</td>
</tr>
<tr>
<td>Weight</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>z mode</td>
<td>input</td>
<td>typed</td>
<td>snap, typed</td>
</tr>
<tr>
<td>z value</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ch interval</td>
<td>input</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Direction        input          clockwise       clockwise,  
                  anti-clockwise

*the direction for the arc*

**Arc** button

*The arc button is used to begin a new create if the previous one was cancelled.*

**Same as** button

*After the same as button is chosen, another string is selected and information about it is used for the fields in this panel.*

**Panel Messages**

Next step messages sent to the screen message area when selecting and accepting the centre point

<Arc centre> [picks][menu]
<Arc centre> [picks][accepts][menu]

When selecting the start point of the arc

<Arc start> [picks][menu]
<Arc start> [picks][accepts][menu]

When selecting the end point of the arc

<Arc end> [picks][menu]
<Arc end> [picks][accepts][menu]

Continue to the next section 14.1.4.4 Create Arc - Centre, Radius, Start and End Points or go back to 14.1.4 Create Arcs.

14.1.4.4 Create Arc - Centre, Radius, Start and End Points

Position of option on menu:  Strings =>Create =>Arcs =>Centre, radius, 2pts

This option defines an arc by the user setting a radius and direction of arc and then selecting the centre, start and end points for the arc.

Since the radius is given exactly, it is difficult to choose the start and end points so that they lie exactly on the arc. This only occurs when the distance between the centre and selected start and end points is exactly the radius of the arc.

Hence, the selected start point is dropped perpendicularly onto the arc to give the real start point. Similarly, for the real end point.

After selecting the option, the **arc - radius, centre, start and end points** panel is displayed.
To create an arc, the name, colour, model, chainage interval, radius and direction are entered into the appropriate fields and then the centre point, start and end points of the arc selected with the cursor. The arc is then created using the information provided in the panel.

The fields and buttons used in the **arc - radius, centre, start and end points** panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>the name of the new string.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>name of the model that the new string is in.</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>the colour of the new string.</td>
<td>input</td>
<td>default colour</td>
<td>available colours</td>
</tr>
<tr>
<td>Style</td>
<td>line style of the string.</td>
<td>input</td>
<td>1</td>
<td>available line styles</td>
</tr>
<tr>
<td>Weight</td>
<td>thickness of the string.</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>z mode</td>
<td>the method of specifying the z-value for the end points of the arc.</td>
<td>input</td>
<td>typed, snap, typed</td>
<td></td>
</tr>
<tr>
<td>z value</td>
<td>if the z mode method is typed, then the height (z-value) of the end points is the value in the field.</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ch interval</td>
<td>the chainage interval used when a chord approximation is needed for the arc.</td>
<td>input</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Abs radius</td>
<td>the absolute radius of the arc.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Direction: Input clockwise, anti-clockwise

The direction for the arc

Arc button

The arc button is used to begin a new create if the previous one was cancelled.

Same as button

After the same as button is chosen, another string is selected and information about it is used for the fields in this panel.

Panel Messages

Next step messages sent to the screen message area when selecting and accepting the centre point

<Arc centre> [picks][menu]
<Arc centre> [picks][accepts][menu]

When selecting the start point of the arc

<Arc start> [picks][menu]
<Arc start> [picks][accepts][menu]

When selecting the end point of the arc

<Arc end> [picks][menu]
<Arc end> [picks][accepts][menu]

Continue to the next section 14.1.4.5 Create Arc - Three Points on Arc or go back to 14.1.4 Create Arcs.

14.1.4.5 Create Arc - Three Points on Arc

Position of option on menu: Strings =>Create =>Arcs =>3 pts on arc

This option defines an arc by selecting three points that lie on the arc.

The selected arc points are the start point, a point between the start and end point, and the end point. The three points must be selected in that order.

After selecting the option, the arc - 3 points on arc panel is displayed.

To create an arc, the name, colour, model and chainage interval are entered into the appropriate fields and then three points - start point, point between the start and end point, and the end point-which lie on the arc are selected with the cursor.

After the three points are picked, the arc is created using the information provided in the panel.
After a arc is defined, the option does not terminate. Another arc can be created by simply modifying any of the information that needs changing in the arc - 3 points on arc panel and then selecting three points on a new arc.

The fields and buttons used in the arc - 3 points on arc panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>input</td>
<td>default colour</td>
<td>available colours</td>
</tr>
<tr>
<td>Style</td>
<td>input</td>
<td>1</td>
<td>available line styles</td>
</tr>
<tr>
<td>Weight</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>z mode</td>
<td>input</td>
<td>typed</td>
<td>snap, typed</td>
</tr>
<tr>
<td>z value</td>
<td>input</td>
<td>0</td>
<td>if the z mode method is typed, then the height (z-value) of the end points is the value in the field.</td>
</tr>
<tr>
<td>Ch interval</td>
<td>input</td>
<td>10</td>
<td>the chainage interval used when a chord approximation is needed for the arc.</td>
</tr>
<tr>
<td>Arc</td>
<td>button</td>
<td></td>
<td>The arc button is used to begin a new create if the previous one was cancelled.</td>
</tr>
<tr>
<td>Same as</td>
<td>button</td>
<td></td>
<td>After the same as button is chosen, another string is selected and information about it is used for the fields in this panel.</td>
</tr>
</tbody>
</table>

Panel Messages

Next step messages sent to the screen message area when selecting and accepting the start point

\(<\text{Arc start}> [\text{picks}] [\text{menu}]\)
\(<\text{Arc start}> [\text{picks}] [\text{accepts}] [\text{menu}]\)

When selecting and accepting the second point

\(<\text{Point on arc}> [\text{picks}] [\text{menu}]\)
\(<\text{Point on arc}> [\text{picks}] [\text{accepts}] [\text{menu}]\)

When selecting and accepting the end point

\(<\text{End of arc}> [\text{picks}] [\text{menu}]\)
\(<\text{End of arc}> [\text{picks}] [\text{accepts}] [\text{menu}]\)

Continue to the next section 14.1.4.6 Create Arc - Start Point, Radius, Arc Length and Start Bearing or go back to 14.1.4 Create Arcs.

14.1.4.6 Create Arc - Start Point, Radius, Arc Length and Start Bearing

Position of option on menu: Strings => Create => Arcs => Start, rad, arc, bear

This option defines an arc by giving the radius, the arc length and start bearing and then selecting a start point for the arc.
This is enough information for the option to calculate the centre and end points and the direction of the arc, and hence, fully define the arc.

After selecting the option, the **arc - start pt, radius, arc length, start bear** panel is displayed.

![Arc - start pt, radius, arc length, start bear panel](image)

To **create** an arc, the name, colour, model, chainage interval, radius, arc length and start bearing are entered into the appropriate fields and then the start point of the arc selected with the cursor. The arc is then created using the information provided in the panel.

The new fields and buttons used in the **arc - start pt, radius, arc length, start bear** panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Name</strong></td>
<td>input</td>
<td></td>
<td><em>the name of the new string.</em></td>
</tr>
<tr>
<td><strong>Model</strong></td>
<td>input</td>
<td>available models</td>
<td><em>name of the model that the new string is in.</em></td>
</tr>
<tr>
<td><strong>Colour</strong></td>
<td>input</td>
<td>default colour</td>
<td>available colours</td>
</tr>
<tr>
<td><strong>Style</strong></td>
<td>input</td>
<td>1</td>
<td>available line styles</td>
</tr>
<tr>
<td><strong>Weight</strong></td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td><strong>z mode</strong></td>
<td>input</td>
<td>typed</td>
<td>snap, typed</td>
</tr>
<tr>
<td><strong>z value</strong></td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Ch interval

the chainage interval used when a chord approximation is needed for the arc.

Radius

radius of the arc.

Arc length

length of the arc from the start to the end point.

Start bearing

bearing of the tangent to the arc at the start point.

Arc

The arc button is used to begin a new create if the previous one was cancelled.

Same as

After the same as button is chosen, another string is selected and information about it is used for the fields in this panel.

Panel Messages

Next step messages sent to the screen message area when selecting the start point of the arc

<Arc start> [picks][menu]
<Arc start> [picks][accepts][menu]

Continue to the next section 14.1.4.7 Create Arc - Start Point, Radius, Arc Length and Chord Bearing or go back to 14.1.4 Create Arcs.

14.1.4.7 Create Arc - Start Point, Radius, Arc Length and Chord Bearing

This option defines an arc by giving the radius, the arc length and chord bearing and then selecting a start point for the arc. This is enough information for the option to calculate the centre and end points and the direction of the arc, and hence, fully define the arc.

After selecting the option, the arc - start pt, radius, arc length, chord bear panel is displayed.

To create an arc, the name, colour, model, chainage interval, radius, arc length and chord bearing are
entered into the appropriate fields and then the start point of the arc selected with the cursor. The arc is then created using the information provided in the panel.

The new fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>input</td>
<td>the name of the new string.</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>input</td>
<td>available models</td>
<td>name of the model that the new string is in.</td>
</tr>
<tr>
<td>Colour</td>
<td>input</td>
<td>default colour</td>
<td>available colours</td>
</tr>
<tr>
<td>Style</td>
<td>input</td>
<td>1</td>
<td>available line styles</td>
</tr>
<tr>
<td>Weight</td>
<td>input</td>
<td>0</td>
<td>thickness of the string.</td>
</tr>
<tr>
<td>z mode</td>
<td>input</td>
<td>typed</td>
<td>snap, typed</td>
</tr>
<tr>
<td>z value</td>
<td>input</td>
<td>0</td>
<td>if the z mode method is typed, then the height (z-value) of the end points is the value in the field.</td>
</tr>
<tr>
<td>Ch interval</td>
<td>input</td>
<td>10</td>
<td>the chainage interval used when a chord approximation is needed for the arc.</td>
</tr>
<tr>
<td>Radius</td>
<td>input</td>
<td>radius of the arc.</td>
<td></td>
</tr>
<tr>
<td>Arc length</td>
<td>input</td>
<td>length of the arc from the start to the end point.</td>
<td></td>
</tr>
<tr>
<td>Chord bearing</td>
<td>input</td>
<td>bearing of the chord to the arc at the start point.</td>
<td></td>
</tr>
<tr>
<td>Arc</td>
<td>button</td>
<td>The arc button is used to begin a new create if the previous one was cancelled.</td>
<td></td>
</tr>
<tr>
<td>Same as</td>
<td>button</td>
<td>After the same as button is chosen, another string is selected and information about it is used for the fields in this panel.</td>
<td></td>
</tr>
</tbody>
</table>

Panel Messages

Next step messages sent to the screen message area when selecting the start point of the arc

<Arc start> [picks][][][menu]
<Arc start> [picks][accepts][menu]

Go back to 14.1.4 Create Arcs.
14.1.5 Create - Circles

Position of menu: Strings => Create => Circles

The create circles option is used to create 12d Model circles.

A 12d Model circle has no start and end points but is defined by a centre point and a radius. The circle has a constant height (z-value).

For convenient 12d Model includes a variety of methods for creating circles. On walking-right on the circles option, the create circles menu is displayed giving all the different methods for creating circles.

For Centre, radius, go to 14.1.5.1 Create Circle - Centre Point, Radius
Centre, pt on circle 14.1.5.2 Create Circle - Centre Point, Point on Circle
3 pts on circle 14.1.5.3 Create Circle - Three Points on Circle

Each option in the create circles menu fires up its own special panel to collect the necessary information for defining the circle.

The mouse is used to select the special points required for the circle definitions. For example, the circle - centre, radius option required the value of the radius to be entered into the circle - centre point, radius panel and the centre point is selected using the cursor.

Unlike the other strings created under strings=>create, the circles can be created immediately without needing any options from the circle editor. Consequently, after a circle is defined, the create panel is not removed and is left on the screen to create another circle. Any information that needs modifying is changed in the circle panel and is used for the new create.

New circles are created until either the panel is removed by selecting the finish or [X] button, or the create terminated by selecting cancel from the pick ops menu in which case the panel will be left on the screen. In the last case, the circle button is then used to begin a new create sequence.

Each of the methods for creating circles and arcs will now be described.

14.1.5.1 Create Circle - Centre Point, Radius

Position of option on menu: Strings => Create => Circles => Centre, radius

This option defines a circle by supplying a typed radius and selecting a centre point with the mouse

After selecting the option, the circle - centre point, radius panel is displayed.
To create a circle, the name, colour, model, chainage interval and radius are entered into the appropriate fields and the centre point selected with the cursor. The circle is then created using the information provided in the panel.

The new fields and buttons used in the **circle - centre point, radius** panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>the name of the new string.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>name of the model that the new string is in.</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>the colour of the new string.</td>
<td>input</td>
<td>default colour</td>
<td>available colours</td>
</tr>
<tr>
<td>Style</td>
<td>line style of the string.</td>
<td>input</td>
<td>1</td>
<td>available line styles</td>
</tr>
<tr>
<td>Weight</td>
<td>thickness of the string.</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>z mode</td>
<td>the method of specifying the z-value for the circle. It can be typed in or taken from the z-value of the selected centre point.</td>
<td>input typed</td>
<td>snap, typed</td>
<td></td>
</tr>
<tr>
<td>z value</td>
<td>if the z mode method is typed, then the height (z-value) of the circle is the value in the field.</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ch interval</td>
<td>the chainage interval used when a chord approximation is needed for the circle.</td>
<td>input</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Radius</td>
<td>the radius for the circle.</td>
<td>input</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

The **circle** button is used to begin a new create if the previous one was cancelled.
Same as button

After the same as button is chosen, another string is selected and information about it is used for the fields in this panel.

Panel Messages

Next step messages sent to the screen message when selecting and accepting the centre point are

\(<\text{Circle centre}> \text{[picks]} \text{[menu]}\)
\(<\text{Circle centre}> \text{[picks]} \text{[accepts]} \text{[menu]}\)

14.1.5.2 Create Circle - Centre Point, Point on Circle

Position of option on menu: Strings => Create => Circles => Centre, pt on circle

This option defines a circle by selecting a centre point and a point on the circle. The radius is automatically calculated by the option and is simply the distance between the two selected points.

After selecting the option, the circle - centre point, point on circle panel is displayed.

To create a circle, the name, colour, model and chainage interval are entered into the appropriate fields and the centre point and a point on the circle selected with the cursor. Then the circle is created using the information provided in the panel.

The new fields and buttons used in the circle - centre point, point on circle panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>input</td>
<td>default colour</td>
<td>available colours</td>
</tr>
<tr>
<td>Style</td>
<td>input</td>
<td>1</td>
<td>available line styles</td>
</tr>
<tr>
<td>Weight</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

The name of the new string.

Name of the model that the new string is in.

The colour of the new string.

Line style of the string.

Thickness of the string.
Chapter 14  Strings

Create z mode input typed snap, typed
the method of specifying the z-value for the circle. It can be typed in or taken from the z-value of the selected centre point.

Create z value input 0
if the z mode method is typed, then the height (z-value) of the circle is the value in the field.

Create Ch interval input 10
the chainage interval used when a chord approximation is needed for the circle.

Create Circle button
The circle button is used to begin a new create if the previous one was cancelled.

Create Same as button
After the same as button is chosen, another string is selected and information about it is used for the fields in this panel.

How to Use the Panel to Create a Circle
(a) The panel fields are filled in with the appropriate data for use in defining the circle.
(b) The mouse is then used to select the centre point for the circle.

Messages sent to the screen message area when selecting and accepting the centre point

<Circle centre> [picks][menu]
<Circle centre> [picks][accepts][menu]

When selecting a point on the circle

<Point on circle> [picks][menu]
<Point on circle> [picks][accepts][menu]

14.1.5.3 Create Circle - Three Points on Circle
Position of option on menu:  Strings =>Create =>Circles =>3 pts on circle
This option defines a circle by selecting three points that all lie on the circle. The radius and centre point are automatically calculated by the option.

After selecting the option, the circle - 3 points on circle panel is displayed.

To create a circle, the name, colour, model and chainage interval are entered into the appropriate fields and then three points which lie on the circle are selected with the cursor. The circle is then created using the information provided in the panel.

The fields and buttons used in the circle - 3 points on circle panel have the following functions.
Create

Field Description	Type	Defaults	Pop-Up
Name | input | the name of the new string.

Model | input | available models | name of the model that the new string is in.

Colour | input | default colour | available colours | the colour of the new string.

Style | input | 1 | available line styles | line style of the string.

Weight | input | 0 | thickness of the string.

z mode | input | typed | snap, typed | the method of specifying the z-value for the circle. It can be typed in or taken from the z-value of the selected centre point.

z value | input | 0 | if the z mode method is typed, then the height (z-value) of the circle is the value in the field.

Ch interval | input | 10 | the chainage interval used when a chord approximation is needed for the circle.

Circle button | The **circle** button is used to begin a new create if the previous one was cancelled.

Same as button | After the **same as** button is chosen, another string is selected and information about it is used for the fields in this panel.

Panel Messages

Next step messages sent to the screen message area when selecting and accepting the 1st point

<First point on circle> [picks][menu]
<First point on circle> [picks][accepts][menu]

When selecting and accepting the second point

<Second point on circle> [picks][menu]
<Second point on circle> [picks][accepts][menu]

When selecting and accepting the third point

<Third point on circle> [picks][menu]
<Third point on circle> [picks][accepts][menu]
14.1.6 Create - Feature

Position of option on menu:  **Strings =>Create =>Feature**

A feature string consists of a centre point (x,y,z) and a user given radius.

The difference between a circle and a feature string is that for a feature string the centre point is considered to be a valid (x,y,z) point but all the points on the circumference of the feature string are null values. Feature strings can be used to represent objects such as trees.

The Many strings tick-box is used when more than one string of the same type is to be created. If many strings is set to *tick*, when the current string creation is *Finished* or Quit, a new Create Feature String panel is placed on the screen with the same information in it as the string just created. If any of the information needs to be modified for the new string, simply change it in the Create Feature String panel fields before selecting the Create button for the new string. Hence a new string of the same type can be created without going back to the Create menu.

The Same as button is used to obtain information from and existing string (not necessarily of the same type) and pipe it into the name, colour, model, style breakline type and height field of the Create Feature String panel.

After selecting the option, the Create feature string panel is displayed.

![Create Feature String Panel](image)

The new fields and buttons used in the create feature string panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>input</td>
<td>the name of the new string.</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>input</td>
<td>default colour available colours</td>
<td></td>
</tr>
<tr>
<td>Style</td>
<td>input</td>
<td>1 available line styles</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>input</td>
<td>0 thickness of the string.</td>
<td></td>
</tr>
<tr>
<td>Centre</td>
<td>input</td>
<td>xyz ops menu</td>
<td></td>
</tr>
</tbody>
</table>

Co-ordinates of the centre of the feature.
Radius input

the radius for the feature.

Many strings tick
if ticked then after the current string is finished, a new create panel is placed on the screen with all the same values for the panel fields as the current string.

Create button
After the create button is chosen, the Feature Edit menu and Feature Edit Info panel are displayed.

Same as button
After the same as button is chosen, another string is selected and information about it is used for the fields in this panel.

Note - the centre co-ordinates can either be typed into the centre panel field, or if LB is clicked on [+] for the centre panel field, the xyz ops menu comes up and the pick xyz option can be used from it to select a point as the arc centre.

Start Edit - Feature

Like the arc creates, on selecting the Create button the feature string is immediately created. The Feature Edit menu and feature edit info panel are also placed on the screen at the same time

The Feature Edit menu and panel for a feature string are

For full information in the Feature Editor, go to the section 14.4.7 Feature Edit
14.1.7 Create - Pipe Super

Position of option on menu:  Strings =>Create =>Pipe

A pipe super string is the same as a 3d string except that the pipe string also has a diameter hence the options for creating and editing a pipe string are almost the same as for a 3d string.

The main difference is that the pipe diameter can be modified in the Properties panel for the string.

The Many strings tick-box is used when more than one string of the same type is to be created. If many strings is set to tick, when the current string creation is Finished or Quit, a new Create Super Pipe String panel is placed on the screen with the same information in it as the string just created. If any of the information needs to be modified for the new string, simply change it in the Create Super Pipe String panel fields before selecting the Create button for the new string. Hence a new string of the same type can be created without going back to the Create menu.

The Same as button is used to obtain information from an existing string (not necessarily of the same type) and pipe it into the name, colour, model, type, linestyle style, weight, diameter and tinability fields of the Create Super Pipe String panel.

From 12d Model 8 onwards, the default is to create super pipe strings rather than the pipe strings used up to 12d Model 7. The advantage is using a pipe super string is that all the CAD options will work for it, vertices and segments can be assigned tinability and it can have point id’s for setout.

The older pipe string create option is still available under

Strings =>Create =>Old  (go to the section 14.20.1.5 Create - Pipe (Pre V8))

On selecting the Pipe option, the Create Super Pipe String panel is displayed.

The fields and buttons used in the Create Super Pipe String panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>input</td>
<td>from CAD controlbar</td>
<td></td>
</tr>
</tbody>
</table>

The default values for the panel fields are taken from the CAD Controlbar (see 15.1 Controlbars)

To create a new pipe super string, the panel fields are filled in and the Create button selected.

Create
**Model**

model box  from CAD controlbar  available models

*name of the model that the new string is in*

**Colour**

colour box  from CAD controlbar  available colours

*the colour of the new string*

**Type**

choice box line  line, point

*breakline type (point-line type) of the string*

**Linestyle**

input  from CAD controlbar  available line styles

*line style of the string*

**Weight**

input  from CAD controlbar

*thickness of the string*

**Diameter**

input  0

*diameter of the pipe*

**Justify**

input invert  invert, centre, overt

*justification of the pipe with respect to the co-ordinates given for the pipe string.*

**Tinability**

choice box Points and segments  Points only  Not tinable

*if Vertices and segments, all the vertices and segments of the string are set to **tinable**.*

*If Vertices only, all the vertices are set to tinable and the segments to not tinable.*

*If Not tinable, all the vertices or segments are set to **not tinable**.*

**Allow point ids**

tick box

*if ticked, the super string can have point ids for each vertex.*

*If not ticked, the super string will not have point ids. This can be reversed if point ids are required in the future.*

**Many strings**

tick box

*if ticked then after the current string is finished, a new create panel is placed on the screen with all the same values for the panel fields as the current string.*

**Create**

button

*after the Create button is chosen, the Edit Pipe menu is displayed*

**Same as**

button

*after the Same as button is chosen, another string is selected and information about it is used for the fields in this panel*

**Finish**

button

*end the option, don’t proceed to the edit stage*

---

**Start Edit - Pipe Super**

On selecting the Create button in the Create Super Pipe String panel the Edit Pipe menu is placed on the screen. The Edit Pipe menu for a pipe super string is
To create a new pipe super string, select the Append icon.

The Append option is used to add vertices to either end of an existing string, or in the case of a new string, places the first vertex and then begins appending vertices to the first vertex.

For all pipe strings, a cross is then drawn in each plan view that the string's model is on, and the cross follows the cursor around the screen. If the string's model is not added to any plan view, the model is automatically added to all plan views.

After the cross is on the screen (moving with the cursor), clicking LB and accepting with MB selects the first vertex of the string (using the appropriate snaps).

The string is then drawn from the first vertex to the cursor position, which represents the second vertex of the string. Clicking LB and accepting with MB selects the second string vertex and the process repeats for subsequent string vertices.

Now that the string is created, all the edit options on the string's Edit Pipe menu are usable.

The options in the Edit Pipe menu are not only used for placing the initial vertices of the string, but for editing the string once it is created. Since the Append and other options in the Edit Pipe menu are identical to the options used when editing an existing string, they will be discussed in detail in the string Editor section.

For full information in the Pipe Editor, go to the section 14.4.8 Edit Pipe
14.1.8 Create - Polyline Super

Position of option on menu:  Strings => Create => Polyline

A polyline string is similar to a 3d string except that it can have either straight lines or arcs joining the (x,y,z) vertices of the string. The arcs are plan arcs with possibly a different z at either end and the z values are linearly interpolated between the end points. Hence in a long section, the end vertices are joined by straight lines for both line and arc segments of the polyline.

Creating and editing a polyline string is very similar to a 3d string. The only major difference is that a radius is required at each string segment (a radius of 0 means no arc, just a straight line).

The Many strings tick-box is used when more than one string of the same type is to be created. If many strings is set to tick, when the current string creation is Finished or Quit, a new Create Super Polyline String panel is placed on the screen with the same information in it as the string just created. If any of the information needs to be modified for the new string, simply change it in the Create Super Polyline String panel fields before selecting the Create button for the new string. Hence a new string of the same type can be created without going back to the Create menu.

The Same as button is used to obtain information from and existing string (not necessarily of the same type) and pipe it into the name, colour, model, type, linestyle style and weight fields of the Create Super Polyline String panel.

From 12d Model 8 onwards, the default is to create super polyline strings rather than the polyline strings used up to 12d Model 7. The advantage is using a super polyline string is that all the CAD options will work for it, vertices and segments can be assigned tinability and it can have point id’s for setout.

The older pipe string create option is still available under

Strings => Create => Old

(go to the section 14.20.1.6 Create - Polyline (Pre V8))

On selecting the Polyline option, the Create Super Polyline String panel is displayed.

The default values for the panel fields are taken from the CAD Controlbar (see 15.1 Controlbars)

To create a new polyline super string, the panel fields are filled in and the Create button selected.

The fields and buttons used in the Create Super Polyline String panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>input</td>
<td>from CAD controlbar</td>
<td>the name of the new string</td>
</tr>
</tbody>
</table>
Chapter 14  Strings

Model  
name of the model that the new string is in

Colour  
the colour of the new string

Type  
breakline type (point-line type) of the string

Linestyle  
line style of the string

Weight  
thickness of the string

Tinability  
Points and segments or Points only

if Vertices and segments, all the vertices and segments of the string are set to tinable.
If Vertices only, all the vertices are set to tinable and the segments to not tinable.
If Not tinable, all the vertices or segments are set to not tinable.

Allow point ids  
tick box

if ticked, the super string can have point ids for each vertex.
If not ticked, the super string will not have point ids. This can be reversed if point ids are required in the future.

Many strings  
tick box

if ticked then after the current string is finished, a new create panel is placed on the screen with all the same values for the panel fields as the current string.

Create  
button

after the Create button is chosen, the Edit Polyline menu is displayed

Same as  
button

after the Same as button is chosen, another string is selected and information about it is used for the fields in this panel

Finish  
button

end the option, don’t proceed to the edit stage

Start Edit - Polyline Super

On selecting the Create button in the Create Super Polyline String panel the Edit Polyline menu is placed on the screen. The Edit Polyline menu for a polyline super string is
To create a new polyline string, the user must select one of the two append options (Append or Append + radius) on the Append drop-down toolbar on the Edit Polyline toolbar. The Append option simply creates vertices which are joined by a straight segment whereas the Append + radius creates vertices with a radius for the segment.

The Append options are used to add vertices to either end of an existing string, or in the case of a new string, places the 1st vertex and then begins appending vertices to the 1st vertex.

For all polyline strings, a cross is then drawn in each plan view that the string's model is on, and the cross follows the cursor around the screen. If the string's model is not added to any plan view, the model is automatically added to all plan views.

After the cross is on the screen (moving with the cursor), clicking LB and accepting with MB selects the 1st vertex of the string (using the appropriate snaps).

If Append + radius was selected, the user will then be prompted for the radius of the segment being placed. The string is then drawn from the 1st vertex to the cursor position, which represents the second vertex of the string. Clicking LB and accepting with MB selects the second string vertex and the process repeats for subsequent string vertices.

The options in the Edit Polyline menu are not only used for placing the initial vertices of the string, but for editing the string once it is created. Since the Append and other options in the Edit Polyline menu are identical to the options used when editing an existing string, they will be discussed in detail in the string Editor section.

For full information in the Polyline Editor, go to the section 14.4.9 Edit Polyline
14.1.9 Create - Super

Position of option on menu:  
Strings =>Create =>Super

A super string is a combination and generalisation of a 4d string, a pipe string and a polyline string.

A super strings consists of a series of (x,y) vertices, plus it can have either straight lines or arcs joining the 
vertices of the string.

At each vertex, the super string has:

- height
- text
- visibility
- tinability (contourability)
- point number
- symbol
- user defined attributes

For each segment, the super string has:

- plan radius
- colour
- text
- tinability (breakline)
- pipe diameter or box dimensions
- visibility
- user defined attributes

Creating and editing a super string is very similar to a polyline string in that a radius is can be given at each 
string segment (a radius of 0 means no arc, just a straight line), and also like a 4d string in that there can be 
text at each vertex. However there are many more choices about what is defined for each vertex and 
segment of the super string.

The Many strings tick-box is used when more than one string of the same type is to be created. If many 
strings is set to tick, when the current string creation is Finished or Quit, a new Create Super String panel 
is placed on the screen with the same information in it as the string just created. If any of the information 
needs to be modified for the new string, simply change it in the Create Super String panel fields before 
selecting the Create button for the new string. Hence a new string of the same type can be created without 
going back to the Create menu.

The Same as button is used to obtain information from and existing string (not necessarily of the same type) 
and pipe it into the name, colour, model, style breakline type and height field of the Create Super String 
panel.

On selecting the Super string option, the Create Super String panel is displayed.
When the panel opens, various panel field values are taken from the ControlBars.
The information in Name, Model, Colour, Style and Tinable are taken from the CAD ControlBar,
Attributes from the Attributes ControlBar and Pipe information from the Pipe ControlBar.
If the Name icon is used in the Create Super String panel to select a name from the names.4d pop up,
then the panel fields are updated from the names.4d file.

To create a new super string, the appropriate panel fields are filled in and the Create button clicked.

The new fields and buttons used in the Create Super String panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>names.4d box</td>
<td>names.4d file</td>
<td>the name of the new string</td>
</tr>
</tbody>
</table>
Model  
model box  
available models

name of the model for the new string.

Colour  
colour box  
default colour  
available colours

the colour of the new string.

Note that each segment can have a different colour if in the Segment tab, the Segment colour choice is Varied.

Type  
choice box  
line  
line, point

breakline type (point-line type) of the string

As an overall string property:

If a string has type line, then all vertices and all segments are tinable.
If a string has type point, then all vertices are tinable but the segments are not tinable.

Note that each vertex and segment can have different tinabilities and it is controlled in the Tínable tab.

Style  
linestyle box  
1  
available line styles

line style of the new string.

Weight  
weight box  
0

thickness of the string when plotted.

String type  
choice box  
2d like, 3d like, 4d like

if not blank, the like type sets a number of the panel field settings.

Many strings  
tick box

if ticked then after the current string is finished, a new Create Super String panel is placed on the screen with all the same values for the panel fields as in the current panel.

Vertex tab

The fields for setting up what information is required for vertices.

Vertices height  
choice box  
Constant for all
Varied
No height

if Constant for all, there is only one height that is used for all vertices of the string (2d like).
If Varied, there is a different height for each vertex (3d like)
If No height, there is no height at all for the string.

if the Vertices height choice is Constant for all then the field Default height is enabled.

Default height  
real box

the one height that is used for every vertex of the string.

Text data  
choice box  
Constant for all
Varied
No text data

if Constant for all, there is one text for all the vertices of the string.
If Varied, there is different text for each vertex.
If No text data, there is no text at all for the string.

if the Text data choice is Constant for all then the fields Input text and Text style are enabled.

Input text  
text box

the one bit of text that is used for every vertex of the string.

Text style  
choice box  
Constant for all
Varied
if Constant for all, there is one textstyle that is used for all the vertices of the string.  
If Varied, there is a different textstyle for each vertex.  
If No text data, there is no textstyle at all for the string.

if the Text style choice is Constant for all then the field Textstyle data is enabled.

Textstyle data textstyle data box  
the one textstyle data that is used for every vertex of the string.

Symbol data choice box  
if Constant for all, there is one symbol that is used for all vertices of the string.  
If Varied, there is a different symbol for each vertex  
If No symbol, there is no symbols at all for the string.

if the Symbol data choice is Constant for all then the field Symbol data is enabled.

Symbol data symbol data box  
the one symbol data that is used for every vertex of the string.

Variable point id tick box  
if ticked, there is a different point id for each vertex.  
If not ticked, there are no vertex ids for any vertex of the string.

Attribute data for each vertex tick box  
if ticked, there can be attributes for each vertex.  
If not ticked, there are no attributes on any vertex.

Segment tab
The fields for setting up what information is required for segments.

Segments colour choice box  
if Constant for all, there is one colour for every segment of the string and that is the colour in the Colour field.  
If Varied, there is a different colour for each segment.

Text data choice box  
if Constant for all, there is one text for all the segments of the string.  
If Varied, there is different text for each segment.  
If No text data, there is no text at all for the string.

if the Text data choice is Constant for all then the fields Input text and Text style are enabled.

Input text text box  
the one bit of text that is used for every segment of the string.

Text style choice box  
if Constant for all, there is one textstyle that is used for all the segments of the string.
If *Varied*, there is a different textstyle for each segment.
If *No text data*, there is no textstyle at all for the string.

If the Text style choice is Constant for all then the field Textstyle data is enabled.

**Textstyle data**

*Textstyle data box*

the one textstyle data that is used for every segment of the string.

**Radius/Major**

*Tick box*

If ticked, each segment can have a radius and a major flag.
If not ticked, all segments are straight lines.

*Note:* the radius is a signed value and in the direction of travel along the arc, a negative radius means the arc bends to the left and a positive radius means the arc bends to the right. However this is still not enough to uniquely define the arc and it can be a minor major arc (turns through less than or equal to 180 degrees), or a major arc (turns through more than 180 degrees). The Major flag is 0 for a minor arc and 1 for a major arc.

**Attribute data for each segment**

*Tick box*

If ticked, there can be attributes for each segment.
If not ticked, there are no attributes on any segment.

**Tinable/Visible tab**

The fields for setting up what tinability is allowed for vertices and segments.

*Tinability* for a *vertex* is the property that the vertex is included in a tin (triangulation).
If a vertex is tinable then it is included in a tin.
If a vertex is not tinable, then it is not included in a tin.

*Tinability* for a *segment* is the property that the segment is to be included in a tin (triangulation). That is, the segment is to be a side of a triangle in a tin. Another name for a tinable segment is that it is a *breakline*. Even though a segment is tinable, it may not end up in a tin if there are crossing breaklines. Also a tinable segment can not be included in a tin if either of its end vertices are not tinable.

If a segment is tinable then if possible, it is included as the side of a triangle in a tin.
If a segment is not tinable, then it does not have to be included as a side of a triangle in a tin.

As an overall string property:

If a string has type *line*, then all vertices and all segments are tinable.
If a string has type *point*, then all vertices are tinable but the segments are not tinable.

**Vertex tinability**

*Choice box*

*Constant*
varied
not tinable

if *Constant*, there is one tinability and it is the same for all vertices in the string.
If *Varied*, each vertex can have a different tinability.
If *Not tinable*, then all vertices are not tinable.

**Segment tinability**

*Choice box*

*Constant*
varied
not tinable

if *Constant*, there is one tinability and it is the same for all segments in the string.
If *Varied*, each segment can have a different tinability.
If *Not tinable*, then all segments are not tinable.
Pipe mode tab
The fields for setting up what pipe modes are allowed for segments.
Segments can be all round for a string, or all box (culvert) for a string but can’t be a mixture of round
and box in the one string.
If a segment is round then it just needs a diameter.
If a segment is culvert (or box), it needs a width and a height.

Pipe choice
There are five choice: the string is a
- constant pipe string and has one diameter for the entire string
- a variable pipe string and can have a different diameter for each segment
- a constant culvert string and has the one width and height for each segment
- a variable culvert string and can have a different width and height for each segment
- or the string has no diameter or width and height for any segment.

Pipe mode choice box
- no round pipe or culvert
- round pipe entire string
- round pipe each segment
- culvert entire string
- culvert each segment

if no round pipe or culvert, there is no diameters, or any widths or heights for any segment.
if round pipe entire string, there is one diameter for all segments in the string.
if round pipe each segment, there is a different diameter for each segments of the string.
if culvert entire string, there is one width and a height for all segments in the string.
if culvert each segment, there is a different width and height for each segment of the string.

if the Pipe mode choice is round pipe entire string then the field Diameter is enabled.
Diameter real box
diameter to use for every segment of the string.

if the Pipe mode choice is culvert entire string then the fields Width and Height are enabled.
Width/Height real box
width/height to use for every segment of the string.

if the Pipe mode choice is NOT no round pipe or culvert then the field Justify is enabled.
Justify choice box
- Invert, centre, obvert
  If invert, the coordinates of the vertices are on the top of the pipe/culvert.
  If centre, the coordinates of the vertices are in the centre of the pipe/culvert.
  If obvert, the coordinates of the vertices are at the bottom of the pipe/culvert.

Buttons at bottom
Create button
After the create button is chosen, the super edit menu and super edit info panel are displayed.

Same as button
After the same as button is chosen, another string is selected and information about it is used for the
fields in this panel.

Start Edit - Super String
On selecting the Create button in the Create Super String panel the Super Edit menu and Super Edit Info
panels are placed on the screen.
To create a new super string, select the **Append** or **Append + radius** or **Append + text** icons.

The **Append** and **Append + text** options simply creates vertices that are joined by a straight segments. **Append + text** also asks for text at each vertex.

The **Append + radius** create vertices with a radius for the segment.

For all super strings, a cross is then drawn in each plan view that the string’s model is on, and the cross follows the cursor around the screen. If the string’s model is not added to any plan view, the model is automatically added to all plan views.

After the cross is on the screen (moving with the cursor), clicking LB and accepting with MB selects the first vertex of the string (using the appropriate snaps).

If **Append + radius** was selected, the user will then be prompted for the radius of the segment being placed. If **Append + text** was selected, the user will then be prompted for the text to be placed at the vertex.

The string is then drawn from the first vertex to the cursor position, which represents the second vertex of the string. Clicking LB and accepting with MB selects the second string vertex and the process repeats for subsequent string vertices.

Now that the string is created, all the edit option on the string’s **Super Edit** menu are usable.

The options in the **Super Edit** menu are not only used for placing the initial vertices of the string, but for editing the string once it is created. Since the **Append** and other options in the **Super Edit** menu are identical to the options used when editing an existing string, they will be discussed in detail in the string **Editor** section.

For full information in the Super Editor, go to the section 14.4.10 **Edit Super**
14.1.10 Create - Text

Position of option on menu: Strings => Create => Text

A text string consists of:
(a) the text
(b) an (x,y) position for the text
(c) a text style
(d) a justification
(e) the height of the text in pixels, paper or world units
(f) the x factor and slant of the text
(g) the colour of the text
(h) the angle to write the text at

The default text style uses a non-proportional font but user defined fonts can be proportional or non-proportional.
The justification of the text with respect to text string’s (x,y) position is user specified.
The text angle is measured in a counter-clockwise direction with respect to the horizontal axis.

For more information on text definitions, go to the section 4.6 Text Definitions.

Note - deleting text

Text is deleted as a normal string with the picking point at the text string’s definition point. The relationship of the definition point and the text depends on the text offset and justification.

The Many strings tick-box is used when more than one string of the same type is to be created. If many strings is set to tick, when the current string creation is Finished or Quit, a new Create Text String panel is placed on the screen with the same information in it as the string just created. If any of the information needs to be modified for the new string, simply change it in the Create Text String panel fields before selecting the Create button for the new string. Hence a new string of the same type can be created without going back to the Create menu.

The Same as button is used to obtain information from an existing string (not necessarily of the same type) and pipe it into the name, colour, model, style breakline type and height field of the Create Text String panel.

On selecting the Text string option, the Create text string panel is displayed.
To create a new text string, the name, model, colour and actual text of the new string are entered into the appropriate fields, and the textstyle info such as height, offset, justification, angle are entered by clicking on the Textstyle info box. The create button is then selected.

The new fields and buttons used in the create text string panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>name of the new string</td>
<td>name box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>name of the model that the new string is in.</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>the colour of the new string</td>
<td>colour box</td>
<td>default colour</td>
<td>available colours</td>
</tr>
<tr>
<td>Textstyle info</td>
<td>textstyle information.</td>
<td>textstyle info box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text</td>
<td>the actual text.</td>
<td>multi-line text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Many strings</td>
<td>if ticked then after the current string is finished, a new create panel is placed on the screen with all the same values for the panel fields as the current string.</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td>Create</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same as</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Start Edit - Text

On selecting the create button in the create text string panel the text edit menu and text edit info panel are placed on the screen.
The **text edit** menu for a text string is and the **text edit** panel is

![Text Edit Menu](image1.png)

(x,y) position of text
define the actual text
text height
text angle
bring up attribute panel
toggle edit info panel
undo/redo
quit the create
finish the text edit

To creating a new text string, the user must first select the **Position** option from the **Text edit** menu. Then after selecting a position, the text is created and displayed (if the model is on the view).

For full information in the Text Editor, go to the section 14.4.12 **Text Edit**
14.1.11 Create - Ellipse

Position of option on menu:  
Strings => Create => Ellipse

This option creates a super string of points along the ellipse defined in the panel. The frequency of points is determined by a user defined chord-to-arc tolerance.

After selecting the Ellipse option, the Create Ellipse panel is displayed.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ellipse centre</td>
<td>model select</td>
<td>centre of the ellipse</td>
<td></td>
</tr>
<tr>
<td>OutPut model</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Add to view</td>
<td>view select</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>colour box</td>
<td>default colour available colours</td>
<td></td>
</tr>
<tr>
<td>Ellipse name</td>
<td>name mapping box</td>
<td>names in name mapping file</td>
<td></td>
</tr>
<tr>
<td>Major Axis</td>
<td>measure box</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Minor Axis</td>
<td>measure box</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Major Axis Brg</td>
<td>measure box</td>
<td>10°00'</td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>measure box</td>
<td>null</td>
<td></td>
</tr>
</tbody>
</table>

The Create Ellipse panel includes fields for specifying the ellipse's center, output model, add to view, colour, ellipse name, major axis, minor axis, major axis bearing, level, and arc-chord tolerance. Each field is described with its type, default value, and available options.

The panel allows users to define the ellipse's characteristics, including its center, axis lengths, bearing, and level, to create a string of points along the ellipse.
Arc-Chord Tol measure box 0.01
the chord to arc tolerance to use for deciding how often to create points around the ellipse

Create button
after the Create button is chosen, a string of points around the ellipse is created

Same as button
after the same as button is chosen, another string is selected and information about it is used for the fields in this panel.
14.1.12 Create - Control Stations

Position of option on menu: Strings => Create => Create Control Station

This option is documented in Survey => Extras => Create Control stations in the section 17.14.5 Create Control Stations.
14.1.13 New

Position of option on menu: Strings => Create => New

This section of documentation is a work in progress and will be updated in subsequent releases.

The New walk-right menu contains options Interface and Face.

For the option Interface, go to

Face

14.1.13.1 Interface

Position of option on menu: Strings => Create => New => Interface

This section of documentation is a work in progress and will be updated in subsequent releases.

On selecting the Interface option, the Create Super Interface String panel is displayed.

The fields and buttons used in the Create Super Interface String panel have the following functions.
<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>line</td>
<td>point, line</td>
</tr>
<tr>
<td>Linestyle</td>
<td>input</td>
<td>from CAD controlbar</td>
<td>available line styles</td>
</tr>
<tr>
<td>Weight</td>
<td>input</td>
<td>from CAD controlbar</td>
<td></td>
</tr>
<tr>
<td>Tinability</td>
<td>choice box</td>
<td>Points and segments</td>
<td>Points only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Not tinable</td>
</tr>
<tr>
<td>Allow point ids</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Many strings</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same as</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Once the Create button has been pressed, the Edit Interface toolbar and Super edit Info panel appears on the screen, containing the list of available edit options for the Super Interface String.

14.1.13.2 Face

Position of option on menu: Strings => Create => New => Face

This section of documentation is a work in progress and will be updated in subsequent releases.

On selecting the Face option, the Create Super Face String panel is displayed.
The fields and buttons used in the **Create Super Face String panel** have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>line</td>
<td>point, line</td>
</tr>
<tr>
<td>Linestyle</td>
<td>input</td>
<td>from CAD controlbar</td>
<td>available line styles</td>
</tr>
<tr>
<td>Weight</td>
<td>input</td>
<td>from CAD controlbar</td>
<td></td>
</tr>
<tr>
<td>Fill Colour</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td>Tinability</td>
<td>choice box</td>
<td>Points and segments</td>
<td>Points only, Not tinable</td>
</tr>
<tr>
<td>Allow point ids</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Many strings</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same as</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Once the Create button has been pressed, the Edit Face toolbar and Super edit Info panel appears on the screen, containing the list of available edit options for the Super Face String.
14.1.14 Create - Same As

Position of option on menu: Strings => Create => Same as

The same as option is used to create a new string of the same type and with similar header information as an existing string.

On selecting the same as create option, the create same as panel is displayed.

![Create Same As Panel]

After selecting the option, the option is already running and waiting for a string to be selected.

Once a string is selected from a view, a new create nd string panel of the same type as the selected string and with all the header information from the selected string, is displayed on the screen.

The user then proceeds as a normal create string option.

If the pick is terminated by clicking RB to get up the pick ops menu and selecting cancel from it, the option can be started again by selecting the pick & create button.
14.2 Super Alignments

Position of menu: Strings => Super alignments

The Super Alignment walk-right menu contains options to create a super alignment string, plus options to create/edit labelling and information styles, and design standards and templates.

For the option Super alignment, go to:
- 14.2.1 Create Super Alignment
- 14.2.2 Super Alignment Tools
- 14.2.3 Super Alignment Style
- 14.2.4 Super Alignment Info Styles
- 14.2.5 Design Standards
- 14.2.6 Design Templates
- 14.2.7 Import Legacy Design
14.2.1 Create Super Alignment

Position of option on menu:  Strings => Super Alignments => Super alignments

A super alignment string is defined by specifying both its horizontal and vertical geometry.

If the user does not have the Alignment Module, then the super alignment acts like the pre-V10 alignment string and consists of only horizontal and vertical intersection points consisting of leading transitions-arc-trailing transition for each horizontal intersection point, and parabolas or arcs on the intersection points for vertical geometry. The resultant elements are linked tangentially to form the horizontal and vertical geometry. The intersection points and the tangent points can be moved.

If the user has the Alignment Module then the Super Alignment includes IP constructions but also allows much more complicated parametric design.

The Horizontal Geometry of a Super Alignment is made up of parts, which may be as simple as a straight line between two points or an arc with a given centre and radius, or a horizontal intersection point with given leading and trailing transitions or the parts can be very complicated where for example the points of a line are defined by the offset intersection of the two arcs from other strings.

Often a horizontal part is not fully defined (parts are classified as fixed which are fully defined, floating which have one degree of freedom and free which have two degrees of freedom) and the extra restriction that the horizontal parts must be linked tangentially is necessary to fully defined the horizontal geometry. The horizontal geometry is then said to be solved.

Once solved, the horizontal geometry simply consists of linked known segments of types lines, arcs and transition, and so can be drawn in a plan view.

So the horizontal geometry is made up of the constructive definitions called parts, and if the horizontal geometry solves, it also contains the resultant horizontal segments.

Similarly the Vertical Geometry is made up of parts, which are made up of simple or complicated combinations of straight lines, arcs or parabolas. Again the extra restriction that the vertical parts must be linked tangentially is often necessary to fully defined the vertical geometry. The vertical geometry is then said to be solved and the solved vertical geometry simply consists of linked known segments of types lines, arcs and parabolas, and so can be drawn in a section view.

So the vertical geometry is made up of the constructive definitions called parts, and if the vertical geometry solves, it also contains the resultant vertical segments.

Important Note

The horizontal and vertical parts of a super alignment are only displayed when the super alignment is being edited. When the super alignment is not being edited, the solved segments are displayed and any unsolved parts are displayed as red crosses.

For more information on Super Alignments and Parts, see 21.9 Placing Parts for Super Alignments.

Notes:

1. vertical geometry can only be added to an existing super alignment string. That is, to a string with some horizontal geometry.

2. for both the alignment and super alignment, the horizontal geometry is defined in a plan view and the vertical geometry in a section view.

On selecting the Super Alignment option, the Create Super Alignment panel is displayed.
To create a new super alignment string, the name, model, colour, etc. of the new string are entered into the appropriate fields for each branch on the tree on the left-hand side of the panel, and the **Create** or **Many** button selected.

For information on each branch and the buttons (Create, Many, Same as), and starting to edit after selecting the **Create** or **Many** button, go to:

- Basic > General branch
- Basic > Chainage branch
- Basic > Interval branch
- Basic > Label branch
- Basic > Transition branch
- Basic > Closure branch
- Basic > Sync branch
- Basic > IP defaults branch
- Advanced > Start branch
- Advanced > End branch
- Advanced > Design branch
- Advanced > Profiles branch
- Advanced > Equality branch
- Advanced > Chain branch (not yet implemented)
- Buttons at Bottom
- Start Edit - Super Alignment
The fields and buttons used in the **Basic > General** branch of the Create Super Alignment panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>name box</td>
<td>from CAD controlbar</td>
<td>available names</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>model box</td>
<td>from CAD controlbar</td>
<td>available models</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>colour box</td>
<td>from CAD controlbar</td>
<td>available colours</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal Linestyle</td>
<td>linestyle box</td>
<td>from CAD controlbar</td>
<td>available linestyles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Linestyle</td>
<td>linestyle box</td>
<td>from CAD controlbar</td>
<td>available linestyles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>weight box</td>
<td>from CAD controlbar</td>
<td></td>
</tr>
</tbody>
</table>

*the name of the new string*

*name of the model that the new string is in*

*the colour of the new string. Note that the super alignment may not appear to have this colour if a Label style is set. The Label can define different colours to parts of the super alignment.*

*linestyle of the string when displayed on a Plan view*

*linestyle of the string when profiled on a Section view*

*thickness of the string when plotted*
Basic > Chainage branch

The fields and buttons used in the Basic > Chainage branch of the Create Super Alignment panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control chainage</td>
<td>measure box</td>
<td>0</td>
<td>Measure Point/String from point</td>
</tr>
<tr>
<td>defines the control chainage for the horizontal geometry. What this value refers to depends on the Mode.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode</th>
<th>choice box</th>
<th>start point</th>
<th>end point</th>
<th>control point</th>
<th>start part</th>
<th>end part</th>
</tr>
</thead>
</table>

If start point, the Control chainage value is applied to the start of the usable horizontal geometry.

If end point, the Control chainage value is applied to the end of the usable horizontal geometry.

If control point, a user given control point is dropped perpendicularly onto the horizontal geometry and that position is given the Control chainage value.

Control point X/Y coordinate select x, y box
coordinates of the control point

If start part, the Control chainage value is applied to the start of the first part of horizontal geometry, even if it is invisible.

If end part, the Control chainage value is applied to the end of the last part of horizontal geometry, even if it is invisible.
Basic > Interval branch

The fields and buttons used in the Basic > Interval branch of the Create Super Alignment panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Chainage interval</td>
<td>measure box</td>
<td></td>
<td>Point to point/String to point</td>
</tr>
<tr>
<td></td>
<td>horizontal chainage interval for the string</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If blank, the default is 10.</td>
<td></td>
</tr>
<tr>
<td>Horizontal Chord to arc tol</td>
<td>measure box</td>
<td></td>
<td>Point to point/String to point</td>
</tr>
<tr>
<td></td>
<td>horizontal chord to arc tolerance to use for any arcs and transitions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If blank, the default is 0.1.</td>
<td></td>
</tr>
<tr>
<td>Vertical Chainage interval</td>
<td>measure box</td>
<td></td>
<td>Point to point/String to point</td>
</tr>
<tr>
<td></td>
<td>vertical chainage interval for the string</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If blank, the default is 10.</td>
<td></td>
</tr>
<tr>
<td>Vertical Chord to arc tol</td>
<td>measure box</td>
<td></td>
<td>Point to point/String to point</td>
</tr>
<tr>
<td></td>
<td>vertical chord to arc tolerance to use for any parabolas or circular curves.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If blank, the default is 0.1.</td>
<td></td>
</tr>
</tbody>
</table>

Note: the horizontal and vertical intervals and chord to arc tolerances are used when the super alignment is approximated by straights in three dimensions.
### Basic > Label branch

![Image of Create Super Alignment panel]

The fields and buttons used in the **Basic > Label** branch of the **Create Super Alignment** panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Label style</strong></td>
<td>choice box</td>
<td>default</td>
<td>available label styles</td>
</tr>
</tbody>
</table>

The super alignment style controls the way the super alignment draws and highlights on the screen.

For more information please go to the section 14.2.3 **Super Alignment Style**

- **Label Major Chainage interval** measure box
  
  major chainage interval to use for labelling

  *If blank, the default is 10.*

- **Label Minor Chainage interval** measure box
  
  minor chainage interval to use for labelling

- **Label Reference chainage interval** measure box
  
  reference value for the chainage labelling intervals

- **Label Special chainage file** file box

  file of special chainages for labelling

  *Note: the labelling of the super alignment is given by the Label style on the General tab.*

  For more information please go to the section 14.2.3 **Super Alignment Style**
Basic > Transition branch

The fields and buttons used in the Basic > Transition branch of the Create Super Alignment panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition type</td>
<td>choice box</td>
<td>clothoid</td>
<td></td>
</tr>
</tbody>
</table>

The transition (for example clothoid) to be used for this super alignment string.

For more information see 39.2.7.5 Transitions and Spirals File.
The fields and buttons used in the Basic > Closure branch of the Create Super Alignment panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed string</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
</tbody>
</table>

*If ticked, the super alignment is automatically closed*
Basic > Sync branch

The fields and buttons used in the Basic > Sync branch of the Create Super Alignment panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical sync</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
</tbody>
</table>

*If ticked*, when the horizontal geometry is modified, an attempt is made to modify the chainage position of the vertical geometry so that it remains locked to the same parts of the horizontal geometry as before the horizontal geometry was modified.

*If not ticked*, after horizontal geometry is modified, the vertical geometry will possibly be moved in relation to the horizontal geometry because the (x,y) position for a given chainage will change.
Basic > IP defaults branch

The IP Defaults branch defines the types of HIPs and VIPs that are placed when laying down horizontal and vertical geometry.

The fields and buttons used in the Basic > IP defaults branch of the Create Super Alignment panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIP type</td>
<td>choice box</td>
<td>Curve radius</td>
<td>Curve speed/radius/length</td>
</tr>
</tbody>
</table>

The default HIP type given to any placed HIPs. The default for the panel is a Curve radius with blank Curve radius, Approach and Depart length. That is, just a HIP with no curve or transitions on it.

If Curve speed, any new HIP being created will be a Speed IP with the speed specified in the Speed field.

If the Speed field is blank, the default alignment speed is used.

If Curve radius, any new HIP being created will be a Radius IP with the radius of the arc on the HIP specified in the Curve Radius field. Optional approaching and departing transitions can also be defined in the Approach length and Depart length fields.
If the Curve Radius field is non-zero, an arc of the given value is placed on the HIP.
If the Curve Radius field is blank, the HIP won’t have an arc associated with it.
If the Approach length field is non-zero, then a leading transition of the given value is placed on the HIP. If there is a non-zero value then there must also be a non-zero Curve Radius value.
If the Depart length field is non-zero, then a trailing transition of the given value is placed on the HIP. If there is a non-zero value then there must also be a non-zero Curve Radius value.

Note - if either the Approach length or Depart length fields are non zero then there must be a non zero Curve radius.

If the HIP is defined by Curve radius, then as the HIP is moved around, the values in the Curve radius definition are held for the HIP. That is, the radius of the arc and the transition lengths are kept constant and the length of the arc is modified.

If Curve length, any new HIP being created will be a Length IP with the length specified in the Curve length field.

If the Curve length field is blank, the HIP will have an arc of length zero.
If the HIP is defined by Curve length, then as the HIP is moved around, the arc length is held for the arc on the HIP and arc radius is modified.

VIP type choice box Curve length Curve speed/radius/length
Asymmetric
The default VIP type given to any placed VIPs. The default for the panel is a Curve length with a Length of 0.

If Curve speed, any new VIP being created will be a Speed IP with the speed specified in the Speed field.

If the Speed field is blank, the default alignment speed is used.
If Curve radius, any new VIP being created will be a Radius IP with the radius specified in the Radius field.

If the Radius field is blank, the VIP won’t have an parabola/arc associated with it. The value in the Radius field can be a k-value for a parabola, an effective radius (100 x k-value) for a parabola, or the radius of an arc.

If the Kvalue tick box is ticked, a parabola is placed on the VIP and the k-value of the parabola is the value in the Radius field.

If the Circular curve tick box is ticked, an arc is placed on the VIP and the radius of the arc is the value in the Radius field.

If neither Kvalue or Circular curve is ticked, a parabola is placed on the VIP and the effective radius of the parabola is the value in the Radius field.

If the VIP is defined by Curve radius, then as the VIP is moved up or down, the values in the Curve radius definition is held for the VIP. That is, the radius or k-value will be kept constant and the length of the parabola/arc is varied.

If Curve length, any new VIP being created will be a parabolic Length IP with the length specified in the Length field.

If the Length field is 0, then just the VIP will be drawn with no parabola on it.

If the Length field is blank, the VIP will be associated with an parabola of maximum length.

If the VIP is defined by Curve length, then as the VIP is moved up or down, the length of the parabola given in the Curve Length definition is held for the VIP. That is, the length is kept constant and the radius/k-value of the parabola is varied.

If Asymmetric, any new VIP being created will have parabolas of the combined lengths of Approach length and Depart length.

If the VIP is defined by Asymmetric, then as the VIP is moved up or down, the Approach and Depart Lengths of the parabolas given in the Asymmetric definition are held for the VIP. That is, the lengths are kept constant and the radius/k-value of the parabolas are varied.
Advanced > Start branch

The Start branch defines where the usable horizontal and vertical geometry starts for the super alignment. Note that the super alignment can have more horizontal and vertical geometry than is actually used.

The fields and buttons used in the Advanced > Start branch of the Create Super Alignment panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Horizontal mode</td>
<td>choice box</td>
<td>default</td>
<td>segment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>point</td>
</tr>
</tbody>
</table>

specifies how the start of the usable horizontal geometry is defined.

If default, the beginning of the first visible horizontal part is the start of the usable horizontal geometry.

If segment, a user selected segment of the horizontal geometry is the start of the usable horizontal geometry.

If point, a user selected position is dropped perpendicularly onto the super alignment to define the start of the usable horizontal geometry.

Start Control point X/Y coordinate select x, y box

used in the segment and point cases of the Start Horizontal mode.

Start Vertical mode choice box absolute relative chainage

specifies how the start of the usable vertical geometry is defined.

If absolute, the beginning of the first visible vertical part is the start of the usable vertical geometry.

If relative, the chainage of the start of the usable horizontal geometry is used as the start of
the usable vertical geometry. If the beginning of the defined vertical geometry is after this chainage, then the first segment is extrapolated back to the required chainage.

If chainage, a user given chainage defines the start of the usable vertical geometry.

Chainage measure box available measures
used in the chainage case of the Start Vertical mode.
Advanced > End branch

The End branch defines where the usable horizontal and vertical geometry ends for the super alignment. Note that the super alignment can have more horizontal and vertical geometry than is actually used.

The fields and buttons used in the Advanced > End branch of the Create Super Alignment panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>End Horizontal mode</td>
<td>choice box</td>
<td>default segment</td>
<td>point</td>
</tr>
<tr>
<td>End Vertical mode</td>
<td>choice box</td>
<td>absolute chainage</td>
<td>relative</td>
</tr>
</tbody>
</table>

specifies how the end of the usable horizontal geometry is defined.

If default, the end of the last visible horizontal part is the end of the usable horizontal geometry.

If segment, a user selected segment of the horizontal geometry is the end of the usable horizontal geometry.

If point, a user selected position is dropped perpendicularly onto the super alignment to define the end of the usable horizontal geometry.

End Control X/Y coordinate select x, y box used in the segment and point cases of the End Horizontal mode.

End Vertical mode choice box absolute relative chainage

specifies how the end of the usable vertical geometry is defined.

If absolute, the end of the last visible vertical part is the end of the usable vertical geometry.

If relative, the chainage of the end of the usable horizontal geometry is used as the end of the
usable vertical geometry. If the end of the defined vertical geometry is before this chainage, then the last segment is extrapolated to the required chainage.

If chainage, a user given chainage defines the end of the usable vertical geometry.

Chainage measure box available measures used in the chainage case of the End Vertical mode.
Advanced > Design branch

The Design branch is only used if a design template has been set up and is to be used for automatically inserting curves and transition curves in horizontal geometry, apply super elevation and widening, and automatically inserting vertical curves in the vertical geometry.

The fields and buttons used in the Advanced > Design branch of the Create Super Alignment panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use design standards</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
</tbody>
</table>

*if ticked*, the selected design template is used when creating horizontal and vertical geometry.

*If not ticked*, no design template is used with Alignment speed elements.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design template</td>
<td>choice box</td>
<td>available design templates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Design template to use when creating horizontal and vertical geometry. For more information see 14.2.6 Design Templates.</td>
</tr>
<tr>
<td>Design speed</td>
<td>*.design files</td>
<td>the general design speed for the road. This is used with the design template when creating horizontal and vertical geometry. This can be over written by Speed IPs.</td>
</tr>
<tr>
<td>LHS normal slope (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHS normal slope (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No of lanes on LoC</td>
<td></td>
<td>number of lanes on the left of the centreline. The number of lanes can be zero.</td>
</tr>
</tbody>
</table>
No of lanes on RoC

number of lanes on the right of the centreline. The number of lanes can be zero.

Horizontal speed IP choice box minimum maximum

For Alignment speed and Curve speed HIPs.

If minimum, when an arc is automatically placed on an HIP using the design table, the arc with the smallest radius for the design speed is used.
If maximum, when an arc is automatically placed on an HIP using the design table, the arc with the largest radius for the design speed is used.

Vertical speed IP choice box minimum maximum

For Alignment speed and Speed VIPs.

If minimum, when a parabola is automatically placed on an VIP using the design table, the parabola with the smallest kvalue for the design speed is used.
If maximum, when a parabola is automatically placed on an VIP using the design table, the parabola with the largest kvalue for the design speed is used.

Speed lookup choice box ceiling floor round up round down

Different method to achieve the actual speed from the speed table.
If ceiling, then the design speed is the upper speed from the table.
If floor, then the design speed is the lower speed from the table.
If round up, the speed will be the upper speed from the table when the calculated speed is greater than or equal to the half way speed. Otherwise it will be the lower speed.
If round down, the speed will be the lower speed from the table when the calculated speed is less than or equal to the half way speed. Otherwise it will be the upper speed.

Radius lookup choice box ceiling floor round up round down interpolate

Different method to achieve the actual radius from the radius table.
If ceiling, then the design radius is the upper radius from the table.
If floor, then the design radius is the lower radius from the table.
If round up, the radius will be the upper radius from the table when the calculated radius is greater than or equal to the half way radius. Otherwise it will be the lower radius.
If round down, the radius will be the lower radius from the table when the calculated radius is less than or equal to the half way radius. Otherwise it will be the upper radius.
If interpolate, the radius is the calculated based on the specified speed.

For non speed HIPs only (that is, not Alignment speed or Curve speed HIPs).
The radius has been defined by the user and LJG?
Advanced > Profiles branch

The fields and buttons used in the Advanced > Profiles branch of the Create Super Alignment panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>L super baseline</td>
<td>measure box</td>
<td>available measures</td>
<td></td>
</tr>
<tr>
<td>L super inverted</td>
<td>choice box</td>
<td>no</td>
<td>yes, no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R super baseline</td>
<td>measure box</td>
<td>available measures</td>
<td></td>
</tr>
<tr>
<td>R super inverted</td>
<td>choice box</td>
<td>no</td>
<td>yes, no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L widen baseline</td>
<td>measure box</td>
<td>available measures</td>
<td></td>
</tr>
<tr>
<td>L widen inverted</td>
<td>choice box</td>
<td>no</td>
<td>yes, no</td>
</tr>
</tbody>
</table>

*The left super elevation diagram will be drawn at this Z value in the Section view*

*The right super elevation diagram will be drawn at this Z value in the Section view*

*The left widening diagram will be drawn at this Z value in the Section view*

if no, positive super elevation is drawn above the left super baseline and negative super elevation is drawn below the left super baseline. This is the default.

if yes, positive super elevation is drawn below the left super baseline and negative super elevation is drawn above the left super baseline, i.e. the diagram is turned upside down

if no, widening is drawn above the left widen baseline. Widening is always positive (or zero). This is the
default.

if yes, positive widening is drawn below the left widen baseline, i.e. the diagram is turned upside down

R widen baseline measure box available measures
the right widening diagram will be drawn at this Z value in the Section view

R widen inverted choice box no yes, no
if no, widening is drawn above the right widen baseline. Widening is always positive (or zero). This is the default.

if yes, positive widening is drawn below the right widen baseline, i.e. the diagram is turned upside down
Advanced > Equality branch

The fields and buttons used in the Advanced > Equality branch of the Create Super Alignment panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use chainage equality</td>
<td>tick box</td>
<td>not ticked</td>
<td>if ticked, chainage equalities can be defined and the automatic labelling of the string will use the equalities.</td>
</tr>
</tbody>
</table>
### Advanced > Chain branch (not yet implemented)

The fields and buttons used in the Advanced > Chain branch of the Create Super Alignment panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Chain file</strong></td>
<td>file box</td>
<td>available *.chain files</td>
<td></td>
</tr>
</tbody>
</table>

This parameter file to run every time the super alignment is resolved/recalced.

*For more information see the section 28.3 Chains in the book 28 Utilities.

Run chain after set tick box not ticked
Buttons at Bottom

Create button
when only one super alignment is to be created, click on the Create button. The Edit Super Alignment toolbar is displayed.

Many button
when more than one super alignment is to be created using the same set-up information, then click on the Many button. Edit Super Alignment toolbar is displayed.
After the editing for this string is finished, a new Create Super Alignment panel is placed on the screen with the same values for the panel fields as the string just created. Hence new super alignments can be created (by clicking on the Create or Many button) without having to go back to the String Create menu.
If no more super alignments are to be created, click on the Finish button

Same as button
after the Same as button is chosen, another string is selected and information about it is used to fill in fields for this panel
Start Edit - Super Alignment

After selecting the Create or Many button, the Super Alignment toolbar is created and placed on the screen.

The Append HIP simply creates horizontal intersection points (HIPs) that are joined by a straight segments.

For Appending HIPs, a cross is then drawn in each plan view that the string's model is on, and the cross follows the cursor around the screen. If the string's model is not added to any plan view, the model is automatically added to all plan views.

After the cross is on the screen (moving with the cursor), clicking LB and accepting with MB selects the first HIP of the string (using the appropriate snaps).

The string is then drawn from the first HIP to the cursor position, which represents the second HIP of the string. Clicking LB and accepting with MB selects the second string HIP and the process repeats for subsequent string HIPs.

Now that the string is created, all the edit option on the string’s Edit SA toolbar are usable.

The options in the Edit SA toolbar are not only used for placing the initial HIPs of the string, but for editing the super alignment once it is created. Since the Append HIP and other options in the Edit SA toolbar are identical to the options used when editing an existing string, they will be discussed in detail in the Editor section.

For full information on the Super Alignment Editor, go to the section 14.4.11 Edit Super Alignment.
14.2.2 Super Alignment Tools

Position of Menu: Strings => Super alignments => Tools

The Super Alignment Tools walk-right menu is

- Info
- Report
- Resolve
- Deref
- Reverse
- Parallel
- Translate
- Rotate
- Scale
- Split
- Join
- Copy vertical
- Fixed/floating to IPs
- Change style
- Explode labels
- Move settings
- Equality query
- Chainage query
- Reverse calc parts
- Validate

See

- Info 14.2.2.1 Super Alignment Info
- Report 14.2.2.2 Super Alignment Report
- Resolve 14.2.2.3 Resolve a Super Alignment
- Deref 14.2.2.4 Dereference Super Alignments
- Reverse 14.2.2.5 Reverse Super Alignment
- Parallel 14.2.2.6 Parallel a Super Alignment
- Translate 14.2.2.7 Translate Super Alignment
- Rotate 14.2.2.8 Rotate Super Alignment
- Scale 14.2.2.9 Scale Super Alignment
- Split 14.2.2.10 Split a Super Alignment
- Join 14.2.2.11 Joining Two Super Alignments
- Copy vertical 14.2.2.12 Copy Vertical Geometry
- Fixed/floating to IPs 14.2.2.13 Convert Fixed/Floating to IPs
- Change style 14.2.2.14 Change the Styles for Selected Super Alignments
- Explode labels 14.2.2.15 Explode Super Alignments Labelling
- Move settings 14.2.2.16 Constrain the Movement of Super Alignment Points
- Equality query 14.2.2.17 Equality Query
- Chainage query 14.2.2.18 Chainage Query
- Reverse calc parts 14.2.2.19 Reverse Calc Parts
- Validate 14.2.2.20 Validate Super Alignment
14.2.2.1 Super Alignment Info

Position of option on menu: Strings => Super alignments => Tools => Info

This section of documentation is a work in progress and will be updated in subsequent releases.

Selecting Info displays the Super Alignment Info panel.

14.2.2.2 Super Alignment Report

Position of option on menu: Strings => Super alignments => Tools => Report

Selecting Report displays the Super Alignment Report panel.
Resolve a Super Alignment

Position of option on menu:  
Strings => Super alignments => Tools => Resolve

When a super alignment is created using computators, the super alignment is defined with references to other strings. If the referenced strings are modified, then the super alignment will not automatically reflect the changes in the referenced strings.

Resolve forces the string to be resolved using the current position and properties of any referenced strings.
Selecting Resolve displays the Resolve Super Alignment panel.

The new fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Super alignment</td>
<td>string select</td>
<td>select a super string to resolve.</td>
<td></td>
</tr>
<tr>
<td>Resolve</td>
<td>button</td>
<td>after the Resolve button is clicked, the super alignment is resolved using the new position and properties of any referenced strings.</td>
<td></td>
</tr>
</tbody>
</table>
14.2.2.4 Dereference Super Alignments

Position of option on menu:  Strings =>Super alignments =>Tools =>Deref

When a super alignment is created using computators, the super alignment is defined with references to other strings.

Dereferencing removes the references to other strings in a super alignment, and inserts copies of the referenced string in its place. Hence a dereferenced string looks like the original string, but it no longer has links to any other strings.

The Deref option copies the original string, and dereferences the copied string.

So after running Deref there are no longer any references to other strings in the copy of the super alignment. Selecting Deref displays the Dereference Super Alignments panel.

![Dereference Super Alignments panel]

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data to dereference</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type - for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data info</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>extra information required for the Data source.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target info</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>extra information required for the target. Only the Copy Targets are allowed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>after the Process button is clicked, the selected strings are copied and dereferenced.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
14.2.2.5 Reverse Super Alignment

Position of option on menu:  
**Strings => Super alignments => Tools => Reverse**

Reverse creates a copy of the selected super alignment, and then reverses the direction of the copied super alignment.

If there are any computators in the super alignment, the copy of the super alignment will be dereferenced before being reversed.

Even if the super alignment will not solve, it can still be reversed. This is useful when strings come in from other systems and have geometry (that is, horizontal and vertical segments) but won’t solve. These strings can now be reversed.

Selecting Reverse displays the **Reverse Super Alignment** panel.

The new fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Super alignment</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**select the super alignment to copy and reverse the direction of the copied string**

- **Geometry only**
  - tick box
  - not ticked

  *If ticked* then only the Geometry of the Super Alignment (the segments for the horizontal and the segments for the vertical) is used, and a reverse string is created by simply reversing the segments. All construction data is removed. So this will work for super alignments that have geometry but won’t solve.

  The reversed string no longer has any constructive definition but just consists of the horizontal and vertical data.

  This is useful when strings come in from other systems and have geometry (that is, horizontal and vertical segments) but won’t solve.

  *If not ticked* then the string will need to solve before it can be reversed.

  **Note 1:** This reverses and replaces the existing string so if you don’t want to lose the data in your existing string, make a copy of it first.

  **Note 2:** The horizontal segments can be straights, arcs, transitions and offset transitions. The vertical segments can be straights, arcs and parabolas.

- **Reverse**
  - button

**after the Reverse button is clicked, the direction of the copied super alignment is reversed.**
14.2.2.6 Parallel a Super Alignment

Position of option on menu:  
Strings => Super alignments => Tools => Parallel

Parallel parallels the horizontal geometry of a super alignment by a user given offset. 
Selecting Parallel displays the Parallel Super Alignment panel.

The new fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Super alignment</strong></td>
<td>string select</td>
<td>select a super alignment to parallel</td>
<td></td>
</tr>
<tr>
<td><strong>Offset mode</strong></td>
<td>choice box</td>
<td>fix and free, floating, ip</td>
<td></td>
</tr>
<tr>
<td><strong>Offset</strong></td>
<td>input</td>
<td>distance to offset the selected super alignment</td>
<td></td>
</tr>
<tr>
<td><strong>Model</strong></td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td><strong>New super alignment properties</strong></td>
<td>tick box</td>
<td>if ticked, the panel is expanded to show all the properties that can be set for the new paralleled string.</td>
<td></td>
</tr>
</tbody>
</table>
Super Alignments

Name

input from CAD controlbar
the name of the new string

Colour

input from CAD controlbar available colours
the colour of the new string

Linestyle

linestyle box from CAD controlbar available line styles
line style of the string

Weight

input
thickness of the string

Label style

choice box default available label styles
The super alignment style controls the way the super alignment draws and highlights on the screen. For more information please go to the section 14.2.3 Super Alignment Style

Transition type

input clothoid clothoid, cubic parabola westrail-cubic, cubic spiral natural clothoid, bloss sinusoidal, cosinusoidal sinusoidal transition (for example clothoid spiral) to be used for this super alignment string. For more information see 39.2.7.5 Transitions and Spirals File.

Chain file

file
The chain parameter file to run every time the super alignment is resolved/recalced.
For more information see the section 28.3 Chains in the book 28 Utilities

Close

tick box
if ticked, the super alignment is automatically closed.
Sync vertical geometry tick box

*If ticked*, when the horizontal geometry is modified, an attempt is made to modify the chainage position of the vertical geometry so that remains locked to the same parts of the horizontal geometry as before the horizontal geometry was modified.

*If not ticked*, after horizontal geometry is modified, the vertical will possibly be moved in relation to the horizontal geometry because the (x,y) position for a given chainage will change.

Use chainage equalities tick box

*If ticked*, chainage equalities can be defined and the automatic labelling of the string will use the equalities.

Parallel button

*After the Parallel button is clicked*, a dereferenced copy of the horizontal geometry of the super alignment is paralleled. The vertical geometry is deleted.

Same as button

*After clicking Same as and then select a string. All the picked string properties will be loaded into the panel fields.*

### 14.2.2.7 Translate Super Alignment

Position of option on menu:  
Strings => Super alignments => Tools => Translate

Translate copies the selected super alignment, and then dereferences and translates the copied string. Selecting Translate displays the Translate Super Alignment panel.

The new fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Super alignment</td>
<td>string select</td>
<td>select the super alignment to translate</td>
<td></td>
</tr>
<tr>
<td>Horizontal translate</td>
<td>Delta x, Delta y: the x/y amounts to translate the string</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical translate</td>
<td>Delta ch, Delta z: the chainage/z amounts to translate the string</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**14.2.2.8 Rotate Super Alignment**

Position of option on menu: Strings =>Super alignments =>Tools =>Rotate

Rotate copies the selected super alignment, and then dereferences and rotates the copied string about a user defined origin.

Selecting Rotate displays the Rotate Super Alignment panel.

The new fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Super alignment</td>
<td>select the super alignment to copy and rotate the copied string</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin</td>
<td>select the centre (origin) of the rotation. The origin can be changed at any time.</td>
<td>xyz ops</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotation</td>
<td>the clockwise angle in dms to rotate through.</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotate</td>
<td>after the Rotate button is clicked, the selected string is copied, and the copied string is rotated about the origin.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**14.2.2.9 Scale Super Alignment**

Position of option on menu: Strings =>Super alignments =>Tools =>Scale

Scale copies the selected super alignment, and then dereferences and scales the copied string about a user defined origin.

Selecting Scale displays the Scale Super Alignment panel.
The new fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Super alignment</strong></td>
<td>string select</td>
<td>select the super alignment to copy and scale</td>
<td></td>
</tr>
<tr>
<td><strong>Origin</strong></td>
<td>xyz ops</td>
<td>select the origin to scale about. The origin can be changed at any time.</td>
<td></td>
</tr>
<tr>
<td><strong>Factor</strong></td>
<td>button</td>
<td>amount to scale the copy of the super alignment by.</td>
<td></td>
</tr>
<tr>
<td><strong>Scale</strong></td>
<td>button</td>
<td>after the Scale button is clicked, the selected string is copied, and the copied string then scaled about the origin.</td>
<td></td>
</tr>
</tbody>
</table>

### 14.2.2.10 Split a Super Alignment

Position of option on menu:  
Strings => Super alignments => Tools => Split

Split copies and splits the copy of the super alignment at a user given chainage. Selecting Split displays the Split Super Alignment panel.

The new fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Super alignment</strong></td>
<td>string select</td>
<td>select a super alignment to split</td>
<td></td>
</tr>
</tbody>
</table>
Chainage input
chainage to split the super alignment at

Model model box available models
if not blank, model for the split string
If blank, use the model of the selected string

Split button
after the Split button is clicked, the super alignment is copied and split at the given chainage.

### 14.2.2.11 Joining Two Super Alignments

Position of option on menu: Strings => Super alignments => Tools => Join

Join joins two super alignments at their ends to make a new super alignment.
Selecting Join displays the Join Super Alignment panel.

![Join Super Alignment Panel](image)

The new fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Super alignment</td>
<td>string select</td>
<td>select a super alignment to join</td>
<td></td>
</tr>
<tr>
<td>Super alignment 2</td>
<td>string select</td>
<td>select a super alignment to join to the first selected super alignment</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>New super alignment properties</td>
<td>tick box</td>
<td>if ticked, the panel is expanded to show all the properties that can be set for the new joined string.</td>
<td></td>
</tr>
</tbody>
</table>

If not blank, model for the joined string
If blank, use the model of the selected string for the joined string.
Join button

*after the Join button is clicked, a new super alignments is created by joining the two super alignments*

Same as button

*after clicking Same as and then select a string. All the picked string properties will be loaded into the panel fields.*

### 14.2.2.12 Copy Vertical Geometry

**Position of option on menu:** Strings => Super alignments => Tools => Copy vertical

Copies the vertical geometry from one super alignment to another super alignment. This will not work for a super alignment with computators.

Selecting Copy vertical displays the Copy Vertical Super Alignment panel.

The new fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original super alignment</td>
<td>string select</td>
<td>select the super alignment to copy vertical geometry from</td>
<td></td>
</tr>
<tr>
<td>Copy to super alignment</td>
<td>string select</td>
<td>select the super alignment to copy vertical geometry to</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td>after the Process button is clicked, the vertical geometry is copied from the original alignment to the second super alignment.</td>
<td></td>
</tr>
</tbody>
</table>

### 14.2.2.13 Convert Fixed/Floating Elements to IPs
Position of option on menu: **Strings => Super alignments => Tools => Fixed/floating to IPs**

**Fixed/floating to IPs** converts the fixed and floating elements of the horizontal and vertical geometry to horizontal and vertical intersection points joins with arcs and transitions for HIPs and parabolas or vertical arcs for VIPs.

Selecting **Fixed/floating to IPs** displays the **Fixed/floating to IPs** panel.

The new fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Super alignment string select</td>
<td>string select</td>
<td>select a super alignment to convert</td>
<td></td>
</tr>
<tr>
<td>Tolerance</td>
<td>real box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>when the string is converted, the new IP string may be slightly different to the original string. The underlying vertices of the original and new strings are compared and if they differ by the given tolerance value, then a warning is given. If blank, the tolerance is 0.001 (1 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete original string</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, the original super alignment is deleted after the conversion is successful</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>if not blank, model for the converted string. If blank, use the model of the selected string for the converted string.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New super alignment properties</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, the panel is expanded to show all the properties that can be set for the new converted string.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Extra panel fields when New super alignment properties is ticked.

*The tabs are the same as when Creating a Super Alignment - go to On selecting the Super Alignment option, the Create Super Alignment panel is displayed.*

*Please note that under New Super Alignment properties => General Tab Many Strings is not applicable to Fixed/Floating to IPs.*

**Convert** button

*after the Convert button is clicked, a new super alignments is created by converting all the elements to IPs*

**Same as** button

*after clicking Same as and then select a string. All the picked string properties will be loaded*
into the panel fields.

14.2.2.14 Change the Styles for Selected Super Alignments

Position of option on menu: Strings => Super alignments => Tools => Change style

Change style changes the super alignment style for all the selected super alignments. Selecting Change style displays the Change Super Alignment Style panel.

The new fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type - for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source of data to be processed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Style</td>
<td>SA style box</td>
<td>available SA styles</td>
<td></td>
</tr>
<tr>
<td>super alignment style to apply to all the selected super alignments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>after the Change button is clicked, all the selected super alignments are given the super alignment style</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14.2.2.15 Explode the Super Alignments Labelling

Position of option on menu: Strings => Super alignments => Tools => Explode labels

Explode labels creates text and lines from the automatic labelling of the selected super alignments. Selecting Explode labels displays the Explode Super Alignment Labels panel.
The new fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- for a full description go to</td>
<td>4.19.3 Data Source</td>
<td></td>
</tr>
<tr>
<td>Data source input</td>
<td>source of data to be processed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pre*postfix for models</td>
<td>text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the models for the text</td>
<td>the model name containing the super alignment, with prefixing and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>postfixing as given by this field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keep original labels</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if not ticked, the label style of the original strings are modified to no labels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explode labels as points</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, the labels are created as single point super strings with the label as vertex text.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked, the labels are created in the one super string with the text as vertex text.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explode</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>create text strings for all the text in the automatic labels of the selected super alignments</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**14.2.2.16 Constrain the Movement of Super Alignment Points**

Position of option on menu: Strings => Super alignments => Tools => Move settings

Move settings constrains the movement of horizontal and vertical intersection points for any super alignment being edited.

Selecting Move settings displays the **Move Super Alignment Point Settings** panel.

The buttons are radio buttons - that is, only one can be selected:
Default
allows any movement in the selected HIP or VIP point

X-axis
constrains an HIPs to only move along the x-axis. That is, the y coordinate is fixed.
Constrains a VIPs to only move along the chainage-axis. That is, the height coordinate is fixed.

Y-axis
constrains an HIPs to only move along the y-axis. That is, the x coordinate is fixed.
Constrains a VIPs to only move along the height-axis. That is, the chainage coordinate is fixed.

Fwd Tgt
constrains an HIPs to only move along the incoming straight to the HIP.
Constrains a VIPs to only move along the incoming straight to the VIP.

Bwd Tgt
constrains an HIPs to only move along the outgoing straight from the HIP.
Constrains a VIPs to only move along the outgoing straight from the VIP.

14.2.2.17 Equality Query

Position of option on menu: Strings => Super alignments => Tools => Equality query

Displays the Kpost name, offset from Kpost and Zone of the Kpost for a selected position on a super alignment.

Selecting Equality query displays the Equality From Chainage panel.

The new fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Super alignment</td>
<td>string select</td>
<td>select the super alignment to display the Kpost name, Offset and Zone for Super alignment to display the Kpost name, Offset and Zone for</td>
<td></td>
</tr>
</tbody>
</table>
Query button

After the Query button is clicked, the vertical geometry is copied from the original alignment to the second super alignment.

14.2.2.18 Chainage Query

Position of option on menu: Strings => Super alignments => Tools => Chainage query

For a user given Kpost name, offset from Kpost and Zone, this option displays the raw chainage of that point.

Selecting Chainage query displays the Chainage From Equality panel.

![Chainage From Equality panel]

The new fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Super alignment</td>
<td>string select</td>
<td></td>
<td>select the super alignment to get the raw chainage for</td>
</tr>
<tr>
<td>Kpost name</td>
<td>name of a Kpost on the selected string</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td>offset from the Kpost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zone</td>
<td>Kpost zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Query</td>
<td>button</td>
<td></td>
<td>after the Query button is clicked, the raw chainage of the point given by the Kpost name, Offset from Kpost and Zone.</td>
</tr>
</tbody>
</table>

14.2.2.19 Reverse Calc Parts

Position of option on menu: Strings => Super alignments => Tools => Reverse calc parts

A super alignment is made up of the methods for constructing each part of the super alignment (one set for the horizontal geometry and another set for the vertical geometry), and if the methods are consistent, then they define a string of tangential segments which defines the super alignment in plan and in section.

In plan the segments can be lines, arcs or transitions. In section the segments are lines, arcs or parabolas. Normally the segments are tangential to each other.

Sometimes a super alignment is missing the construction parts and only consists of the underlying segments. Then the super alignment can not be edited since there are no methods defining the string.
The Reverse Calc Parts option takes a super alignment consisting only of segments, and tries to build construction methods for the super alignment. If it is successful, then the super alignment can then be edited.

Note - the segments should be tangential to each other but if that is not the case, the option will try and move the vertices by a user defined tolerance to find a tangential solution.

Selecting Reverse calc parts displays the Reverse Calc Parts For Super Alignment panel.

The new fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolerance</td>
<td>Measure box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target type</td>
<td>Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target info</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calc</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14.2.2.20 Validate Super Alignment

Position of option on menu: Strings => Super alignments => Tools => Validate

This section of documentation is a work in progress and will be updated in subsequent releases.
Selecting Validate displays the **Super Alignment Parts Validation** panel.
14.2.3 Super Alignment Style

Position of option on menu:  Strings => Super alignments => Label styles

The super alignment label styles control the way that the super alignment draws on the screen and when it is being edited.

Selecting Super alignment style displays the Super Alignment Style Create/Edit panel.

For the tab Highlights go to  Highlights tab
For the tab Labels go to  Highlights Table
For the **Buttons at the bottom** go to [Buttons at Bottom](#).

The fields and buttons used in the **Super Alignment Style Create/Edit** panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Super alignment label style</strong></td>
<td>choice box</td>
<td>design styles defined in astyles.4d</td>
<td>all the information in the panel refers to the selected labelling style. Note - the labelling styles are stored in the file astyles.4d.</td>
</tr>
<tr>
<td><strong>Highlights tab</strong></td>
<td></td>
<td></td>
<td>the definition of how to show the horizontal and vertical parts of the super alignment and also how to colour and label the segments when in and</td>
</tr>
<tr>
<td><strong>Use segment colour</strong></td>
<td>tick box</td>
<td></td>
<td>if <strong>ticked</strong>, each of the segment types are drawn in the colour given in the Highlights table given below (when the super alignment is on any view).</td>
</tr>
<tr>
<td><strong>Draw lines between IPs</strong></td>
<td>tick box</td>
<td></td>
<td>if <strong>ticked</strong>, lines are drawn between intersection points (IPs).</td>
</tr>
<tr>
<td><strong>IP number textstyle</strong></td>
<td>textstyle box</td>
<td></td>
<td>the textstyle used to draw IP numbers in Plan and Section views.</td>
</tr>
<tr>
<td><strong>Highlight thickness</strong></td>
<td>input</td>
<td></td>
<td>line thickness in pixels</td>
</tr>
<tr>
<td><strong>Use vertical symbols</strong></td>
<td>tick box</td>
<td></td>
<td>if <strong>ticked</strong>, vertical symbols are drawn when the super alignment is profiled on a Section view.</td>
</tr>
<tr>
<td><strong>Vertical symbol</strong></td>
<td>symbol box</td>
<td></td>
<td>the symbol to use for common points between segments in the Section views.</td>
</tr>
<tr>
<td><strong>Highlights Table</strong></td>
<td></td>
<td></td>
<td>the definition of the segments that make up the definition of the part (part colour and part symbol for the fixed points) and the colour of the solved segments as a result of the part definition. Defined for ip, line, arc, spiral (transition), parabola and unknowns.</td>
</tr>
<tr>
<td><strong>Part type</strong></td>
<td></td>
<td></td>
<td>the part type - unknown, ip, line, arc, spiral (transition), parabola</td>
</tr>
<tr>
<td><strong>Part colour</strong></td>
<td>colour box</td>
<td></td>
<td>the definition of the part is only shown when in the edit mode. When the string is being edited, the segments of the part are drawn in these colours. For ip, this is the colour of the cross at the ip. For line/arc/spiral/parabola, this is the colour of any line/arc/spiral/parabola segment.</td>
</tr>
<tr>
<td><strong>Segment colour</strong></td>
<td>colour box</td>
<td></td>
<td>the resulting segments defined by the part are drawn in these colours. for ip, this is the colour of the cross at the ip line/arc/spiral/parabola, this is the colour of any line/arc/spiral/parabola segment</td>
</tr>
<tr>
<td><strong>Part symbol data</strong></td>
<td>symbol box</td>
<td></td>
<td>when a string is being edited, the fixed points of the parts are displayed with these symbols. for ip, the symbol at the ip of a part.</td>
</tr>
</tbody>
</table>
For line/arc/spiral/parabola, this is the symbols of the fixed points of any line/arc/spiral/parabola in the part. For example, if an arc is defined by going through three points, the three points will be drawn with the symbol for Part type arc.

**Labels tab**

On a plan view, the definition of what text, symbols and decimal places (precision) should be used in labelling tangent points, crest and sag points, major and minor intervals, segment radii and lengths, and special chainages.

The fields and buttons used in the **Super Alignment Style Create/Edit** panel have the following functions.
### Super Alignments

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use labels</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>if ticked</strong>, labels are automatically drawn when the super alignment is on a Plan view.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use equality zone</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>if ticked</strong>, and chainage equalities exist in the super alignment, the chainage intervals are relative to the beginning of the zone it is in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use reading angle</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>if ticked</strong>, and the angle of the label relative to the Reading angle is over 180 degrees, the label will be flipped.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading angle</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the angle to take as a base line for reading text. The angle is in 4.17.1 HP Notation and is measured from the x axis in a counter clockwise direction.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unsolved label</td>
<td>text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the text label to use when a part is not solved. It is placed in the middle of the unsolved segment.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unsolved textstyle</td>
<td>textstyle data box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the textstyle of the unsolved text label</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precision</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the number of decimal places to use in the chainage labels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direction type</td>
<td>choice box</td>
<td>none, at start, each segment</td>
<td></td>
</tr>
<tr>
<td>how to draw the string direction symbol which is given in row 18 of the table below (horz. direction)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>If none</strong>, no direction symbol is drawn.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>If at start</strong>, a single direction symbol is drawn at the start of the string</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>If each segment</strong>, a direction symbol is drawn at the middle of each segment of the string</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>String name textstyle</td>
<td>textstyle data box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the textstyle to use for drawing the name of the string</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name at start</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>if tick</strong>, draw the name of the string at the start of the string.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>if not ticked</strong>, no string name is drawn at the start of the string.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name at end</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>if tick</strong>, draw the name of the string at the end of the string.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>if not ticked</strong>, no string name is drawn at the end of the string.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name at interval</td>
<td>double box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>if not blank</strong>, the name of the string is drawn at this chainage interval along the string, excluding the start and the end of the string.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Label Type Table

For each label type in the table, the Use flag is ticked if it is to be drawn, and if it is drawn, the symbol is given in the Symbol Data column, text is prefixed/postfixed as given in the Pre*Postfix column, the text used the textstyle data given in the Textstyle Data column with the number of decimal places given in the Precision column.

There are twenty four (24) types:

- unknown - when it is not any of the other horizontal critical points
- curve-spiral - the tangent point between an arc and a transition. Eg CS
- spiral-curve - the tangent point between a transition and an arc. Eg SC
tangent-curve - the tangent point between a straight line and an arc. Eg TC
curve-tangent - the tangent point between an arc and a straight line. Eg CT
tangent-spiral - the tangent point between a straight line and a transition. Eg TS
spiral-tangent - the tangent point between a transition and a straight line. Eg ST
common tangent - the tangent point between two arcs. Eg CTP
spiral-spiral - the tangent point between two transitions Eg SS
interval - the chainage label at the major interval
vert. unknown - when it is not any of the other vertical critical points
vert. tangent-curve - the tangent point between a straight grade and a vertical curve (parabola
or an arc). Eg VTC
vert. curve- tangent- - the tangent point between a vertical curve (parabola or an arc) and a
straight grade. Eg VCT
vert. common tangent - the tangent point between two vertical curves. Eg VCTP
crest - a vertical crest (local maximum) point. Eg CREST
sag - a vertical sag (local minimum) point. Eg SAG
special chainages - chainages from a special chainage file given in the Special chainage file
field in the Basic Label section of the Super Alignment Properties
horz. direction - the direction symbol of the string
minor interval - the chainage label at the minor interval
k post equality - label the k posts equations. Eg 15 Km 998 = 16 Km
internal equality - label the internal equality equation Eg 17 Km 500 = 17 Km 600
segment radius - label the radius of an arc segment Eg R 500.0
segment length - label the length of a segment Eg L 500.0
segment bearing - label the bearing of a segment in dms format Eg 125 30 20

Buttons at Bottom

Set button
clicking the Set button means that for this session, all the definitions in the panel will be used
for the style given in the Super alignment label style field. Unless the Write button is used to
write the values out to the astyles.4d file, the values will be lost when the project is exited.

Write button
clicking the Write button writes out all the values in this panel to the astyles.4d file as the style
given in the Super alignment label style field

Note
The new Super alignment label style is not used until a resolve is done on the super alignment string,
14.2.4 Super Alignment Info Styles

Position of option on menu:  Strings => Super alignments => Info style

The super alignment info styles control what information is displayed in the Super Alignment Info panel brought up by the 14.2.1 Super Alignment Info option on the SA Tools menu or toolbar.

Selecting Super alignment info displays the Super Alignment Info Styles panel.
14.2.5 Design Standards

Position of option on menu:  Strings => Super alignments => Design standards

The design standards sets up numerous standard tables for:

(a) horizontal speed (speed_standards) defines for various speeds, the use of horizontal arcs and transition curves, super elevation for various numbers of lanes.

(b) horizontal widening (widening_standards) defines the road widening for various lane widths, speeds and curve radii.

(c) horizontal small deflection (small_deflection_standards)

(d) vertical crest (crest_standards) defines for crest curves the k-values of allowed parabolas for different speeds

(e) vertical sag (sag_standards) defines for sag curves the k-values of allowed parabolas for different speeds

For each of the five types of tables, specific tables of values are set up by the user for each of the different design scenarios that the user will undertake. Each specific table is given a name, and the names must be unique within each of the five types of tables.

The tables are written to a file (design_standards.xml) which is then read in whenever a project is opened.

The tables in the design standards file are used in the option Strings => Create => Super alignments => Design templates to define Design Templates (see 14.2.6 Design Templates), and when a super alignment is created, one Design Template is selected for use with that super alignment (see the section Advanced > Design branch from 14.2.1 Create Super Alignment).

Selecting Design standards displays the Design Standards panel.
DOCO TO GO INTO DEFINITIONS OF DESIGN PARAMETERS

Ease-off
choice box
none
maximum
by length

method of transitioning between minimum and maximum super elevation.
If none, no transition is done.
If maximum, maximum back to back curves are added to the super diagram between the minimum and maximum super elevation and are used to transition the super.
If by length, the ease off distance is given by the Ease off length value.

Ease-off length
input
the length of the ease off for the transition of super elevation when the by length method is selected

Min on reverse
input
if the chainage distance between two curves of opposite sign is less than the Minimum on reverse value then the two curves are treated as reverse curves when applying the design rules.
Min on broken back input

if the chainage distance between two curves of the same sign is less than the Minimum on broken-back value then the two curves are treated as broken-back curves when applying the design rules.

Plan View

If this distance is less than Min on reverse then the two curves are treated as reverse curves

Plan View

FROM V9 DOCO

Slope type choice box planar
crowned
projected

If planar, then the design table is only applied for half of the road (from the hinge string to the end of the fixed template). The side used is given by Highside.

If crowned, then the design table is used for each side of the roads (from the left most fixed template to the hinge string, and from the hinge string to the right most fixed template).

If projected, then the design table is first applied to half of the road given by Highside (from the hinge string to the end of the fixed template). Then the grade from the Highside is projected through the hinge string and used on the other side of the road.
Super Alignments

**Highside**

choice box left edge left edge, right edge

*used if the Slope type is planar or projected to define the higher side of the road pavement.*
14.2.6 Design Templates

Position of option on menu:  Strings =>Super alignments =>Design templates

The *Design Templates* option is used to create Design Templates (each with a unique name) that have one of each of the five design table types (horizontal speed, horizontal widening, horizontal small deflection, vertical crest, vertical sag) that have been defined by the Strings =>Create =>Super alignments =>Design standards option (see 14.2.5 Design Standards), plus whether curve transitions are allowed, whether minimum or maximum curve radii are used, and reverse and broken back curve lengths.

When a super alignment is created, one *Design Template* is selected for use with that super alignment (see the section Advanced > Design branch from 14.2.1 Create Super Alignment).

Selecting Design templates displays the Design Template Editor panel.

Clicking on the + in front of Design Templates will list all the design templates that are in the design_templates.xml file currently be used in the 12d Model project.
The fields and buttons used in the Design Template Editor panel when creating a new Design Template, or when clicking on an existing Design Template, have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template name</td>
<td>text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>the name of the Design Template. This can not be blank and must be unique amongst the list of Design Templates. The default name is New Template and this can be changed by typing a new name into this field.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>a description for this Design Template. This can be blank.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed table</td>
<td>choice box</td>
<td>list of speed_standards</td>
<td></td>
</tr>
<tr>
<td><strong>the name of the Speed Table to use. This is selected from the all the speed_standards defined in the Design Standards file (design_standards.xml) being used for the project.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User transitions</td>
<td>yes/no box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>if yes, transition curves are allowed in the horizontal geometry. If no, transition curves are not allowed in the horizontal geometry.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 14  Strings

Curve selection  
choice box  
minimum  
minimum. maximum

*If minimum* and more than one horizontal curve radius exists for the speed, the minimum curve radius is used.  

*If maximum* and more than one horizontal curve radius exists for the speed, the maximum curve radius is used.  

Widening table  
choice box  
list of widening_standards

the name of the Widening Table to use. This is selected from the all the widening_standards defined in the Design Standards file (design_standards.xml) being used for the project.  

Reverse length  
input

*If the chainage distance between two curves of opposite sign is less than the Reverse length value then the two curves are treated as reverse curves when applying the design rules.*

Widening table

![Plan View](Plan View)

If this distance is less than

**Reverse length** then the two curves are treated as reverse curves

Broken length  
input

*If the chainage distance between two curves of the same sign is less than the Broken length value then the two curves are treated as broken-back curves when applying the design rules.*

![Plan View](Plan View)

If this distance is less than

**Broken length** then the two curves are treated as broken back curves

Small deflection table  
choice box  
list of small_deflection_standards

the name of the Small Deflection Table to use. This is selected from the all the small_deflection_standards defined in the Design Standards file (design_standards.xml) being used for the project.  

Crest table  
choice box  
list of crest_standards

the name of the Crest Table to use. This is selected from the all the crest_standards defined in the Design Standards file (design_standards.xml) being used for the project.  

Sag table  
choice box  
list of sag_standards

the name of the Sag Table to use. This is selected from the all the sag_standards defined in the Design Standards file (design_standards.xml) being used for the project.  

Curve selection  
choice box  
minimum  
minimum. maximum

*If minimum* and more than one vertical curve k-value exists for the speed, the minimum curve k-value is used.  

*If maximum* and more than one vertical curve k-value exists for the speed, the maximum curve k-value is used.
Buttons at Bottom

Write button

clicking the Write button writes out all the Design Templates defined in this panel to the design_templates.xml file.
14.2.7 Import Legacy Design

Position of option on menu:  Strings =>Super alignments =>Import legacy design

The Import legacy design option reads a 12d Model 9 Design Parameter File and converts it to a Design Template for use in 12d Model 10 or higher.

Note:

Selecting Import legacy design displays the Import Design Parameters panel.

Selecting a Design parameters file will read in the selected .design file and populate fields in the panel.
14.2.8 Define Design Parameters - from V9

Position of option on menu:  Strings => Create => Super alignments => Design parameters

This was superseded in 12d Model 10 by Design Tables and Design Templates.

The **design parameters table** defines the use arcs, transition curves, parabolas, super elevation and road widening for given design speeds. The table is used to use by a super alignment in conjunction with user supplied information given in the **Design** tab of the super alignment.

Selecting Design parameters displays the Road Design Parameters panel.

![Road Design Parameters panel image](image-url)
14.2.9 SA Element Parts Viewer

Position of option on menu: Super Alignment Toolbar => Help

This option displays and explains all the parts in both horizontal and vertical, available in the Super Alignment.

Examples from the library can be read in for editing.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal</td>
<td>choice box</td>
<td>various</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Quick selection of Horizontal parts</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical</td>
<td>choice box</td>
<td>various</td>
<td></td>
</tr>
</tbody>
</table>
Quick selection of Vertical parts

Read Both button
Will read in 12da examples of all the parts. Most include vertical parts that are similar to their horizontal counterparts.

A plan view is created, called "SA Examples", and a model called "12D HOR ELEMENTS" is added to the plan view.

Show Horiz tick box
If ticked, allows the explanation and viewing of all horizontal parts

Show Vert tick box
If ticked, allows the explanation and viewing of all vertical parts

Show Solutions tick box
If ticked, allows the viewing of examples that can be read in

Read button
Will read in 12da examples of Super Alignments. Most include vertical geometry.

A plan view is created, called "SA Examples", and a model in the format "12D SA EXAMPLE 1" is added to the plan view.

Previous button
Step backward through examples

Next button
Step forward through examples
14.2.10 Super to SA Element Convert

Position of option on menu: Road Toolbar

This option is used to convert super strings that may have come in from other software.

The conversion will attempt to create a Super Alignment made up in the horizontal of element parts.

The parts will mainly include at least one fixed part followed by floating parts of varying types (lines and arcs).

A label style can be set and a tin set in the vertical as a drape computator.

Note: If the original string had a geometry error (non-tangential arcs e.g.), then the resulting Super Alignment will show an error.

The error however will be easy to find as any parts prior to the error, will still show as solved.

Selecting the convert alignment option brings up the Super to SA Element Convert panel.

The fields and buttons used in the panel have the following functions.

Field Description	Type	Defaults	Pop-Up
Data source type | Model | | |
Data source | input | | |
New name | name box | select name | |

"data selection type - for a full description go to 4.19.3 Data Source."

"source of data to be processed."

"if non-blank, then the name of the selected strings will be changed to the name given in the new name"
field.

**New model**

- model box
- select model

*model name for converted data*

**New colour**

- input
- available colours

*if non-blank, then the colour of the selected strings will be changed to the colour given in the new colour field.*

**Label style**

- choice box
- full
- various

*styles for Super alignments*

**Tin Drape**

- tin select

*if non-blank, then the tin is used as a vertical draped points computator for all converted strings*

**Delete original**

- tick box
- tick

*If ticked, delete original strings*

**Process**

- Button

*runs the option*
14.2.11 Super Alignment IP Tabulation

Position of option on menu:  Super Alignment Toolbar=>Super Alignment IP tabulation

This option tabulates a Super Alignment by placing individual information boxes at each calculated IP position.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Function Name</strong></td>
<td>function box</td>
<td>select function</td>
<td>name for use in recalc or chains</td>
</tr>
</tbody>
</table>

**Label Options**

- **Draw IP Boxes**
  - tick box
  - If ticked, create info boxes for all IP points

- **Draw Segment Labels**
  - tick box
  - If ticked, create segment labels

- **Multiple Seg Label Models (use name suffix)**
  - tick box
  - If ticked, create and label all segment parameters
  - Segment labels can be created and placed on individual models, using the name type as a suffix

- **Tabulation Model + "Radius"**
- **Tabulation Model + "Arc Length"**
Tabulation Model + "Length"
Tabulation Model + "Bearing"
Tabulation Model + "IP"
Tabulation Model + "Spiral"
Tabulation Model + "Tangents"

Note: Some of the segment labels have been superseded by the Super Alignment Model

Model  model box  select model
        model name for tabulation
Box Colour  input  red  available colours
        the colour of the IP Info boxes
Box Offset  measures box  75  At Point, Point to Point, String from Point, String to Point)
        Distance to place the IP Info boxes from the IP
Textstyle Data  input
        text parameters for all text options
No Decimal Places  input  3
        Number of decimals for text
Rotation Angle  input  0
        Rotation angle if view rotated
Draw Tangents  tick box
        If ticked, tangent lines to be drawn at IPs
Tangent Colour  input  red  available colours
        the colour for the tangent lines
Tangent Style  input  dashed  available styles
        the linestyle for the tangent lines
Maintain Existing Table Position  tick box
        If ticked, maintain IP Box positions during re-run of function
Reference  string select
        Super Alignment selection only
Process  button
        Creates the function and runs
Move Table  button
        Select IP Tabulation Box to move for clarity (esc or right mouse button to cancel)
14.3 Trimesh

Position of option on menu:  Strings => Trimesh

The Trimesh options create trimeshes, and snippets to create trimeshes, when used in an Apply MTF.

See

14.3.1 Create Trimesh
14.3.2 Trimeshes from 12d Objects
8.1.18 Wavefront OBJ Input
14.3.5 Create Trimesh Snippet
14.3.6 Create Trimesh Vis
14.3.7 Trimeshes from Tin
14.3.8 Trimeshes from Polygon
14.3.1 Create Trimesh

Position of option on menu:  Strings => Trimesh => Create trimesh

THIS OPTION IS CURRENTLY UNDER DEVELOPMENT.

The option is for creating trimeshes from 12d Model strings and a profile.

Continue to 14.3.2 Trimeshes from 12d Objects or return to 14.3 Trimesh.
14.3.2 Trimeshes from 12d Objects

This option creates trimeshes for any mesh, extrude, super string pipe or culvert, drainage/sewer string or billboard, in the selected data. The trimeshes can then be added to a section view, or cross section plots, to see that they are correctly sectioned through.

Selecting Trimeshes from 12d Objects brings up the Generate Trimeshes from 12d Objects panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visualisation meshes</td>
<td>tick box</td>
<td>tick</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If ticked, any meshes in the data source are converted to trimeshes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked, then meshes are not converted to trimeshes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extrusions</td>
<td>tick box</td>
<td>tick</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If ticked, any extrudes in the data source are converted to trimeshes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked, then extrudes are not converted to trimeshes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipes and culverts</td>
<td>tick box</td>
<td>tick</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If ticked, any super string pipe or culvert in the data source are converted to trimeshes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked, then super string pipe or culverts are not converted to trimeshes.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Billboard tick box tick
if ticked, any billboard in the data source are converted to trimeshes.
If not ticked, then billboards are not converted to trimeshes.

Drainage strings tick box tick
if ticked, any drainage/sewer strings in the data source are converted to trimeshes.
If not ticked, then drainage/sewer strings are not converted to trimeshes.

Output model model box available models
model to add all the created trimeshes to.

Generate button
create trimeshes for all the selected type that are in the data source.

Continue to 14.3.3 Trimeshes from Wavefront OBJ File or return to 14.3 Trimesh.
14.3.3 Trimeshes from Wavefront OBJ File

Position of option on menu:  File I/O => Data input => OBJ
Position of option on menu:  Strings => Trimesh => Trimeshes from OBJ file
This is documented in 8.1.18 Wavefront OBJ Input.

Continue to 14.3.4 Trimeshes from FBX File or return to 14.3 Trimesh.
## 14.3.4 Trimeshes from FBX File

FBX (Filmbox) is a proprietary format developed by Kaydara and owned by AutoDesk since 2006, to provide interoperability between digital content creation applications. This option reads in a FBX file and converts all possible objects to trimeshes.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBX file</td>
<td>file box</td>
<td>*.fbx files</td>
<td>name of the FBX file to be read in</td>
</tr>
<tr>
<td>Model for trimeshes</td>
<td>model box</td>
<td>available models</td>
<td>model to add all the created trimeshes to.</td>
</tr>
<tr>
<td>Triangle colour mode</td>
<td>choice box</td>
<td>use default, RGB of diffuse colour material name</td>
<td></td>
</tr>
<tr>
<td>Default colour</td>
<td>colour box</td>
<td>available colours</td>
<td>default colour for the trimeshes.</td>
</tr>
</tbody>
</table>

*If user default*, use the Default colour for the trimeshes.

*If RGB diffuse colour*, use the RGB diffuse colour of the FBX triangle object as the triangle colour.

*If material name*, use the material name of the FBX triangle as the triangle colour.

Continue to [14.3.5 Create Trimesh Snippet](#) or return to [14.3 Trimesh](#).
14.3.5 Create Trimesh Snippet

Position of option on menu: Strings => Trimesh => Create trimesh snippet

THIS OPTION IS CURRENTLY UNDER DEVELOPMENT.

The option is for creating snippets that will create trimeshes using an Apply MTF.

Continue to 14.3.6 Create Trimesh Vis or return to 14.3 Trimesh.
14.3.6 Create Trimesh Vis

Position of option on menu:  Strings => Trimesh => Create trimesh vis

THIS OPTION IS CURRENTLY UNDER DEVELOPMENT.

The option is for creating.
### 14.3.7 Trimeshes from Tin

**Position of option on menu:**  
*Strings => Trimesh => Trimeshes from tin*

This option takes a tin and creates a trimesh by first moving the tin up vertically by a use given Z offset of trimesh to form the top of the trimesh, and then copying the top a vertical down by a user given Depth of trimesh.

Selecting *Trimeshes from tin* brings up the *Generate Trimesh from tin* panel.

![Generate Trimesh from tin panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin to convert</td>
<td>tin box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>tin to create a trimesh from.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name for trimesh</td>
<td>name box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>name for the created trimesh.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for trimesh</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>model to add the created trimesh to.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z offset of trimesh</td>
<td>real box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>the top of the trimesh is the tin translated vertically up by this value.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>This value can be negative and then the top of the trimesh is lower rather than above the tin.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth Z offset of trimesh</td>
<td>real box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>the bottom of the trimesh is this value vertically below the top of the trimesh.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>This value can be negative then the &quot;bottom&quot; of the trimesh is above the &quot;top&quot; of the trimesh.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour for trimesh</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>colour for the created trimesh.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>create trimesh from the tin.</em></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to [14.3.8 Trimeshes from Polygon](#) or return to [14.3 Trimesh](#).
14.3.8 Trimeshes from Polygon

Position of option on menu: Strings => Trimesh => Trimeshes from polygon

This option takes a polygon and first creates a tin of the polygon, and then creates a trimesh by first moving the tin up vertically by a user given Z offset of trimesh to form the top of the trimesh, and then copying the top a vertical down by a user given Depth of trimesh.

Selecting Trimeshes from polygon brings up the Generate Trimesh from Polygon panel.

![Generate Trimesh from Polygon panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polygon</td>
<td>polygon to create the trimesh from.</td>
<td>string</td>
<td>select</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>name for the created trimesh.</td>
<td>name box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>a description that is recorded in the trimesh.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>model to add the created trimesh to.</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>colour for the created trimesh.</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td>Z-offset</td>
<td>the top of the trimesh is the tin of the polygon translated vertically up by this value.</td>
<td>real box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth</td>
<td>the bottom of the trimesh is this value vertically below the top of the trimesh of the polygon.</td>
<td>real box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Generate button create trimesh from the polygon.
Continue to 14.3.9 Trimesh Tools or return to 14.3 Trimesh.
14.3.9 Trimesh Tools

Position of option on menu:  Strings => Trimesh

![Trimesh Tools]

See

14.3.9.1 Trimesh Flip Faces

14.3.9.1 Trimesh Flip Faces

Position of option on menu:  Strings => Trimesh => Tools => Flip Trimesh Faces

This option reverses the order of the vertices in all the triangle in a trimesh.

Selecting **Flip faces** brings up the **Flip Trimesh Faces** panel.

![Flip Trimesh Faces]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimesh</td>
<td>trimesh select</td>
<td>trimesh</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>trimesh to flip the faces.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flip</td>
<td>button</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>reverse the order of the vertices in all the triangles in the selected trimesh.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Return to 14.3 Trimesh.
14.4 Editor

Position of option on menu: Strings => Editor

The string editor is used for modifying any of the 12d Model strings.

After selecting the editor option, the edit string panel is placed on the screen to record any error messages.

The option is already in pick mode (the pick & edit button only needs to be selected if the pick was cancelled) and the user simply picks and accepts the string to be edited. From the picked string's type, the editor is able to determine the appropriate editor and placed on the screen.

Each string type has its own edit operations which will now be discussed in detail.

Note - if the edit menu is deleted from the screen using the menu delete option, it can be raised again by clicking RB in any view.

For the option 2d, go to

3d
4d
Arcs
Circles
Feature
Edit Pipe
Edit Polyline
Super
Super Alignment
Text

For the old string options:

2d go to
3d - old
4d - old
Alignment
Pipe - old
Polyline - old

Please continue to the next section 14.4.1 Super String Edit - Common Information.
14.4.1 Super String Edit - Common Information

14.4.1.1 nd edit menu

After selecting the string to be edited, the toolbar containing the list of available edit options (the string’s Edit menu) is placed on the screen. If Display edit info is ticked on in the Default panel (Project => Management => Defaults), an information panel, (the string’s Edit info panel) is also displayed.

For example, the Edit String menu and Super Edit Info panel for a 3d super string are

Most of the options chosen from the Edit menu repeat until cancelled by the user. That is, the option remains in force and can be applied repeatedly until terminated by the user.

For example, if the Delete option is selected, any number of vertices can be deleted from the chosen string without re-selecting the Delete option. For full information on the Delete option, go to the section 14.4.1.2 Delete.

To select a new edit option, simply select the option from the Edit toolbar. The current option is automatically terminated and the new option begins.
Notes

1. Depending on its breakline (point-line) type, a string with default style ("1") is displayed with crosses at each of its vertices (point type) or with straight lines joining the vertices (line type). Linestyles can be defined that drawn lines between the vertices even though the breakline type is point.

2. The string vertices are called intersection points (IPs).

3. The string Super Edit Info panel will not automatically appear if Display edit info is set to off in the System Settings tab of the Project => Management => Defaults panel.

See 14.4.1.2 Delete
14.4.1.3 Move
14.4.1.4 Insert
14.4.1.5 Between
14.4.1.6 Extend
14.4.1.7 Open/Close
14.4.1.8 Properties
14.4.1.9 Info
14.4.1.10 Undo/Redo
14.4.1.11 '?' Help
14.4.1.13 Quit
14.4.1.12 Finish
14.4.1.14 Typed input

14.4.1.2 Delete
The vertex to be deleted is picked (LB) and accepted (MB). When the vertex is accepted, it is deleted. The string, minus the deleted point, is then redrawn.

Once a vertex has been deleted, another vertex in the string can then be selected and deleted. Hence any number of vertices from the string can be deleted one after another.

The delete option is terminated by selecting cancel from the pick ops menu or by selecting a new option from the Edit nd menu.

Typed input can be used to select a point for deletion.

Continue to the next section 14.4.1.3 Move or return to 14.4.1 Super String Edit - Common Information.

14.4.1.3 Move

The move option is for moving individual vertices (intersection points - IPs) of the string.

The move cycle consists of two steps:
(a) selecting the vertex to move
(b) selecting the new position for the vertex.

Step (a)
First the point to be moved is selected. The selected vertex will then move around the view and the string
redrawn to show the change as the cursor is moved.

message area 1 <Move>
Screen message area
<Pick vertex to move> [picks][fast][Menu

Step (b)
The current cursor position is selected as the new position for the vertex by selecting (LB) and accepting (MB). The vertex being moved is then anchored at the cursor position for the vertex, and the string redrawn.

message area 1 <Move>
Screen message area
<Pick new location of vertex> [picks][fast][menu]

Typed input can be used in either step.

Once the move cycle is completed and the vertex moved, the move option is still current and can be repeated for other vertices without having to re-select the move option.

The Move option is terminated by selecting cancel from the pick ops menu or by selecting a new Edit nd option.

Continue to the next section 14.4.1.4 Insert or return to 14.4.1 Super String Edit - Common Information.

14.4.1.4 Insert

The insert option is designed to place a new vertex in a string between two adjacent vertices (note that the inserted point does not have to be on the segment joining the two vertices).

Select the two adjacent vertices by selecting the segment joining them

New vertex added at this location

Inserting a vertex, like moving a vertex, is a two step process.

Step (a) - selecting the vertices to be on either side of the new vertex by selected the segment

The two adjacent vertices are chosen by selecting the segment connecting the two vertices. Once the segment is selected, the new vertex is assumed to be at the current cursor position. As the cursor is moved, the string is redrawn reflecting the changing position of the inserted vertex.

message area 1 <Insert >
Screen message area
<Pick position to insert vertex> [picks][fast][menu]
Step (b) - selecting the position for the new vertex
The position of the new vertex is selecting
message area 1  
Screen message area
<Insert>
<Pick new location of vertex> [picks][fast][menu]

Once the insert cycle is completed and the vertex inserted, the insert option is still current and can be repeated for other insertions without having to re-select the insert option.

The insert option is terminated by selecting Cancel from the Pick ops menu or by selecting a new option from the Edit nd menu.

Typed input can be used in either step.

Continue to the next section 14.4.1.5 Between or return to 14.4.1 Super String Edit - Common Information.

14.4.1.5 Between

The between option is similar to the insert option except that the inserted vertex does have to be on the segment joining the two vertices. To accomplish this, the cursor position is projected onto the segment to give the new vertex position.

Select the segment that the new vertex must be on

New vertex added at this location

The between option is terminated by selecting cancel from the pick ops menu or by selecting a new option from the Edit nd menu.

Continue to the next section 14.4.1.6 Extend or return to 14.4.1 Super String Edit - Common Information.

14.4.1.6 Extend
The extend option is used to move a vertex along the line joining the vertex to its neighbouring vertex. That is, the bearing of the segment is kept constant and the vertex is moved along that segment either towards or away from its neighbouring vertex on the segment.

Pick here to extend this vertex

Pick here to extend this vertex

Extending, like moving a vertex, is a two step process.

Step (a) - selecting the segment and the vertex to be moved along that segment

The segment and the vertex to be moved are chosen in the one operation by picking (LB) and accepting (MB) at a co-ordinate point near the segment and close to the vertex to be moved along that segment.

Once the segment and vertex are selected, the new position of the selected vertex is assumed to be at the current cursor position projected along the selected segment.

As the cursor is moved, the string is redrawn reflecting the changing position of the moved vertex.

Step (b) - selecting the final position for the vertex

The final position for the vertex is set to the projection of the selected cursor position onto the segment.

Once the extend is completed, the extend option is still current and can be repeated without re-selecting the extend option.

The extend option is terminated by selecting cancel from the pick ops menu or by selecting a new option from the Edit nd menu.

Typed input can be used in either step.

Note - Extend can be used on the end points of the string.

Continue to the next section 14.4.1.7 Open/Close or return to 14.4.1 Super String Edit - Common
14.4.1.7 Open/Close

Toggles a string between Open and Closed.

If the string is open (that is, the start and end vertices are not the same), selecting the Open/Close option adds a segment joining the first and last vertices of the string.

Selecting Yes if the string is open adds a segment, joining the first and last vertices of the string.

The string is now closed.

If the string is closed (that is, there is a segment from the start to the end vertices), selecting the Open/Close option removes the last segment of the string.

Continue to the next section 14.4.1.8 Properties or return to 14.4.1 Super String Edit - Common Information.
14.4.1.8 Properties

Selecting Properties brings up the **Super String Properties** panel which is used to modify the string’s header information.

What is displayed in the **Super String Properties** panel depends on the type of the super string. That is, it depends on what properties of the super string have been enabled.

For example, constant height enabled means that there is only one height for the entire super string so height appears in the **Super String Properties** panel. If variable height is enabled, there is a height for each vertex and so height does not appear in the **Super String Properties** panel.

In the **Advanced** mode, all the super string properties can be modified and so all possible super string fields are displayed in the **Super String Properties** panel.
The fields in the panels are similar to those in the Create Super String panels. The only new fields are the OK and Apply which are used in the normal way.

Continue to the next section 14.4.1.9 Info or return to 14.4.1 Super String Edit - Common Information.

14.4.1.9 Info
14.4.1.10 Undo/Redo

An undo and redo list is defined for each editor on the screen. That is, each editor has its own undo/redo lists. If an option is undone, it is added to the redo list so that it can be redone.

When the editor is exited by either Quit or Finish, the undo and redo lists are deleted and are no longer usable.

14.4.1.10.1 Undo

Undoes the last editor operation for this string and adds it to the top of the redo list.

14.4.1.10.2 Redo

Redo the last editor operation that was undone for this string. Add the undone operation to the top of the undo list.

14.4.11 ‘?’ Help

The Help button to go to the Help topic for the panel.

See the earlier section 14.4.1 Super String Edit - Common Information for general information about editing strings, the panel Super Edit Info, and the options, 14.4.1.2 Delete, 14.4.1.4 Insert, 14.4.1.3 Super String Edit - Common Information.
Move, 14.4.1.5 Between, 14.4.1.6 Extend, 14.4.1.7 Open/Close, 14.4.1.8 Properties, 14.4.1.9 Info, 14.4.1.10.1 Undo, 14.4.1.10.2 Redo, 14.4.1.11 ‘?’ Help, 14.4.1.12 Finish, 14.4.1.13 Quit and 14.4.1.14 Typed input.

For the Edit 2d options not mentioned in 14.4.1 Super String Edit - Common Information see 14.4.2 Edit 2d
For the Edit 3d options not mentioned in 14.4.1 Super String Edit - Common Information see 14.4.3 Edit 3d
For the Edit 4d options not mentioned in 14.4.1 Super String Edit - Common Information see 14.4.4 Edit 4d
For the Edit Super options not mentioned in 14.4.1 Super String Edit - Common Information see 14.4.10 Edit Super
For the Edit Pipe options not mentioned in 14.4.1 Super String Edit - Common Information see 14.4.8 Edit Pipe
For the Edit Polyline options not mentioned in 14.4.1 Super String Edit - Common Information see 14.4.9 Edit Polyline

Continue to the next section 14.4.1.12 Finish or return to 14.4.1 Super String Edit - Common Information.

14.4.1.12 Finish

The edit process is completed and the modified string stored in the given model when the Finish option is chosen from the Edit nd menu.

After selecting the Finish option, a Yes-No-Cancel panel is displayed to confirm that the edit is to be ended. If Yes is selected, the edits will be stored.

Continue to the next section 14.4.1.13 Quit or return to 14.4.1 Super String Edit - Common Information.

14.4.1.13 Quit

Even after points are created for the new string, the create process can be aborted by selecting the Quit option from the Edit nd menu. The option then terminates and no string is created.
After selecting the **Quit** option, a **Yes-No-Cancel** panel is displayed to confirm that the edit is to be ended. If **yes** is selected, the edits will be ignored and the unedited string kept. Note that if it was a new string being created, the option terminates by Quit and no string is created.

Continue to the next section **14.4.1.14 Typed input** or return to **14.4.1 Super String Edit - Common Information**.

### 14.4.1.14 Typed input

Typed input can be used wherever a select is required to obtain a co-ordinate. For example an (x,y), (x, y, z) or (chainage, height).

To start typed input, start typing, and a special typed-input box appears on the screen.

If the focus is on a Plan or Perspective view, then an **Enter X Y Z** box comes up when you are placing horizontal geometry for an alignment or super alignment, or vertices for all other string types. If you are creating vertical geometry for an alignment or super alignment and the focus is on a Section view, then a **Enter Ch Ht** box appears.

These are also called the **XYZ typed input** box and the **Chainage Height typed input** box respectively.

An **<enter>** terminates the typed input and the entered values taken as the position of the required point. The typed-input box then disappears.

If the user wishes to abort the typed input and return to mouse input, simply select the [X] button on the typed input box or type **<enter>** with no values in the typed input box.

Continue to the next section **14.4.2 Edit 2d** or return to **14.4.1 Super String Edit - Common Information**.
14.4.2 Edit 2d

On picking a 2d string, the Edit 2d toolbar is placed on the screen. If Display edit info is ticked on in the Default panel (Project => Management => Defaults), an information panel, (the string’s Super Edit Info panel) is also displayed.

![Edit 2d toolbar and Super Edit Info panel]

See the earlier section 14.4.1 Super String Edit - Common Information for general information about editing strings, the panel Super Edit Info, and the options, 14.4.1.2 Delete, 14.4.1.4 Insert, 14.4.1.3 Move, 14.4.1.5 Between, 14.4.1.6 Extend, 14.4.1.7 Open/Close, 14.4.1.8 Properties, 14.4.1.9 Info, 14.4.1.10.1 Undo, 14.4.1.10.2 Redo, 14.4.1.13 Quit, 14.4.1.11 ‘?’ Help, 14.4.1.12 Finish and 14.4.1.14 Typed input.

Each Edit 2d option not mentioned in the earlier section 14.4.1 Super String Edit - Common Information will now be described.

See 14.4.2.1 2d - Append
14.4.2.2 2d - Height
14.4.2.3 2d - Height (Nav)
14.4.2.4 2d Properties

14.4.2.1 2d - Append

The append option is used to
- create the 1st vertex in a new string
- or, to append a new vertex to the end of the string
- or to prepend a new vertex to the beginning of the string.

In this option, both appending and prepending will be referred to as appending.

14.4.2.1.1 Existing 2d Strings
Appending a vertex is a two step process.

Step (a) - For an existing string - selecting the end of the string to append the vertex to. After the Append option has been selected, the end of the string to append the vertex to is selected. Once the string end is selected, the new intersection point is assumed to be at the current cursor position. As the cursor is moved, the string is redrawn reflecting the changing position of the appended intersection point.

```
message area 1 <Append>
Screen message area
 <Pick end to append to> [picks][fast][menu]
```

Step (b) - selecting the position for the new appended vertex. The position of the new appended vertex is set to the current cursor position by picking (LB) and accepting (MB).

```
message area 1 <Append>
Screen message area
 <Pick location of vertex> [picks][fast][Menu]
```

Once a vertex has been appended to the string, the appended vertex is considered to be the selected string end and a new step (b) begins. The current cursor position indicates the new position for the next appended vertex.

Hence a series of string vertices is easily entered by first selecting the string end that the new vertices are to be appended to (step (a)) and then moving the cursor to the position of each new vertex and selecting them in turn (setup (b)).

Once the move cycle is completed and the vertex moved, the move option is still current and can be repeated for other vertices without having to re-select the move option.

The Append option is terminated by selecting Cancel from the Pick Ops menu or by selecting a new Edit 2d option.

### 14.4.2 New 2d String

For creating a new string, the cursor is used to select the 1st vertex of the string. The option then continues as if appending to an existing 2d string where the end vertex has already been selected.

Typed input can be used in either step.

Continue to next section 14.4.2.2 2d - Height or return to 14.4.2 Edit 2d.

#### 14.4.2.2 2d - Height
After the height option is chosen, a height typed input box is displayed on the screen with the string’s current height (z value).

The height typed-input box looks like:

The height is entered into the typed-input box, terminated by <enter>. The entered value is taken as the height of the 2d string and the string redrawn with the new height. The typed-input box then disappears.

The height option automatically terminates and a new option is selected from the Edit 2d.

**Note** - all the points in a 2d string have the same height.

Continue to next section 14.4.2.3 2d - Height (Nav) or return to 14.4.2 Edit 2d.

### 14.4.2.3 2d - Height (Nav)

The height (Nav) option is used to modify the height (z value) of the 2d string. After the height (Nav) option is chosen, a Super Vertex Height panel is displayed on the screen with the string’s current height (z value).

To change the height of the selected string, enter the value into the height field and press **ok** or **apply**. The entered value is then taken as the height of the 2d string and the string redrawn with the new height.

**Note** - all the points in a 2d string have the same height.

The fields and buttons used in the Super Vertex Height panel have the following functions.
Height 

input height of vertex/string

the height used for the entire string.

OK/Apply 

button

OK sets the string with the value in the panel field and removes the panel. Apply set the string with the value in the panel field and leaves the panel on the screen.

Continue to next section 14.4.2.4 2d Properties or return to 14.4.2 Edit 2d.

14.4.2.4 2d Properties

For information on the Super String Properties panel, go to 14.4.1.8 Properties
14.4.3 Edit 3d

Position of option on menu: Strings => Editor

On picking a 3d string, the Edit 3d toolbar is placed on the screen. If Display edit info is ticked on in the Default panel (Project => Management => Defaults), an information panel, (the string’s Super Edit Info panel) is also displayed.

![Edit toolbar](image)

Each option in the Edit 3d menu will now be described.

See 14.4.3.1 3d - Append
14.4.3.2 3d - Extend and Extend ht
14.4.3.3 3d - Height
14.4.3.4 3d - Height (Nav)
14.4.3.5 3d Properties

The difference between a 2d and a 3d string is that all points in a 2d string have the same z-value, whereas for a 3d string, each point can have a different z-value.

Hence most of the options in the Edit 3d menu are similar to the Edit 2d options of the same name, and only the differences for each option will be discussed. The Edit 2d options are given in the section 14.4.2 Edit 2d

See the earlier section 14.4.1 Super String Edit - Common Information for general information about editing strings, the panel Super Edit Info, and the options, 14.4.1.2 Delete, 14.4.1.4 Insert, 14.4.1.3 Move, 14.4.1.5 Between, 14.4.1.6 Extend, 14.4.1.7 Open/Close, 14.4.1.8 Properties, 14.4.1.9 Info, 14.4.1.10.1 Undo, 14.4.1.10.2 Redo, 14.4.1.13 Quit, 14.4.1.11 ‘?’ Help, 14.4.1.12 Finish and 14.4.1.14 Typed input.

14.4.3.1 3d - Append
Since in most cases, it would be tiresome to ask for a height every time a vertex is added, the entry of a new height is controlled by the **height** toggle in the snaps menu. If **height** is toggled to on, then every time a vertex is placed or moved an enter height typed-input box is displayed on the screen.

The enter height typed-input box looks like:

The height is entered into the typed-input box, terminated with <enter>. The entered value is taken as the height of the 3d string vertex and the string redrawn with the new height at the vertex. The typed-input box then disappears.

When the enter height box is placed on the screen, it will already have a value in it depending on the circumstances preceding the operation.

For example, if a vertex or segment was snapped to, the height at that vertex or segment will be displayed in the box.

Continue to next section 14.4.3.2 3d - Extend and Extend ht or return to 14.4.3 Edit 3d.

**14.4.3.2 3d - Extend and Extend ht**
The **Extend ht** option is similar to the **Extend** option except that the z-value of the moved vertex is modified by linearly interpolating the z-value from the original vertices at the end of the selected segment.

Most vertices are the end vertex of two segments and the extension could be along either segment. The vertex and the segment to extend along are both selected at the same time by picking on the segment to extend along, near the vertex to extend.

### 14.4.3.3 3d - Height

The **height** option is used to modify the height (z value) of any vertex in the string. After the height option is chosen, the user must select which vertex is going to have its height modified. After the vertex has been selected, a Height typed-input box is displayed on the screen with the vertex's current height (z value).

The height is entered into the typed-input box, terminated with <enter>. The entered value is taken as the height of the vertex in the 3d string and the string redrawn with the new height at that point. The typed-input box then disappears.

The **height** option is terminated on selecting **cancel** from the **pick ops** menu or by selecting a new option from the **Edit 3d** menu.

Continue to next section [14.4.3.4 3d - Height (Nav)] or return to [14.4.3 Edit 3d].
14.4.3.4 3d - Height (Nav)

As soon as Height (Nav) is chosen, a Super Vertex Height panel is displayed on the screen with the string's current height (z value) in the Height field.

The Super Vertex Height panel is used to set the height value for vertices.

When the Super Vertex Height panel appears on the screen, the vertex index field is the vertex index of the selected vertex, with its associated height in the Height field of the panel. To select another vertex to alter, the vertex to modify is selected by typing the vertex index into the Vertex index field or by selecting Prev or next to switch to another vertex. The selected vertex is highlighted on the string and its vertex index, and height are written to the appropriate panel fields in the Super Vertex Height panel. The values can be changed and either OK or Apply the changed value to the vertex.

Another vertex can then be selected or the Prev and Next buttons used to move to adjacent vertices.

The fields and buttons used in the Super Vertex Height panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex index</td>
<td>input selected vertex</td>
<td></td>
<td>selected vertex</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if a vertex is selected, then its vertex index is displayed in this field. An index can also be typed in and any information in the panel will then be applied to that vertex if OK or Apply is selected.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prev</td>
<td>button move to the previous vertex (predecessor). The information for the previous vertex is displayed in the panel fields.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next</td>
<td>button move to the next vertex (successor). The information for the next vertex is displayed in the panel fields.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>input height of vertex/string</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>the height used for the vertex or for the entire string.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK/Apply</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>for the vertex being edited, OK sets the vertex/string with the values in the panel fields and removes the panel. Apply sets the vertex/string with the values in the panel fields and leaves the panel on the screen.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to next section 14.4.3.5 3d Properties or return to 14.4.3 Edit 3d.

14.4.3.5 3d Properties
For information on the Super String Properties panel, go to 14.4.18 Properties.
14.4.4 Edit 4d

Position of option on menu:  
Strings => Editor

A 4d super string is a super string with the restriction that it has:
(a) vertices of (x,y,z) co-ordinates joined by straight segments only
(b) Text at each vertex
(c) All text has the same height, rotation, etc. So it is controlled by the one Text Style for the entire string

On picking a 4d string, the Edit 4d toolbar is placed on the screen. If Display edit info is ticked on in the Default panel (Project => Management => Defaults), an information panel, (the string’s Super Edit Info panel) is also displayed.

Only the options append, Append + Text, text, size and angle will be described in detail since all the other options are similar to the equivalent 3d string option (see the section 14.4.3 Edit 3d).

See the earlier section 14.4.1 Super String Edit - Common Information for general information about editing strings, the panel Super Edit Info, and the options, 14.4.1.2 Delete, 14.4.1.4 Insert, 14.4.1.3 Move, 14.4.1.5 Between, 14.4.1.6 Extend, 14.4.1.7 Open/Close, 14.4.1.8 Properties, 14.4.1.9 Info, 14.4.1.10.1 Undo, 14.4.1.10.2 Redo, 14.4.1.13 Quit, 14.4.1.11 ‘?’ Help, 14.4.1.12 Finish and 14.4.1.14 Typed input.

See 14.4.4.1 4d - Append +Text
14.4.4.2 4d - Height
14.4.4.3 4d - Height (Nav)
14.4.4.4 4d - Text (Nav)
14.4.4.5 4d - Text Info
14.4.4.6 4d Properties

14.4.4.1 4d - Append +Text
Append + text is a three step process.

Step (a) - For an existing string - selecting the end of the string to append the vertex and text to.

After the Append + text option has been selected, the end of the string to append the vertex to is selected. Once the string end is selected, the new intersection point is assumed to be at the current cursor position. As the cursor is moved, the string is redrawn reflecting the changing position of the appended intersection point.

Step (b) - selecting the position for the new appended vertex.

The position of the new appended vertex is set to the current cursor position by picking (LB) and accepting (MB).

Step (c) - Creating a text label for the vertex.

Once the new appended vertex is set to the current cursor position a Description typed-input box is displayed on the screen.
Type the description into the typed-input box, finishing with <enter> and the typed-input box then disappears.

The appended vertex is now considered to be the selected string end and a new step (b) begins. The current cursor position indicates the new position for the next appended vertex.

Hence a series of string vertices is easily entered by first selecting the string end that the new vertices are to be appended to (step (a)) and then moving the cursor to the position of each new vertex and selecting them in turn (setup (b)).

The append option is terminated on selecting cancel from the pick ops menu or by selecting a new option from the Edit 4d menu.

Continue to next section 14.4.4.2 4d - Height or return to 14.4.4 Edit 4d.

14.4.4.2 4d - Height

The height option is used to modify the height (z value) of any vertex in the string.

After the height option is chosen, the user selects which vertex is going to have its height modified.

After the vertex has been selected, a Height typed-input box is displayed on the screen with the vertex current height (z value).

The height is entered into the typed-input box, terminated with <enter>. The entered value is taken as the height of the vertex in the 4d string and the string redrawn with the new height at that vertex. The typed-input box then disappears.

Another vertex can then be selected for modifying its height.

The height option is terminated on selecting cancel from the pick ops menu or by selecting a new option from the Edit 4d menu.

Continue to next section 14.4.4.3 4d - Height (Nav) or return to 14.4.4 Edit 4d.

14.4.4.3 4d - Height (Nav)

Selecting Height (Nav) brings up the Super Vertex Height panel with the height at the first vertex of the string displayed.

The Super Vertex Height panel is used to set the height value for any vertex of the string.
Any vertex can then be selected by clicking on the number icon at the end of the Vertex index panel field and selecting the required vertex, or by typing in its Vertex index and pressing <Enter>, or by using the Prev and Next buttons used to move to adjacent vertices until the required vertex is selected.

When the vertex to modify is selected, the vertex is highlighted on the string and its vertex index, and height are displayed in the appropriate panel fields in the Super Vertex Height panel. The new vertex height is stored by clicking either OK or Apply.

The fields and buttons used in the Super Vertex Height panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex index</td>
<td>input</td>
<td>selected vertex</td>
<td>if a vertex is selected, then its vertex index is displayed in this field. An index can also be typed in and any information in the panel will then be applied to that vertex if OK or Apply is selected.</td>
</tr>
<tr>
<td>Prev</td>
<td>button</td>
<td>move to the previous vertex (predecessor). The information for the previous vertex is displayed in the panel fields.</td>
<td></td>
</tr>
<tr>
<td>Next</td>
<td>button</td>
<td>move to the next vertex (successor). The information for the next vertex is displayed in the panel fields.</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>input</td>
<td>height of vertex/string</td>
<td>the height used for the selected vertex.</td>
</tr>
<tr>
<td>OK/Apply</td>
<td>button</td>
<td>for the vertex being edited, OK sets the vertex/string with the values in the panel fields and removes the panel. Apply sets the vertex/string with the values in the panel fields and leaves the panel on the screen.</td>
<td></td>
</tr>
</tbody>
</table>

Continue to next section 14.4.4.4 4d - Text (Nav) or return to 14.4.4 Edit 4d.

14.4.4.4 4d - Text (Nav)

Selecting Text (Nav) brings up the Super Vertex Text panel with the text at the first vertex of the string displayed.

The Super Vertex Text panel is used to set the text for any vertex of the string.
Any vertex can then be selected by clicking on the number icon at the end of the Vertex index panel field and selecting the required vertex, or by typing in its Vertex index and pressing <Enter>, or by using the Prev and Next buttons used to move to adjacent vertices until the required vertex is selected.

When the vertex to modify is selected, the vertex is highlighted on the string and its vertex index and vertex text are displayed in the appropriate panel fields in the Super Vertex Text panel. The new vertex text is stored by clicking either OK or Apply.

The fields and buttons used in the Super Vertex Text panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex index</td>
<td>input selected vertex. If a vertex is selected, its vertex index is displayed</td>
</tr>
<tr>
<td></td>
<td>in this field. A number can also be typed in and any information in the panel</td>
</tr>
<tr>
<td></td>
<td>will then be applied to that vertex if OK or Apply is selected.</td>
</tr>
<tr>
<td>Prev</td>
<td>move to the previous vertex (predecessor). The information for the previous</td>
</tr>
<tr>
<td></td>
<td>vertex is displayed in the panel fields.</td>
</tr>
<tr>
<td>Next</td>
<td>move to the next vertex (successor). The information for the next vertex is</td>
</tr>
<tr>
<td></td>
<td>displayed in the panel fields.</td>
</tr>
<tr>
<td>Text mode</td>
<td>choice box. If no text, there is no text for the vertex. If entire string,</td>
</tr>
<tr>
<td></td>
<td>then the string has the same text for each vertex. If each vertex, then</td>
</tr>
<tr>
<td></td>
<td>each vertex has a separate text value.</td>
</tr>
<tr>
<td>Text</td>
<td>input text of vertex/string. The text used for the vertex.</td>
</tr>
<tr>
<td>OK/Apply</td>
<td>button. For the vertex being edited, OK sets the vertex/string with the</td>
</tr>
<tr>
<td></td>
<td>values in the panel fields and removes the panel. Apply sets the vertex/</td>
</tr>
<tr>
<td></td>
<td>string with the values in the panel fields and leaves the panel on the</td>
</tr>
<tr>
<td></td>
<td>screen.</td>
</tr>
</tbody>
</table>

Continue to next section 14.4.4.5 4d - Text Info or return to 14.4.4 Edit 4d.
14.4.4.5 4d - Text Info

For a 4d super string, the size, colour, slant, offset, etc. of vertex text is all the same and is controlled by the Text Style for the 4d super string.

Selecting Text Info brings up the Super Vertex Annotate panel with the text style for the string displayed.

The fields and buttons used in the Super Vertex Annotate panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text style</td>
<td>text style box</td>
<td>string's text style</td>
<td>available text styles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the text style string</td>
<td>This can be modified to change the values for all the text on the 4d string.</td>
</tr>
<tr>
<td>Prev</td>
<td>button</td>
<td>move to the previous vertex (predecessor). The information for the previous vertex is displayed in the panel fields.</td>
<td></td>
</tr>
<tr>
<td>OK/Apply</td>
<td>button</td>
<td>for the string being edited, OK sets the text style for the string and removes the panel. Apply sets the text style for the string and leaves the panel on the screen.</td>
<td></td>
</tr>
</tbody>
</table>

To modify any of the values of the Text Style, click on the Text style icon at the end of the Text style panel field to bring up the Select Textdata panel, and then select [Edit].
To change any of the values in the Text Style panel:

1. Modify the value in the Text Style panel and then click on Set and Finish. The panel will then close.

2. Click on Apply or OK in the Super Vertex Annotate panel.

**Modifying the Text Height**

All the text labels in the 4d string have the same height.

The height of all the text is modified by changing the Height (u) in the Text Style Info for the string (see 14.4.4.5 4d - Text Info).

**Modifying the Text Angle**

All the text labels in the 4d string are drawn rotated about their defining string point with the same rotation angle. The angle, in degrees, is measured in a counter-clockwise direction about the horizontal axis.

The angle of all the text is modified by changing the Angle in the Text Style Info for the string (see 14.4.4.5 4d - Text Info).

Continue to next section 14.4.4.6 4d Properties or return to 14.4.4 Edit 4d.

**14.4.4.6 4d Properties**
For information on the **Super String Properties** panel, go to [14.4.1.8 Properties](#).
14.4.5 Arc Edit

On picking an Arc string, the Arc Edit menu and Arc Edit Info panel are placed on the screen.

Each option in the arc edit menu will now be described.

See the earlier section 14.4.1 Super String Edit - Common Information for general information about editing strings.

14.4.5.1 Height

The **Height** option is used to define the z-value at the start or end point of the arc.

The z-value at any point on the arc is an interpolation on arc length of the values at the end points. Hence, the arc is an arc in plan only - in three dimensions, it is a helix.

**Height** is a two step process.

Step (a) - selecting the start or end point of the arc

After picking **height**, the end point of the arc whose height is to be modified is selected.

message area 1 <Height of arc>

Screen message area

<Select point to change height> [picks][menu]

<Select point to change height> [picks][accepts][menu]

Step (b) - entering the new height

After the start or end point of the arc is selected, an enter value typed-input box is placed on the screen with the points current height displayed in it.

The **enter value** typed-input box looks like:

The new height for the point is entered into the typed-input box, terminated with <enter>. The typed-input box then disappears.

The **height** option repeats until cancelled by the user by either bringing up the pick ops menu and selecting cancel or by selecting a new option from the arc edit menu.

If, after bringing up the pick ops menu, it is decided to continue with the height option, simply select the **restart** option from the pick ops menu and the pick ops menu will disappear leaving the **height** option still current.

Continue to next section 14.4.5.2 Typed Radius or return to 14.4.5 Arc Edit.
14.4.5.2 Typed Radius

The Typed radius option is used to modify the radius of the selected arc.

After the typed radius option is chosen, an enter value typed-input box is placed on the screen with the arc's current radius displayed in it.

The enter value typed-input box looks like:

The arc radius is entered into the typed-input box, terminated with <enter>. The entered value is taken as the radius of the arc and the arc is redrawn with its new radius.

The typed-input box then disappears.

The typed radius option is automatically terminated and a new option needs to be selected from the arc edit menu.

Continue to next section 14.4.5.3 Sweep Angle or return to 14.4.5 Arc Edit.

14.4.5.3 Sweep Angle

The Sweep angle option is used to modify the sweep angle of the selected arc.

After the sweep angle option is chosen, an enter value typed-input box is placed on the screen with the arc's current sweep angle displayed in it.

The enter value typed-input box looks like:

The arc sweep angle is entered into the typed-input box, terminated with <enter>. The entered value is taken as the sweep angle of the arc and the arc is redrawn with its new sweep angle.

The typed-input box then disappears.

The sweep angle option is automatically terminated and a new option needs to be selected from the arc edit menu.

Continue to next section 14.4.5.4 Chainage Interval or return to 14.4.5 Arc Edit.

14.4.5.4 Chainage Interval

The ch interval option is used to modify the chainage interval of the selected arc.

After the ch interval option is chosen, an enter value typed-input box is placed on the screen with the arc's current chainage interval displayed in it.

The enter value typed-input box looks like:

The new chainage interval is entered into the typed-input box, terminated with <enter>. The entered value is taken as the chainage interval of the arc and the arc is redrawn with its new chainage interval.

The typed-input box then disappears.

The ch interval option is automatically terminated and a new option needs to be selected from the arc edit menu.

Continue to next section 14.4.5.5 Move End or return to 14.4.5 Arc Edit.
14.4.5.5 Move End

The move end option is used to re-position either the start or the end point of the arc.

Move end is a two step process.

Step (a) - selecting the start or end point of the arc
After selecting the move end option, the end point to be move is selected.

message area 1 <Move End>
Screen message area
<Select point to move> [picks][menu]
<Select point to move> [picks][accepts][menu]

Step (b) - selecting the new position for the end point
After selecting the end point to move, the new position for the end point is selected.

message area 1 <Move End>
Screen message area
<Select final position of point> [picks][menu]
<Select final position of point> [picks][accepts][menu]

The move end option repeats until cancelled by the user by either bringing up the pick ops menu and selecting cancel or by selecting a new option from the arc edit menu.

If, after bringing up the pick ops menu, it is decided to continue with the move end option, simply select the restart option from the pick ops menu and the pick ops menu will disappear leaving the move end option still current.

Continue to next section 14.4.5.6 Radius or return to 14.4.5 Arc Edit.

14.4.5.6 Radius

The radius option is used to change the radius of the arc by leaving the centre point alone and re-positioning a point on the arc. The new position for the point will define a new radius for the arc.

Radius is a two step process.

Step (a) - selecting the point on the arc to move
After selecting the radius option, the point on the arc to be moved is selected.

message area 1 <Radius>
Screen message area
<Select point to move> [picks][menu]
<Select point to move> [picks][accepts][menu]

Step (b) - selecting the new position for the point
After selecting the point to move, the new position for the point is selected.

message area 1 <Radius>
Screen message area
<Select final position of point> [picks][menu]
<Select final position of point> [picks][accepts][menu]

The radius option repeats until cancelled by the user by either bringing up the pick ops menu and selecting cancel or by selecting a new option from the arc edit menu.

If, after bringing up the pick ops menu, it is decided to continue with the radius option, simply select the restart option from the pick ops menu and the pick ops menu will disappear leaving the radius option still current.

Continue to next section 14.4.5.7 Move or return to 14.4.5 Arc Edit.

14.4.5.7 Move

The Move option is used to change the position of the entire arc by selecting and moving the arc centre or any point on the arc.

Move is a two step process.
Step (a) - selecting the point on the arc to move
After selecting the move option, the point on the arc to move is selected.

message area 1 <Move>
Screen message area
<Select point to move> [picks][][menu]
<Select point to move> [picks][accepts][menu]

Step (b) - selecting the new position for the point
After selecting the point to move, the new position for the point is selected.

message area 1 <Move>
Screen message area
<Select final position of point> [picks][][menu]
<Select final position of point> [picks][accepts][menu]

The Move option repeats until cancelled by the user by either bringing up the Pick ops menu and selecting Cancel or by selecting a new option from the Arc edit menu.

If, after bringing up the Pick ops menu, it is decided to continue with the move option, simply select the restart option from the Pick ops menu and the Pick ops menu will disappear leaving the move option still current.

Continue to next section 14.4.5.8 Properties or return to 14.4.5 Arc Edit.

14.4.5.8 Properties

Selecting Properties brings up the Arc String Properties panel which is used to modify the string’s header information.

The fields in this panel are similar to those in the create arc string panel and the arc editor options. The only new field is

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK/Apply button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

for the string being edited, OK sets the string with the values in the panel fields and removes the panel. Apply sets the string with the values in the panel fields and leaves the panel on the screen.
14.4.6 Circle Edit

On picking a circle string, the circle edit menu and circle edit info panel are placed on the screen.

Each option in the circle edit menu will now be described.

See the earlier section 14.4.1 Super String Edit - Common Information for general information about editing strings.

14.4.6.1 Height

The height option is used to define the z-value for the entire circle.

After selecting the height option, an enter value typed-input box is placed on the screen with the circles current height displayed in it.

The enter value typed-input box looks like:

The new height for the circle is entered into the typed-input box, terminated with <enter>.

The typed-input box then disappears.

The height option is automatically terminated and a new option needs to be selected from the circle edit menu.

Continue to next section 14.4.6.2 Typed Radius or return to 14.4.6 Circle Edit.

14.4.6.2 Typed Radius

The typed radius option is used to modify the radius of the selected circle.

After the typed radius option is chosen, an enter value typed-input box is placed on the screen with the circles current radius displayed in it.

The enter value typed-input box looks like:

The circle radius is entered into the typed-input box, terminated with <enter>. The entered value is taken as the radius of the circle and the circle redrawn with its new radius.

The typed-input box then disappears.
The typed radius option is automatically terminated and a new option needs to be selected from the circle edit menu.

Continue to next section 14.4.6.3 Radius or return to 14.4.6 Circle Edit.

14.4.6.3 Radius

The radius option is used to change the radius of the circle by leaving the centre point alone and re-positioning a point on the circle. The new position for the point will define a new radius for the circle.

Radius is a two step process.
Step (a) - selecting the point on the circle to move
After selecting the radius option, the point on the circle to be moved is selected.

message area 1 <Radius>
Screen message area
<Select point to move> [picks][][menu]  
<Select point to move> [picks][accepts][menu]

Step (b) - selecting the new position for the point
After selecting the point to move, the new position for the point is selected.

message area 1 <Radius>
Screen message area
<Select final position of point> [picks][][menu]  
<Select final position of point> [picks][accepts][menu]

The radius option repeats until cancelled by the user by either bringing up the pick ops menu and selecting cancel or by selecting a new option from the circle edit menu.

If, after bringing up the pick ops menu, it is decided to continue with the radius option, simply select the restart option from the pick ops menu and the pick ops menu will disappear leaving the radius option still current.

Continue to next section 14.4.6.4 Chainage Interval or return to 14.4.6 Circle Edit.

14.4.6.4 Chainage Interval

The ch interval option is used to modify the chainage interval of the selected circle.

After the ch interval option is chosen, an enter value typed-input box is placed on the screen with the circles current chainage interval displayed in it.

The enter value typed-input box looks like:

```
 Enter value
 Enter value 40
```

The new chainage interval is entered into the typed-input box, terminated with <enter>. The entered value is taken as the chainage interval of the circle.

The typed-input box then disappears.

The ch interval option is automatically terminated and a new option needs to be selected from the circle edit menu.

Continue to next section 14.4.6.5 Move or return to 14.4.6 Circle Edit.

14.4.6.5 Move

The move option is used to change the position of the entire circle by selecting and moving the circle centre or any point on the circle.

Move is a two step process.
Step (a) - selecting the point on the circle to move
After selecting the move option, the point on the circle to move is selected.

message area <Move>
Screen message area
<Select point to move> [picks][][menu]
<Select point to move> [picks][accepts][menu]

Step (b) - selecting the new position for the point
After selecting the point to move, the new position for the point is selected.

message area 1 <Move>
Screen message area
<Select final position of point> [picks][][menu]
<Select final position of point> [picks][accepts][menu]

The move option repeats until cancelled by the user by either bringing up the pick ops menu and selecting cancel or by selecting a new option from the circle edit menu.

If, after bringing up the pick ops menu, it is decided to continue with the move option, simply select the restart option from the pick ops menu and the pick ops menu will disappear leaving the move option still current.

Note - the centre point of the circle can be selected and moved with the move option.

Continue to next section 14.4.6.6 Properties or return to 14.4.6 Circle Edit.

14.4.6.6 Properties
Selecting Properties brings up the Circle String Properties panel which is used to modify the string’s header information.

The fields in this panel are similar to those in the create circle string panel and the circle editor options. The only new field is

Field Description Type Defaults Pop-Up
Set button
for the circle being edited, set all the items in the circle string Properties panel to the values given in the panel.
14.4.7 Feature Edit

On picking a feature string, the Feature Edit menu and panel are placed on the screen.

Each option in the Feature Edit menu is identical to those from the circle edit menu and will not be described again. See the section 14.4.6 Circle Edit.

See the earlier section 14.4.1 Super String Edit - Common Information for general information about editing strings.
14.4.8 Edit Pipe

Position of option on menu:   Strings => Editor

On picking a pipe string, the Edit Pipe toolbar is placed on the screen. If Display edit info is ticked on in the Default panel (Project => Management => Defaults), an information panel, (the string’s Super Edit Info panel) is also displayed.

The only difference between a 3d and a pipe string is that the pipe string has a diameter. Hence most of the options in the pipe edit toolbar are similar to the Edit 3d options of the same name, and only the Properties option which includes diameter need to be discussed. See the section 14.4.3 Edit 3d for information on the Edit 3d editor.

See the earlier section 14.4.1 Super String Edit - Common Information for general information about editing strings.

14.4.8.1 Pipe Justification

Selecting the Pipe icon brings up the Super Segment Pipe panel which is used to modify the string’s pipe justification.

The Justify field is used to modify the justification of the pipe string.

Note - the default pipe string has only one justification for the entire string, however by using the Advanced mode, the pipe string can be turned into a more general super string where each segment can have its own justification.

Continue to next section 14.4.8.2 Super Pipe String Properties or return to 14.4.8 Edit Pipe.
14.4.8.2 Super Pipe String Properties

Selecting the Properties icon brings up the Pipe String Properties panel which is used to modify the string’s header information, the pipe diameter and the pipe justification.

![Super String Properties panel](image)

The fields in this panel are similar to those in the create pipe string panel and the 3d string editor options. The only new field is:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>real box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The diameter field is used to modify the diameter of the pipe string.

Note - the default pipe string has only one diameter for the entire string, however by using the Advanced mode, the pipe string can be turned into a more general super string where each segment can have its own diameter, or can be a box culvert rather than a pipe.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Justify</td>
<td>choice box</td>
<td>invert, centre, obvert</td>
<td></td>
</tr>
</tbody>
</table>

The Justify field is used to modify the justification of the pipe string.

Note - the default pipe string has only one justification for the entire string, however by using the Advanced mode, the pipe string can be turned into a more general super string where each segment can have its own justification.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK/Apply</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

for the string being edited, OK sets the string with the values in the panel fields and removes the panel. Apply sets the string with the values in the panel fields and leaves the panel on the screen.
14.4.9 Edit Polyline

Position of option on menu:  Strings => Editor

On picking a Polyline string, the Edit Polyline toolbar is placed on the screen. If Display edit info is ticked on in the Default panel (Project => Management => Defaults), an information panel, (the string’s Super Edit Info panel) is also displayed.

On picking a polyline string, the Polyline edit menu and Polyline edit info panel are placed on the screen.

The major difference between a polyline and a 3d string is that a polyline string can have an arc instead of a line joining adjacent string vertices. Hence most of the options in the Edit Polyline toolbar are similar to the Edit 3d options of the same name, and only the differences for each option will be discussed. See the section 14.4.3 Edit 3d for information on the 3d string editor.

See the earlier section 14.4.1 Super String Edit - Common Information for general information about editing strings.

For the option Add/Remove Toolbar go to
- Change Toolbar
- Utilities Toolbar
- Vertex Toolbar
- Radius Toolbar
- Properties Toolbar
- Info Toolbar
- Undo Toolbar
- Redo Toolbar
- Help Toolbar
- Finish Toolbar

14.4.9.1 Add/Remove Toolbar

The Add/remove toolbar is

14.4.9.2 Change Toolbar
14.4.9.3 Utilities Toolbar
14.4.9.4 Radius
14.4.9.5 Properties toolbar
14.4.1 Super String Edit - Common
The Append/Prepend options allow for simply adding vertices, or adding vertices plus radii for the segments.

**Append**

For the cases when no arc is required, the Append option simply places vertices.

**Append + Radius**

If an arc radius is required for every segment of the super string, there is an Append + Radius option that asks for the radius for every segment.

If the Append + Radius option is selected, then before each vertex is appended, a Radius typed-input box is placed on the screen.

The Radius typed-input box looks like

![Radius typed-input box](image)

The radius is entered into the typed-input box, terminated with <enter>. The entered value is taken as the radius of the arc to the next vertex and the arc will be drawn correctly as the cursor is moved to the next vertex.

A radius value of 0 is taken to mean no arc.

The height question for each point is toggled on/off in the snaps menu just as it was for a 3d string.

The Append options are terminated by selecting Cancel from the Pick Ops menu or by selecting a new option from the Edit polyline toolbar.

Go to the next section 14.4.9.2 Change Toolbar

14.4.9.2 Change Toolbar
The Move, Insert and Between options are the same as for a 3d string.

There are two Extend options for a polyline string - Extend that is identical to the 3d string case where the z-value of the point being extended is kept constant, and a second option, Extend ht where the z-value of the point being extended is linearly interpolated by the extension distance.

Most vertices are the end vertex of two segments and the extension could be along either segment. The vertex and the segment to extend along are both selected at the same time by picking on the segment to extend along, near the vertex to extend. The segment to extend can be a straight or an arc segment.

14.4.9.3 Utilities Toolbar

The utilities toolbar contains a number of useful miscellaneous option for the polyline string. The menu is

Each of the new options will now be discussed.

14.4.9.3.1 Ins 3 Point Curve

The Ins 3 Pt Curve option is used to insert a curve through three adjacent vertices.
After selecting the option, the middle vertex of the three adjacent vertices is selected. When the vertex is accepted, the radius required to fit a curve through the vertex and the two adjacent vertices is calculated, and this radius is then applied to the segments joining the adjacent vertices.

14.4.9.3.2 Del 3 Point Curve
The del 3 pt curve option is used to delete the curves on either side of a vertex. After selecting the option, a vertex is selected and when the vertex is accepted, the radii of the segments on either side are set to zero. Hence the curves on either side of the vertex are effectively removed.

14.4.9.3.3 Open/Close
Toggles the string between being open and closed.

Go to the next section 14.4.9.4 Radius

14.4.9.4 Radius
Selecting Radius icon brings up the Super Segment Radius panel which is used to modify the radius of any arc/line joining adjacent polyline points.

- The panel displays the arc radius and bulge setting for segment 1 and the next/previous buttons can be used to display the values for any segment.
- A particular segment can be selected by clicking on the value box for the Segment index field and then picking the segment. The current arc radius and bulge for the segment are displayed.
- New values can then be entered into the panel field and the arc modified by selecting the OK or Apply button.

If the radius is positive, the arc is drawn from the start point to the next point on the polyline in a clockwise direction. If the radius is negative, the arc is drawn from the start point to the next point on the polyline in a counter-clockwise direction.

For a given radius (positive or negative), there are two possible cases for the arc- one where the arc is less than a semi-circle, the other when the arc is greater than a semi-circle.

If bulge is ticked, the larger arc is used. The default is bulge turned off.
14.4.9.5 Properties toolbar

Selecting the Properties icon brings up the Polyline String Properties toolbar which is used to modify the string’s header information.

The fields in this panel are the same as for a 3d string.
14.4.10 Edit Super

On picking a super string, the Super Edit menu and Super Edit Info panel are placed on the screen.

The super string is similar to a polyline string in that it can have an arc instead of a line joining adjacent string points. Hence most of the options in the super edit menu are similar to the polyline edit options of the same name, and only the differences for each option will be discussed.

See the earlier section 14.4.1 Super String Edit - Common Information for general information about editing strings.

For the option Add/ Remove Toolbar go to

14.4.10.1 Add/Remove Toolbar
14.4.10.2 Change Toolbar
14.4.10.3 Utilities Toolbar
14.4.10.4 Vertex Toolbar
14.4.10.5 Segment Toolbar
14.4.1 Super String Edit - Common

14.4.10.1 Add/Remove Toolbar

The Add/Remove toolbar is
The **Append/Prepend** options allow for simply adding vertices, or adding a vertex plus a radius for the segment, or adding vertices and text for each vertex.

**Append**

For the cases when no arc or text is required, the Append option simply places vertices.

**Append + Radius**

If an arc radius is required for every segment of the super string, there is an Append + Radius option that asks for the radius for every segment.

If the Append + Radius option is selected, then before each vertex is appended, a radius typed-input box is placed on the screen.

The radius typed-input box looks like

![Typed Input]

The radius is entered into the typed-input box, terminated with <enter>. The entered value is taken as the radius of the arc to the next super string vertex and the arc will be drawn correctly as the cursor is moved to the next vertex.

A radius value of 0 is taken to mean *no arc*.

**Append + Text**

If text is required at every vertex of the super string, there the Append + Text option that asks for the text at every vertex.

When Append + Text is selected, then before each vertex is appended, a Description typed-input box is placed on the screen.

![Typed Input]

The text is entered into the typed-input box, terminated with <enter> and the entered text is taken as the vertex text,

The height question for each vertex is toggled on/off in the snaps menu just as it was for a polyline string.

The Append options are terminated by selecting Cancel from the Pick Ops menu or by selecting a new option from the Super Edit toolbar

Go to the next section 14.4.10.2 Change Toolbar
14.4.10.2 Change Toolbar

The \textbf{Extend ht} option is used to move a vertex along the line joining the vertex to its neighbouring vertex plus the z-value is interpolated from the z-values at either end of the segment.

\textbf{Move, Insert and Between}

The \textbf{Move}, \textbf{Insert} and \textbf{Between} options are the same as for a 3d string. See \textbf{Extend and Extend Height}.

\textbf{Extend and Extend Height}

There are two \textbf{Extend} options for a super string - \textbf{Extend} that is identical to the 3d string case where the z-value of the point being extended is kept constant, and a second option, \textbf{Extend ht} where the z-value of the point being extended is linearly interpolated by the extension distance (either along the straight or arc segment).

Most vertices are the end vertex of two segments and the extension could be along either segment. The vertex and the segment to extend along are both selected at the same time by picking on the segment to extend along, near the vertex to extend. The segment to extend can be a straight or an arc segment.

Please continue to the next section \textbf{14.4.10.3 Utilities Toolbar}.

14.4.10.3 Utilities Toolbar
Insert 3 Point Curve

The Ins 3 Pt Curve option is used to insert a curve through three adjacent vertices. After selecting the option, the middle vertex of the three adjacent vertices is selected. When the vertex is accepted, the radius required to fit a curve through the vertex and the two adjacent vertices is calculated, and this radius is then applied to the segments joining the adjacent vertices.

Delete 3 Point Curve

The del 3 pt curve option is used to delete the curves on either side of a vertex. After selecting the option, a vertex is selected and when the vertex is accepted, the radii of the segments on either side are set to zero. Hence the curves on either side of the vertex are effectively removed.

Open/Close

Toggles the string between being open and closed.

Please continue to the next section 14.4.10.4 Vertex Toolbar.

14.4.10.4 Vertex Toolbar

The Vertex toolbar contains options to modify information at any vertex of the super string.

For the option Height (Nav) go to 14.4.10.4.1 Height (Nav)
  Tinfile 14.4.10.4.2 Tinfile
  Visible 14.4.10.4.3 Visible
  Point Id 14.4.10.4.4 Point Id
  Text 14.4.10.4.5 Text
  Text (Nav) 14.4.10.4.6 Text (Nav)
  Text Info 14.4.10.4.7 Text Info
  Symbols 14.4.10.4.8 Symbols
  Attributes 14.4.10.4.9 Attributes
  All vertex properties 14.4.10.4.10 All Vertex Properties

14.4.10.4.1 Height (Nav)

Selecting Height (Nav) brings up the Super Vertex Height panel which is used to set the height value for vertices.
As soon as Height (Nav) is chosen, the height information for the first vertex is shown.
A particular vertex can be selected by first clicking on the icon at the end of the Vertex index field, and then selecting the required vertex, or by typing a number into the Vertex index field and pressing <enter>. Similarly the Prev and Next buttons can be used to move to adjacent vertices.

When a vertex is selected, its vertex number, height mode and height are written to the appropriate panel fields.

if any panel fields are modified, selecting either OK or Apply will store the new information for the vertex.

The fields and buttons used in the Super Vertex Height panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex index</td>
<td>number box</td>
<td>selected vertex</td>
<td></td>
<td>if a vertex is selected, then its vertex number is displayed in this field.</td>
</tr>
<tr>
<td>Prev</td>
<td>button</td>
<td></td>
<td></td>
<td>move to the previous vertex (predecessor). The information for the new vertex is displayed in the panel fields.</td>
</tr>
<tr>
<td>Next</td>
<td>button</td>
<td></td>
<td></td>
<td>move to the next vertex (successor). The information for the new vertex is displayed in the panel fields.</td>
</tr>
<tr>
<td>Height mode</td>
<td>choice box</td>
<td>no z, entire string, each vertex</td>
<td></td>
<td>if no z, there is no z value for the vertex.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>if entire string, then the string has the same z value for each vertex.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>if each vertex, then each vertex has a separate z value.</td>
</tr>
<tr>
<td>Height</td>
<td>input</td>
<td>height of vertex/string</td>
<td></td>
<td>the height used for the vertex or for the entire string.</td>
</tr>
<tr>
<td>OK/Apply</td>
<td>button</td>
<td></td>
<td></td>
<td>for the vertex being edited, OK sets the vertex with the values in the panel fields and removes the panel.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Apply sets the vertex with the values in the panel fields and leaves the panel on the screen.</td>
</tr>
</tbody>
</table>

Please continue to the next section 14.4.10.4.2 Tínable

14.4.10.4.2 Tínable

Selecting Tínable brings up the Super Vertex Tínable panel which is used to set the tinability information for vertices.
As soon as Tinable is chosen, the tinability information for the first vertex is shown.

A particular vertex can be selected by first clicking on the icon at the end of the Vertex index field, and then selecting the required vertex, or by typing a number into the Vertex index field and pressing <enter>.

Similarly the Prev and Next buttons can be used to move to adjacent vertices.

When a vertex is selected, its tinability information is written to the appropriate panel fields.

If any panel fields are modified, selecting either OK or Apply will store the new information for the vertex.

The fields and buttons used in the Super Vertex Tinable panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex Index</td>
<td>Number box Selected vertex. If a vertex is selected, its vertex number is displayed in this field.</td>
</tr>
<tr>
<td>Prev</td>
<td>Button Move to the previous vertex (predecessor). The information for the new vertex is displayed in the panel fields.</td>
</tr>
<tr>
<td>Next</td>
<td>Button Move to the next vertex (successor). The information for the new vertex is displayed in the panel fields.</td>
</tr>
<tr>
<td>Tinable mode</td>
<td>Choice box All vertices tinable, All vertices not tinable, Each vertex</td>
</tr>
<tr>
<td>Tinable</td>
<td>Tick box If ticked, the vertex is tinable. That is, it is included in tins. If not ticked, then the vertex is ignored when triangulating.</td>
</tr>
<tr>
<td>OK/Apply</td>
<td>Button For the vertex being edited, OK sets the vertex/string with the values in the panel fields and removes the panel. Apply sets the vertex/string with the values in the panel fields and leaves the panel on the screen.</td>
</tr>
</tbody>
</table>

Please continue to the next section 14.4.10.4.3 Visible
Selecting Visible brings up the Super Vertex Visible panel which is used to set the visibility flag for vertices.

As soon as Visible is chosen, the visibility information for the first vertex is shown. A particular vertex can be selected by first clicking on the icon at the end of the Vertex index field, and then selecting the required vertex, or by typing a number into the Vertex index field and pressing <enter>. Similarly the Prev and Next buttons can be used to move to adjacent vertices.

When a vertex is selected, its visibility information is written to the appropriate panel fields. If any panel fields are modified, selecting either OK or Apply will store the new information for the vertex.

The fields and buttons used in the Super Vertex Visible panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex index</td>
<td>number box</td>
<td>selected vertex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if a vertex is selected, then its vertex number is displayed in this field.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prev</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>move to the previous vertex (predecessor). The information for the new vertex is displayed in the panel fields.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>move to the next vertex (successor). The information for the new vertex is displayed in the panel fields.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible mode</td>
<td>choice box</td>
<td>all vertices visible</td>
<td>visibility for entire string</td>
<td>visibility for each vertex</td>
</tr>
<tr>
<td>if all vertices visible, all vertices are visible.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if visibility for the entire string, the Visible and Visible cross setting is used for all vertices in the string.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if visibility each vertex, then each vertex has its own Visible and Visible cross setting.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, the vertex is visible.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if not ticked, then the vertex is invisible.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible cross</td>
<td>tick box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, when it is a point string, a cross is drawn at each vertex.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if not ticked, when it is a point string, no cross is drawn at each vertex.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note - this is important when there is a symbol at the vertex. In that case, the vertex needs to be visible so that the symbol is drawn, but the standard cross drawn at vertices is not wanted.
OK/Apply button

For the vertex being edited, OK sets the vertex/string with the values in the panel fields and removes the panel. Apply sets the vertex/string with the values in the panel fields and leaves the panel on the screen.

Please continue to the next section 14.4.10.4.4 Point Id

14.4.10.4.4 Point Id

Selecting Point Id brings up the Super Vertex Point Id panel which is used to set the point IDs for vertices.

As soon as Point Id is chosen, the Point id information for the first vertex is shown. A particular vertex can be selected by first clicking on the icon at the end of the Vertex index field, and then selecting the required vertex, or by typing a number into the Vertex index field and pressing <enter>. Similarly the Prev and Next buttons can be used to move to adjacent vertices.

When a vertex is selected, its Point id information written to the appropriate panel fields. If any panel fields are modified, selecting either OK or Apply will store the new information for the vertex.

The fields and buttons used in the Super Vertex Point Id panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex index</td>
<td>number box</td>
<td>selected vertex</td>
<td></td>
<td>if a vertex is selected, then its vertex number is displayed in this field.</td>
</tr>
<tr>
<td>Prev</td>
<td>button</td>
<td></td>
<td></td>
<td>move to the previous vertex (predecessor). The information for the new vertex is displayed in the panel fields.</td>
</tr>
<tr>
<td>Next</td>
<td>button</td>
<td></td>
<td></td>
<td>move to the next vertex (successor). The information for the new vertex is displayed in the panel fields.</td>
</tr>
<tr>
<td>Point id mode</td>
<td>choice box</td>
<td>no ids, each vertex</td>
<td></td>
<td>if no ids, there are no Point ids for any vertex. if each vertex, then each vertex has a Point id.</td>
</tr>
<tr>
<td>Point id</td>
<td>text box</td>
<td>point id of vertex</td>
<td></td>
<td>the point id for the vertex.</td>
</tr>
<tr>
<td>OK/Apply</td>
<td>button</td>
<td></td>
<td></td>
<td>for the vertex being edited, OK sets the vertex/string with the values in the panel fields and removes the</td>
</tr>
</tbody>
</table>
panel. **Apply** sets the vertex/string with the values in the panel fields and leaves the panel on the screen.

Please continue to the next section 14.4.10.4.5 Text

### 14.4.10.4.5 Text

As soon as **Text** is chosen, the Vertex Select is running and the message

```
<Pick vertex to set text> [Picks][Accept][Menu]
```

is displayed in the screen message area.

The vertex to have its text modified is then selected and the Description typed-input box is displayed on the screen with the current text for the vertex in it.

![Description typed-input box](image)

To modify the vertex text, type the new text into the Description typed-input box, finishing with <enter> and the vertex text is updated and the typed-input box.

Please continue to the next section 14.4.10.4.6 Text (Nav)

### 14.4.10.4.6 Text (Nav)

Selecting **Text (Nav)** brings up the **Super Vertex Text** panel which is used to set the text for vertices.

![Super Vertex Text panel](image)

As soon as **Text (Nav)** is chosen, the vertex text for the first vertex is shown.

A particular vertex can be selected by first clicking on the icon at the end of the Vertex index field, and then selecting the required vertex, or by typing a number into the Vertex index field and pressing <enter>.

Similarly the **Prev** and **Next** buttons can be used to move to adjacent vertices.

When a vertex is selected, its vertex text is written to the appropriate panel fields. If any panel fields are modified, selecting either **OK** or **Apply** will store the new information for the vertex.

The fields and buttons used in the **Super Vertex Text** panel have the following functions.
### Chapter 14  Strings

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Vertex Index</strong></td>
<td>input</td>
<td>selected vertex</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>if a vertex is selected, then its vertex number is displayed in this field.</em></td>
<td></td>
</tr>
<tr>
<td><strong>Prev</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>move to the previous vertex (predecessor). The information for the new vertex is displayed in the panel fields.</em></td>
<td></td>
</tr>
<tr>
<td><strong>Next</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>move to the next vertex (successor). The information for the new vertex is displayed in the panel fields.</em></td>
<td></td>
</tr>
<tr>
<td><strong>Text mode</strong></td>
<td>input</td>
<td>no text, entire string, each vertex</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>if no text, there is no text for any vertex.</em></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>if entire string, then the string has the same text for each vertex.</em></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>if each vertex, then each vertex has a separate text value.</em></td>
<td></td>
</tr>
<tr>
<td><strong>Text</strong></td>
<td>input</td>
<td>text of vertex/string</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>the text used for the vertex or for the entire string.</em></td>
<td></td>
</tr>
<tr>
<td><strong>OK/Apply</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>for the vertex being edited, OK sets the vertex/string with the values in the panel fields and removes the panel. Apply sets the vertex/string with the values in the panel fields and leaves the panel on the screen.</em></td>
<td></td>
</tr>
</tbody>
</table>

Please continue to the next section **14.4.10.4.7 Text Info**

#### 14.4.10.4.7 Text Info

Selecting **Text info** brings up the **Super Vertex Annotate** panel which is used to set the annotation styles for the text at vertices.

![Super Vertex Annotate Panel](image)

As soon as **Text info** is chosen, the text annotation information for the first vertex is shown. A particular vertex can be selected by first clicking on the icon at the end of the Vertex index field, and then selecting the required vertex, or by typing a number into the Vertex index field and pressing <Enter>. Similarly the **Prev** and **Next** buttons can be used to move to adjacent vertices.

When a vertex is selected, its **text annotation** information is written to the appropriate panel fields. If any panel fields are modified, selecting either **OK** or **Apply** will store the new information for the vertex.

The fields and buttons used in the **Super Vertex Annotate** panel have the following functions.
14.4.10.4.8 Symbols

Selecting Symbols brings up the Super Vertex Symbol panel which is used to set symbols and their display parameters at vertices.

As soon as Symbols is chosen, the symbol annotation information for the first vertex is shown.

A particular vertex can be selected by first clicking on the icon at the end of the Vertex index field, and then selecting the required vertex, or by typing a number into the Vertex index field and pressing <Enter>.

Similarly the Prev and Next buttons can be used to move to adjacent vertices.

When a vertex is selected, its symbol information is written to the appropriate panel fields.
if any panel fields are modified, selecting either **OK** or **Apply** will store the new information for the vertex.

The fields and buttons used in the **Super Vertex Symbol** panel have the following functions.

**Field Description**	**Type**	**Defaults**	**Pop-Up**
Vertex index | input | selected vertex | 
*if a vertex is selected, then its vertex number is displayed in this field.*
Prev | button |  | 
*move to the previous vertex (predecessor). The information for the new vertex is displayed in the panel fields.*
Next | button |  | 
*move to the next vertex (successor). The information for the new vertex is displayed in the panel fields.*
Symbol mode | input | no symbol, entire string, each vertex | 
*if no symbol, then there is no symbol at any vertex.*
*if entire string, then the same symbol and settings are used for each vertex.*
*if each vertex, then each vertex has separate symbols and settings.*
Symbol style | symbol box | 1 | available symbols
*symbol at the vertex*
Symbol rotation | angle box |  | rotation angle of the symbol (measured from the positive x-axis in the counter-clockwise direction).
Symbol size (u) | real box |  | size of the symbol (in units for the symbol).
Symbol offset x (u) | real box | 0 | distance (in units for the symbol) to offset the symbol in the x direction from its (x,y) placement position.
Symbol offset y (u) | real box | 0 | distance (in units for the symbol) to offset the symbol in the y direction from its (x,y) placement position.
Symbol colour | input | available colours | colour of the symbol if none is defined in the symbol definition
OK/Apply | button |  | for the vertex being edited, **OK** sets the vertex/string with the values in the panel fields and removes the panel. **Apply** sets the vertex/string with the values in the panel fields and leaves the panel on the screen.

Please continue to the next section **14.4.10.4.9 Attributes**

### 14.4.10.4.9 Attributes

Selecting **Attributes** brings up the **Super Vertex User Attributes** panel which is used to display and edit user defined attributes at vertices of the super string.
As soon as Attribute is chosen, the attribute information for the first vertex is shown. A particular vertex can be selected by first clicking on the icon at the end of the Vertex index field, and then selecting the required vertex, or by typing a number into the Vertex index field and pressing <Enter>. Similarly the Prev and Next buttons can be used to move to adjacent vertices.

When a vertex is selected, its attribute information is written to the appropriate panel fields. If any panel fields are modified, selecting either OK or Apply will store the new information for the vertex.

The fields and buttons used in the Super Vertex User Attributes panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex index</td>
<td>input</td>
<td>selected vertex</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if a vertex is selected, then its vertex number is displayed in this field.</td>
<td></td>
</tr>
<tr>
<td>Prev</td>
<td>button</td>
<td>move to the previous vertex (predecessor). The information for the new vertex is displayed in the panel fields.</td>
<td></td>
</tr>
<tr>
<td>Next</td>
<td>button</td>
<td>move to the next vertex (successor). The information for the new vertex is displayed in the panel fields.</td>
<td></td>
</tr>
<tr>
<td>Attribute mode</td>
<td>choice box</td>
<td>no attributes, each vertex</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if no attributes, then no vertices have user attributes.</td>
<td></td>
</tr>
</tbody>
</table>
if each vertex, then each vertex can have user attributes.

Name/Type/Data Grid

Name  input  name for the user attribute. This must be unique for all attributes at this vertex.

Type  choice box  integer, real, text  type of the attribute.

Data  input  value for the attribute.

OK/Apply  button  

for the vertex being edited, OK sets the vertex with the values in the panel fields and removes the panel. Apply sets the vertex with the values in the panel fields and leaves the panel on the screen.

Please continue to the next section 14.4.10.4.10 All Vertex Properties

14.4.10.4.10 All Vertex Properties

Selecting All properties brings up the Super Vertex Properties panel which is used to display all the properties for a vertex.

This option is also available from the Strings menu

Position of option on menu:  Strings =>Properties =>Vertex (all)
As soon as All vertex properties is chosen, the height information for the first segment is shown in the panel. Clicking on the various tabs will show the various vertex information for the first vertex.

A particular vertex can be selected by first clicking on the icon at the end of the Vertex index field, and then selecting the required vertex, or by typing a number into the Vertex index field and pressing <Enter>. Similarly the Prev and Next buttons can be used to move to adjacent vertices.

When a vertex is selected, its attribute information is written to the appropriate tabs and panel fields. If any panel fields are modified, selecting either OK or Apply will store the new information for the vertex.

The fields in each of the tabs for the Super Vertex Properties panel have already been described in the other options on the Vertex Toolbar. See 14.4.10.4 Vertex Toolbar.

For information on the Segment Toolbar, please continue to the next section 14.4.10.5 Segment Toolbar.
14.4.10.5 Segment Toolbar

The Segment toolbar contains options to modify information at any segment of the super string.

For the option Colour go to 14.4.10.5.1 Colour
Visible 14.4.10.5.2 Visible
Radius 14.4.10.5.3 Radius
Pipe 14.4.10.5.4 Pipe
Tinable 14.4.10.5.5 Tinable
Text 14.4.10.5.6 Text
Annotate 14.4.10.5.7 Annotate
Attributes 14.4.10.5.8 Attributes
All segment properties 14.4.10.5.9 All Segment Properties

14.4.10.5.1 Colour

Selecting Colour brings up the Super Segment Colour panel which is used to set the colour of the string segments.

As soon as Colour is chosen, the colour information for the first segment is shown.
A particular segment can be selected by first clicking on the icon at the end of the Segment index field, and then selecting the required segment, or by typing a number into the Segment index field and pressing <Enter>.
Similarly the Prev and Next buttons can be used to move to adjacent segments.

When a segment is selected, its colour information is written to the appropriate panel fields.
if any panel fields are modified, selecting either OK or Apply will store the new information for the segment.
The fields and buttons used in the Super Segment Colour panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment index</td>
<td>number box</td>
<td>selected vertex</td>
<td>if a segment is selected, then its segment index is displayed in this field.</td>
</tr>
<tr>
<td>Prev</td>
<td>button</td>
<td></td>
<td>move to the previous segment (predecessor). The information for the new segment is displayed in the panel fields.</td>
</tr>
<tr>
<td>Next</td>
<td>button</td>
<td></td>
<td>move to the next segment (successor). The information for the next new is displayed in the panel fields.</td>
</tr>
<tr>
<td>Colour mode</td>
<td>choice box</td>
<td>string colour, each segment</td>
<td>if string colour, then all the segments in the string have the same colour. If each segment, then each segment has a separate colour.</td>
</tr>
<tr>
<td>Colour</td>
<td>colour box</td>
<td>colour of segment/string</td>
<td>available colours the colour used for the segment or for the entire string.</td>
</tr>
<tr>
<td>OK/Apply</td>
<td>button</td>
<td></td>
<td>for the segment being edited, OK sets the segment/string with the values in the panel fields and removes the panel. Apply sets the segment/string with the values in the panel fields and leaves the panel on the screen.</td>
</tr>
</tbody>
</table>

Please continue to the next section 14.4.10.5.2 Visible

**14.4.10.5.2 Visible**

Selecting Visible brings up the Super Segment Visible panel which is used to set the visibility flag for segments.

As soon as Visible is chosen, the visibility information for the first segment is shown.

A particular segment can be selected by first clicking on the icon at the end of the Segment index field, and then selecting the required segment, or by typing a number into the Segment index field and pressing <Enter>.

Similarly the Prev and Next buttons can be used to move to adjacent segments.

When a segment is selected, its visibility information is written to the appropriate panel fields.

If any panel fields are modified, selecting either OK or Apply will store the new information for the segment.
The fields and buttons used in the **Super Segment Visible** panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Segment index</strong></td>
<td>number box</td>
<td>selected vertex</td>
<td>if a segment is selected, then its segment index is displayed in this field.</td>
</tr>
<tr>
<td><strong>Prev</strong></td>
<td>button</td>
<td>move to the previous segment (predecessor). The information for the new segment is displayed in the panel fields.</td>
<td></td>
</tr>
<tr>
<td><strong>Next</strong></td>
<td>button</td>
<td>move to the next segment (successor). The information for the next new is displayed in the panel fields.</td>
<td></td>
</tr>
<tr>
<td><strong>Visible mode</strong></td>
<td>choice box</td>
<td>all segments visible, visibility for entire string, visibility for each segment</td>
<td></td>
</tr>
<tr>
<td><strong>Visible</strong></td>
<td>tick box</td>
<td>if ticked, the segment is visible. if not ticked, then the segment is invisible.</td>
<td></td>
</tr>
<tr>
<td><strong>Visible??</strong></td>
<td>tick box</td>
<td>if ticked, if not ticked.</td>
<td></td>
</tr>
<tr>
<td><strong>OK/Apply</strong></td>
<td>button</td>
<td>for the segment being edited, OK sets the segment/string with the values in the panel fields and removes the panel. Apply sets the segment/string with the values in the panel fields and leaves the panel on the screen.</td>
<td></td>
</tr>
</tbody>
</table>

Please continue to the next section **14.4.10.5.3 Radius**

**14.4.10.5.3 Radius**

When viewed in plan, the segments of a super string can be joined by string lines or arcs. If the radius is positive, the arc is drawn from the start vertex to the end vertex of the segment in a clockwise direction. If the radius is negative, the arc is drawn from the start vertex to the end vertex on the segment in a counter-clockwise direction.

For a given radius (positive or negative), there are two possible cases for the arc - one where the arc is less than a semi-circle, the other when the arc is greater than a semi-circle.

If bulge is turned on, the larger arc is used. The default is bulge turned off.

A zero radius is interpreted to be a just a straight line segment with no arc.
Selecting *Radius* brings up the **Super Segment Radius** panel which is used to set the plan radius of the segment.

As soon as *Radius* is chosen, the radius information for the first segment is shown. A particular segment can be selected by first clicking on the icon at the end of the Segment index field, and then selecting the required segment, or by typing a number into the Segment index field and pressing <Enter>.

Similarly the *Prev* and *Next* buttons can be used to move to adjacent segments.

When a segment is selected, its radius information is written to the appropriate panel fields. If any panel fields are modified, selecting either **OK** or **Apply** will store the new information for the segment.

The fields and buttons used in the **Super Segment Radius** panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment index</td>
<td>number box</td>
<td>selected vertex</td>
<td></td>
<td><em>if a segment is selected, then its segment index is displayed in this field.</em></td>
</tr>
<tr>
<td>Prev</td>
<td>button</td>
<td></td>
<td></td>
<td><em>move to the previous segment (predecessor). The information for the new segment is displayed in the panel fields.</em></td>
</tr>
<tr>
<td>Next</td>
<td>button</td>
<td></td>
<td></td>
<td><em>move to the next segment (successor). The information for the new segment is displayed in the panel fields.</em></td>
</tr>
</tbody>
</table>
| Radius mode    | choice box                                                                  | no arcs, each segment |                | *if no arcs, then no segments have a diameter (that is, they are all line segments).*
|                |                                                                             |               |                  | *If each segment, then each segment has a radius.*                       |
| Radius         | real box                                                                    | 0             |                  | *radius of the segment arc. A radius of 0 mean no arc.*                |
| Bulge          | tick box                                                                    |               |                  | *if ticked, the larger arc is used.*
|                |                                                                             |               |                  | *if not-ticked, the smaller arc is used.*                               |
| OK/Apply       | button                                                                      |               |                  | *for the segment being edited, OK sets the segment/string with the values in the panel fields and removes the panel. Apply sets the segment/string with the values in the panel fields and leaves the panel on the screen.* |
14.4.10.5.4 Pipe

The segments of a super string can have either a pipe or box cross section, or none. Selecting Pipe brings up the Super Segment Pipe panel which is used to set the pipe mode and size for the string segments.

As soon as Pipe is chosen, the pipe information for the first segment is shown. A particular segment can be selected by first clicking on the icon at the end of the Segment index field, and then selecting the required segment, or by typing a number into the Segment index field and pressing <Enter>. Similarly the Prev and Next buttons can be used to move to adjacent segments.

When a segment is selected, its pipe information is written to the appropriate panel fields. If any panel fields are modified, selecting either OK or Apply will store the new information for the segment.

The fields and buttons used in the Super Segment Pipe panel have the following functions.
<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment index</td>
<td>number box</td>
<td>selected vertex</td>
<td>if a segment is selected, then its segment index is displayed in this field.</td>
</tr>
<tr>
<td>Prev</td>
<td>button</td>
<td></td>
<td>move to the previous segment (predecessor). The information for the new segment is displayed in the panel fields.</td>
</tr>
<tr>
<td>Next</td>
<td>button</td>
<td></td>
<td>move to the next segment (successor). The information for the new segment is displayed in the panel fields.</td>
</tr>
<tr>
<td>Pipe mode</td>
<td>choice box</td>
<td>no pipe or culvert</td>
<td>pipe entire string</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>culvert each segment</td>
</tr>
</tbody>
</table>

if no pipe or culvert, there is no pipe or culvert for the segment.
If pipe entire string, then all the segments in the string are pipes and have the same diameter.
If pipe each segment, then each segment is a pipe and can have a different diameter.
If culvert entire string, then all the segments in the string are culverts and have the same width and height.
If culvert each segment, then each segment is a culvert and can have a different width and height.

Justify choice box invert, centre, overt justification of the pipe/culvert with respect to the co-ordinates given for the vertices of the super string.

Pipe diameter real box diameter of the pipe in world units.

Culvert width real box width of the culvert section in world units.

Culvert height real box height of the culvert section in world units.

OK/Apply button for the segment being edited, OK sets the segment/string with the values in the panel fields and removes the panel. Apply sets the segment/string with the values in the panel fields and leaves the panel on the screen.

Please continue to the next section 14.4.10.5.5 Tinable

14.4.10.5.5 Tinable
Selecting Segment=>Tinable brings up the Super Segment Tinable panel which is used to set the tinable flag for segments.
As soon as **Tinable** is chosen, the tinability information for the first segment is shown. A particular segment can be selected by first clicking on the icon at the end of the Segment index field, and then selecting the required segment, or by typing a number into the Segment index field and pressing <enter>. Similarly the **Prev** and **Next** buttons can be used to move to adjacent segments.

When a segment is selected, its **tinability** information is written to the appropriate panel fields. If any panel fields are modified, selecting either **OK** or **Apply** will store the new information for the segment.

The fields and buttons used in the **Super Segment Tinable** panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment index</td>
<td>number box</td>
<td>selected vertex</td>
<td></td>
</tr>
<tr>
<td><strong>Prev</strong> button</td>
<td>move to the previous segment (predecessor). The information for the new segment is displayed in the panel fields.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Next</strong> button</td>
<td>move to the next segment (successor). The information for the next new is displayed in the panel fields.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tinable mode</td>
<td>choice box</td>
<td>all segments tinable</td>
<td></td>
</tr>
<tr>
<td><strong>Tinable</strong> tick box</td>
<td>if <strong>all segments tinable</strong>, all segments are included as break lines in a triangulation. if <strong>all segments not tinable</strong>, no segments are included as break lines in a triangulation. if <strong>each segment</strong>, then each segment has a separate tinability value.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>OK/Apply</strong> button</td>
<td>for the segment being edited, <strong>OK</strong> sets the segment/string with the values in the panel fields and removes the panel. <strong>Apply</strong> sets the segment/string with the values in the panel fields and leaves the panel on the screen.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
14.4.10.5.6 Text

Selecting Segment=>Text brings up the Super Segment Text panel which is used to set the text for segments.

As soon as Text is chosen, the segment text for the first segment is shown.
A particular segment can be selected by first clicking on the icon at the end of the Segment index field, and then selecting the required segment, or by typing a number into the Segment index field and pressing <enter>.
Similarly the Prev and Next buttons can be used to move to adjacent segments.

When a segment is selected, its segment text is written to the appropriate panel fields.
if any panel fields are modified, selecting either OK or Apply will store the new information for the segment.

The fields and buttons used in the Super Segment Text panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment index</td>
<td>number box</td>
<td>selected</td>
<td>vertex</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if a segment is selected, then its segment index is displayed in this field.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prev</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>move to the previous segment (predecessor). The information for the new segment is displayed in the panel fields.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>move to the next segment (successor). The information for the next new is displayed in the panel fields.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text mode</td>
<td>choice box</td>
<td>no text,</td>
<td>entire string,</td>
<td>each segment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>each segment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if no text, there is no text for the segment.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if entire string, then the string has the same text for each segment.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if each segment, then each segment has a separate text value.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text</td>
<td>text box</td>
<td>text of segment/string</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the text used for the segment or for the entire string.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK/Apply</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
for the segment being edited, **OK** sets the segment/string with the values in the panel fields and removes the panel. **Apply** sets the segment/string with the values in the panel fields and leaves the panel on the screen.

Please continue to the next section [14.4.10.5.7 Annotate](#)

### 14.4.10.5.7 Annotate

Selecting **Annotate** brings up the **Super Segment Annotate** panel which is used to set the annotation styles for the text at segments.

![Super Segment Annotate](image)

As soon as **Annotate** is chosen, the annotation information for the first segment is shown. A particular segment can be selected by first clicking on the icon at the end of the Segment index field, and then selecting the required segment, or by typing a number into the Segment index field and pressing `<enter>`.

Similarly the **Prev** and **Next** buttons can be used to move to adjacent segments.

When a segment is selected, its annotation information is written to the appropriate panel fields. If any panel fields are modified, selecting either **OK** or **Apply** will store the new information for the segment.

The fields and buttons used in the **Super Segment Annotate** panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Segment index</strong></td>
<td>number box</td>
<td>selected vertex</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>if a segment is selected, then its segment index is displayed in this field.</em></td>
<td></td>
</tr>
<tr>
<td><strong>Prev</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>move to the previous segment (predecessor). The information for the new segment is displayed in the panel fields.</em></td>
<td></td>
</tr>
<tr>
<td><strong>Next</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>move to the next segment (successor). The information for the new segment is displayed in the panel fields.</em></td>
<td></td>
</tr>
<tr>
<td><strong>Annotate mode</strong></td>
<td>choice box</td>
<td>no annotation, entire string, each segment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>if no annotation, then the text at the segment is not displayed.</em></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>if entire string, then the same annotation settings are used all each segments and the Text style information is given in the Text style field.</em></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>if each segment, then each segment has separate annotations settings and the Text style information for each segment is given in the Text style field.</em></td>
<td></td>
</tr>
<tr>
<td><strong>Text style</strong></td>
<td>textstyle data box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>textstyle information.</em></td>
<td></td>
</tr>
<tr>
<td><strong>OK/Apply</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
for the segment being edited, **OK** sets the segment/string with the values in the panel fields and removes the panel. **Apply** sets the segment/string with the values in the panel fields and leaves the panel on the screen.

Please continue to the next section 14.4.10.5.8 Attributes.

### 14.4.10.5.8 Attributes

Selecting **Attributes** brings up the **Super Segment User Attributes** panel which is used to display and edit user defined attributes at segments of the super string.

![Super Segment User Attributes Panel](image)

As soon as **Attributes** is chosen, the attributes for the first segment are shown.

A particular segment can be selected by first clicking on the icon at the end of the Segment index field, and then selecting the required segment, or by typing a number into the Segment index field and pressing <Enter>.

Similarly the **Prev** and **Next** buttons can be used to move to adjacent segments.

When a segment is selected, its attribute information is written to the appropriate panel fields.

if any panel fields are modified, selecting either **OK** or **Apply** will store the new information for the segment.

The fields and buttons used in the **Super Segment User Attributes** panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Segment index</strong></td>
<td>number box</td>
<td>selected vertex</td>
<td></td>
</tr>
</tbody>
</table>

*if a segment is selected, then its segment index is displayed in this field.*
Prev button
move to the previous segment (predecessor). The information for the new segment is displayed in the panel fields.

Next button
move to the next segment (successor). The information for the new segment is displayed in the panel fields.

Attribute mode choice box
no attributes, each segment
if no attributes, then no segments have user attributes.
if each segment, then each segment can have user attributes.

Name/Type/Data Grid

Name input
name for the user attribute. This must be unique for all attributes at this segment.

Type choice box
integer, real, text
type of the attribute.

Data Grid grid
values for the attributes.

OK/Apply button
for the segment being edited, OK sets the segment with the values in the panel fields and removes the panel. Apply sets the segment with the values in the panel fields and leaves the panel on the screen.

Please continue to the next section 14.4.10.5.9 All Segment Properties

14.4.10.5.9 All Segment Properties
Selecting All properties brings up the Super Segment Properties panel which is used to display all the properties of a segment.

This option is also available from the Strings menu

Position of option on menu: Strings => Properties => Segment (all)
As soon as All segment properties is chosen, the colour information for the first segment is shown. Clicking on the various tabs will show the various segment information for the first segment.

A particular segment can be selected by first clicking on the icon at the end of the Segment index field, and then selecting the required segment.

When the segment to modify is selected, its segment index and all other information are written to the appropriate panel fields.

Another segment can then be selected or the Prev and Next buttons used to move to adjacent segments and display data for that segment.

After any panel fields are modified, selecting either OK or Apply will change the information for the segment.

The fields in each of the tabs for the Super Segment Properties panel have already been described in the other options on the Segment Toolbar. See 14.4.10.5 Segment Toolbar.

For information on the Properties Toolbar, please continue to the next section 14.4.10.5.10 Properties Toolbar.
14.4.10.5.10 Properties Toolbar

Selecting **Properties** brings up the **Super String Properties** panel which is used to modify the string's header information.

![Super String Properties Panel](image)

The fields in this panel are similar to those in the **Create Super String** panel and the Super String Editor options. The only new field is

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Description Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK/Apply button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the string being edited, **OK** sets the string with the values in the panel fields and removes the panel. **Apply** sets the string with the values in the panel fields and leaves the panel on the screen.
14.4.11 Edit Super Alignment

On picking a super alignment, the Super Alignment Edit menu is placed on the screen.

For the option Add/ Remove toolbar go to 14.4.11.1 SA - Add/Remove IPs Toolbar
   Move/Edit toolbar 14.4.11.2 SA - Move/Edit Toolbar
   Change icon 14.4.11.3 SA - Change Icon
   Part Editors toolbar 14.4.11.4 SA - Part Editors Toolbar
   Properties toolbar 14.4.11.5 SA - Super Alignment

Properties Icon
   Undo icon 14.4.11.6 SA - Undo and Redo Icons
   Redo icon 14.4.11.6 SA - Undo and Redo Icons
   Info icon 14.4.11.7 SA - Info Icon
   Recalc icon 14.4.11.8 SA - Recalc Icon
   Error Checker icon 14.4.11.9 SA - Error Checker Icon
   Clear toolbar 14.4.11.10 SA - Clear Toolbar
   Help icon 14.4.11.11 SA - Help Icon
   Finish toolbar 14.4.11.12 SA - Finish Toolbar
14.4.11.1 SA - Add/Remove IPs Toolbar

The Add/Remove IPs toolbar is

- Append or prepend a HIP
- Append or prepend a VIP
- Insert IP
- Between IP
- Insert VIP height
- Insert VIP grade
- Intersect VIP grades
- Filter IPs
- Delete an IP

The Append operations for a super alignment string are similar to the 2d string case except that there are separate Append options for the horizontal and vertical geometry of the string.

For the option:

- Append HIP go to 14.4.11.1 SA - Append/Prepend HIP - Horizontal Geometry
- Append VIP 14.4.11.1.2 SA - Append/Prepend VIP - Vertical Geometry

The Insert IP, Between IP and Delete IP work on the horizontal geometry if used on a plan view, and if used on a section view that the super alignment is profiled on, they work on the vertical geometry.

For the option Insert IP go to 14.4.11.1.3 SA - Insert IP
- Between IP 14.4.11.1.4 SA - Between IP
- Delete IP 14.4.11.1.9 SA - Delete IP

For the option Insert VIP Height, go to 14.4.11.1.5 SA - Insert VIP Height
- Insert VIP Grade 14.4.11.1.6 SA - Insert VIP Grade
- Intersect VIP Grades 14.4.11.1.7 SA - Intersect VIP Grades
- Filter IPs 14.4.11.1.8 SA - Filter IPs
- Delete an IP 14.4.11.1.9 SA - Delete IP

14.4.11.1.1 SA - Append/Prepend HIP - Horizontal Geometry

The Append HIP option is used in a plan view to create the first horizontal intersection point (HIP) in a new super alignment string and then append further HIPs, or for an existing super alignment string to append new HIPs to the end of the string, or to new HIPs to the beginning of the string. In this option, both appending and prepending will be referred to as Appending.

14.4.11.1.1.1 Existing Super Alignment

Appending an HIP is a two step process.

Step (a) - selecting the end to Append the HIP to.

After picking Append HIP, the end of the string to append the point to is selected. Once the string end is selected, the new HIP is assumed to be at the current cursor location. As the cursor is moved, the string is redrawn reflecting the changing position of the appended intersection point

- screen message area <Pick end to append to> [picks][fast][Menu>

Step (b) - selecting the position for the new appended HIP.
The position of the new appended HIP is set to the current cursor position by picking (LB) and accepting (MB).

Once an HIP has been appended to the string, the appended HIP is considered to be the selected string end and a new Append cycle begins. That is, stage (a) is already set up. The current cursor position indicates the new position of the next appended HIP.

Hence a series of HIPS is easily entered by first selecting the string end in a plan view that the new points are to be appended to (step (a)) and then moving the cursor to the position of each new point in turn and selecting it.

**Typed input:** r for relative, b for bearing-distance can be used in either step.

### 14.4.11.1.1.2 New Super Alignment

When the Append HIP option is selected, a cross will appear on any plan views that have the super alignment string's model on them.

The first HIP is then selected by the standard pick (LB) and accept (MB).

The option then continues as if appending to an existing super alignment string where the end HIP has already been accepted.

**Typed input:** r for relative, b for bearing-distance can be used in either step.

The Append HIP option is terminated by either pressing RB to bring up the Pick Ops menu and selecting Cancel or by selecting a new option from the Edit SA toolbar.

If, after bringing up the Pick Ops menu, it is decided to continue with the Append HIP option, simply select the Restart option from the Pick Ops menu and the Pick Ops menu will disappear leaving the Append HIP option still current.

### 14.4.11.1.2 SA - Append/Prepend VIP - Vertical Geometry

The Append HIP option is used in a section view to create vertical geometry for a super alignment that must already have some horizontal geometry. The existing super alignment needs to be the primary string on the section view. That is, it is the string profiled on the section view that is going to be used to create the vertical geometry. This can be achieved by using either the VG edit or the Profile option from the section view menu.

Note: on a section view, the option Utilities => VG edit takes the selected super alignment and profiles it on the section view and also opens the SA Editor for the string.

The Append HIP option can the first vertical intersection point (VIP) in an existing super alignment string that has no vertical geometry, and then append further VIPs, or for an existing super alignment string with vertical geometry, OR appends new VIPs to the end or the beginning of the vertical geometry of the string. In this option, both appending and prepending will be referred to as Appending.

#### 14.4.11.1.2.1 Existing Vertical Geometry

Appending a VIP point is almost the same as for a HIP except that the co-ordinate system is (chainage,height) rather than (x,y) values.

Appending an VIP is a two step process.

Step (a) - selecting the end to Append the VIP to.

After picking Append VIP, the end of the vertical geometry to append the point to is selected in the section view. Once the vertical geometry end is selected, the new VIP is assumed to be at the current cursor location and as the cursor is moved, the string is redrawn reflecting the changing position of the appended VIP.

**Typed input:** r for relative, b for bearing-distance can be used in either step.
The position of the new appended VIP is set to the current cursor position by picking (LB) and accepting (MB).

Once a VIP has been appended to the string, the appended VIP is considered to be the selected vertical geometry end and a new Append cycle begins. That is, stage (a) is already set up. The current cursor position in the section view indicates the new position of the next appended VIP.

**Typed input:** `r` for relative, `g` for grade-height can be used in either step.

Hence a series of VIPs is easily entered by first selecting the vertical geometry end that the new points are to be appended to (step (a)) and then moving the cursor to the position of each new point in turn and selecting them in.

### 14.4.11.1.2.2 New Vertical Geometry

Creating the **first VIP** is similar to the first HIP.

When the **Append VIP** option is selected, a cross will appear on any section views that have the super alignment string profiled on them.

Once the first VIP is then selected by the standard pick (LB) and accept (MB).

The option then continues as if appending to an existing vertical geometry where the end point has already been accepted.

**Typed input:** `r` for relative, `g` for grade-height can be used in either step.

The **Append VIP** option is terminated by either pressing RB to bring up the Pick Ops menu and selecting Cancel or by selecting a new option from the Edit SA toolbar.

If, after bringing up the Pick Ops menu, it is decided to continue with the **Append VIP** option, simply select the Restart option from the Pick Ops menu and the Pick Ops menu will disappear leaving the **Append VIP** option still current.

### 14.4.11.1.3 SA - Insert IP

The **Insert** option is designed to place a new HIP or VIP between two adjacent IPs.

**Insert IP** works on the horizontal or the vertical geometry depending on whether a plan or section view is used for the editing.

The inserted IP does not have to be on the line joining the two intersection points - the Between IP option is used to guarantee that the IP is on the IP-IP line.

Inserting an IP is a two step process.

**Step (a)** - selecting the IP's to be on either side of the new intersection point

The two adjacent IPs are chosen by selecting the line connecting the two intersection points. Once the line is selected, the new IP is assumed to be at the current cursor position. As the cursor is moved, the string is redrawn reflecting the changing position of the inserted IP.

For horizontal and vertical inserts

**Step (b)** - selecting the position for the new IP

The position of the new IP is set to the current cursor position by picking (LB) and accepting (MB).

Once the insert cycle is completed and the IP inserted, the Insert IP option is still current and can be repeated for other insertions (in either plan or section views) without having to re-select the Insert IP option.

The **Insert IP** option is terminated by selecting Cancel from the Pick Ops menu or by selecting a new option from the Edit SA toolbar.
If, after bringing up the Pick Ops menu, it is decided to continue with the Insert IP option, simply select the Restart option from the Pick Ops menu and the Pick Ops menu will disappear leaving the Insert IP option still current.

14.4.11.1.4 SA - Between IP

The Between IP option is similar to the Insert IP option (see 14.4.11.1.3 SA - Insert IP) except the inserted point does have to be on the line joining the two IPs. To accomplish this, the cursor position is automatically projected onto the IP-IP line to give the new IP position.

The Between IP option is terminated by selecting Cancel from the Pick Ops menu or by selecting a new option from the Edit SA toolbar.

If, after bringing up the Pick Ops menu, it is decided to continue with the Between IP option, simply select the Restart option from the Pick Ops menu and the Pick Ops menu will disappear leaving the Insert IP option still current.

14.4.11.1.5 SA - Insert VIP Height

The Insert VIP Height option is used to insert a vertical intersection point (VIP) into the super alignment by clicking on the super alignment in either plan or section view to select the chainage that the VIP is to be inserted at, and then giving the height for the VIP.

So inserting the VIP is a two step process.

Step (a) - selecting the chainage for the VIP to inserted

After selecting Insert VIP Height, a chainage to insert the new VIP at is selected by picking (LB) and accepting (MB) at that position on the super alignment.

For horizontal and vertical inserts

screen message area <Select point to add VIP> [picks][fast][Menu>

Step (b) - giving the height for the new VIP

After the chainage of the new VIP is selected, a Height Typed Input box is placed on the screen with the height of the super alignment at the selected chainage already displayed.

The required value is type into the Height Typed Input box and <Enter>.

The Height Typed Input box is removed from the screen and the new VIP inserted into the super alignment.

Once the Insert VIP cycle is completed and the VIP inserted, the Insert VIP Height is still current and can be repeated for other insertions (in either plan or section views) without having to re-select the Insert VIP Height option.

The Insert VIP Height option is terminated by selecting Cancel from the Pick Ops menu or by selecting a new option from the Edit SA toolbar.

If, after bringing up the Pick Ops menu, it is decided to continue with the Insert VIP Height option, simply select the Restart option from the Pick Ops menu and the Pick Ops menu will disappear leaving the Insert VIP Height option still current.
14.4.11.1.6 SA - Insert VIP Grade

The Insert VIP Grade option inserts a vertical intersection point (VIP) at a given grade from an existing VIP. The new VIP position is given by either a distance from the picked VIP or at given chainage on the super alignment.

After selecting Insert VIP Grade, the Grade Insert VIP panel is displayed.

![Grade Insert VIP panel](image)

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start VIP</td>
<td>VIP number box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>measure x-fall box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>choice</td>
<td>distance</td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>distance, chainage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insert</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The VIP number whose (chainage, height) position is used to start the Grade Insert from. The number can either be typed in, or if MB is clicked in the panel field, a VIP can be selected from a section view and its VIP number is piped into the Start VIP field.

**Note**

- **Positive** is up when going in the direction of increasing chainage and negative is up when going in the direction of decreasing chainage.

If distance, the new VIP is inserted at the (chainage) distance given in the Value field from the start VIP, but with height determined by going with the given grade from the start VIP.

If chainage, the new VIP is inserted at the chainage given in the value field but with height determined by going with the given grade from the start VIP.

Insert the new VIP into the alignment string.
14.4.11.1.7 SA - Intersect VIP Grades

The Intersect VIP Grades option inserts a VIP which is given by intersecting lines of given grades from two existing VIPs in the (chainage,height) plane.

The grades are either typed in or calculated by giving another VIP that the line goes through.

After selecting the option, the Grades Intersect VIP panel is displayed.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Grade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start VIP</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>choice</td>
<td>grade, VIP #</td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note for grades **positive** is up when going in the direction of increasing chainage and **negative** is up when going in the direction of decreasing chainage.

Second Grade

Start VIP

the VIP number whose (chainage,height) position is the start of a line.

The VIP number can either be typed in, or if MB is clicked in the panel field, a VIP can be selected from a section view and its VIP number is piped into the Start VIP field.

Mode

choice grade, VIP #

Value or End VIP

input

if mode is grade, the box is called Value and the value is a percent grade.

if mode is VIP #, the box is called End VIP and the value is the number of a VIP.

For End VIP, The VIP number can either be typed in, or if MB is clicked in the panel field, a VIP can be selected from a section view and its VIP number is piped into the End VIP field.

Note for grades **positive** is up when going in the direction of increasing chainage and **negative** is up when going in the direction of decreasing chainage.
Value or End VIP input

if mode is grade, the box is called Value and the value is a percent grade.
if mode is VIP #, the box is called End VIP and the value is the number of a VIP.

For End VIP, the VIP number can either be typed in, or if MB is clicked in the panel field, a VIP can be selected from a section view and its VIP number is piped into the End VIP field.

Insert button

calculate in (chainage,height) space the intersection of the two lines given above and insert it as a new VIP into the super alignment.

14.4.11.1.8 SA - Filter IPs

The Filter IPs option tries to remove redundant HIPS and VIPs. That is, IP’s that are very close to one another, or extra IPs on a straight line.

The extra IPs are often created when data is loaded from a CAD package and the elements are not tangential.

The Filter IPs option terminates after it is run and then a new option needs to be selected from the Edit SA toolbar.

14.4.11.1.9 SA - Delete IP

The Delete IP option is used to delete HIPS or VIPs points from the super alignment.

After picking Delete IP, any selected IP in the string is deleted. The string, minus the deleted IP, is redrawn after each deletion.

Once an IP has been deleted, another IP in the selected string can be deleted. Hence any number of the IPs can be deleted, one after another.

A HIP is deleted if the IP is chosen from a plan view and a VIP deleted if the IP is selected from a section view.

For HIP and VIP deletes

screen message area <Pick point to delete> [picks][fast][Menu>

The Delete IP option is terminated by selecting Cancel from the Pick Ops menu or by selecting a new option from the Edit SA toolbar.

If, after bringing up the Pick Ops menu, it is decided to continue with the Delete IP option, simply select the Restart option from the Pick Ops menu and the Pick Ops menu will disappear leaving the Delete IP option still current.
14.4.11.2 SA - Move/Edit Toolbar

The Move/Edit toolbar is

- move IPs and Part definition points
- move horizontal geometry parts
- move vertical geometry parts
- extend IP
- extend by length
- Tangent Wizard
- move tangent point
- change curve
- change height
- change grade
- change grade 2

The Move IP, Move Tangent and Extend IP work on the horizontal geometry if used in a plan view and if used in a section view that the super alignment is profiled on, they work on the vertical geometry.

For the option *Move IP* go to

- Move HG parts 14.4.11.2.1 SA - Move HG Parts
- Move VG parts 14.4.11.2.3 SA - Move VG Parts
- Extend IP 14.4.11.2.5 SA - Extend IP
- Extend by length 14.4.11.2.6 SA - Extend by Length
- Tangent Wizard 14.4.11.2.7 SA - Tangent Wizard
- Move Tangent 14.4.11.2.4 SA - Move Tangent Point
- Change curve 14.4.11.2.8 SA - Change Curve
- Change height 14.4.11.2.9 SA - Change Height
- Change grade 14.4.11.2.10 SA - Change Grade
- Change grade 2 14.4.11.2.11 SA - Change Grade 2
14.4.11.2.1 SA - Move

The Move option allows the user to move

individual HIPs or Horizontal Parts definition points if the points are selected in a plan view

individual VIPs or Vertical Parts definition points if the points are selected in a section view

that the super alignment is profiled on.

The Move cycle consists of two steps:
(a) selecting the point to be moved
(b) selecting the new position for the point.

Step (a)
First the point to be moved is selected. The selected point will then move around the view as the cursor is moved. The IPs/Parts recalculate and redraw as the point is moved.

screen message area  <Pick point to move> [picks][fast][Menu>

Step (b)
The current cursor position is selected as the new position for the point by picking (LB) and accepting (MB). The point being moved is then anchored at the cursor position and the string redrawn.

screen message area  <Pick final position of point> [picks][fast][Menu>

Once the Move cycle is completed and the point moved, the Move option is still current and can be repeated for other points without having to re-select the Move option.

The Move option is terminated by selecting Cancel from the Pick Ops menu or by selecting a new option from the Edit SA toolbar.

If, after bringing up the Pick Ops menu, it is decided to continue with the Move option, simply select the Restart option from the Pick Ops menu and the Pick Ops menu will disappear leaving the Move option still current.
14.4.11.2.2 SA - Move HG Parts

Move HG Parts translates the X or the Y coordinates for a given range of Horizontal Parts in the super alignment being edited.

Clicking on the Move HG Parts icon brings up the Move Horizontal Parts panel.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start part</td>
<td>the number of the Part in the Horizontal Geometry to start translating in x or y. Clicking MB in the field or RB on the number icon brings up the Same as picker and a Horizontal Part from the super alignment can be selected from a plan view and the Part Number will be piped into the field.</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End part</td>
<td>the number of the Part in the Horizontal Geometry to end the translating in x or y. Clicking MB in the field or RB on the number icon brings up the Same as picker and a Horizontal Part from the super alignment can be selected from a plan view and the Part Number will be piped into the field.</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>move x coords, move y coords if Mode is move x coords, the x coordinates of all the parts from the Start part to End part are translated by Value. if Mode is move y coords, the y coordinates of all the parts from the Start part to End part are translated by Value.</td>
<td>choice box</td>
<td>move x coords, move y coords</td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>the distance to move the coordinates. Measure X or Measure Y</td>
<td>measure box</td>
<td>Measure X or Measure Y</td>
<td></td>
</tr>
</tbody>
</table>

Move   button   move the specified coordinates for the given range of Horizontal Parts.
14.4.11.2.3 SA - Move VG Parts

Move VG Parts translates the chainages or the heights for a given range of Vertical Parts in the super alignment being edited.

Clicking on the Move VG Parts icon brings up the Move Vertical Parts panel.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start part</td>
<td>the number of the Part in the Vertical Geometry to start translating in chainage or height. Clicking MB in the field or RB on the Number icon brings up the Same as picker and a Vertical Part from the super alignment can be selected from a section view, and the Part Number piped into the field.</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End part</td>
<td>the number of the Part in the Vertical Geometry to end the translating in chainage or height. Clicking MB in the field or RB on the Number icon brings up the Same as picker and a Vertical Part from the super alignment can be selected from a section view and the Part Number will be piped into the field.</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>move x coords, move y coords if Mode is move chainages, the chainage coordinates of all the parts from the Start part to End part are translated by Value. if Mode is move heights, the height coordinates of all the parts from the Start part to End part are translated by Value.</td>
<td>choice box</td>
<td>move x coords, move y coords</td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>Measure Chainage or Measure Z the distance to move the coordinates</td>
<td>measure box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move</td>
<td>move the specified coordinates for the given range of Vertical Parts</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
14.4.11.2.4 SA - Move Tangent Point

The **Move Tangent** option allows the user to move

individual horizontal tangent points in a plan view if the horizontal tangent point (HTP) is part of an HiP with a curve on it but no approaching or departing transitions.

individual vertical tangent points in a section view that the super alignment is profiled on if the vertical tangent point (VTP) is part of a VIP with a parabola or curve on it.

The **Move Tangent** cycle consists of two steps:

(a) selecting the tangent point (TP) to be moved

(b) selecting the new position for the TP.

Step (a)

First the tangent point to be moved is selected. The selected point will then move around the view as the cursor is moved.

If a horizontal tangent point is selected, the string will be redrawn with the HTP moved to the cursor position and the circular curve radius will be modified appropriately.

If a vertical tangent point is selected, the string will be redrawn with the VTP moved to the cursor position and the vertical curve modified appropriately.

screen message area <Pick tangent to extend> [picks][fast][Menu>

Step (b)

The current cursor position is selected as the new position for the point by picking (LB) and accepting (MB). The tangent being moved is then anchored at the cursor position and the string redrawn.

screen message area <Pick final position of tangent> [picks][fast][Menu>

Once the Move Tangent cycle is completed and the TP moved, the Move Tangent option is still current and can be repeated for other tangent points without having to re-select the Move Tangent option.

The Move Tangent option is terminated by selecting **Cancel** from the Pick Ops menu or by selecting a new option from the Edit SA toolbar.

If, after bringing up the Pick Ops menu, it is decided to continue with the Move Tangent option, simply select the **Restart** option from the Pick Ops menu and the Pick Ops menu will disappear leaving the Move Tangent option still current.
14.4.11.2.5 SA - Extend IP

The **Extend IP** option is used to move an IP along the line joining the IP to its neighbouring IP. That is, in a plan view, the bearing of the HIP-HIP line is kept constant and the intersection point is moved along that line either towards or away from its neighbouring intersection point on the HIP-HIP line.

In a section view, the grade of the VIP-VIP line is kept constant and the vertical intersection point is moved along that line either towards or away from its neighbouring intersection point on the VIP-VIP line.

Extending, like moving an IP, is a two step process.

**Step (a) - selecting the IP-IP line and the IP to be moved along that line**

The IP-IP line and the intersection point to be moved are chosen in the one operation by selecting a position near the IP-IP line and close to the intersection point to be moved along that line.

  screen message area  <Pick point to extend> [picks][fast][Menu>

Once the line and IP are selected, the new position of the selected IP is assumed to be at the current cursor position projected perpendicularly onto the IP-IP line. As the cursor is moved, the string is redrawn reflecting the changing position of the moved IP.

**Step (b) - selecting the final position for the IP**

The current cursor position is selected as the new position for the IP by picking (LB) and accepting (MB). The final position for the intersection point is set to the projection of the selected cursor position onto the IP-IP line.

  screen message area  <Pick final position of point> [picks][fast][Menu>

Once the **Extend IP** is completed, the extend option is still current and can be repeated without re-selecting the **Extend IP** option.

The **Extend IP** option is terminated by selecting **Cancel** from the **Pick Ops** menu or by selecting a new option from the **Edit SA** toolbar.

If, after bringing up the **Pick Ops** menu, it is decided to continue with the **Extend IP** option, simply select the **Restart** option from the **Pick Ops** menu and the **Pick Ops** menu will disappear leaving the **Extend IP** option still current.

**Note** - **Extend IP** can be used on the end points of the horizontal or vertical geometry of a super alignment string.
14.4.11.2.6 SA - Extend by Length

The **Extend by length** option is used to move a horizontal IP or vertical IP by a given length along the line joining the IP to its neighbouring IP.

A horizontal IP is modified in a plan view and the bearing of the HIP-HIP line is kept constant and the intersection point is moved by a given length along that line either towards or away from its neighbouring intersection point on the HIP-HIP line.

A vertical IP is modified in a section view and the grade of the VIP-VIP line is kept constant and the vertical intersection point is moved along that line either towards or away from its neighbouring intersection point on the VIP-VIP line.

To modify a horizontal IP, the string is edited in a plan view. To modify a vertical IP, the string is edited in a section view.

The IP-IP line and the intersection point to be moved are chosen in the one operation by selecting a position near the IP-IP line and close to the intersection point to be moved along that line.

```
screen message area
{F}orward: pick IP to extend, (or {B}ackward)> [picks][fast][Menu]
```

Once the line and IP are selected, a **Length Typed Input** box is displayed and the required length typed into the box and <Enter> pressed.

![Typed Input](image)

The IP then moves to its new position.

**Note:** When in Forward mode, the IP moves along the selected segment. When in Backward mode, the IP moves along the segment on the other side of the selected IP.

The default is Forward. To select Backward mode, type ‘B’. To select Forward mode, type ‘F’.

Once the **Extend by length** is completed, the extend option is still current and can be repeated without re-selecting the **Extend by length** option.

The **Extend by length** option is terminated by selecting **Cancel** from the **Pick Ops** menu or by selecting a new option from the **Edit SA** toolbar.

If, after bringing up the **Pick Ops** menu, it is decided to continue with the **Extend by length** option, simply select the **Restart** option from the **Pick Ops** menu and the **Pick Ops** menu will disappear leaving the **Extend by length** option still current.

**Extend by length** can be used on the end points of the horizontal or vertical geometry of a super alignment string.
14.4.11.2.7 SA - Tangent Wizard

The Tangent Wizard works for a HIP defined with just an arc on it and no transitions, or a VIP with a parabola or curve defined on it.

If a suitable HIP or VIP is selected, the Tangent Wizard modifies the curve/parabola on the selected HIP/VIP so that a common curve-curve tangent point is created on at least one side of the HIP/VIP.

When the Tangent Wizard is used on HIP 3, the radius of the curve on HIP 3 is increased until the tangent point on the right is common with the tangent point on HIP 4. This happens before the tangent point on the left meets the tangent point for HIP 2.

When the Tangent Wizard run successfully, the Tangent Wizard option is still current and can be repeated without re-selecting Tangent Wizard. If an incorrect IP is selected, the Tangent Wizard terminates and an option needs to be selected from the Edit SA toolbar.

The Tangent Wizard option is terminated by selecting Cancel from the Pick Ops menu or by selecting a new option from the Edit SA toolbar.

If, after bringing up the Pick Ops menu, it is decided to continue with the Tangent Wizard option, simply select the Restart option from the Pick Ops menu and the Pick Ops menu will disappear leaving the Tangent Wizard option still current.
14.4.11.2.8 SA - Change Curve

The Change Curve option is used to change the defining value for the horizontal curve (radius or length) of a curve on a horizontal intersection point, or the defining value for the vertical curve (length, k-value or radius) on a vertical intersection point.

After selecting Change Curve:

- screen message area <Pick IP to change curve info> [picks][fast][Menu>

If an HIP is selected from a plan view, the value defining the horizontal curve (radius or length) on the HIP is displayed.

![Typed Input](image1)

The required Radius (or Length) is typed into the Typed Input box and <Enter> pressed. The HIP is given the new value and the Typed Input box is removed from the screen.

If an VIP is selected from a section view that the super alignment is profiled on, the value defining the vertical curve (length, k-value or length) on the VIP is displayed.

![Typed Input](image2)

The required Length (or k value or Length) is typed into the Typed Input box and <Enter> pressed. The VIP is given the new value and the Typed Input box is removed from the screen.

Once the curve value is changed, the Change Curve is still current and can be repeated for other IPs in the super alignment without having to re-select the Change Curve option.

The Change Curve option is terminated by selecting Cancel from the Pick Ops menu or by selecting a new option from the Edit SA toolbar.

If, after bringing up the Pick Ops menu, it is decided to continue with the Change Curve option, simply select the Restart option from the Pick Ops menu and the Pick Ops menu will disappear leaving the Change Curve option still current.
14.4.11.2.9 SA - Change Height

The Change Height option is used to change the height of an existing vertical intersection point (VIP).

After selecting Change Height, a VIP is selected from a section view that the super alignment is profiled on:

screen message area <Pick IP to change height> [picks][fast][Menu>

After the VIP is selected, a Height Typed Input box is placed on the screen with the height of the selected VIP already displayed.

The required height is typed into the Height Typed Input box and <Enter> pressed.

The Height Typed Input box is removed from the screen and the VIP is given the new height.

Once the height is changed, the Change Height is still current and can be repeated for other VIPs in the super alignment without having to re-select the Change Height option.

The Change Height option is terminated by selecting Cancel from the Pick Ops menu or by selecting a new option from the Edit SA toolbar.

If, after bringing up the Pick Ops menu, it is decided to continue with the Change Height option, simply select the Restart option from the Pick Ops menu and the Pick Ops menu will disappear leaving the Change Height option still current.
14.4.11.2.10 SA - Change Grade

The Change Grade option is used to change the grade of the line between two consecutive vertical intersection points (VIPs) by moving the VIP at the selected end of the line up or down to achieve the given grade.

Note that the chainage position of the VIP remains the same and the grade on both sides of the moved VIP change.

After selecting Change Grade, the line joining consecutive VIP is picked with direction from a section view that the super alignment is profiled on.

After the VIP is selected, a Grade Typed Input box is placed on the screen with the grade of the selected line, measured from left to right, is already displayed.

Note: going from left to right in the section view (that is, increasing chainage), positive grade is up and negative grade is down.

If the line was picked with direction going from left to right in the section view (increasing chainage), then the position of the VIP at the left end of the line is kept constant and the line is graded with the new grade and the height of the VIP at the right end of the line is modified so that it sits on the new graded line. The chainage of the VIP is kept constant. That is, the VIP just moves up or down until the new grade is reached. The Grade Typed Input box is removed from the screen.

If the line was picked with direction going from right to left in the section view (decreasing chainage), then the position of the VIP at the right end of the line is kept constant and the line is graded with the new grade and the height of the VIP at the left end of the line is modified so that it sits on the new graded line. The chainage of the VIP is kept constant. That is, the VIP just moves up or down until the new grade is reached. The Grade Typed Input box is removed from the screen.

Once the grade is changed, the Change Grade is still current and can be repeated for other lines between VIPs in the super alignment without having to re-select the Change Grade option.

The Change Grade option is terminated by selecting Cancel from the Pick Ops menu or by selecting a new option from the Edit SA toolbar.

If, after bringing up the Pick Ops menu, it is decided to continue with the Change Grade option, simply select the Restart option from the Pick Ops menu and the Pick Ops menu will disappear leaving the Change Grade option still current.
14.4.11.2.11 SA - Change Grade 2

The **Change Grade 2** option is used to change the grade of the line between two consecutive vertical intersection points (VIPs) by sliding the VIP at the selected end of the line along the VIP-VIP line on the other side of the VIP so that the grade of the other line is not modified.

Note that the chainage position of the VIP changes and only the grade on the selected line of the moved VIP changes.

After selecting **Change Grade**, the line joining consecutive VIP is picked with direction from a section view that the super alignment is profiled on

```
screen message area <Pick grade to change> [picks][fast][Menu>
```

After the VIP is selected, a **Grade** Typed Input box is placed on the screen with the grade of the selected line, measured from left to right, is already displayed.

Note: going from left to right in the section view (that is, increasing chainage), positive grade is up and negative grade is down.

If the line was picked with direction going from left to right in the section view (increasing chainage), then the position of the VIP at the left end of the line is kept constant and the line is graded with the new grade by sliding the VIP at the right end of the line along the VIP-VIP line on the other side of the VIP to keep that grade constant. So the grade on the other side of the VIP is kept constant. That is, the VIP slides up or down the other VIP-VIP line until the new grade is reached.

The **Grade** Typed Input box is removed from the screen.

If the line was picked with direction going from right to left in the section view (decreasing chainage), then the position of the VIP at the right end of the line is kept constant and the line is graded to the new grade by sliding the VIP at the left end of the line along the VIP-VIP line on the other side of the VIP to keep that grade constant. So the grade on the other side of the VIP is kept constant. That is, the VIP slides up or down the other line until the new grade is reached.

The **Grade** Typed Input box is removed from the screen.

Once the grade is changed, the **Change Grade 2** is still current and can be repeated for other lines between VIPs in the super alignment without having to re-select the **Change Grade 2** option.

The **Change Grade 2** option is terminated by selecting **Cancel** from the **Pick Ops** menu or by selecting
a new option from the Edit SA toolbar.

If, after bringing up the Pick Ops menu, it is decided to continue with the Change Grade 2 option, simply select the Restart option from the Pick Ops menu and the Pick Ops menu will disappear leaving the Change Grade 2 option still current.
14.4.11.3 SA - Change Icon

The Change icon is

Selecting this icon allows the user to change the radius of arcs placed by Parts.
14.4.11.4 SA - Part Editors Toolbar

The Part Editors toolbar is

- Parts editor
- HIPs editor
- VIPs editor
- Chainage equalities editor
- Custom editor
- Centreline options
- Named positions

For the option *Parts Editor*, go to

- 14.4.11.4.1 SA - Parts Editor
- 14.4.11.4.2 SA - HIPs Editor
- 14.4.11.4.3 SA - VIPs Editor
- 14.4.11.4.4 SA - Chainage Equalities Editor
- 14.4.11.4.5 SA - Custom Superelevation and Widening Editor
- 14.4.11.4.6 SA - Centreline Options
- 14.4.11.4.7 SA - Named Positions
14.4.11.4.1 SA - Parts Editor

Placing a super alignment consists of:
(a) defining the horizontal geometry consisting of lines, arcs, transitions and tapers
(b) defining the vertical geometry consisting of lines, parabolas and arcs.

A simple way to create horizontal and vertical geometry for the super alignment is by using horizontal intersection points (HIPs) with arcs and transitions (eg spirals), and vertical intersection points (VIP’s) with parabolas or arcs for placing the vertical geometry.

However the super alignment also allows for more complex construction methods to define the lines, arcs and transitions (the horizontal elements) that within 12d Model be grouped together to make up the Parts of the horizontal geometry.

For example, a horizontal line is defined to be a given parallel offset of a selected line segment from another string. Or a more complex part such Free Arc with Known Radius that consists of the three elements: an arc of a known radius plus a leading and a trailing transition.

Similarly more complex construction methods are available to define the lines, parabolas and arcs (the vertical elements) that are grouped together within 12d Model to make up the Parts of the vertical geometry.

Some of the Parts definitions have some degree of freedom in the definition of the elements in the Parts, and the sequencing and types of the Parts, plus the condition that, if possible, each element is tangential to the adjacent elements, allows 12d Model to calculate and solve for some unknowns in the Part definitions that make up the super alignment.

For example, if a Free Arc with Known Radius placed between two known lines then the tangentiality condition means that the position of the Free Arc with Known Radius (arc and two transitions) is uniquely defined as a arc and leading and trailing transitions on the intersection point of the two lines. Or just a fillet between the two lines if the two transitions have zero length.

For more information on placing parts, fixed and floating parts and solving, go to 21.9 Placing Parts for Super Alignments.

The general creating and editing of the horizontal and vertical Parts inside 12d Model is done in the Horizontal and Vertical Parts panel and this is brought up by clicking on the on the Parts Editor icon.
See 14.4.11.4.1.1 Icons on the Horizontal and Vertical Parts Panel
See 14.4.11.4.1.2 Creating and Editing a Part
See 14.4.11.4.1.3 Types of Horizontal Parts
See 14.4.11.4.1.4 Types of Vertical Parts
14.4.11.4.1.1 Icons on the Horizontal and Vertical Parts Panel

If there are any existing horizontal parts in the super alignment, then a + will appear to the left of Horizontal in the tree. Similarly if there are any existing vertical parts then a + will appear next to Vertical in the tree.

Clicking on the + next to Horizontal/Vertical will then list all the horizontal/vertical parts in order from the start of the super alignment to the end of the super alignment.

To make a Part the current Part being edited, simply Left click on the Part in the expanded list and the selected Part will be highlighted and the information about the part displayed on the right hand side of the panel.

The selected part will also highlight in any Plan views the super alignment is on if it is a Horizontal Part, or...
any Section views that the super alignment is profiled on if it is a Vertical Part.

A Part can be selected from a Plan or Section View using the Pick icon. The selected part then becomes the current Part for editing.

Clicking on the Previous icon makes the previous part in the list the current Part for editing.

Clicking on the Next icon makes the following part in the list the current Part for editing.
A new Blank Part is inserted after the current Part by clicking on the Insert icon.

The current Part can be copied by clicking on the Copy icon.

The part that the copied Part is to be inserted after is then made the current Part (by Picking, clicking on the Part in the Editor, etc.)

And clicking on the Paste icon then inserts the copied part after the current Part.
The current Part is moved one place closer to the start of the list by clicking on the Move up icon.

The current Part is moved one place down towards the bottom of the list by clicking on the Move down icon.

The current Part is deleted by clicking on the Delete icon.
14.4.11.4.1.2 Creating and Editing a Part

A new Part is created by Inserting a new Blank Part and then clicking on the Type choice box to get the list of available Parts. After choosing a Part, the information required to define the selected part is displayed on the right hand side of the Horizontal and Vertical Parts panel. The required information is filled in and then the Set button at the bottom of the panel is clicked to create the new Part.

An existing Part can be edited by selecting it to make it the current Part which will display its defining information on the right hand side of the Horizontal and Vertical Parts panel. Any required changes to the information are made and then click on the Set button at the bottom of the panel to update the Part.

An existing Part can be changed to a different type of Part by selecting it to make it the current Part, then click on the Type choice box and select the new Type for the Part from the pop-up list.

14.4.11.4.1.3 Types of Horizontal Parts

See 21.9.2.1 Horizontal IPs
See 21.9.2.2 Horizontal Lines - Fixed
See 21.9.2.3 Horizontal Lines - Floating
See 21.9.2.4 Horizontal Lines - Free
See 21.9.2.5 Horizontal Arcs - Fixed
See 21.9.2.6 Horizontal Arcs - Floating
See 21.9.2.7 Horizontal Arcs - Free
See 21.9.2.8 Horizontal Transitions - Floating
See 21.9.2.9 Horizontal Transitions - Free
See 21.9.2.10 Horizontal Transitions - Compound

14.4.11.4.1.4 Types of Vertical Parts

See 21.9.3.1 Vertical IPs
See 21.9.3.2 Vertical Lines - Fixed
See 21.9.3.3 Vertical Lines - Floating
See 21.9.3.4 Vertical Lines - Free
See 21.9.3.5 Vertical Parabolas - Fixed
See 21.9.3.6 Vertical Parabolas - Floating
See 21.9.3.7 Vertical Parabolas - Free
See 21.9.3.8 Vertical Arcs - Fixed
See 21.9.3.9 Vertical Arcs - Floating
See 21.9.3.10 Vertical Arcs - Free

For definitions of the horizontal and vertical elements, go to 21.9 Placing Parts for Super Alignments
14.4.11.4.2 SA - HIPs Editor

If the horizontal geometry of the super alignment consists of only HIP’s (that is, no horizontal parts) then clicking on HIPs Editor brings up the **Horizontal IP Properties** panel which lists all the HIP’s in the super alignment showing how the curves on the HIP are defined and the values for the HIP and accompanying arcs and transitions (spirals).

The **Horizontal IP Properties** panel is:

![Horizontal IP Properties Panel](image1)

Super Alignment Profiled on a Plan View

Table of HIP Information
Clicking on the row number in the table draws a green circle around the corresponding HIP in any plan views where the HIP is visible.

The Left arrow and Right arrow moves the highlighting to the previous HIP and next HIP respectively.
If Active is ticked for a row then that HIP is used in the super alignment.
If Active is not ticked for a row then that HIP is not used in the super alignment.
If Visible is ticked for a row then the curve at the HIP is used in the super alignment.
If Visible is not ticked for a row then the curve at the HIP is not used in the super alignment.
Warning: the row number will not be the same as the HIP numbers shown on a plan view if there are HIP’s that are not Active.

The **HIP type** can be modified by clicking **RB** in the **HIP Type** column for the HIP to be modified to bring up the choices for the HIP.

When the HIP Type is changed, the new information can be typed into the appropriate cells for that HIP and then the **Set** button is pressed to make the change.

Note: if the entire line is already highlighted, you will need to first click **LB** in the appropriate HIP Type cell to get focus just on that cell and then click **RB**. If a pop-up with Browse comes up, select Browse to get the HIP Type choices.
Any of the values in the other columns X Coord, Y Coord, Speed, Radius, Length, Leading, Trailing and Comment can be modified and the **Set** button pressed to use the new values (if they are appropriate for the HIP Type).

Note:
- Length is the length of the arc when the HIP Type is **Curve length**
- Speed is the design speed for the curves at the HIP Type is **Curve speed**.
- Radius is the radius of the arc when HIP Type is **Curve radius** or **Curve spiral**.
- Leading is the length of the leading transition (spiral) when HIP Type is **Curve spiral**.
- Trailing is the length of the trailing transition (spiral) when HIP Type is **Curve spiral**.

Warning: the not **Active** HIP’s are still listed in the HIP table but the labelling of the HIP’s on a plan view does not include them so in that case, the line number in the **Horizontal IP Properties** panel is not the same as the HIP number displayed on a plan view.
14.4.11.4.3 SA - VIPs Editor

If the vertical geometry of the super alignment consists of only VIPs (that is, no vertical parts) then clicking on VIPs Editor brings up the Vertical IP Properties panel which lists all the VIP’s in the super alignment showing how the parabolas, asymmetric parabolas and arcs on the VIP are defined and the values for the VIP and accompanying parabolas and arcs.

The Vertical IP Properties is:

![Vertical IP Properties](image1)

and when there is VIP information to display, looks like:

![Super Alignment Profiled on a Section View](image2)  
![Table of VIP Information](image3)

Clicking on the row number in the table draws a green circle around the corresponding HIP in any plan.
views where the HIP is visible.

The Left arrow and Right arrow moves the highlighting to the previous VIP and next VIP respectively.

If Active is ticked for a row then that VIP is used in the super alignment.
If Active is not ticked for a row then that VIP is not used in the super alignment.
If Visible is ticked for a row then the curve at the VIP is used in the super alignment.
If Visible is not ticked for a row then the curve at the VIP is not used in the super alignment.

Warning: the row number will not be the same as the VIP numbers shown on a section view if there are VIP’s that are not Active.

The VIP type can be modified by clicking RB in the VIP Type column for the VIP to be modified to bring up the choices for the VIP.

When the VIP Type is changed, the new information can be typed into the appropriate cells for that VIP and then the Set button is pressed to make the change.

Note: if the entire line is already highlighted, you will need to first click LB in the appropriate VIP Type cell to get focus just on that cell and then click RB. If a pop-up with Browse comes up, select Browse to get the HIP Type choices.

Any of the values in the other columns Chainage, Height, Speed, Radius, K Value, Length, Length2 and Comment can be modified and the Set button pressed to use the new values (if they are appropriate for the VIP Type).

Note:
Length is the length of the parabola when VIP Type is Length
Length and Length2 are the lengths for an Asymmetric parabola when VIP Type is Asymmetric
Speed is the design speed for the parabola when VIP Type is Speed.
Radius is the radius of the arc when VIP Type is Circular arc or the effective radius for a parabola when VIP Type is Radius.
K Value is the K value for the parabola when HIP Type is K value.

Warning: the not Active are still listed in the VIP table but the labelling of the VIP’s on a section view does not include them so in that case, the line number in the Vertical IP Properties panel is not the same as the VIP number displayed on a section view.
14.4.11.4.4 SA - Chainage Equalities Editor

This section of documentation is a work in progress and will be updated in subsequent releases.

If Use chainage equality is ticked in the Advanced > Equality section of the Properties for the super alignment, then the **Chainage Equalities** panel is displayed.
14.4.11.4.5 SA - Custom Superelevation and Widening Editor

This section of documentation is a work in progress and will be updated in subsequent releases.

If Use design standards is ticked in the Advanced > Design section of the Properties for the super alignment, then the Custom Superelevation and Widening panel is displayed.
14.4.11.4.6 SA - Centreline Options

At any time, a copy of the current horizontal or vertical geometry can be made and stored under an Option name.

So an Option is like a backup (safe copy) of the current horizontal or vertical geometry and can be restored as the super alignment geometry at a later time.

Clicking Centreline Options brings up the **Options Data** panel.

Insert

If the Horizontal/Vertical branch is highlighted and **Insert** clicked, a new Option is created under Horizontal/Vertical with the default name Horizontal/Vertical, and a copy of the current horizontal/vertical geometry of the super alignment is stored with the new option.

Name and Comment can be modified and are changed when <Enter> is pressed.
Delete
If the Horizontal/Vertical Option is highlighted and **Delete** clicked, then the Option is deleted.

Sync
If the Horizontal/Vertical Option is highlighted and **Sync** clicked, the horizontal/vertical geometry of the Option is deleted and replaced by the current horizontal/vertical geometry of the super alignment. That is, the Option geometry is taken from the super alignment.

Apply
If the Horizontal/Vertical branch is highlighted and **Apply** clicked, the horizontal/vertical geometry of the super alignment is deleted and replaced by the horizontal/vertical geometry of the Option. That is, the super alignment geometry is taken from the Option.

Swap
If the Horizontal/Vertical branch is highlighted and **Swap** clicked, the current horizontal/vertical geometry of the super alignment is replaced by the horizontal/vertical geometry of the Option and the horizontal/vertical geometry of the Option is replaced by the current horizontal/vertical geometry of the super alignment. That is, the two geometries are swapped.
14.4.11.4.7 SA - Named Positions

This section of documentation is a work in progress and will be updated in subsequent releases.
Clicking Named Positions brings up the Named Positions Data panel.
14.4.11.5 SA - Super Alignment Properties Icon

Selecting Properties displays the Super Alignment Properties panel.

The information in the Super Alignment Properties panel is the same as for the Create Super Alignment panel.

The only difference is that the Set button only exists on the Super Alignment Properties panel and if any changes are made to the values on any branch, then the Set button must be clicked before leaving that branch to modify the values for the string.

WARNING: this means that you must click on Set after modifying each branch - you can’t change values on a number of branches and then click Set.

See 14.2.1 Create Super Alignment for details on all the fields and values in the branches of this panel.

For information on each branch, go to:

Basic > General branch
Basic > Chainage branch
Basic > Interval branch
Basic > Label branch
Basic > General branch

The information in the Basic > General branch is the same as for the Basic > General branch of the Create Super Alignment panel. The only difference is that the Set button only exists on the Super Alignment Properties panel and if any changes are made to the values on the Basic > General branch, then the Set button must be clicked before leaving the Basic > General branch to modify the values for the string. WARNING: this means that you must click on Set after modifying each branch - you can’t change values on a number of branches and then click Set.

See Basic > General branch for details on all the fields and values in the Basic > General branch.
The information in the Basic > Chainage branch is the same as for the Basic > Chainage branch of the Create Super Alignment panel.

The only difference is that the Set button only exists on the Super Alignment Properties panel and if any changes are made to the values on the Basic > Chainage branch, then the Set button must be clicked before leaving the Basic > Chainage branch to modify the values for the string.

WARNING: this means that you must click on Set after modifying each branch - you can’t change values on a number of branches and then click Set.

See Basic > Chainage branch for details on all the fields and values in the Basic > Chainage branch.
Basic > Interval branch

The information in the Basic > Interval branch is the same as for the Basic > Interval branch of the Create Super Alignment panel.

The only difference is that the Set button only exists on the Super Alignment Properties panel and if any changes are made to the values on the Basic > Interval branch, then the Set button must be clicked before leaving the Basic > Interval branch to modify the values for the string.

WARNING: this means that you must click on Set after modifying each branch - you can’t change values on a number of branches and then click Set.

See Basic > Interval branch for details on all the fields and values in the Basic > Interval branch.
**Basic > Label branch**

The information in the Basic >Label branch is the same as for the Basic >Label branch of the **Create Super Alignment** panel.

The only difference is that the Set button only exists on the **Super Alignment Properties** panel and if any changes are made to the values on the Basic >Label branch, then the Set button must be clicked before leaving the Basic >Label branch to modify the values for the string.

**WARNING:** this means that you must click on Set after modifying each branch - you can’t change values on a number of branches and then click Set.

See **Basic > Label branch** for details on all the fields and values in the Basic >Label branch.
Basic > Transition branch

The information in the Basic > Transition branch is the same as for the Basic > Transition branch of the Create Super Alignment panel.

The only difference is that the Set button only exists on the Super Alignment Properties panel and if any changes are made to the values on the Basic > Transition branch, then the Set button must be clicked before leaving the Basic > Transition branch to modify the values for the string.

WARNING: this means that you must click on Set after modifying each branch - you can’t change values on a number of branches and then click Set.

See Basic > Transition branch for details on all the fields and values in the Basic > Transition branch.
Basic > Closure branch

The information in the Basic > Closure branch is the same as for the Basic > Closure branch of the Create Super Alignment panel.

The only difference is that the Set button only exists on the Super Alignment Properties panel and if any changes are made to the values on the Basic > Closure branch, then the Set button must be clicked before leaving the Basic > Closure branch to modify the values for the string.

WARNING: this means that you must click on Set after modifying each branch - you can’t change values on a number of branches and then click Set.

See Basic > Closure branch for details on all the fields and values in the Basic > Closure branch.
Basic > Sync branch

The information in the Basic > Sync branch is the same as for the Basic > Sync branch of the Create Super Alignment panel.

The only difference is that the Set button only exists on the Super Alignment Properties panel and if any changes are made to the values on the Basic > Sync branch, then the Set button must be clicked before leaving the Basic > Sync branch to modify the values for the string.

WARNING: this means that you must click on Set after modifying each branch - you can’t change values on a number of branches and then click Set.

See Basic > Sync branch for details on all the fields and values in the Basic > Sync branch.
Basic > IP defaults branch

The information in the Basic >IP defaults branch is the same as for the Basic >IP defaults branch of the Create Super Alignment panel.

The only difference is that the Set button only exists on the Super Alignment Properties panel and if any changes are made to the values on the Basic >IP defaults branch, then the Set button must be clicked before leaving the Basic >IP defaults branch to modify the values for the string.

WARNING: this means that you must click on Set after modifying each branch - you can’t change values on a number of branches and then click Set.

See Basic > IP defaults branch for details on all the fields and values in the Basic >IP defaults branch.
The information in the Advanced > Start branch is the same as for the Advanced > Start branch of the Create Super Alignment panel.

The only difference is that the Set button only exists on the Super Alignment Properties panel and if any changes are made to the values on the Advanced > Start branch, then the Set button must be clicked before leaving the Advanced > Start branch to modify the values for the string.

WARNING: this means that you must click on Set after modifying each branch - you can’t change values on a number of branches and then click Set.

See Advanced > Start branch for details on all the fields and values in the Advanced > Start branch.
Advanced > End branch

The information in the Advanced >End branch is the same as for the Advanced >End branch of the Create Super Alignment panel.

The only difference is that the Set button only exists on the Super Alignment Properties panel and if any changes are made to the values on the Advanced >End branch, then the Set button must be clicked before leaving the Advanced >End branch to modify the values for the string.

WARNING: this means that you must click on Set after modifying each branch - you can’t change values on a number of branches and then click Set.

See Advanced > End branch for details on all the fields and values in the Advanced >End branch.
Advanced > Design branch

The information in the Advanced > Design branch is the same as for the Advanced > Design branch of the Create Super Alignment panel.

The only difference is that the Set button only exists on the Super Alignment Properties panel and if any changes are made to the values on the Advanced > Design branch, then the Set button must be clicked before leaving the Advanced > Design branch to modify the values for the string.

WARNING: this means that you must click on Set after modifying each branch - you can’t change values on a number of branches and then click Set.

See Advanced > Design branch for details on all the fields and values in the Advanced > Design branch.
Advanced > Profiles branch

The information in the Advanced >Profiles branch is the same as for the Advanced >Profiles branch of the Create Super Alignment panel.

The only difference is that the Set button only exists on the Super Alignment Properties panel and if any changes are made to the values on the Advanced >Profiles branch, then the Set button must be clicked before leaving the Advanced >Profiles branch to modify the values for the string.

WARNING: this means that you must click on Set after modifying each branch - you can’t change values on a number of branches and then click Set.

See Advanced > Profiles branch for details on all the fields and values in the Advanced >Profiles branch.
Advanced > Equality branch

The information in the Advanced > Equality branch is the same as for the Advanced > Equality branch of the Create Super Alignment panel.

The only difference is that the Set button only exists on the Super Alignment Properties panel and if any changes are made to the values on the Advanced > Equality branch, then the Set button must be clicked before leaving the Advanced > Equality branch to modify the values for the string.

WARNING: this means that you must click on Set after modifying each branch - you can’t change values on a number of branches and then click Set.

See Advanced > Equality branch for details on all the fields and values in the Advanced > Equality branch.
**Advanced > Chain branch**

The information in the Advanced > Chain branch is the same as for the Advanced > Chain branch of the Create Super Alignment panel.

The only difference is that the **Set** button only exists on the Super Alignment Properties panel and if any changes are made to the values on the Advanced > Chain branch, then the **Set** button must be clicked before leaving the Advanced > Chain branch to modify the values for the string.

**WARNING:** this means that you must click on **Set** after modifying each branch - you can’t change values on a number of branches and then click **Set**.

See [Advanced > Chain branch (not yet implemented)](#) for details on all the fields and values in the Advanced > Chain branch.
14.4.11.6 SA - Undo and Redo Icons

An Undo and Redo list is defined for each Editor open on the screen. That is, each open Editor has its own Undo/Redo lists.

As each option is performed in an open Editor, the reverse of the option is added to the Editors Undo list. Hence an option can be undone (reversed) by immediately clicking on the Undo icon.

Note: the Undo icon is.

If an option is undone, it is added to the Redo list so that it can be redone.

So clicking on the Undo icon undoes the last Editor operation for this super alignment and adds it to the top of the Redo list

Note: the Redo icon is

Clicking on the Redo icon redoes the last Editor operation that was undone for this super alignment and the undone operation is added to the top of the Undo list.

Important Note: as each option is added to an Undo or Redo list, the options already on the list are pushed down and none of the options pushed down can be undone/redone until all the options above it have been undone/redone. So both the Undo and Redo lists are last in, first out lists.

So the order in the Undo/Redo lists is important and can not be altered.

When the Editor is exited by either Quit or Finish, the undo and redo lists are deleted and are no longer usable.

14.4.11.7 SA - Info Icon

The Info icon is

and clicking on the Info icon brings up the Super Alignment Info panel (see 14.2.2.1 Super Alignment Info).
### Super Alignment Info

#### Selection
- **Style**: Default
- **Chainage**: 0
- **Dynamic**: on

#### General
- **Model**: XX
- **Name**: 
- **Style**: default
- **Length**: 3463.852

#### Position
- **Xcoord**: 65.031
- **Ycoord**: 1256.193
- **Level**: 
- **Angle**: 3.0412
- **Grade**: 

---

**Page 1978**  
*Editor*
14.4.11.8 SA - Recalc Icon

The Recalc icon is

and clicking on the Recalc icon does a *recalc* for the super alignment.

14.4.11.9 SA - Error Checker Icon

The Error Checker icon is

and clicking on the Error Checker icon brings up the **Super Alignment Checker** panel and runs the SA checking routines.

Warning: This options is still under development.
14.4.11.10 SA - Clear Toolbar

The Clear toolbar is

The Clear VG and Clear HG options are used to delete all the horizontal and/or vertical geometry points in the super alignment string.

14.4.11.10.1 SA - Clear VG

The Clear VG option removes all the vertical geometry from the string.

The Clear HG option removes all the horizontal and vertical geometry from the string.

After a Clear HG, the horizontal and vertical geometry can be re-entered using the SA Edit options.
14.4.11.11 SA - Help Icon

The Help icon is

Clicking on Help icon opens the context sensitive Help and jumps to this section.
For more information on the super alignment options, see 14.4.11 Edit Super Alignment.
14.4.11.12 SA - Finish Toolbar

The Finish toolbar is

- finish - save the SA and finish the editing session
- quit - end the editing session without saving

14.4.11.12.1 SA - Finish

When editing of the super alignment is completed, **Finish** is used to save the modifications and exit the SA Editor.

After selecting **Finish**, a **Yes-No-Cancel** panel is displayed to confirm that the edit session has ended and all the edits are to be kept. If **Yes** is selected, the edits will be stored and the SA Editor exited.

14.4.11.12.2 SA - Quit

At any time the Editing process can be aborted and all the edits thrown away by selecting the **Quit** option. That is, the super alignment is left as it was before the **Edit** was begun.

After selecting **Quit**, a **Yes-No-Cancel** panel is displayed to confirm that the edit is to be terminated. If **Yes** is selected, the edits will be ignored and the original unedited super alignment kept.

Note that if it was a new string being created, the Editor is terminated by Quit and no string is created.
14.4.12 Text Edit

On picking a text string, the text edit menu and the panel are placed on the screen.

Each option in the text edit menu will now be described.

See the earlier section 14.4.1 Super String Edit - Common Information for general information about editing strings.

14.4.12.1 Position

The position option is used to place the text string for the first time and to re-position (move) an existing text string.

Position is a one step process.

After selecting the position option, the new position for the text is selected. The text is then redrawn at the new position.

Typed input can be used at any stage.

Continue to the next section 14.4.12.2 Text or return to 14.4.12 Text Edit.

14.4.12.2 Text

The text option is used to modify the text of the text string.

After the text option is chosen, an enter text typed-input box is placed on the screen with the string’s current text displayed in it.

The text is entered into the typed-input box, terminated with <enter>. The entered value is taken as the text of the text string and the string redrawn with the new text. The typed-input box then disappears.
The **text** option automatically terminates and a new option needs to be selected from the **text edit** menu.

Continue to the next section 14.4.12.3 **Text ht** or return to 14.4.12 **Text Edit**.

### 14.4.12.3 **Text ht**

The **text ht** option is used to modify the height of the text in the text string.

After the **text ht** option is chosen, an enter value typed-input box is placed on the screen with the string's current text height displayed in it.

The enter value typed-input box looks like:

![Enter value box](image)

The text height is entered into the typed-input box, terminated with <enter>. The entered value is taken as the height of the text in the text string and the string redrawn with the new height.

The typed-input box then disappears.

The **height** option is automatically terminated and a new option needs to be selected from the **text edit** menu.

Continue to the next section 14.4.12.4 **Angle** or return to 14.4.12 **Text Edit**.

### 14.4.12.4 **Angle**

The **angle** option is used to modify the angle that the text in the text string is drawn at.

The text angle is measured in a counter-clockwise direction with respect to the horizontal axis.

After the **angle** option is chosen, an enter angle typed-input box is placed on the screen with the string's current text angle displayed in it.

The enter angle typed-input box looks like:

![Enter angle box](image)

The text angle is entered into the typed-input box, terminated with <enter>. The entered value is taken as the angle of the text in the text string and the string redrawn with the new angle.

The typed-input box then disappears.

The **angle** option is automatically terminated and a new option needs to be selected from the **text edit** menu.

Continue to the next section 14.4.12.5 **Properties** or return to 14.4.12 **Text Edit**.

### 14.4.12.5 **Properties**

Selecting **Properties** brings up the **Text String Properties** panel which is used to modify the string’s header information.
### Field Description

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Name</strong></td>
<td>name box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>the name of the string.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Colour</strong></td>
<td>colour box</td>
<td>default colour</td>
<td>available colours</td>
</tr>
<tr>
<td><em>the colour of the string.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Textstyle info</strong></td>
<td>textstyle info box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>textstyle information.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Text</strong></td>
<td>multi-line text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>the actual text.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>OK/Apply</strong></td>
<td>buttons</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*for the string being edited, **OK** sets the string with the values in the panel fields and removes the panel. **Apply** sets the string with the values in the panel fields and leaves the panel on the screen.*

Continue to the next section [14.5 Points Edit](#) or return to [14.4.12 Text Edit](#).
14.5 Points Edit

Position of menu:  Strings => Points Edit

The points operations available in the Points edit menu are similar to the create/edit options. However, in the Points edit options, the user does not begin by picking the particular string to be edited. Instead, the required option is selected followed by the point to be modified from any string. The option can then be applied to another point on that or any other string, or another point operation chosen, and applied to any point.

If the user wants to make a large number of point edits to the one string, the editor option discussed in the last section is the easiest option to use. However, if a number of strings are going to be edited with the same operation or a selection of operations, then the points edit option is more suitable.

After selecting the Points edit option, the Points edit menu is displayed.

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Append</td>
<td>Append to a string</td>
</tr>
<tr>
<td>Between</td>
<td>Insert on the line between string points</td>
</tr>
<tr>
<td>Delete</td>
<td>Delete a string point</td>
</tr>
<tr>
<td>Extend</td>
<td>Extend a string point</td>
</tr>
<tr>
<td>Extend Ht</td>
<td>For polyline/superstring - extend point and extrapolated height</td>
</tr>
<tr>
<td>Height</td>
<td>Change height of a point</td>
</tr>
<tr>
<td>Insert</td>
<td>Insert a point into a string</td>
</tr>
<tr>
<td>Move</td>
<td>Move a string point, or a text string</td>
</tr>
<tr>
<td>Add 3pt curve</td>
<td>For polyline/superstring - add curve through 3 points</td>
</tr>
<tr>
<td>Del 3pt curve</td>
<td>For polyline/superstring - delete adjacent curves</td>
</tr>
<tr>
<td>Vertex</td>
<td>Edit vertex data for a super string</td>
</tr>
</tbody>
</table>

Each of the options performs the same work as the option of the same name in the Edit string option. The individual options in the Points Edit menu will now be discussed in detail.

For the option Append, go to 14.5.1 Append Point

Between 14.5.2 Between Point
Delete 14.5.3 Delete Point
Extend 14.5.4 Extend Point
Extend Ht 14.5.5 Extend Height
Height 14.5.6 Height
Insert 14.5.7 Insert Point
Move 14.5.8 Move Point
Add 3pt curve 14.5.9 Add 3 Point Curve
Del 3pt curve 14.5.10 Delete 3 Point Curve
Vertex 14.5.11 Edit Vertex
14.5.1 Append Point

Position of option on menu: Strings => Points Edit => Append

The append option adds additional points to the end of a string. On selecting the Append option, an append point panel is displayed.

The message area of this panel informs the user of any error messages.

Once in the append option, the particular end of the string to append points to is selected using the standard LB and MB pick and accept sequence.

The points to be appended are then selected. The option keeps adding points to the selected string until the pick ops menu is brought up using RB and cancel is selected.

After the append has been completed, the option repeats. That is, the user is asked to select another string to append to. This continues until finish or [X] is selected from the append point panel.
14.5.2 Between Point

Position of option on menu:  Strings => Points Edit => Between

On selecting the between option, a between point panel is displayed.

The message area of this panel informs the user of any error messages.

Once in the between option, the particular segment to insert a point on is selected using the standard LB and MB pick and accept sequence. The position of the point to insert is then selected and accepted.

After the between has been completed, the option repeats. That is, the user is asked to select another segment to insert a point on. This continues until finish or [X] is selected from the between point panel.
14.5.3 Delete Point

Position of option on menu:  Strings =>Points Edit => Delete

On selecting the delete option, a delete point message panel is displayed.

![Delete Point Message Panel]

The message area of this panel informs the user of any error messages.

Once in the delete option, the particular point to delete is selected using the standard LB and MB pick and accept sequence. When the point is accepted, it is deleted.

After the delete has been completed, the option repeats. That is, the user is asked to select another point to delete (the point can be on any string). This continues until finish or [X] is selected from the delete point panel.
14.5.4 Extend Point

**Position of option on menu:** Strings => Points Edit => Extend

On selecting the **extend** option, a **extend point** panel is displayed.

![Extend Point Panel](image)

The message area of this panel informs the user of any error messages.

Once in the **extend** option, the particular point on a segment to extend is selected by picking the segment near to the point using the standard LB and MB pick and accept sequence. The position of the point is then moved along the segment until the final position is selected and accepted.

After the **extend** has been completed, the option repeats. That is, the user is asked to select another segment to extend a point on. This continues until **finish** or [X] is selected from the **extend point** panel.
14.5.5 Extend Height

**Position of option on menu:** Strings => Points Edit => Extend Ht

The extend point by height option is similar to the extend option except that the z-value of the moved point is modified by linearly interpolating the z-value from the original points at the end of the selected segment. On selecting the extend by ht option, an extend point by ht panel is displayed.

![Extend Point by Ht Panel](image)

The message area of this panel informs the user of any error messages.

Once in the extend point by ht option, the particular point on a segment to extend is selected by picking the segment near to the point using the standard LB and MB pick and accept sequence. The position of the point is then moved along the segment until the final position is selected and accepted. The z-value of the moved point is the linear interpolation of the selected segment.

After the extend point by ht has been completed, the option repeats. That is, the user is asked to select another segment to extend a point on. This continues until finish or [X] is selected from the extend point by ht panel.
14.5.6 Height

Position of option on menu: Strings => Points Edit => Height

On selecting the height option, a point height panel is displayed.

The message area of this panel informs the user of any error messages.

Once in the height option, the particular point to modify the height for is selected using the standard LB and MB pick and accept sequence. When the point is accepted, the height existing height is displayed in a height box which can be modified and accepted by typing <enter>.

After the height has been completed, the option repeats. That is, the user is asked to select another point to modify the height for (the point can be on any string). This continues until finish or [X] is selected from the point height panel.
14.5.7 Insert Point

**Position of option on menu:** Strings => Points Edit => Insert

On selecting the insert option, an insert point message panel is displayed.

The message area of this panel informs the user of any error messages.

Once in the insert option, the particular segment to identify the two points to insert the point is selected using the standard LB and MB pick and accept sequence. The position of the point to insert is then selected and accepted.

After the insert has been completed, the option repeats. That is, the user is asked to select another segment to insert a point on. This continues until finish or [X] is selected from the insert point panel.
14.5.8 Move Point

Position of option on menu:  Strings => Points Edit => Move

On selecting the move option, a move point panel is displayed.

The message area of this panel informs the user of any error messages. There are similar panels for each of the other points edit options.

Once in the move option, the particular point to move is selected using the standard LB and MB pick and accept sequence. The position that the point is to be moved to is then selected and accepted.

After the move has been completed, the option repeats. That is, the user is asked to select another point to move (the point can be on any string). This continues until finish or [X] is selected from the move point panel.
14.5.9 Add 3 Point Curve

**Position of option on menu:** Strings => Points Edit => Add 3pt Curve

On selecting the add 3pt curve option, a **insert 3pt curve** panel is displayed.

![Insert 3pt Curve Panel](image)

The message area of this panel informs the user of any error messages.

Once in the add 3pt curve option, the middle point of the three points of the super string to fit a curve for, is selected using the standard LB and MB pick and accept sequence. When the point is accepted, the curve is fitted between it and the left and right adjacent points of the super string.

After the add 3pt curve has been completed, the option repeats. That is, the user is asked to select another point to add a curve to (the point can be on any super string). This continues until finish or [X] is selected from the **insert 3pt curve** panel.
14.5.10 Delete 3 Point Curve

Position of option on menu: Strings => Points Edit => Del 3pt Curve

On selecting the del 3pt curve option, a delete 3pt curve panel is displayed.

The message area of this panel informs the user of any error messages.

Once in the Delete 3pt curve option, a vertex from a super string is selected using the standard LB and MB pick and accept sequence and if there is curves on both sides of the vertex, the radii are removed and the vertices are joined by straight line segments.

After the Delete 3pt curve has been completed, the option repeats. That is, the user is asked to select another point on a super string to remove the curves on either side (the point can be on any super string). This continues until finish or [X] is selected from the Delete 3pt curve panel.
14.5.11 Edit Vertex

**Position of option on menu:**  Strings =>Points Edit => Vertex

The Edit Vertex option allows the quick editing of the co-ordinates, vertex id, symbol, vertex text and tinability of a selected string vertex.

The name, model, colour and linestyle, which are string properties, can also be modified however the user has the choice of modifying the string properties for the entire string, or have the option remove the selected vertex from the string and only give the string properties to the newly created one vertex string. If a vertex is removed from the string, the adjacent vertices of the removed vertex can be joined.

On selecting the **Vertex** option, a **Edit Vertex** panel is displayed.

The **Edit Vertex** option is already running and a super string vertex is selected.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Vertex properties</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertex id</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the vertex id (point number) for the selected vertex. Change this to the required value.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X coordinate</td>
<td>Measure X panel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the x coordinate (easting) of the selected vertex. Change this to the required value.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y coordinate</td>
<td>Measure Y panel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the y coordinate (northing) of the selected vertex. Change this to the required value.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z coordinate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Text</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenable</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

String properties

Remove vertex from string

Join remaining strings

Name

Model

Colour

Linestyle 1
Z coordinate

Measure Z panel

the y coordinate (elevation) of the selected vertex. Change this to the required value.

Symbol

symbol box

available symbols

the symbol on the selected vertex. Change this to the required symbol.

Text

input

the text on the selected vertex. Change this to the required text.

Tinable

tick box

ticked if the selected vertex is tinable. Change if required.

String/New vertex properties

Remove vertex from string

tick box

tick if the selected vertex is to be removed from its current string.

Join remaining points

tick box

only setable if Remove vertex from string is ticked.
If ticked then the vertices on either side of the removed vertex are joined.
If not ticked then the original string will be broken into two strings when the vertex is removed.

Name

input

the name of the string containing the selected vertex. Change this to the required name.

Model

model box

available models

the model of the string containing the selected vertex. Change this to the required model.

Colour

colour box

available colours

the colour of the string containing the selected vertex. Change this to the required colour.

Linestyle

linestyle box

the linestyle of the string containing the selected vertex. Change this to the required linestyle.

Pick

button

chose Pick and then select the vertex to be edited.

Set

button

apply the values in the panel to the selected vertex. Pick is still active so that another vertex can be selected.
14.6 Strings Edit

**Position of menu:** Strings => Strings Edit

The Strings edit option contains operations to be applied, not to individual points of a string, but to entire strings.

After selecting the Strings edit option, the Strings edit menu is displayed.

<table>
<thead>
<tr>
<th>Strings Edit</th>
<th>14.6.1 Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change</td>
<td>14.6.2 Clip</td>
</tr>
<tr>
<td>Clip</td>
<td>14.6.3 Close</td>
</tr>
<tr>
<td>Close</td>
<td>14.6.4 Delete</td>
</tr>
<tr>
<td>Delete</td>
<td>14.6.5 Duplicate</td>
</tr>
<tr>
<td>Duplicate</td>
<td>14.6.6 Join</td>
</tr>
<tr>
<td>Join</td>
<td>14.6.7 Join Many</td>
</tr>
<tr>
<td>Join many</td>
<td>14.6.8 Link Clip</td>
</tr>
<tr>
<td>Link clip</td>
<td>14.6.9 Open</td>
</tr>
<tr>
<td>Open</td>
<td>14.6.10 Parallel</td>
</tr>
<tr>
<td>Parallel</td>
<td>14.6.11 Reverse</td>
</tr>
<tr>
<td>Reverse</td>
<td>14.6.12 Split</td>
</tr>
<tr>
<td>Split</td>
<td>14.6.13 Translate</td>
</tr>
<tr>
<td>Translate</td>
<td>14.6.14 Textdata Info</td>
</tr>
<tr>
<td>Textdata info</td>
<td>14.6.15 Arc to Chords</td>
</tr>
<tr>
<td>Arc to chords</td>
<td>14.6.16 Segment Strings</td>
</tr>
<tr>
<td>Segment strings</td>
<td>14.6.17 Corner Splays</td>
</tr>
<tr>
<td>Corner splays</td>
<td>14.6.18 Surrounding Polygon</td>
</tr>
</tbody>
</table>

The individual options in the Strings edit menu will now be discussed in detail.

For the option Change, go to 14.6.1 Change

- change string colour, type, name or model
- delete or keep part of a string
- connect the first and last points
- delete a string
- duplicate a string
- join two strings to form one string
- join many strings to form one string
- delete a string link
- disconnect the first and last points
- parallel the string
- reverse the order of string points
- split a string into two strings
- translate a string to a new position
- change the text information
- create inner and outer chords for an arc
- segment a super string
- create corner splay
14.6.1 Change

Position of option on menu:  
Strings => Strings Edit => Change

The Change option can be used to change the mode, colour, style, name and point-line type of a string. On selecting the Change option, the Change string panel is displayed.

![Change String Panel]

The Change option is already in progress and if a string is selected, the model, colour, style, name and point-line type are changed according to the fields in the change string panel. The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>New name</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if non-blank, the name of the selected string will be changed to the name given in the new name field.</td>
<td></td>
</tr>
<tr>
<td>New model</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if non-blank, the selected string will be moved to the model given in the new model field.</td>
<td></td>
</tr>
<tr>
<td>New colour</td>
<td>input</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if non-blank, the colour of the selected string will be changed to the colour given in the new colour field.</td>
<td></td>
</tr>
<tr>
<td>New point-line</td>
<td>input</td>
<td>point, line</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if non-blank, the breakline type of the selected string will be changed to the type given in the new point-line field (point or line type).</td>
<td></td>
</tr>
<tr>
<td>New style</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if non-blank, the style of the selected string will be changed to the name given in the new style field.</td>
<td></td>
</tr>
</tbody>
</table>

Please continue to the next section 14.6.2 Clip.
14.6.2 Clip

Position of option on menu: Strings => Strings Edit => Clip

The Clip option can be used to delete or keep part of a string.
On selecting the Clip option, the Clip string panel is displayed.

![Clip string panel]

After selecting the clip option, the user is asked to select the string to be clipped. The user is then asked to select two points on the string to define the section to be clipped.

Depending on the clip mode, either
(a) a new string is created from the section of the string between the two points
(b) two new strings are created by deleting the section of the string between the two points
(c) one new string is created by deleting the section of the string between the two points and then joining the two selected points.

If the 1st name, 1st model and/or 1st colour panel fields are non-blank, the values are used for the 1st half of the clipped string. Otherwise the values of the original string are used for the 1st half of the string.

If the 2nd name, 2nd model and/or 2nd colour panel fields are non-blank, the values are used for the second half of the clipped string. Otherwise the values of the original string are used for the second half of the string.

If the keep mode is set to keep string, the original string is kept
trash string, the original string is moved to the trash model
delete string, the original string will be deleted.

Hence, the fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st name</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if blank, the first half of the clipped string is given the name of the original string.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If non-blank, the first half of the clipped string is given the name in the 1st name field.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st model</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if blank, the first half of the clipped string is placed in the same model as the original selected string.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If non-blank, the first half of the clipped string is placed in the model given in the 1st model field.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1st colour

input

available colours

if blank, the first half of the clipped string is given the colour of the original string.
If non-blank, the first half of the clipped string is given the colour specified in the 1st colour field.

2nd name

input

if blank, the second half of the clipped string is given the name of the original string.
If non-blank, the second half of the clipped string is given the name in the 2nd name field.

2nd model

input

available models

if blank, the second half of the clipped string is placed in the same model as the original selected string. If non-blank, the second half of the clipped string is placed in the model given in the 2nd model field.

2nd colour

input

available colours

if blank, the second half of the clipped string is given the colour of the original string.
If non-blank, the second half of the clipped string is given the colour specified in the 2nd colour field.

Keep mode

input

keep string

delete, keep, trash string

if delete string, the string selected to be clipped is deleted.
keep string, the selected string is not deleted.
trash string, the string selected to be clipped is moved to the trash model.

Clip mode

input

internal

internal, external, join external

if internal, a new string is created from the section of string between the two selected points.
external, two new strings are created by deleting the section of the string between the two points.
join external, one new string is created by deleting the section of the string between the two points and then joining the two selected points.

How to Use the Panel and Panel Messages

(a) Enter the new model, colour and name for the first and second parts of the clipped string.
(b) The string to be clipped is selected.
(c) The points to be used as the clipped point are then selected.
(d) The section of the string is then clipped between the selected points and depending on the clip mode, the selected string is then clipped or the clipped section kept.

Please continue to the next section 14.6.3 Close.
14.6.3 Close

Position of option on menu:  Strings => Strings Edit => Close

A closed string is simply a string whose 1st and last points are the same.

The close string option adds to the end of the string, a point that is identical to the 1st string point. This then forms a closed string.

On selecting the close option, the close string panel is displayed.

The close option is already in progress and if a string is selected, it is closed.

Please continue to the next section 14.6.4 Delete.
14.6.4 Delete

Position of option on menu:  Strings => Strings Edit => Delete

Entire strings can be deleted from the model using the Delete option.

On selecting the Delete string option, the Delete string panel is displayed.

![Delete String Panel]

The delete option is already in progress and if a string is selected (LB) and accepted (MB), it is deleted.

If the trash mode in the trash defaults panel is set to trash string, the original string is not deleted but moved to the trash model.

Please continue to the next section 14.6.5 Duplicate.
14.6.5 Duplicate

Position of option on menu:  
**Strings => Strings Edit => Duplicate**

The duplicate option is used to make a copy of the string with the option of giving the duplicate string a new model, colour and/or name.

On selecting the duplicate option, the **duplicate string** panel is displayed.

The duplicate option is already in progress and if a string is selected, then a copy of the string will be created and possibly given a new model, colour or name depending on the fields in the **duplicate string** panel.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>New name</td>
<td>if the new name field is blank, the duplicate string has the same name as the original string. If the new name field is non-blank, then the duplicate string is given the name in the new name field.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New model</td>
<td>if new model is blank, the duplicate string is placed in the same model as the original string. If the new model field is non-blank, then the duplicate string is placed in the model given in the new model field.</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>New colour</td>
<td>if the new colour field is blank, the duplicate string has the same colour as the original string. If the new colour field is non-blank, then the duplicate string is given the colour specified in the new colour field.</td>
<td>input</td>
<td>available colours</td>
<td></td>
</tr>
</tbody>
</table>

Please continue to the next section 14.6.6 Join.
14.6.6 Join

Position of option on menu:  Strings => Strings Edit => Join

The Join option is used to create a new string by joining two existing strings together. On selecting the Join option, the Join strings panel is displayed.

![Join Strings Panel]

After selecting the Join option, the user is asked to select in turn the two strings that make up the joined string.

First, the string that will become the first half of the new joined string is selected with the direction that the string will have as the first half of the new string.

Next, the string that will become the second half of the new joined string is selected with the direction that the string will have as the second half of the new string.

The end of the first selected directed string and the beginning of the second selected directed string are joined to form the new joined string.

If the model, colour and/or name panel fields are non-blank, their values are used for the new joined string. Otherwise the values from the first selected string are used for the joined string.

If the keep mode is set to keep string, the original strings are kept. trash string, the original strings are moved to the trash model delete string, the original strings are deleted.

Hence, the fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>New name</td>
<td>input</td>
<td>if the new name field is blank, the joined string is given the name of the first selected string. If the new name field is non-blank, the joined string is given the name in the new name field.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New model</td>
<td>input available models</td>
<td>if new model is blank, the joined string is placed in the same model as the first selected string. If the new model field is non-blank, the joined string is placed in the model given in the new model field.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New colour</td>
<td>input available colours</td>
<td>if the new colour field is blank, the joined string is given the colour of the first selected string. If the new colour field is non-blank, then the joined string is given the colour specified in the new colour field.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keep mode</td>
<td>input keep strings delete string, keep strings</td>
<td>if delete string, the selected strings selected are deleted. keep string, the selected strings are not deleted. trash string, the strings selected to be joined are moved to the trash model.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How to Use the Panel

(a) Enter the new model, colour and name for the joined string.
(b) The 1st string is selected by picking it with the required direction.
(c) The string to be joined to the 1st selected string is selected by picking it with the required
direction.
(d) The last point of the 1st directed string and the 1st point of the second directed string are
joined to create a new string with model, colour, name as specified in the join strings panel.

Please continue to the next section 14.6.7 Join Many.
14.6.7 Join Many

Position of option on menu:  Strings => Strings Edit => Join many

The Join many option is used to create a new string by joining two or more existing strings, or parts or strings, together.

On selecting the Join many option, the Join many strings panel is displayed.

After selecting the Join many option, the user is asked to select in turn the strings that will make up the joined string. Using the partial mode, parts of strings can be joined.

First, the string that will become the first part of the new joined string is selected with the direction that the string will have as the first part of the new string.

If partial is set (tick), two points are then picked on the string and only the part of the string between the picked points is used in the join.

Next, the strings that will become the subsequent parts of the new joined string are selected in order with the direction that the strings will have in the new joined string.

Again, whenever partial is set (tick), two points are picked on the selected string and only the part of the string between the picked points is used in the join.

The end of each selected directed string (or partial string) is joined to the beginning of the subsequent selected directed string (or partial string) when forming the joined string.

If the name, model and/or colour panel fields are non-blank, their values are used for the new joined string. Otherwise the values from the first selected string are used for the joined string.

If the keep mode is set to keep string, the original strings are kept
trash string, the original strings are moved to the trash model
delete string, the original strings are deleted.

Hence, the fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>New name</td>
<td>if blank, the joined string is given the name of the first selected string. If non-blank, the joined string is given the name in the new name field.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New model</td>
<td>if blank, the joined string is placed in the same model as the first selected string. If non-blank, the joined string is placed in the model given in the new model field.</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>New colour</td>
<td>if blank, the joined string is given the colour of the first selected string. If non-blank, the joined string is given the colour specified in the new colour field.</td>
<td>input</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td>Keep mode</td>
<td>keep strings, the selected strings are not deleted.</td>
<td>input</td>
<td>keep strings, delete strings</td>
<td></td>
</tr>
</tbody>
</table>
trash string, the strings selected to be joined are moved to the trash model.

Partial tick

if ticked, two points are then picked on the string and only the part of the string between the picked points is used in the join.

if not ticked, no extra points are required and the entire string is used.

How to Use the Panel and Panel Messages

(a) Enter the new model, colour and name for the joined string.

(b) The first string to be joined is then selected by picking the required string with the required direction, plus two points to restrict the string if partial is set on.

(c) The second and subsequent strings to be joined are then selected (or partial string if partial is set on) in order and with the required direction.

(d) The last point of each directed string is connected to the first point of the subsequent directed string to create a new joined string. The model, colour and name as specified in the join many strings panel are used for the new string.

Please continue to the next section 14.6.8 Link Clip.
14.6.8 Link Clip

Position of option on menu:  Strings \(\Rightarrow\) Strings Edit \(\Rightarrow\) Link clip

The link clip option can be used to delete the link joining two adjacent vertices of a string.

On selecting the link clip option, the link clip string panel is displayed.

After selecting the link clip option, the user selects the link of the string to be clipped. On acceptance, the selected link is deleted from the string, thus creating two new strings.

If the 1st name, 1st model and/or 1st colour panel fields are non-blank, the values are used for the first half of the link clipped string. Otherwise the values of the original string are used for the first half of the string.

If the 2nd name, 2nd model and/or 2nd colour panel fields are non-blank, the values are used for the second half of the link clipped string. Otherwise the values of the original string are used for the second half of the string.

If the keep mode is set to keep string, the original string is kept
trash string, the original string is moved to the trash model
delete string, the original string will be deleted.

Hence, the fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st name</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st model</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>1st colour</td>
<td>input</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td>2nd name</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd model</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
</tbody>
</table>

if blank, the first half of the clipped string is given the name of the original string.
If non-blank, the first half of the clipped string is given the name in the 1st name field.

if blank, the first half of the clipped string is placed in the same model as the original selected string.
If non-blank, the first half of the clipped string is placed in the model given in the 1st model field.

if blank, the first half of the clipped string is given the colour of the original string.
If non-blank, the first half of the clipped string is given the colour specified in the 1st colour field.

if blank, the second half of the clipped string is given the name of the original string.
If non-blank, the second half of the clipped string is given the name in the 2nd name field.

if blank, the second half of the clipped string is placed in the same model as the original selected string. If non-blank, the second half of the clipped string is placed in the model given in the 2nd model field.
2nd colour

input available colours
if blank, the second half of the clipped string is given the colour of the original string.
If non-blank, the second half of the clipped string is given the colour specified in the 2nd colour field.

Keep mode

input keep string delete, keep, trash string
if delete string, the string selected to be clipped is deleted.
keep string, the selected string is not deleted.
trash string, the string selected to be clipped is moved to the trash model.

Please continue to the next section 14.6.9 Open.
14.6.9 Open

Position of option on menu: Strings => Strings Edit => Open

A closed string is opened by removing the last point of the string.

On selecting the open option, the open string panel is displayed.

![Open String Panel]

The open option is already in progress and if a closed string is selected, it is opened.

Please continue to the next section 14.6.10 Parallel.
14.6.10 Parallel

Position of option on menu:  Strings => Strings Edit => Parallel

Strings, or parts of strings, can be translated perpendicularly to either the left or right using the parallel option. The z-values of the string can also be adjusted by a constant value.

The difference between a translate and a parallel is that for a straight translate, the translation vector is the same for the whole string. In a parallel, the translation is at right angles to each link of the string and hence the translation direction varies along the string.

For example, the edge of a road is a parallel of the centre-line, not a copy of the centre-line.

On selecting the parallel option, the Parallel String panel is displayed.

The user is then asked to select the string to parallel.

If partial is not set, the string is copied parallel through the distance given in the offset field.

If partial is set (tick), two points are then picked on the string and only the part of the string between the picked points is copied parallel through the distance given in the offset field.

The value in the delta ht field is then added to the z-values of the string.

The direction imposed upon the string when selecting it is used to determine what is the left and right side of the string in the parallel operation.

A positive offset parallels the string to the right with respect to the direction of picking. A negative offset parallels to the left with respect to the direction of picking.

Hence, the fields and buttons used in the parallel string panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>New name</td>
<td>input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If blank, the paralleled string is given the name of the original string.</em>&lt;br&gt; <em>If non-blank, the parallel string is given the name in the new name field.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New model</td>
<td>input</td>
<td></td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If blank, the paralleled string is placed in the same model as the original selected string.</em>&lt;br&gt; <em>If non-blank, the paralleled string is placed in the model given in the new model field.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New colour</td>
<td>input</td>
<td></td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If blank, the paralleled string is given the colour of the original string.</em>&lt;br&gt; <em>If non-blank, the paralleled string is given the colour specified in the new colour field.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td>input</td>
<td>distance (in world units) that the string will be copied parallel through. A positive distance denotes that the string will be paralleled to the right of the original string.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta ht</td>
<td>input</td>
<td>value to add to the z-values of the string.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Partial tick

If ticked, two points are then picked on the string and only the part of the string between the picked points is used in the parallel.

If no ticked, no extra points are required and the entire string is used.

How to Use the Panel

(a) Enter the new model, colour and name for the paralleled string.
(b) Enter the offset distance for the parallel - left and right is determined by picking direction.
(c) Enter the height to add to the string’s z-values in the delta ht field.
(d) The selected string (or partial string if partial is set on) is then copied parallel as required.

Please continue to the next section 14.6.11 Reverse.
14.6.11 Reverse

Position of option on menu: Strings => Strings Edit => Reverse

The reverse string option simply reverses the order of the points in a string. On selecting the reverse option, the reverse string panel is displayed.

After selecting the reverse option, the user simply picks (LB) the string that is to have its point order reversed and on acceptance (MB) of the string, the reversing takes place.

Please continue to the next section 14.6.12 Split.
14.6.12 Split

Position of option on menu: Strings => Strings Edit => Split

The Split option is used to create two new strings by splitting an existing string about a selected point on the string.

On selecting the Split option, the Split string panel is displayed.

If control point is set off, after selecting the split option, the user is asked to select the string and the selection point is also used as a split point. Hence the one point is used to select the string and as the split point.

If control point is set on, the user is asked to select the string to split and then pick the point that is dropped perpendicularly onto the selected string as the point on the string to be used as a split point. Hence the string select and the split point are selected separately.

Two strings are then created by splitting the chosen string about the split point.

If the 1st name, 1st model and/or 1st colour panel fields are non-blank, the values are used for the first half of the split string. Otherwise the values of the original string are used for the first half of the string.

If the 2nd name, 2nd model and/or 2nd colour panel fields are non-blank, the values are used for the second half of the split string. Otherwise the values of the original string are used for the second half of the string.

If the keep mode is set to keep string, the original string is kept
trash string, the original string is moved to the trash model
delete string, the original string will be deleted.

Hence, the fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st name</td>
<td>input</td>
<td>if blank, the first half of the split string is given the name of the original string. If non-blank, the first half of the split string is given the name in the 1st name field.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st model</td>
<td>input</td>
<td>if blank, the first half of the split string is placed in the same model as the original selected string. If non-blank, the first half of the split string is placed in the model given in the 1st model field.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st colour</td>
<td>input</td>
<td>if blank, the first half of the split string is given the colour of the original string. If non-blank, then the first half of the split string is given the colour specified in the 1st colour</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
field.

**2nd name** input

*if blank, the second half of the split string is given the name of the original string.*

*If non-blank, the second half of the split string is given the name in the 2nd name field.*

**2nd model** input available models

*if blank, the second half of the split string is placed in the same model as the original selected string.*

*If non-blank, the second half of the split string is placed in the model given in the 2nd model field.*

**2nd colour** input available colours

*if blank, the second half of the split string is given the colour of the original string.*

*If non-blank, then the second half of the split string is given the colour specified in the 2nd colour field.*

**Keep mode** input keep string delete, keep, trash string

*if delete string, the string selected to be split is deleted.*

*keep string, the selected string is not deleted.*

*trash string, the string selected to be split is moved to the trash model.*

**Control pt** tick

*If ticked, the user is asked to select the string to split and then pick the point that is dropped perpendicularly onto the selected string as the point on the string to be used as a split point.*

*If not ticked, the user is asked to select the string and the selection point is also used as a split point.*

**How to Use the Panel and Panel Messages**

(a) Enter the new model, colour and name for the first and second parts of the split string.

(b) If control is on, the string is selected and then the split point is selected.

   If control is off, the string is selected and the same point is to be used as the split point.

(c) The chosen string is then split about the split point and the two halves given models, colours and names as defined by the split string panel.

Please continue to the next section 14.6.13 Translate.
14.6.13 Translate

Position of option on menu: Strings => Strings Edit => Translate

Entire strings can be translated in the x,y and z directions using the translate option. The translated string can either be moved or copied to its new translated position.

The difference between a copy or a move is simply that if a string is copied, a copy of the string is translated and the original string left untouched, whereas for a move, the actual string is moved from its original position to the new translated position.

On selecting the Translate option, the Translate string panel is displayed.

![Translate String Panel]

The selected string is translated by using the cursor to select a position on the string (the before point) and then selecting the position (not necessarily on a string) that the point will be translated to (after point).

Hence the translate operation requires two positions - a before and an after point - for the translation to be defined.

The first position (the before point) is selected using the normal select procedures. The second position (the after point) depends entirely on the translate mode.

If the translate mode is set to
cursor x y z or cursor x y
the cursor is used to not only select the string point but also to indicate where it is to be moved/copied to.

typed x y z
the second point has the absolute coordinates given in the x y z field.

typed dx dy dz
the second point is defined relative to the first point by the adding the dx dy dz given in the dx dy dz field.

Selected strings will be translated until the option is finished.

The fields and buttons used in the translate panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>New name</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

if blank, the string is given the name of the original string.
If non-blank, the string is given the name in the new name field.

New model          | input | available models |

if blank, the string is placed in the same model as the original selected string.
If non-blank, the string is placed in the model given in the New model field.
**New colour**  
input available colours  
*if blank, the string is given the colour of the original string.*  
*If non-blank, then the string is given the colour specified in the new colour field.*

**Translate mode**  
input cursor xy cursor xy, cursor xyz, typed xyz, typed dx dy dz  
*see comments about translate mode in the general description of move/copy*

**x y z**  
input  
*if Translate mode is **Typed x y z** then this field appears and the position on the string where the string was selected is translated to this co-ordinate.*

**dx dy dz**  
input  
*if Translate mode is **Typed dx dy dz** then this field appears and the selected string is translated by the given dx dy dz.*

**Move/copy mode**  
input move copy, move  
*if the mode is set to move, the string is translated as defined in the panel fields and the original string is deleted. If the mode is copy, the original string is left alone.*

**How to Use the Panel and Panel Messages**

(a) Enter the new model, colour and name for the translated string.
(b) The string to be translated and its “before” point is chosen.
(c) The “after” point is chosen according to the translate mode.
(d) The selected string is then translated (moved or copied) as required.

Please continue to the next section 14.6.14 Textdata Info.
14.6.14 Textdata Info

Position of option on menu: Strings => Strings Edit => Textdata info

The Textdata info option is used to change the information about the text for a text string, super strings and text for 4d strings.

Selecting the option, the Change Textstyle Info panel:

![Change Textstyle Info Panel]

The parameters for the textstyle information are set and then any selected string is given the new textstyle parameters. If any of the parameters are left blank, then that parameter is not modified for the selected string.

To define the Textstyle info parameters, click on the text button and then the edit button.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>New textstyle info</td>
<td>textstyle data</td>
<td>textstyle information to use for the selected strings.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

selected strings will have their text modified by the parameters in the new textstyle info field.
14.6.15 Arc to Chords

Position of option on menu: Strings => Strings Edit => Arc to chords

The Arc to Chord option works on a super string and creates inside or outside chords for any arc segments in the super string.

The number of chords created can be defined by giving the number of chords required, a chord length to use for each chord, or an arc to chord tolerance.

On selecting the Arc to chords option, the Arc to Chords panel is displayed.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick</td>
<td>select the super string to edit.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous</td>
<td>move to the previous segment of the super string.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next</td>
<td>move to the next segment of the super string.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convert mode</td>
<td>create the chords on the inside or the outside of the arc.</td>
<td>choice box</td>
<td>inside</td>
<td>outside</td>
</tr>
<tr>
<td>Method</td>
<td>method for creating the chord.</td>
<td>choice box</td>
<td>no. of chords</td>
<td>chord length arc to chord tolerance</td>
</tr>
<tr>
<td>No. of Chords, Chord length, Arc to chord tolerance</td>
<td>value to use with the Method.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>create chords for the selected segment of the super string.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
14.6.16 Segment Strings

Position of option on menu:  Strings => Strings Edit => Segment string

The Segment string option works on a super string and inserts extra points on an arc or line segment of the super string to break it into smaller arc or line segments.

The number of arcs/lines created can be controlled by specifying either
(a) the number of sub-segments required
(b) a single sub-segment length to break the start of the segment into that length
(c) a sub-segment length to break the segment into as many sub-segments of that length as possible.

On selecting the Segment strings option, the Segment String panel is displayed.

The fields and buttons used in the panel have the following functions.

Field Description  Type  Defaults  Pop-Up
Pick  button  select the super string to edit.
Previous  button  move to the previous segment of the super string.
Next  button  move to the next segment of the super string.
Method  choice box  by number  by number
          one distance  by distance
          by distance

method for creating the sub-segments.

by number - the segment is broken into No of parts equal segments
one distance - the segment is broken into two parts with the first part having the length Distance (which end will depend on the direction that the segment was selected).
by distance - the segment is broken into as many sub-segments of length Distance as possible (which end the division starts at depends on the direction that the segment was selected).

No of parts, Distance  value to use with the Method.
Current segment length  output only
  length of the currently selected segment of the super string.

Calc segment length  output only
  calculated length of the segment that will be created.

Process  button
  create sub-segments for the selected segment of the super string.
14.6.17 Corner Splays

Position of option on menu:  Strings => Strings Edit => Corner splays

The Corner splays option works on a super string and creates splays between two adjacent straight segments.

The number of chords created can be defined by giving the number of sub-segments required, one sub-segment length to beak of the segment or a sub-segment length to beak the segment into as many sub-segments as possible.

On selecting the Corner splays option, the Corner splays panel is displayed.

![Corner Splays Panel](image)

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of chords</td>
<td>value to use with the Method.</td>
<td>arc length</td>
<td>arc length</td>
</tr>
<tr>
<td>Convert mode</td>
<td>choice box</td>
<td>arc length</td>
<td>arc radius</td>
</tr>
<tr>
<td>Arc length</td>
<td></td>
<td>chord length</td>
<td>total chord length</td>
</tr>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td>tangent length</td>
</tr>
<tr>
<td>Name</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>input</td>
<td>default colour</td>
<td>available colours</td>
</tr>
<tr>
<td>Keep original string</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
</tbody>
</table>

*method for creating the corner splays.*

Arc length, Arc radius, Chord length, Total chords length, tangent length

*value to use with the Convert mode.*

Name

*the name of the new string.*

Model

*name of the model that the new string is in.*

Colour

*the colour of the new string.*

Keep original string

*if ticked, the original string is not modified and a new string is created with the corner splays. If not ticked, the original string is modified.*
Pick button

select a super string and the splays will be created.
14.6.18 Surrounding Polygon

Position of option on menu:  Strings => Strings Edit => Surrounding polygon

The Surrounding polygon option works on all the super strings on the view surrounding a selected position (point) and, if possible, creates a closed polygon from parts of the strings surrounding the selected point.

A straight line must be able to be drawn from the selected point to the lines/arcs that could be used in the surrounding strings.

This option creates a lot/polygon by a picking inside a collection of strings and the lot/polygon is created from the closest strings to the picked position. The picked position must be selected so that all sides of the lot/polygon can be "seen" from the picked position. That is, a straight line can be drawn from the picked position to the lot/polygon side without cutting any other segment.

![Creating a Polygon by Picking Inside the Polygon](image)

On selecting the Surrounding polygon option, the Create Polygon - Pick Point Inside panel is displayed.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

the name of the new created polygon.
Model
  input
  available models
  *model for the created polygon.*

Colour
  input
  default colour
  available colours
  *colour for the created polygon.*

Pick
  button
  *pick a position on a view and the surrounding polygon will be created from all the super strings on the view.*
14.7 Cogo

Position on menu: Strings => Cogo

Note: This option is no longer available.

The Cogo (co-ordinate geometry) options provide methods of constructing points, lines and arcs from a variety of operations such as picking, filleting, intersecting and finding tangents.

Selecting the cogo option creates the Cogo edit ops menu and the Cogo edit panel.

The options in the cogo edit ops menu all create either a point, string or arc and the cogo edit panel remains on the screen for each of the menu options and provides the string properties for any created objects.

All of the options chosen from the Cogo edits ops menu and its sub-menus repeat until cancelled by the user. That is, the option remains in force and can be applied repeatedly until terminated by the user.

The name of the current selected option is displayed in the first message area of the cogo edit panel.

To select a new Cogo edits ops option, simply select the new option from the Cogo edit ops menu or sub-menus. The current option is automatically terminated and the new option begun.

An option is also terminated when either the cancel or finish button is selected in the Cogo edit panel, or finish is elected from the Cogo edit ops menu.

Each of the options in the Cogo edit ops menu will now be discussed.

For the option Create ops, go to 14.7.1 Create Ops

Intersect ops 14.7.2 Intersect Ops
Vector 14.7.3 Vector
Parallel 14.7.4 Parallel
Fillet ops 14.7.5 Fillet Ops
Fillet ops (T) 14.7.6 Fillet Ops (T)
Fillet ops (TJ) 14.7.7 Fillet Ops (TJ)
Tangent 14.7.8 Tangent

Please continue to the next section 14.7.1 Create Ops.
14.7.1 Create Ops

The Create ops walk-right menu is

Each of the options in the Create Ops menu will now be discussed.

For the option Create point, go to

14.7.1.1 Create Point
14.7.1.2 Create Line
14.7.1.3 Create Point Between Points
14.7.1.4 Locate Offset
14.7.1.5 Locate Deflection
14.7.1.6 Divide - Number
14.7.1.7 Divide - Distance
14.7.1.8 Perpendicular
14.7.1.9 Projection
14.7.1.10 Locate Chainage

14.7.1.1 Create Point

After selecting the Create point option, the user simply selects a point using the normal picking sequence.
The point will be created with name, colour and model from the cogo edit panel.

If no z-value is given in the cogo edit panel, then a null z-value is used.

If height snap is on and the point is created by snapping to an existing point or line, the z-value for the point
is taken from the snapped point or if tin snap is on, from the underlying triangulation. The snapped z-value
will be displayed in an enter height typed input box.

If required, this value can be modified by typing into the enter height box. If the box is empty, the z-value is
taken from the cogo edit panel. If no value exists in the cogo edit, an error message please specify z
value is displayed in the cogo edit message area.

The z-value in the enter height box is accepted by entering a <enter> in the box. The enter height box then
disappears.

Screen message area
<<Create Point> Select position for point> [picks][menu]
14.7.1.2 Create Line

After selecting the create line option, the user simply selects two points to be the end points of the line using the normal picking sequence.

The line will be created with name, colour and model from the cogo edit panel.

If either end point is created by snapping to an existing point or line, the z-value for the point is taken from the snapped point or if tin snap is on, from the underlying triangulation. If no z-value exists, the z-value is taken from the cogo edit panel.

If height snap is on, the snapped z-value will be displayed in an enter height typed input box.

If required, this value can be modified by typing into the enter height box. If the box is empty, the z-value is taken from the cogo edit panel. If no value exists in the cogo edit, an error message please specify z value is displayed in the cogo edit message area.

The z-value in the enter height box is accepted by entering a <enter> in the box. The enter height box then disappears.

Screen message area

<<Create Line>  Select 1st point on line>  [picks][][menu]
<<Create Line>  Select 2nd point on line>  [picks][][menu]

14.7.1.3 Create Point Between Points

The create point between points option allows the user to select two points to act as the end points of a line and then create a new point a user supplied given distance along that line.

After selecting the create point between points option, the user simply selects two points to act as the end points of the line using the normal picking sequence.

An enter distance from 1st point box is then displayed on the screen and the user simply enters the appropriate distance into the box, terminated with a <enter>. The box then disappears.

The point is then created with name, colour and model and z-value from the cogo edit panel.

If no z-value exists in the panel, no point is created.

Screen message area

<<Between>  Select 1st point>  [picks][][menu]
<<Between>  Select 2nd point>  [picks][][menu]
<<Between> Enter distance from 1st point  [caret][][menu] select a button

14.7.1.4 Locate Offset

The locate offset option is used to create a point at a given perpendicular offset distance from a user defined point on a selected item.

The point on the item to offset from is determined by picking a control point on the item and projecting along the item by a given distance.

Hence the locate offset option needs

(a) a selected item
(b) a control point
(c) a projection distance
(d) an offset distance

After selecting the locate offset option, the user picks the item to project along using the normal picking sequence. The direction imparted when picking the item determines the sense for direction along the item and offset left and right.

Next a control point on the item is picked.

A distance along item box is then displayed on the screen and the user enters the appropriate distance into the box, terminated with a <enter>. The box then disappears. A positive distance is in the picking direction of the item.
Finally an offset distance box is displayed on the screen. The user enters the appropriate offset distance into the box, terminated with a <enter>. The box then disappears. A positive offset is to the right of the item when moving in the picking direction of the item.

The appropriate point is then created with name, colour, model and z-value from the cogo edit panel.

If no z-value exists in the panel, no point is created.

Screen message area

<<<Locate Offset> Select item to project along> [picks][menu]
<<<Locate Offset> Select control point> [picks][menu]
/Locate Offset> distance along item [caret][menu] select a button
/Locate Offset> offset distance [caret][menu] select a button

14.7.1.5 Locate Deflection

The locate deflection option is used to create a point at a given deflection angle and distance from a user defined point on a selected item.

The locate deflection option is very similar to the locate offset option except instead of going out perpendicular to the item, the user provides a deflection angle. Hence the locate offset is a special case of the locate deflection option when the deflection angle is ninety degrees.

The point on the item to offset from is determined by picking a control point on the item and projecting along the item by a given distance.

Hence the locate deflection option needs

(a) a selected item
(b) a control point
(c) a projection distance
(d) a deflection angle
(e) a deflection distance

After selecting the locate offset option, the user picks the item to project along using the normal picking sequence. The direction imparted when picking the item determines the sense for direction along the item and offset left and right.

Next a control point on the item is picked.

Boxes for the distance along item, deflection angle and deflection distance are then (sequentially) displayed on the screen and the user enters the appropriate values into each box, terminated with a <enter>. The box then disappears.

A positive distance is in the picking direction of the item and a positive angle is an angle to the right of the item when moving in the picking direction of the item.

The appropriate point is then created with name, colour, model and z-value from the cogo edit panel.

If no z-value exists in the panel, no point is created.

Screen message area

<<<Locate Deflection> Select item to project along> [picks][menu]
<<<Locate Deflection> Select control point> [picks][menu]
/<Locate Deflection> distance along item [caret][menu] select a button
/<Locate Deflection> deflection distance [caret][menu] select a button
/<Locate Deflection> deflection angle [caret][menu] select a button

14.7.1.6 Divide - Number
The divide - nos option is used to place points at positions which would divide an arc or a line into an equal number of pieces.

For example, if the option was used to show how and an arc could be divided into seven pieces, points would be placed at the six division marks. No point is placed at the start or end of the arc. Hence, the start and end points plus the division points divide the arc into the required number of divisions.

Since the option will only divide an arc or a line, when an item is selected only the picked line or arc sub-element of the item will be divided.

On selecting the divide - nos option, the user picks the item to divide using the normal picking sequence.

A no of divisions box is then displayed on the screen and the user enters the required number of divisions into the box, terminated with a <enter>. The box then disappears.

A point string is then created containing points at each of the required division positions. The string has the name, colour, model and z-value from the cogo edit panel.

Screen message area

<<Divide by #>  Select item to divide>  [picks][][menu]

14.7.1.7 Divide - Distance

The divide - dist option is used to place points at positions which would divide an arc or a line into pieces of a given distance.

Note - unless the arc or line is exactly divisible by the distance, the last division will be smaller than the required distance.

Since the option will only divide an arc or a line, when an item is selected only the picked line or arc sub-element of the item will be divided.

On selecting the divide - dist option, the user picks the item to divide using the normal picking sequence.

A distance box is then displayed on the screen and the user enters the required distance for each division into the box, terminated with a <enter>. The box then disappears.

A point string is then created containing points at each of the required division positions. The string has the name, colour, model and z-value from the cogo edit panel.

Screen message area

<<Divide by distance>  Select item to divide>  [picks][][menu]

14.7.1.8 Perpendicular

The perpend option is used to create the point which is the perpendicular projection of a selected point onto a selected line or arc.

Since the option can only drop a point onto an arc or a line, when the item is selected to project onto, only the picked line or arc sub-element of the item is used.

On selecting the perpend option, the user picks the point to drop perpendicularly.

The item to drop perpendicularly onto is then selected.

The point representing the perpendicular projection of the chosen point onto the selected item is then created. The created point has the name, colour, model and z-value from the cogo edit panel.

Screen message area

<<Perpend>  Select point to drop>  [picks][][menu]

14.7.1.9 Projection
The **projection** option is used to create a point which is given distance along a line or arc. Since the option can only project a point along an arc or a line, when the item is selected to project along, only the picked line or arc sub-element of the item is used. On selecting the **projection** option, the user picks the item to project along. A distance box is then displayed on the screen and the user enters the appropriate projection distance into the box, terminated with a <enter>. The box then disappears. A positive distance is in the picking direction of the item.

The point representing the projected point along the selected item is then created using the name, colour, model and z-value from the **cogo edit** panel.

Screen message area

```
<<Projection> Select item to project along> [picks][][menu]
<Projection> distance [caret][][menu] select a button
```

### 14.7.1.10 Locate Chainage

The **locate chainage** option is used to create a point at a given chainage on a selected string. On selecting the **locate chainage** option, the user picks the item to locate the chainage on. A locate chainage box is then displayed on the screen and the user enters the appropriate chainage into the box, terminated with a <enter>. The box then disappears.

A point at the given chainage on the selected item is then created using the name, colour, model and z-value from the **cogo edit** panel.

Screen message area

```
<<Locate chainage> Select item to locate on> [picks][][menu]
<Locate chainage> chainage [caret][][menu] select a button
```

Please continue to the next section **14.7.2 Intersect Ops**.
14.7.2 Intersect Ops

The **Intersection** options are for finding various intersections of lines and arcs.

Most of intersect cases can have more than one solution. For example, the intersection of a line with an arc.

To easily distinguish between the cases, **12d Model** uses the sense of direction implied when picking items to determine which case was required by the user.

The **Intersect ops** walk-right menu is

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Intersect</strong></td>
<td>Creates a point at the intersection of lines and arcs.</td>
</tr>
<tr>
<td><strong>Intersect Offset</strong></td>
<td>Intersect lines and arcs offset by a user supplied distance.</td>
</tr>
<tr>
<td><strong>Bearings Intersect</strong></td>
<td>Intersect lines and arcs using bearings.</td>
</tr>
<tr>
<td><strong>2 pts 2 dists</strong></td>
<td>Intersect two points and two distances.</td>
</tr>
</tbody>
</table>

Each of the options in the **Intersect Ops** menu will now be discussed.

For the option **Intersect**, go to

- **Create line** 14.7.1 Create Line
- **intersect offset** 14.7.2 Intersect Offset
- **Bearings intersect** 14.7.3 Bearings Intersect
- **2 pts 2 dists** 14.7.4 Two Points, Two Distances

14.7.2.1 Intersect

The **Intersect** option creates a point at the intersection of lines and arcs.

That is, it will find the intersection of

(a) a line with a line
(b) a line with an arc
or
(c) an arc with an arc

After selecting the **Intersect** option, the user simply selects the two items to intersect using the normal picking sequence.

If an intersect exists, a point is created at the intersection with name, colour, model and z-value from the **Cogo edit** panel.

If no z-value exists in the panel, no point is created.

When there is more than one possible solution, the order of picking and the directions imparted when picking the items are used to determine which solution is required.

Since the option will only intersect arcs and lines, when an item is selected only the picked line or arc sub-element of the item is used in the intersect.

Screen message area

`<<Intersect> Select 1st item to intersect> [picks][menu]`

`<<Intersect> Select 2st item to intersect> [picks][menu]`

14.7.2.2 Intersect Offset

Like the **Intersect** option, **Intersect offset** is for creating points at the intersection of lines and arcs.

However, before the line or arc is used, it is offset by a user supplied distance.

Hence the intersection is between displaced lines and arcs.

A practical example of **intersect offset** is for finding the position of a manhole in a subdivision which
is three metres from one property line and two metres from the culdesac arc.

After selecting the intersect option, the user selects the first item to intersect using the normal picking sequence.

A 1st offset box is then displayed on the screen and the user enters the appropriate offset for the first line into the box, terminated with a <enter>. The box then disappears. A positive offset is to the right of the item when moving in the picking direction of the item.

The second item to intersect is then selected and a 2nd offset box is displayed on the screen for the user to enter the offset for the second line.

If an intersect exists for the two offset items, a point is created at the intersection with name, colour, model and z-value from the cogo edit panel.

If no z-value exists in the panel, no point is created.

As in the intersect option, when more than one solutions is possible, the order of picking and the directions imparted when picking the items are used to determine which solution is required.

Since the option will only intersect arcs and lines, when an item is selected only the picked line or arc sub-element of the item is used in the intersect.

Screen message area

<<Intersect Offset> Select 1st item to intersect> [picks][menu]
<<Intersect Offset> 1st offset [caret][menu] select a button
<<Intersect Offset> Select 2st item to intersect> [picks][menu]
<<Intersect Offset> 2nd offset [caret][menu] select a button

14.7.2.3 Bearings Intersect

The Bearings intersect option finds the intersect of the lines going through two user selected points at user supplied bearings.

Hence the option will calculate the point that is at given bearings from two selected points

After selecting the bearings intersect option, the user selects the first point using the normal picking sequence.

A bearing 1 box is then displayed on the screen and the user enters the bearing for the line through the point into the box, terminated with a <enter>. The box then disappears. The bearing is entered in degrees, minutes and seconds.

The second point is then selected and a bearing 2 box is displayed on the screen for the user to enter the bearing for the line through the second point.

The intersection of the two lines is then calculated and if it exists, a point is created at the intersection with name, colour, model and z-value from the cogo edit panel.

If no z-value exists in the panel, no point is created.

Note

The selected points do not have to be actual points in a point string. Any snap or cursor position is a valid point for the option

Screen message area

<<Bearings Intersect> Select 1st point> [picks][menu]
<<Bearings Intersect> bearing 1 [caret][menu] select a button
<<Bearings Intersect> Select 2nd point> [picks][menu]
<<Bearings Intersect> bearing 2 [caret][menu] select a button

14.7.2.4 Two Points, Two Distances

The 2 pts 2 dists option find the point that given distances from two user selected points.

This problem is equivalent to finding the intersection of two circles centred on the points and with radii the
same as the distances.
When there is more than one solution, the solution to the right of the line joining the two points is used. (the
direction of the line is from the first point to the second point). To obtain the other solution, simply select the
points in the opposite order.

After selecting the 2 pts 2 dists option, the user selects the first point using the normal picking
sequence.

A 1st distance box is then displayed on the screen and the user enters the distance that the new point is
from the selected point into the box, terminated with a <enter>. The box then disappears.
The second point is then selected and a 2nd distance box is displayed on the screen for the user to enter
the distance to the second point.

The point that is the required distances from the two points is created with name, colour, model
and z-value from the cogo edit panel. If no z-value exists in the panel, no point is created.

Note
The selected points do not have to be actual points in a point string. Any snap or cursor position is a valid
point for the option

Screen message area

<<Locate 2 pts 2 dists>  Select 1st point>  [picks][][menu]
<<Locate 2 pts 2 dists>  1st distance  [caret][][menu] select a button
<<Locate 2 pts 2 dists>  Select 2nd point>  [picks][][menu]
<<Locate 2 pts 2 dists>  2nd distance  [caret][][menu] select a button

Please continue to the next section 14.7.3 Vector.
14.7.3 Vector

The vector options are for creating points which are a given as at a given vector from another point. The default definition of the vector is as (bearing, distance) but other combinations such as (angle, distance), relative (x,y) and absolute (x,y) are possible using normal typed input.

The methods for creating the new points are
(a) locate - create a new point using a vector
(b) radiation - the points created are all a vector from the initial point selected
(c) traverse - the last point created becomes the next point to work from

The vector walk-right menu is

Each of the options in the Vector Ops menu will now be discussed.
For the option Traverse, go to 14.7.3.3 Traverse
Radiation  14.7.3.2 Radiation
Intersect offset  14.7.2.2 Intersect Offset
Locate  14.7.3.1 Locate

14.7.3.1 Locate

In the locate option, a point is selected and a vector supplied to produce a new point which is the vector away from the initial point. The sequence is then repeated by selecting another point and giving another vector.

After selecting the locate option, the user simply selects the point to be used using the normal picking sequence.

A bearing distance box is then displayed on the screen and the user enters the required bearing and distance (separated by a space) into the box, terminated with a <enter>. The box then disappears.

A new point is then created which is the given bearing and distance from the selected point. The new point is given the name, colour, model and z-value from the cogo edit panel. If no z-value exists in the panel, the given z-value could be nonsense.

The sequence of picking a point and giving a vector is then repeated.

The option terminates when another cogo option is selected or the cancel button is selected on the cogo edit panel.

Screen message area
<<Locate>  Select point>  [picks][menu]
<Locate>  bearing distance  [caret][menu] select a button

14.7.3.2 Radiation

In the radiation option, a point is selected and a vector supplied to produce a new point which is the vector away from the initial point.

After selecting the radiation option, the user simply selects the point to be used using the normal picking sequence.

A bearing distance box is then displayed on the screen and the user enters the required bearing and
distance (separated by a space) into the box, terminated with a <enter>.

A new point is then created which is the given bearing and distance from the selected point. The new point is given the name, colour, model and z-value from the cogo edit panel. If no z-value exists in the panel, the given z-value could be nonsense.

The bearing distance box remains on the screen.

If another value is entered into the box (or the previous one left) terminated by a <enter>, a new point is created which is the new given bearing and distance from the original selected point.

The option terminates when another cogo option is selected or the cancel button is selected on the cogo edit panel.

Screen message area

<<Radiation> Select point> [picks][menu]
<<Radiation> bearing distance [caret][menu] select a button

14.7.3.3 Traverse

In the traverse option, an initial point is chosen and a vector supplied to produce a new point which is the vector away from the initial point.

The created point is then taken to be the start point for the next sequence of creating a new point by a vector.

After selecting the traverse option, the user simply selects the first point to be used using the normal picking sequence.

A bearing distance box is then displayed on the screen and the user enters the required bearing and distance (separated by a space) into the box, terminated with a <enter>.

A new point is then created which is the given bearing and distance from the selected point.

The new point is given the name, colour, model and z-value from the cogo edit panel. If no z-value exists in the panel, the given z-value could be nonsense.

The bearing distance box remains on the screen.

If another value is entered into the box (or the previous one left) terminated by a <enter>, a new point is created which is the given bearing and distance from the last created point.

Hence, the last created point takes the place of the original selected point.

The option terminates when another cogo option is selected or the cancel button is selected on the cogo edit panel.

Screen message area

<<Traverse> Select point> [picks][menu]
<<Traverse> bearing distance [caret][menu] select a button

Please continue to the next section 14.7.4 Parallel.
14.7.4 Parallel

Items can be translated perpendicularly to either the left or right using the parallel option (also known as a copy parallel operation).

After selecting the parallel option, the user simply selects the item to paralleled using the normal picking sequence.

A offset box is then displayed on the screen and the user enters the required offset distance into the box, terminated with a <enter>. The box then disappears. A positive offset is to the right of the item when moving in the picking direction of the item.

A new item is then created which is a copy parallel of the selected item by the given offset distance. The new item has the name, colour and model from the cogo edit panel.

The option terminates when another cogo option is selected or the cancel button is selected on the cogo edit panel.

Screen message area

<<Parallel> Select item to parallel> [picks][][menu]
<Parallel> offset> [caret][][menu] select a button

Please continue to the next section 14.7.5 Fillet Ops.
14.7.5 Fillet Ops

The fillet options are for creating an arc between lines and arcs.

That is, it will try and fit an arc between
(a) two lines
(b) a line and an arc
or
(c) two arcs

The created arc is determined by tangents from the items it is a fillet for and another piece of information such as a radius or a start point.

Since the option can only fillet between arcs and lines, when an item is selected only the picked line or arc sub-element of the item is used in the fillet.

Most fillet cases can have more than one solution. For example, the fillet of a given radius between two lines can have up to four solutions.

To easily distinguish between the cases, 12d Model uses the order of picking and the sense of direction implied when picking the items to determine which case was required by the user.

The direction is used as follow -
the arc comes off the first item in the direction that the first item is picked and lands on the second in the direction that the second item is picked.

The fillet ops walk-right menu is

Each of the options in the Fillet Ops menu will now be discussed.

For the option Item Item Radius, go to
Item Item Point
3 points

14.7.5.1 Fillet Item Item Radius

This fillet option creates an arc of a user given radius between two user selected items.

After selecting the fillet item item radius option, the user selects the first item to be used in the fillet using the normal picking sequence.
Next the second item to be used in the fillet is selected.
An enter radius box is then displayed on the screen and the user types the appropriate radius for the fillet into the box, terminated with a <enter>. The box then disappears.
A positive radius implies that the arc travels in a clockwise direction and a negative radius for an arc travelling in an anti-clockwise direction.

If a fillet exists for the two items and the radius, an fillet arc is created with name, colour, model and z-value from the cogo edit panel.
If no z-value exists in the panel, no arc is created.

Screen message area
<<Fillet by radius> Select 1st item> [picks][][menu]
14.7.5.2 Fillet Item Item Point

This fillet option creates an arc between two user selected items starting at a user defined control point. After selecting the fillet item item pt option, the user selects the first item to be used in the fillet using the normal picking sequence.

Next the second item to be used in the fillet is selected.

Finally, a point is selected to act as the starting point for the fillet. This point, called the control point, must lie on the first item selected. If the selected point doesn't lie on the first item, the selected point is projected perpendicularly onto the item and the projected point used as the control point.

If a fillet exists for the two items and the control point, a fillet arc is created with name, colour, model and z-value from the cogo edit panel.

If no z-value exists in the panel, a null z-value is used.

Screen message area

14.7.5.3 Fillet Three Points

This option creates an arc between three user selected points. After selecting the fillet 3 pts option, the user selects the three points one after another using the normal picking sequence.

The three arc points must be selected in the order

(a) the start point
(b) a point between the start and end point
(c) the end point

If an arc does exist containing the three points, it will be unique including its direction. The arc will be created with name, colour, model and z-value from the cogo edit panel.

If no z-value exists in the panel, a null z-value is used.

Screen message area

Please continue to the next section 14.7.6 Fillet Ops (T).
14.7.6 Fillet Ops (T)

The fillet (T) options are almost identical to the fillet options.

The only difference is that after the fillet arc is created, the original items are trimmed back to the start and end of the arc.

The trimmed items are not joined to the fillet arc.

The original strings obey the trash defaults from the utilities=>defaults=>trash defaults option.

That is, if the trash mode is set to keep string, the original strings are untouched.

delete string, deleted.

trash string, moved to the trash model.

For information on the fillet options, see the section 14.7.5 Fillet Ops.

For the option Item Item Radius, please go to the section 14.7.5.1 Fillet Item Item Radius.

Item Item Point 14.7.5.2 Fillet Item Item Point.

Please continue to the next section 14.7.7 Fillet Ops (TJ).
14.7.7 Fillet Ops (TJ)

The fillet (TJ) options are the almost identical to the fillet and fillet (T) options.

The only difference is that after the fillet arc is created, the original items are trimmed back to the start and end of the arc and the three items joined to form a new item. That is, the trimmed items are joined to the fillet arc. The original strings obey the trash defaults from the Utilities=>Defaults=>Trash defaults option. That is, if the trash mode is set to keep string, the original strings are untouched. delete string, deleted, trash string, moved to the trash model.

For information on the fillet options, see the section 14.7.5 Fillet Ops

For the option Item Item Radius, please continue to the section 14.7.5.1 Fillet Item Item Radius.

Item Item Point

Please continue to the next section 14.7.8 Tangent.
14.7.8 Tangent

The tangent option creates tangent lines between point and arcs.
That is, tangents can be defined between
(a) a point and an arc
(b) two arcs
or
(c) two points - simply a line between the two points

Since the option can only fillet between points and arcs, when an item is selected, only the
picked sub-arc of the item is used as an arc.

Most tangent cases can have more than one solution. For example, two tangents from a point to
an arc.

To easily distinguish between the cases, 12d Model uses the order of picking the items and the sense of
direction implied when picking an arc to determine which case was required by the user.

After selecting the tangent option, the user selects the first item to be used in the tangent calcula-
tions using the normal picking sequence.
Next the second item to be used is selected.
If a tangent line exists between the two items selected, a line string is created with name, colour, model and
z-value from the cogo edit panel.
If no z-value exists in the panel, a null z-value is used for the line.

Screen message area

<<Tangent>  Select 1st item>  [picks][][menu]
<<Tangent>  Select 2nd item>  [picks][][menu]
14.8 Texts Edit

**Position of menu:** Strings => Texts Edit

These options are like the Strings => Points edit options in that the options only does the one thing to a selected string. You then pick another string to do the same type of change.

For each of the Texts Edit options, press <Esc> or select Cancel from the Pick Ops menu to terminate the option. Selecting another CAD option will also terminate the option and start the new option.

Walking right on Texts edit displays the Texts edit menu

For the option Colour, go to 14.8.1 Change Text Colour
- Height 14.8.2 Change Text Height
- Style 14.8.3 Change Text Style
- Angle 14.8.4 Change Text Angle
- Justify 14.8.5 Change Text Justify
- Combine 14.8.6 Change Combine
14.8.1 Change Text Colour

Click on **Colour** and a **Colour Typed Input** box comes up

The new colour is picked from the pop up list, or typed into the box and <Enter> pressed.
The box is then removed and the following message is written to the screen message area

Pick text and its colour will be changed to that shown in the square brackets ([]). Then pick another text to change its colour.
Typing c or C brings up the **Colour Typed Input** box to select a new colour.
All subsequent selected texts will have their colour changed to this colour until either the option is terminated or a new colour is selected
To terminate the option, press <Esc>, select **Cancel** from the **Pick Ops** menu, or select another CAD option.
14.8.2 Change Text Height

Click on **Height** and a **Height Typed Input** box comes up

![Height Typed Input Box]

The new height is typed into the box and <Enter> pressed.
The box is then removed and the following message is written to the screen message area

```
<Pick text to change (h)eight [6.00000]> [picks][fast][Menu]
```

Pick text and its height will be changed to that shown in the square brackets ([]). Then pick another text to change its height.

Typing h or H bring up the **Height Typed Input** box to select a new height.

All subsequent selected texts will have their height changed to this height until either the option is terminated or a new height is selected

To terminate the option, press <Esc>, select **Cancel** from the **Pick Ops** menu, or select another CAD option.
14.8.3 Change Text Style

Click on Style and a Style Typed Input box comes up

The new style is picked from the pop up list, or typed into the box and <Enter> pressed. The box is then removed and the following message is written to the screen message area

```
Pick text to change (s)yle[1]> [picks][fast][Menu]
```

Pick text and its style will be changed to that shown in the square brackets ([ ]). Then pick another text to change its style.

Typing s or S brings up the Style Typed Input box to select a new style.

All subsequent selected texts will have their style changed to this style until either the option is terminated or a new style is selected.

To terminate the option, press <Esc>, select Cancel from the Pick Ops menu, or select another CAD option.
14.8.4 Change Text Angle

Click on Angle and an Angle Typed Input box comes up

![Typed Input Window]

The new angle is typed into the box and <Enter> pressed. The box is then removed and the following message is written to the screen message area

```
<Pick text to change (angle [45° 50’ 0’’]> [picks][accepts][Menu] ""
```

Pick text and its angle will be changed to that shown in the square brackets ([]). Then pick another text to change its angle.

Typing a or A brings up the Angle Typed Input box to select a new angle.

All subsequent selected texts will have their angle changed to this angle until either the option is terminated or a new angle is selected.

To terminate the option, press <Esc>, select Cancel from the Pick Ops menu, or select another CAD option.

Note

The angle is type in in hp notation and measured counter clockwise from the positive x-axis. The box will convert the hp notation and display it in degrees, minutes and seconds. For example, 45.5 in hp notation become 45 degrees 50 minutes.
14.8.5 Change Text Justify

Click on **Justify** and a **Justify Typed Input** box comes up

![Typical Input]

The new justification is picked from the pop up list, or typed into the box and <Enter> pressed.

The box is then removed and the following message is written to the screen message area

```
Pick text to change [justify [bottom-left]> [picks][fast][Menu]
```

Pick text and its justification will be changed to that shown in the square brackets ([]). Then pick another text to change its justification.

Typing j or J brings up the **Justify Typed Input** box to select a new justification.

All subsequent selected texts will have their justification changed to this justification until either the option is terminated or a new justification is selected.

To terminate the option, press <Esc>, select **Cancel** from the **Pick Ops** menu, or select another CAD option.
14.8.6 Change Combine

This option allows you to change one or more of Colour, Height, Angle, Textstyle and Justification.

Selecting Combine writes the following message to the screen message area:

```
<Pick text to change (c)olour (h)eight (a)ngle (s)tyle (j)ustify> [picks][fast][Menu]
```

Type c or C and a Colour Typed Input box comes up:

![Typed Input Box]

The new colour is picked from the pop up list, or typed into the box and <Enter> pressed.

The box is then removed and the following message is written to the screen message area:

```
<Pick text to change (c)olour[cyan] (h)eight (a)ngle (s)tyle (j)ustify> [picks][fast][Menu]
```

This sets the colour to cyan.

Pick text and its colour will be changed to that shown in the square brackets ([cyan]). Then pick another text to change its colour.

Typing c or C when there is a colour shown between the square brackets (for example [cyan]), removes the colour from the square brackets.

If any text is picked when there is no colour in the square brackets then its colour will not be changed.

Similarly:

**Height**

**IF** there is no height in square brackets after (h)eight, typing h or H brings up the Height Typed Input box to select a new height. Entering a height and pressing <Enter> sets the new height and it will appear in square brackets after (h)eight in the message written to the screen message area.

Typing h or H when there is a height shown between the square brackets (for example [2.00]), removes the height from the square brackets.

**Angle**

**IF** there is no angle in square brackets after (a)ngle, typing a or A brings up the Angle Typed Input box to select a new angle. Entering an angle and pressing <Enter> sets the new angle and it will appear in square brackets after (a)ngle in the message written to the screen message area.

Typing a or A when there is an angle shown between the square brackets, removes the angle from the square brackets.

**Textstyle**

**IF** there is no textstyle in square brackets after (s)tyle, typing s or S brings up the Style Typed Input box to select a new textstyle. Entering a textstyle and pressing <Enter> sets the new textstyle and it will appear in square brackets after (s)tyle in the message written to the screen message area.

Typing s or S when there is a textstyle shown between the square brackets, removes the textstyle from the square brackets.

**Justification**

**IF** there is no justification in square brackets after (j)ustify, typing s or S brings up the Justify
**Typed Input** box to select a new justification. Entering a justification and pressing <Enter> sets the new justification and it will appear in square brackets after *(j)ustify* in the message written to the screen message area.

Typing *j* or *J* when there is an justification shown between the square brackets, removes the justification from the square brackets.

If any text is picked then the values of the text are changed for any that there is a value in the square brackets otherwise that value of the text is not changed.

To terminate the option, press <Esc>, select **Cancel** from the **Pick Ops** menu, or select another CAD option.
14.9 Convert

Position of option on menu:  Strings => Convert

The Convert option is used to create a new string of possibly a different string type from a chosen string. Since not all string conversion are possible, or even make sense (for example, converting a 3d string to a text string), the list of defined conversion depends on the type of the string chosen for conversion.

After selecting the string to convert, a menu containing the possible conversions is raised and the required conversion selected from it.

After the type of conversion is selected, a string Properties panel containing the attribute information for the new string is displayed and can be used to modify any properties of the new string.

After selecting the Convert option, the Convert String panel is placed on the screen.

If a new name, model or colour is required for the converted string, the new data is entered into the Convert String panel. If a change isn’t required, leave the appropriate panel field blank.

The Convert option is already in progress and if a string is selected and accepted, a menu containing all the available conversions for that particular string type is displayed.

For example, for each string type the choices are:
After selecting the conversion to be made, a new string of the selected type is created and given the model, colour and name according to the fields in the Convert String panel.

The Properties panel for the new string is also displayed and hence any of the strings properties can be modified for the new string.

The fields and buttons used in the Convert String panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>New name</td>
<td>input</td>
<td></td>
<td>blank</td>
<td>new name</td>
</tr>
<tr>
<td></td>
<td>If blank, the converted string is given the same name as the original string.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If non-blank, then the converted string is given the name in the new name field.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New model</td>
<td>input</td>
<td></td>
<td>available models</td>
<td>new model</td>
</tr>
<tr>
<td></td>
<td>if blank, the converted string is placed in the same model as the original string.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If non-blank, then the converted string will be placed in the model given in the new model field.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New colour</td>
<td>input</td>
<td></td>
<td>available colours</td>
<td>new colour</td>
</tr>
<tr>
<td></td>
<td>if blank, the converted string is given the same colour as the original string.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If non-blank, then the converted string is given the colour in the new colour field.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>input</td>
<td>keep string</td>
<td>keep, delete, trash string</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if delete string, the string selected to be converted is deleted.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>keep string, the selected string is not deleted.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trash string, the string selected to be converted is moved to the trash model.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
14.10 Grids

Position of option on menu:  \textit{Strings} => \textit{Grids}

The Grids menu allows the user to create and edit grids.

After selecting \textit{Grids}, the \textit{Grids} menu is placed on the screen.

For the option:
\begin{itemize}
  \item Create grids 14.10.1 \textit{Create Grids}
  \item Edit grid string 14.10.2 \textit{Edit Grid String}
  \item Edit grid tin 14.10.3 \textit{Edit Grid Tin}
  \item Grid conversions 14.10.4 \textit{Grid Conversions}
  \item Shift grid string range 14.10.5 \textit{Shift Grid String Range}
  \item Shift grid tin range 14.10.6 \textit{Shift Grid Tin Range}
\end{itemize}
14.10.1 Create Grids

Position of option on menu: Strings => Grids => Create grids

Selecting Create grids brings up the Create Grid String panel

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Geometry</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin X/Y coordinate</td>
<td>coordinate box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coordinates signifying the position where the range 0,0 exists. The Range group below specifies how many cells exist either side of this origin.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle</td>
<td>angle box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>The angle of the grid’s local X axis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell X/Y</td>
<td>measurement box</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>The local X axis and Y axis spacings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Range</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min X</td>
<td>number box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>The number of cells relative to the origin in the grid’s local X axis. The sign of the number denotes whether it is to the left or right of the origin.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min Y</td>
<td>number box</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

The diagram shows the Create Grid String panel with fields for Geometry, Angle, Cell X/Y, Range, and Create mode. Each field has its corresponding function and default values as described.

---

Grids
the number of cells relative to the origin in the grid’s local Y axis. The sign of the number denotes whether it is below or above the origin.

**Max X**

the number of cells relative to the origin in the grid’s local X axis. The sign of the number denotes whether it is to the left or right of the origin.

**Max Y**

the number of cells relative to the origin in the grid’s local Y axis. The sign of the number denotes whether it is below or above the origin.

**Create mode**

choice box  
Grid string  
Grid string, Grid tin  
the type of grid to be created.

**Grid tin name**

tin box  
enabled only if **Create mode** is set to Grid tin. The name of the grid tin to be created. The tin must not already exist.

**Colour**

colour box  
string colour for all points on the grid

**Model for grid**

model box  
name of the model in which the data is to be placed. The model will be created if it does not already exist. This field must be filled in.

**Tin for grid levels**

tin box  
opoptional information. If tin is selected, the height on each grid point is obtained from the grid. If blank, the height of each grid point is null.

**Rectangle**

button  
if selected, the origin X/Y, angle and all range values are calculated from two corners of the selected rectangle. **Note:** Cell X/Y must be defined.

**Rectangle by 3 Points**

button  
if selected, the origin X/Y, angle and all range values are calculated from three corners of the selected rectangle. The first point defines the origin, the second point defines the angle and range X values, and the third point defines the range Y values. **Note:** Cell X/Y must be defined.

**Create**

button  
creates the grid string/tin.
14.10.2 Edit Grid String

Position of option on menu: Strings => Grids => Edit grid string

Selecting Edit grid string brings up the Edit Grid String panel.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid string</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the grid string to be edited.</td>
<td></td>
</tr>
<tr>
<td>Geometry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin X coordinate</td>
<td>coordinate box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin Y coordinate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle</td>
<td>angle box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the angle of the grid's local X axis</td>
<td></td>
</tr>
<tr>
<td>Cell X</td>
<td>measurement box</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Cell Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the local X axis and Y axis spacings</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min X</td>
<td>number box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the number of cells relative to the origin in the grid's local X axis. The sign of the number denotes whether it is to the left or right of the origin.</td>
<td></td>
</tr>
<tr>
<td>Min Y</td>
<td>number box</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

The grid string panel is shown with various fields for editing grid parameters, including grid string selection, geometry settings, and range specifications.
the number of cells relative to the origin in the grid’s local Y axis. The sign of the number denotes whether it is below or above the origin.

Max X  
the number of cells relative to the origin in the grid’s local X axis. The sign of the number denotes whether it is to the left or right of the origin.

Max Y  
the number of cells relative to the origin in the grid’s local Y axis. The sign of the number denotes whether it is below or above the origin.

Colour  
string colour for all points on the grid

Tin for grid levels  
optional information. If tin is selected, the height on each grid point is obtained from the grid. If blank, the height of each grid point is null.

Rectangle  
if selected, the origin X/Y, angle and all range values are calculated from the two corners of the selected rectangle. Note: Cell X/Y must be defined.

Rectangle by 3 Points  
if selected, the origin X/Y, angle and all range values are calculated from three corners of the selected rectangle. The first point defines the origin, the second point defines the angle and range X values, and the third point defines the range Y values. Note: Cell X/Y must be defined.

Update  
updates the grid string.
14.10.3 Edit Grid Tin

Position of option on menu:  Strings => Grids => Edit grid tin

Selecting Edit grid tin brings up the Edit Grid Tin panel

![Edit Grid Tin panel]

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid string</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the grid tin to be edited.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometry</td>
<td>coordinate box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin X/Y coordinate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle</td>
<td>angle box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cell X/Y</td>
<td>measurement box</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>number box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Min X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin for grid levels</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
the number of cells relative to the origin in the grid’s local Y axis. The sign of the number denotes whether it is below or above the origin.

**Max X**  
number box  
the number of cells relative to the origin in the grid’s local X axis. The sign of the number denotes whether it is to the left or right of the origin.

**Max Y**  
number box  
the number of cells relative to the origin in the grid’s local Y axis. The sign of the number denotes whether it is below or above the origin.

**Colour**  
colour box  
string colour for all points on the grid

**Tin for grid levels**  
tin box  
optional information. If tin is selected, the height on each grid point is obtained from the grid. If blank, the height of each grid point is null.

**Rectangle**  
button  
if selected, the origin X/Y, angle and all range values are calculated from the two corners of the selected rectangle. Note: Cell X/Y must be defined.

**Rectangle by 3 Points**  
button  
if selected, the origin X/Y, angle and all range values are calculated from three corners of the selected rectangle. The first point defines the origin, the second point defines the angle and range X values, and the third point defines the range Y values. Note: Cell X/Y must be defined.

**Update**  
button  
updates the grid tin.
14.10.4 Grid Conversions

Position of option on menu:  Strings => Grids => Grid conversions

Selecting Grid conversions brings up the Grid conversions menu

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin X/Y coordinate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
14.10.5 Shift Grid String Range

Position of option on menu: Strings => Grids => Shift grid string range

Selecting Shift grid string range brings up the Shift Range on Grid String panel

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin X/Y coordinate</td>
<td>coordinate box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle</td>
<td>angle box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cell X</td>
<td>measurement box</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Cell Y</td>
<td>measurement box</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min X</td>
<td>number box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Min Y</td>
<td>number box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Max X</td>
<td>number box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Y</td>
<td>number box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New origin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>number box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>number box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Y number box

Update button
### 14.10.6 Shift Grid Tin Range

Position of option on menu: **Strings => Grids => Shift grid tin range**

Selecting *Shift grid tin range* brings up the **Shift Range on Grid Tin** panel.

![Shift Range on Grid Tin](image)

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid tin</td>
<td>tin box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin X/Y coordinate</td>
<td>coordinate box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle</td>
<td>angle box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cell X</td>
<td>measurement box</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Cell Y</td>
<td>measurement box</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min X</td>
<td>number box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Min Y</td>
<td>number box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Max X</td>
<td>number box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Y</td>
<td>number box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
New origin

   X     number box
   Y     number box

Update   button
14.11 Inquire

Position of option on menu: Strings => Inquire

The inquire option is used to obtain information about a string displayed on the screen. The amount and type of information varies between string types.

On selecting the Inquire option, the String Inquire panel is displayed.

The panel is used for any special messages and to end the option.

After selecting the inquire option, the strings are selected using the normal 12d Model selecting mechanism (LB to pick a string, MB to accept a string, RB for the pick ops menu). Whenever a string is picked, the information about the picked string is displayed on the screen in the Information menu.

An example of the Information menu for an Alignment string is

For more details on the Information menu, go to the section 14.11.1 String Information

Any number of string inquiries can be made with the option by repeated use of the mouse buttons LB and MB to pick and accept strings.

The inquire option is terminated by either selecting the Cancel option from the Pick Ops menu (raised by clicking RB) or selecting Finish or [X] from the String Inquire panel.
14.11.1 String Information

Whenever a string is picked, the information about the picked string is displayed on the screen in the Information menu.

The Information menu displays different information depending on whether the string was picked in a Plan or Perspective view or in a Section view.

For a Plan or Perspective View

The details on the Information menu can include:

- model = - gives the model of the selected string
- name = -
- type = -
- colour = -
- line style = -
- pt/line = -
- # pts = -
- area = -
- length = -
- Snap type = - e.g. Line Snap, Point Snap
- x = -
- y = -
- prof ch = -
- prof z = -
- brg = -
- segment length = -
- +ve or -ve = - if the direction of the pick was the same as the direction of the string, then +ve is displayed otherwise the direction of the pick is opposite to the string direction and a -ve is displayed.

For a Section View

The information refers to the snapped position and string.

Information When Snapping to an Alignment on a Plan View

For a Section View
For a section view, the x-axis of the view is defined by the chainage along the string that is being profiled on the section view (the *profiled* string). The profiled string is displayed on the section view.

For any tins in models added to the section view, the sections through the tins along the profiled string are also displayed in the section view.

Finally, any parts of any strings in models added to the section view that are in the corridor defined for the section view are projected onto the section view and displayed.

The details on the Information menu can include:

- **model =** - gives the model of the selected string
- **name =** -
- **type =** - " type " " "
- **colour =** - " colour " " "
- **line style =** - " line style " " "
- **pt/line =** - " breakline type " " "
- **# pts =** - " number of points " " "
- **area =** - " area if it is a closed string "
- **length =** - " length of the string "
- **Snap type** - e.g. Line Snap, Point Snap
- **x =** - " x co-ordinate of the selected position "
- **y =** - " y co-ordinate of the selected position "
- **z =** - " z co-ordinate of the selected position "
- **prof ch =** - " chainage of the *profiled* string at the selected position "
  
  Note that this is not the chainage of the selected string unless the selected string is the profiled string.

- **prof z =** - " z-value of the *profiled* string at the profile chainage of the selected position "
  
  Note that this is not the z of the selected position unless the selected string is the profiled string.

- **brg =** - " instantaneous bearing of the selected position on the string "
- **segment length** - " length of the string segment containing the selected position "
- **+ve or -ve** - if the direction of the pick was the same as the direction of the string, then +ve is displayed otherwise the direction of the pick is opposite to the string direction and a -ve is displayed.

**IMPORTANT NOTES**

1. for a string selected on a section view, the " z = " value is the z co-ordinate of the selected position. The "prof z = " value is the z co-ordinate of the string profiled on the section view.

2. The "prof ch = " value is the chainage of the string profiled on the section view, not the chainage of the selected string.
The \( z = \) and \( \text{prof } z = \) are the same, and are the \( z \)-value at the primary string for the section view.

\[ z = \] is the \( z \)-value at the primary string for the section view.

\[ \text{prof } z = \] is the \( z \)-value at the primary string for the section view.
Inquire Information When Snapping to a Service String on a Section View

**Primary string for the section view**

- \( z = \) is the z-value at the snap position
- \( \text{prof } z = \) is the z-value at the primary string for the section view

Information for a Cursor Snap on a Section View

- \( \text{Cursor Snap} \)
- \( x = 42756.195 \)
- \( y = 37347.341 \)
- \( z = 195.004 \)
- \( \text{prof } ch = 198.363 \)
- \( \text{prof } z = 187.962 \)
14.12 Properties

Position of menu: Strings => Properties

The Properties walk-right menu contains options to obtain and/or modify the properties of any string displayed on the screen, or obtain and/or modify the vertices and segments of a super string. The Properties walk-right menu is

For the option:
- Multi strings, go to 14.12.1 Multi String Properties
- Single string 14.12.2 Single String
- Vertex 14.12.3 Vertex
- Vertex (all) 14.12.6 Vertex (all)
- Segment 14.12.4 Segment
- Segment (all) 14.12.5 Segment (all)
- Vertex/Segment 14.12.7 Vertex/Segment
- Attributes 14.12.8 Attributes
- Super string dimensions 14.12.9 Super Strings
14.12.1 Multi String Properties

Position of option on menu:  

**Strings =>Properties =>Multi strings**

The **Multi String Properties** panel allows you to select strings and the panel displays all the common properties of the selected strings, and the value of a property if it is the same for all the selected elements.

The value of any of these properties can then be modified and all the selected strings will have the property changed to the modified value.

Selecting **Multi strings** brings up the **Multi String Properties** panel.

![Multi String Properties Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source selection</strong></td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
</tbody>
</table>

*If ticked*, a Data Source is displayed and used to define the strings in the Selection Set.

**Data Source**

- data source box

  *all the strings in the Data Source are selected for the Selection Set.*

*If not ticked*, **Add** and **Clear** buttons are displayed and used to defined the strings in the selection Set.

**Add**

- button
when Add is clicked, strings are selected/deselected using the Multipick method, and are added to any string already selected for the Selection Set by the Add button.

The Add button and be used any number of times and each time it adds the new selected items to the Selection Set.

Clear button

When Clear is clicked, the Selection Set is cleared. That is, there are no strings in the Selection Set.

The common properties of all the strings in the Selection Set are displayed in the Name-Value property list. If the value of a common property is the same for all the strings in the Selection Set, then the common value is displayed in the Value column for that property. Otherwise the Value column for that property is left blank.

Common Property List

the Common Property Tree displays all the common properties of the selected strings that can be modified.

The name of each common property is displayed in a row in the Name column.

For a particular common property, if all the selected strings have the same value for that common property then the common value is displayed in the Value column for the row of the common property. Otherwise the value column is blank.

If a value is modified in the Value column, then for all the strings in the Selection Set, that property is changed to the new value.

Same As, Select All and Clear Selection Buttons

these three buttons work together. Rows in the Property List can be selected (highlighted), and then the Same As button used to select a string whose properties are used to update the strings in the selection set for the highlighted common properties.

Same As button

when Same As is clicked and an string is selected, then for all the strings in the Selection Set, the values of the highlighted properties in the Common Property List are set to the values of the Same As string.

Select All button

clicking Select All highlights all the rows of properties in the Property List. If required, individual rows can then be deselected using Ctrl-LB.

Clear Property Selection button

clicking Clear Property Selection clears all the highlighted property rows.
14.12.2 Single String

Position of option on menu:  

**Strings =>Properties =>Single string**

The **Single string** option obtains and/or modify property information about any string displayed on the screen.

For example, the string's name, colour and style are string properties. Each string type has its own particular set of properties.

On selecting the **Single string** option, the **String Properties** panel is displayed.

![String Properties Panel]

The panel is only used for any special messages and to end the option.

The **String Properties** option is automatically in a pick mode and the user selects strings using the normal 12d Model picking mechanism (LB to select a string, MB to accept a string, RB for the **pick ops** menu).

Whenever a string is selected, the appropriate **Properties** panel for the string type is displayed on the screen with all the picked string's properties shown.

For example, for a 2d string, the **Properties** panel is

![2d String Properties Panel]

To modify any of the properties for the selected string, simply change the information in the appropriate panel field and select the **OK or Apply** button.

The **Properties** panel is also brought up by the **Properties** option on each string editor and the **Properties** panel have been shown for each string in the Editor section of the manual.

Please continue to the next section **14.12.3 Vertex**.
14.12.3 Vertex

Position of option on menu:  
Strings => Properties => Vertex

The Vertex option obtains and/or modify property information about the vertex of any super string displayed on the screen.

For example, the height, symbol, annotation, point no are all properties of a super string vertex.

On selecting the Vertex option, the String Vertex Properties panel is displayed.

The panel is only used for any special messages and to end the option.

The String Vertex Properties option is automatically in a pick mode and the user selects the vertex of a super string using the normal 12d Model picking mechanism. Whenever a vertex is selected, a Vertex menu showing the properties of the vertex is displayed on the screen.

To modify any of the properties for the selected vertex, simply click on the appropriate item on the Vertex menu and the appropriate panel will come up to modify the vertex property.

Please continue to the next section 14.12.4 Segment.
14.12.4 Segment

Position of option on menu: **Strings => Properties => Segment**

The Segment option obtains and/or modify property information about the segment of any super string displayed on the screen.

For example, the visibility, radius, colour, text are all properties of a super string segment.

On selecting the Segment option, the **String Segment Properties** panel is displayed.

The panel is only used for any special messages and to end the option.

The String Segment Properties option is automatically in a pick mode and the user selects the segment of a super string using the normal 12d Model picking mechanism. Whenever a segment is selected, a Segment menu showing the properties of the segment is displayed on the screen.

To modify any of the properties for the selected segment, simply click on the appropriate item on the Segment menu and the appropriate panel will come up to modify the segment property.

Please continue to the next section **14.12.7 Vertex/Segment**.
14.12.5 Segment (all)

Position of option on menu: Strings => Properties => Segment (all)

For more information please go to the section 14.4.10.5.9 All Segment Properties
Super Segment Properties

Segment no. 1

Pick Prev Next

Colour Pipe Radius Visible Tinable Text Annotate User Attributes

Radius mode: no arcs
Radius

Bulge

no string selected

OK Apply Finish Help
Properties
Super Segment Properties

Segment no. 1

<table>
<thead>
<tr>
<th>Colour</th>
<th>Pipe</th>
<th>Radius</th>
<th>Visible</th>
<th>Tinline</th>
<th>Text</th>
<th>Annotate</th>
<th>User Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tinline mode</td>
<td>all segments tinline</td>
<td></td>
</tr>
</tbody>
</table>

Tinline

no string selected

OK Apply Finish Help
14.12.6 Vertex (all)

Position of option on menu:  Strings => Properties => Vertex (all)

For more information please go to the section 14.4.10.4.10 All Vertex Properties
Properties
Properties
14.12.7 Vertex/Segment

Position of option on menu:  **Strings => Properties => Vertex/Segment**

This option is a combination of the Vertex and Segment options already documented.

The *Vertex/Segment* option obtains and/or modify property information about the vertex or segment of any super string displayed on the screen.

On selecting the *Vertex/Segment* option, the **String Vertex/Segment Properties** panel is displayed.

The panel is only used for any special messages and to end the option.

The *String Vertex/Segment Properties* option is automatically in a pick mode and the user selects either the *vertex* or the *segment* of a super string using the normal 12d Model picking mechanism. Whenever a *vertex* or *segment* is selected, the *Vertex* or *Segment* menu showing the properties of the selected vertex or segment is displayed on the screen.
14.12.8 Attributes

Position of option on menu:  String => Properties => Attributes

The Attributes options displays, creates and edits attributes for any strings in the project.

On selecting Attributes, the String Attributes panel is displayed.

![String Attributes Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>String tab</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>this tab displays/edits the attributes that apply for the entire string. All string types have these.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Name</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>name of the string attribute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Type</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>type of attribute - integer, real or text</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Data</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>value for the string attribute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Segment tab</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>this tab displays/edits the attributes for each segment of a super string or pipe of a drainage or sewer string.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Segment no.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>number of the segment of the string to display/edit attributes for</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Properties

Prev button
go to the previous segment of the string.

Next button
go to the next segment of the string.

Name
name of the attribute for the segment

Type integer, real, text
type of attribute - integer, real or text

Data
value for the attribute for the segment

Vertex tab
this tab displays/edits the attributes for each vertex of a super string or pit of a drainage or sewer string.

Vertex no.
number of the vertex of the string to display/edit attributes for

Prev button
go to the previous vertex of the string.

Next button
go to the next vertex of the string.

Name
name of the attribute for the vertex

Type integer, real, text
type of attribute - integer, real or text

Data
value for the attribute for the vertex

Pick button
pick the string to display/edit the attributes for

OK button
set the attributes to the values in the panel and then exit the panel.

Apply button
set the attributes to the values in the panel but don’t exit the panel.
14.12.9 Super Strings

Position of menu:  Strings =>Properties =>Super string dimensions
Position of menu:  Utilities =>Super strings

These options change many of the super string properties.

The Super strings walk-right menu is:

<table>
<thead>
<tr>
<th>Super Strings</th>
<th>14.12.9.1 Chainage Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chainage interval</td>
<td>14.12.9.2 Visible</td>
</tr>
<tr>
<td>Visible</td>
<td>14.12.9.3 Compress</td>
</tr>
<tr>
<td>Compress</td>
<td>14.12.9.4 Tinable</td>
</tr>
<tr>
<td>Tinable</td>
<td>14.12.9.5 Fills</td>
</tr>
<tr>
<td>Fills</td>
<td>14.12.9.6 Symbol</td>
</tr>
<tr>
<td>Symbol</td>
<td>14.12.9.7 Segment colour</td>
</tr>
<tr>
<td>Segment colour</td>
<td>14.12.9.8 Height</td>
</tr>
<tr>
<td>Height</td>
<td>14.12.9.9 Attribute</td>
</tr>
<tr>
<td>Attribute</td>
<td>14.12.9.10 Vertex id</td>
</tr>
<tr>
<td>Vertex id</td>
<td>14.12.9.11 Pipe/culvert</td>
</tr>
<tr>
<td>Pipe/culvert</td>
<td>14.12.9.12 Radius</td>
</tr>
<tr>
<td>Radius</td>
<td>14.12.9.13 Segment geometry</td>
</tr>
<tr>
<td>Segment geometry</td>
<td>14.12.9.14 Text</td>
</tr>
<tr>
<td>Text</td>
<td>28.9.12.7 Same Start/End Point Strings</td>
</tr>
<tr>
<td>Convert same start/end point strings</td>
<td>14.12.9.7 Same Start/End Point Strings</td>
</tr>
</tbody>
</table>

For the options

- **Chainage interval**, go to 14.12.9.1 Chainage Interval
- **Visible**, go to 14.12.9.2 Visible
- **Compress**, go to 14.12.9.3 Compress
- **Tinable**, go to 14.12.9.4 Tinable
- **Fills**, go to 14.12.9.5 Fills
- **Symbol**, go to 14.12.9.6 Symbol
- **Segment colour**, go to 14.12.9.7 Segment Colour
- **Height**, go to 14.12.9.8 Height
- **Attribute**, go to 14.12.9.9 Attribute
- **Vertex id**, go to 14.12.9.10 Vertex ID
- **Pipe/culvert**, go to 14.12.9.11 Pipe/Culvert
- **Radius**, go to 14.12.9.12 Radius
- **Segment geometry**, go to 14.12.9.13 Segment Geometry
- **Text**, go to 14.12.9.14 Text
- **Convert same start/end point strings**, go to 28.9.12.7 Same Start/End Point Strings

set/reset the chainage interval and chord/arc tolerance
set visibility flags to constant/variable or clear the flag
compress a super string
set tinability to constant/variable or clear the flag
set fill styles for the string
define symbols constant/each vertex or have no symbols
set a colour for every segment in the super string
set the height(s) of the super string
clear the super string attributes for the string, vertex and/or segment
set the Vertex IDs to sequential numbers or clears the existing vertex IDs
ss segments can have a diameter or a box cross-section
clear any segment radii
clear any segment geometry
set or clear vertex and segment text and annotations
convert strings with same start and end points to closed super strings
14.12.9.1 Chainage Interval

Position of option on menu: Strings => Properties => Super string dimensions => Chainage interval

Position of option on menu: Utilities => Super strings => Chainage interval

A super string has one chainage interval value for the entire string. If the value is non-zero, then any line segments of the string are subdivided by the chainage interval when the super string is used in triangulations.

A super string also has one arc-chord tolerance value for the entire string. If the value is non-zero, then any curved segments are subdivided by the arc-chord tolerance when used in triangulations.

The Chainage interval option can set the chainage interval value and/or the chord-to-arc tolerance value for selected super strings.

On selecting the Chainage interval option, the Change Super String Chainage Interval panel is displayed.

The fields and buttons used in the panel have the following functions.

Field Description	Type	Defaults	Pop-Up
Data source type | Model | | |
Data source | input | | |

Interval tab

Action choice box ignore set, clear, ignore

If set, set the chainage intervals of the selected super strings to the value in Chainage interval.
If clear, set all the selected super strings to not use a chainage interval.
If ignore, don't modify the chainage interval of the selected super strings.
Chainage interval input
the chainage interval to use for a super string.

Chord/arc tolerance tab
Action choice box ignore set, clear, ignore
if set, set the chord/arc tolerance of the selected super strings to the value in Chord/arc tolerance.
If clear, set all the selected super strings to not use a chord/arc tolerance.
If ignore, don’t modify the chord/arc tolerance of the selected super strings.

Chord/arc tolerance input
the chord/arc tolerance to use for a super string.

Target type
Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target.

Target info input
extra information required for the target.

Change button
process the selected strings
14.12.9.2 Visible

Position of option on menu: Strings => Properties => Super string dimensions => Visible
Position of option on menu: Utilities => Super strings => Visible

For selected super strings, the Visible option can set the flags that determine how visibility is defined for a super string.

Segment visibility can
(a) be not setable at all for the string - it is always visible
(b) have one setting for the entire string - visible only
(c) have separate settings for each segment (and all set to visible)

Similarly, vertex visibility can
(a) be not setable at all for the string - it is always visible
(b) have one setting for the entire string - visible only
(c) have separate settings for each segment (and all set to visible).

The Visible option allows any of the above cases to be set up for the selected super strings.

On selecting the Visible option, the Change Super String Visibility panel is displayed.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data selection type - for a full description go to 4.19.3 Data Source.
Data source  
input 
source of data to be processed.

Vertex tab
Action  
choice box  
ignore  
set, clear, ignore
if set, the vertex visibility can be allowed to be a constant for all vertices in the string, or to be different for each vertex in the string.
If clear, the vertex visibility flags are removed for the string and the string vertices are always visible.
If ignore, don’t modify the visibility flags for the vertices of the string.

Apply  
choice box
if Action is set, then the Apply field is used.
If Apply is constant, the string has only one visibility flag and it applies to all vertices in the string. It is set to visible.
If Apply is variable, each vertex in the string has its own visibility flag and each flag is set to visible.

Segment tab
Action  
choice box  
ignore  
set, clear, ignore
if set, the segment visibility can be allowed to be a constant for all segments in the string, or to be different for each segment in the string.
If clear, the segment visibility are removed for the string and the string segments are always visible.
If ignore, don’t modify the visibility flags for segments of the string.

Apply  
choice box
if Action is set, then the Apply field is used.
If Apply is constant, the string has only one visibility flag and it applies to all segments in the string. It is set to visible.
If Apply is variable, each segment in the string has its own visibility flag and each flag is set to visible.

Target type
Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target.

Target info  
input 
extra information required for the target.

Change  
button
process the selected strings.
14.12.9.3 Compress

Position of option on menu:  Strings => Properties => Super string dimensions => Compress
Position of option on menu:  Utilities => Super strings => Compress

The compress option removes any super string dimensions that are not needed. For example, dimensions such as radius, variable z, etc. that are not being used in the string are removed. This reduces the storage required for the super string.

On selecting the Compress option, the Compress Super String Dimensions panel is displayed.

![Compress Super String Dimensions Panel]

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>data selection type - for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target info</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>process the selected strings</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
14.12.9.4 Tinable

Position of option on menu: Strings => Properties => Super string dimensions => Tinable
Position of option on menu: Utilities => Super strings => Tinable

For selected super strings, the Tinable option can set the flags that determine how tinability is defined for a super string and can also set whether segments or vertices are tinable or not.

Segment tinability can
(a) be not setable at all for the string - it is always tinable
(b) have one setting for the entire string
(c) have separate settings for each segment.

Similarly, vertex tinability can
(a) be not setable at all for the string - it is always tinable
(b) have one setting for the entire string
(c) have separate settings for each segment.

The Tinable option allows any of the above cases to be set up for the selected super strings.

On selecting the Tinable option, the Change Super String Tinability panel is displayed.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*data selection type - for a full description go to 4.19.3 Data Source.*
Data source: input
source of data to be processed.

Vertex tab
Action: choice box ignore set, clear, ignore
  if set, the vertex tinability can be allowed to be a constant for all vertices in the string, or to be different for each vertex in the string.
  If clear, the vertex tinability can not be modified for the string and the string vertices are always tinable.
  If ignore, don't modify the tinability flags for the vertices of the string.

Apply: choice box
  if Action is set, then the Apply field is used.
  If Apply is constant, the string has only one tinability flag and it applies to all vertices in the string. The tinability flag it is set to the value in the Value field.
  If Apply is variable, each vertex in the string has its own tinability flag. The tinability flag it is set to the value in the Value field.

Value: choice box
  if Value is on, then the tinable flag is set to tinable.
  if Value is off, then the tinable flag is set to not tinable.

Segment tab
Action: choice box ignore set, clear, ignore
  if set, the segment tinability can be allowed to be a constant for all segments in the string, or to be different for each segment in the string.
  If clear, the segment tinability can not be modified for the string and the string segments are always tinable.
  If ignore, don't modify the tinability flags for segments of the string.

Apply: choice box
  if Action is set, then the Apply field is used.
  If Apply is constant, the string has only one tinability flag and it applies to all segments in the string. The tinability flag it is set to the value in the Value field.
  If Apply is variable, each segment in the string has its own tinability flag. The tinability flag it is set to the value in the Value field.

Value: choice box
  if Value is on, then the tinable flag is set to tinable.
  if Value is off, then the tinable flag is set to not tinable.

Target type
  Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target.

Target info: input
extra information required for the target.

Change: button
  process the selected strings
14.12.9.5 Fills

The Fills option set the flags that determine how filling is defined for a super string. If the string is not closed, the first and last vertices are joined to define the closed region to fill.

A string can have zero, one or more types of fills from the types Solid, Bitmap, Pattern, Hatch and Autocad.

On selecting the Fill option, the Change Super String Filling panel is displayed.

The fields and buttons used in the panel have the following functions.
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data to change</td>
<td>data selection type - for a full description go to <a href="#">4.19.3 Data Source</a></td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target type</td>
<td>data target type - where to put the processed strings. For a full description go to <a href="#">4.19.4 Data Target</a></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target info</td>
<td>extra information required for the target.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same as</td>
<td>button on each tab</td>
<td>button on each tab</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Buttons at Bottom**

- **Change** button: process the selected strings

**Solid, Bitmap, Pattern, Hatch and Autocad Tabs**

Each tab defines how that type of fill is applied to the string. Zero, one or more fill types can be applied to a string. Each tab will now be described.

See

- [14.12.9.5.1 Solid Tab](#)
- [14.12.9.5.2 Bitmap Tab](#)
- [14.12.9.5.3 Pattern Tab](#)
- [14.12.9.5.4 Hatch tab](#)
- [14.12.9.5.5 Autocad tab](#)
14.12.9.5.1 Solid Tab

The fields and buttons used in the panel have the following functions.

**Action**
- choice box
- ignore
- set, clear, ignore

*If set*, this type of fill is set for the string.
*If clear*, this type of fill is turned off for the string.
*If ignore*, don’t modify this type of fill for the string.

**Same as string colour**
- tick box

*If ticked*, then for all the strings that are to have their *Solid fills* modified, the colour of the super string...
solid fill is set to be the same as the string colour.

If not ticked, the fill colour is used for the Solid fill.

Fill colour

if Same as string colour is not ticked, the Fill colour is used to fill the super string. If the super string is not closed, the fill will apply as if the super string was closed.

Blending

the blend value is used for the solid fill. This value is between 0.0 and 1.0 and controls the amount of transparency of the fill.

if blank, a blend value of 1.0 is assumed.

Continue to 14.12.9.5.2 Bitmap Tab or return to 14.12.9.5 Fills.
14.12.9.5.2 Bitmap Tab

The fields and buttons used in the panel have the following functions.

**Action**
- choice box
- ignore
- set, clear, ignore

*if set*, this type of fill is set for the string.
*if clear*, this type of fill is turned off for the string.
*if ignore*, don’t modify this type of fill for the string.

**Type**
- choice box
- device, world, paper

the units of Width, Height, Stagger, and Spacing. This means the bitmap can be drawn in either world
size, paper size (mm) or device size.

**Origin X** real box

the x co-ordinate of the origin point of the repeated pattern.

**Origin Y** real box

the y co-ordinate of the origin point of the repeated pattern.

**Angle** angle

the orientation of the bitmap pattern relative to the x axis measured in the anti-clockwise direction in dms.

**Angle relative to view** tick box

this field controls whether the Angle is relative to the x axis or to the plotting x axis.

*If ticked* and we are plotting, Angle is measured relative to the x axis of the plot rotation.

*If not ticked*, Angle is always absolute to the world x axis.

**Height** real box

the height of the bitmap in the selected units.

**File name** file box .bmp files

the bitmap file to be used for filling. Only BMP files are currently supported.

**Transparent colour** colour box Select Colour pop up

the transparency colour within the bitmap. This means any pixel of this colour within the bitmap is not drawn.

**Stagger** real box

if not blank, this field allows each alternate row of bitmaps to be staggered (or offset) by the specified value. Stagger is measured in the selected units along the x axis in the rotated system.

*If blank*, a Stagger value of 0.0 is assumed.

**Spacing X** input

the distance in the selected units along the x axis in the rotated system between each instance of the bitmap.

**Spacing Y** input

the distance in the selected units along the y axis in the rotated system between each instance of the bitmap.

**Solid colour** colour box Select Colour pop up

if not blank, when the bitmaps become too small to be legible, the super string is solid filled instead with Solid colour.

**Solid blend value** input

if not blank, and Solid Colour is specified, the solid fill is drawn with transparency. The blend value is between 0.0 and 1.0 and controls the transparency of the solid colour.

Continue to [14.12.9.5.3 Pattern Tab](#) or return to [14.12.9.5 Fills](#).
14.12.9.5.3 Pattern Tab

The fields and buttons used in the panel have the following functions.

**Action**
- choice box, ignore, set, clear, ignore
  - *if set*, this type of fill is set for the string.
  - *if clear*, this type of fill is turned off for the string.
  - *if ignore*, don’t modify this type of fill for the string.

**Pattern**
- select pattern, pop up
  - the pattern name to be applied. The patterns are defined in the patterns.4d
For more information on the 12d pattern definition go to the section 40.4 Patterns.

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>choice box</td>
<td>device, world, paper</td>
</tr>
<tr>
<td>Size</td>
<td>real box</td>
<td>the units of Size. This means the pattern can be drawn as either world size, paper size (mm) or screen (device) size (pixels).</td>
</tr>
<tr>
<td>Origin X</td>
<td>real box</td>
<td>the x co-ordinate of the origin point of the repeated pattern.</td>
</tr>
<tr>
<td>Origin Y</td>
<td>real box</td>
<td>the y co-ordinate of the origin point of the repeated pattern.</td>
</tr>
<tr>
<td>Angle</td>
<td>angle</td>
<td>the orientation of the pattern relative to the x axis measured in the anti-clockwise direction in dms in hp notation.</td>
</tr>
<tr>
<td>Angle relative to view</td>
<td>tick box</td>
<td>this field controls whether the Angle is relative to the x axis or to the plotting x axis.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If <strong>ticked</strong> and a plot is being generated, <strong>Angle</strong> is measured relative to the x axis of the rotation of the plot.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If <strong>not ticked</strong>, <strong>Angle</strong> is always absolute to the world x axis.</td>
</tr>
<tr>
<td>Size</td>
<td>real box</td>
<td>the size of the pattern in the selected units.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If 0 then the pattern is not drawn.</td>
</tr>
<tr>
<td>Stagger</td>
<td>real box</td>
<td>if not blank, this field allows each alternate row of patterns to be staggered (or offset) by the specified value. Stagger is measured in the selected units along the x axis in the rotated system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If blank, a Stagger value of 0 is assumed.</td>
</tr>
<tr>
<td>Spacing X</td>
<td>real box</td>
<td>the distance in the selected units along the x axis in the rotated system between each instance of the pattern.</td>
</tr>
<tr>
<td>Spacing Y</td>
<td>real box</td>
<td>the distance in the selected units along the y axis in the rotated system between each instance of the pattern.</td>
</tr>
<tr>
<td>Solid colour</td>
<td>colour box</td>
<td>Select Colour pop up</td>
</tr>
<tr>
<td></td>
<td></td>
<td>if not blank, when the patterns become too small to be legible, the super string is solid filled instead with <strong>Solid colour</strong></td>
</tr>
<tr>
<td>Solid blend value</td>
<td>real box</td>
<td>if not blank, and <strong>Solid Colour</strong> is specified, the solid fill is drawn with transparency. The blend value is between 0.0 and 1.0 and controls the transparency of the solid colour.</td>
</tr>
</tbody>
</table>

Continue to 14.12.9.5.4 Hatch tab or return to 14.12.9.5 Fills.
14.12.9.5.4 Hatch tab

The fields and buttons used in the panel have the following functions.

**Action**
- choice box
- ignore
- set, clear, ignore

*if set*, this type of fill is set for the string.
*If clear*, this type of fill is turned off for the string.
*If ignore*, don’t modify this type of fill for the string.

**Type**
- choice box
- device, world, paper

*the units of Spacing and Plot spacing. This means the bitmap can be drawn in either world size, paper*
size (mm) or screen (device) size (pixels).

**Angle relative to view**

- **tick box**
  - this field controls whether the Angle is relative to the x axis or to the plotting x axis.
  - if **ticked** and we are plotting, Angle is measured relative to the x axis of the plot rotation.
  - If **not ticked**, Angle is always absolute to the world x axis.

**Origin X**

- **real box**
  - the x co-ordinate of the anchor point of the repeated pattern.

**Origin Y**

- **real box**
  - the y co-ordinate of the anchor point of the repeated pattern.

**Angle 1**

- **angle**
  - the first orientation of the hatch pattern relative to the x axis measured in the anti-clockwise direction in dms.

**Spacing 1**

- **real box**
  - the first distance in the units selected in Type between the lines drawn at **Angle 1**.

**Plot spacing 1**

- **real box**
  - the first distance in the units selected in Type between the lines drawn at **Angle 1** except it is the value used when you are plotting to or doing a plot of the super string containing the fill.
  - if the field is blank it uses the **Spacing 1** value.

**Colour 1**

- **colour box**
  - Select Colour pop up
  - the colour of all the lines drawn at **Angle 1**.

**Angle 2**

- **angle**
  - the second orientation of the hatch pattern relative to the x axis measured in the anti-clockwise direction in dms.

**Spacing 2**

- **real box**
  - the second distance in the units selected in Type column between the lines drawn at **Angle 2**.

**Plot spacing 2**

- **real box**
  - the first distance in the units selected in Type between the lines drawn at **Angle 2** except it is the value used when you are plotting to or doing a plot of the super string containing the fill.
  - if the field is blank it uses the **Spacing 2** value.

**Colour 2**

- **colour box**
  - Select Colour pop up
  - the colour of all the lines drawn at **Angle 2**.

Continue to 14.12.9.5.5 Autocad tab or return to 14.12.9.5 Fills.
14.12.9.5.5 Autocad tab

The fields and buttons used in the panel have the following functions.

**Action**
- choice box
- ignore
- set, clear, ignore

*If set*, this type of fill is set for the string.
*If clear*, this type of fill is turned off for the string.
*If ignore*, don’t modify this type of fill for the string.
Pattern  select autocad pattern pop-up

The Autocad pattern name to be applied. These patterns are defined in the file acad.pat.

This file is an Autocad file.

Type  choice box  device, world, paper

the units of Size. This means the bitmap can be drawn in either world size, paper size (mm) or screen (device) size (pixels).

Angle  angle

the orientation of the pattern relative to the x axis measured in the anti-clockwise direction in dms.

Angle relative to view  tick box

this field controls whether the Angle is relative to the x axis or to the plotting x axis.

If ticked and we are plotting, Angle is measured relative to the x axis of the plot rotation.

If not ticked, Angle is always absolute to the world x axis.

Size  real box

the size of the pattern in the selected type.

Colour  colour box  Select Colour pop up

the colour of the pattern.

Return to 14.12.9.5 Fills.
14.12.9.6 Symbol

Position of option on menu:  Strings =>Properties =>Super string dimensions =>Symbol
Position of option on menu:  Utilities =>Super strings =>Symbol

For selected super strings, the symbols option can set the flags that determine how symbols are defined for a super string.

A super string can have no symbols, a constant symbol definition for the entire string or different symbol definitions at each vertex.

On selecting the symbol option, the Change Super String Symbols panel is displayed.

![Change Super String Symbols Panel]

The fields and buttons used in the panel have the following functions.

Field Description	Type	Defaults	Pop-Up
Data source type | Model | | |
Data source | input | | |
Action | choice box | ignore | set, clear, ignore

* If set, a symbol can be constant for all vertices in the string, or can be different for each vertex in the string.
* If clear, there are no symbols for the string.
* If ignore, don’t modify the symbol flags for the vertices of the string.
Apply

**choice box**

constant, variable

*if* Action *is set*, *then* the Apply field is used.

*If* Apply is constant, the string has only one symbol and it used for each vertices in the string.

It is set to visible.

*If* Apply is variable, each vertex in the string has its own symbol.

**Symbol**

symbol box

symbol to be used.

**Size**

size of the symbol.

**Rotation**

angle box

angle to rotation the symbol - positive is counter-clockwise.

**Colour**

colour box

colour for the symbol (if the symbol has no imbedded colours).

**Offset**

distance the centre of the symbol is from the vertex.

**Raise**

distance the centre of the symbol is raised off the line through the vertex with the given angle.

**Target type**

Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target.

**Target info**

input

extra information required for the target.

**Change**

button

process the selected strings
14.12.9.7 Segment Colour

Position of option on menu: Strings => Properties => Super string dimensions => Segment colour

Position of option on menu: Utilities => Super strings => Segment colour

A super string has a default colour used for the entire string and segment colours setable for each segment which override the string colour for that segment.

The Segment colour option can set a segment colour for every segment in the super string or clear all the set segment colours so that the default string colour is used.

On selecting the Segment colour option, the Change Super String Segment Colour panel is displayed.

![Change Super String Segment Colour panel]

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>data source type</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data source type data selection type - for a full description go to 4.19.3 Data Source.

Data source input source of data to be processed.

Action choice box set, clear

* if set, each segment colour is set to the colour in the Colour box.
* If clear, any segment colours are removed and each segment set to having no segment colour.

Colour colour box

* if Action is set, then every segment is set to this colour.

Target type Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target.

Target info input extra information required for the target.
Change button

process the selected strings
14.12.9.8 Height

Position of option on menu:  
Strings => Properties => Super string dimensions => Height

Position of option on menu:  
Utilities => Super strings => Height

A super string can have the one height that is used for every vertex in the super string (constant height) or it can have a different height at each vertex.

The Height option can set the super string to either having a constant height or to allow each vertex to have independent heights.

On selecting the Height option, the Change Super String Height panel is displayed.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>data selection type - for a full description go to 4.19.3 Data Source.</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>source of data to be processed.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Action</td>
<td>choice box</td>
<td>choice box</td>
<td>ignore</td>
<td>set, clear</td>
</tr>
<tr>
<td></td>
<td><em>if set</em>, the string height can be a constant for the entire string, or to be different for each vertex in the string.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If clear</em>, the entire string and each vertex has no height.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apply</td>
<td>choice box</td>
<td>choice box</td>
<td>constant, variable</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if Action is set</em>, then the Apply field is used.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If Apply is constant</em>, the string has only one height and no vertex has its own height. The height for the string is set to the height in the Height field.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If Apply is variable</em>, each vertex in the string is set to have has its own height and it is set to the value in the Height field.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
if Action is set, then either the entire string or every vertex is set to this height.

Target type
Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target.

Target info
input
extra information required for the target.

Change
button
process the selected strings
Chapter 14  Strings

14.12.9.9 Attribute

Position of option on menu:  Strings =>Properties =>Super string dimensions =>Attribute

Position of option on menu:  Utilities =>Super strings =>Attribute

A super string can have independent attributes for the entire string, independent attributes for each segment and for each vertex.

The Attributes option can clear the super string attributes for the entire string, each vertex and/or each segment.

On selecting the Attributes option, the Change Super String Attributes panel is displayed.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Data source type**

Data selection type - for a full description go to 4.19.3 Data Source.

**Data source**

Source of data to be processed.

**Vertex Action**

- choice box
  - ignore
  - ignore, clear
  
  *if clear, the attributes are cleared at each vertex.*
  
  *if ignore, nothing is done for the vertex attributes.*

**Segment Action**

- choice box
  - ignore
  - ignore, clear
  
  *if clear, the attributes are cleared on each segment.*
  
  *if ignore, nothing is done for the segment attributes.*

**String Action**

- choice box
  - ignore
  - ignore, clear
  
  *if clear, the string attributes are cleared.*
If `ignore`, nothing is done for the string attributes.

**Target type**

Data target type - where to put the processed strings. For a full description go to [4.19.4 Data Target](#).

**Target info**

input

extra information required for the target.

**Change**

button

process the selected strings.
14.12.9.10 Vertex ID

Position of option on menu:  
Strings => Properties => Super string dimensions => Vertex id

Position of option on menu:  
Utilities => Super strings => Vertex id

A super string has a Vertex id for each vertex.

The Vertex id option can set the Vertex IDs to sequential numbers (optionally ignoring existing Vertex ids) or clear all the existing vertex IDs for the super string.

On selecting the Vertex id option, the **Change Super String Vertex ID** panel is displayed.

![Change Super String Vertex ID panel]

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Data selection type</em> - for a full description go to <a href="#">4.19.3 Data Source</a>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>Input</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Source of data to be processed.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Action</td>
<td>Choice box</td>
<td>set, clear</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If clear, the vertex IDs are cleared at each vertex.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If set, the vertex IDs are given sequential numbers starting with the number given in First vertex id field.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First vertex id</td>
<td>Ticked</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If Action is set, the vertex IDs start with this value.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replace existing vertex id's</td>
<td>Tick box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If ticked, any vertex with an existing vertex is not given a new vertex ID.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If not ticked, all vertices are given new vertex IDs.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target type</td>
<td>Data target type - where to put the processed strings. For a full description go to <a href="#">4.19.4 Data Target</a>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target info</td>
<td>Input</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
extra information required for the target.

Change button process the selected strings.
14.12.9.11 Pipe/Culvert

Position of option on menu:  Strings =>Properties =>Super string dimensions =>Pipe/culvert

Position of option on menu:  Utilities =>Super strings =>Pipe/culvert

Each segment of a super string can have a diameter or a rectangular cross-section (box culvert). This option can define or clear the pipe diameter, width and height, and justification.

On selecting the Pipe/culvert option, the Change Super String Pipe/Culvert panel is displayed.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Justification</td>
<td>choice box</td>
<td>set, clear, ignore</td>
<td></td>
</tr>
</tbody>
</table>

*Data selection type - for a full description go to 4.19.3 Data Source.*

*source of data to be processed.*

*if set, the string justification is set to the type given in the Pipe level field.*

*If clear, the string justification information is cleared.*

*If ignore, nothing is done to the string justification.*
Pipe level

if Action is set, the string justification is set to this value.

Mode

Apply to choice box pipe, culvert

if pipe, the next section of the panel has fields for setting pipe information.
if culvert, the next section of the panel has fields for setting culvert information.

Pipe - when Mode is Pipe

Action choice box set, clear, ignore

if set, then the Pipe Apply field specifies how the pipe information is modified.
If clear, the pipe information is cleared at each segment.
If ignore, nothing is done to the pipe information.

Apply choice box constant, variable

if Pipe Action is set, then the Apply field is used.
If Apply is constant, the string has only one diameter and no segment has its own diameter. The diameter for the string is set to the value in the Diameter field.
If Apply is variable, each segment in the string is set to have its own diameter and it is set to the value in the Diameter field.

Diameter
diameter for each pipe segment.

Culvert - when Mode is Culvert

Action choice box set, clear, ignore

if set, then the Culvert Apply field specifies how the culvert information is modified.
If clear, the culvert information is cleared at each segment.
If ignore, nothing is done to the culvert information.

Apply choice box constant, variable

if Culvert Action is set, then the Apply field is used.
If Apply is constant, the string has only one width and height and no segment has its own width and height. The width and height for the string is set to the values in the Width and Height fields.
If Apply is variable, each segment in the string is set to have its own width and height and they are set to the values in the Width and Height fields.

Width/Height
width/height for each culvert segment.

Target type
data selection type - for a full description go to 4.19.3 Data Source.

Target info input
extra information required for the target.

Change button
process the selected strings.
14.12.9.12 Radius

Position of option on menu: Strings => Properties => Super string dimensions => Radius
Position of option on menu: Utilities => Super strings => Radius

The Radius option clears any segment radii.
14.12.9.13 Segment Geometry

Position of option on menu: Strings => Properties => Super string dimensions => Segment geometry
Position of option on menu: Utilities => Super strings => Segment geometry

The Segment geometry option clears any segment geometry.
14.12.9.14 Text

Position of option on menu:  Strings => Properties => Super string dimensions => Text
Position of option on menu:  Utilities => Super strings => Text

This section of documentation is a work in progress and will be updated in subsequent releases.

Each vertex and segment of a super string can have its own text.

The Text option can set, clear the vertex or segment text and/or textstyle data for the super string.

On selecting the Text option, the Change Super String Text panel is displayed.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source selection</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.19.3 Data Source
Model

Vertex tab

Vertex text

Action

choice box ignore set, clear, ignore

if set, the vertex text can be a constant for the entire string, or to be different for each vertex in the string.
If clear, the vertex text is cleared.
If ignore, nothing is done to the vertex text.

Apply

choice box constant, variable

if Action is set, then the Apply field is used.
If Apply is constant, the string has only one vertex text value and no vertex has its own vertex text. The vertex text for the string is set to the text in the Text field.
If Apply is variable, each vertex in the string is set to have its own text and it is set to the value in the Text field.

Text

if Action is set, then either the entire string or every vertex text is set to this value.

Vertex annotation

Action

choice box ignore set, clear, ignore

if set, the vertex textstyle data can be a constant for the entire string, or to be different for each vertex in the string.
If clear, the vertex textstyle data is cleared.
If ignore, nothing is done to the vertex textstyle data.

Apply

choice box constant, variable

if Action is set, then the Apply field is used.
If Apply is constant, the string has only one vertex textstyle data and no vertex has its own vertex textstyle data. The vertex textstyle data for the string is set to the text in the Textstyle data field.
If Apply is variable, each vertex in the string is set to have its own textstyle data and it is set to the value in the Textstyle data field.

Textstyle data

if Action is set, then the vertex textstyle data is set to this value.

Segment tab

Segment text

Action

Apply

Segment annotation

Action

Apply

Textstyle data

Target type

Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target.

Target info

input

extra information required for the target.
Change button

process the selected strings.
14.13 Label

Position of menu: Strings => Label

The Label menu contains options to label string chainages, create tadpoles for cut and fill, label string vertices with their x, y, z or point numbers and names.

The Label walk-right menu is

For the option Chainages, go to 14.13.1 Label Chainages
Chainages (function) 14.13.2 Chainages (function)
Cut/fill 14.13.3 Label Cut/Fill
Names 14.13.4 Label Names
Vertices 14.13.5 Label Vertices
14.13.1 Label Chainages

Position of option on menu: **Strings => Label => Chainages**

The **Label chainages** option is used to create text at regular chainages and special points on a string such as horizontal and vertical tangent points, crest and sag points and user selected points. It can also create tick marks at selected chainages.

The user has control over the label height, colour, angle, offset and the number of decimal places displayed, plus the size and colour of the tick marks.

As well as being used for labelling centre-lines, this option is used in conjunction with the sewer option to created special labels for sewer long section plots.

On selecting the **Label chainages** option, the **Label chainages on string** panel is displayed.

![Label Chainages on String](image-url)
Individual points can be labelled by selecting them after picking the Points button.

The marks button brings up the label chainages on string (marks) panel which is used to place marks at the chosen chainages.

The fields and buttons used in the label chainages on string panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Data source type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>Data source for strings to label</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Label mode</td>
<td>input</td>
<td></td>
<td></td>
<td>regular interval, regular interval plus end pts, end points only,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>horizontal TPs, vertical TPs, horizontal discontinuities, vertical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>discontinuities, all discontinuities, crests/sags</td>
</tr>
</tbody>
</table>
type of labelling required.

Ch interval or n/a input
the regular interval to use for labelling points.

Ch reference input 0
the chainages to be labelled are integer multiples of the chainage interval added to the
reference chainage. For example, if the reference chainage is 23.2 and the chainage interval
10, the chainages 3.2, 13.2, 23.2, 33.2 etc. will be labelled.

Start chainage input
if non-blank, the string chainage to start labelling from.
If blank, start at the beginning of the string.

End chainage input
if non-blank, the string chainage to end the labelling at.
If blank, go to the end of the selected string.

Special chainage input
file of special chainages to create labels at.

Chord/arc tolerance input default chord/arc tolerance
the chord to arc tolerance to use on the strings being labelled for determining how many points are
labelled around horizontal curves.

Labels tab

Model for labels model box available models
if non-blank, labels are generated and placed in this model.
If blank, no labels are created (but tick marks may be).

Pre*postfix for labels input
the beginning and ending of the label to be given at each point. Spaces are significant. This
uses the standard 12d method of pre-text*post-text. That is, 'Ch * m' would add 'Ch ' before
the value and ' m' after the label.

Textstyle info textstyle box 1 available textstyle data
textstyle data to use when creating the labels.

# dec pl for labels input 0
number of decimal places used in the labels.

Chainages tick tick
if ticked, the chainage of each point is appended to the label stem to create the label for the
point.
If not ticked, only the label stem is used as the label.

Heights tick
if ticked, the height of each point is used in the label for the point.
If not ticked, heights are not used in the label.

Null heights tick
if ticked and the height of a point null, (null) is used in the label for the point.
If not ticked, null heights are not used in the label.

Add TC, CT, etc. tick
if ticked and labelling an alignment string, the critical point types are used in the label for the
point.
If not ticked, critical point types are not used in the label.
Marks tab

Model for marks  
input  
available models

if non-blank, tick marks are generated according to the label mode and placed in this model.
If blank, no tick marks are created.

Mode for marks  
input  
ticks centred  
ticks on lhs, ticks on rhs, ticks centred

mode for the tick marks.

Name for marks  
input  
1

name to give the tick marks (mainly used for mapping files)

Size for marks (w)  
input  
1

size in world units for the tick marks

Colour for marks  
input  
orange  
available colours

colour of the tick marks.

Points  
button

pick individual positions to label with a label stem and chainage (if the chainages field is set to tick).

Label  
button

label the selected strings as specified by the label mode, mode for marks and other fields in the panel.
14.13.2 Chainages (function)

The parameters for this panel are identical to Label Chainages on String, however instead of selecting data source for labels this option will create a function associated with a specified string.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function name</td>
<td>function box</td>
<td></td>
<td>select function</td>
</tr>
<tr>
<td>String to label</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For more information on this panel and its fields and buttons, please go to 14.13.1 Label Chainages.

Please continue to the next section 14.13.3 Label Cut/Fill.
14.13.3 Label Cut/Fill

Position of menu:  

Strings => Label => Cut/Fill

The cut/fill menu contains options to create cut and fill tick marks between selected strings. The options can generate standard tadpoles, tick marks or use user specified model as the tick symbol. For each option, a reference string is selected which defines the chainages used for labelling cut/fill. The cut/fill symbols are drawn perpendicular to the reference string.

Two strings, str1 and str2 are selected for labelling.

The tick symbols are drawn at right angles to the reference string at a user specified chainage going between the two strings, str1 and str2, from the higher string point to the lower string point (which string is higher or lower may vary along the strings). The tick symbol is repeated at the given chainage interval.

The tick symbol is drawn as a percentage of the distance from the high point to the low point between the two strings, str1 and str2 and this percentage is specified separately for the odd and even numbered ticks. The cut/fill walk-right menu is

For the option Tadpoles, go to  

Ticks  

User symbols  

From file  

14.13.3.1 Tadpoles  

14.13.3.2 Ticks  

14.13.3.3 User Symbols  

14.13.3.4 From File

14.13.3.1 Tadpoles

Position of option on menu:  

Strings => Label => Cut/Fill => Tadpoles

The Tadpoles option is used to generate tadpole symbols between two strings. On selecting the Tadpoles option, the Label tadpoles marks panel is displayed.
The fields and buttons in this panel are used as follows:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start chainage</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
  - if non-blank, the reference string chainage to start creating tadpoles from.
  - if blank, the reference string start chainage is used.
| End chainage      | input |          |        |
  - if non-blank, the reference string chainage to end the tadpoles at.
  - if blank, the reference string end chainage is used.
| Interval          | input | 10       |        |
  - the chainage interval to use for creating tadpoles.
| Maximum offset    | input | 100      |        |
  - the maximum distance to search from the reference string to find strings str1 and str2.
| Small tick%       | input | 100      |        |
  - the percentage of the distance between the two strings, str1 and str2, that is taken up by the odd numbered tadpoles.
| Large tick%       | input | 100      |        |
  - the percentage of the distance between the two strings, str1 and str2, that is taken up by the even numbered tadpole.
| Model for ticks   | input | available models |        |
  - the models for the tadpoles to placed into.
| Colour for ticks  | input | cyan | available colours |        |
  - the colour for the tadpoles.
| Ref/Str1/Str      | button |          |        |
  - the selected string is used as the reference/str1/str2 string.
14.13.3.2 Ticks

Position of option on menu:  Strings => Label => Cut/Fill => Ticks

The ticks option is used to generate ticks (straight lines) between two strings. On selecting the ticks option, the label tick marks panel is displayed.

The fields and buttons in this panel are used in exactly the same way as for the label tadpoles marks panels. The only difference is that the defaults for the small tick % and large tick % panel fields are 25 and 75 respectively.

14.13.3.3 User Symbols

Position of option on menu:  Strings => Label => Cut/Fill => User symbols

The user symbols option uses a given model, the tick symbol model, as the symbol to draw between the low and high points on the two strings. The tick symbol model is aligned so that the model origin is at the high string point and the model’s positive x-axis goes from the high string point to the low string point.

On selecting the ticks option, the label tick marks panel is displayed.

Continue to the next section 14.13.3.3 User Symbols or return to 14.13.3 Label Cut/Fill.
The fields and buttons in this panel are used in exactly the same way as for the label tadpoles marks panels except that a tick symbol model panel field is used to specify the symbol to be drawn for the cut/fill tick marks.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tick symbol model</td>
<td>input</td>
<td>available models</td>
<td>the model to be used as the tick mark symbols.</td>
</tr>
</tbody>
</table>

Continue to the next section 14.13.3.4 From File or return to 14.13.3 Label Cut/Fill.

14.13.3.4 From File

Position of option on menu: Strings => Label => Cut/Fill => From file

This is the same option as Drafting => Create cut/fill symbols

Please go to the section 14.13.3 Label Cut/Fill.
14.13.4 Label Names

Position of option on menu: Strings => Label => Names

The label names option is used to label individual strings or all the strings in a model, with their string names. The user has control over the label height, colour, and the distance between the labels. On selecting the label names option, the label string names panel is displayed.

By using the pick button, individual strings can be labelled using the values in the panel fields. The model to label field is ignored.

If the label button is selected, then all the strings in the model given by the model to label field will be labelled according to the parameters in the panel fields.

The fields and buttons used in the label names panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>data source type.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>data source for strings to label.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textstyle data</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textstyle information.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval (w)</td>
<td>input</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Chainage interval in world units between the labels.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Label</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Label all the strings in the model given in the model to label field.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please continue to the next section 14.13.5 Label Vertices.
14.13.5 Label Vertices

Position of option on menu:  
Strings => Label => Vertices

The Label vertices option can be used to label the x, y, z, z no nulls, point numbers, id-pt no, name and descriptions of strings selected by the data source.

The user has control over the label height, colour, the number of decimal places, the distance between the labels, the distance the label is from the point position, and the angle to draw the label at.

On selecting the Label vertices option, the Label vertices panel is displayed.

Individual strings can be labelled by using the pick button and then selecting the strings, to be labelled using the values in the panel fields. The string model field is ignored.

If the label button is selected, then all the strings in the model given by the string model field will be labelled according to the parameters in the panel fields.

The fields and buttons used in the label strings panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>data source type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>data source for strings to label</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Label mode</td>
<td>input z</td>
<td></td>
<td>x,y,z, point number, Vertex no x and y id-vertex no z no nulls name</td>
<td></td>
</tr>
<tr>
<td>String model</td>
<td>input available models</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type of labelling required - x, y, z, point number, vertex no. for each point in the string.

Name of the model containing the strings to be labelled. Not used with the pick button.
Model for labels
   input
   available models
   name of the model to place the labels in.

Num dec places
   input 0 0,1,2,3,4,5
   number of decimal places used in the x,y,z labels.

Textstyle data
   input
textstyle information.

Create mode
   input 4d 4d, text
   if 4d, the vertex labels for the one string are placed in a 4d string.
   text, the vertex labels are created as individual text strings.

Chord/arc tolerance
   input default chord/arc tolerance
   the chord to arc tolerance to use on any alignment string being labelled for determining how many
   points are labelled around horizontal curves.

Label
   button
   label all the strings in the model given in the string model field.
14.14 Rasters

Position of menu: Strings => Rasters

The Rasters menu contains options for working with rasters. The Rasters walk-right menu is

- Create a raster
- Create a raster from an ECW file
- Create a raster from a TAB file
- Create plan images from JPEGs
- Edit
- Plan to raster
- Set boundary
- Reset boundary
- ECW tools

For the option Create go to

- Create go to 14.14.1 Create a Raster
- Create from ECW's 14.14.2 Create Rasters from ECW Files
- Create from TAB's 14.14.3 Create Rasters from TAB Files
- Create plan images from JPEG’s 14.14.4 Create Plan Images from JPEG Files
- Edit 14.14.5 Edit a Raster
- Plan to raster 9.1.4.7 Create Raster from Plan View
- Set boundary 14.14.6 Set a Boundary for a Raster
- Reset boundary 14.14.7 Reset the Boundary for a Raster
- ECW tools 14.14.8 ECW Tools - Not Supported!
14.14.1 Create a Raster

Position of option on menu: **Strings => Rasters => Create**

A raster element consists of a raster image and positioning information for the raster so that it can be mapped into world units.

A raster element is added to a model just like any other string but for convenience it is suggested that no other strings are in the same model as a raster.

To help speed up drawing on a view, there is toggle for displaying/not displaying rasters on plan views.

**Raster Restrictions**

(a) The Raster file must have read/write permission

(b) Rasters are only supported on Win 2000 and above.

Selecting **Create** brings up the **Create Raster Element** panel.

![Create Raster Element Panel]

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Source Image tab</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image format</td>
<td>choice box</td>
<td></td>
<td>BMP, DIB, GIF, ECW, JPEG, JPEG 2000, PNG, TGA, TIFF</td>
</tr>
</tbody>
</table>

*format that the original image is in. Non ECW rasters must be 24 bit colour.*

| Raster file | file box | name of the original raster image. The file must have read/write access and be 24 bit colour. |

<table>
<thead>
<tr>
<th>Source Image tab</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image format</td>
<td>choice box</td>
<td></td>
<td>BMP, DIB, GIF, ECW, JPEG, JPEG 2000, PNG, TGA, TIFF</td>
</tr>
</tbody>
</table>

*format that the original image is in. Non ECW rasters must be 24 bit colour.*

| Raster file | file box | name of the original raster image. The file must have read/write access and be 24 bit colour. |
Page
- page number of the raster when the format can contain more than one image (e.g. in a TIFF)

Null colour
- colour box available colours
- colour when there is no pixel in the raster

Temporary folder
- file box c:\temp select folder
- folder to use as a temporary storage area whilst converting the raster to the 12d raster format. The temporary folder needs to have enough free disk space to convert the largest of the rasters to bmp format.

Width/Height in pixels
- output only
- the width/height in pixels of the selected raster

Depth in bits
- output only
- display the colour depth of the source data

Projection
- output only
- display the projection of the source data if available

Location tab
- The Location tab supplies the information for positioning the raster in world units in 12d Model. Most rasters formats, other than ECW or Geotiff, do not include this information so it must be supplied by other means, either in a file or by typing in a world origin, anticlockwise rotation angle and world width and height.
**Data format** choice box Raw details Raw Details, Autocad scr file ESRI world, Geo Tiff, Mapinfo tab

*If Raw details,* the location details are typed into the World Location Details section as rotation, world origin, world width and height.

*If Autocad scr file,* the location details are taken from the scr file given in Location file. An Autocad scr file gives the world co-ordinates of the corners of the raster starting in the bottom left hand corner, bottom right hand corner, top left hand corner and top right hand corner. An example of a scr file is:

```
line
22109.639,148090.695
23109.639,148090.695
22109.639,149090.695
23109.639,149090.695
```

*If ESRI world,* the location details are taken from the ESRI world file given in Location file. An ESRI world file gives the xscale, row rotation, column rotation, yscale, x origin and y origin. For use with 12d, the row and column rotations must be the same and yscale = - xscale.

*If Geo Tiff,* the Location details are taken from the geotiff file given in Location file panel field.

*If Mapinfo Tab,* the location details are taken from the Mapinfo tab file given in Location file.

**Location file** file box

file with the location details

**Anticlockwise rotation** angle box

the world rotation of the raster.

**X/Y co-ordinate** real box

the world x/y co-ordinate of the left hand bottom corner of the raster.

**World width/height** real box

the width/height in world units of the raster.

**Output tab**

the parameters for the created 12d raster.
Output size

An estimate of the amount of disk space the raster will use in 12d Model.

Fastest drawing speed

Only if raster is less than 24 bit depth - if selected, the raster is converted to a 24 bit image.

Minimum disk space

Only if raster is less than 24 bit depth - if selected, the raster is not converted to a 24 bit image and hence will take up less disk space. However it is converted at drawing time and so will be slower to display than a 24 bit image.

Name for raster

The name for the raster.

Model for raster

Name of the model for the raster element. Available models.

Show border

If tick then the border of the raster element is displayed.

Colour for border

The colour of the border for the raster. Default colour. Available colours.

Tin

If not blank, this tin is tagged with this raster so the raster is used for draping on the tin when the tin is used in visualisations.
**Crop tab**

This section of documentation is a work in progress and will be updated in subsequent releases.

![Crop tab interface](image)

- **Crop?** tick box
  - *if ticked,*

**Crop world origin**
- X coordinate
- Y coordinate

**Crop world size**
- Width
- Height

**Crop rect in pixels**
- Crop X px
- Crop Y px
- Width px
- Height px

- Define the crop rectangle interactively (only when rotation is zero)

- Clear crop
Create button

After the Create button is chosen, the raster element is created.
14.14.2 Create Rasters from ECW Files

Position of option on menu: Strings => Rasters => Create from ECWs

This option attaches one or more ECW files to a model. Selecting Create from ECWs brings up the Create Rasters from ECW Files panel.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model for ECW's</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Raster name (Pre* Post)</td>
<td>text input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECW files</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File to read</td>
<td>file box</td>
<td>*.ecw files</td>
<td></td>
</tr>
<tr>
<td>Colour for border</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Show border</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transparent Blend</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td>File To Read</td>
<td></td>
<td>* .ecw files</td>
<td></td>
</tr>
</tbody>
</table>

If not blank, pre*post text to use for the name of the raster(s) from the ECW file(s) (see Pre*Postfix in Panel Fields for information on using pre*postfix).

If not ticked, File To Read is visible.

Advanced tick box

If ticked, the File To Read field is replaced by a grid to allow multiple ECW files to be read in, is opened. A wild card is used to select all the files to be read in.
Folder  
folder box

folder to search for files using the Wild card

Wildcard  
choice box

*.ecw, *
wild card to use in search for files in the given folder

Grid

The following fields are repeated for every row.

Use  
tick box

if ticked, read in the file on this row

Files  
output

name of the file found in the folder

Size  
output

file size

Colour for border  
colour box

colour for the border around the raster

Show border  
tick box

if ticked, the border will be visible

Transparent Blend

The degree of opacity, 1 = opaque, 0.1 = very transparent

Create  
button

after the Read button is chosen, the raster elements are created.
14.14.3 Create Rasters from TAB Files

Position of option on menu:  Strings => Rasters => Create from TAB’s

This option reads one or more rasters as define by TAB files and places them in a model. Selecting Create from TAB’s brings up the Create Rasters from TAB Files panel.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster name (Pre*post)</td>
<td>text input</td>
<td>if not blank, pre<em>post text to use for the name of the raster(s) from the ECW file(s) (see 4.19.2 Pre</em>Postfix in Panel Fields for information on using pre*postfix)</td>
<td></td>
</tr>
<tr>
<td>TAB files</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td>File to read</td>
<td>file box</td>
<td>*.tab files</td>
<td></td>
</tr>
<tr>
<td>name of the TAB file to attach to the model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

if ticked, the File To Read field is replaced by a grid to allow multiple TAB files to be read in, is opened. A wild card is used to select all the files to be read in.
Folder    folder box
folder to search for files using the Wild card

Wildcard    choice box    * .tab, *
wild card to use in search for files in the given folder

Grid
The following fields are repeated for every row.

Use    tick box
if ticked, read in the file on this row

Files    output
name of the file found in the folder

Size    output
file size

Model for TAB’s    input    available models
name of the model for the rasters defined by the TAB files

Mask colour    colour box    available colours
colour when there is no pixel in the raster

Colour for border    input    default colour    available colours
the colour of the border for the raster

Show border    tick    tick
if ticked then the border of the raster element is displayed

Temporary folder    file box    c:\temp select folder
folder to use as a temporary storage area whilst converting the raster to the 12d raster format.
The temporary folder needs to have enough free disk space to convert the largest of the
rasters to bmp format.

Transparent Blend
The degree of opacity, 1 = opaque, 0.1 = very transparent

Create    button
after the Read button is chosen, the raster elements are created.
14.14.4 Create Plan Images from JPEG Files

Position of option on menu: **Strings => Rasters => Create plan images from JPEG’s**

This section of documentation is a work in progress and will be updated in subsequent releases.

Selecting Create plan images from JPEG’s brings up the **Create Plan Images from JPEG Files** panel.

![Create Plan Images from JPEG Files panel](image)

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>File to read</strong></td>
<td>file box</td>
<td>*.jpg files</td>
<td></td>
</tr>
<tr>
<td><strong>Advanced</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Projection</strong></td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Rotate images</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Pixel to mm</strong></td>
<td>measure box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Model for images</strong></td>
<td>model box</td>
<td></td>
<td>available models</td>
</tr>
</tbody>
</table>

*name of the JPEG file to attach to the model*

*if ticked, the File To Read field is replaced by a grid to allow multiple JPEG files to be read in, is opened. A wild card is used to select all the files to be read in.*
14.14.5 Edit a Raster

The `Edit` option modifies the properties of any raster displayed in a 12d Model view. Selecting `Edit` brings up the `Edit Raster Element` panel.

![Edit Raster Element panel](image)

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Source Image tab</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Original raster file</td>
<td>output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>file that the raster originally came from</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Null colour</td>
<td>colour box</td>
<td>available colours</td>
<td>colour when there is no pixel in the raster</td>
</tr>
<tr>
<td>Width/Height in pixels</td>
<td>output only</td>
<td></td>
<td>the width/height in pixels of the selected raster</td>
</tr>
<tr>
<td>Depth in bits</td>
<td>output only</td>
<td></td>
<td>display the colour depth of the raster</td>
</tr>
<tr>
<td>Projection</td>
<td>output only</td>
<td></td>
<td>display the original projection of the raster (if available)</td>
</tr>
<tr>
<td><strong>Location tab</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When the raster is selected, the raw details for the raster (or ECW details) are displayed. The location details can then be modified and hence how the raster is positioned in world units in 12d Model is modified.
Rasters

Data format

- choice box
- Raw details
- Raw Details, Autocad scr file
- ESRI world, Geo Tiff,
  Mapinfo tab

**if Raw details**, the location details are typed into the World Location Details section as rotation,
world origin, world width and height.

**if Autocad scr file**, the location details are taken from the scr file given in Location file. An
Autocad scr file gives the world co-ordinates of the corners of the raster starting in the bottom
left hand corner, bottom right hand corner, top left hand corner and top right hand corner. An
example of a scr file is:

```
line
22109.639,148090.695
23109.639,148090.695
22109.639,149090.695
23109.639,149090.695
```

**if ESRI world**, the location details are taken from the ESCRI world file given in Location file. An
ESRI world file gives the xscale, row rotation, column rotation, yscale, x origin and y origin.
For use with 12d, the row and column rotations must be the same and yscale = - xscale.

**if Geo Tiff**, the Location details are taken from the geotiff file given in Location file panel field.

**if Mapinfo Tab**, the location details are taken the Mapinfo tab file given in Location file.

---

Location file\n- file box

Anticlockwise rotation
- angle box

X/Y co-ordinate
- real box

World width/height
- real box

Appearance tab

**Name for raster**
- input

**Model for raster**
- input

**Show border**
- tick
tick

**Colour for border**
- input

Buttons at Bottom

**Pick**
- button

**Set**
- button

NOTE: A raster is **deleted** by using the string *Delete* option. The raster is selected for deleting by
picking on the border of the raster.
14.14.6 Set a Boundary for a Raster

Position of option on menu: Strings => Rasters => Set boundary

The **Set boundary** option defines a boundary polygon for the raster. Only the parts of the raster inside the boundary polygon are displayed. The boundary polygon can have holes.

Selecting **Set boundary** brings up the **Raster Set Boundary String** panel.

![Raster Set Boundary String Panel](image)

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster</td>
<td>select the raster to have a drawing polygon set for it</td>
<td>raster select box</td>
<td></td>
<td>select the raster to have a drawing polygon set for it</td>
</tr>
<tr>
<td>Boundary</td>
<td>select a polygon</td>
<td>string select box</td>
<td></td>
<td>select a polygon</td>
</tr>
<tr>
<td>Add</td>
<td>button</td>
<td>button</td>
<td></td>
<td>add the selected polygon as a boundary polygon for the selected raster</td>
</tr>
</tbody>
</table>

---

*Image credit: Adobe Stock*
14.14.7 Reset the Boundary for a Raster

The Reset boundary option removes the boundary polygon from a raster. Selecting Remove boundary brings up the Raster Reset Boundary String panel.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster</td>
<td>raster select box</td>
<td></td>
<td>select the raster to have its drawing polygon removed</td>
</tr>
<tr>
<td>Model for boundary</td>
<td>model box</td>
<td>available models</td>
<td>model to place the removed boundary polygon in</td>
</tr>
<tr>
<td>Remove</td>
<td>button</td>
<td></td>
<td>remove the boundary polygon from the selected raster</td>
</tr>
</tbody>
</table>
14.14.8 ECW Tools - Not Supported!

Position of option on menu: Strings => Rasters => ECW tools

Selecting ECW tools brings up the ECW tools - Not Supported! menu.

This section of documentation is a work in progress and will be updated in subsequent releases.

For the option Change ECW's projection go to
14.14.8.1 Change ECWs Projection
Translate ECWs
14.14.8.2 Translate ECWs

14.14.8.1 Change ECWs Projection

Position of option on menu: Strings => Rasters => ECW tools => Change ECW’s Projection

Selecting Change ECW’s Projection brings up the Change Projection for ECW Files - Not Supported panel.

This section of documentation is a work in progress and will be updated in subsequent releases.

14.14.8.2 Translate ECWs

Position of option on menu: Strings => Rasters => ECW tools => Translate ECW’s

Selecting Translate ECW’s brings up the Translate ECW Files - Not Supported panel.

This section of documentation is a work in progress and will be updated in subsequent releases.
14.15 Point Clouds

Position of menu:  Strings => Point clouds

The Point clouds walk-right menu is

For the options go to:

14.15.1 Categories
14.15.2 Delete Points
14.15.3 Cartographic Transform
14.15.4 Limiting Cloud Drawing on View
14.15.5 Point Cloud Pinning
14.15.1 Categories

Position of menu:  Strings => Point clouds => Categories

For the options go to:

14.15.1.1 Set LAS Categories
14.15.1.2 Global Set LAS Categories
14.15.1.3 Setting Point Cloud Categories by TIN
14.15.1.4 Setting LAS File Categories by TIN
14.15.1.5 Copying Point Cloud Files by Categories
14.15.1.6 Copying LAS Files by Categories
14.15.1.1 Set LAS Categories

Position of option on menu: Strings => Point clouds => Categories => LAS Categories

This section of documentation is a work in progress and will be updated in subsequent releases.

Selecting LAS Categories fires up the Set LAS Categories panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAS String</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Created</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unclassified</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low vegetation</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium vegetation</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High vegetation</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low point</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved 8</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rail</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road Surface</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved 12</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overlap points</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Set button
14.15.1.2 Global Set LAS Categories

Position of option on menu:  **Strings => Point clouds => Categories => Global LAS Categories**

This section of documentation is a work in progress and will be updated in subsequent releases.

Selecting **Global LAS Categories** fires up the **Global Set LAS Categories** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data to change</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Created</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unclassified</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low vegetation</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium vegetation</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High vegetation</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road Surface</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved 12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*data selection type - for a full description go to 4.19.3 Data Source.*
<table>
<thead>
<tr>
<th>Feature</th>
<th>Control Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building</td>
<td>tick box</td>
</tr>
<tr>
<td>Low point</td>
<td>tick box</td>
</tr>
<tr>
<td>Model key</td>
<td>tick box</td>
</tr>
<tr>
<td>Water</td>
<td>tick box</td>
</tr>
<tr>
<td>Overlap points</td>
<td>tick box</td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
</tr>
</tbody>
</table>
14.15.1.3 Setting Point Cloud Categories by TIN

Position of option on menu:  Strings => Point clouds => Categories => Set Point cloud categories by tin
Selecting Set Point cloud categories by tin fires up the Point Cloud Set Categories by Tin panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data to change</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source of data to be processed</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin that defines categories</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data to change

The category of each point cloud point is set from the colour of the triangle the point is over, so if red is

colour number 1 within colours.4d, the category becomes ‘1’.

Set

assign categories to cloud string from the selected tin.
14.15.1.4 Setting LAS File Categories by TIN

Position of option on menu: Strings => Point clouds => Categories => Set LAS file categories by tin

Selecting Set LAS file categories by tin fires up the LAS File Set Categories by Tin panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many files</td>
<td>tick box</td>
<td>if ticked</td>
<td>a grid to allow multiple .las files to be set is opened. A wildcard is used to select all the files to be read in.</td>
</tr>
<tr>
<td>Folder</td>
<td>file box</td>
<td>folder</td>
<td>to search for files using the Wildcard.</td>
</tr>
<tr>
<td>Wildcard</td>
<td>input</td>
<td>wildcard</td>
<td>to use in search for files in the given folder.</td>
</tr>
</tbody>
</table>

Use tick box
if ticked, read in the file

Files output
name of the file in the folder

Size output
file size

Tin that defines categories tin box
the category of each point cloud point is set from the colour of the triangle the point is over, so if red is colour number 1 within colours.4d, the category becomes ‘1’.

Set button
assign categories to LAS files from the selected tin.
14.15.1.5 Copying Point Cloud Files by Categories

Position of option on menu:  Strings => Point clouds => Categories => Copy Point cloud by categories
This section of documentation is a work in progress and will be updated in subsequent releases.
Selecting Copy Point cloud by categories fires up the Copy Point Cloud Files by Categories panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data to change</td>
<td>Data source type - for a full description go to <a href="#">4.19.3 Data Source</a></td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target directory</td>
<td>source of data to be processed.</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Categories tab

![Copy Point Cloud Files by Categories](image)

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Visible</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Created</td>
<td>no</td>
</tr>
<tr>
<td>1</td>
<td>Unclassified</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>Ground</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>Low vegetation</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>Medium vegetation</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>High vegetation</td>
<td>no</td>
</tr>
<tr>
<td>6</td>
<td>Building</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>Low point</td>
<td>no</td>
</tr>
<tr>
<td>8</td>
<td>Reserved 8</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>Water</td>
<td>no</td>
</tr>
<tr>
<td>10</td>
<td>Rail</td>
<td>no</td>
</tr>
<tr>
<td>11</td>
<td>Road Surface</td>
<td>no</td>
</tr>
<tr>
<td>12</td>
<td>Reserved 12</td>
<td>no</td>
</tr>
</tbody>
</table>

Target directory: E:\12d_V11.00_Omn\12d_ref_dump_11.00

Button at bottom

Copy button
14.15.1.6 Copying LAS Files by Categories

Position of option on menu:  Strings =>Point clouds =>Categories =>Copy LAS files by categories
This section of documentation is a work in progress and will be updated in subsequent releases.
Selecting Copy LAS files by categories fires up the Copy LAS Files by Categories panel.

![Copy LAS Files by Categories panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Files tab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Many files</td>
<td>many files</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>File to read</td>
<td>file to read</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target directory</td>
<td>target directory</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Categories tab

![Copy LAS Files by Categories window](image)

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Visible</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Crested</td>
<td>no</td>
</tr>
<tr>
<td>1</td>
<td>Unclassified</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>Ground</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>Low vegetation</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>Medium vegetation</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>High vegetation</td>
<td>no</td>
</tr>
<tr>
<td>6</td>
<td>Building</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>Low point</td>
<td>no</td>
</tr>
<tr>
<td>8</td>
<td>Reserved 8</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>Water</td>
<td>no</td>
</tr>
<tr>
<td>10</td>
<td>Rail</td>
<td>no</td>
</tr>
<tr>
<td>11</td>
<td>Road Surface</td>
<td>no</td>
</tr>
<tr>
<td>12</td>
<td>Reserved 12</td>
<td>no</td>
</tr>
</tbody>
</table>

**Target directory**

- Copy
- Finish
- Help

**Button at bottom**

- Copy button
14.15.2 Delete Points

Position of menu: Strings => Point clouds => Delete Points

See

14.15.2.1 Deleting Point Cloud Points by TIN
14.15.2.2 Deleting LAS File Points by TIN
14.15.2.1 Deleting Point Cloud Points by TIN

Position of option on menu:  Strings => Point clouds => Delete Points => Delete Point cloud points by tin

This section of documentation is a work in progress and will be updated in subsequent releases.

Selecting Delete Point cloud points by tin fires up the Point Cloud Delete Points by Tin panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data to change</td>
<td>Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Distance below tin (-ve)</td>
<td>measure box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance above tin (+ve)</td>
<td>measure box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The delete status of each point cloud point is set from the triangle the point is over, so if the point is over a valid triangle, the point is marked as active. Points not over any triangle are marked as deleted.

Note: If 'Distance above tin' is also entered, the point must lie in between the two values for the point to be marked as active.

Note: If 'Distance below tin' is also entered, the point must lie in between the two values for the point to be marked as active.

mark point cloud points as active or deleted according to the data entered above.
14.15.2.2 Deleting LAS File Points by TIN

Position of option on menu:  Strings => Point clouds => Delete Points => Delete LAS file points by tin

This section of documentation is a work in progress and will be updated in subsequent releases.

Selecting Delete LAS file points by tin fires up the LAS File Delete Points by Tin panel.

![LAS File Delete Points by Tin panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many files</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>File to read</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>tin box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

the delete status of each point in the LAS file is set from the triangle the point is over, so if the point is over a valid triangle, the point is marked as active. Points not over any triangle are marked as deleted.

Distance below tin (-ve)  measure box

the delete status of each point in each LAS file is set from the distance relative to the tin, so if the distance is less than the number entered, the point is marked as deleted.

Note: If ‘Distance above tin’ is also entered, the point must lie in between the two values for the point to be marked as active.

Distance above tin (+ve)  measure box

the delete status of each point in each LAS file is set from the distance relative to the tin, so if the distance is greater than the number entered, the point is marked as deleted.

Note: If ‘Distance below tin’ is also entered, the point must lie in between the two values for the point to be marked as active.

Delete                    button

mark point cloud points as active or deleted according to the data entered above.
14.15.3 Cartographic Transform

Position of option on menu: Strings => Point clouds => Cartographic transform

Selecting Cartographic transform brings up the LAS Cartographic panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many files</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td>if ticked, a grid to allow multiple .las files to be read in is opened. A wild card is used to select all the files to be read in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folder</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>folder to search for files using the Wild card</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wildcard</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wild card to use in search for files in the given folder</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### LASfile to read

<table>
<thead>
<tr>
<th>Use</th>
<th>Files</th>
<th>Size (KB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>geelong.las</td>
<td>0.01</td>
</tr>
</tbody>
</table>

**Folder**

**Wildcard**

- **Use**
  - **tick box**
  - if **ticked**, read in the file

- **Files**
  - **output**
  - name of the file in the folder

- **Size**
  - **output**
  - file size

#### X/Y Coordinates to Long/Lat

- **choice box**

#### Long/Lat to X/Y Coordinates

- **choice box**
  - **available projections**
    - if **non-blank**, the cartographic projection to apply to the longitude-latitude values.
    - **If blank**, the co-ordinates are not transformed from (longitude, latitude) to (x,y). Hence the initial (x,y) co-ordinates are transformed to (longitude, latitude) by the transformation given in the **X/Y Co-ordinates to Long/Lat** field and then left in (longitude, latitude). Note that in the southern hemisphere, the latitude values are **negative**.

- **Long/Lat stored as**
  - **choice box**
  - degrees
  - radians
  - decimal degrees

  - format for the longitude and latitudes - either radians, degrees (in **4.17.1 HP Notation** for degrees, minutes and seconds) or decimal degrees.

- **Replace existing files**
  - **tick box**
  - not ticked

- **Target directory**
  - **file box**
  - directory where the file will be saved

- **Transform**
  - **button**
14.15.4 Limiting Cloud Drawing on View

Position of option on menu:  **Strings =>Point clouds =>Limit cloud drawing on view**

Selecting **Limit cloud drawing on view** fires up the **Point Cloud Clipping** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Cloud string</strong></td>
<td>string select</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>X/Y min</strong></td>
<td>measure boxes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>X/Y max</strong></td>
<td>measure boxes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Set</strong></td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Reset</strong></td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
14.15.5 Point Cloud Pinning

Position of option on menu: **Strings => Point clouds => Pin cloud**

The **Point Cloud Pin** option allows a point cloud to be stored in memory rather than read from disk on demand. If on demand, once the point cloud is not needed, it is removed from memory, so this 'pinning' may improve performance.

Selecting **Pin cloud** fires up the **Point Cloud Pin** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud string</td>
<td>select the point cloud string to be pinned or unpinned.</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pin</td>
<td>if ticked, the selected point cloud string will be pinned.</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>runs the option.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
14.16 WMS

Position of option on menu:  **File I/O => WMS**  
Position of option on menu:  **Strings => WMS**

The WMS walk-right menu containing these options is:

For the option **Create** go to  
- 8.6.21.1 Download from a WMS
- 8.6.21.2 WMS Wizard

For the option **Create (Wizard)** go to  
- 8.6.21.2 WMS Wizard

For the option **Edit** go to  
- 8.6.22.1 Edit a WMS Image

For the option **Delete** go to  
- 8.6.22.2 Delete a WMS Image
14.17 Utilities

Position of menu: Strings => Utilities

The Utilities menu contains miscellaneous options involving strings.

The Utilities walk-right menu is

- Set string chainage at a point
- Calculate depth string, report offset & xfall
- Fit lines and arcs
- Remove loops from strings
- Create strings from labelled sections
- Create section from projecting points onto a line

For the option Chainage go to

- Depth string 14.17.2 Depth String
- Linear regression 17.14.7 Linear Regression
- Loop removal 14.17.4 Loop Removal
- Strings from sections 14.17.5 Strings from Sections
- Sections from points 20.14.9 Sections from Points
- Developments 14.17.6 Developments
- On grade 14.17.7 On Grade
- Old editor 14.17.8 Old Editor
14.17.1 Chainage

Position of option on menu: Strings => Utilities => Chainage

The chainage menu option allows the user to specify the start chainage for a string by specifying what the chainage will be at a selected point on the string. The string's start chainage is then adjusted so that the point has the given chainage.

Selecting chainage fires up the chainage at point on string panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old chainage</td>
<td>output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New chainage</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pick button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Old chainage reports the initial chainage of the dropped point.

New chainage the new chainage for the dropped point.

Pick two objects to pick - pick the string to modify the chainage at a point and then pick a point which will be dropped onto the selected string to give the point that will have its chainage modified. The existing chainage on the string of the dropped point is then written to the old chainage panel field.

Set on selecting set, the start chainage is modified so that the chainage at the picked point is the value in the new chainage field. The old chainage field is then updated with the new chainage.

Please continue to the next section 14.17.2 Depth String.
14.17.2 Depth String

Position of option on menu:  Strings => Utilities => Depth string

The depth string option calculates the horizontal and vertical offsets and the cross-fall between two strings and then creates and/or reports on the string.

A reference string is selected which is used to define chainages. Lines perpendicular to the reference string are taken at regular chainages and intersected (in plan) with the first and second strings. The horizontal and vertical offsets and the cross-fall between the two strings are calculated at the intersection points.

On selecting the Depth string option, the Depth string panel is displayed.

![Depth String Panel]

The fields and buttons in this panel are used as follows:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start/End chainage</td>
<td>input</td>
<td></td>
<td>if blank, the start/end chainage of the reference string is used.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>if non-blank, the given chainage is used as the start/end chainage.</td>
</tr>
<tr>
<td>Interval</td>
<td>input</td>
<td></td>
<td>chainage interval to calculate values at.</td>
</tr>
<tr>
<td>Maximum offset</td>
<td>input</td>
<td></td>
<td>if non-blank, the maximum distance to search from the reference string to find the 1st and 2nd strings.</td>
</tr>
<tr>
<td>Model for string</td>
<td>input</td>
<td>available models</td>
<td>if non-blank, a depth string is created and placed in this model.</td>
</tr>
<tr>
<td>Colour for string</td>
<td>input</td>
<td>available colours</td>
<td>the colour for the depth string.</td>
</tr>
<tr>
<td>Report file</td>
<td>input</td>
<td>*.rpt</td>
<td>if non-blank, the file for the offset and cross-fall report</td>
</tr>
</tbody>
</table>
Ref/1st/2nd button

select the reference/first/second string.

Report button

calculate a depth string and produce an offset and cross-fall report on it.

Please continue to the next section 14.17.3 Linear Regression.
14.17.3 Linear Regression

Position of option on menu: Strings => Utilities => Linear regression
Position of option on menu: Survey => Extras => Linear regression
This option is documented in 17.14.7 Linear Regression.
Please continue to the next section 14.17.4 Loop Removal.
14.17.4 Loop Removal

Position of option on menu:  Strings => Utilities => Loop removal

The loop removal option tries to remove loops from strings by adding points where the string self intersects and removing the loops at those points. The level of the added points are the mean of the self intersect points.

Selecting loop removal fires up the loop removal panel.

![Loop Removal Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loopy string</td>
<td>pick the string to try and remove loops from.</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good point</td>
<td>If the automatic loop removal is incorrect, pick a good point on the string.</td>
<td>xyz box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for string</td>
<td>model for the processed string to go to.</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>try and remove string points from the loops in the string.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please continue to the next section 14.17.5 Strings from Sections.
14.17.5 Strings from Sections

Position of option on menu:  Strings => Utilities => Strings from sections

The strings from sections option creates strings by joining the common named points on successive 4d strings (usually generated as sections). This option is documented under Design => X-Sections => Strings from Sections.

Please go to the section 20.14.8 Strings from Sections.
14.17.6 Developments

Position of menu:  **Strings => Utilities => Developments**

Some of the options under **string utilities** are still under development, or are being phased out (Cogo (trial)) and won’t be documented or released until future versions of **12d Model**. The current options on the **Developments** menu are
14.17.7 On Grade

Position of option on menu: Survey => Extras => On grade
Position of option on menu: Strings => Utilities => On grade
For Information on this option please go to 17.14.9 On Grade in the section 17.14 Extras
14.17.8 Old Editor

Position of option on menu: Strings => Utilities => Old Editor

This section of documentation is a work in progress and will be updated in subsequent releases. Selecting Old editor brings up the Edit String Old panel.

![Edit String Old Panel](image_url)
14.18 User

Position of option on menu: Strings => User

The walk-right menu Strings => User has extra macro options. These could be from 12d Solutions or users. The User Strings walk-right menu is

![User Strings menu]

For the option Attribute Editor, go to

- Get length in 3d  
- Head to tail closest points  
- Name strings using text strings  
- Remove tinability  
- Scale text values  
- Scale string names  
- Set string names by number  
- Set string properties  
- Sum length of all strings view/model  
- Super string audit  
- Super string dimension occurrences  
- Super string to v3.2 strings  
- Translate string in section view

Edit the top 10 attributes
Calculates 3d length

For the option Attribute Editor, go to

- 14.18.1 Attribute Editor
- 29.3.14 Length in 3d
- 29.3.15 XXX Head to Tail Closest Points
- 29.3.21 XXX Name Section Strings by Picking Text
- 29.3.26 XXX Remove Tinability
- 29.3.28 XXX Scale Text Values
- 29.3.29 XXX Scale String Names
- 29.3.30 XXX Set String Names by Number
- 29.3.31 XXX String Operations
- 29.3.36 Total Length of Strings
- 29.3.37 XXX Super String Dimension Occurrences
- 29.3.37 XXX Super String Dimension Occurrences
- 29.3.38 XXX Transform V4 to V3.2
- 29.3.39 XXX Section Move
14.18.1 Attribute Editor

On selecting the Attribute editor, the Top 10 Attribute Editor panel is displayed.

This option displays ten (10) attributes of type string, vertex or segment for a selected string. This option was written before the Strings => Properties => Attributes editor existed and was mainly used for editing drainage data. For more documentation, go to 23.10.2 Attribute Editor.

Most of the detailed catchment data is stored within 12d as user defined attributes. These attributes are automatically created by 12d when required but you are free to change them or add more as desired. The attributes may be exported to a spreadsheet and edited and then imported back into 12d or edited inside 12d using this panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>pick string</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Select Pick to select the string that contains the user attributes (the drainage string). The strings will be highlighted in white when they are selected.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>string-pit-pipe</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All catchment data is stored with the pits in drainage strings. To access the pit attributes, select the drop down icon and then select Pit. A circle will be drawn around the pit selected. Next and Prev will now move you from pit to pit.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>attribute name</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select the drop down icon and then select the Attribute Name from the list of existing user defined attributes. These attributes include all of the attributes in the model that the string exists in.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 top 10 attributes lists are maintained (pit, pipe and string). The attributes that you can select from are all of the attributes that exist on all of the strings in the model. If the attribute does not exist for the string/pit/pipe that you are displaying the data field will display Not found.
**type**  
choice box  

*for existing attributes this will display Text, Real or Integer.*  
*When defining a new attribute select the type of data to be stored in the attribute*

**data**  
input box  

*the data stored in the attribute is displayed/edited/created in this field.*

**< prev**  
button  

*move to next string in the model pit on the string pipe on the string*

**next =>**  
button  

*move to next string in the model pit on the string pipe on the string*

**process**  
button  

*updates the attributes displayed in the dialogue.*

**Notes:**

First select Pick to select the string that contains the user attributes. All catchment data is stored with the pits in drainage strings. The strings will be highlighted in white when they are selected.  
To access the pit attributes LB this field then select Pit. A circle will be drawn around the pit selected.  
LB the Attribute Name field and then select from the list of existing user defined attributes. These attributes include all of the attributes in the model that the string exists in. They may not be defined for the string you are editing. If the string does not have that attribute defined not found will be displayed in the Data field.  
To change the value for the attribute enter the new value in the data field. If the attribute does not exist, deleting the not found text and adding data will create it. The following message will be displayed whenever you are creating a new attribute.  

For more documentation on setting the attributes for this option, go to 23.10.2 Attribute Editor
14.19 Delete

Position of option on menu: Strings => Delete

Entire strings can be deleted from 12d Model using the delete option.

Any number of strings can be deleted by successively selecting the strings.

On selecting the delete string option, the strings delete panel is displayed.

Field Description       Type       Defaults       Pop-Up
Pick & Delete           button     any selected strings are deleted.

The cycle is terminated by clicking RB to raise the pick ops menu and selecting cancel from it.
14.20 Old String Create and Editors
14.20.1 Old

Position of option on menu: Strings => Create => Old

These old options are the string creation options that were available before 12d Model 8 was released. The Create option is used to produce new strings. If a string already exists, the Editor option is used to modify it.

The Create walk-right menu contains options to create 2d, 3d, 4d, alignment, super alignment, circles, arcs, feature, pipe, polyline, super and text strings.

Each string type has its own special information so by choosing the appropriate type to be created, only information needed for that type of string is asked for.

Once a string has been created, it can be converted to most of the other string types using the string Convert option.

To create a new string of the same type and with similar header information as an existing string, the same as option is selected from the String Create menu.

Notes

1. Depending on its breakline (point-line) type, a string with default style ("1") is displayed with crosses at each of its vertex (point type) or with straight lines joining the vertices (line type).

Linetyles can be defined that drawn lines between the points even though the breakline type is point.

2. The string vertices are also called intersection points (IP's).

The String Create Old walk-right menu is

The string creation process is similar for each string type and for editing strings as well.

For the option Alignments, go to 14.20.1.1 Alignments

<table>
<thead>
<tr>
<th>String Type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2d</td>
<td>14.20.1.2 Create - 2d (pre V8)</td>
</tr>
<tr>
<td>3d</td>
<td>14.20.1.3 Create - 3d (pre V8)</td>
</tr>
<tr>
<td>4d</td>
<td>14.20.1.4 Create - 4d (Pre V8)</td>
</tr>
<tr>
<td>Pipe</td>
<td>14.20.1.5 Create - Pipe (Pre V8)</td>
</tr>
<tr>
<td>Polyline</td>
<td>14.20.1.6 Create - Polyline (Pre V8)</td>
</tr>
</tbody>
</table>

14.20.1.1 Alignments

Position of menu: Strings => Create => Old => Alignments

The Alignment walk-right menu contains options to create an alignment string, plus quick methods of creating an alignment string with horizontal geometry already created for culdesacs, circles and fillets.
For the option Alignment, go to 14.20.1.1.1 Create - Alignment, Culdesac 14.20.1.1.2 Create - Culdesac, 3 centre curve 14.20.1.1.3 Create - Three centre curve, Circle 14.20.1.1.4 Create - Circle, Fillet 14.20.1.1.5 Create - Fillet, Traffic island 20.8.9.1 Create Traffic Island, Traffic island profile/tin 20.8.9.2 Traffic Island Profile/Tin.

14.20.1.1.1 Create - Alignment
Position of option on menu: Strings => Create => Old => Alignments => Alignment

An alignment string is defined by specifying both its horizontal and vertical geometry. The horizontal geometry consists of a series of (x,y) points (called horizontal intersection points) with circular curves and transition spirals applied to the intersection points. Vertical geometry also consists of a series of points but they are defined with respect to the plan length of the string (chainage) and height. Hence, the vertical geometry is defined by a series of (chainage,height) points (called vertical intersection points) and either parabolic or circular curves applied to the vertical intersection points.

The horizontal geometry is defined in a plan view and the vertical geometry in a section view. Alignment strings are often referred to as "centre-line strings" because road centre-lines are common examples of alignment strings.

Note vertical geometry can only be added to an existing string.

The Many strings tick-box is used when more than one string of the same type is to be created. If many strings is set to tick, when the current string creation is Finished or Quit, a new Create Alignment String panel is placed on the screen with the same information in it as the string just created. If any of the information needs to be modified for the new string, simply change it in the Create Alignment String panel fields before selecting the Create button for the new string. Hence a new string of the same type can be created without going back to the Create menu.

The Same as button is used to obtain information from and existing string (not necessarily of the same type) and pipe it into the name, colour, model, style breakline type and height field of the Create Alignment String panel.

On selecting the Alignment string option, the Create Alignment String panel is displayed.
To create a new alignment string, the name, model, colour, style and transition spiral type of the new string are entered into the appropriate fields and the Create button selected.

The new fields and buttons used in the Create Alignment String panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the name of the new string</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the model that the new string is in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>input</td>
<td>default colour</td>
<td>available colours</td>
</tr>
<tr>
<td></td>
<td>the colour of the new string</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Style</td>
<td>input</td>
<td>1</td>
<td>available line styles</td>
</tr>
<tr>
<td></td>
<td>line style of the string</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>thickness of the string</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transition type</td>
<td>input</td>
<td>clothoid</td>
<td>clothoid, cubic parabola, westrail-cubic, cubic spiral</td>
</tr>
<tr>
<td></td>
<td>transition (for example clothoid spiral) to be used for this alignment string</td>
<td></td>
<td>For more information see 39.2.7.5 Transitions and Spirals File.</td>
</tr>
<tr>
<td>Many strings</td>
<td>tick</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked then after the current string is finished, a new create panel is placed on the screen with all the same values for the panel fields as the current string</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>After the create button is chosen, the alignment edit menu and alignment edit info panel are</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
displayed.

**Same as** button

*After the same as button is chosen, another string is selected and information about it is used for the fields in this panel.*

### 14.20.1.1.1 Alignment Edit

Selecting the create button in the create alignment string panel the alignment edit menu and alignment edit info panel are placed on the screen.

The Alignment edit menu and Alignment edit info panel for an alignment string are

![Alignment Edit Menu and Alignment Edit Info Panel](image)

To begin creating an alignment string, the user must select the Append=>HIPs option from the Alignment Edit menu and start placing points in a plan view.

To create a new alignment string, select the Append => HIPs option from the Alignment Edit menu.

The Append =>HIPs option is used to add horizontal intersection points to either end of an existing alignment string, or in the case of a new string, places the 1st point and then begins appending points to the 1st point.

For all alignment strings, a cross is then drawn in each plan view that the string's model is on, and the cross follows the cursor around the screen. If the string's model is not added to any plan view, the model is automatically added to all plan views.

After the cross is on the screen (moving with the cursor), clicking LB and accepting with MB selects the 1st vertex of the string (using the appropriate snaps).

The string is then drawn from the 1st vertex to the cursor position, which represents the second vertex of the string. Clicking LB and accepting with MB selects the second string vertex and the process repeats for subsequent string vertices.

Now that the string is created, all the edit option on the string's Alignment Edit menu are usable.

The options in the Alignment Edit menu are not only used for placing the initial vertices of the string, but for editing the string once it is created. Since the Append and other options in the Alignment edit menu are identical to the options used when editing an existing string, they will be discussed in detail in the string Editor section.

For full information on the Alignment Editor, go to the section 14.20.2 Alignment Edit.
### 14.20.1.1.2 Create - Culdesac

**Position of option on menu:**  Strings => Create => Old => Alignments => Culdesac

Create an alignment string for a culdesac for user defined road widths, culdesac radius and offset. No vertical geometry is defined.

On selecting the **Culdesac** option, the **Culdesac Alignment Creation** panel is displayed.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset</td>
<td>input box</td>
<td></td>
<td>offset of the centre of the culdesac bulb. Use a negative value if the offset is to the left, positive if the offset is to the right.</td>
</tr>
</tbody>
</table>

![Culdesac Alignment Creation Panel](image)
Radius    input box
radius of the culdesac bulb

Left/Right fillet radii    input box
radii for the left and right fillets from the roads to the culdesac bulb.

Left/Right road widths    input box
left and right widths of the road.

Name/Model/Colour/Style    input box
name/model/colour/style of the created alignment string.

Select    string select
select with direction the string to create the culdesac for.

Preview    string select
draw the culdesac with the given parameters in the panel draw box.

Process    button
create the alignment string

Undo    button
undo the last alignment string created whilst the panel has been active.
14.20.1.1.3 Create - Three centre curve

Position of option on menu: **Strings => Create => Old => Alignments => 3 Centre Curve**

Create an alignment string for a three centred curve for user defined parameters and selected strings.

On selecting the *3 centre curve* option, the **3 centred curve construction** panel is displayed.

![3-Centred Curve Super Alignment](image)

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name/Model/Colour/Style</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>R1 (intermediate)</strong></td>
<td>input box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| radius of the intermediate curve. If a value is entered and <enter> typed, values for R2, R3, S and S1 are computed and placed in the appropriate fields.
| **R2 (approach)**          | input box     |          |        |
| radius of the approach curve.
| **R3 (departure)**         | input box     |          |        |
| radius of the departure curve.
| **S (offset)**             | input box     |          |        |
| approach offset.
| **S1 (offset)**            | input box     |          |        |
| departure offset.          |
Kerb line approach  string select
    select the approach string
Kerb line departure string select
    select the departure string
Process button
    create the alignment string
Undo button
    undo the last alignment string created whilst the panel has been active.
14.20.1.1.4 Create - Circle

Position of option on menu:  Strings =>Create =>Old =>Alignments =>Circle

Create an alignment string for a circle with a user radius and selected centre or with a dynamic mode set, selected centre and interactively positioned circumference.

On selecting the curve option, the circle alignment construction panel is displayed.

The diagram indicates what the panel fields are for. Tool tips appear when the cursor is passed over the panel fields.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the radius of the circle.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centre pick x,y</td>
<td>x,y,z box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if Dynamic in not ticked, select the centre of the circle.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name/Model/Colour/Style</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
name/model/colour/style of the created alignment string.

Dynamic tick box

if not ticked, then the Centre pick x,y and radius fields are used to define the circle.

if ticked, then the Pick button is used to select the centre and then the cursor is taken to be on the circle to dynamically define the radius.

Pick button

pick the circle centre when in dynamic mode.

Process button

create the alignment string.

Undo button

undo the last alignment string created whilst the panel has been active.
14.20.1.1.5 Create - Fillet

Position of option on menu:  Strings =>Create =>Old =>Alignments =>Fillet

Create an alignment string for a fillet with a for user radius and selected in and out strings.

On selecting the fillet option, the fillet alignment construction panel is displayed.

![Fillet Alignment Construction Panel](image)

The diagram indicates what the panel fields are for. Tool tips appear when the cursor is passed over the panel fields.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select 1</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>select the approach string. Pick with direction.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>the radius of the fillet.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select 2</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>select the departure string. Pick with direction.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name/Model/Colour/Style</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>name/model/colour/style of the created alignment string.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
create the alignment string.

Undo button

undo the last alignment string created whilst the panel has been active.
14.20.1.1.6 Create - Traffic Island

Position of option on menu:  Strings =>Create =>Old =>Alignments =>Traffic Island

Create an alignment string for a traffic island between user selected strings and with user defined offsets from the strings and nose radii. No vertical geometry is defined.

On selecting the traffic island option, the traffic island alignment creation panel is displayed.

The position of the panel fields indicate what the values are for. Tool tips appear when the cursor is passed over the panel fields.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset from travel lines</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>offset distance from the selected travel lines.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius at nose</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>radius of the corner of the traffic island between the selected travel lines.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Name/Model/Colour/Style  input box
    name/model/colour/style of the created alignment string.

Select  strings select
    select in order and with direction, the three strings to use in creating the traffic island. Terminate by clicking RB and selecting cancel from the pick ops menu.

Preview  string select
    draw the traffic island with the given parameters in the panel draw box.

Process  button
    create the alignment string

Undo  button
    undo the last alignment string created whilst the panel has been active.
14.20.1.2 Create - 2d (pre V8)

Position of option on menu:  Strings =>Create =>Old =>2d

A 2d string consists of a series of (x,y) vertices all with the same z-value (height). 2d strings are often referred to as “contour strings” because contours are the most common example of a string with a constant height.

The Many strings tick-box is used when more than one string of the same type is to be created. If many strings is set to tick, when the current string creation is Finished or Quit, a new Create 2d String panel is placed on the screen with the same information in it as the string just created. If any of the information needs to be modified for the new string, simply change it in the Create 2d String panel fields before selecting the Create button for the new string. Hence a new string of the same type can be created without going back to the Create menu.

The Same as button is used to obtain information from and existing string (not necessarily of the same type) and pipe it into the name, colour, model, style breakline type and height field of the Create 2d String panel.

From 12d Model 8 onwards, the default is to create 2d super strings rather than the 2d strings used up to 12d Model 7. A 2d super string is a super string with Constant height. That is, there is only one z-value for the entire string. The advantage is using a 2d super string is that all the CAD options will work for it and it can be given point id’s for setout.

On selecting the 2d string option, the create 2d string panel is displayed.

![Create 2d String Panel]

The default values for the panel fields are taken from the CAD Controlbar (see 15.1 Controlbars).

To create a new 2d string, the name, colour, model, point-line type and height of the new string are entered into the appropriate fields and the Create button selected.

The new fields and buttons used in the create 2d string panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the name of the new string.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>input</td>
<td></td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the model that the new string is in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>input</td>
<td></td>
<td>default colour</td>
<td>available colours</td>
</tr>
<tr>
<td></td>
<td>the colour of the new string.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>input</td>
<td>line</td>
<td>line, point</td>
<td></td>
</tr>
<tr>
<td></td>
<td>breakline type (point-line type) of the string.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**Style**
input 1

*line style of the string.*

**Weight**
input 0

*thickness of the string.*

**Height**
input

*height (z-value) of the entire string.*

**Many strings**
tick

*if ticked then after the current string is finished, a new create panel is placed on the screen with all the same values for the panel fields as the current string.*

**Create**
button

*After the create button is chosen, the 2d edit menu and 2d edit info panel are displayed.*

**Same as**
button

*After the same as button is chosen, another string is selected and information about it is used for the fields in this panel.*

**Finish**
button

*end the option, don’t proceed to the edit stage.*

### 14.20.1.2.1 2d Edit for New String

On selecting the **Create** button in the **Create 2d String** panel the **2d edit** menu and **2d Edit Info** panel are placed on the screen.

The **2d edit** menu for a 2d string is

*append or prepend an IP*

*move an IP*

*insert an IP*

*insert IP on line joining IPs*

*delete an IP*

*extend an IP*

*modify the string's z-value*

*open a closed string*

*close a string*

*bring up Properties panel*

*toggle edit info panel*

*undo/redo*

*quit the create*

*finish the 2d create*

To create a new 2d string, select the **Append** option from the **2d Edit** menu.

The **Append** option is used to add points to either end of an existing string, or in the case of a new string, places the 1st point and then begins appending points to the 1st point.

For all 2d strings, a cross is then drawn in each plan view that the string's model is on, and the cross follows the cursor around the screen. If the string's model is not added to any plan view, the model is automatically added to all plan views.

After the cross is on the screen (moving with the cursor), clicking LB and accepting with MB selects the 1st vertex of the string (using the appropriate snaps).

The string is then drawn from the 1st vertex to the cursor position, which represents the 2nd vertex of the string. Clicking LB and accepting with MB selects the second string vertex and the process repeats for subsequent string vertices.
Now that the string is created, all the edit option on the string’s 2d Edit menu are usable.

The options in the 2d Edit menu are not only used for placing the initial vertices of the string, but for editing the string once it is created. Since the Append and other options in the 2d Edit menu are identical to the options used when editing an existing string, they will be discussed in detail in the string Editor section.

For full information in the 2d Editor, go to the section 14.20.3 2d Edit - Old
14.20.1.3 Create - 3d (pre V8)

Position of option on menu:  Strings => Create => Old => 3d

A 3d string consists of a series of (x,y,z) points.

The difference between a 2d and a 3d string is that for a 3d string, the z-value (height) can vary at each string point, whereas a 2d string has a constant height for the entire string. Hence a 2d string is simply a special case of a 3d string where the heights at all the points are the same.

Creating and editing a 3d string is very similar to a 2d string. The only major difference is that a height is required at each string point.

The Many strings tick-box is used when more than one string of the same type is to be created. If many strings is set to tick, when the current string creation is Finished or Quit, a new Create 3d String panel is placed on the screen with the same information in it as the string just created. If any of the information needs to be modified for the new string, simply change it in the Create 3d String panel fields before selecting the Create button for the new string. Hence a new string of the same type can be created without going back to the Create menu.

The Same as button is used to obtain information from and existing string (not necessarily of the same type) and pipe it into the name, colour, model, style breakline type and height field of the Create 3d String panel.

On selecting the 3d string option, the create 3d string panel is displayed.

![Create 3d String Panel](image)

To create a new 3d string, the name, colour, model and point-line type of the new string are entered into the appropriate fields and the create button selected.

To create a new 2d string, the name, colour, model, point-line type and height of the new string are entered into the appropriate fields and the Create button selected.

The new fields and buttons used in the create 3d string panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>input</td>
<td>the name of the new string.</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>input</td>
<td>default colour</td>
<td></td>
</tr>
<tr>
<td>Style</td>
<td></td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>input</td>
<td>line, point</td>
<td></td>
</tr>
</tbody>
</table>

breakline type (point-line type) of the string.
Chapter 14  Strings

Old String Create and Editors

Style
input 1 available line styles
*line style of the string.*

Weight
input 0
*thickness of the string.*

Many strings
*if ticked then after the current string is finished, a new create panel is placed on the screen with all the same values for the panel fields as the current string.*

Create
button
*After the create button is chosen, the 3d edit menu and 3d edit info panel are displayed.*

Same as
button
*After the same as button is chosen, another string is selected and information about it is used for the fields in this panel.*

14.20.1.3.1 3d Edit

Selecting the create button in the create 3d string panel the 3d edit menu and 3d edit info panel are placed on the screen.

The 3d edit menu and panel for a 3d string are

![3d Edit Menu](image)

To create the new 3d string, select the Append option from the 3d Edit menu.

The Append option is used to add points to either end of an existing string, or in the case of a new string, places the 1st point and then begins appending points to the 1st point.

For all 3d strings, a cross is then drawn in each plan view that the string's model is on, and the cross follows the cursor around the screen. If the string's model is not added to any plan view, the model is automatically added to all plan views.

After the cross is on the screen (moving with the cursor), clicking LB and accepting with MB selects the 1st vertex of the string (using the appropriate snaps).

The string is then drawn from the 1st vertex to the cursor position, which represents the second vertex of the string. Clicking LB and accepting with MB selects the second string vertex and the process repeats for subsequent string vertices.

Now that the string is created, all the edit option on the string’s 3d Edit menu are usable.

The options in the 3d Edit menu are not only used for placing the initial vertices of the string, but for editing the string once it is created. Since the Append and other options in the 3d edit menu are identical to the options used when editing an existing string, they will be discussed in detail in the
string Editor section.
For full information in the 3d Editor, go to the section 14.20.4 3d Edit - Old
14.20.1.4 Create - 4d (Pre V8)

Position of option on menu:  Strings =>Create =>4d

A 4d string consists of a series of (x,y,z) points and a text label at each point.

Creating and editing a 4d string is very similar to a 3d string.- the major difference is that a height and a text label is required at each string point.

The Many strings tick-box is used when more than one string of the same type is to be created. If many strings is set to tick, when the current string creation is Finished or Quit, a new Create 4d String panel is placed on the screen with the same information in it as the string just created. If any of the information needs to be modified for the new string, simply change it in the Create 4d String panel fields before selecting the Create button for the new string. Hence a new string of the same type can be created without going back to the Create menu.

The Same as button is used to obtain information from and existing string (not necessarily of the same type) and pipe it into the name, colour, model, style breakline type and height field of the Create 4d String panel.

On selecting the 4d string option, the create 4d string panel is displayed.

To create a new 4d string, the name, colour, model, point-line type, text size and units, offset, justification and angle for the new string are entered into the appropriate fields and the create button selected.

The new fields and buttons used in the create 4d string panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>input the name of the new string.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>input name of the model that the new string is in.</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>input the colour of the new string.</td>
<td>input</td>
<td>default colour</td>
<td>available colours</td>
</tr>
<tr>
<td>Type</td>
<td>input breakline type (point-line type) of the string.</td>
<td>input</td>
<td>line, point</td>
<td></td>
</tr>
<tr>
<td>Style</td>
<td>input line style of the string.</td>
<td>input</td>
<td>1</td>
<td>available line styles</td>
</tr>
</tbody>
</table>
Weight

input 0

thickness of the string.

Textstyle info

input
textstyle information.

Many strings

tick

if ticked then after the current string is finished, a new create panel is placed on the screen with all the same values for the panel fields as the current string.

Create

button

After the create button is chosen, the 4d edit menu and 4d edit info panel are displayed.

Same as

button

After the same as button is chosen, another string is selected and information about it is used for the fields in this panel.

14.20.1.4.1 4d Edit

Selecting the create button in the create 4d string panel the 4d edit menu and 4d edit info panel are placed on the screen.

The 4d edit menu and panel for a 4d string are

To create a new 4d string, the user must select one of the two Append options on the Append walk-right of the 4d Edit menu which has options to simply create points or to create points and text at the points.

The Append and Append + text options are used to add points and text (in a plan view) to either end of an existing string, or in the case of a new string, places the 1st point and text and then begins appending points and text to the 1st point.

For all 4d strings, a cross is then drawn in each plan view that the string's model is on, and the cross follows the cursor around the screen. If the string's model is not added to any plan view, the model is automatically added to all plan views.

After the cross is on the screen (moving with the cursor), clicking LB and accepting with MB selects the 1st vertex of the string (using the appropriate snaps).

If Append + text was selected, the user will then be prompted for the text to be placed at that points.

The string and text is then drawn from the 1st vertex to the cursor position, which represents the second vertex of the string. Clicking LB and accepting with MB selects the second string vertex and the process repeats for subsequent string vertices.
Now that the string is created, all the edit option on the string's 4d Edit menu are usable.

The options in the 4d Edit menu are not only used for placing the initial vertices of the string, but for editing the string once it is created. Since the Append and other options in the 4d edit menu are identical to the options used when editing an existing string, they will be discussed in detail in the string Editor section.

For full information in the 4d Editor, go to the section 14.20.5 4d Edit - Old
14.20.1.5 Create - Pipe (Pre V8)

Position of option on menu: Strings => Create => Old => Pipe

A pipe string is the same as a 3d string except that the pipe string also has a diameter hence the options for creating and editing a pipe string are almost the same as for a 3d string.

The main difference is that there are no options to open and close a pipe string and there is an additional option for modifying the pipe diameter.

The Many strings tick-box is used when more than one string of the same type is to be created. If many strings is set to tick, when the current string creation is Finished or Quit, a new Create Pipe String panel is placed on the screen with the same information in it as the string just created. If any of the information needs to be modified for the new string, simply change it in the Create Pipe String panel fields before selecting the Create button for the new string. Hence a new string of the same type can be created without going back to the Create menu.

The Same as button is used to obtain information from an existing string (not necessarily of the same type) and pipe it into the name, colour, model, style breakline type and height field of the Create Pipe String panel.

On selecting the Pipe string option, the Create Pipe String panel is displayed.

To create a new pipe string, the name, colour, model, point-line type and diameter of the new string are entered into the appropriate fields and the create button selected.

The new fields and buttons used in the create pipe string panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>the name of the new string.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>name of the model that the new string is in.</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>the colour of the new string.</td>
<td>input</td>
<td>default colour</td>
<td>available colours</td>
</tr>
<tr>
<td>Style</td>
<td>line style of the string.</td>
<td>input</td>
<td>1</td>
<td>available line styles</td>
</tr>
</tbody>
</table>
Weight  
*thickness of the string.*

Diameter  
*diameter of the pipe*

Justify  
invert, centre, overt  
*justification of the pipe with respect to the co-ordinates given for the pipe string.*

Many strings  
*tick  
if ticked then after the current string is finished, a new create panel is placed on the screen with all the same values for the panel fields as the current string.*

Create  
*button  
After the create button is chosen, the pipe edit menu and pipe edit info panel are displayed.*

Same as  
*button  
After the same as button is chosen, another string is selected and information about it is used for the fields in this panel.*

### 14.20.1.5.1 Pipe Edit

On selecting the **Create** button in the **Create Pipe String** panel the **Pipe Edit** menu and **Pipe Edit info** panel are placed on the screen.

The **Pipe Edit** menu and panel for a pipe string are

To create a new pipe string, select the **Append** option from the **Pipe Edit** menu.

The **Append** option is used to add points to either end of an existing string, or in the case of a new string, places the 1st point and then begins appending points to the 1st point.

For all pipe strings, a cross is then drawn in each plan view that the string's model is on, and the cross follows the cursor around the screen. If the string's model is not added to any plan view, the model is automatically added to all plan views.

After the cross is on the screen (moving with the cursor), clicking LB and accepting with MB selects the 1st vertex of the string (using the appropriate snaps).

The string is then drawn from the 1st vertex to the cursor position, which represents the second vertex of the string. Clicking LB and accepting with MB selects the second string vertex and the process repeats for subsequent string vertices.

Now that the string is created, all the edit option on the string’s **Pipe Edit** menu are usable.

The options in the **Pipe Edit** menu are not only used for placing the initial vertices of the string, but for editing the string once it is created. Since the **Append** and other options in the **Pipe Edit** menu
are identical to the options used when editing an existing string, they will be discussed in detail in the string Editor section.
For full information in the Pipe Editor, go to the section 14.20.6 Pipe Edit - Old.
14.20.1.6 Create - Polyline (Pre V8)

Position of option on menu:  Strings => Create => Old => Polyline

A polyline string is similar to a 3d string except that it can have either straight lines or arcs joining the (x,y,z) points of the string. The arcs are plan arcs with possibly a different z at either end and the z values are linearly interpolated between the end points. Hence in a long section, the end points are joined by a straight lines for both line and arc segments of the polyline.

Creating and editing a polyline string is very similar to a 3d string. The only major difference is that a radius is required at each string segment (a radius of 0 means no arc, just a straight line).

The Many strings tick-box is used when more than one string of the same type is to be created. If many strings is set to tick, when the current string creation is Finished or Quit, a new Create Polyline String panel is placed on the screen with the same information in it as the string just created. If any of the information needs to be modified for the new string, simply change it in the Create Polyline String panel fields before selecting the Create button for the new string. Hence a new string of the same type can be created without going back to the Create menu.

The Same as button is used to obtain information from and existing string (not necessarily of the same type) and pipe it into the name, colour, model, style breakline type and height field of the Create Polyline String panel.

On selecting the polyline string option, the create polyline string panel is displayed.

To create a new polyline string, the name, colour, model, point-line type and linestyle of the new string are entered into the appropriate fields and the create button selected.

The new fields and buttons used in the create pipe string panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>input</td>
<td></td>
<td>the name of the new string.</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>input</td>
<td></td>
<td>name of the model that the new string is in.</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>input</td>
<td>default colour</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td>Style</td>
<td>input</td>
<td>1</td>
<td>available line styles</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>input</td>
<td>0</td>
<td>thickness of the string.</td>
<td></td>
</tr>
</tbody>
</table>
Many strings tick
if ticked then after the current string is finished, a new create panel is placed on the screen with all the same values for the panel fields as the current string.

Create button
After the create button is chosen, the polyline edit menu and polyline edit info panel are displayed.

Same as button
After the same as button is chosen, another string is selected and information about it is used for the fields in this panel.

14.20.1.6.1 Polyline Edit

Selecting the create button in the create polyline string panel the polyline edit menu and polyline edit info panels are placed on the screen.

To create a new polyline string, the user must select one of the two append options (Append or Append + radius) on the Append walk-right of the Polyline Edit menu. The which Append option to simply creates points which are joined by a straight segment whereas the Append + radius create points with a radius for the segment.

The Append options are used to add points to either end of an existing string, or in the case of a new string, places the 1st point and then begins appending points to the 1st point.

For all polyline strings, a cross is then drawn in each plan view that the string's model is on, and the cross follows the cursor around the screen. If the string's model is not added to any plan view, the model is automatically added to all plan views.

After the cross is on the screen (moving with the cursor), clicking LB and accepting with MB selects the 1st vertex of the string (using the appropriate snaps).

If Append + radius was selected, the user will then be prompted for the radius of the segment being placed.

The string is then drawn from the 1st vertex to the cursor position, which represents the second vertex of the string. Clicking LB and accepting with MB selects the second string vertex and the process repeats for subsequent string vertices.

Now that the string is created, all the edit option on the string's Polyline Edit menu are usable.

The options in the Polyline Edit menu are not only used for placing the initial vertices of the string, but for editing the string once it is created. Since the Append and other options in the Polyline Edit menu are identical to the options used when editing an existing string, they will be discussed in detail in the string Editor section.

For full information in the Polyline Editor, go to the section 14.20.7 Polyline Edit - Old
14.20.2 Alignment Edit

Position of option on menu: Strings => Editor

An alignment string is defined by specifying the horizontal and vertical geometry as separate operations. The horizontal geometry consists of a series of (x,y) points (called horizontal intersection points, HIP’s) and circular curves and transitions (e.g. clothoid spiral) applied to the intersection points.

Vertical geometry also consists of a series of points but they are defined with respect to the plan length of the string (chainage) and height. Hence, the vertical geometry is defined by a series of (chainage,height) points called vertical intersection points (VIP’s) and parabolic or circular curves applied to the vertical intersection points.

The horizontal geometry is defined in a plan view and the vertical geometry in a section view. Hence the alignment string editor can edit information for the string on both plan and section views.

Since a section view is only defined in relation to a specific string (called the primary string for the section view), the vertical geometry of the picked string can only be edited in a section view if the string is the primary string for that section view. That is, the string can only be edited on a section view if the string being edited is profiled on that section view.

On selecting an alignment string, the alignment edit menu and the alignment edit info are placed on the screen.

Most of the options are applicable to either horizontal or vertical geometry. The meaning of the option depends on whether the string is being edited in a plan or a section view. Hence the description of the option will often need to be split into its separate action on horizontal or vertical geometry.

See the earlier section 14.4.1 Super String Edit - Common Information for general information about editing strings.

Each option will now be discussed in detail.

Go to 14.20.2.1 Alignment Append
14.20.2.1 Alignment Append

The append operation for an alignment string is similar to the 3d string case except that there are separate append options for the horizontal and vertical geometry of the string.

The append walk-right is

![Append Walk-right](image)

14.20.2.1.1 Append HIPs - Horizontal Geometry

The append=>HIPs option in a plan view is used to create the 1st horizontal point in a new alignment string, to append a new horizontal intersect point to the end of the string or to prepend a new horizontal intersection point to the beginning of the string. In this option, both appending and prepending will be referred to as appending.

#### 14.20.2.1.1.1 Existing Alignment String

Appending a point is a two step process.

- **Step (a) - selecting the end to append the point to.**
  
  After picking append=>HIPs, the end of the string to append the point to is selected. Once the string end is selected, the new intersection point is assumed to be at the current cursor position. As the cursor is moved, the string is redrawn reflecting the changing position of the appended intersection point.

  - **message area 1** <Append Points>
  - **message area 2** IP point number, x, y, z co-ords of IP
  - **message area 3** bearing-in, bearing out, bearing difference for an IP
  - **message area 4** select final position - after pick

  Screen message area
  
  <Select string end to append to> [picks][menu]
  <Select final position of point> [picks][accepts][menu]

- **Step (b) - selecting the position for the new appended point.**
  
  A cross indicates where the cursor currently is. The position of the new appended point is set to the current cursor position by picking (LB) and accepting (MB).

  - **message area 1** <Append Points>
  - **message area 2** IP point number, x, y, z co-ords of IP
  - **message area 3** bearing-in, bearing out, bearing difference for closest IP
  - **message area 4** select final position - before pick

  Screen message area
  
  <Select final position of point> [picks][menu]
  <Select final position of point> [picks][accepts][menu]

Once an intersection point has been appended to the string, the appended intersection point is considered to be the selected string end and a new append cycle begins. That is, stage (a) is
already set up. The current cursor position indicates the new position of the next appended intersection point.

Hence a series of string points is easily entered by first selecting the string end that the new points are to be appended to (step (a)) and then moving the cursor to the position of each new point in turn and selecting them in turn.

**Typed input** can be used in either step.

The **append** option is terminated by either bringing up the **pick ops** menu and selecting **cancel** or by selecting a new option from the **alignment edit** menu.

If, after bringing up the **pick ops** menu, it is decided to continue with the append option, simply select the **restart** option from the **pick ops** menu and the **pick ops** menu will disappear leaving the append option still current.

### 14.20.2.1.1.2 New Alignment String

When the **append=>HIPs** option is selected, a cross will appear on any plan views that have the alignment string’s model on them.

The first horizontal intersection point is then selected by the standard pick (LB) and accept (MB).

The option then continues as if appending to an existing alignment string where the end point has already been accepted.

### 14.20.2.1.2 Append VIPs - Vertical Geometry

The **append=>VIPs** option is used to create and edit the vertical geometry of the picked string if the string is a primary string on any section view. This can be achieved by using either the **VG edit** or the **profile** option from the section view **view=>utilities** menu.

Vertical geometry can only be defined for a string with existing horizontal geometry.

On a section view, **Append=>VIPs** is used to create the first vertical intersection point in an existing string, to append a new vertical intersect point to the end of the string or to prepend a new vertical intersection point to the beginning of the string. In this option, both appending and prepending will be referred to as appending.

#### 14.20.2.1.2.1 Existing Vertical Geometry

Appending a vertical point is the same as for a horizontal intersection point except that the co-ordinate system is (chainage,height) rather than (x,y) values and the information messages displayed in the **alignment edit info** panel show chainage, height and percentage grade rather than x,y,z and bearings.

For example -

<table>
<thead>
<tr>
<th>Message Area</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>area 1</td>
<td><strong>&lt;Append Points&gt;</strong></td>
</tr>
<tr>
<td>area 2</td>
<td>VIP point number, chainage,height of VIP</td>
</tr>
<tr>
<td>area 3</td>
<td>curve length, %grade-in, %grade-out, grade difference for an VIP</td>
</tr>
<tr>
<td>area 4</td>
<td>edit finished - before pick select final position - after pick</td>
</tr>
</tbody>
</table>

#### 14.20.2.1.2.2 New Vertical Geometry

Creating the **1st vertical intersection point** (VIP) in a string is similar to the **1st horizontal IP**.

When the **append=>VIPs** option is selected, a cross will appear on any section views that have the alignment string profiled on them.

The 1st vertical intersection point is then selected by the standard pick (LB) and accept (MB).

The option then continues as if appending to an existing vertical geometry where the end point has already been accepted.

**Typed input** can be used at any stage of the append.

See the next section **14.20.2.2 Alignment Move** or return to **14.20.2 Alignment Edit**.

### 14.20.2.2 Alignment Move
The **move** option allows the user to move

(a) individual horizontal intersection points (HIPs)

(b) individual tangent points (HTPs) if there is no transition on the HIP.

(c) individual vertical intersection points or tangent points (VIPs or VTPs).

**move** acts on the horizontal geometry if the point to move is selected in a plan view, or the vertical geometry if the point to move is selected in a section view.

### 14.20.2.2.1 Move - Horizontal Geometry

The **move** option in a plan view is for moving individual horizontal intersection points (HIP’s) or horizontal tangent points (HTPs) of the string.

The move cycle consists of two steps:

(a) selecting the point to be moved

(b) selecting the new position for the point.
Step (a)

First the horizontal intersection or tangent point to be moved is selected. The selected point will then move around the view as the cursor is moved.

If a horizontal intersection point is selected, the string will be redrawn with the intersection point moved to the cursor position and the circular curve radius and transition lengths left constant.

A horizontal tangent point only occurs on a line connecting two adjacent horizontal intersection points (the HIP-HIP line). Hence, a horizontal tangent point can only move along its HIP-HIP line. Moving a horizontal tangent point actually means that the radius of the circular curve at the tangent point is modified so that the new position of the point is still a tangent point on the HIP-HIP line for the new circular curve.

To guarantee that the new position for the tangent point is on the HIP-HIP line, the cursor position is automatically projected perpendicularly onto the HIP-HIP line to give the new tangent point.

Step (b)

The current cursor position (or its projection for a HTP) is selected as the new position for the point by picking (LB) and accepting (MB). The point being moved is then anchored at the cursor position for the HIP (or at the projected point for a HTP), and the string redrawn.

Typed input can be used in either step.

Once the move cycle is completed and the point moved, the move option is still current and can be repeated for other points without having to re-select the move option.

14.20.2.2.2 Move - Vertical Geometry

The move option is used in a section view to move individual vertical intersection points (VIP’s) or vertical tangent points (VTP’s).

The move cycle consists of two steps:

(a) selecting the point to be moved

(b) selecting the new position for the point.

Step (a)

First the vertical intersection or tangent point to be moved is selected. The selected point will then move around the view as the cursor is moved.

If a vertical intersection point (VIP) is selected, the string will be redrawn with the vertical intersection point moved to the cursor position and the parabolic curve length or the circular curve radius left constant.

A vertical tangent point (VTP) only occurs on a line connecting two adjacent vertical intersection points (the VIP-VIP line). Hence, a vertical tangent point can only move along its VIP-VIP line. Moving a vertical tangent point actually means that the length of the parabolic curve at the vertical tangent point is modified so that the new position of the point is still a vertical tangent point on the VIP-VIP line for the new parabolic curve.

To guarantee that the new position for the vertical tangent point is on the VIP-VIP line, the cursor position is automatically projected perpendicularly onto the VIP-VIP line to give the new vertical tangent point.
Step (b)

The current cursor position (or its projection for a VTP) is selected as the new position for the point by selecting (LB) and accepting (MB). The point being moved is then anchored at the cursor position for an VIP (or at the projected point for a VTP), and the string redrawn.

Typed input can be used in either step.

Once the move cycle is completed and the point moved, the move option is still current and can be repeated for other points without having to re-select the move option.

The move option is terminated by selecting cancel from the pick ops menu or by selecting a new alignment edit option.

See the next section 14.20.2.3 Alignment Insert or return to 14.20.2 Alignment Edit.

14.20.2.3 Alignment Insert

The insert option is designed to place a new intersection point in a string between two adjacent intersection points. The inserted point does not have to be on the line joining the two intersection points - the between option is used to guarantee that the IP is on the IP-IP line.

Inserting a point, like moving a point, is a two step process.

Step (a) - selecting the IP’s to be on either side of the new intersection point

The two adjacent intersection points are chosen by selecting the line connecting the two intersection points. Once the line is selected, the new IP is assumed to be at the current cursor position. As the cursor is moved, the string is redrawn reflecting the changing position of the inserted IP.

Like the move option, the insert works on the horizontal or the vertical geometry depending on whether a plan or section view is used to select the connecting line.

For horizontal inserts

```
message area 1 <Insert Point>
message area 2 IP point number, x, y co-ords of IP, radius, start spiral, end spiral
message area 3 bearing-in, bearing out, bearing difference for the inserted IP
message area 4 select final position - after pick
Screen message area
 <Select line to insert on> [picks][][][menu]
 <Select line to insert on> [picks][accepts][menu]
```

For vertical inserts

```
message area 1 <Insert Point>
message area 2 VIP point number, Ch, Ht co-ords of VIP
message area 3 VC length, %grade-in, %grade-out, grade diff for the moved VIP
message area 4 select final position - after pick
Screen message area
 <Select line to insert on> [picks][][][menu]
```
Step (b) - selecting the position for the new intersection point

The position of the new intersection point is set to the current cursor position by picking (LB) and accepting (MB).

**horizontal**

Message area 1: <Insert Point>
Message area 2: IP point number, x, y co-ords of IP, radius, start spiral, end spiral
Message area 3: bearing-in, bearing out, bearing difference for the inserted IP
Message area 4: select final position - before pick, edit finished - after pick

**vertical**

Message area 1: <Insert Point>
Message area 2: VIP point number, Ch, Ht co-ords of VIP
Message area 3: VC length, %grade-in, %grade-out, grade diff for the moved VIP
Message area 4: select final position - before pick, edit finished - after pick

Once the insert cycle is completed and the point inserted, the insert option is still current and can be repeated for other insertions without having to re-select the insert option.

The insert option is terminated by selecting cancel from the pick ops menu or by selecting a new option from the alignment edit menu.

Typed input can be used in either step.

See the next section 14.20.2.4 Alignment Between or return to 14.20.2 Alignment Edit.

**14.20.2.4 Alignment Between**

The between option is similar to the insert option except the inserted point does have to be on the line joining the two intersection points. To accomplish this, the cursor position is automatically projected onto the IP-IP line to give the new IP point position.

The between option is terminated by selecting cancel from the pick ops menu or by selecting a new option from the alignment edit menu.

See the next section 14.20.2.5 Alignment Delete or return to 14.20.2 Alignment Edit.

**14.20.2.5 Alignment Delete**

The delete option is used to delete intersection points from the string.

After picking the delete option, any selected intersection point in the string is deleted. The string, minus the deleted point, is redrawn after each deletion.

Once an intersection point has been deleted, another intersection point in the selected string can selected for deletion. Hence any number of the string points can be deleted one after another.

A horizontal intersection point is deleted if the point is chosen from a plan view and a vertical intersection point deleted if the point is selected from a vertical view.

For horizontal deletes

Message area 1: <Delete Points>
Message area 2: IP point number, x, y co-ords of IP, radius, start spiral, end spiral
Message area 3: bearing-in, bearing out, bearing difference for the inserted IP

Screen message area

<Select point to delete> [picks][menu]
<Select point to delete> [picks][accepts][menu]
For vertical deletes

message area 2 VIP point number, Ch, Ht co-ords of VIP
message area 3 VC length, %grade-in, %grade-out, grade diff for the moved VIP

Screen message area

<Select point to delete> [picks][menu]
<Select point to delete> [picks][accepts][menu]

The delete option is terminated by selecting cancel from the pick ops menu or by selecting a new option from the alignment edit menu.

Typed input can be used to select a point for deletion.

See the next section 14.20.2.6 Alignment Extend or return to 14.20.2 Alignment Edit.

14.20.2.6 Alignment Extend

The extend option is used to move an intersection point along the line joining the intersection point to its neighbouring intersection point.

That is, in a plan view, the bearing of the HIP-HIP line is kept constant and the intersection point is moved along that line either towards or away from its neighbouring intersection point on the HIP-HIP line.

In a section view, the grade of the VIP-VIP line is kept constant and the vertical intersection point is moved along that line either towards or away from its neighbouring intersection point on the VIP-VIP line.

Extending, like moving a point, is a two step process.

Step (a) - selecting the IP-IP line and the IP to be moved along that line

The IP-IP line and the intersection point to be moved are chosen in the one operation by selecting a co-ordinate point near the IP-IP line and close to the intersection point to be moved along that line.

Once the line and IP are selected, the new position of the selected IP is assumed to be at the current cursor position projected perpendicularly onto the IP-IP line. As the cursor is moved, the string is redrawn reflecting the changing position of the moved IP.

For horizontal extends

message area 1 <Extend Point>
message area 2 IP point number, x, y co-ords of IP, radius, start spiral, end spiral
message area 3 bearing-in, bearing out, bearing difference for the inserted IP
message area 4 select final position - after pick

Screen message area

<Select line to extend> [picks][menu]
<Select line to extend> [picks][accepts][menu]

For vertical extends

message area 1 <Extend Point>
message area 2 VIP point number, Ch, Ht co-ords of VIP
message area 3 VC length, %grade-in, %grade-out, grade diff for the moved VIP
message area 4 select final position - after pick

Screen message area

<Select line to extend> [picks][menu]
<Select line to extend> [picks][accepts][menu]

Step (b) - selecting the final position for the intersection point

The final position for the intersection point is set to the projection of the current cursor position onto the IP-IP line.

horizontal -

message area 1 <Extend Points>
message area 2 IP point number, x, y co-ords of IP, radius, start spiral, end spiral
message area 3 bearing-in, bearing out, bearing difference for the inserted IP
message area 4 select final position - before pick, edit finished- after pick
Screen message area
   <Select final position of point> [picks][menu]
   <Select final position of point> [picks][accepts][menu]

vertical

message area 1     <Extend Points>
message area 2     VIP point number, Ch, Ht co-ords of VIP
message area 3     VC length, %grade-in, %grade-out, grade diff for the moved VIP
message area 4     select final position - before pick, edit finished- after pick

Screen message area
   <Select final position of point> [picks][menu]
   <Select final position of point> [picks][accepts][menu]

Once the extend is completed, the extend option is still current and can be repeated without re-selecting the extend option.

The extend option is terminated by selecting cancel from the pick ops menu or by selecting a new option from the alignment edit menu.

Typed input can be used in either step.

Note - Extend can be used on the end points of the string.

See the next section 14.20.2.7 Alignment Height or return to 14.20.2 Alignment Edit.

14.20.2.7 Alignment Height

The height option is used to insert and/or modify the height of a vertical intersection point in a plan view, or to modify the height of a vertical intersection point in a section view.

Hence the height option is unique - it only affects the vertical geometry of the string but can be used in a plan or section view.

The height walk-right is

14.20.2.7.1 By Plan - Height in a Plan View

In a plan view, the height=>by plan option is used to create a vertical intersection point of a given height, or modify the height of an existing vertical point, at a selected plan position on the string.

After the height option is chosen, the user selects a position on the string in a plan view. The use of point and line snap will important for selecting the correct position.

If a vertical intersection point already exists at the chainage of the selected position, it will be selected for modification. Otherwise a new vertical intersection point will be inserted into the vertical geometry at the chainage of the selected position.

A new height typed-input box is then displayed on the screen with the vertical intersection point's current height (z value).

The new height typed-input box looks like:

[Diagram of new height typed-input box]

The height is entered into the typed-input box, terminated with <Enter>. The entered value is taken as the new height of the vertical intersection point in the alignment.

The typed-input box then disappears.
14.20.2.7.2 By Section - Height in a Section View

In a section view, the `height=>by section` option can only be used to modify the height of an existing vertical intersection point.

After the `height` option is chosen, the user selects the vertical intersection point that will have its height modified from a section view. After selecting the VIP, a new `height` typed-input box is displayed on the screen with the point's current height (z value).

The new `height` typed-input box looks like:

```
New height
New height 0.1717
```

The height is entered into the typed-input box, terminated with <enter>. The entered value is taken as the new height of the vertical intersection point in the alignment string and the string redrawn with the new height at that point.

The typed-input box then disappears.

For either `height=>by plan` or `height=>by section`, the `height` option is terminated on selecting `cancel` from the `pick ops` menu or by selecting a new option from the `alignment edit` menu.

See the next section 14.20.2.8 Alignment Curves or return to 14.20.2 Alignment Edit.

14.20.2.8 Alignment Curves

The `Curves` option allows the user to

(a) add a circular curve of a specified radius or curve length to a horizontal intersection point
(b) add start and end transition (eg spiral) to an intersection point with and existing circular curve
(c) add a circular curve of a specified radius or curve length to a vertical intersection point

The `Curves` walk-right menu is

```
Curves
Radius
Length
Spiral
Reverse
Properties
```

The `radius` option is used to create or modify the radius of a circular curve at a horizontal or vertical intersection point. `radius` acts on the horizontal geometry if the point is selected in a plan view, or the vertical geometry if the point is selected in a section view.

Similarly the `length` option is used to set a circular curve by giving its total curve length rather than the radius. `length` acts on the horizontal geometry if the point is selected in a plan view, or the vertical geometry if the point is selected in a section view.

The `spiral` option is for adding transitions to a horizontal intersection point with a curve already on it.

14.20.2.8.1 Radius

In a plan view, the `radius` option is used to add a circular curve to an intersection point with no curve or to modify the radius of the circular curve if one already exists.

In a section view, the `radius` option is used to add a circular curve to an intersection point with no curve or to modify the radius of a circular curve if one already exists.

Radius is a two step process.
Step (a) - selecting the intersection point
First the intersection point whose curve is to be modified is selected.

For horizontal radius
- message area 1: <Radius>
- message area 2: IP point number, x, y co-ords of IP, radius, start spiral, end spiral
- message area 3: bearing-in, bearing out, bearing difference for the inserted IP

For vertical radius
- message area 1: <Radius>
- message area 2: VIP point number, Ch, Ht co-ords of VIP
- message area 3: radius, %grade-in, %grade-out, grade diff for the moved VIP
- message area 4: enter value - before value entered edit finished - after value entered

Screen message area
- <Select point to change radius> [picks][menu]
- <Select point to change radius> [picks][accepts][menu]

Step (b) - entering the new radius
After an intersection point is chosen, a new radius typed-input box is displayed on the screen with either the intersection point's current curve radius or, if no curve exists, zero.

The new radius typed-input box looks like:

![New radius input box]

The radius is entered into the typed-input box, terminated with <enter>. The entered value is taken as the radius of the curve at that intersection point and the string redrawn with the new curve. The typed-input box then disappears.

If an existing curve is to be removed from an intersection point, enter the value zero into the new radius typed-input box.

horizontal
- message area 1: <Radius>
- message area 2: IP point number, x, y co-ords of IP, radius, start spiral, end spiral
- message area 3: bearing-in, bearing out, bearing diff for the inserted IP
- message area 4: enter value - before value entered edit finished - after value entered

vertical
- message area 1: <Radius>
- message area 2: VIP point number, Ch, Ht co-ords of VIP
- message area 3: radius, %grade-in, %grade-out, grade diff for the moved VIP
- message area 4: enter value - before value entered edit finished - after value entered

Like most of the other alignment edit options, after a radius has been modified the option is still current and another intersection point can be chosen to have its curve radius modified.

The radius option is terminated by selecting a different alignment edit option.

14.20.2.8.2 Length

Although the circular curve on an intersection point is stored as a radius, it is possible to define the radius indirectly by giving the total curve length by using the length option.

The option works in plan or section views.

To use length, first select the intersection point to add a new circular curve to, or to modify the existing curve.

A new length typed-input box is then displayed on the screen with either the current curve length, or if no curve exists, zero.
The new length typed-input box looks like:

![New length box]

The total curve length is entered into the typed-input box, terminated with <enter>. The entered value is taken as the new curve length. The typed-input box then disappears.

If an existing circular curve is to be removed, zero is entered into the new length typed-input box.

Like most of the other alignment edit options, after the length has been modified the option is still current and another IP can be chosen to have its curve modified.

The length option is terminated by selecting a different alignment edit option.

**WARNING** - when length is used, the equivalent radius is computed and stored with the curve. If the IP is moved, the radius is kept constant and the total curve length is modified.

### 14.20.2.8.3 Spiral

In a plan view, the spiral option is used to add a start or end transitions (eg spirals) to a curve on an intersection point, or to modify an existing transition. Spiral does not work on a section view.

After picking spiral, select the end of the curve to add a new transition to, or the existing transition to be modified. A new length typed-input box is displayed on the screen with either the current transition length, or zero if no transition exists.

The new length typed-input box looks like:

![New length box]

The transition length is entered into the typed-input box, terminated with <enter>. The entered value is taken as the new transition length. The typed-input box then disappears.

If an existing transition is to be removed, zero is entered into the new length typed-input box.

Like most of the other alignment edit options, after the spiral has been modified the option is still current and another curve can be chosen to have its transitions modified.

The spiral option is terminated by selecting a different alignment edit option.

### 14.20.2.8.4 Reverse

12d Model normally creates a curve on the side of the IP that has the smallest angle. The sign of the radius (positive or negative) is automatically determined by 12d Model.

The Reverse option creates a circular curve that is the part left over from the standard curve.

On selecting Reverse, the Reverse IP panel is displayed.

![Reverse IP panel]

The HIP is chosen by either typing in the HIP number in the IP number field, or by clicking on the 123 button and then selecting the HIP.
To change the curve from reversed/not reversed, simply tick on/off the Reversed tick box and then click on Set.

See the next section 14.20.2.9 Alignment Parabolas or return to 14.20.2 Alignment Edit.

14.20.2.9 Alignment Parabolas

The parabolas option is for adding, removing or modifying parabolic curves to the vertical geometry. It allows the user to

(a) add a parabolic curve of a given curve length to a vertical intersection point
(b) add a parabolic curve of a given effective radius to a vertical intersection point

The parabolas walk-right menu is

![](image)

The radius option is used to set a parabolic curve of given effective radius to a vertical intersection point.

The length option is used to set a parabolic curve of a given curve length to a vertical intersection point.

**Note** - the option only works on the vertical geometry if the VIP is selected in a section view. Points cannot be selected in any other view.

14.20.2.9.1 Radius

In a section view, the radius option is used to add a parabolic curve to an intersection point with no curve or to modify the radius of the parabolic curve if one already exists.

**Radius** is a two step process.

**Step (a) - selecting the intersection point**

First the intersection point whose parabola is to be modified is selected.

message area 1 <Radius>
message area 2 VIP point number, Ch, Ht co-ords of VIP
message area 3 VC length, %grade-in, %grade-out, grade diff for the moved VIP
message area 4 enter value- after pick
Screen message area

<Select point to change radius> [picks][][menu]
<Select point to change radius> [picks][accepts][menu]

**Step (b) - entering the new radius**

After an intersection point is chosen, a new radius typed-input box is displayed on the screen with either the intersection point's current parabolic radius or, if no parabola exists, the last value entered into the radius typed-input box.

The new radius typed-input box looks like:

![New radius input box](image)

The radius is entered into the typed-input box, terminated with <enter>. The entered value is taken as the radius of the parabola at that intersection point and the string redrawn with the new parabola. The typed-input box then disappears.

If an existing parabola is to be removed from an intersection point, enter the value zero into the radius typed-input box.
Like most of the other alignment edit options, after the radius has been modified the option is still current and another intersection point can be chosen to have its parabolic radius modified.

The radius option is terminated by selecting a different alignment edit option.

**WARNING** - when radius is used, the equivalent parabolic length is computed and stored with the curve. If the VIP is moved, the parabolic length is kept constant and the effective radius is modified.

### 14.20.2.9.2 Length

The length option is used to add a parabolic curve to a vertical intersection point with no curve or to modify the length of the parabolic curve if one already exists.

Adding or modifying curve length is a two step process.

**Step (a) - selecting the vertical intersection point**

First the vertical intersection point whose parabola is to be modified is selected.

**Step (b) - entering the new curve length**

After a VIP is selected, a new length typed-input box is displayed on the screen with the point's current parabolic curve length.

The new length typed-input box looks like

The curve length is entered into the typed-input box, terminated with <enter>. The entered value is taken as the length of the parabolic curve at that vertical intersection point and the string redrawn with the new curve. The typed-input box then disappears.

If an existing parabola is to be removed from a vertical intersection point, enter the value zero into the curve length typed-input box.

Like most of the other alignment edit options, after the parabolic curve length has been modified the option is still current and another vertical intersection point can be chosen to have its parabola modified.

The length option is terminated by selecting a different alignment edit option.

See the next section **14.20.2.10 Alignment Utilities** or return to **14.20.2 Alignment Edit**.

### 14.20.2.10 Alignment Utilities
The Utilities walk-right menu contains a number of useful miscellaneous option for the alignment string. The menu is

The Utilities walk-right menu contains a number of useful miscellaneous option for the alignment string. The menu is

Each of the options will now be discussed.

14.20.2.10.1 Move VIPs

The Move VIPs option is for moving a range of vertical intersection points (VIPs) by a chainage or an elevation increment.

After selecting the option, the Move VIPs panel is displayed.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start VIP No.</td>
<td>the VIP number of the 1st VIP in the range to be moved. If blank, then 1.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End VIP No.</td>
<td>the VIP number of the last VIP in the range to be moved. If blank, then the last VIP.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>if move chainage, the chainage of all the points in the specified range are incremented by the given value. If move hts, the heights (elevations) of all the points in the specified range are incremented by the given value.</td>
<td>input</td>
<td>move chainage</td>
<td>move hts</td>
</tr>
<tr>
<td>Value</td>
<td>value to increment either the chainage or the height for all the VIPs in the specified range.</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
**Move** button
move the VIPs in the range given by the start and end ip field by the chainage or height given in the value field.

**14.20.2.10.2 Sort VIPs**
The sort VIPs option is for sorting VIP's into increasing chainage order. After selecting the option, the sort VIPs panel is displayed.

![Sort VIPs panel](image)

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start VIP No.</td>
<td>input</td>
<td>if not blank, the VIP number of the 1st VIP in the range to be sorted. If blank, then 1.</td>
<td></td>
</tr>
<tr>
<td>End VIP No.</td>
<td>input</td>
<td>the VIP number of the last VIP in the range to be sorted. If blank, then the last VIP.</td>
<td></td>
</tr>
<tr>
<td>Sort</td>
<td>button</td>
<td>sort the VIPs in the range given by the start and end ip field into chainage order.</td>
<td></td>
</tr>
</tbody>
</table>

**14.20.2.10.3 Chainage Insert**
The chainage insert option inserts a vertical intersection point (VIP) at a given chainage and height. After selecting the option, the chainage insert VIP panel is displayed.

![Chainage Insert VIP panel](image)

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch ht</td>
<td>input</td>
<td>the chainage and height of the VIP to insert - separate values by spaces.</td>
<td></td>
</tr>
<tr>
<td>Insert</td>
<td>button</td>
<td>insert the VIP point given in the Ch ht field into the alignment string.</td>
<td></td>
</tr>
</tbody>
</table>
14.20.2.10.4 Grade Insert

The grade insert option inserts a VIP at a given grade from an existing VIP. The new VIP position is given by either a distance from the picked VIP or at given chainage.

After selecting the option, the grade insert VIP panel is displayed.

![Grade Insert VIP panel](image)

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start VIP #</td>
<td>the VIP number whose position is used to start the grade insert from.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>percent grade to be used.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>choice distance distance, chainage</td>
<td>choice</td>
<td>distance</td>
<td>chainage</td>
</tr>
<tr>
<td></td>
<td>if distance, the new VIP is inserted at the given grade and distance (given in the value field) from the start VIP.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if chainage, the new VIP is inserted at the chainage (given in the value field but having the given grade from the start VIP.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insert</td>
<td>button insert the new VIP into the alignment string.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14.20.2.10.5 Grades Intersect

The grades intersect option inserts a VIP which is given by intersecting lines of given grades from two existing VIPs. The grades are either typed in or calculated by giving another VIP that the line goes through.

After selecting the option, the Grades Intersect VIPs panel is displayed.

![Grades Intersect VIPs panel](image)

The fields and buttons used in the panel have the following functions.
Field Description | Type       | Defaults | Pop-Up
Start VIP #       | input      | the VIP number which is used in defining a line.

Mode              | choice     | grade    | grade, VIP #
If grade, the field value is a percent grade and a line is defined as going through the start VIP and with the given grade.
If VIP #, the field value is the number of a VIP and a line is defined as going through the start VIP and this VIP.

Note for grades positive is up when going in the direction of increasing chainage and negative is up when going in the direction of decreasing chainage.

Value              | input      |
If mode is grade, value is a percent grade.
If mode is VIP #, value is the number of a VIP.

Insert             | button     |
Calculate the point which is the intersection of the two lines and insert it as a new VIP into the alignment string.

14.20.2.10.6 Interval
Each alignment string has a chainage interval that is used to define regular points along the string. The chainage interval is used for approximation the alignment in operations such as triangulating and applying templates to an alignment string.

After selecting the option, an enter value typed-input box is displayed on the screen with the string's current chainage interval placed in it.

The new chainage interval is entered into the typed-input box, terminated with <enter>. The typed-input box then disappears.

The interval option terminates after use.

14.20.2.10.7 Start Chainage
Each alignment string has a start chainage which can be positive, negative or zero.

After selecting the option, an enter value typed-input box is displayed on the screen with the string's current start chainage in it.

The new start chainage is entered into the typed-input box, terminated with <enter>. The typed-input box then disappears.

When a new start chainage is entered, the vertical intersection points are automatically moved so that they retain their same relative chainage with respect to the start point on the alignment.

The start chainage option terminates after use.

14.20.2.10.8 Regenerate
If the horizontal geometry of an alignment string is modified, then the profile through any triangulations would also change. Hence, if the alignment string being edited was profiled on any section views, then the profile would be need to be recalculated after any horizontal geometry changes.

On selecting the regenerate option, any section view that has the alignment string being edited as its primary string (that is, as the string defining the chainage for the section view) is automatically re-profiled.

Hence the regenerate option is equivalent to running the regenerate option for each section view with the edited alignment string as its primary string.

14.20.2.10.9 Validate
When constructing horizontal and vertical geometry, it is possible to end up with invalid constructs such as overlapping tangent points.

On selecting the validate option, the alignment string will be checked for:

**horizontal geometry checks**
- at least two horizontal intersection points
- no co-incident horizontal intersection points
- no overlapping horizontal tangent points

**vertical geometry checks**
- at least two vertical intersection points
- no co-incident vertical intersection points
- no overlapping vertical tangent point
- vertical intersection points chainages are in ascending order

If any errors occur, an errors menu is placed on the screen.

![Errors Menu](image)

The errors menu remains on the screen and only disappears when either the [X] is picked or one of the error messages is picked with LB.

**Note** - the validate option is automatically run when the edit is finished.

### 14.20.2.10.10 Clear VG and Clear HG

The Clear VG and Clear HG options are used to delete all the horizontal and/or vertical intersection points in the string.

The Clear VG option removes all the vertical geometry from the string.

The Clear HG option removes all the horizontal and vertical geometry from the string.

After a Clear, the horizontal or vertical geometry can be re-entered using the edit options.

### 14.20.2.10.11 Properties

Selecting Properties brings up the Alignment String Properties panel which is used to modify the string’s header information.
The fields in this panel are similar to those in the **Create Alignment String** panel and the alignment string editor options. The only new field is

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Draw ips</strong></td>
<td>tick</td>
<td>tick</td>
<td></td>
</tr>
</tbody>
</table>

*If ticked*, the horizontal and vertical intersection points are drawn on plan and section views. *If not ticked*, the ips are not drawn on the plan and section views.

**OK/Apply** button

For the string being edited, **OK** sets the string with the values in the panel fields and removes the panel. **Apply** sets the string with the values in the panel fields and leaves the panel on the screen.

See the next section 14.20.2.11 Finish or return to 14.20.2 Alignment Edit.

### 14.20.2.11 Finish

The **Finish** option is used to terminate the alignment string edits. After selecting the **Finish** option, the string is checked for overlapping horizontal or vertical tangent points and any errors reported.
14.20.3 2d Edit - Old

Position of option on menu:  **Strings => Editor**

On picking a 2d string, the **2d edit** menu and the **2d edit info** panel are placed on the screen.

See the earlier section **14.4.1 Super String Edit - Common Information** for general information about editing strings.

Each option in the **2d edit** menu will now be described.

### 14.20.3.1 Append

The **append** option is used to create the 1st point in a new string, to append a new intersect point to the end of the string or to prepend a new intersection point to the beginning of the string. In this option, both appending and prepending will be referred to as appending.

#### 14.20.3.1.1 Existing 2d Strings

Appending a point is a two step process.

**Step (a) - selecting the end to append the point to.**

After the **append** option has been selected, the end of the string to append the point to is selected. Once the string end is selected, the new intersection point is assumed to be at the current cursor position. As the cursor is moved, the string is redrawn reflecting the changing position of the appended intersection point.

- **message area 1** <Append Points>
- **message area 2** IP point number, x, y, z co-ords of IP
- **message area 3** bearing-in, bearing out, bearing difference for an IP
- **message area 4** select final position- after pick

Screen message area

- <Select string end to append to> [picks][menu]
- <Select string end to append to> [picks][accepts][menu]

**Step (b) - selecting the position for the new appended point.**

A cross indicates where the cursor currently is. The position of the new appended point is set to the current cursor position by picking (LB) and accepting (MB).

- **message area 1** <Append Points>
- **message area 2** IP point number, x, y, z co-ords of IP
- **message area 3** bearing-in, bearing out, bearing difference for closest IP
- **message area 4** select final position- before pick
Once a point has been appended to the string, the appended point is considered to be the selected string end and a new append cycle begins. That is, stage (a) is already set up. The current cursor position indicates the new position for the next appended point.

Hence a series of string points is easily entered by first selecting the string end that the new points are to be appended to (step (a)) and then moving the cursor to the position of each new point and selecting them in turn.

**Typed input** can be used in either step.

The append option is terminated by either bringing up the pick ops menu and selecting cancel or by selecting a new option from the 2d edit menu.

If, after bringing up the pick ops menu, it is decided to continue with the append option, simply select the restart option from the pick ops menu and the pick ops menu will disappear leaving the append option still current.

### 14.20.3.1.2 New 2d String

For creating a new string, the cursor is used to select the 1st point of the string. The option then continues as if appending to an existing 2d string where the end point has already been selected.

See the next section **14.20.3.2 Move** or return to **14.20.3 2d Edit - Old**.

#### 14.20.3.2 Move

The move option is for moving individual points (intersection points - IP's) of the string.

The move cycle consists of two steps:

(a) selecting the point to be moved

(b) selecting the new position for the point.

**Step (a)**

First the point to be moved is selected. The selected point will then move around the view and the string redrewn to show the change as the cursor is moved.

- message area 1: <Move Point>
- message area 2: IP point number, x, y, z co-ords of IP
- message area 3: bearing-in, bearing out, bearing difference for the closest IP
- message area 4: select final position- after pick

**Screen message area**

- <Select point to move> [picks][][menu]
- <Select point to move> [picks][accepts][menu]

**Step (b)**

The current cursor position is selected as the new position for the point by selecting (LB) and accepting (MB). The point being moved is then anchored at the cursor position for the IP, and the string redrawn.

- message area 1: <Move Point>
- message area 2: IP point number, x, y, z co-ords of IP
- message area 3: bearing-in, bearing out, bearing difference for the moved IP
- message area 4: select final position- before pick, edit finished- after pick

**Screen message area**

- <Select final position of point> [picks][][menu]
- <Select final position of point> [picks][accepts][menu]

**Typed input** can be used in either step.

Once the move cycle is completed and the point moved, the move option is still current and can be repeated for other points without having to re-select the move option.
The move option is terminated by selecting cancel from the pick ops menu or by selecting a new 2d edit option.

See the next section 14.20.3.3 Insert or return to 14.20.3 2d Edit - Old.

14.20.3.3 Insert

The Insert option is designed to place a new intersection point in a string between two adjacent intersection points (note that the inserted point does not have to be on the line joining the two intersection points).

Inserting a point, like moving a point, is a two step process.

Step (a) - selecting the IP's to be on either side of the new intersection point

The two adjacent intersection points are chosen by selecting the line connecting the two intersection points. Once the line is selected, the new IP is assumed to be at the current cursor position. As the cursor is moved, the string is redrawn reflecting the changing position of the inserted IP.

Step (b) - selecting the position for the new intersection point

The position of the new intersection point is selecting

Once the insert cycle is completed and the point inserted, the insert option is still current and can be repeated for other insertions without having to re-select the insert option.

The insert option is terminated by selecting cancel from the pick ops menu or by selecting a new option from the 2d edit menu.

Typed input can be used in either step.

See the next section 14.20.3.4 Between or return to 14.20.3 2d Edit - Old.

14.20.3.4 Between

The between option is similar to the insert option except that the inserted point does have to be on the line joining the two intersection points. To accomplish this, the cursor position is projected onto the IP-IP line to give the new IP point position.

The between option is terminated by selecting cancel from the pick ops menu or by selecting a new option from the 2d edit menu.

See the next section 14.20.3.5 Delete or return to 14.20.3 2d Edit - Old.

14.20.3.5 Delete

The delete option is used to delete selected intersection points from the string.

The point to be deleted is picked (LB) and accepted (MB). When the point is accepted, it is deleted. The
string, minus the deleted point, is then redrawn.

Once a point has been deleted, another point in the string can then be selected and deleted. Hence any number of points from the string can be deleted one after another.

message area 1 <Delete Points>
message area 2 IP point number, x, y, z co-ords of IP
message area 3 bearing-in, bearing out, bearing difference for closest IP
message area 5 Screen message area
  <Select point to delete> [picks][menu]
  <Select point to delete> [picks][accepts][menu]

The delete option is terminated by selecting cancel from the pick ops menu or by selecting a new option from the 2d edit menu.

Typed input can be used to select a point for deletion.

See the next section 14.20.3.6 Extend or return to 14.20.3 2d Edit - Old.

14.20.3.6 Extend

The extend option is used to move an intersection point along the line joining the intersection point to its neighbouring intersection point.

That is, the bearing of the IP-IP line is kept constant and the intersection point is moved along that line either towards or away from its neighbouring intersection point on the IP-IP line.

Extending, like moving a point, is a two step process.

Step (a) - selecting the IP-IP line and the IP to be moved along that line

The IP-IP line and the intersection point to be moved are chosen in the one operation by picking (LB) and accepting (MB) a co-ordinate point near the IP-IP line and close to the intersection point to be moved along that line.

Once the line and intersection point (IP) are selected, the new position of the selected IP is assumed to be at the current cursor position projected perpendicularly onto the IP-IP line.

As the cursor is moved, the string is redrawn reflecting the changing position of the moved IP.

message area 1 <Extend Point>
message area 2 IP point number, x, y, z co-ords of IP
message area 3 bearing-in, bearing out, bearing difference for closest IP
message area 4 select final position- after pick
Screen message area
  <Select line to extend> [picks][menu]
  <Select line to extend> [picks][accepts][menu]

Step (b) - selecting the final position for the intersection point

The final position for the intersection point is set to the projection of the selected cursor position onto the IP-IP line.

message area 1 <Extend Points>
message area 2 IP point number, x, y, z co-ords of IP
message area 3 bearing-in, bearing out, bearing difference for closest IP
message area 4 select final position - before pick, edit finished - after pick
Screen message area
  <Select final position of point> [picks][menu]
  <Select final position of point> [picks][accepts][menu]

Once the extend is completed, the extend option is still current and can be repeated without re-selecting the extend option.

The extend option is terminated by selecting cancel from the pick ops menu or by selecting a new
option from the 2d edit menu.

**Typed input** can be used in either step.

**Note** - Extend can be used on the end points of the string.

See the next section 14.20.3.7 Height or return to 14.20.3 2d Edit - Old.

14.20.3.7 Height

The height option is used to modify the height (z value) of the 2d string.

After the height option is chosen, an enter value typed-input box is displayed on the screen with the string's current height (z value).

The enter value typed-input box looks like:

```
<table>
<thead>
<tr>
<th>Enter value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter value</td>
</tr>
</tbody>
</table>
```

The height is entered into the typed-input box, terminated by <enter>. The entered value is taken as the height of the 2d string and the string redrawn with the new height. The typed-input box then disappears.

The height option automatically terminates and a new option is selected from the 2d edit.

**Note** - all the points in a 2d string have the same height.

See the next section 14.20.3.8 Open or return to 14.20.3 2d Edit - Old.

14.20.3.8 Open

If the string is closed (that is, the end points have the same x and y values), selecting the open option removes the last point of the string.

If the string is not closed, the open option does nothing.

See the next section 14.20.3.9 Close or return to 14.20.3 2d Edit - Old.

14.20.3.9 Close

Selecting the close option adds a point to the end of the string with the same co-ordinate values as the 1st point in the string.

See the next section 14.20.3.10 Properties or return to 14.20.3 2d Edit - Old.

14.20.3.10 Properties

Selecting Properties brings up the 2d String Properties panel which is used to modify the string's header information.
The fields in this panel are similar to those in the **Create 2d String** panel and the 2d string editor options. The only new field is:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Set</strong> button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*for the 2d string being edited, set all the items in the 2d String Properties panel to the values given in the panel.*
14.20.4 3d Edit - Old

Position of option on menu:  Strings => Editor

On picking a 3d string, the 3d edit menu and 3d edit info panel are placed on the screen.

The difference between a 2d and a 3d string is that all points in a 2d string have the same z-value, whereas for a 3d string, each point can have a different z-value.

Hence most of the options in the 3d edit menu are similar to the 2d edit options of the same name, and only the differences for each option will be discussed. The 2d Edit options are given in the section 14.4.2 Edit 2d.

See the earlier section 14.4.1 Super String Edit - Common Information for general information about editing strings.

14.20.4.1 Append

The Append operation for a 3d string is similar to that for a 2d string except that a height (z-value) is required for each new point.

Since in most cases, it would be tiresome to ask for a height every time a point is added, the entry of a new height is controlled by the height toggle in the snaps menu. If height is toggled to on, then every time a point is placed or moved an enter height typed-input box is displayed on the screen.

The enter height typed-input box looks like:

The height is entered into the typed-input box, terminated with <enter>. The entered value is taken as the height of the 3d string point and the string redrawn with the new height at the point. The typed-input box then disappears.

When the enter height box is placed on the screen, it will already have a value in it depending on the circumstances preceding the operation.

For example, if a point or line was snapped to, the height at that point or line will be displayed in the box.

See the next section 14.20.3.7 Height or return to 14.20.4 3d Edit - Old.

14.20.4.2 Height

The height option is used to modify the height (z value) of any point in the string.
After the height option is chosen, the user must select which point is going to have its height modified. After the point has been selected, an New height typed-input box is displayed on the screen with the point’s current height (z value).

The height is entered into the typed-input box, terminated with <enter>. The entered value is taken as the height of the point in the 3d string and the string redrawn with the new height at that point. The typed-input box then disappears.

The height option is terminated on selecting cancel from the pick ops menu or by selecting a new option from the 3d edit menu.

See the next section 14.20.3.10 Properties or return to 14.20.4 3d Edit - Old.

### 14.20.4.3 Properties

Selecting Properties brings up the 3d String Properties panel which is used to modify the string’s header information.

![3d String Properties panel](image)

The fields in this panel are similar to those in the create 3d string panel and the 3dd string editor options. The only new field is

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK/Apply button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the string being edited, **OK** sets the string with the values in the panel fields and removes the panel. **Apply** sets the 3d string with the values in the panel fields and leaves the panel on the screen.
14.20.5 4d Edit - Old

Position of option on menu: Strings => Editor
On picking a 4d string, the 4d edit menu and 4d edit info panel are placed on the screen.

Only the options append, text, size and angle will be described in detail since all the other options are similar to the equivalent 3d string option (see the section 14.4.3 Edit 3d).

See the earlier section 14.4.1 Super String Edit - Common Information for general information about editing strings.

14.20.5.1 Append

The append operation for a 4d string is similar to the 3d string case except that a height and an optional text label is required for each new point.

Since in many cases a text label is not required at every point of a 4d string, there is an append option that asks for text at every point and another that does not ask.

The 4d append walk-right is

The height question for each point is toggled on or off in the snaps menu just as it was for a 3d string.

The append option is terminated on selecting cancel from the pick ops menu or by selecting a new option from the 4d edit menu.

See the next section 14.20.5.2 Text or return to 14.20.5 4d Edit - Old.

14.20.5.2 Text

The text option is used to modify the text label of any point in the 4d string.

After the text option is chosen, the user must select which point is going to have its text label modified. Once the point has been selected, an enter text typed-input box is displayed on the screen with the point's current text label placed in it.

The new text label is entered into the typed-input box, terminated with <enter>. The entered value is taken as the text label of the point in the 4d string and the string redrawn with the new text at that point. The typed-
input box then disappears.

The text option is terminated on selecting cancel from the pick ops menu or by selecting a new option from the 4d edit menu.

See the next section 14.20.5.3 Text ht or return to 14.20.5 4d Edit - Old.

14.20.5.3 Text ht

All the text labels in the 4d string have the same height (given in pixel or world units). The text ht option is used to modify this text label height.

After selecting the option, an enter value typed-input box is displayed on the screen with the string's current text label height placed in it.

The new text label height is entered into the typed-input box, terminated with <enter>.

The entered value is taken as the text label height for all the points in the 4d string and the string redrawn using the new height. The typed-input box then disappears.

The text ht option automatically terminates after use.

See the next section 14.20.5.4 Angle or return to 14.20.5 4d Edit - Old.

14.20.5.4 Angle

All the text labels in the 4d string are drawn rotated about their defining string point with the same rotation angle. The angle, in degrees, is measured in a counter-clockwise direction about the horizontal axis.

The angle option is used to modify the text rotation angle.

After selecting the option, an enter value typed-input box is displayed on the screen with the string's current text rotation angle placed in it.

The new text rotation angle is entered into the typed-input box, terminated with <enter>.

The entered value is taken as the text rotation angle for all the points in the 4d string and the string redrawn using the new angle. The typed-input box then disappears.

The angle option automatically terminates after use.

See the next section 14.20.5.5 Utilities or return to 14.20.5 4d Edit - Old.

14.20.5.5 Utilities

Position of option on menu: Strings => Editor

The 4d utilities walk-right is

14.20.5.5.1 Properties

Selecting Properties brings up the 4d String Properties panel which is used to modify the string's header information.
The fields in this panel are similar to those in the `create 4d string` panel and the 4d string editor options. The only new field is

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK/Apply button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the string being edited, **OK** sets the string with the values in the panel fields and removes the panel. **Apply** sets the string with the values in the panel fields and leaves the panel on the screen.
14.20.6 Pipe Edit - Old

On picking a pipe string, the pipe edit menu and panel are placed on the screen.

The only difference between a 3d and a pipe string is that the pipe string has a diameter. Hence most of the options in the pipe edit menu are similar to the 3d edit options of the same name, and only the diameter and Properties options need to be discussed. See the section 14.4.3 Edit 3d for information on the 3d string editor.

See the earlier section 14.4.1 Super String Edit - Common Information for general information about editing strings.

14.20.6.1 Diameter

The diameter option is used to modify the diameter of the pipe string. After the diameter option is chosen, an enter value typed-input box is displayed on the screen with the string's current diameter.

The enter value typed-input box looks like:

```
<table>
<thead>
<tr>
<th>Enter value</th>
</tr>
</thead>
</table>
```

The diameter is entered into the typed-input box, terminated with <enter>. The entered value is taken as the diameter of the pipe string. The typed-input box then disappears.

The diameter option automatically terminates and a new option is selected from the pipe edit menu.

**Note** - the pipe string has only one diameter for the entire string.

See the next section 14.20.6.2 Properties or return to 14.20.6 Pipe Edit - Old.

14.20.6.2 Properties

Selecting Properties brings up the Pipe String Properties panel which is used to modify the string's header information.
The fields in this panel are similar to those in the **create pipe string** panel and the 3d string editor options. The only new field is

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK/Apply button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the string being edited, **OK** sets the string with the values in the panel fields and removes the panel. **Apply** sets the string with the values in the panel fields and leaves the panel on the screen.
14.20.7 Polyline Edit - Old

On picking a polyline string, the polyline edit menu and polyline edit info panel are placed on the screen.

The major difference between a polyline and a 3d string is that a polyline string can have an arc instead of a line joining adjacent string points. Hence most of the options in the polyline edit menu are similar to the 3d edit options of the same name, and only the differences for each option will be discussed. See the section 14.4.3 Edit 3d for information on the 3d string editor.

See the earlier section 14.4.1 Super String Edit - Common Information for general information about editing strings.

14.20.7.1 Append

The append operation for a polyline string is similar to the 3d string case except that an arc radius can be given for each new line segment.

Since in many cases an arc radius is not required at every segment of a polyline string, there is an append option that asks for the radius at every point and another that does not ask.

The append walk-right is

If the append + radius option selected, then before each point is appended, an enter radius typed-input box is placed on the screen.

The enter radius typed-input box looks like

The radius is entered into the typed-input box, terminated with <enter>. The entered value is taken as the radius of the arc to the next polyline string point and the arc will be drawn correctly as the cursor is moved to the next point.

A radius value of 0 is taken to mean no arc.

The height question for each point is toggled on/off in the snaps menu just as it was for a 3d string.
The `append` option is terminated on selecting `cancel` from the `pick ops` menu or by selecting a new option from the `polyline edit` menu.

See the next section 14.20.7.2 Extend or return to 14.20.7 Polyline Edit - Old.

### 14.20.7.2 Extend

There are two `extend` options for a polyline string - `extend=>extend` that is identical to the 3d string case where the z-value of the point being extended is kept constant, and a second option, `extend=>extend ht` where the z-value of the point being extended is linearly interpolated by the extension distance.

The `Extend` walk-right is

![Polyline Edit Options](image)

#### 14.20.7.2.1 Extend

`extend=>extend` that is identical to the 3d string case where the z-value of the point being extended is kept constant.

#### 14.20.7.2.2 Extend by ht

`extend=>extend ht` not only moves the point but also linearly interpolates the z-value of the point being extended.

See the next section 14.20.7.3 Radius or return to 14.20.7 Polyline Edit - Old.

### 14.20.7.3 Radius

Selecting `radius` brings up the `change radius` panel which is used to modify the radius of any arc/line joining adjacent polyline points.

![Change Radius Panel](image)

After selecting the `radius` option, the user selects the arc/straight to be modified and the current arc radius and bulge setting will be displayed in the `change radius` panel.

New values can then be entered and the arc modified by selecting the `set` button.

If the radius is positive, the arc is drawn from the start point to the next point on the polyline in a clockwise direction. If the radius is negative, the arc is drawn from the start point to the next point on the polyline in a counter-clockwise direction.

For a given radius (positive or negative), there are two possible cases for the arc: one where the arc is less than a semi-circle, the other when the arc is greater than a semi-circle.

If bulge is turned on, the larger arc is used. The default is bulge turned off.
14.20.7.4 Utilities

The Utilities walk-right menu contains a number of useful miscellaneous option for the polyline string. The menu is

Each of the new options will now be discussed.

14.20.7.4.1 Ins 3 Pt Curve

The Ins 3 Pt Curve option is used to insert a curve through three adjacent polyline points. After selecting the option, the middle IP of the three adjacent polyline points is selected. When the IP is accepted, the radius required to fit a curve through the IP and the two adjacent IP’s is calculated, and this radius is then applied to the segments joining the adjacent IP’s.

14.20.7.4.2 Del 3 Pt Curve

The del 3 pt curve option is used to delete the curves on either side of a polyline point. After selecting the option, an IP is selected and when the IP is accepted, the radii of the segments on either side are set to zero. Hence the curves on either side of the IP are effectively removed.

14.20.7.4.3 Properties

Selecting Properties brings up the Polyline String Properties panel which is used to modify the string’s header information.

See the next section 14.20.7.4 Utilities or return to 14.20.7 Polyline Edit - Old.
The fields in this panel are similar to those in the create polyline string panel and the polyline string editor options. The only new field is:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK/Apply button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the string being edited, **OK** sets the string with the values in the panel fields and removes the panel. **Apply** sets the string with the values in the panel fields and leaves the panel on the screen.
14.20.8 Super Edit - Old

On picking a super string, the **Super Edit** menu and **Super Edit Info** panel are placed on the screen.

The super string is similar to a polyline string in that it can have an arc instead of a line joining adjacent string points. Hence most of the options in the **super edit** menu are similar to the **polyline edit** options of the same name, and only the differences for each option will be discussed.

See the earlier section 14.4.1 **Super String Edit - Common Information** for general information about editing strings.

14.20.8.1 Append

The **Append** operation for a super is the same as the polyline case and an arc radius can be given for each new line segment.

Since in many cases an arc radius is not required at every segment of a super string, there is an append option that asks for the radius at every point and another that does not ask.

The **Append** walk-right is

If the **Append + Radius** option selected, then before each vertex is appended, an enter radius typed-input box is placed on the screen.

The enter radius typed-input box looks like

The radius is entered into the typed-input box, terminated with <enter>. The entered value is taken as the radius of the arc to the next super string vertex and the arc will be drawn correctly as the cursor is moved to the next vertex.

A radius value of 0 is taken to mean no arc.

The height question for each vertex is toggled on/off in the snaps menu just as it was for a polyline string.

The **Append** option is terminated on selecting **Cancel** from the **Pick Ops** menu or by selecting a new
option from the Super Edit menu

See the next section 14.20.8.2 Extend or return to 14.20.8 Super Edit - Old.

14.20.8.2 Extend

There are two extend options for a polyline string - Extend=>Extend that is identical to the 3d string case where the z-value of the point being extended is kept constant, and a second option, Extend=>Extend Ht where the z-value of the point being extended is linearly interpolated by the extension distance.

The Extend walk-right is

14.20.8.2.1 Extend

Extend=>Extend that is identical to the 3d string case where the z-value of the point being extended is kept constant.

14.20.8.2.2 Extend by Ht

Extend=>Extend Ht not only moves the point but also linearly interpolates the z-value of the point being extended.

See the next section 14.20.8.3 Vertex or return to 14.20.8 Super Edit - Old.

14.20.8.3 Vertex

The Vertex menu contains options to modify information at any vertex of the super string.

The Vertex walk-right is

14.20.8.3.1 Height

Selecting Vertex=>Height brings up the Super Vertex Height panel which is used to set the height value for vertices.
As soon as Height is chosen, a <Select vertex> [Picks][[Menu] message is written to the Status Bar and vertices can be selected.

When the vertex to modify is selected, its vertex number, height mode and height are written to the appropriate panel fields. The values and modes can be changed and either OK or Apply selected to change the values of the vertex.

Another vertex can then be selected or the Prev and Next buttons used to move to adjacent vertices.

The fields and buttons used in the Super Vertex Height panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex no.</td>
<td>input</td>
<td>selected vertex</td>
<td>if a vertex is selected, then its vertex number is displayed in this field. A number can also be typed in and any information in the panel will then be applied to that vertex if OK or Apply is selected.</td>
<td></td>
</tr>
<tr>
<td>Prev</td>
<td>button</td>
<td>move to the previous vertex (predecessor). The information for the previous vertex is displayed in the panel fields.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next</td>
<td>button</td>
<td>move to the next vertex (successor). The information for the next vertex is displayed in the panel fields.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Height mode | input                                | no z, entire string, each vertex | if no z, there is no z value for the vertex.  
if entire string, then the string has the same z value for each vertex.  
if each vertex, then each vertex has a separate z value. |
| Height      | input                                | height of vertex/string | the height used for the vertex or for the entire string. |
| OK/Apply    | button                               | for the vertex being edited, OK sets the vertex/string with the values in the panel fields and removes the panel. Apply sets the vertex/string with the values in the panel fields and leaves the panel on the screen. |

14.20.8.3.2 Tinable

Selecting Vertex=>Tinable brings up the Super Vertex Tinable panel which is used to set the tinable flag for vertices.
As soon as Tinable is chosen, a <Select vertex> [Picks] [Menu] message is written to the Status Bar and vertices can be selected.

When the vertex to modify is selected, its vertex number and tinable flag are displayed in the panel. The tinable flag can be changed and either OK or Apply selected to change the tinable flag of the vertex.

Another vertex can then be selected or the Prev and Next buttons used to move to adjacent vertices.

The fields and buttons used in the Super Vertex Tinable panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex no.</td>
<td>input</td>
<td>selected vertex</td>
<td></td>
</tr>
</tbody>
</table>

  * if a vertex is selected, then its vertex number is displayed in this field. A number can also be typed in and any information in the panel will then be applied to that vertex if OK or Apply is selected.

<table>
<thead>
<tr>
<th>Prev button</th>
<th>move to the previous vertex (predecessor). The information for the previous vertex is displayed in the panel fields.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next button</td>
<td>move to the next vertex (successor). The information for the next vertex is displayed in the panel fields.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tinable tick</th>
<th>if ticked, the vertex is included in tins. if not ticked, then the vertex is ignored when triangulating.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK/Apply button</td>
<td>for the vertex being edited, OK sets the vertex/string with the values in the panel fields and removes the panel. Apply sets the vertex/string with the values in the panel fields and leaves the panel on the screen.</td>
</tr>
</tbody>
</table>

14.20.8.3.3 Visible

Selecting Vertex=>Visible brings up the Super Vertex Visible panel which is used to set the visibility flag for vertices.
As soon as Visible is chosen, a <Select vertex> [Picks][Menu] message is written to the Status Bar and vertices can be selected.

When the vertex to modify is selected, its vertex number and visibility flag are displayed in the panel. The visibility flag can be changed and either OK or Apply selected to change the visibility flag of the vertex.

Another vertex can then be selected or the Prev and Next buttons used to move to adjacent vertices.

The fields and buttons used in the Super Vertex Visible panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex no.</td>
<td>input</td>
<td>selected vertex</td>
<td></td>
</tr>
<tr>
<td>if a vertex is selected, then its vertex number is displayed in this field. A number can also be typed in and any information in the panel will then be applied to that vertex if OK or Apply is selected.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prev</td>
<td>button</td>
<td>move to the previous vertex (predecessor). The information for the previous vertex is displayed in the panel fields.</td>
<td></td>
</tr>
<tr>
<td>Next</td>
<td>button</td>
<td>move to the next vertex (successor). The information for the next vertex is displayed in the panel fields.</td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, the vertex is visible.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if not ticked, then the vertex is invisible.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK/Apply</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>for the vertex being edited, OK sets the vertex/string with the values in the panel fields and removes the panel. Apply sets the vertex/string with the values in the panel fields and leaves the panel on the screen.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14.20.8.3.4 Point no

Selecting Vertex=>Point no brings up the Super Vertex Point Number panel which is used to set the point numbers for vertices.
As soon as Point no is chosen, a <Select vertex> [Picks][Menu] message is written to the Status Bar and vertices can be selected.

When the vertex to modify is selected, its vertex number and point number are displayed in the panel. The point number can be changed and either OK or Apply selected to change the point number of the vertex. Another vertex can then be selected or the Prev and Next buttons used to move to adjacent vertices.

The fields and buttons used in the Super Vertex Visible panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex no.</td>
<td>input</td>
<td>selected vertex</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if a vertex is selected, then its vertex number is displayed in this field. A number can also be typed in and any information in the panel will then be applied to that vertex if OK or Apply is selected.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prev</td>
<td>button</td>
<td>move to the previous vertex (predecessor). The information for the previous vertex is displayed in the panel fields.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next</td>
<td>button</td>
<td>move to the next vertex (successor). The information for the next vertex is displayed in the panel fields.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point no.</td>
<td>input</td>
<td>point no of vertex</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the point number used for the vertex.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK/Apply</td>
<td>button</td>
<td>for the vertex being edited, OK sets the vertex/string with the values in the panel fields and removes the panel. Apply sets the vertex/string with the values in the panel fields and leaves the panel on the screen.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14.20.8.3.5 Text

Selecting Vertex=>Text brings up the Super Vertex Text panel which is used to set the text for vertices.
As soon as Text is chosen, a <Select vertex> [Picks][][Menu] message is written to the Status Bar and vertices can be selected.

When the vertex to modify is selected, its vertex number, text mode and text are written to the appropriate panel fields. The values and modes can be changed and either OK or Apply selected to change the values of the vertex.

Another vertex can then be selected or the Prev and Next buttons used to move to adjacent vertices.

The fields and buttons used in the Super Vertex Text panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex no.</td>
<td>input selected vertex if a vertex is selected, then its vertex number is displayed in this field. A number can also be typed in and any information in the panel will then be applied to that vertex if OK or Apply is selected.</td>
</tr>
<tr>
<td>Prev</td>
<td>move to the previous vertex (predecessor). The information for the previous vertex is displayed in the panel fields.</td>
</tr>
<tr>
<td>Next</td>
<td>move to the next vertex (successor). The information for the next vertex is displayed in the panel fields.</td>
</tr>
<tr>
<td>Text mode</td>
<td>input no text, entire string, each vertex if no text, there is no text for the vertex. if entire string, then the string has the same text for each vertex. if each vertex, then each vertex has a separate text value.</td>
</tr>
<tr>
<td>Text</td>
<td>input text of vertex/string the text used for the vertex or for the entire string.</td>
</tr>
<tr>
<td>OK/Apply</td>
<td>button for the vertex being edited, OK sets the vertex/string with the values in the panel fields and removes the panel. Apply sets the vertex/string with the values in the panel fields and leaves the panel on the screen.</td>
</tr>
</tbody>
</table>

14.20.8.3.6 Text Info

Selecting Vertex=>Text info brings up the Super Vertex Annotate panel which is used to set the annotation styles for the text at vertices.
As soon as `Text info` is chosen, a `<Select vertex> [Picks][][Menu]` message is written to the Status Bar and vertices can be selected.

When the vertex to modify is selected, its `vertex number`, `annotate mode` and `annotation information` are written to the appropriate panel fields. The values and modes can be changed and either `OK` or `Apply` selected to change the values of the vertex.

Another vertex can then be selected or the `Prev` and `Next` buttons used to move to adjacent vertices.

The fields and buttons used in the `Super Vertex Annotate` panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex no.</td>
<td>input</td>
<td>selected vertex</td>
<td></td>
</tr>
<tr>
<td>Annotate mode</td>
<td>input</td>
<td>no annotation, entire string, each vertex</td>
<td></td>
</tr>
<tr>
<td>Text style</td>
<td>input</td>
<td>1</td>
<td>available text styles</td>
</tr>
<tr>
<td>Text units</td>
<td>input</td>
<td>pixels</td>
<td>pixels, world</td>
</tr>
<tr>
<td>Height (u)</td>
<td>input</td>
<td>height of the text (in text units).</td>
<td></td>
</tr>
<tr>
<td>X factor</td>
<td>input</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Offset (u)</td>
<td>input</td>
<td>0</td>
<td>distance (in text units) to offset the text from its (x,y) placement position.</td>
</tr>
</tbody>
</table>
Raise (u)  input  0  
\text{distance (in text units) to raise the text above the line for its (x,y) placement position.}

Justify  input  bottom-left  bot-left/cent/right, mid-left/cent/right  top-left/cent/right  
\text{text justification (about the offset position).}

Angle  input  
\text{angle of the text.}

Slant  input  0  
\text{slant, in degrees, of the text.}

Colour  input  available colours  
\text{colour of the text.}

OK/Apply button  
\text{for the vertex being edited, OK sets the vertex/string with the values in the panel fields and removes the panel. Apply sets the vertex/string with the values in the panel fields and leaves the panel on the screen.}

14.20.8.3.7 Symbol Info

Selecting Vertex=>Symbol info brings up the Super Vertex Symbol panel which is used to set symbols and their display parameters at vertices.

As soon as Symbol info is chosen, a <Select vertex> [Picks][][Menu] message is written to the Status Bar and vertices can be selected.

When the vertex to modify is selected, its vertex number, symbol mode and symbol information are written to the appropriate panel fields. The values and modes can be changed and either OK or Apply selected to change the values for the vertex.

Another vertex can then be selected or the Prev and Next buttons used to move to adjacent vertices.

The fields and buttons used in the Super Vertex Symbol panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex no.</td>
<td>input</td>
<td>selected vertex</td>
<td></td>
</tr>
</tbody>
</table>

\text{if a vertex is selected, then its vertex number is displayed in this field. A number can also be}
typed in and any information in the panel will then be applied to that vertex if OK or Apply is selected.

Prev button
move to the previous vertex (predecessor). The information for the previous vertex is displayed in the panel fields.

Next button
move to the next vertex (successor). The information for the next vertex is displayed in the panel fields.

Symbol mode input
no symbol, entire string, each vertex
if no symbol, then there is no symbol at the vertex.
if entire string, then the same symbol and settings are used for each vertex.
if each vertex, then each vertex has separate symbols and settings.

Symbol style input 1 available line styles
line style for the symbol at the vertex.

Symbol rotation input
rotation angle of the symbol.

Symbol size (u) input
size of the symbol (in xxx units).

Symbol offset (u) input 0
distance (in xxx units) to offset the symbol from its (x,y) placement position.

Symbol raise (u) input 0
distance (in xxx units) to raise the symbol above the line for its (x,y) placement position.

Symbol colour input available colours
colour of the symbol if none is defined in the symbol definition

OK/Apply button
for the vertex being edited, OK sets the vertex/string with the values in the panel fields and removes the panel. Apply sets the vertex/string with the values in the panel fields and leaves the panel on the screen.

14.20.8.3.8 Attributes
Selecting Vertex=>Attributes brings up the Super Vertex User Attributes panel which is used to display and edit user defined attributes at vertices of the super string.
The Prev and Next buttons are used to cycle through and display the attributes for each vertex in the super string in the Name/Type/Data grid.

The data in the Name/Type/Data grid can be deleted, modified or added to and then updated for the vertex using the OK or Apply button.

The fields and buttons used in the Super Vertex User Attributes panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex no.</td>
<td>input selected vertex when the option starts, the user attributes for the first vertex is displayed. The Next and Prev buttons will move onto other vertices. Also a number can be typed into the field and any information in the panel will then be applied to that vertex if OK or Apply is selected. Typing &lt;Enter&gt; after entering a number will go to that vertex number and display the attributes.</td>
<td>input</td>
<td>selected vertex</td>
<td></td>
</tr>
<tr>
<td>Prev</td>
<td>move to the previous vertex (predecessor). The information for the previous vertex is displayed in the panel fields.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next</td>
<td>move to the next vertex (successor). The information for the next vertex is displayed in the panel fields.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Attribute mode         | choice box                                                                  | choice box   | no attributes, each vertex | if no attributes, then no vertices have user attributes. if each vertex, then each vertex can have user attributes.
### Name/Type/Data Grid

**Name**

input

name for the user attribute. This must be unique for all attributes at this vertex.

**Type**

choice box

integer, real, text

**Data**

input

value for the attribute.

**OK/Apply**

button

for the vertex being edited, OK sets the vertex with the values in the panel fields and removes the panel. Apply sets the vertex with the values in the panel fields and leaves the panel on the screen.

### 14.20.8.3.9 Vertex - All above

Selecting Vertex => All above brings up the Super Vertex Properties panel which is used to display all the properties for a vertex.

This option is also available from the Strings menu.

**Position of option on menu:**

Strings => Properties => Vertex (all)

As soon as All above is chosen, a <Select vertex> [Picks][][Menu] message is written to the Status Bar and vertices can be selected.
When the vertex to modify is selected, its vertex number and all other information are written to the appropriate panel fields. The values and modes can be changed and either OK or Apply selected to change the values for the vertex.

The fields in the Super Vertex Properties panel have already been described in the other Vertex options and so will not be described again.

Please continue to the next section 14.4.10.5 Segment Toolbar.

14.20.8.4 Segment

The Segment menu contains options to modify information at any segment of the super string.

The Segment walk-right is

![Segment Walk-right](image)

14.20.8.4.1 Colour

Selecting Segment=>Colour brings up the Super Segment Colour panel which is used to set the colour of the string segments.

![Super Segment Colour Panel](image)

As soon as Colour is chosen, a <Select segment> [Picks][[Menu] message is written to the Status Bar and segments can be selected.

When the segment to modify is selected, its segment number, colour mode and colour are written to the appropriate panel fields. The values and modes can be changed and either OK or Apply selected to change the values of the segment.

Another segment can then be selected or the Prev and Next buttons used to move to adjacent segments. The appropriate segment highlights when the Prev and Next buttons are used.

The fields and buttons used in the Super Segment Colour panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment no.</td>
<td>input</td>
<td>selected vertex</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*if a segment is selected, then its segment number is displayed in this field. A number can also be typed in and any information in the panel will then be applied to that segment if OK or...*
Apply is selected.

Prev button
move to the previous segment (predecessor). The information for the previous segment is displayed in the panel fields.

Next button
move to the next segment (successor). The information for the next segment is displayed in the panel fields.

Colour mode input
string colour, each segment
if no z, there is no z value for the vertex.
if string colour, then all the segments in the string have the same colour.
if each segment, then each segment has a separate colour.

Colour input
colour of segment/string
available colours
the colour used for the segment or for the entire string.

OK/Apply button
for the segment being edited, OK sets the segment/string with the values in the panel fields and removes the panel. Apply sets the segment/string with the values in the panel fields and leaves the panel on the screen.

14.20.8.4.2 Tinable
Selecting Segment=>Tinable brings up the Super Segment Tinable panel which is used to set the tinable flag for segments.

As soon as Tinable is chosen, a <Select segment> [Picks][[Menu]] message is written to the Status Bar and vertices can be selected.

When the segment to modify is selected, its segment number and tinable flag are displayed in the panel. The tinable flag can be changed and either OK or Apply selected to change the tinable flag of the segment. Another segment can then be selected or the Prev and Next buttons used to move to adjacent segments.

The fields and buttons used in the Super Segment Tinable panel have the following functions.

Field Description Type Defaults Pop-Up
Segment no. input selected segment
if a segment is selected, then its segment number is displayed in this field. A number can also be typed in and any information in the panel will then be applied to that segment if OK or Apply is selected.

Prev button
move to the previous segment (predecessor). The information for the previous segment is displayed in the panel fields.
Next button
move to the next segment (successor). The information for the next segment is displayed in the panel fields.

Tinable tick
if ticked, the triangulation process tries to preserve the segment as a side of a triangle in the tin.

OK/Apply button
for the segment being edited, OK sets the segment/string with the values in the panel fields and removes the panel. Apply sets the segment/string with the values in the panel fields and leaves the panel on the screen.

14.20.8.4.3 Diameter
The segments of a super string can have either a pipe or box cross section, or none. Selecting Segment=>Diameter brings up the Super Segment Pipe panel which is used to set the pipe mode and size for the string segments.

As soon as Diameter is chosen, a <Select segment> [Picks][][Menu] message is written to the Status Bar and segments can be selected.

When the segment to modify is selected, its segment number, pipe mode and information are written to the appropriate panel fields and the Super Segment Pipe panel will change depending on whether it was a pip or box cross-section for the string.

After any panel fields are modified, selecting either OK or Apply will change the pipe information for the segment.
Another segment can then be selected or the Prev and Next buttons used to move to adjacent segments. The appropriate segment highlights when the Prev and Next buttons are used.

The fields and buttons used in the Super Segment Pipe panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment no.</td>
<td>Type input selected vertex if a segment is selected, then its segment number is displayed in this field. A number can also be typed in and any information in the panel will then be applied to that segment if OK or Apply is selected.</td>
</tr>
<tr>
<td>Prev</td>
<td>button move to the previous segment (predecessor). The information for the previous segment is displayed in the panel fields.</td>
</tr>
<tr>
<td>Next</td>
<td>button move to the next segment (successor). The information for the next segment is displayed in the panel fields.</td>
</tr>
<tr>
<td>Pipe mode</td>
<td>input no pipe or box pipe entire string pipe each segment box entire string box each segment</td>
</tr>
<tr>
<td>Justify</td>
<td>input invert, centre, overt justification of the pipe/box with respect to the co-ordinates given for the vertices of the super string. rotation angle of the symbol.</td>
</tr>
<tr>
<td>Pipe diameter</td>
<td>input diameter of the pipe in world units.</td>
</tr>
<tr>
<td>Box width</td>
<td>input width of the box section in world units.</td>
</tr>
<tr>
<td>Box height</td>
<td>input height of the box section in world units.</td>
</tr>
<tr>
<td>OK/Apply</td>
<td>button for the segment being edited, OK sets the segment/string with the values in the panel fields and removes the panel. Apply sets the segment/string with the values in the panel fields and leaves the panel on the screen.</td>
</tr>
</tbody>
</table>

14.20.8.4.4 Radius

When viewed in plan, the segments of a super string can be joined by string lines or arcs. If the radius is positive, the arc is drawn from the start vertex to the end vertex of the segment in a clockwise direction. If the radius is negative, the arc is drawn from the start vertex to the end vertex on the segment in a counter-clockwise direction.

For a given radius (positive or negative), there are two possible cases for the arc- one where the arc is less than a semi-circle, the other when the arc is greater than a semi-circle.

If bulge is turned on, the larger arc is used. The default is bulge turned off.

A zero radius is interpreted to be a just a straight line segment with no arc.

Selecting Segment=>Radius brings up the Super Segment Radius panel which is used to set the plan radius of the segment.
As soon as \texttt{Radius} is chosen, a <Select segment> [Picks][][Menu] message is written to the Status Bar and segments can be selected.

When the segment to modify is selected, its segment number, radius and bulge are written to the appropriate panel fields. The values and modes can be changed and either \texttt{OK} or \texttt{Apply} selected to change the values of the segment.

Another segment can then be selected or the \texttt{Prev} and \texttt{Next} buttons used to move to adjacent segments. The appropriate segment highlights when the \texttt{Prev} and \texttt{Next} buttons are used.

The fields and buttons used in the \textbf{Super Segment Radius} panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment no.</td>
<td>input selected vertex</td>
<td>input</td>
<td>selected vertex</td>
<td></td>
</tr>
<tr>
<td></td>
<td>\textit{if a segment is selected, then its segment number is displayed in this field. A number can also be typed in and any information in the panel will then be applied to that segment if \texttt{OK} or \texttt{Apply} is selected.}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prev</td>
<td>button</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>\textit{move to the previous segment (predecessor). The information for the previous segment is displayed in the panel fields.}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next</td>
<td>button</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>\textit{move to the next segment (successor). The information for the next segment is displayed in the panel fields.}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour mode</td>
<td>input string colour, each segment</td>
<td>input</td>
<td>string colour, each segment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>\textit{if \texttt{no z}, there is no z value for the vertex.}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>\textit{if \texttt{string colour}, then all the segments in the string have the same colour.}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>\textit{if \texttt{each segment}, then each segment has a separate colour.}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius</td>
<td>tick</td>
<td>tick</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>\textit{if ticked, the larger arc is used.}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>\textit{if not-ticked, the smaller arc is used.}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bulge input 0
radius of the segment arc. A radius of 0 mean no arc.

OK/Apply button
for the segment being edited, OK sets the segment/string with the values in the panel fields and removes the panel. Apply sets the segment/string with the values in the panel fields and leaves the panel on the screen.

14.20.8.4.5 Text
Selecting Segment=>Text brings up the Super Segment Text panel which is used to set the text for segments.

As soon as Text is chosen, a <Select segment> [Picks][][Menu] message is written to the Status Bar and vertices can be selected.

When the segment to modify is selected, its segment number, text mode and text are written to the appropriate panel fields. The values and modes can be changed and either OK or Apply selected to change the values of the segment.

Another segment can then be selected or the Prev and Next buttons used to move to adjacent segments.

The fields and buttons used in the Super Segment Text panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment no.</td>
<td>input</td>
<td>selected vertex</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if a segment is selected, then its segment number is displayed in this field. A number can also be typed in and any information in the panel will then be applied to that segment if OK or Apply is selected.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prev</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>move to the previous segment (predecessor). The information for the previous segment is displayed in the panel fields.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>move to the next segment (successor). The information for the next segment is displayed in the panel fields.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text mode</td>
<td>input</td>
<td>no text, entire string, each segment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if no text, there is no text for the segment.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if entire string, then the string has the same text for each segment.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if each segment, then each segment has a separate text value.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
14.20.8.4.6 Text Info

Selecting Segment=>Text info brings up the Super Segment Annotate panel which is used to set the annotation styles for the text at segments.

As soon as Text info is chosen, a <Select segment> [Picks][[Menu] message is written to the Status Bar and segments can be selected.

When the segment to modify is selected, its segment number, annotate mode and annotation information are written to the appropriate panel fields. The values and modes can be changed and either OK or Apply selected to change the values of the segment.

Another segment can then be selected or the Prev and Next buttons used to move to adjacent segments.

The fields and buttons used in the Super Segment Annotate panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment no.</td>
<td>input</td>
<td>selected vertex</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if a segment is selected, then its segment number is displayed in this field. A number can also be typed in and any information in the panel will then be applied to that segment if OK or Apply is selected.</td>
<td></td>
</tr>
<tr>
<td>Prev</td>
<td>button</td>
<td>move to the previous segment (predecessor). The information for the previous segment is displayed in the panel fields.</td>
<td></td>
</tr>
<tr>
<td>Next</td>
<td>button</td>
<td>move to the next segment (successor). The information for the next segment is displayed in the panel fields.</td>
<td></td>
</tr>
<tr>
<td>Annotate mode</td>
<td>input</td>
<td>no annotation, entire string, each segment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if no annotation, then the text at the segment is not displayed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if entire string, then the same annotation settings are used for each segment.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if each vertex, then each segment has separate annotations settings.</td>
<td></td>
</tr>
<tr>
<td>Textstyle info</td>
<td>input</td>
<td>textstyle information.</td>
<td></td>
</tr>
</tbody>
</table>
OK/Apply button

for the segment being edited, **OK** sets the segment/string with the values in the panel fields and removes the panel. **Apply** sets the segment/string with the values in the panel fields and leaves the panel on the screen.

### 14.20.8.4.7 Visible

Selecting **Segment=>Visible** brings up the **Super Segment Visible** panel which is used to set the visibility flag for segments.

As soon as **Visible** is chosen, a `<Select segment> [Picks][][Menu]` message is written to the Status Bar and segments can be selected.

When the segment to modify is selected, its **segment number** and **visibility flag** are displayed in the panel. The visibility flag can be changed and either **OK** or **Apply** selected to change the visibility flag of the segment.

Another segment can then be selected or the **Prev** and **Next** buttons used to move to adjacent segments.

The fields and buttons used in the **Super Segment Visible** panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Segment no.</strong></td>
<td>input</td>
<td></td>
<td>selected vertex</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if a segment is selected, then its segment number is displayed in this field. A number can also be typed in and any information in the panel will then be applied to that segment if <strong>OK</strong> or <strong>Apply</strong> is selected.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Prev</strong></td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>move to the previous segment (predecessor). The information for the previous segment is displayed in the panel fields.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Next</strong></td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>move to the next segment (successor). The information for the next segment is displayed in the panel fields.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Visible</strong></td>
<td>tick</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if ticked, the segment is visible.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if not ticked, then the segment is invisible.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>OK/Apply</strong></td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>for the segment being edited, <strong>OK</strong> sets the segment/string with the values in the panel fields and removes the panel. <strong>Apply</strong> sets the segment/string with the values in the panel fields and leaves the panel on the screen.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 14.20.8.4.8 Attributes

Selecting **Segment=>Attributes** brings up the **Super Segment User Attributes** panel which is used to...
display and edit user defined attributes at segments of the super string.

The Prev and Next buttons are used to cycle through and display the attributes for each segment in the super string in the Name/Type/Data grid.

The data in the Name/Type/Data grid can be deleted, modified or added to and then updated for the segment using the OK or Apply button.

The fields and buttons used in the Super Segment User Attributes panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment no.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prev button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>move to the previous segment (predecessor). The information for the previous segment is displayed in the panel fields.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>move to the next segment (successor). The information for the next segment is displayed in the panel fields.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attribute mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>choice box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no attributes, each segment if no attributes, then no segments have user attributes.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
if each segment, then each segment can have user attributes.

**Name/Type/Data Grid**

<table>
<thead>
<tr>
<th>Name</th>
<th>input</th>
<th>name for the user attribute. This must be unique for all attributes at this segment.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>choice box</td>
<td>integer, real, text</td>
</tr>
<tr>
<td>Data</td>
<td>input</td>
<td>value for the attribute.</td>
</tr>
</tbody>
</table>

**OK/Apply button**

For the segment being edited, **OK** sets the segment with the values in the panel fields and removes the panel. **Apply** sets the segment with the values in the panel fields and leaves the panel on the screen.

**14.20.8.4.9 Segment - All above**

Selecting Segment=>All above brings up the Super Segment Properties panel which is used to display all the properties of a segment.

This option is also available from the Strings menu

**Position of option on menu:** Strings =>Properties =>Segment (all)

As soon as All above is chosen, a <Select segment> [Picks][Menu] message is written to the Status Bar
and segments can be selected. When the segment to modify is selected, its segment number and all other information are written to the appropriate panel fields. The values and modes can be changed and either OK or Apply selected to change the values for the segment.

The fields in the Super Segment Properties panel have already been described in the other Segment options and so will not be described again.

See the next section 14.20.8.5 Utilities or return to 14.20.8 Super Edit - Old.

### 14.20.8.5 Utilities

The Utilities walk-right menu contains a number of useful miscellaneous options for the super string. The menu is

![Super Utilities](image)

Each of the new options will now be discussed.

#### 14.20.8.5.1 Ins 3 Pt Curve

The Ins 3 Pt Curve option is used to insert a curve through three adjacent super string vertices. After selecting the option, the middle vertex of the three adjacent super string vertices is selected. When the vertex is accepted, the radius required to fit a curve through the vertex and the two adjacent vertices is calculated, and this radius is then applied to the segments joining the adjacent vertices.

#### 14.20.8.5.2 Del 3 Pt Curve

The del 3 pt curve option is used to delete the curves on either side of a super string vertex. After selecting the option, a vertex is selected and when the vertex is accepted, the radii of the segments on either side are set to zero. Hence the curves on either side of the vertex are effectively removed.

#### 14.20.8.5.3 Open

If the string is closed, selecting the open option removes the segment between the 1st and last vertex of the super string. If the string is not closed, the open option does nothing.

#### 14.20.8.5.4 Close

Selecting the close option adds a segment between the 1st and the last vertices of the super string. Note that unlike other strings, no extra vertices are added.

#### 14.20.8.5.5 Properties

Selecting Properties brings up the Super String Properties panel which is used to modify the string’s header information.
The fields in this panel are similar to those in the **Create Super String** panel and the Super String Editor options. The only new field is

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>OK/Apply</strong> button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*for the string being edited, **OK** sets the string with the values in the panel fields and removes the panel. **Apply** sets the string with the values in the panel fields and leaves the panel on the screen.*
15 CAD

In 12d Model there are CAD options which are available under both the CAD menu and flyouts on the CAD Toolbar which by default, is on the left hand side of the 12d Model screen.

The CAD options create and edit strings using a variety of methods and are fully described in the section 15.2 CAD Options.

The strings created by the CAD menu or CAD toolbars use values in the three controlbars (Cad Controlbar, Symbol Controlbar, and Text Controlbar) to define string attributes such as name, model and colour.

So the controlbars will be described in full in the section 15.1 Controlbars before the CAD options.

For basic information on toolbars and ControlBars, see the section 4.3.5 Toolbars and Controlbars.

The CAD options create various elements using a number of methods. These options make use of Tool bars and Control bars. Tool bars just have icons on them but Control bars have icons and also controls such as a model box on them. The method groupings are shown on the toolbars (e.g. Points, Lines).

For details on each of the walk rights menus on the CAD menu, go to the section 15.2 CAD Options.

For details on the Controlbars go to the section 15.1 Controlbars.
15.1 Controlbars

This default position of the ControlBars is on the top left hand side of the screen under the main menu.

See

15.1.1 CAD Controlbar
15.1.2 Symbol Controlbar
15.1.3 Text Controlbar
15.1.4 Pipe Controlbar
15.1.5 Attributes Controlbar
15.1.6 Search Bar
15.1.1 CAD Controlbar

The fields and buttons used in CAD controlbar have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>name box</td>
<td>name of string</td>
<td>names.4d names</td>
<td></td>
</tr>
<tr>
<td>model box</td>
<td>model icon button</td>
<td>existing models</td>
<td></td>
</tr>
<tr>
<td>colour box</td>
<td>colour icon button</td>
<td>standard 12d colours</td>
<td></td>
</tr>
<tr>
<td>input</td>
<td>input measures</td>
<td>height measures</td>
<td>menu</td>
</tr>
<tr>
<td>linetype box</td>
<td>linestyle icon button</td>
<td>valid linestyles</td>
<td></td>
</tr>
<tr>
<td>weight box</td>
<td>weight icon button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tinability box</td>
<td>tinability icon</td>
<td>no, yes, points</td>
<td>button</td>
</tr>
</tbody>
</table>

name of string. If a valid name already exists in names.4d, the + button can be used to bring up a choice box of available names. On selection of a valid name, the rest of the values in the control bar will be filled out. e.g. colour, linetype etc.

this field can be recognised by the model icon button on the right hand side of the field. The user can select an existing model by selecting the model icon. If a new model is to be used, the user simply types the model name into the field.

colour box can be recognised by the colour icon button on the right hand side of the field. The user can select a 12d standard colour model by selecting the colour icon.

this field allows a height or z value to be assigned to the created elements. If a valid value exists, this value will be applied to the created element. This is regardless if the z value was specified in an XYZ box. If blank, the null value is used. If no value is specified, the level will be interpolated where possible. A value of null can be entered into the height field as well so that created vertices will be given a null height value.

linetype box can be recognised by the linestyle icon button on the right hand side of the field. The user can select a valid linestyle by selecting the linestyle icon.

weight box can be recognised by the weight icon button on the right hand side of the field. The user can type in the required weight (millimetres on the plot). If blank, no weight is assigned.

the choices in this field set the tinability for the string. If no, no vertices or segments in the string are tinable. If yes, all vertices and segments in the string are tinable. If point, all vertices in the string are tinable but not the segments.

button the eye dropper allows the user to select an existing element which will define the cad control bar values.

Continue to the next section 15.1.2 Symbol Controlbar or return to 15.1 Controlbars.
## 15.1.2 Symbol Controlbar

![Symbol Controlbar](image)

The fields and buttons used in Symbol controlbar have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>The symbols data box allows a symbols favourite to be selected and fill the other boxes. The symbols data box will be described after the other controls.</td>
<td>symbols box</td>
<td>valid symbols</td>
<td></td>
</tr>
<tr>
<td>this field can be recognised by the symbol icon button on the right hand side of the field. The user can select a valid symbol by selecting the symbol icon.</td>
<td>input</td>
<td>size measures menu</td>
<td></td>
</tr>
<tr>
<td>this field gives the size of the created symbols. If a valid value exists, this value will be applied to the created symbol.</td>
<td>input</td>
<td>angle measures menu</td>
<td></td>
</tr>
<tr>
<td>this field gives the angle of the created symbols. If a valid value exists, this value will be applied to the created symbol.</td>
<td>Symbols data box</td>
<td>on pressing the button a list of available symbols data predefined names read from the <code>symbols_names.4d</code> file are displayed. If a symbols data is selected, the values are used for the other Symbol Controlbar fields.</td>
<td></td>
</tr>
</tbody>
</table>

If no names exist, the user can edit the current settings by selecting the edit button and bring up the Symbols Information panel. This allows for definition of symbol colour, sized, rotation, offset and raise.
Continue to the next section 15.1.3 Text Controlbar or return to 15.1 Controlbars.
15.1.3 Text Controlbar

Text can occur as a text string, or on vertices and segments of a super string.

Each type of text has a vertex (these are displayed when Vertices are toggle on in a plan view), a justification point, a rotation, an offset and raise value.

The vertex and justification point only coincide if the offset and raise values are both zero. What parts of the text on a super string vertex or segment that can be independently modified depends on the settings for the super string.

For the CAD text options, the created elements will have attributes as defined by the Text Controlbar. The default position of the Text Controlbar is in top middle of the screen under the main menu.

The Text Controlbar is

The operation of the Textstyle data box is as follows:

Textstyle data box

on pressing the button a list of available textdata predefined names read from the texstyle_names.4d file are displayed.

If no names exist, the user can edit the current settings by selecting the edit button and bring up the
**Textstyle Data** panel. This allows for definition of textstyle, units, height offset raise etc.

Continue to the next section 15.1.4 Pipe Controlbar or return to 15.1 Controlbars.
15.1.4 Pipe Controlbar

The Pipe ControlBar is used to set the Pipe dimension when a super string is create with CAD. The Pipe ControlBar can set the entire super string to be a round pipe or a box culvert pipe.

There is a **Pipe ControlBar** and it is used to make a round or culvert string whenever a new string is created by the CAD options.

When a new string is created with the CAD options and the value in the **Shape** field of the Pipe ControlBar is **Diameter** or **Culvert**, then the **Justify**, **Size 1** and **Size 2** fields from the Pipe ControlBar are given to the created string.

To clear **all** the fields in the Pipe ControlBar, clear the **Pipe Shape** field and press <Enter>. This clears all the other fields of the Pipe ControlBar.

**Note**

The *Names.4d* now has a **Pipe** section so that the Pipe ControlBar can be automatically filled in when a name is selected in the CAD ControlBar that is in the Pipe section. See 7.9.1.6 Pipe Node in 7.9.1 Name Mappings - Names.4d File.

Continue to the next section 15.1.5 Attributes Controlbar or return to 15.1 Controlbars.
15.1.5 Attributes Controlbar

There is a **Attributes ControlBar** and it is used to apply **string** attributes whenever a new super string is created by the CAD options, the attributes in the Attributes ControlBar are given to the string as string attributes.

![Attributes ControlBar](image)

When a new string is created with the CAD options, the string is given the attributes in the **Attributes ControlBar** as string attributes.

**Note**

The *Names.4d* now has an **Attribute Data** section so that the **Attributes ControlBar** can be automatically filled in when a name is selected in the **CAD ControlBar** that is in the **Attributes** section. See [7.9.1.7 Attributes Data Node](#) in 7.9.1 Name Mappings - *Names.4d* File.

Continue to the next section [15.1.6 Search Bar](#) or return to [15.1 Controlbars](#).
15.1.6 Search Bar

The Search Bar allows quick access to any option in 12d Model.

By simply typing text into the Search Bar, the option searches for matches of the typed text amongst the full path names of all the options on the menus, and then lists the menu items and the position of the menu that contains the menu item.

For example, typing in `volu` will bring up the list shown below.

Double clicking on an item in the list brings up the panel for that item.

Note that case is ignored when searching for matches.

Return to 15.1 Controlbars.
15.2 CAD Options

Position of option on menu: CAD

The CAD options are available from the CAD menu or from the CAD toolbar. The CAD toolbar is a flyout toolbar.

The CAD walk-right menu is

![CAD Walk-Right Menu]

and the CAD Toolbar is

![CAD Toolbar]

The string creation process is similar for each string type and for editing strings as well. On selecting the appropriate option, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

For the options see
- Dimension: 15.3 CAD Dimension
- Leader, go to: 15.4 CAD Leader
- Table, go to: 15.6 CAD Table
- Multipick, go to: 15.8 CAD Multipick
- Point: 15.9 CAD Point
- Intersection: 15.10 CAD Intersection
- Line: 15.11 CAD Line
Circle 15.12 CAD Circle
Arc 15.13 CAD Arc
Polygon 15.14 CAD Polygon
Text 15.15 CAD Text
Symbol 15.16 CAD Symbol
Hole 15.17 CAD Hole
Fill 15.18 CAD Fill
Image 15.19 CAD Image
Modify 15.20 CAD Modify
Vertex 15.21 CAD Vertex
Segment 15.22 CAD Segment
String 15.23 CAD Edit Strings
Edit 15.24 CAD Edit
Delete 15.25 CAD Delete
Acad 15.26 Cad Acad
Regression 15.27 CAD Regression
15.3 CAD Dimension

**Position of option on menu:**  CAD => Dimension

Various types of Dimensions can be created with the Dimension options.

Each type of Dimension remembers the items it was created from (Association). In most cases when the items are modified, the Dimensions and the associated values on the Dimension dynamically change. See [15.3.1 Dimension Association](#).

For information about the meaning of the linear dimension commands Linear, Horizontal, Vertical, Aligned, Rotated, Horizontal segment, Vertical segment, Aligned segment and Rotated segment see [15.3.6 Linear Dimension Commands](#).

For more information on each of the dimension commands, see

**Create same as** - create new dimension of same type as selected dimension [15.3.5 Dimension - Create Same As](#)

**Linear** - various 2D distances. See [15.3.6.1 Linear](#)

**Angle 2 lines** - angle between two selected lines. See [15.3.14 Angle 2 Lines](#)

---

**Special Linear - Two Points Defines the Extent**
- delta x - i.e. Rotation of 0. Two points defines the extents.
- delta y - i.e. Rotation of 90. Two points define the extent Rotation given by 2 pts. Two points define the extent User given rotation. Two points define the extent.

**Special Linear - Segment Defines the Extent**
- delta x - i.e. Rotation of 0. Segment defines the extents.
- delta y - i.e. Rotation of 90. Segment defines the extent Rotation given by segment. Segment defines the extent User given rotation. Segment defines the extent.

various options to work with dimensions.
Angle 3 points - angle between two lines defined by 3 points. See 15.3.15 Angle 3 points
Angle Arc - angle subtended by existing arc or a segment with a radius. See 15.3.16 Angle Arc
Length - the 2D length of selected segments See 15.3.7 Length
Drop segment - point dropped onto segment. See 15.3.8 Drop Segment
Drop string - point dropped onto a string. See 15.3.8 Drop Segment
Area - area of selected strings. See 15.3.10 Area
Radius - radius of a selected arc. See 15.3.13 Radius
Diameter - diameter of an arc 15.3.12 Diameter.
Jogged radius - radius of a selected arc with jog. See 15.3.11 Jogged radius
Arc Length - Arc by Centre, 2 Points - length of an arc with arc defined by selecting a centre and two points on the arc. See 15.3.17 Arc Length by Centre, 2 Points

Horizontal - the horizontal distance (delta x) between two selected points. See 15.3.6.3 Horizontal
Vertical - the vertical distance (delta y) between two selected points. See 15.3.6.4 Vertical
Aligned - 2D distance between two selected points. See 15.3.6.2 Aligned
Rotated - the 2D between a selected point and another selected point dropped onto the line going through the first point with a user given angle. See 15.3.6.5 Rotated

Horizontal segment - the horizontal distance (delta x) between the end vertices of selected segments. See 15.3.6.7 Horizontal Segment
Vertical segment - the vertical distance (delta y) between the vertical points of the selected segment. See 15.3.6.8 Vertical Segment
Aligned segment - the 2D distance between the end vertices of selected segments. See 15.3.6.6 Aligned Segment
Rotated segment - the 2D between the first vertex of a selected segment and the end vertex of the segment dropped onto the line going through the first vertex with a user given angle. See 15.3.6.9 Rotated Segment

Utilities - various dimension utilities. See 15.3.18 Dimension Utilities
15.3.1 Dimension Association

When *dimensions* are created, the dimension can remember the items that were used to create them (*Association*).

In most cases when items are moved, the dimensions associated with the items dynamically change.

In cases where it is not automatic, there is a **Recalc** and **Recalc all** for dimensions and leaders. In the dimension options, typing **a** or **A** toggles Association **ON** and **OFF**.
15.3.2 Continuous Mode

For all the Linear dimension options except Aligned, there is a Continuous mode.

When Continues mode is on, all the dimensions lines are on the same line as the dimension line of the first dimension done in the sequence.
In the dimension options which support Continuous, typing c or C toggles Continuous ON and OFF.
15.3.3 Baseline Mode

For all the dimension options *Horizontal, Vertical and Rotated*, there is a **Baseline** mode. When **Baseline** mode is **ON**, the distances are all measured from the first picked point, the first dimension line goes through the picked dimension point, and for each subsequent dimension line, the distance is measured from the first point, and the dimension line is moved a give distance offset to the previous dimension line so that the dimension lines for not overlap.

In the dimension options which support **Baseline**, (b)aseline appears in the message in the screen message area:

Typing b or B toggles **Baseline ON** and **OFF** and when **Baseline** is toggle **ON** for the first time, the *Dimension lines distance Typed Input* box is place on the screen.

The new distance is typed into the box and <Enter> pressed.

Whenever **Baseline** is toggled **ON**, (d)istance appears in the message in the screen message area:

Typing d or D toggles brings up the *Dimension lines distance Typed Input* box and a new distance can be entered.

Whenever **Baseline** is **ON**, **Continuous** is turned **OFF**.
Rotated Baseline ON

Positive baseline distance

First point

Rotation

Second point

Fourth point

Point that all the dimension lines go through

Vertical Baseline ON

Positive baseline distance

First point

First point

Point that all the dimension lines go through

Fifth point

Fifth point

Negative baseline distance

First point
15.3.4 Zero Offset Mode

For some dimension options there is a **Zero Offset** mode.

When **Zero Offset** mode is ON, then the user is not asked to select a dimension point.

The dimension line is automatically placed on the line between the two points.

When **Zero Offset** is available, typing *z* or *Z* toggles **Zero offset ON and OFF**.
15.3.5 Dimension - Create Same As

Create same as creates a new Dimension of the same type as a selected Dimension.

Step 1.
Select Create same as and the following message is written to the screen message area:

```
<Pick dimension> [picks][fast][Menu]
```

Step 2. Select an existing Dimension
When an existing Dimension is selected, a new create Dimension of the same Dimension type as the selected Dimension, is started.
15.3.6 Linear Dimension Commands

The **Linear Dimension** commands measure the **2D (plan) distance between two points**. The two points to measure between define a line and that line has a **Rotation** angle with respect to the x-axis (Rotation is measured in an anticlockwise direction from the positive x-axis).

![Diagram of Linear Dimension](image)

Note that the two points may be selected individually or can be the end points of a selected segment (if the segment is an arc or a transition, only the end points of the segment are used).

Because most drawings to be dimensioned are very regular and often drawn so that the major line work is parallel to the x and y axes, it is an advantage to have special forms of the **Linear Dimension** so that the intent is clearer and less information has to be provided by the user.

The **special Linear Dimensions** are best classified by their **Rotation** angle.

(a) **Horizontal - rotation angle of 0**

This is the difference between the two x coordinates of the points or segment (delta x).

The Rotation is known (0) so once the first point is selected, the software automatically drops the second point onto the line with Rotation 0 that goes through the first point and uses the x value from the dropped point.

- **Horizontal and selecting two points.** See 15.3.6.3 Horizontal
- **Horizontal and selecting a segment.** See 15.3.6.7 Horizontal Segment

(b) **Vertical - rotation angle of 90**

This is the difference between the two y coordinates (delta y).

The Rotation is known (90) so once the first point is selected, the software automatically drops the second point onto the line with Rotation 90 that goes through the first point and uses the y value from the dropped point.

- **Vertical and selecting two points.** See 15.3.6.4 Vertical
- **Vertical and selecting a segment.** See 15.3.6.8 Vertical Segment

(c) **Rotated - a user given rotation value.**

The Rotation is known so once the first point is selected, the software automatically drops the second point onto the line with the given Rotation that goes through the first point and uses the dropped point to measure the 2D distance to.

- **Rotated and selecting two points.** See 15.3.6.5 Rotated
- **Rotated and selecting a segment.** See 15.3.6.9 Rotated Segment

(d) **Aligned - rotation defined by selecting two points or a segment**
This is a more general case where the two points have to accurately selected and are used to defined the Rotation. This is the only case when the Rotation is not known before selecting anything.

**Aligned** and selecting two points.  
See [15.3.6.2 Aligned](#)

**Aligned** and selecting a segment  
See [15.3.6.6 Aligned Segment](#)

Hence in 12d Model there are eight separate commands for defining a Linear dimension with a special rotation, and **one general Linear command** that covers all eight Linear command.

See  
**Linear** - all eight cases.  
See [15.3.6.1 Linear](#)
15.3.6.1 Linear

The Linear option allows the use any of the eight modes of defining a Linear dimension. The dimension is added to the model given in the CAD toolbar.

- **a** or **A** toggles Association **ON** and **OFF**. See [15.3.1 Dimension Association](#).
- **c** or **C** toggles Continuous **ON** and **OFF**. See [15.3.2 Continuous Mode](#).
- **t** or **T** brings up the dimension text format. See [15.5 Text Format for Dimensions and Leaders](#).
- **s** or **S** brings up the dimension style list. [15.3.18.2 Dimension Styles](#).

**Step 1.**
Select Linear and the following message is written to the screen message area.

**Step 2. Settings**
Typed one characters commands are now required and the first ones to set are those that don’t actually start a dimension but are set ups - **n**, **a**, **c**, **s**.

Some of the commands, **n**, **a**, **c**, **s**

- **n** or **N** toggles between picking two points or picking a segment.
- **a** or **A** toggles association **ON** and **OFF**.
- **c** or **C** toggles continuous **ON** and **OFF**.
- **s** or **S** brings up the dimension style list.

**Step 3. Dimension Commands**
The dimension commands are **horizontal**, **vertical**, **aligned** or **rotated** and the current active dimension command has square brackets around it.

- **h** makes **horizontal** the active dimension command.
- **v** makes **vertical** the active dimension command.
- **l** makes **aligned** the active dimension command.
- **r** makes **rotated** the active dimension command.

Note - When **rotated** is the active dimension command, the current value for the rotation angle is displayed in the message area.

Whenever the angle is displayed, typing **g** or **G** will bring up a **Typed Input** box to change the rotation angle.

**Step 4. Creating a Dimension - picking first point or a segment.**
What type of linear dimension is to be created has been set (h, v, l, r). Whether it requires two points or a segment **has** been set.
Whether it will be associated or not, or continuous or not has been set.

Depending on the point/segment mode, the start of the message indicates whether picking a point or picking a segment is required. So now pick the first point or a segment.

How the Linear option operates is now identical to one of eight specialised linear dimension options so it will not be documented now but done in each of the specialised cases.

If Horizontal and point, see 15.3.6.3 Horizontal
If Horizontal and segment, see 15.3.6.7 Horizontal Segment

If Vertical and point, see 15.3.6.4 Vertical
If Vertical and segment, see 15.3.6.8 Vertical Segment

If Aligned and point, see 15.3.6.2 Aligned
If Aligned and segment, see 15.3.6.6 Aligned Segment

With Rotated, the angle is already set so you won’t be asked for that again.
If Rotated and point, see 15.3.6.5 Rotated
If Rotated and segment, see 15.3.6.9 Rotated Segment

Step 5.

After the dimension has been created, the Linear option then starts again. That is, goes back to Step 1. You can continue with the current dimension type or switch to another dimension type by clicking on h, v, l or r (or H, V, L or R).

For information on how the dimension object appears, see 15.3.18.2 Dimension Styles.
15.3.6.2 Aligned

**Aligned** labels the 2D distance between two selected points.

The dimension is added to the model given in the CAD toolbar.

- **a** or **A** toggles Association **ON** and **OFF**. See 15.3.1 Dimension Association
- **t** or **T** brings up the dimension text format. See 15.5 Text Format for Dimensions and Leaders
- **s** or **S** brings up the dimension style list. 15.3.18.2 Dimension Styles
- **z** or **Z** toggles Zero Offset mode **ON** and **OFF**. See 15.3.4 Zero Offset Mode

**Step 1. Pick the start point**

Select **Aligned** and the following message is written to the screen message area:

```
<Pick start point| (a)s sociative (s)ty le|default| forma(t) [(z)ero offset OFF] > [picks][fast][Menu]
```

If Association is **ON** then the start of the dimension is associated with the selected start point.

**Step 2. Pick the end point**

The following message is written to the screen message area:

```
<Pick end point| [a]ssociative > [picks][fast][Menu]
```

If Association is **ON** then the end of dimension is associated with the selected end point.

The **2D distance** is calculated between these two points.

**Step 3. Pick the point that the dimension line will go through (dimension point)**

The following message is written to the screen message area:

```
<Pick dimension point> [picks][fast][Menu]
```

The dimension line is then drawn parallel to the line between the two selected points and going through the dimension point.

The **Aligned** option then starts again. That is, goes back to **Step 1**.

For information on how the dimension object appears, see 15.3.18.2 Dimension Styles.
15.3.6.3 Horizontal

Horizontal labels the horizontal distance (delta x) between two selected points. The dimension is added to the model given in the CAD toolbar.

a or A toggles Association ON and OFF. See 15.3.1 Dimension Association
c or C toggles Continuous ON and OFF. See 15.3.2 Continuous Mode
t or T brings up the dimension text format. See 15.5 Text Format for Dimensions and Leaders
s or S brings up the dimension style list. 15.3.18.2 Dimension Styles

Step 1. Pick the start point

Select Horizontal and the following message is written to the screen message area

< [Pick start point] [(continuous OFF)] [(baseline OFF)] [(a)sociative (style) [default] format(t) > [picks][fast][Menu]

If Association is ON then the start of the dimension is associated with the selected first point.

Step 2. Pick the end point

The following message is written to the screen message area.

< [Pick end point] [(a)sociative] [picks][fast][Menu]

If Association is ON then the end of dimension is associated with the selected end point.

The horizontal distance (delta x) is calculated between these two points.

Step 3. Pick the point that the dimension line will go through (dimension point)

The following message is then written to the left hand side of the screen message area.

< [Pick dimension point] [picks][fast][Menu]

The horizontal dimension line is then drawn parallel to the x-axis going through the dimension point.

Step 4.1

If Continuous is OFF

The Horizontal option then starts again. That is, goes back to Step 1.
If Continuous is ON

If Continuous is ON then you are asked to pick another end point and another Horizontal dimension is created with the start of the horizontal dimension being the previous dimension end, and the dimension point is the same as the previous dimension point.

This repeats until Continuous is toggle OFF and then the next selected end point is the last horizontal dimension in the sequence.

For information on how the dimension object appears, see 15.3.18.2 Dimension Styles.
15.3.6.4 Vertical

**Vertical** labels the vertical distance (delta y) between two selected points.

The dimension is added to the model given in the CAD toolbar.

- **a** or **A** toggles Association **ON** and **OFF**. See **15.3.1 Dimension Association**
- **c** or **C** toggles Continuous **ON** and **OFF**. See **15.3.2 Continuous Mode**
- **t** or **T** brings up the dimension text format. See **15.5 Text Format for Dimensions and Leaders**
- **s** or **S** brings up the dimension style list. **15.3.18.2 Dimension Styles**

**Step 1. Pick the start point**

Select **Vertical** and the following message is written to the screen message area:

```
```

If Association is **ON** then the start of the dimension is associated with the selected first point.

**Step 2. Pick the end point**

The following message is written to the screen message area:

```
<Pick end point> [a]ssociative > [p]icks [f]ast [m]enu
```

If Association is **ON** then the end of dimension is associated with the selected end point. The vertical length (delta y) is calculated between these two points.

**Step 3. Pick the point that the dimension line will go through (dimension point)**

The following message is then written to the left hand side of the screen message area.

```
<Pick dimension point> [p]icks [f]ast [m]enu
```

The vertical dimension line is then drawn parallel to the y-axis going through the dimension point.

**Step 4.1**

If Continuous is **OFF**

The **Vertical** option then starts again. That is, goes back to **Step 1**.
If Continuous is **ON**

If Continuous is ON then you are asked to pick another end point and another Vertical dimension is created with the start of the vertical dimension being the previous dimension end, and the dimension point is the same as the previous dimension point.

This repeats until Continuous is toggle **OFF** and then the next selected end point is the last vertical dimension in the sequence.

For information on how the dimension object appears, see [15.3.18.2 Dimension Styles](#).
15.3.6.5 Rotated

**Rotated** labels the **2D distance** between the first selected point and the second selected point **dropped** onto the line with a user given angle (Rotation) and going through the first selected point.

The dimension is added to the model given in the CAD toolbar.

- a or A toggles Association **ON** and **OFF**. See **15.3.1 Dimension Association**
- c or C toggles Continuous **ON** and **OFF**. See **15.3.2 Continuous Mode**
- t or T brings up the dimension text format. See **15.5 Text Format for Dimensions and Leaders**
- s or S brings up the dimension style list. **15.3.18.2 Dimension Styles**

**Step 1. Pick the start point**

Select **Rotated** and the following message is written to the screen message area:

```
<Pick start point] [(c)ontinuous OFF] [(b)aseline OFF] (a)ssociative (s)tyle[default] forma(t) > [picks][fast][Menu]
```

If Association is **ON** then the start of the dimension is associated with the selected first point.

**Step 2. Pick the end point**

The following message is written to the screen message area:

```
[Pick end point] (a)ssociative > [picks][fast][Menu]
```

If Association is **ON** then the end of dimension is associated with the selected end point.

**Step 3. Type in the Rotation value**

The following message is written to the screen message area:

```
Typed Input
Rotation 10°
```

The Rotation is in degrees in hp notation and is measured in an anticlockwise direction from the positive x axis.

**Type in the Rotation value and <Enter>**

When in **Continuous** mode the Rotation is only asked for when placing the first **Rotated** dimensions otherwise it is asked for each time.

**Note:** for the **Linear** command, the **Rotation** value is not asked for because it will have already been set.

**Step 4. Pick the point that the dimension line will go through (dimension point)**

The following message is then written to the left hand side of the screen message area:

```
<Pick dimension point>] [picks][fast][Menu]
```

The **2D (plan) distance** is calculated between the first selected point and the second selected point dropped onto the line going through the first selected and with the user given angle (Rotation).

The dimension line is then drawn with the angle of the dimension line equal to the entered Rotation.

**Step 5.1**

If Continuous is **OFF**
The Rotated option then starts again. That is, goes back to Step 1.

If Continuous is ON

If Continuous is ON then you are asked to pick another end point and another Rotated dimension is created with the start of the Rotated dimension being the previous dimension end, and the dimension point is the same as the previous dimension point.

The 2D (plan) distance is calculated between the previous dropped selected point and the new selected point dropped onto the line with the user given angle (Rotation) going through the first selected point.

This repeats until Continuous is toggle OFF and then the next selected end point is the last Rotated dimension in the sequence.

For information on how the dimension object appears, see 15.3.18.2 Dimension Styles.
15.3.6.6 Aligned Segment

Aligned segment labels the 2D distance between the start and end vertices of a selected segment. The segment can be straight, arc or a transition.

The dimension is added to the model given in the CAD toolbar.

Note that this is not the same as the length of a segment for an arc, a transition or offset transition.

a or A toggles Association ON and OFF. See 15.3.1 Dimension Association

t or T brings up the dimension text format. See 15.5 Text Format for Dimensions and Leaders

s or S brings up the dimension style list. 15.3.18.2 Dimension Styles

Step 1. Pick the segment

Select Aligned segment and the following message is written to the screen message area

<Pick segment> [a]ssociative [s]tyle[default] forma(t) > [picks][fast][Menu]

If Association is ON then the dimension is associated with the selected segment.

The 2D distance is calculated between the start and end vertices of the selected segment.

Step 2. Pick the point that the dimension line will go through (dimension point)

The following message is then written to the left hand side of the screen message area.

<Pick dimension point> [picks][fast][Menu]

The dimension line is then drawn parallel to the line from the start to the end vertices of the segment and going through the dimension point.

The Aligned segment option then starts again. That is, goes back to Step 1.

For information on how the dimension object appears, see 15.3.18.2 Dimension Styles.
15.3.6.7 Horizontal Segment

**Horizontal segment** labels the horizontal distance (delta x) between the start and end vertices of a selected segment. The segment can be straight, arc or a transition.

The dimension is added to the model given in the CAD toolbar.

- **a** or **A** toggles Association **ON** and **OFF**. See 15.3.1 Dimension Association
- **c** or **C** toggles Continuous **ON** and **OFF**. See 15.3.2 Continuous Mode
- **t** or **T** brings up the dimension text format. See 15.5 Text Format for Dimensions and Leaders
- **s** or **S** brings up the dimension style list. 15.3.18.2 Dimension Styles

**Step 1. Pick the segment**

Select Horizontal segment and the following message is written to the screen message area

```
<Pick segment> [a]ssociative [s]tyle[default] form(t) [(c)ontinuous OFF] > [picks][fast][Menu]
```

If Association is **ON** then the dimension is associated with the selected segment.

The horizontal distance (delta x) is calculated between the start and end vertices of the selected segment.

**Step 2. Pick the point that the dimension line will go through (dimension point)**

The following message is then written to the screen message area.

```
<Pick dimension point> [picks][fast][Menu]
```

The horizontal dimension line is then drawn parallel to the x-axis going through the dimension point.

**Step 3.**

- If Continuous is **OFF**
  
  The Horizontal segment option then starts again. That is, goes back to **Step 1**.

![Continuous OFF example](image)

If Continuous is **ON**

If Continuous is **ON** then you are asked to pick another segment and another Horizontal segment dimension is created for the next segment and the dimension point is the same as the previous dimension point.

This repeats until Continuous is toggle **OFF** and then the next selected segment is the last horizontal dimension in the sequence.
For information on how the dimension object appears, see 15.3.18.2 Dimension Styles.
15.3.6.8 Vertical Segment

**Vertical segment** labels the vertical distance (delta y) between end vertices of a selected segment. The segment can be straight, arc or a transition.

The dimension is added to the model given in the CAD toolbar.

- **a** or **A** toggles Association **ON** and **OFF**. See 15.3.1 Dimension Association
- **c** or **C** toggles Continuous **ON** and **OFF**. See 15.3.2 Continuous Mode
- **t** or **T** brings up the dimension text format. See 15.5 Text Format for Dimensions and Leaders
- **s** or **S** brings up the dimension style list. 15.3.18.2 Dimension Styles

**Step 1. Pick the segment**

Select Vertical segment and the following message is written to the screen message area

```
<Pick segment> (a)ssociative (s)tyledefault form(a) [(c)ontinuous ON OFF] > [picks][fast][Menu]
```

If Association is **ON** then the dimension is associated with the selected segment.

The vertical distance (delta y) is calculated between the start and end vertices of the selected segment.

**Step 2. Pick the point that the dimension line will go through (dimension point)**

The following message is then written to the screen message area.

```
<Pick dimension point> [picks][fast][Menu]
```

The vertical dimension line is then drawn parallel to the y-axis going through the dimension point.

**Step 3.**

- If Continuous is **OFF**
  
  The **Vertical segment** option then starts again. That is, goes back to **Step 1**.

- If Continuous is **ON**

  If Continuous is **ON** then you are asked to pick another segment and another Vertical segment dimension is created for the next segment and the dimension point is the same as the previous dimension point.

  This repeats until Continuous is toggle **OFF** and then the next selected segment is the last vertical dimension in the sequence.
For information on how the dimension object appears, see 15.3.18.2 Dimension Styles.
15.3.6.9 Rotated Segment

Rotated segment labels the 2D distance between the start vertex of a segment, and the end vertex of the segment dropped onto the line with a user given angle (Rotation) and going through the first vertex.

The dimension is added to the model given in the CAD toolbar.

a or A toggles Association ON and OFF. See 15.3.1 Dimension Association
c or C toggles Continuous ON and OFF. See 15.3.2 Continuous Mode
t or T brings up the dimension text format. See 15.5 Text Format for Dimensions and Leaders
s or S brings up the dimension style list. 15.3.18.2 Dimension Styles

Step 1.
Select Rotated segment and the following message is written to the screen message area

Pick segment] (a)ssociative (s)tye[default] (f)ormat[i] [(c)ontinuous OFF] an(g)e[10°] > [picks][fast][Menu]

If Association is ON then the dimension is associated with the selected segment.

Step 2. Type g to Change the Rotation Value

If the Rotation is to be changed, type g or G and the Rotation Typed Input box is then displayed.

Type in the Rotation value and press <Enter>.
The Rotation is in degrees in hp notation and is measured in an anticlockwise direction from the positive x axis.

Step 3. Pick the segment
The following message is written to the screen message area.

Pick segment] (a)ssociative (s)tye[default] (f)ormat[i] [(c)ontinuous OFF] an(g)e[10°] > [picks][fast][Menu]

If Association is ON then the dimension is associated with the selected segment.

Step 4. Pick the point that the dimension line will go through (dimension point)
The following message is then written to the screen message area.

Pick dimension point> [picks][fast][Menu]

The 2D (plan) distance is calculated between the start of the segment and the end of the segment dropped onto the line with the user given angle (Rotation) going through the start of the selected segment.
The dimension line is then drawn with the angle of the dimension line equal to the entered Rotation.

Step 5.
If Continuous is OFF
The Rotated option then starts again. That is, goes back to Step 1.
If Continuous is **ON**

If Continuous is ON then you are asked to pick another segment. The Rotation angle can also be changed.

![Diagram showing CAD Dimension process](image)

When another segment is selected, the start and end vertices are dropped onto the line with the user given angle (Rotation) going through the current dimension point.

The **2D (plan) distance** is calculated between the dropped ends of the segment.

This repeats until Continuous is toggle **OFF** and then the next selected segment is the last **Rotated segment** dimension in the sequence.

The **Rotated segment** option then starts again. That is, goes back to **Step 1**.

For information on how the dimension object appears, see [15.3.18.2 Dimension Styles](#).
15.3.7 Length

**Length** labels the **2D length** of a selected **segment**. The segment may be a straight, arc, transition or offset transition.

The dimension is added to the model given in the CAD toolbar.

- **a** or **A** toggles association **ON** and **OFF**. See 15.3.1 Dimension Association
- **c** or **C** toggles Continuous **ON** and **OFF**. See 15.3.2 Continuous Mode
- **o** or **O** toggles offset **ON** and **OFF**. See An Important Note about the Offset Toggle
- **s** or **S** brings up the dimension style list. 15.3.18.2 Dimension Styles

**Step 1. Pick the segment**

Select **Length** and the following message is written to the screen message area:

```
<Pick segment> (a)ssociative (s) style[default] forma(t) [(o)ffset ON] [(c)ontinuous OFF] > [picks][fast][Menu]
```

If **association** is **ON** then the dimension is associated with the selected segment.

**Note:** Continuous mode is only available if **offset** is **ON**.

The 2D length of the selected segment is calculated.

**Step 2. Pick the dimension point**

The following message is then written to the screen message area.

```
<Pick dimension point> [picks][fast][Menu]
```

The dimension line is then drawn parallel to the segment and going through the dimension point.

If **offset** is **ON** then the distance between the dimension point and the segment (the offset distance) is remembered with the dimension.

If **offset** is **OFF** then the dimension point itself is remembered with the dimension.
Step 3.1

If **Continuous** is **OFF**:  

The **Length** option then starts again. That is, goes back to **Step 1**.

**Continuous** is **ON** (and for that **Offset** must also be **ON**):

If **Continuous** is **ON** then you are asked to pick another segment and another Length dimension is created for the next segment. The distance the dimension line is from the segment (offset distance) is the same as it was for the previous segment.

This repeats until **Continuous** is toggle **OFF** and then the next selected segment is the last Length dimension in the sequence.

The **Length** option then starts again. That is, goes back to **Step 1**.

For information on how the dimension object appears, see [15.3.18.2 Dimension Styles](#).
An Important Note about the Offset Toggle

When the dimension line is first drawn, the difference between Offset ON and Offset OFF is not apparent.

But when you move a vertex and the associated Length dimensions go with it, the difference is move obvious.

For the Length dimensions that are created with Offset ON, the original offsets are maintained. So the new dimension lines will be the same parallel distance from the segments as when they were originally dimensioned.

For the Length dimensions that are created with Offset OFF, the original dimensions points are maintained. So the new dimension lines will go through the original dimension points and so their parallel distance from the segments will be totally different from before.
CAD Dimension

Length dimension placed with Offset OFF

When the vertex is moved the dimension lines still go through the original dimension points

when the vertex is moved the offsets are NOT maintained

Length dimension placed with Offset ON

When the vertex is moved the offsets are maintained

when the vertex is moved the offsets are maintained
15.3.8 Drop Segment

**Drop segment** labels the 2D distance between a selected point, and the point is dropped perpendicularly onto a selected base segment.

If the base segment is a line then the drop may occur on the extended segment.

If the base segment is an arc then it will drop to the outside or inside of the visible part of the arc.

If the base segment is a circle then the drop will go to the inside or outside of the circle depending on whether the point is inside or outside the circle.

The dimension is added to the model given in the CAD toolbar.

- **a** or **A** toggles Association **ON** and **OFF**. See [15.3.1 Dimension Association](#)
- **t** or **T** brings up the dimension text format. See [15.5 Text Format for Dimensions and Leaders](#)
- **s** or **S** brings up the dimension style list. See [15.3.18.2 Dimension Styles](#)
- **z** or **Z** toggles **Zero Offset** mode **ON** and **OFF**. See [15.3.4 Zero Offset Mode](#)

Step 1.
Select **Drop segment** and the following message is written to the screen message area:

```
Pick start point.
```

If Association is **ON** then the start of the dimension is associated with the selected start point.

Step 2.
The following message is written to the screen message area asking for a segment to be selected. The segment can be a straight, an arc, a transition or an offset transition:

```
Pick base segment.
```

Pick the segment.
If Association is **ON** then the end of the dimension is associated with the selected segment.
The picked point is dropped perpendicularly onto the selected segment (or the extended line segment) and the 2D distance is calculated between these two points.

Step 3.
If **Zero Offset** is **OFF**, the following message is then written to the screen message area.

```
Pick dimension point.
```

Pick the point that the dimension line will go through (dimension point).
The dimension line is then drawn parallel to the line between the selected point and the selected point dropped perpendicularly onto the selected segment, and going through the dimension point.

If **Zero Offset** is **ON**, then no dimension point is picked because the dimension point is taken to be on the line joining the picked point and the dropped point.

For both cases of **Zero Offset**, the **Drop segment** option then starts again. That is, goes back to Step 1.
For information on how the dimension object appears, see 15.3.18.2 Dimension Styles.

**Note on Automatic Recalculation of Drop Segment Dimension When the Point or Segment Moves**

When **Association** in turned **ON**, the picked point and the picked base segment are associated...
with the *Drop segment* dimension. So if either the picked point or the picked base segment is moved, the drop dimensions automatically recalcs.

Also note that the drop onto the base segment may involve the extended base segment because the drop point may not be between the end points of the selected base segment.
15.3.9 Drop String

**Drop string** labels the 2D distance between a selected point and the point dropped onto a selected base string.

By Dropped onto a string we mean that the point is first checked to see that it can be dropped perpendicularly onto a segment of the selected string (not an extended segment), or if there is no segment that the point can drop perpendicularly onto then it will drop onto the **nearest vertex** of the string.

If the base string is an arc then it will drop to the outside or inside of the visible part of the arc.

If the base string is a circle then the drop will go to the inside or outside of the circle depending on whether the point is inside or outside the circle.

Hence **Drop string** will always end on the base string.

The dimension is added to the model given in the CAD toolbar.

*a* or **A** toggles Association **ON** and **OFF**. See **15.3.1 Dimension Association**

*t* or **T** brings up the dimension text format. See **15.5 Text Format for Dimensions and Leaders**

*s* or **S** brings up the dimension style list. **15.3.18.2 Dimension Styles**

**Step 1. Pick the start point**

Select **Drop string** and the following message is written to the screen message area:

```
<Pick start point] (a)ssociative (s)tye[default] forma(t) > [picks][fast][Menu]
```

If Association is **ON** then the start of the dimension is associated with the selected start point.

**Step 2. Pick the base string**

The following message is written to the screen message area asking for a base string to be selected.

```
< (a)ssociative Pick base string> [picks][fast][Menu]
```

If Association is **ON** then the end of the dimension is associated with the selected base string.

The picked point is dropped onto the selected base string and the 2D distance is calculated between these two points.

The dimension line is then drawn between the selected point and the selected point dropped onto the selected base string.

The **Drop string** option then starts again. That is, goes back to **Step 1**.
15.3.10 Area

*Area* labels the plan area of a selected string.

The dimension is added to the model given in the CAD toolbar.

- `a` or `A` toggles Association **ON** and **OFF**. See 15.3.1 Dimension Association
- `t` or `T` brings up the dimension text format. See 15.5 Text Format for Dimensions and Leaders
- `s` or `S` brings up the dimension style list. 15.3.18.2 Dimension Styles

**Step 1. Pick the polygon to dimension**

Select *Area* and the following message is written to the screen message area:

```
<Pick polygon> [a]ssociative (s)tyLe[default] forma(t) > [picks][fast][Menu]
```

If Association is **ON** then the dimension is associated with the polygon.

If the selected string is not closed, the area is calculated for the polygon formed by joining the first and last vertices of the string.

The plan area is calculated for the polygon and placed inside the polygon.

The **Area** option then starts again. That is, goes back to **Step 1**.

For information on how the dimension object appears, see 15.3.18.2 Dimension Styles.
15.3.11 Jogged radius

This option has not yet been completed
- radius of a selected arc with jog
  
  Pick an arc or a segment with a radius.
  Then pick the start point of the jog and then the dimension point.
  
  A dimension line is draw with a start symbol at the start and then a job between the dimension point and the start point of the jog.
  
  The dimension is added to the model given in the CAD toolbar.
15.3.12 Diameter

This option has not yet been completed

**Diameter** labels the diameter of an arc or a segment with a non zero radius.

The dimension is added to the model given in the CAD toolbar.

\( \text{a or A} \) toggles Association ON and OFF. See 15.3.1 Dimension Association

\( \text{t or T} \) brings up the dimension text format. See 15.5 Text Format for Dimensions and Leaders

\( \text{s or S} \) brings up the dimension style list. 15.3.18.2 Dimension Styles

**Step 1.**

Select Diameter and the following message is written to the screen message area

\(<[(A)ssociation ON] \text{Pick arc or choose (s)style[diags - yes fixed len dim line] > [picks][fast][Menu]}\>

**Pick the arc or segment with non zero radius.**

If Association is ON then the dimension is associated with the selected arc or segment.

The segment must have a radius. That is, it can’t be a line segment.

The diameter is calculated for the arc or segment.

**Step 2.**

The following message is then written to the left hand side of the screen message area.

\(<\text{Pick dimension point} > \text{[picks][fast][Menu]}\>

\( \text{t or T} \) brings up the dimension text format. See 15.5 Text Format for Dimensions and Leaders

**Pick the point that the dimension line will go through (dimension point).**

The dimension line is then drawn from the centre of the arc and through the dimension point and onto the arc. The text is placed at the dimension point.

If the dimension point is outside the arc, the dimension line continues through the arc.
The **Diameter** option then starts again. That is, goes back to Step 1.

For information on how the dimension object appears, see 15.3.18.2 Dimension Styles.
15.3.13 Radius

This option has not yet been completed

Radius of an arc or of a segment with a radius.

The dimension is added to the model given in the CAD toolbar.
15.3.14 Angle 2 Lines

**Angle 2 lines** labels the angle between two selected lines.

To define this dimension, the intersection point of the two extended lines divides the extended lines into two sides and the plane into four regions.

![Diagram of Angle 2 Lines](image)

Although the lines can only be initially picked by the non extended part of the lines, the dimension can go between any of the halves of the extended lines.

The dimension is added to the model given in the CAD toolbar.

- **a** or **A** toggles Association **ON** and **OFF**. See 15.3.1 Dimension Association
- **t** or **T** brings up the dimension text format. See 15.5 Text Format for Dimensions and Leaders
- **s** or **S** brings up the dimension style list. 15.3.18.2 Dimension Styles

**Step 1.** Pick the side to start the dimension from

Select **Angle 2 lines** and the following message is written to the screen message area

```
< [Pick start side] (a)ssociative (style[default] format(t) > [picks][fast][Menu]
```

If Association is **ON** then the start of the dimension is associated with the selected start line.

**Step 2.** Pick the side to end the dimension on

The following message is written to the screen message area.

```
< [Pick end side] (a)ssociative > [picks][fast][Menu]
```

If Association is **ON** then the end of dimension is associated with the selected end line.

**Step 3.**

The following message is then written to the left hand side of the screen message area.

```
< Pick dimension point or reverse (d)irection (s)tart (e)nd line extension > [picks][fast][Menu]
```

As you move your cursor between the four regions, you will see the dimension line display as if the cursor was the selected dimension point.
s or S takes the other end of the first line to start the dimension on.
e or E takes the other end of the second line to end the dimension on.
d or D toggles between a clockwise and counter clockwise angle for the dimension arc.
t or T can be typed to change the text format. See 15.5 Text Format for Dimensions and Leaders.
Pick the point that the dimension line will go through (dimension point).
The dimension line is then drawn from the start side to the end side and going through the dimension point.

The Angle 2 lines option then starts again. That is, goes back to Step 1.
For information on how the dimension object appears, see 15.3.18.2 Dimension Styles.
15.3.15 Angle 3 points

**Angle 3 points** labels the angle between two temporary lines defined by 3 points. That is, it labels the angle between two lines that are constructed from the three points.

The first point is the start of the first line, the second point is the end of the first line and the start of the second line and the third point in the end of the second line.

The dimension is added to the model given in the CAD toolbar.

![Diagram of Angle 3 points]

- **a** or **A** toggles Association **ON** and **OFF**. See 15.3.1 Dimension Association
- **t** or **T** brings up the dimension text format. See 15.5 Text Format for Dimensions and Leaders.
- **s** or **S** brings up the dimension style list. 15.3.18.2 Dimension Styles

**Step 1.** Pick the first point of the first line

Select **Angle 3 points** and the following message is written to the screen message area.

```
<Pick start point> (a)ssociative (s)tyle[default] forma(t) > [picks][fast][Menu]
```

If Association is **ON** then the start of the dimension is associated with the selected point.

**Step 2.** Pick the second point that is the end of the first line and the start of the second line

The following message is written to the screen message area.

```
<Pick vertex point> (a)ssociative > [picks][fast][Menu]
```

If Association is **ON** then the vertex of the dimension is associated with the selected point.

**Step 3.** Pick the third point that is the end of the second line

The following message is written to the screen message area.

```
<Pick end point> (a)ssociative [(d)irection counter-clockwise] > [picks][fast][Menu]
```

If Association is **ON** then the end of the dimension is associated with the selected point.

**Step 4.** Pick the point that the dimension arc will go through (dimension point)

The following message is then written to the screen message area.

```
<Pick dimension point> [(d)irection clockwise] > [picks][fast][Menu]
```

As you move your cursor you see how large the line of dimensions arc will be.

- **d** or **D** toggles between a counter-clockwise and clockwise angle for the dimension arc.
When the dimension point is selected, the dimension arc is drawn from the start side to the end side and going through the dimension point.

The **Angle 3 points** option then starts again. That is, goes back to **Step 1**.

For information on how the dimension object appears, see [15.3.18.2 Dimension Styles](#).
15.3.16 Angle Arc

Angle arc labels the angle subtended by an existing arc, or of a segment with a radius. The dimension is added to the model given in the CAD toolbar.

- **a** or **A** toggles Association **ON** and **OFF**. See 15.3.1 Dimension Association
- **t** or **T** brings up the dimension text format. See 15.5 Text Format for Dimensions and Leaders
- **s** or **S** brings up the dimension style list. 15.3.18.2 Dimension Styles

**Step 1. Pick the arc of arc segment to dimension**

Select Angle arc and the following message is written to the screen message area:

```plaintext
[pick segment] (a)ssociative (s)tyle[default] forma(t) > [picks][fast][Menu]
```

If Association is **ON** then the dimension is associated with the polygon. The angle of the arc can then be calculated.

**Step 2. Pick the point that the dimension arc will go through (dimension point)**

The following message is then written to the left hand side of the screen message area:

```plaintext
<pick dimension point> [picks][fast][Menu]
```

The dimension arc is then drawn parallel to the arc or segment and goes through the dimension point.

The **Angle arc** option then starts again. That is, goes back to **Step 1**.

For information on how the dimension object appears, see 15.3.18.2 Dimension Styles.
15.3.17 Arc Length by Centre, 2 Points

**NOT currently on the menu.**

**Arc** labels the length of an arc where the arc is temporarily defined by picking a centre point and two points on the arc.

Pick a position that will be centre point of the arc, and then the position that will be the first point of arc. This defines the centre, radius and start point of the arc.

A third position is then selected and it is dropped onto the arc defined by the first two points to give the end of the arc. This fully defines a temporary arc.

![Diagram of arc with points labeled](image)

**a** or **A** toggles Association **ON** and **OFF**. See 15.3.1 Dimension Association. **t** or **T** brings up the dimension text format. See 15.5 Text Format for Dimensions and Leaders. **s** or **S** brings up the dimension style list. 15.3.18.2 Dimension Styles.

**Step 1.**

Select Arc and the following message is written to the screen message area:

```
Pick the position to be the centre point of the arc
```

If Association is **ON** then the start of the dimension is associated with the selected point.

**Step 2.**

The following message is written to the screen message area:

```
Pick the second point is the start of the arc
```

If Association is **ON** then the vertex of the dimension is associated with the selected point.

**Step 3.**

The following message is written to the screen message area:

```
Pick the third point that is the end of the arc.
```

If Association is **ON** then the end of the dimension is associated with the selected point.

**d** or **D** toggles between a counter-clockwise and clockwise angle for the dimension arc.
Step 4.

The following message is then written to the left hand side of the screen message area.

```
<Pick dimension point> [(direction clockwise) > [picks][fast][Menu]]
```

As you move your cursor you see how large the line of dimensions arc will be.

d or D toggles between a counter-clockwise and clockwise angle for the dimension arc.

Pick the point that the dimension arc will go through (dimension point).

The dimension arc is then drawn from the start side to the end side and going through the dimension point and labelled with the subtended angle.

The Arc option then starts again. That is, goes back to Step 1.

For information on how the dimension object appears, see 15.3.18.2 Dimension Styles.
15.3.18 Dimension Utilities

Position of menu: Cad => Dimension => Utilities

The Dimension Utilities menu is:

See
15.3.18.1 Dimension Edit
15.3.18.2 Dimension Styles
Recalc - select a dimension to recalc.
Recalc all - recalcs all dimensions.
Delete - select a dimension to delete.
15.3.18.3 Change Style of Dimension
15.3.18.4 Change Text Format
15.3.18.5 Create Many Segment Lengths
15.3.18.1 Dimension Edit

Picking an existing Dimension will bring up the Dimension editor.

In the Dimension editor, grip points relevant to the type of dimension will be displayed.

If there is no Association because either the Association is OFF, or Association is ON but there is nothing currently associated with the dimension, then you won’t get a grip point to move the entire dimension because the dimension is locked to its associated items.

A list of typed options is also displayed in the screen message area.

<Pick grip point or change (T)ext or (D)uble angle or (S)ty/e/d(e)gs or (D)eg or (D)elete or create (n)ew> [picks][fast][Menu]

Picking and accepting a grip point will move the grip point and when it is placed again, the association is recalced and the new value for the dimension displayed.
For the typed options, typing

**t or T** changes the dimension text format. See [15.5 Text Format for Dimensions and Leaders](#).
**o or O** changes the angle of the extension lines. The angle is measured in a counter clockwise direction and for horizontal dimensions it is measured from the positive y axis, vertical dimensions it is measured from the positive x axis and for aligned dimensions it is the measured from the perpendicular to the two points defining the dimension.
**s or S** changes the dimension style
**j or J** allows one jog to be inserted in a linear dimension
**d or D** deletes the dimension
**n or N** pick a new dimension to edit.

Also

Typing `<Esc>` will exit the editing of the current *dimension* and ask for a new drafting element (Leader or Dimension) to be selected for editing.

Similarly clicking RB and selecting **Cancel** from the **Pick Ops** menu will exit the editing of the current *dimension* and ask for a new drafting element (Leader or Dimension) to be selected for editing.

When back in the Drafting Editor, typing `<Esc>` or clicking RB and selecting **Cancel** from the **Pick Ops** menu, will exit the Drafting Editor.
15.3.18.2 Dimension Styles

Position of option on menu: CAD => Dimension => Styles

When you click on the option an Edit dimension_styles.xml panel is brought up and the panel shows the standard areas for looking for the table_styles.XML files - Working folder, Customer (User), User, Set Ups and Other.

For information about where how to find and create dimension_styles.xml files, see 15.7 Style XML Files for Dimensions, Leaders & Tables.

Once a dimension_styles.xml file has been opened, the Dimension Styles panel is displayed.

See 15.3.18.2.1 Dimension Styles - Name Node
15.3.18.2.2 Dimension Styles - Start Symbol Node
15.3.18.2.3 Dimension Styles - End Symbol Node
15.3.18.2.4 Dimension Styles - Text style Node
### 15.3.18.2.1 Dimension Styles - Name Node

This is on the right hand side of the panel when you click on the **Dimension style** name.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>test</td>
</tr>
<tr>
<td>Dimension line colour</td>
<td>green</td>
</tr>
<tr>
<td>Dimension line linestyle</td>
<td>THICK</td>
</tr>
<tr>
<td>Dimension line line-weight</td>
<td>0</td>
</tr>
<tr>
<td>Extension line colour</td>
<td>blue</td>
</tr>
<tr>
<td>Start extension line linestyle</td>
<td>BORDER</td>
</tr>
<tr>
<td>End extension line linestyle</td>
<td>BORDER</td>
</tr>
<tr>
<td>Extension line line-weight</td>
<td>0</td>
</tr>
<tr>
<td>Enable start extension line</td>
<td>yes</td>
</tr>
<tr>
<td>Enable end extension line</td>
<td>yes</td>
</tr>
<tr>
<td>Extension beyond dimension line</td>
<td>0.2</td>
</tr>
<tr>
<td>Extension line offset from origin</td>
<td>0.05</td>
</tr>
<tr>
<td>Fixed length extension line</td>
<td>no</td>
</tr>
<tr>
<td>Length of extension line</td>
<td>1</td>
</tr>
<tr>
<td>Centre mark style</td>
<td>centre_mark</td>
</tr>
<tr>
<td>Centre mark size</td>
<td>0.1</td>
</tr>
<tr>
<td>Radius jog angle</td>
<td>0.888</td>
</tr>
<tr>
<td>Radius jog factor</td>
<td>1.6</td>
</tr>
<tr>
<td>Text alignment</td>
<td>text_aligned</td>
</tr>
<tr>
<td>Forced text up</td>
<td>yes</td>
</tr>
<tr>
<td>Angle for reading text</td>
<td>0</td>
</tr>
<tr>
<td>Do not clip dimension line for text</td>
<td>no</td>
</tr>
<tr>
<td>Use box around text</td>
<td>yes</td>
</tr>
<tr>
<td>Use rounded box</td>
<td>yes</td>
</tr>
<tr>
<td>Text box colour</td>
<td>blue</td>
</tr>
<tr>
<td>Text box linestyle</td>
<td>THIN</td>
</tr>
<tr>
<td>Number of decimals for length</td>
<td>3</td>
</tr>
<tr>
<td>Number of decimals for area</td>
<td>2</td>
</tr>
<tr>
<td>Number of decimals for angle</td>
<td>2</td>
</tr>
<tr>
<td>Dimension line extension size</td>
<td>0</td>
</tr>
<tr>
<td>Baseline spacing</td>
<td>1</td>
</tr>
<tr>
<td>Enable start dimension line</td>
<td>yes</td>
</tr>
<tr>
<td>Enable end dimension line</td>
<td>yes</td>
</tr>
<tr>
<td>Dimension line break</td>
<td>0</td>
</tr>
<tr>
<td>Length symbol style</td>
<td>length_preceding</td>
</tr>
<tr>
<td>Text fit</td>
<td>fit_either</td>
</tr>
<tr>
<td>Text offset</td>
<td>0</td>
</tr>
<tr>
<td>Number of decimals for volume</td>
<td>2</td>
</tr>
<tr>
<td>Angle format style</td>
<td>show_angle</td>
</tr>
</tbody>
</table>

- **Do not clip dimension line for text** is **yes** or **Textstyle Type** is not **world** then these are not used.
- **Do not clip dimension line for text** is **no** and **Textstyle Type** is **world**, then these are used.

These settings are not currently used.
Fixed length dimension line = no
length of extension line not used

dimension line
dimension line colour
dimension line linestyle
dimension line line-weight

number of decimals for length

extension beyond dimension line

enable start extension line
start extension line linestyle
extension line colour
extension line line-weight

extension line offset from origin

end extension line

Fixed length dimension line = yes
extension line offset from origin not used

extension beyond dimension line

length of extension line
If **Don't clip dimension line for text** is set to **no**, or the **Type** from the **Textstyle** tab is not **world**, then the following are not used.

- Use box around text
- Use rounded box
- Text box colour
- Text box linestyle

The following items that are at the bottom of the tab have not yet been implemented.

- Dimension line extension size
- Baseline spacing
- Enable start dimension line
- Enable end dimension line
- Dimension line break
- Length symbol style
- Text fit
- Text offset
- Number of decimals for volumes
- Angle format style
15.3.18.2.2 Dimension Styles - Start Symbol Node

This is on the right hand side of the panel when you click on the Start symbol node.

<table>
<thead>
<tr>
<th>Style</th>
<th>Arrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>red</td>
</tr>
<tr>
<td>Size</td>
<td>0.5</td>
</tr>
<tr>
<td>Rotation</td>
<td>45</td>
</tr>
<tr>
<td>Offset</td>
<td>0.2</td>
</tr>
<tr>
<td>Raise</td>
<td>0.5</td>
</tr>
</tbody>
</table>

For the Start symbol, the origin of the symbol is displaced from the start of the dimension line by the Offset and Raise values.

With a Rotation value of zero, the symbol is given the same rotation as the dimension line.

For a non zero Rotation, the value is added to the angle of the dimension line.
15.3.18.2.3 Dimension Styles - End Symbol Node

This is on the right hand side of the panel when you click on the End symbol node.

For the End symbol, the origin of the symbol is displaced from the end of the dimension line by the Offset and Raise values.

With a Rotation value of zero, the symbol is given the angle of the dimension line plus 180 degrees.

For a non zero Rotation, the value plus 180 degrees is added to the angle of the dimension line.

The addition of 180 degrees for the angle of the end symbol is so that the same symbol can be used for the start and the end of the dimension line.
15.3.18.2.4 Dimension Styles - Text style Node

This is on the right hand side of the panel when you click on the Text style node.

<table>
<thead>
<tr>
<th>Textstyle</th>
<th>Arial</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>paper</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Size</th>
<th>0.2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Angle</th>
<th>0°</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>X-factor</th>
<th>1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Slant</th>
<th>0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Offset</th>
<th>0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Raise</th>
<th>0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Colour</th>
<th>cyan</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Whiteout</th>
<th>no colour</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Border</th>
<th>no colour</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Border type</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Justify</th>
<th>bottom-left</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TTF Underline</th>
<th>no</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TTF Strikeout</th>
<th>no</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TTF Italic</th>
<th>no</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TTF Outline</th>
<th>no</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TTF Weight</th>
<th>400</th>
</tr>
</thead>
</table>

This is expected to be modified shortly so that it uses a Textstyle Data and all the features from Textstyle Data are automatically available. For the moment with paper text, only Whiteout is supported.

When the Textstyle Data is implemented, it can have its own Border type but there is no linestyle for the border in Textstyle Data. The only way to get a border with a linestyle is to use World text and set the border parameters in the General tab (15.3.18.2.1 Dimension Styles - Name Node).

If Type is not world, then Don't clip dimension line for text is set to no and these items from the General tab are not used.

- Use box around text
- Use rounded box
- Text box colour
- Text box linestyle

See 15.3.18.2.1 Dimension Styles - Name Node
15.3.18.3 Change Style of Dimension

Click on Change style of dimension and the following message is written to the screen message area:

```
<Pick drafting element to apply (s)ty[le][diags no clip]> [picks][fast][Menu]
```

Pick a dimension and its style will be changed to that shown in the square brackets ([ ]). Then pick another dimension to change its style.

Typing s or S brings up the Style Typed Input box to select a new dimension style.

The new style is picked from the pop up list, or typed into the box and <Enter> pressed. The box is then removed and the message again written to the screen message area.

All subsequent selected dimensions will have their styles changed to this new style until either the option is terminated or a new dimension style is selected.

To terminate the option, press <Esc>, select Cancel from the Pick Ops menu, or select another CAD option.
15.3.18.4 Change Text Format

The Change text format option is used to change the text format for Dimensions or Leaders.

Click on Change text format and a Typed Input box comes up

![Typed Input Dialog Box]

and whilst you are in the Typed Input box the following message is written to the screen message area.

The new text format is typed into the Typed Input box and OK clicked.

The following message is written to the screen message area

Pick a Dimension or Leader and its text format will be changed to that shown in the square brackets ([]). Then pick another Dimension or Leader to change its text format.

Typing t or T will bring the Typed Input box to type in a a new text format. See 15.5 Text Format for Dimensions and Leaders.

All subsequent selected Dimensions or Leaders will have their text formats changed to this new text format until either the option is terminated or a new text format is selected.

To terminate the option, press <Esc>, select Cancel from the Pick Ops menu, or select another CAD option.

---

**Chapter 15 CAD**

**CAD Dimension**

*Page 2365*
15.3.18.5 Create Many Segment Lengths

This option creates Length dimensions for all the segments of the strings in the Data Source. The created **Length** Dimensions all have the given **Offset** and **Text format**.

Selecting the **Create many segment lengths** brings up the **Create Many Segment Lengths** panel.

![Create Many Segment Lengths Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>data selection type</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>for a full description</strong></td>
<td><strong>go to 4.19.3 Data Source</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>in the chapter</strong></td>
<td><strong>4 Tools and Concepts</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>source of data to have labelled with Length dimensions.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Association</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td><strong>if ticked, the Length dimensions are created with Association turned ON.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>If not ticked, the Length dimensions are created with Association turned OFF.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimension point offset</td>
<td>real box</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td><strong>offset to use with the Length dimension. This will override the value from the Style.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimension Style</td>
<td>dimension style box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>the dimension style to use for the Length dimensions.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text format</td>
<td>choice</td>
<td>Dim Length text format choice</td>
<td></td>
</tr>
<tr>
<td><strong>the text format to use for the Length dimensions.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output model</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td><strong>model to add all the created Length dimensions to.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>create Length dimensions for all the segments in the data source.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Offset 0
Enable start extension line no
Enable end extension line no
Paper text and symbols
15.4 CAD Leader

Position of option on menu:  CAD => Leader

Various types of Leaders can be created with the Leader options

Apart from the Trimesh Volume and Trimesh area leaders, each type of Leader can remember the items it was created from (Association). In most cases when the items are modified, the Leader and the associated values from the items dynamically change. See 15.4.1 Leader Association

All of the Leaders on the menu except for Trimesh Volume and Trimesh Area are also special cases of the Information Leader. That is, when in the Information Leader option, all but the Trimesh Leaders can be selected as types of the Information Leader.

For more information on each of the Leader options and menus, see

Create same as - create new information leader of same type as selected Information leader

Text - simple leader that only displays text. See 15.4.4 Text Leader

Information Leader - leader with many choices of values. See 15.4.5 Information Leader
Label - a case of Information Leader that displays text. See 15.4.5.1 Label
Area - 2D area of a selected string. See 15.4.5.2 Area
String length - 2D length of a selected string. See 15.4.5.3 String Length
String length 3d - 3D length of a selected string. See 15.4.5.4 String Length 3D
Segment length - 2D length of a selected segment. See 15.4.5.5 Segment Length
Segment length 3d - 3D length of a selected segment. See 15.4.5.6 Segment Length 3D
Bearing - bearing of a selected string. See 15.4.5.7 Segment Bearing
Bearing & segment length - bearing at string pick point and length of the segment. See 15.4.5.8 Bearing & Segment Length
Radius - radius of a selected string. See 15.4.5.9 Segment Radius
String name - name of a selected string. See 15.4.5.10 String name
Vertex text - vertex text of a selected vertex. See 15.4.5.11 Vertex Text
Segment text - segment text of a selected segment. See 15.4.5.12 Segment Text
Vertex XYZ - (x,y,z) coordinates of a vertex. See 15.4.5.13 Vertex XYZ
Vertex XY - (x,y) coordinates of a vertex. See 15.4.5.14 Vertex XY
String XYZ - (x,y,z) coordinates of a position on a string. See 15.4.5.15 String XYZ
String XY - (x,y) coordinates of a position on a string. See 15.4.5.16 String XY
String Z - z coordinates (level) of a position on a string. See 15.4.5.17 String Z
Tin Z - z value of tin at a selected (x,y) position. See 15.4.5.18 Tin Z
Tin depth - depth from a string position to a tin. See 15.4.5.19 Tin Depth
Grade % - grade in percent at a point on a string. See 15.4.5.20 Grade (%)
Grade 1 in - grade as 1 in (ie slope) at a point on a string. See 15.4.5.21 Grade 1 in - Slope
Centroid XY - (x,y) coordinates of selected string. See 15.4.5.22 Centroid XY
Centre XY - (x,y) coordinates of medial centre of selected string. See 15.4.5.23 Medial Centre XY
Trimesh volume - volume of a closed trimesh. See 15.4.5.24 Trimesh Volume
Trimesh area - surface area of one side of a trimesh. See 15.4.5.25 Trimesh Surface Area
Utilities - various leader utilities. See 15.4.6 Leader Utilities
15.4.1 Leader Association

When leaders are created, the leader can remember the items that were used to create them (Association).

In most cases when items are moved, the leaders associated with the items dynamically change.

In cases where it is not automatic, there is a Recalc and Recalc all for leaders and dimensions.

In the leader options, typing a or A toggles Association ON and OFF.
15.4.2 Hook Angle

Typing h or H allows you to change the **Hook Angle** and brings up the **Hook angle Typed Input** box.

![Hook angle Typed Input](image)

The new hook angle is typed into the box and **<Enter>** pressed.

The units for hook angle are degrees entered in hp notation, and are measure in a counter clockwise direction from the positive x-axis.
15.4.3 Leader - Create Same As

Create same as creates a new Leader of the same type as a selected Leader.

Step 1.
Select Create same as and the following message is written to the screen message area

\[ \text{<Pick leader>} \ [\text{picks}][\text{fast}][\text{Menu}] \]

Step 2. Select an existing Leader
When an existing Leader is selected, a new create Leader of the same Leader type as the selected Leader, is started.
15.4.4 Text Leader

This is simplest type of Leader and only creates a leader with user defined text.

**Text Leader** creates a leader line from a selected point (the arrow point) to a selected hook point, with user given text drawn at the end of the leader line.

a or A toggles Association **ON** and **OFF**. See [15.4.1 Leader Association](#)

s or S brings up the leader style list. [15.4.6.2 Leader Styles](#)

h or H brings up the Hook Angle [15.4.2 Hook Angle](#)

**Step 1.** Pick the arrow point (the point to start the Leader from)

Select Leader and the following message is written to the screen message area

```
<[Pick arrow point] (a)ssociative (s)tytle[A] (h)ook-angle[0°] > [picks][fast][
```

If Association is **ON** then the start of the Leader is associated with the selected arrow point.

**Step 2.** Pick the hook point

The following message is written to the screen message area.

```
<Pick hook point> [picks][fast][Menu]
```

If Association is **ON** then the hook point of the leader is associated with the selected hook point.

**Step 3.**

The text **Typed Input** box then comes up for the text for the leader to be typed into.

![Typed Input](image)

Whilst you are in the **Typed Input** box the following message is written to the screen message area.

```
Enter Text [Caret][Same as][Menu] select a button
```

The text for the Leader is typed into the **Typed Input** box and **OK** clicked.

The **Leader** is then created with the current hook angle.

The **Leader** option then starts again. That is, goes back to **Step 1**.
For information on how the Leader object appears, see 15.4.6.2 Leader Styles.
15.4.5 Information Leader

Information Leader creates a leader line from a selected point (the arrow point) to a selected hook point, with a user selected choice of what information is shown at the end of the leader line.

When Information Leader is selected, the following message is written to the screen message area.

Typing t or T brings up the Information Leader Type Typed Input box which has a choice pop up for selecting what information is drawn at the end of the leader.

After a selection is made, the message changes to indicate the current type of Information Leader being created. For example, for the choice Area.

For more information on each of the types for Information Leader see
Label - simple leader that only displays text. See 15.4.5.1 Label
Area - 2D area of a selected string. See 15.4.5.2 Area
String length - 2D length of a selected string. See 15.4.5.3 String Length
String length 3d - 3D length of a selected string. See 15.4.5.4 String Length 3D
Segment length - 2D length of a selected segment. See 15.4.5.5 Segment Length
Segment length 3d - 3D length of a selected segment. See 15.4.5.6 Segment Length 3D
Bearing - bearing of a selected string. See 15.4.5.7 Segment Bearing
Bearing & segment length - bearing at string pick point and length of the segment. See 15.4.5.8 Bearing & Segment Length
Radius - radius of a selected string. See 15.4.5.9 Segment Radius
String name - name of a selected string. See 15.4.5.10 String name
Vertex text - vertex text of a selected vertex. See 15.4.5.11 Vertex Text
Segment text - segment text of a selected segment. See 15.4.5.12 Segment Text
Vertex XYZ - (x,y,z) coordinates of a vertex. See 15.4.5.13 Vertex XYZ
Vertex XY - (x,y) coordinates of a vertex. See 15.4.5.14 Vertex XY
String XYZ - (x,y,z) coordinates of a position on a string. See 15.4.5.15 String XYZ
String XY - (x,y) coordinates of a position on a string See 15.4.5.16 String XY
String Z - z coordinates (level) of a position on a string See 15.4.5.17 String Z
Tin Z - z value of tin at a selected (x,y) position. See 15.4.5.18 Tin Z
Tin depth - depth from a string position to a tin. See 15.4.5.19 Tin Depth
Grade % - grade in percent at a point on a string. See 15.4.5.20 Grade (%)
Grade 1 in - grade as 1 in (ie slope) at a point on a string. See 15.4.5.21 Grade 1 in - Slope
Centroid XY - (x,y) coordinates of selected string. See 15.4.5.22 Centroid XY
Centre XY - (x,y) coordinates of medial centre of selected string. See 15.4.5.23 Medial Centre XY
15.4.5.1 Label

**Information Leader** choice **Label** displays in the leader box, user given text.

**Label** creates a leader line from a selected point (the pick point) to a selected hook point, with the given text drawn at the end of the leader line.

The leader is added to the model given in the CAD toolbar.

**Note:** Unlike the **Text Leader** which is also used for placing text and brings up a Typed Input box for entering multiline text (see **15.4.4 Text Leader**), **Label** is a single line format which needs new line characters if a new line is needed.

The case for using **Label** instead of the **Text** leader is when you have the same text to place multiple times. The **customise (t)ext** command uses the last specified text, and also remembers the last twelve of them.

**Step 1.** Pick the point to start the Leader from

Select **Leader** and the following message is written to the screen message area:

< (t)ype[Label] Pick arrow location (a)ssociative (s)tytle[Arial|Border] (h)ook-angle[0°] > [picks][fast][Menu]

- **a** or **A** toggles Association ON and OFF. See **15.4.1 Leader Association**
- **t** or **T** changes the type of Information Leader. See **15.4.5 Information Leader**
- **s** or **S** brings up the leader style list. **15.4.6.2 Leader Styles**
- **h** or **H** brings up the Hook Angle **15.4.2 Hook Angle**

If Association is ON then the start of the Leader is associated with the selected pick point.

**Step 2.** Pick the hook point

The following message is written to the screen message area:

<Pick hook point or customise (t)ext> [picks][fast][Menu]

- **t** or **T** brings up the leader text format. See **15.5 Text Format for Dimensions and Leaders**.

Unlike the **Text Leader** which brings up a Typed Input box for entering multiline text (see **15.4.4 Text Leader**), this is a single line format which needs new line characters if a new line is needed.

When the hook point is selected, the **Leader** is created.

The **Label Information Leader** then starts again. That is, it goes back to **Step 1**.

For information on how the Leader object appears, see **15.4.6.2 Leader Styles**.
15.4.5.2 Area

**Information Leader** choice **Area** displays in the leader box, the 2D (plan) area of a selected string. If the selected string is not closed, the area is calculated for the polygon formed by joining the first and the last vertices.

A leader line is drawn from either selected position on a string (string pick point) or the string centre, to a selected hook point, and then to the end of the hook itself.

Using the text format, the value of the area is displayed at the end of the hook line.

The leader is added to the model given in the CAD toolbar.

**Step 1.** Pick the string to label with its 2D (plan) area

When **Area** is the choice, the following message is written to the screen message area:

```
< (t)ype[Area] Pick string (a)ssociative (s)tytle[Arial Border] (h)ook-angle[0°] fixed-a(r)row> [picks][fast][Menu]
```

- a or A toggles Association ON and OFF. See 15.4.1 Leader Association
- t or T changes the type of Information Leader. See 15.4.5 Information Leader
- s or S brings up the leader style list. 15.4.6.2 Leader Styles
- h or H brings up the Hook Angle 15.4.2 Hook Angle
- r or R toggles between the arrow starting at the pick point (**free arrow**) or at the polygon centre (**fixed arrow**)

If Association is **ON** then the start of the Leader is associated with the string pick point or the polygon centre (depending on r).

**Step 2.** Pick the hook point

The following message is written to the screen message area.

```
<Pick hook point or customise (t)ext> [picks][fast][Menu]
```

- t or T brings up the leader text format. See 15.5 Text Format for Dimensions and Leaders.

The **Information Leader** is then created.

The **Area Information Leader** then starts again. That is, it goes back to **Step 1**.
Note on Position of Leader Box With Respect to the Hook Point

As well as determining the length of the leader line, the hook point also determines whether the leader box goes to the left or the right of the hook point.

If the hook point is to the left of the string pick point then the leader box is drawn to the left of the hook point. If the hook point is to the right of the string pick point then the leader box is drawn to the right of the hook point.

For information on how the Leader object appears, see 15.4.6.2 Leader Styles.
15.4.5.3 String Length

Information Leader choice String length displays in the leader box, the 2D (plan) length of a selected string.

A leader line is drawn from a selected position on a string (string pick point) to a selected hook point, and then to the end of the hook itself.

Using the text format, the value of the string length is displayed at the end of the hook line.

The leader is added to the model given in the CAD toolbar.

Step 1. Pick the string to label with its 2D length

When String Length is the choice, the following message is written to the screen message area:

```
< (type[Length]) Pick string (a)ssoicate (s)ty[le[Arial Border] (h)ook-angle[0°] > [picks][fast][Menu]
```

a or A toggles Association ON and OFF. See 15.4.1 Leader Association

t or T changes the type of Information Leader. See 15.4.5 Information Leader

s or S brings up the leader style list. 15.4.6.2 Leader Styles

h or H brings up the Hook Angle 15.4.2 Hook Angle

If Association is ON then the start of the Leader is associated with the string pick point.

Step 2. Pick the hook point

The following message is written to the screen message area:

```
<Pick hook point or customise (t)ext> [picks][fast][Menu]
```

t or T brings up the leader text format. See 15.5 Text Format for Dimensions and Leaders.

The Information Leader is then created.

The String Length Information Leader then starts again. That is, it goes back to Step 1.

Note on Position of Leader Box With Respect to the Hook Point

As well as determining the length of the leader line, the hook point also determines whether the leader box goes to the left or the right of the hook point.

If the hook point is to the left of the string pick point then the leader box is drawn to the left of the hook point. If the hook point is to the right of the string pick point then the leader box is drawn to the right of the hook point.

For information on how the Leader object appears, see 15.4.6 Leader Styles.
15.4.5.4 String Length 3D

**Information Leader** choice **String length 3D** displays in the leader box, the 3D length of a selected string.

A leader line is drawn from a selected position on a string (string pick point) to a selected hook point, and then to the end of the hook itself.

Using the text format, the value of the length is displayed at the end of the hook line.

The leader is added to the model given in the CAD toolbar.

**Step 1. Pick the string to label with its 3D length**

When **String length 3d** is the choice, the following message is written to the screen message area:

```
< (t)ype[String Length 3d] Pick string (a)sociative (s)tye[Arial Border] (h)ook-angle(0*) > [picks][fast][Menu]
```

a or A toggles Association ON and OFF. See 15.4.1 Leader Association

t or T changes the type of Information Leader. See 15.4.5 Information Leader

s or S brings up the leader style list. 15.4.5.2 Leader Styles

h or H brings up the Hook Angle 15.4.2 Hook Angle

If Association is ON then the start of the Leader is associated with the string pick point.

**Step 2. Pick the hook point**

The following message is written to the screen message area:

```
< (t)ype[Pick hook point or customise (t)ext] > [picks][fast][Menu]
```

**Note on Position of Leader Box With Respect to the Hook Point**

As well as determining the length of the leader line, the hook point also determines whether the leader box goes to the left or the right of the hook point.

If the hook point is to the left of the string pick point then the leader box is drawn to the left of the hook point. If the hook point is to the right of the string pick point then the leader box is drawn to the right of the hook point.

For information on how the Leader object appears, see 15.4.2 Leader Styles.
15.4.5.5 Segment Length

Information Leader choice Segment length displays in the leader box, the 2D (plan) length of a selected segment.

A leader line is drawn from a selected position on a segment (segment pick point) to a selected hook point, and then to the end of the hook itself.

Using the text format, the value of the segment length is displayed at the end of the hook line.

The leader is added to the model given in the CAD toolbar.

Step 1. Pick the segment to label with its 2D length

When Segment Length is the choice, the following message is written to the screen message area:

```
< (t)ype[Segment Length] Pick segment (a)ssociative (s)tytle[Arial Border] (h)ook-angle[0°] > [picks][fast][Menu]
```

a or A toggles Association ON and OFF. See 15.4.1 Leader Association.

t or T changes the type of Information Leader. See 15.4.5 Information Leader.

s or S brings up the leader style list. 15.4.6.2 Leader Styles.

h or H brings up the Hook Angle 15.4.2 Hook Angle.

If Association is ON then the start of the Leader is associated with the segment pick point.

Step 2. Pick the hook point

The following message is written to the screen message area:

```
<Pick hook point or customise (t)ext> [picks][fast][Menu]
```

t or T brings up the leader text format. See 15.5 Text Format for Dimensions and Leaders.

The Information Leader is then created.

The Segment Length Information Leader then starts again. That is, it goes back to Step 1.

Note on Position of Leader Box With Respect to the Hook Point

As well as determining the length of the leader line, the hook point also determines whether the leader box goes to the left or the right of the hook point.

If the hook point is to the left of the segment pick point then the leader box is drawn to the left of the hook point. If the hook point is to the right of the segment pick point then the leader box is drawn to the right of the hook point.

For information on how the Leader object appears, see 15.4.6.2 Leader Styles.
15.4.5.6 Segment Length 3D

**Information Leader** choice **Segment length 3d** displays in the leader box, the 3D length of a selected segment.

A leader line is drawn from the pick position on a selected segment (segment pick point) to a selected hook point, and then to the end of the hook itself.

Using the text format, the value of the 3d length of the segment is displayed at the end of the hook line.

The leader is added to the model given in the CAD toolbar.

**Step 1.** Pick the segment to label with its 3D length

When **Segment Length 3d** is the choice, the following message is written to the screen message area:

```
< (t)ype[Segment Length 3d] Pick segment (a)ssociative (s)ty[le[Arial Bold]] (h)ook-angle[0°] > [picks][fast][Menu]
```

- **a** or **A** toggles Association **ON** and **OFF**. See 15.4.1 Leader Association
- **t** or **T** changes the type of Information Leader. See 15.4.5 Information Leader
- **s** or **S** brings up the leader style list. 15.4.6.2 Leader Styles
- **h** or **H** brings up the Hook Angle 15.4.2 Hook Angle

If Association is **ON** then the start of the Leader is associated with the segment pick point.

**Step 2.** Pick the hook point

The following message is written to the screen message area:

```
<Pick hook point or customise (t)ext> [picks][fast][Menu]
```

- **t** or **T** brings up the leader text format. See 15.5 Text Format for Dimensions and Leaders.

The **Information Leader** is then created.

The **Segment Length 3D Information Leader** then starts again. That is, it goes back to **Step 1**.

**Note on Position of Leader Box With Respect to the Hook Point**

As well as determining the length of the leader line, the hook point also determines whether the leader box goes to the left or the right of the hook point.

If the hook point is to the left of the segment pick point then the leader box is drawn to the left of the hook point. If the hook point is to the right of the segment pick point then the leader box is drawn to the right of the hook point.

For information on how the Leader object appears, see 15.4.6.2 Leader Styles.
15.4.5.7 Segment Bearing

**Information Leader** choice **Segment Bearing** displays in the leader box, the bearing of a selected position on string (string pick point).

A leader line is drawn from the string pick point to a selected hook point, and then to the end of the hook itself.

Using the text format, the value of the bearing at the string pick point is displayed at the end of the hook line.

The leader is added to the model given in the CAD toolbar.

**Step 1. Pick the segment to label with its bearing**

When **Segment Bearing** is the choice, the following message is written to the screen message area:

```
< (t)ype[Segment Bearing] Pick point on segment (a)ssociative (s)tyl[Arial Border] (h)ook-angle[0°] > [picks][fast][Menu]
```

a or A toggles Association ON and OFF. See **15.4.1 Leader Association**

t or T changes the type of Information Leader. See **15.4.5 Information Leader**

s or S brings up the leader style list. **15.4.6.2 Leader Styles**

h or H brings up the Hook Angle **15.4.2 Hook Angle**

If Association is **ON** then the start of the Leader is associated with the string pick point.

**Step 2. Pick the hook point**

The following message is written to the screen message area:

```
<Pick hook point or customise (t)ext> [picks][fast][Menu]
```

t or T brings up the leader text format. See **15.5 Text Format for Dimensions and Leaders**.

The **Information Leader** is then created.

The **Segment Bearing Information Leader** then starts again. That is, it goes back to **Step 1**.

**Note on Position of Leader Box With Respect to the Hook Point**

As well as determining the length of the leader line, the hook point also determines whether the leader box goes to the left or the right of the hook point.

If the hook point is to the left of the string pick point then the leader box is drawn to the left of the hook point. If the hook point is to the right of the string pick point then the leader box is drawn to the right of the hook point.

For information on how the Leader object appears, see **15.4.6.2 Leader Styles**.
15.4.5.8 Bearing & Segment Length

**Information Leader** choice Bearing & segment length displays in the leader box, the bearing at the string pick point and the length of the segment it is on.

A leader line is drawn from a selected position on a string (string pick point) to a selected hook point, and then to the end of the hook itself.

Using the text format, the value of the bearing and length of the pick point and segment is displayed at the end of the hook line.

The leader is added to the model given in the CAD toolbar.

**Step 1. Pick the string to label with its bearing & length**

When **Segment Length & Bearing** is the choice, the following message is written to the screen message area:

```
< (t)type[Segment Length Bearing] Pick point on segment (a)ssociative (s)tyle[Ariel Border] (h)ook angle[0°] > [picks][fast][Menu]
```

- a or A toggles Association ON and OFF. See 15.4.1 Leader Association
- t or T changes the type of Information Leader. See 15.4.5 Information Leader
- s or S brings up the leader style list. 15.4.6.2 Leader Styles
- h or H brings up the Hook Angle 15.4.2 Hook Angle

If Association is ON then the start of the Leader is associated with the segment pick point.

**Step 2. Pick the hook point.**

The following message is written to the screen message area:

```
<Pick hook point or customise (t)ext> [picks][fast][Menu]
```

- t or T brings up the leader text format. See 15.5 Text Format for Dimensions and Leaders.

The **Information Leader** is then created.

The **Segment Length & Bearing Information Leader** then starts again. That is, it goes back to Step 1.

**Note on Position of Leader Box With Respect to the Hook Point**

As well as determining the length of the leader line, the hook point also determines whether the leader box goes to the left or the right of the hook point.

If the hook point is to the left of the string pick point then the leader box is drawn to the left of the hook point. If the hook point is to the right of the string pick point then the leader box is drawn to the right of the hook point.

For information on how the Leader object appears, see 15.4.6.2 Leader Styles.
15.4.5.9 Segment Radius

**Information Leader** choice **Segment Radius** displays in the leader box the radius of a selected segment. If the segment is a straight then the radius is displayed as 0. If the segment is a transition, then the displayed radius is the radius of the transition at the picked position.

A leader line is drawn from a string pick point to a selected hook point, and then to the end of the hook itself.

Using the text format, the value of the radius of the string pick point is displayed at the end of the hook line.

The leader is added to the model given in the CAD toolbar.

**Step 1. Pick the segment to label with its radius**

When **Segment Radius** is the choice, the following message is written to the screen message area:

```plaintext
<:type[Segment Radius] Pick point on segment (a)ssociative (s)tyle[Ariel Border] (h)ook-angle[0°] > [picks][fast][Menu]
```

- **a** or **A** toggles Association **ON** and **OFF**. See 15.4.1 Leader Association
- **t** or **T** changes the type of Information Leader. See 15.4.5 Information Leader
- **s** or **S** brings up the leader style list. 15.4.6.2 Leader Styles
- **h** or **H** brings up the Hook Angle 15.4.2 Hook Angle

If Association is **ON** then the start of the Leader is associated with the string pick point.

**Step 2. Pick the hook point**

The following message is written to the screen message area:

```plaintext
<Pick hook point or customise (t)ext> [picks][fast][Menu]
```

- **t** or **T** brings up the leader text format. See 15.5 Text Format for Dimensions and Leaders.

The Information Leader is then created.

The **Segment Radius Information Leader** then starts again. That is, it goes back to **Step 1**.

**Note on Position of Leader Box With Respect to the Hook Point**

As well as determining the length of the leader line, the hook point also determines whether the leader box goes to the left or the right of the hook point.

If the hook point is to the left of the string pick point then the leader box is drawn to the left of the hook point. If the hook point is to the right of the string pick point then the leader box is drawn to the right of the hook point.
For information on how the Leader object appears, see 15.4.6.2 Leader Styles.
15.4.5.10 String name

Information Leader choice String name displays in the leader box, the name of a selected string.

A leader line is drawn from a selected position on a string (string pick point) to a selected hook point, and then to the end of the hook itself.

Using the text format, the name of the string is displayed at the end of the hook line.

The leader is added to the model given in the CAD toolbar.

Step 1. Pick the string to label with its name

When String Name is the choice, the following message is written to the screen message area:

< (type) [String Name] Pick string (a)ssociative (s)tyles (A)rial (B)order (h)ook-angle [0°] > [picks] [fast] [Menu]

a or A toggles Association ON and OFF. See 15.4.1 Leader Association

t or T changes the type of Information Leader. See 15.4.5 Information Leader

s or S brings up the leader style list. 15.4.6.2 Leader Styles

h or H brings up the Hook Angle 15.4.2 Hook Angle

If Association is ON then the start of the Leader is associated with the segment pick point.

Step 2. Pick the hook point

The following message is written to the screen message area:

<Pick hook point or customise (t)ext > [picks] [fast] [Menu]

t or T brings up the leader text format. See 15.5 Text Format for Dimensions and Leaders.

The Information Leader is then created.

The String Name Information Leader then starts again. That is, it goes back to Step 1.

Note on Position of Leader Box With Respect to the Hook Point

As well as determining the length of the leader line, the hook point also determines whether the leader box goes to the left or the right of the hook point.

If the hook point is to the left of the string pick point then the leader box is drawn to the left of the hook point. If the hook point is to the right of the string pick point then the leader box is drawn to the right of the hook point.

For information on how the Leader object appears, see 15.4.6.2 Leader Styles.
15.4.5.11 Vertex Text

**Information Leader** choice **Vertex text** displays in the leader box, the vertex text of a selected string vertex.

A leader line is drawn from a selected vertex on a string (string pick point) to a selected hook point, and then to the end of the hook itself.

Using the text format, the vertex text for the selected vertex of the string is displayed at the end of the hook line.

The leader is added to the model given in the CAD toolbar.

**Step 1. Pick the string vertex to label with its vertex text**

When **Vertex Text** is the choice, the following message is written to the screen message area:

```
< (t)ype[Vertex Text] Pick vertex (a)ssociative (s)tye[Arial Border] (h)ook-angle[0°] > [picks][fast][Menu]
```

- **a** or **A** toggles Association **ON** and **OFF**. See **15.4.1 Leader Association**
- **t** or **T** changes the type of Information Leader. See **15.4.5 Information Leader**
- **s** or **S** brings up the leader style list. **15.4.6.2 Leader Styles**
- **h** or **H** brings up the Hook Angle **15.4.2 Hook Angle**

If Association is **ON** then the start of the Leader is associated with the segment pick point.

**Step 2. Pick the hook point**

The following message is written to the screen message area:

```
<Pick hook point or customise (t)ext > [picks][fast][Menu]
```

- **t** or **T** brings up the leader text format. See **15.5 Text Format for Dimensions and Leaders**.

The **Information Leader** is then created.

The **Vertex Text Information Leader** then starts again. That is, it goes back to **Step 1**.

**Note on Position of Leader Box With Respect to the Hook Point**

As well as determining the length of the leader line, the hook point also determines whether the leader box goes to the left or the right of the hook point.

If the hook point is to the left of the string pick point then the leader box is drawn to the left of the hook point. If the hook point is to the right of the string pick point then the leader box is drawn to the right of the hook point.

For information on how the Leader object appears, see **15.4.6.2 Leader Styles**.
15.4.5.12 Segment Text

Information Leader choice Segment text displays in the leader box, the segment text of a selected string segment.

A leader line is drawn from a selected position on a string (string pick point) to a selected hook point, and then to the end of the hook itself.

Using the text format, the segment text for the selected segment of the string is displayed at the end of the hook line.

The leader is added to the model given in the CAD toolbar.

Step 1. Pick the string segment to label with its segment text

When Segment Text is the choice, the following message is written to the screen message area:

```
< (t)ype[Segment Text] Pick segment (a)ssociative (s)tyle[Arial Border] (h)ook-angle[0°] > [picks][fast][Menu]
```

- a or A toggles Association ON and OFF. See 15.4.1 Leader Association
- t or T changes the type of Information Leader. See 15.4.5 Information Leader
- s or S brings up the leader style list. 15.4.6.2 Leader Styles
- h or H brings up the Hook Angle 15.4.2 Hook Angle

If Association is ON then the start of the Leader is associated with the segment pick point.

Step 2. Pick the hook point

The following message is written to the screen message area:

```
<Pick hook point or customise (t)ext> [picks][fast][Menu]
```

- t or T brings up the leader text format. See 15.5 Text Format for Dimensions and Leaders.

The Information Leader is then created.

The Segment Text Information Leader then starts again. That is, it goes back to Step 1.

---

Note on Position of Leader Box With Respect to the Hook Point

As well as determining the length of the leader line, the hook point also determines whether the leader box goes to the left or the right of the hook point.

If the hook point is to the left of the string pick point then the leader box is drawn to the left of the hook point. If the hook point is to the right of the string pick point then the leader box is drawn to the right of the hook point.

For information on how the Leader object appears, see 15.4.6.2 Leader Styles.
15.4.5.13 Vertex XYZ

**Information Leader** choice Vertex XYZ displays in the leader box, the x, y and z coordinates of a selected vertex.

A leader line is drawn from a selected vertex on a string to a selected hook point, and then to the end of the hook itself.

Using the text format, the x, y and z coordinates of a selected vertex are displayed at the end of the hook line.

The leader is added to the model given in the CAD toolbar.

**Step 1. Pick the vertex to label with its x, y and z coordinates**

When Vertex XYZ is the choice, the following message is written to the screen message area:

```
< (t)ype[Vertex XYZ] Pick vert (a)ssociative (s)tyles[Arial Border] (h)ook-angle[0°] > [picks][fast][Menu]
```

a or A toggles Association ON and OFF. See 15.4.1 Leader Association

T or T changes the type of Information Leader. See 15.4.5 Information Leader

s or S brings up the leader style list. 15.4.6.2 Leader Styles

h or H brings up the Hook Angle 15.4.2 Hook Angle

If Association is ON then the start of the Leader is associated with the vertex.

**Step 2. Pick the hook point**

The following message is written to the screen message area:

```
<Pick hook point or customise (t)ext> [picks][fast][Menu]
```

t or T brings up the leader text format. See 15.5 Text Format for Dimensions and Leaders.

The Information Leader is then created.

The Vertex XYZ Information Leader then starts again. That is, it goes back to Step 1.

---

**Note on Position of Leader Box With Respect to the Hook Point**

As well as determining the length of the leader line, the hook point also determines whether the leader box goes to the left or the right of the hook point.

If the hook point is to the left of the segment pick point then the leader box is drawn to the left of the hook point. If the hook point is to the right of the segment pick point then the leader box is drawn to the right of the hook point.

For information on how the Leader object appears, see 15.4.6.2 Leader Styles.
15.4.5.14 Vertex XY

**Information Leader** choice **Vertex XY** displays in the leader box, the x and y coordinates of a selected vertex.

A leader line is drawn from a selected vertex on a string to a selected hook point, and then to the end of the hook itself.

Using the text format, the x and y coordinates of a selected vertex are displayed at the end of the hook line.

The leader is added to the model given in the CAD toolbar.

**Step 1. Pick the vertex to label with its x and y coordinates**

When **Vertex XY** is the choice, the following message is written to the screen message area:

< (t)ype[Vertex XY] Pick vertex [a]ssociative [s]tyle[A]rial Border] [h]ook-angle[0°] > [picks][fast][Menu]

- **a** or **A** toggles Association **ON** and **OFF**. See 15.4.1 Leader Association
- **t** or **T** changes the type of Information Leader. See 15.4.5 Information Leader
- **s** or **S** brings up the leader style list. 15.4.6.2 Leader Styles
- **h** or **H** brings up the Hook Angle 15.4.2 Hook Angle

If Association is **ON** then the start of the Leader is associated with the vertex.

**Step 2. Pick the hook point**

The following message is written to the screen message area:

<Pick hook point or customise (t)ext> [picks][fast][Menu]

- **t** or **T** brings up the leader text format. See 15.5 Text Format for Dimensions and Leaders.

The **Information Leader** is then created.

The **Vertex XY Information Leader** then starts again. That is, it goes back to **Step 1**.

**Note on Position of Leader Box With Respect to the Hook Point**

As well as determining the length of the leader line, the hook point also determines whether the leader box goes to the left or the right of the hook point.

If the hook point is to the left of the segment pick point then the leader box is drawn to the left of the hook point. If the hook point is to the right of the segment pick point then the leader box is drawn to the right of the hook point.

For information on how the Leader object appears, see 15.4.6.2 Leader Styles.
15.4.5.15 String XYZ

Information Leader choice String XYZ displays in the leader box, the x, y and z coordinates of any selected position on a string.

A leader line is drawn from a selected position on a string (string pick point) to a selected hook point, and then to the end of the hook itself.

Using the text format, the x, y and z coordinates of the selected string position are displayed at the end of the hook line.

The leader is added to the model given in the CAD toolbar.

**Step 1. Pick the string position to label with its x, y and z coordinates**

When String XYZ is the choice, the following message is written to the screen message area:

```
< (t)ype[String XYZ] Pick point (a)ssociative (s)tytle[Arial Border] (h)ook-angle[0°] > [picks][fast][Menu]
```

- a or A toggles Association ON and OFF. See 15.4.1 Leader Association
- t or T changes the type of Information Leader. See 15.4.5 Information Leader
- s or S brings up the leader style list. 15.4.6.2 Leader Styles
- h or H brings up the Hook Angle 15.4.2 Hook Angle

If Association is ON then the start of the Leader is associated with the string pick point.

**Step 2. Pick the hook point**

The following message is written to the screen message area:

```
<Pick hook point or customise (t)ext> [picks][fast][Menu]
```

- t or T brings up the leader text format. See 15.5 Text Format for Dimensions and Leaders.

The Information Leader is then created. The String XYZ Information Leader then starts again. That is, it goes back to **Step 1**.

**Note on Position of Leader Box With Respect to the Hook Point**

As well as determining the length of the leader line, the hook point also determines whether the leader box goes to the left or the right of the hook point.

If the hook point is to the left of the segment pick point then the leader box is drawn to the left of the hook point. If the hook point is to the right of the segment pick point then the leader box is drawn to the right of the hook point.

For information on how the Leader object appears, see 15.4.6.2 Leader Styles.
15.4.5.16 String XY

**Information Leader** choice **String XY** displays in the leader box, the x and y coordinates of any selected position on a string.

A leader line is drawn from a selected position on a string (string pick point) to a selected hook point, and then to the end of the hook itself.

Using the text format, the x and y coordinates of the selected string position are displayed at the end of the hook line.

The leader is added to the model given in the CAD toolbar.

**Step 1. Pick the string position to label with its x and y coordinates**

When **String XY** is the choice, the following message is written to the screen message area:

```plaintext
< (t)ype[String XY] Pick point (a)ssociative (s)tyle[Arial Border] [h]ook-angle[0°] > [picks][fast][Menu]
```

- **a** or **A** toggles Association ON and OFF. See [15.4.1 Leader Association](#).
- **t** or **T** changes the type of Information Leader. See [15.4.5 Information Leader](#).
- **s** or **S** brings up the leader style list. [15.4.6.2 Leader Styles](#).
- **h** or **H** brings up the Hook Angle [15.4.2 Hook Angle](#).

If Association is **ON** then the start of the Leader is associated with the string pick point.

**Step 2. Pick the hook point**

The following message is written to the screen message area:

```plaintext
<Pick hook point or customise (t)ext> [picks][fast][Menu]
```

- **t** or **T** brings up the leader text format. See [15.5 Text Format for Dimensions and Leaders](#).

The **Information Leader** is then created.

The **String XY Information Leader** then starts again. That is, it goes back to **Step 1**.

Note on Position of Leader Box With Respect to the Hook Point

As well as determining the length of the leader line, the hook point also determines whether the leader box goes to the left or the right of the hook point.

If the hook point is to the left of the segment pick point then the leader box is drawn to the left of the hook point. If the hook point is to the right of the segment pick point then the leader box is drawn to the right of the hook point.

For information on how the Leader object appears, see [15.4.6.2 Leader Styles](#).
15.4.5.17 String Z

**Information Leader** choice String Z displays in the leader box, the z coordinate (level) of any selected position on a string.

A leader line is drawn from a selected position on a string (string pick point) to a selected hook point, and then to the end of the hook itself.

Using the text format, the z coordinate (level) of the selected string position are displayed at the end of the hook line.

The leader is added to the model given in the CAD toolbar.

**Step 1. Pick the string position to label with level (z coordinate)**

When String Z is the choice, the following message is written to the screen message area:

```
< (t)ype[String Z] Pick point (a)ssociative (s)tyle[Arial Border] (h)ook-angle[0°] > [picks][fast][Menu]
```

- a or A toggles Association ON and OFF. See 15.4.1 Leader Association
- t or T changes the type of Information Leader. See 15.4.5 Information Leader
- s or S brings up the leader style list. 15.4.6.2 Leader Styles
- h or H brings up the Hook Angle 15.4.2 Hook Angle

If Association is ON then the start of the Leader is associated with the string pick point.

**Step 2. Pick the hook point**

The following message is written to the screen message area.

```
<Pick hook point or customise (t)ext> [picks][fast][Menu]
```

- t or T brings up the leader text format. See 15.5 Text Format for Dimensions and Leaders.

The Information Leader is then created.

The String Z Information Leader then starts again. That is, it goes back to **Step 1**.

**Note on Position of Leader Box With Respect to the Hook Point**

As well as determining the length of the leader line, the hook point also determines whether the leader box goes to the left or the right of the hook point.

If the hook point is to the left of the segment pick point then the leader box is drawn to the left of the hook point. If the hook point is to the right of the segment pick point then the leader box is drawn to the right of the hook point.

For information on how the Leader object appears, see 15.4.6.2 Leader Styles.
15.4.5.18 Tin Z

**Information Leader** choice Tin Z displays in the leader box, the z value (level) from the tin at the (x,y) coordinates of a selected position.

A leader line is drawn from the selected position (pick point) to a selected hook point, and then to the end of the hook itself.

Using the text format, the value of the level from the tin is displayed at the end of the hook line.

The leader is added to the model given in the CAD toolbar.

**Step 1.** Pick the position that is to be labelled with the level (z value) from the tin

When Tin Z is the choice, and if it is the first time the Tin z option has been used in this session, then the Tin Typed Input box is placed on the screen.

![Tin Typed Input](image)

The tin to take the levels from is picked from the pop up list, or typed into the box and <Enter> pressed. The box is then removed.

The following message is written to the screen message area.

< (t)yp[Tin Z] Pick point on tin (a)ssociative (s)style[Arial Border] (h)ook-angle[0°] > [picks][fast][Menu]

a or A toggles Association ON and OFF. See 15.4.1 Leader Association
t or T changes the type of Information Leader. See 15.4.5 Information Leader
s or S brings up the leader style list. 15.4.6.2 Leader Styles
h or H brings up the Hook Angle 15.4.2 Hook Angle
i or I brings up the Tin Typed Input box to select a new tin.

If Association is ON then the start of the Leader is associated with the pick point

**Step 2.**

The following message is written to the screen message area.

<Pick hook point or customise (t)ext> [picks][fast][Menu]

t or T brings up the leader text format. See 15.5 Text Format for Dimensions and Leaders.

**Pick the hook point.**

The Information Leader is then created.

The Tin Z Information Leader then starts again. That is, it goes back to Step 1.
Note - the tin itself does not have to be on any view.

Note on Position of Leader Box With Respect to the Hook Point

As well as determining the length of the leader line, the hook point also determines whether the leader box goes to the left or the right of the hook point.

If the hook point is to the left of the pick point then the leader box is drawn to the left of the hook point. If the hook point is to the right of the pick point then the leader box is drawn to the right of the hook point.

For information on how the Leader object appears, see 15.4.6.2 Leader Styles.
15.4.5.19 Tin Depth

**Information Leader** choice **Tin Depth** displays in the leader box, the depth at a selected position on a string to a tin.

A leader line is drawn from the selected string position (pick point) to a selected hook point, and then to the end of the hook itself.

Using the text format, the value of the depth from the pick point to the tin is displayed at the end of the hook line.

The leader is added to the model given in the CAD toolbar.

**Step 1.** Pick the point that is to be labelled with its depth to the tin

When **Tin Depth** is the choice, and if it is the first time the **Tin z** option has been used in this session, then the **Tin Typed Input** box is placed on the screen.

![Tin Typed Input](image)

The tin to take the levels from is picked from the pop up list, or typed into the box and `<Enter>` pressed. The box is then removed.

The following message is written to the screen message area.

`<Type[Tin Depth] Pick point on tin (a)ssociative (s)tytle(A)rial Border (h)ook-angl[e]0°] > [picks3][fast][Menu]`

- `a` or `A` toggles Association **ON** and **OFF**. See [15.4.1 Leader Association](#).
- `t` or `T` changes the type of Information Leader. See [15.4.5 Information Leader](#).
- `s` or `S` brings up the leader style list. See [15.4.6.2 Leader Styles](#).
- `h` or `H` brings up the Hook Angle. See [15.4.2 Hook Angle](#).
- `i` or `I` brings up the **Tin Typed Input** box to select a new tin.

If Association is **ON** then the start of the Leader is associated with the pick point.

**Step 2.** Pick the hook point

The following message is written to the screen message area.

`<Pick hook point or customise (t)ext> [picks3][fast][Menu]`

- `t` or `T` brings up the leader text format. See [15.5 Text Format for Dimensions and Leaders](#).

The **Information Leader** is then created.

The **Tin Depth Information Leader** then starts again. That is, it goes back to **Step 1**.

---

**Note** - the tin itself does not have to be on any view.

**Note on Position of Leader Box With Respect to the Hook Point**
As well as determining the length of the leader line, the hook point also determines whether the leader box goes to the left or the right of the hook point.

If the hook point is to the left of the pick point then the leader box is drawn to the left of the hook point. If the hook point is to the right of the pick point then the leader box is drawn to the right of the hook point.

For information on how the Leader object appears, see 15.4.6.2 Leader Styles.
15.4.5.20 Grade (%)

**Information Leader** choice **Grade (%)** displays in the leader box, the percent grade of a selected position on string (string pick point). 

A leader line is drawn from the string pick point to a selected hook point, and then to the end of the hook itself.

Using the text format, the value of the percent grade at the string pick point is displayed at the end of the hook line.

The leader is added to the model given in the CAD toolbar.

**Step 1.** Pick the position on a string to label with per cent grade 

When **Grade per cent** is the choice, the following message is written to the screen message area

```
< (t)ype[Grade %] Pick point on string (a)ssociative (s)tyle[Arial Border] (h)ook-angle[0°] > [picks][fast][Menu]
```

- a or A toggles Association **ON** and **OFF**. See 15.4.1 Leader Association
- t or T changes the type of **Information Leader**. See 15.4.5 Information Leader
- s or S brings up the leader style list. 15.4.6.2 Leader Styles
- h or H brings up the Hook Angle 15.4.2 Hook Angle

If Association is ON then the start of the Leader is associated with the string pick point.

**Step 2.** Pick the hook point 

The following message is written to the screen message area.

```
<Pick hook point or customise (t)ext> [picks][fast][Menu]
```

- t or T brings up the leader text format. See 15.5 Text Format for Dimensions and Leaders.

The **Information Leader** is then created.

The **Grade per cent Information Leader** then starts again. That is, it goes back to **Step 1**.

---

**Note on Position of Leader Box With Respect to the Hook Point**

As well as determining the length of the leader line, the hook point also determines whether the leader box goes to the left or the right of the hook point.

If the hook point is to the left of the string pick point then the leader box is drawn to the left of the hook point. If the hook point is to the right of the string pick point then the leader box is drawn to the right of the hook point.

For information on how the Leader object appears, see 15.4.6.2 Leader Styles.
15.4.5.21 Grade 1 in - Slope

**Information Leader** choice Grade 1 in displays in the leader box, the grade as a 1 in (slope) of a selected position on string (string pick point).

A leader line is drawn from the string pick point to a selected hook point, and then to the end of the hook itself.

Using the text format, the value of the grade as a 1 in (slope) at the string pick point is displayed at the end of the hook line.

The leader is added to the model given in the CAD toolbar.

**Step 1. Pick the position on a string to label with its grade as 1:in (slope)**

When **Grade 1 in** is the choice, the following message is written to the screen message area:

```
< (t)ype[Grade 1 In] Pick point on string (a)ssociative (s)tytle[Arial Border] (h)ook-angle[0°] > [picks][fast][Menu]
```

- **a** or **A** toggles Association **ON** and **OFF**. See [15.4.1 Leader Association](#).
- **t** or **T** changes the type of Information Leader. See [15.4.5 Information Leader](#).
- **s** or **S** brings up the leader style list. [15.4.6.2 Leader Styles](#).
- **h** or **H** brings up the Hook Angle [15.4.2 Hook Angle](#).

If Association is **ON** then the start of the Leader is associated with the string pick point.

**Step 2. Pick the hook point**

The following message is written to the screen message area:

```
Pick hook point or customise (t)ext > [picks][fast][Menu]
```

- **t** or **T** brings up the leader text format. See [15.5 Text Format for Dimensions and Leaders](#).

The **Information Leader** is then created.

The **Grade 1 in Information Leader** then starts again. That is, it goes back to **Step 1**.

**Note on Position of Leader Box With Respect to the Hook Point**

As well as determining the length of the leader line, the hook point also determines whether the leader box goes to the left or the right of the hook point.

If the hook point is to the left of the string pick point then the leader box is drawn to the left of the hook point. If the hook point is to the right of the string pick point then the leader box is drawn to the right of the hook point.

For information on how the Leader object appears, see [15.4.6.2 Leader Styles](#).
15.4.5.22 Centroid XY

**Information Leader** choice **Centroid XY** displays in the leader box, the (x,y) coordinates of the centroid of a selected string. If the string is not a closed string (a polygon) then it is temporarily closed for calculating the Centroid. Note that the centroid may be outside the closed string - for a point that is inside the string, see **15.4.5.23 Medial Centre XY**.

A string is selected (string pick point) and a position for the hook and leader line is drawn from either the string pick point or the centroid of the string, to a selected hook point, and then to the end of the hook itself.

Using the text format, the (x,y) coordinates of the centroid of the selected string are displayed at the end of the hook line.

The leader is added to the model given in the CAD toolbar.

**Step 1.** Pick the string to label with the (x,y) coordinates of its centroid

When **Centroid XY** is the choice, the following message is written to the screen message area:

```
< {type}[Centroid XY] Pick string (a)ssociative (c) style[Arial Bold] (h)ook-angle[0°] fixed-a(r)row> [picks][fast][Menu]
```

- a or A toggles Association **ON** and **OFF**. See **15.4.1 Leader Association**
- t or T changes the type of Information Leader. See **15.4.5 Information Leader**
- s or S brings up the leader style list. **15.4.6.2 Leader Styles**
- h or H brings up the Hook Angle **15.4.2 Hook Angle**
- r or R toggles between the arrow starting at the pick point (**free arrow**) or at the polygon centre (**fixed arrow**)

If Association is **ON** then the start of the Leader is associated with the pick point or the centroid of the string.

**Step 2.** Pick the hook point

The following message is written to the screen message area:

```
<Pick hook point or customise (t)ext> [picks][fast][Menu]
```

- t or T brings up the leader text format. See **15.5 Text Format for Dimensions and Leaders**.

The **Information Leader** is then created.

The **Centroid XY Information Leader** then starts again. That is, it goes back to **Step 1**.
Note on Position of Leader Box With Respect to the Hook Point

As well as determining the length of the leader line, the hook point also determines whether the leader box goes to the left or the right of the hook point.

If the hook point is to the left of the centroid of the string then the leader box is drawn to the left of the hook point. If the hook point is to the right of the centroid of the string then the leader box is drawn to the right of the hook point.

For information on how the Leader object appears, see 15.4.6.2 Leader Styles.
15.4.5.23 Medial Centre XY

**Information Leader** choice **Centre XY** displays in the leader box, the \((x,y)\) coordinates of the medial axis centre of a selected string. If the string is not a closed string (polygon) then it is temporarily closed for calculating the Medial centre.

**Note** - the Medial centre is a pointed calculated by 12d to use as the “centre” of a polygon and unlike a centroid, it is always inside the polygon. **WARNING** - this currently does not take arcs into consideration.

A string is selected (string pick point) and a position for the hook and leader line is drawn from either the string pick point or the medial axis centre of the string, to a selected hook point, and then to the end of the hook itself.

Using the text format, the \((x,y)\) coordinates of the medial centre of the selected string are displayed at the end of the hook line.

The leader is added to the model given in the CAD toolbar.

**Step 1.** Pick the string to label with the \((x,y)\) coordinates of its (medial) centre

When **Centre XY** is the choice, the following message is written to the screen message area:

```
(t)ype[Centroid XY] Pick string (a)ssociate (t)yle[Arial Border] (h)ook-angle[0°] fixed-arrow [picks][fast][Menu]
```

- **a** or **A** toggles Association ON and OFF. See 15.4.1 Leader Association
- **t** or **T** changes the type of Information Leader. See 15.4.5 Information Leader
- **s** or **S** brings up the leader style list. 15.4.6.2 Leader Styles
- **h** or **H** brings up the Hook Angle 15.4.2 Hook Angle
- **r** or **R** toggles between the arrow starting at the pick point (**free arrow**) or at the polygon centre (**fixed arrow**)

If Association is **ON** then the start of the Leader is associated with the centre of the string.

**Step 2.** Pick the hook point

The following message is written to the screen message area:

```
<Pick hook point or customise (t)ext> [picks][fast][Menu]
```

- **t** or **T** brings up the leader text format. See 15.5 Text Format for Dimensions and Leaders.

The **Information Leader** is then created.

The **Centre XY Information Leader** then starts again. That is, it goes back to **Step 1**.
Note on Position of Leader Box With Respect to the Hook Point

As well as determining the length of the leader line, the hook point also determines whether the leader box goes to the left or the right of the hook point.

If the hook point is to the left of the medial centre of the string then the leader box is drawn to the left of the hook point. If the hook point is to the right of the medial centre of the string then the leader box is drawn to the right of the hook point.

For information on how the Leader object appears, see 15.4.6.2 Leader Styles.
15.4.5.24 Trimesh Volume

The Leader choice Trimesh volume displays in the leader box, the volume of a selected closed trimesh.

A trimesh is selected (trimesh pick point) and a position for the hook and leader line is drawn from the trimesh pick point to a selected hook point, and then to the end of the hook itself.

Using the text format, the volume of the selected trimesh is displayed at the end of the hook line.

The leader is added to the model given in the CAD toolbar.

Step 1. Pick the trimesh to label with its volume

When Trimesh Volume is the choice, the following message is written to the screen message area:

```
<Pick trimesh (s)style[default] (h)ook-angle[0°] > [picks][fast][Menu]
```

s or S brings up the leader style list. 15.4.6.2 Leader Styles

h or H brings up the Hook Angle 15.4.2 Hook Angle

Step 2. Pick the hook point

The following message is written to the screen message area:

```
<Pick hook point or customise (t)ext [picks][fast][Menu]
```

t or T brings up the leader text format. See 15.5 Text Format for Dimensions and Leaders.

The Trimesh Volume Leader is then created.

The Trimesh Volume Leader then starts again. That is, it goes back to Step 1.

Note on Position of Leader Box With Respect to the Hook Point

As well as determining the length of the leader line, the hook point also determines whether the leader box goes to the left or the right of the hook point.

If the hook point is to the left of the medial centre of the string then the leader box is drawn to the left of the hook point. If the hook point is to the right of the medial centre of the string then the leader box is drawn to the right of the hook point.

For information on how the Leader object appears, see 15.4.6.2 Leader Styles.
15.4.5.25 Trimesh Surface Area

The Leader choice Trimesh area displays in the leader box, the surface area of a selected trimesh.

A trimesh is selected (trimesh pick point) and a position for the hook and leader line is drawn from the trimesh pick point to a selected hook point, and then to the end of the hook itself.

Using the text format, the volume of the selected trimesh is displayed at the end of the hook line.

The leader is added to the model given in the CAD toolbar.

**Step 1. Pick the trimesh to label with its surface area**

When Trimesh area is the choice, the following message is written to the screen message area:

```
<Pick trimesh (s)style[default] (h)ook-angle[0°] > [picks][fsst][Menu]
```

s or S brings up the leader style list. [15.4.6.2 Leader Styles](#)

h or H brings up the Hook Angle [15.4.2 Hook Angle](#)

**Step 2. Pick the hook point**

The following message is written to the screen message area:

```
<Pick hook point or customise (t)ext> [picks][fsst][Menu]
```

t or T brings up the leader text format. See [15.5 Text Format for Dimensions and Leaders](#)

The Trimesh Area Leader is then created.

The Trimesh Area Leader then starts again. That is, it goes back to Step 1.

**Note on Position of Leader Box With Respect to the Hook Point**

As well as determining the length of the leader line, the hook point also determines whether the leader box goes to the left or the right of the hook point.

If the hook point is to the left of the medial centre of the string then the leader box is drawn to the left of the hook point. If the hook point is to the right of the medial centre of the string then the leader box is drawn to the right of the hook point.

For information on how the Leader object appears, see [15.4.6.2 Leader Styles](#).
15.4.6 Leader Utilities

Position of menu: Cad => Leader => Utilities

The Leader Utilities menu is:

![Leader Utilities menu]

- **Edit**
- **Styles**
- **Recalc**
- **Recalc all**
- **Delete**
- **Change info**
- **Change style**
- **Change text format**
- **Rotate text**
- **Rotate text many**

**See**

15.4.6.1 Leader Edit
15.4.6.2 Leader Styles

**Recalc** - select a leader to recalc.

**Recalc all** - recalcs all leaders.

**Delete** - select a leader to delete.

15.4.6.3 Change Style of Leader
15.4.18.4 Change Text Format (same option for Dimensions and Leaders)
15.4.6.1 Leader Edit

Picking an existing Leader will bring up the Leader editor and the grip points for the pick point and the hook point are displayed.

If there is no Association because either the Association is OFF, or Association is ON but there is nothing currently associated with the leader, then you won’t get a grip point to move the entire leader because the leader is locked to its associated items.

A list of typed options is also displayed in the screen message area.

Picking and accepting a grip point will move the grip point and when it is placed again, the association is recalced and the new value for the leader displayed.

For the typed options, typing

- **t** or **T** brings up the leader text format. See 15.5 Text Format for Dimensions and Leaders.
- **s** or **S** brings up the leader style list. 15.4.6.2 Leader Styles
- **f** or **F** to flip the side that the hook goes to.
- **d** or **D** deletes the leader
- **n** or **N** pick a new leader to edit.
Also

Pressing <Esc> will exit the editing of the current leader and ask for a new drafting element (Leader or Dimension) to be selected for editing.

Similarly clicking RB and selecting Cancel from the Pick Ops menu will exit the editing of the current leader and ask for a new drafting element (Leader or Dimension) to be selected for editing.

When back in the Drafting Editor, pressing <Esc> or clicking RB and selecting Cancel from the Pick Ops menu, will exit the Drafting Editor
15.4.6.2 Leader Styles

Position of option on menu: CAD => Leader => Styles

When you click on the option an Edit leader_styles.xml panel is brought up and the panel shows the standard areas for looking for the leader_styles.XML files - Working folder, Customer (User), User, Set Ups and Other.

For information about where how to find and create dimension_styles.xml files, see 15.7 Style XML Files for Dimensions, Leaders & Tables.

Once a leader_styles.xml file has been opened, the Leader Styles panel is displayed.

See 15.4.6.2.1 Leader Styles - Name Node
15.4.6.2.2 Leader Styles - Arrow Symbol Node
15.4.6.2.3 Leader Styles - Hook Symbol Tab
15.4.6.2.4 Leader Styles - Textstyle Node
15.4.6.2.1 Leader Styles - Name Node

This is on the right hand side of the panel when you click on the Leader style name.

<table>
<thead>
<tr>
<th>Name</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>no hook</td>
</tr>
<tr>
<td>Colour</td>
<td>green</td>
</tr>
<tr>
<td>Linestyle</td>
<td>THIN</td>
</tr>
<tr>
<td>Lineweight</td>
<td>1</td>
</tr>
<tr>
<td>Use arrow</td>
<td>yes</td>
</tr>
<tr>
<td>Use hook</td>
<td>yes</td>
</tr>
<tr>
<td>Hook length</td>
<td>0.5</td>
</tr>
<tr>
<td>Use box around text</td>
<td>yes</td>
</tr>
<tr>
<td>Use rounded box</td>
<td>yes</td>
</tr>
<tr>
<td>Text box colour</td>
<td>orange</td>
</tr>
<tr>
<td>Text box linestyle</td>
<td>1</td>
</tr>
<tr>
<td>Text box lineweight</td>
<td>0</td>
</tr>
<tr>
<td>Number of decimals for length</td>
<td>3</td>
</tr>
<tr>
<td>Number of decimals for area</td>
<td>2</td>
</tr>
</tbody>
</table>

- **Hook length** has same units as Textstyle. So if the Textstyle is paper, then **Hook length** is in millimetres.

- **Use hook is yes**
- **Use arrow is yes**
- **Number of decimals for length**

If the **Type** from the Textstyle tab is not world, then the following are not used.

- Use text box - should be **Use box around text** like dimension.
Text box rounded - should be *Use rounded box like dimension*?.
Text box colour
Text box linestyle
Text box line weight

The following items that are at the bottom of the tab have not yet been implemented.

- Hook angle
- Use dynamic size
- Number of decimals for volumes
- Angle format style
15.4.6.2.2 Leader Styles - Arrow Symbol Node

This is on the right hand side of the panel when you click on the Arrow symbol node.

<table>
<thead>
<tr>
<th>Style</th>
<th>Arrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>red</td>
</tr>
<tr>
<td>Size</td>
<td>0.5</td>
</tr>
<tr>
<td>Rotation</td>
<td>45</td>
</tr>
<tr>
<td>Offset</td>
<td>0.2</td>
</tr>
<tr>
<td>Raise</td>
<td>0.5</td>
</tr>
</tbody>
</table>

The origin of the symbol is displaced from the start of the leader line by the Offset and Raise values.

With a Rotation value of zero, the symbol is given the same rotation as the leader line.

For a non zero Rotation, the value is added to the angle of the leader line.
15.4.6.2.3 Leader Styles - Hook Symbol Tab

Not implemented at this stage.

<table>
<thead>
<tr>
<th>Style</th>
<th>ARROW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>yellow</td>
</tr>
<tr>
<td>Size</td>
<td>0.5</td>
</tr>
<tr>
<td>Rotation</td>
<td>45</td>
</tr>
<tr>
<td>Offset</td>
<td>0.2</td>
</tr>
<tr>
<td>Raise</td>
<td>0.5</td>
</tr>
</tbody>
</table>
### 15.4.6.2.4 Leader Styles - Textstyle Node

This is on the right hand side of the panel when you click on the **Textstyle** node.

<table>
<thead>
<tr>
<th>Textstyle</th>
<th>Arial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>paper</td>
</tr>
<tr>
<td>Size</td>
<td>0.2</td>
</tr>
<tr>
<td>Angle</td>
<td>0°</td>
</tr>
<tr>
<td>X-factor</td>
<td>1</td>
</tr>
<tr>
<td>Slant</td>
<td>0</td>
</tr>
<tr>
<td>Offset</td>
<td>0</td>
</tr>
<tr>
<td>Raise</td>
<td>0</td>
</tr>
<tr>
<td>Colour</td>
<td>cyan</td>
</tr>
<tr>
<td>Whiteout</td>
<td>no colour</td>
</tr>
<tr>
<td>Border</td>
<td>no colour</td>
</tr>
</tbody>
</table>

**Border type**

- **Justify**: bottom-left
- **TTF Underline**: no
- **TTF Strikeout**: no
- **TTF Italic**: no
- **TTF Outline**: no
- **TTF Weight**: 400

This is expected to be modified shortly so that it uses a **Textstyle Data** and all the features from **Textstyle Data** are automatically available. For the moment with paper text, only **Whiteout** is supported.

When the **Textstyle Data** is implemented, it can have its own **Border type** but there is no linestyle for the border in **Textstyle Data**. The only way to get a border with a linestyle is to use World text and set the border parameters in the **General** tab (15.4.6.2.1 Leader Styles - Name Node).

If **Type** is not **world**, then **Don’t clip dimension line for text** is set to **no** and these items from the General tab are not used.

- Use box around text
- Use rounded box
- Text box colour
- Text box linestyle

See 15.4.6.2.1 Leader Styles - Name Node
15.4.6.3 Change Style of Leader

Click on **Change style of style** and the following message is written to the screen message area:

```
<Pick drafting element to apply {style[(diags no clip)] [picks][fast][Menu]>
```

Pick a leader and its style will be changed to that shown in the square brackets ([[]]). Then pick another leader to change its style.

Typing **s** or **S** brings up the **Style Typed Input** box to select a new leaders style.

![Style Typed Input](image)

The new style is picked from the pop up list, or typed into the box and <Enter> pressed.

The box is then removed and the message again written to the screen message area.

All subsequent selected leaders will have their styles changed to this new style until either the option is terminated or a new leader style is selected.

To terminate the option, press **Esc**, select **Cancel** from the **Pick Ops** menu, or select another CAD option.
15.5 Text Format for Dimensions and Leaders

For Dimensions and Leaders, there is one, and sometimes more than one, value that is to be displayed in the Dimension or Leader as text. For example, the length of a segment or the x and y coordinates of a point.

The user rarely want to display all the different dimensions and leader values in the same way. For example, some values may be displayed in metres, others in millimetres. Or you may want to display both metres and yards.

In 12d Model, there are special Text Formats to allow the user to tailor how the values of the Dimensions and Leaders are displayed.

So a Text Format is used to describe how a single value for a dimension or leader is displayed. In general is has the form

\[ \text{pre_text} \text{Expression} \text{post_text} \]

where Expression can be either

(a) a set of angle brackets enclosing a value_format which describes how the value is modified and how many decimal places are used in the final text display of the value

\[ <\text{value_format}> \]

(b) an expression involving an IF statement (known as a dynamic text format)

The full structure of the Text Format, the value_format and dynamic text format is described in the following sections:

15.5.1 Angle Brackets <>
15.5.2 Pre and Post Text
15.5.3 Units Factor
15.5.4 Round Off
15.5.5 Number of Decimals
15.5.6 Dynamic Text Format
15.5.7 Multiple Text Formats
15.5.8 Typing t or T to Change the Text Format
15.5.9 Defaults File for Text Formats
15.5.1 Angle Brackets <>

In the Text Formats, angle brackets <> are used to indicate the position of the value of the Dimension or Leader.

There can be special value formatting instructions inside the angle brackets to indicate if and how the value is to be modified, and how many decimals to use when finally displayed as text.

<value_format>

What is available for value_format will be described in the following sections.

In some cases, the angle brackets may not appear at all in the Text Format and then the text does not include the actual value itself.

If the Dimension or Leader has only one value, then just <> is required.

If the Dimension or Leader has more than one value, then extra commands are needed to indicate which value is being talked about in the Text Format.

<x> is used for the x value of a coordinate
<y> is used for the y value of a coordinate
<z> is used for the z value of a coordinate
15.5.2 Pre and Post Text

The text displayed for a dimension or leader value can have user defined *pre* and *post* text around the value and that is indicated by the expression

\[ \text{pre_text} < \text{value_format} > \text{post_text} \]

where *pre_text* is written before the dimension or leader value, *post_text* is written after the value.

Typing `\n` into *pre_text* or *post_text* will be interpreted as a new line.

The angle brackets `<>` indicate where you want the value in relation to the *pre_text* and *post_text*. The angle brackets may even be missing.

For example, to show just the word “varies”, use the following with no angle brackets.

```
varies
```

15.5.3 Units Factor

The value to be displayed can be multiplied by a *units_factor*. The units_factor is written inside the angle brackets `<>`. That is

\[ <\text{units_factor}> \]

So the expression

\[ \text{pre_text} < \text{units_factor} > \text{post_text} \]

means that *pre_text* is written before the dimension or leader value, *post_text* is written after the value, `<>` indicates that you want the value and the value is multiplied by the *units_factor* before being displayed.

If *units_factor* is left blank then it is defaulted to 1.

If `<units_factor>` is left out, then there is no value in the dimension or leader text but you still get the *pre_text* and *post_text*.

**Note**

`pre_text<units_factor>post_text` is considered to be one block of text. So raise, offset, justification etc apply to the whole block, not to the *pre_text* or *post_text* individually.

As an example of `pre_text<units_factor>post_text`, you can show millimetres instead of metres by using:

```
<1000>
```

or, if you want the text “mm” after the value

```
<1000> mm
```
15.5.4 Round Off

Inside the angle brackets <>, the type of Rounding Off can be specified by a key character O (down), M (middle) or U (up) followed immediately (with no spaces) by the \textit{rounding}\_unit.  

- **Orounding\_unit** means to round down to the closest \textit{rounding}\_unit.
- **Mrounding\_unit** means to round to the closest \textit{rounding}\_unit.
- **Urounding\_unit** means to round up to the closest \textit{rounding}\_unit.

For example:

- **O1** means that 10.2 would round down to 10.
- **O0.1** means that 10.2 would round down to 10.2
- **D0.25** means that 10.2 would round up to 10.
- **U0.25** means that 10.2 would round up to 10.25
- **M0.25** means that 10.2 would round up to 10.25 rather than down to 10.

\textbf{Note:} the \textit{units}\_factor is applied first and then the Round Off.

15.5.5 Number of Decimals

Inside the angle brackets <>, you can give the number of decimal places to use when writing out the real value by using the key character D followed immediately (with no spaces) by the \textit{number of decimal places}.

- **Dn** where n is the number of decimal places.

\textit{pre\_text}<\textit{units}\_factorDn>\textit{post\_text}

The \textit{units}\_factor is applied first and then the number of decimal places used on the resulting value.

For example

- **<1000D1>**

says to multiply the real by 1000 and only use one decimal place in the text for the value.

\textbf{Note:} the \textit{units}\_factor is applied first, followed by the Round Off, and finally the \textit{number of decimal places} used in the text to display the resulting value.

So **<100D2U0.25>** is the same as **<100U0.25D2>** - multiply by 100, round Up using the \textit{rounding}\_unit of 0.25, and then writing the result with two decimal places.
15.5.6 Dynamic Text Format

It is also possible to change the format for a value depending on the size of the value by using an Expression with an IF test instead of the simple angle brackets < >.

The Expression has key words _IF_, _THEN_, _ELSE_ and _ELSEIF_ and can be

\[ \text{IF op1 comparison_value_1 THEN single_value_format_1 ELSEIF op2 comparison_value_2 THEN single_value_format_2 ELSEIF op3 comparison_value_3 THEN single_value_format_3 ... ELSE single_value_format_n} \]

where op1 and op2 are one of

- \( \text{=} \) for equals
- \( \text{>} \) for greater than
- \( \geq \) for greater than or equal to
- \( \text{<} \) for less than
- \( \leq \) for less than or equal to

and

single_value_format_n is a Text Format for a single value and not an Expression.

The comparison is always being made between the dimension/leader value and the comparison_value so we have left out the dimension/leader value.

That is, _IF_>comparison_value means if (dimension value is greater than comparison_value).

For example if you wanted to display kilometres to three decimal place, for anything greater than or equal to 1,000, metres to three decimal places for values greater or equal to 1, otherwise millimetres with no decimal places, then use

\[ \text{IF}_>=1000 \text{ THEN } <0.001D3 \text{ km } \text{ELSE}_>=1 \text{ THEN } <D3 \text{ m } \text{ELSE}_=<1000D0 \text{ mm} \]

Important Notes

1. The Dynamic Text Format always evaluates to only one piece of text.
2. The underscore is part of _IF_, _THEN_, _ELSEIF_ and _ELSE_.
3. _IF_ \text{ op} comparison_value must be followed by a _THEN_ single_value_format.
4. _ELSEIF_ \text{ op} comparison_value must be followed by a _THEN_ single_value_format.
5. It is compulsory to have an _ELSE_ at the end of the Expression.
6. An Expression is only for < > values and not <x>, <y> etc.

15.5.7 Multiple Text Formats

You can have just the one Text Format or multiple text formats in the dimension or leader.

That is, you can have

\[ \text{pre_text}<value_format_1><text_1><value_format_2>...<text_n><value_format_n} \]

where \text{pre_text} is written before the value with value_format_1, \text{text_n} is written after the n'th < > and the value in the n'th < > has the format value_format_n.

For example, to show metres and International feet, use

\[ <m \text{ or } <3.28083895> \text{ ft} \]

or to show metres and US Survey feet, use

\[ <m \text{ or } <3.28083333> \text{ ft} \]
15.5.8 Typing t or T to Change the Text Format

When using many of the **Dimension** or **Leader** commands, a list of typed options is often displayed in the screen message area and this may include **forma(t)** or **customise (t)ext**.

**example for Dimensions**

```
<Pick start point> (a)sso(ciate (s)ty(le[default] forma(t) [(z)ero off] [OFF] > [picks][fast][Menu]
```

**for Information Leaders**

```
<Pick hook point or customise (t)ext> [picks][fast][Menu]
```

When this is the case, typing **t** or **T** is for changing the Text Format for the dimension or leader. The default value is the last one used.

After typing **t** or **T**, the **Format Typed Input** box is displayed showing the current text format of the selected dimension or leader.

![Format Typed Input](image)

Clicking on the Choice icon will bring up a list of **Text Formats** for the type of **dimension** or **leader** being worked on. This includes the **last six** used which is useful when using the same format multiple times. See **15.5.9 Defaults File for Text Formats**.

The new **Text Format** is picked from the pop up list, or typed into the box and **<Enter>** pressed. The **Format Typed Input** box is then removed.
15.5.9 Defaults File for Text Formats

There is an XML file called `draft_texts.xml` which contains up to fifteen text formats for each Dimension type, and up to fifteen text formats for each type of Information Leader.

When you type t or T after seeing (t)ext included in the message in the screen message area, a Format Typed Input box is placed on the screen. The pop on the box up brings up a list of up to fifteen entries which come from the appropriate section of the `draft_texts.xml` file for the dimension or leader type being created or edited.

The first six of the fifteen in the pop up are the last six ones used in the current session of 12d Model, and the rest come from the `drafts_texts.xml` file.

So in a new session, all the entries in the pop up come from the `drafts_texts.xml` file. Each time one is selected from the list, or a new text format typed in, the selected or typed in text format is placed on the top of the list. If there is already six new entries on the top of the list, the sixth one is deleted and the first five are shuffled down.

As each of the six new entries are added to the top of the list, the bottom six that have come from the `draft_texts.xml` file are dropped off the list.

The `draft_texts.xml` file is read each time you open a 12d Model project.
15.5.9.1 An Excerpt from a draft_text.xml File

The draft_text.xml file consists of a <meta_data> block at the top and then a <drafting> block with <Leader_Text> and <Dimension_Text> sections.

Note that because < and > are part of the XML syntax, in an XML file, less than (<) is written as \&lt; and greater than (>) is written as \&gt;.

An example of part of the Dimension_Text and Leader_Text sections of the drafts_texts.xml file, which includes the Aligned_Type dimension text formats for the first three entries in the pop up list.

An excerpt from a draft_text.xml file:

```xml
<Dimension_Text>
 <Aligned_Type0>len <> m</Aligned_Type0>
 <Angular_Type0><></Angular_Type0>
 <Arc_Ang_Type0><></Arc_Ang_Type0>
 <Aligned_Type1>_IF_<0.3048_THEN_<39.37007874> in_ELSE_<3.280839895> ft</Aligned_Type1>
 <Angular_Type1><></Angular_Type1>
 <Arc_Ang_Type1><></Arc_Ang_Type1>
 <Aligned_Type2><100> cm</Aligned_Type2>
</Dimension_Text>

<Leader_Text>
 <Unknown_Type0>sadfsdfa\nLine2</Unknown_Type0>
 <Area_Type0>Area <></Area_Type0>
 <String_Length_3d_Type0>Length 3d <>m</String_Length_3d_Type0>
 <Unknown_Type1>sadfsdfa</Unknown_Type1>
 <Area_Type1>Area <></Area_Type1>
 <String_Length_3d_Type1>Length 3d <>m</String_Length_3d_Type1>
 <Unknown_Type2>sadf</Unknown_Type2>
 <Area_Type2>Area <></Area_Type2>
 <String_Length_3d_Type2>Length 3d <>m</String_Length_3d_Type2>
</Leader_Text>
```
15.6 CAD Table

Position of option on menu: CAD => Table

The CAD Table options create and edit tables.

A user table can be created but also tables from super alignments or CSV files that can automatically update with changes in the super alignment or CSV file.

See

15.6.1 Create Table
15.6.2 Create Table from a Super Alignment
15.6.3 Create Table from a CSV File
15.6.4 Table Edit
15.6.5 Table Styles

Recalc - select a table to recalc.
Recalc all - recalcs all tables.
Delete - select a table to delete.

15.6.6 Table to CSV
15.6.1 Create Table

Position of option on menu: CAD => Table => Create

Important Note - all the text in a table will be treated as World Units.

Selecting Create brings up the Create Table panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>name box</td>
<td>available names</td>
<td></td>
</tr>
<tr>
<td>Model for table</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Style</td>
<td>table style box</td>
<td>available table styles</td>
<td></td>
</tr>
<tr>
<td>Auto sizing</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>x y box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Rotation</td>
<td>angle box</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

The name for the table. This must not be blank.
the model for the table.
the table style to use for this table.
If ticked, the table automatically resizes the column widths and heights to fit the text into the columns.
If not ticked, the table will not resize the column widths and heights to fit the text into the column.
the (x,y) coordinates of the top left hand corner of the table.
the rotation of the table - entered in hp notation. It is measured in a counter clockwise direction from the positive x axis.
Use title tick box ticked
if ticked, the table has a title as the first row and it only consists of one column which goes from the left side of the table to the right side of the table. The textstyle information for text in the title is given in the Title style node of the Drafting Styles for Tables.
If not ticked, the table does not have a title at the top.

Use header tick box ticked
if ticked, each column has as its first entry a header. The textstyle information for text in the row of headers is given in the Header style node of the Drafting Styles for Tables.
If not ticked, the table does not have a title at the top.

Number of rows integer box
the number of rows in the table.

Number of columns integer box
the number of columns in the table.

Column width real box
if Auto sizing is no, the width of each column.

Row height real box
if Auto sizing is no, the height of each column.

Buttons at bottom
Create button
create the table with the properties in this panel at the location given in Location.

Continue to the next section 15.6.2 Create Table from a Super Alignment or return to 15.6 CAD Table.
15.6.2 Create Table from a Super Alignment

Position of option on menu: CAD => Table => Super alignment

This table option is for creating a table of information about a selected super alignment. The table is associated with the super alignment so that the table can be updated when the super alignment is modified.

Important Note - all the text in a table will be treated as World Units.

Selecting Super alignment brings up the Create Super Alignment Reference Table panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>name box</td>
<td>available names</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the name for the table. This must not be blank.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for table</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the model for the table.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Style  

table style box  

available table styles  

the table style to use for this table.

Super alignment  

string select box  

select the super alignment to provide the information to generate the table.

Chainage interval  

real box  

the interval to use if reporting information at chainage intervals down the super alignment.

Chainage reference  

real box  

the intervals for reporting are incremented about the Chainage reference value.

Start/End chainage  

choice box  

if not blank, the chainage to use for the Start/End chainages reported in the table.

If blank, the Start/End chainage of the super alignment is used.

Table format  

choice box  

if horizontal ips, the table has information about the horizontal IP’s for the super alignment, and includes columns for the horizontal IP number, the x, y, z coordinates of the HIP and the radius of any arc on the HIP.

If horizontal segments, the table has information on the vertices at the beginning of each segment along the horizontal geometry for the super alignment, and includes columns for the type of the segment that starts at that vertex, the x, y, z (level) coordinates of the vertex, the bearing of the segment coming into and leaving the vertex, and the radius of the segment coming into and leaving the vertex.

If horizontal tangents, if vertical ips, the table has information about the vertical IP’s for the super alignment, and includes columns for the vertical IP number, the chainage of the VIP and the height of the VIP.

If vertical segments, the table has information on the vertices at the beginning of each segment along the vertical geometry of the super alignment, and includes columns for the type of the segment that starts at that vertex, the chainage and z (level) coordinates of the vertex, the grade of the segment coming into and leaving the vertex, and the type of the segment coming into and leaving the vertex.

Page number  

integer box  

Auto sizing  

tick box  

not ticked  

if ticked, the table automatically resizes the column widths and heights to fit the text into the columns.

If not ticked, the table will not resize the column widths and heights to fit the text into the column.

Location  

x y box  

0  

the (x,y) coordinates of the top left hand corner of the table.

Rotation  

angle box  

0  

the rotation of the table - entered in hp notation. It is measured in a counter clockwise direction from the positive x axis.

Use title  

tick box  

ticked  

if ticked, the table has a title as the first row and it only consists of one column which goes from the left side of the table to the right side of the table. The textstyle information for text in the title is given in the Title style node of the Drafting Styles for Tables.
If not ticked, the table does not have a title at the top.

**Use header**

Tick box: ticked

If ticked, each column has as its first entry a header. The textstyle information for text in the row of headers is given in the **Header style** node of the Drafting Styles for Tables.

If not ticked, the table does not have a title at the top.

**Number of rows**

Integer box

The number of rows in the table.

Not used - the Table format and super alignment determines how many rows there are.

**Number of columns**

Integer box

The number of columns in the table.

Not used - the Table format and super alignment determines how many columns there are.

**Column width**

Real box

If Auto sizing is no, the width of each column.

**Row height**

Real box

If Auto sizing is no, the height of each column.

### Buttons at bottom

**Create**

Button

Create the table with the properties in this panel at the location given in **Location**.

Continue to the next section [15.6.3 Create Table from a CSV File](#) or return to [15.6 CAD Table](#).
15.6.3 Create Table from a CSV File

This table option is for creating a table of information from the information in a CSV file. The table is associated with the CSV file so that the table can be updated when the CSV file is modified.

**Important Note** - all the text in a table will be treated as World Units.

Selecting CSV file brings up the Create CSV File Reference Table panel.

![Create CSV File Reference Table Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>name box</td>
<td>available names</td>
<td>the name for the table. This must not be blank.</td>
</tr>
<tr>
<td>Model for table</td>
<td>model box</td>
<td>available models</td>
<td>the model for the table.</td>
</tr>
<tr>
<td>Style</td>
<td>table style box</td>
<td>available table styles</td>
<td>the table style to use for this table.</td>
</tr>
<tr>
<td>CSV source file</td>
<td>file box</td>
<td>name of the CSV file to associate with the table.</td>
<td></td>
</tr>
<tr>
<td>Column separator</td>
<td>choice box</td>
<td>comma, semicolon, tab</td>
<td>if comma, in the CSV file a comma (,) is used to separate the information for each column.</td>
</tr>
</tbody>
</table>
If *semicolon*, in the CSV file a semicolon (\( ; \)) is used the separate the information for each column.  
If *tab*, in the CSV file a tab is used the separate the information for each column.

### Auto sizing
- **tick box**
- **not ticked**
  - If **ticked**, the table automatically resizes the column widths and heights to fit the text into the columns.
  - If **not ticked**, the table will not resize the column widths and heights to fit the text into the column.

### Location
- **x y box**
- **0**
  - the (x,y) coordinates of the *top left hand corner* of the table.

### Rotation
- **angle box**
- **0**
  - the rotation of the table - entered in *hp* notation. It is measured in a counter clockwise direction from the positive x axis.

### Use title
- **tick box**
  - if **ticked** then the first line of the CSV file is taken as the titles for each column in the table. The textstyle information for text in the title is given in the *Title style* node of the Drafting Styles for Tables.
  - If **not ticked**, the table does not have a title.

### Use header
- **tick box**
  - if **ticked** then the next line of the CSV file is taken to be the Headers for each column of the table. The textstyle information for text in the row of headers is given in the *Header style* node of the Drafting Styles for Tables.
  - If **not ticked**, the table does not have a header.

### Number of rows
- **integer box**
  - the number of rows in the table.
  - Not used - the Table format and super alignment determines how many rows there are.

### Number of columns
- **integer box**
  - the number of columns in the table.
  - Not used - the Table format and super alignment determines how many columns there are.

### Column width
- **real box**
  - if **Auto sizing is no**, the width of each column.

### Row height
- **real box**
  - if **Auto sizing is no**, the height of each column.

### Buttons at bottom
- **Create**
  - button
  - create the table with the properties in this panel at the location given in *Location*.

### Important Notes
1. When a *Recalc* is done, the CSV file is reread and the information in the table updated.
2. *Auto size* in the table Properties must be ticked on for the new table to be automatically resized.
3. If you don't want the CSV file to be reread on a *Recalc*, you need to set *Type* back to *no reference* in the Table Association panel.

Continue to the next section [15.6.4 Table Edit](#) or return to [15.6 CAD Table](#).
15.6.4 Table Edit

Picking an existing table will bring up the Table editor, and at the same time the grip points and points are displayed on the plan views that the table is on (see 15.6.4.1 Move).

Important Note - all the text in a table will be treated as World Units.

See

15.6.4.1 Move
15.6.4.2 Column and Row Edits
15.6.4.3 Text and Values Edit
15.6.4.4.1 Fit All
15.6.4.5 Recalc
15.6.4.6 Properties and Associations
15.6.4.7 Content
15.6.4.1 Move

When the **Table Editor** is running, the grips points are displayed on any plan view that the table is on.

The use a grip point, you must first click on the **Move** icon on the **Table Editor** toolbar and then click and accept on the **grip** that you wish to use.

Continue to the next section **15.6.4.2 Column and Row Edits** or return to **15.6.1 Create Table** or to **15.6 CAD Table**.
15.6.4.2 Column and RowEdits

15.6.4.2.1 Insert Row
15.6.4.2.2 Insert Column
15.6.4.2.3 Delete Row
15.6.4.2.4 Delete Column
15.6.4.2.5 Resize Row
15.6.4.2.6 Resize Column
15.6.4.2.1 Insert Row

Click on the **Insert row** icon and the following message will appear in the screen message area.

```
<select row to insert (a)bove, (b)elow or a(l)p(end) [picks][fast][Menu]
```

Then move over the table until the row you want to insert a row above or below highlights.

Press **a** or **A** to insert above, or **b** or **B** to insert below, the highlighted row.

Continue to the next section 15.6.4.2.2 Insert Column or return to 15.6.4.2 Column and Row Edits or 15.6.1 Create Table or 15.6 CAD Table.
15.6.4.2.2 Insert Column

Click on the **Insert column** icon and the following message will appear in the screen message area.

```
<select column to insert (l)eft, (r)ight or a[p]pend> [picks][fast][Menu]
```

Then move over the table until the column you want to insert a column either to the left or right of highlights.

Press **I** or **L**, to insert to the left, or **r** or **R** to insert to the right, of the highlighted column.

Continue to the next section **15.6.4.2.3 Delete Row** or return to **15.6.4.2 Column and Row Edits** or **15.6.1 Create Table** or **15.6 CAD Table**.
15.6.4.2.3 Delete Row
Click on the Delete row icon and the following message will appear in the screen message area.

Then move over the table until the row you want to delete highlights

Press d or D, or pick and accept, to delete the highlighted row.

Continue to the next section 15.6.4.2.4 Delete Column or return to 15.6.4.2 Column and Row Edits or 15.6.1 Create Table or 15.6 CAD Table.

15.6.4.2.4 Delete Column
Click on the Delete column icon and the following message will appear in the screen message area.

Then move over the table until the column you want to delete highlights

Press d or D, or pick and accept, to delete the highlighted column.

Continue to the next section 15.6.4.2.5 Resize Row or return to 15.6.4.2 Column and Row Edits or 15.6.1 Create Table or 15.6 CAD Table.
15.6.4.2.5 Resize Row

Click on the **Resize row** icon and the following message will appear in the screen message area.

```
<select row to re(size) [picks][fast][Menu]
```

Then move over the table until the row you want to resize highlights.

![Image of a table with a resize icon highlighted](image)

Press `s` or `S`, or pick and accept, and the **Resize Typed Input** box will appear with the current size of the row in it.

![Image of the Resize Typed Input box](image)

Type the new size into the box and then press <Enter>. The box will disappear and the row given the new size value.

Continue to the next section 15.6.4.2.6 Resize Column or return to 15.6.4.2 Column and Row Edits or 15.6.1 Create Table or 15.6 CAD Table.
15.6.4.2.6 Resize Column

Click on the **Resize column** icon and the following message will appear in the screen message area.

```
<select column to re(s)ize> [picks][fast][Menu]
```

Then move over the table until the column you want to resize highlights.

Press `s` or `S`, or pick and accept, and the **Resize Typed Input** box will appear with the current size of the selected column in it.

Type the new size into the box and then press <Enter>. The box will disappear and the column given the new size value.

Return to 15.6.4.2 Column and Row Edits or 15.6.1 Create Table or 15.6 CAD Table.
15.6.4.3 Text and Values Edit

create & edit all types of values
create and edit text
create and edit reals
create and edit numbers

See
15.6.4.3.1 Value Create and Edit
15.6.4.3.2 Text Create and Edit
15.6.4.3.3 Real Create and Edit
15.6.4.3.3 Real Create and Edit
15.6.4.3.1 Value Create and Edit

For an empty cell, Value can create either a text, number or real value.

If used on a non empty cell, the cell contents are displayed in a Typed input box or type Text, Number of Real depending on the type of the cell contents.

Click on the Value icon and the following message appears in the screen message area.

<select cell to edit (t)ext (n)umber (r)eal> [picks][fast][Menu]

Move over the table until the cell you want to edit or create a value, highlights.

If the cell is empty,

Type t or T, or pick and accept inside the cell, and the Enter text Typed Input box will appear.

Type n or N, and the Enter number Typed Input box will appear.

Type r or R, and the Enter real Typed Input box will appear.

Type the new text, number or real into the box and press <Enter>. 
The box will disappear and the new text, number or real placed in the cell, and the cell given the appropriate type.

Note: If the type is Real then the actual typed in value is kept in the cell BUT it is displayed with the number of decimal places given in the Table style.

If the cell is not empty, then the cell value is displayed in a Typed Input box of the same type as the cell contents.

Type the new Text, Number or Real into the Typed Input box and press <Enter>. The box will disappear and the new value placed in the cell.

Note: If the type is Real then the actual typed in value is kept in the cell BUT it is displayed with the number of decimal places given in the Table style.

Continue to the next section 15.6.4.3.2 Text Create and Edit or return to 15.6.4.3 Text and Values Edit or 15.6.1 Create Table or 15.6 CAD Table.
15.6.4.3.2 Text Create and Edit

**Important Note** - all the text in a table will be treated as World Units.

For an empty cell, **Text** creates and displays one or more lines of text.

If used on a non-empty cell, the cell contents are displayed in a Text box, and when saved, is written into the cell as a **Text** type.

Click on the **Text** icon and the following message will appear in the screen message area.

```
<select cell to edit (t)ext> [picks][fast][Menu]
```

Move over the table until the cell you want to edit or create a Text, highlights.

Type **t** or **T**, or pick and accept inside the cell, and the *Enter text* **Typed Input** box will appear.

If the cell was empty then nothing is in the *Enter text* box but if the cell is not empty, the contents of the cell are displayed as text.

Type the new text into the *Enter text* box and press <Enter>.

The box will disappear and the new text placed in the cell, and the cell given type **Text**.

Continue to the next section 15.6.4.3.3 Real Create and Edit or return to 15.6.4.3 Text and Values Edit or 15.6.1 Create Table or 15.6 CAD Table.
15.6.4.3.3 Real Create and Edit

For an empty cell, Real creates and displays a real with the number of decimal places used in the display is taken from the Table style.

If used on a non empty cell, the cell contents are converted into a real and displayed in a Real box for editing, and when saved, is written into the cell as a Real type.

If the cell contains text that can’t be converted to a real then the Real box is left empty.

Click on the Real icon and the following message will appear in the screen message area.

```
<select cell to edit > [real][picks][accepts][Menu] Cu
```

Move over the table until the cell you want to edit or create a Number, highlights.

Type r or R, or pick and accept inside the cell, and the Enter real Typed Input box will appear.

If the cell was empty then nothing is in the Enter real box but if the cell is not empty, the contents of the cell are displayed a Real, or nothing if the contents can’t convert to a real.

Type the new real into the Enter real box and press <Enter>.

The box will disappear and the new real placed in the cell and displayed with the number of decimal places given in the Table style. The cell given type Real.

Note: If the type is Real then the actual typed in value is kept in the cell BUT it is displayed with the number of decimal places given in the Table style.

Continue to the next section 15.6.4.3.4 Number Create and Edit or return to 15.6.4.3 Text and Values Edit or 15.6.1 Create Table or 15.6 CAD Table.
15.6.4.3.4 Number Create and Edit

For an empty cell, **Number** creates and displays a number (a positive or negative integer).

If used on a non-empty cell, the cell contents are converted into a number and displayed in a number box for editing, and when saved, is written into the cell as a **Number** type.

It the cell contains text that can’t be converted to a number then the Number box is left empty.

Click on the **Number** icon and the following message will appear in the screen message area.

```
<select cell to edit (n)umber> [picks][fast][Menu]
```

Move over the table until the cell you want to edit or create a Number, highlights.

![Cell selection and number creation diagram]

Type `n` or `N`, or pick and accept inside the cell, and the **Enter number** **Typed Input** box will appear.

If the cell was empty then nothing is in the **Enter number** box but if the cell is not empty, the contents of the cell are displayed a Number, or nothing if the contents can’t convert to a number.

![Typed Input dialog]

Type the new number into the **Enter number** box and press <Enter>.

The box will disappear and the new number placed in the cell, and the cell given type **Number**.

Return to **15.6.3 Text and Values Edit** or **15.6.1 Create Table** or **15.6 CAD Table**.
15.6.4.4 Fit

See  
15.6.4.4.1 Fit All  
15.6.4.4.2 Fit Row  
15.6.4.4.3 Fit Column  
15.6.4.4.4 Fit Cell

15.6.4.4.1 Fit All

Fit goes though each cell and resizes it both vertically and horizontally so that the text fits inside the cell.

It then looks at each row and makes all the cells in the same row as high as the highest one in the row.

It then looks at each column and makes all the cells in the same column as wide as the widest one in the column.

Fit runs even if Auto sizing is set to no.

Continue to the next section 15.6.4.4.2 Fit Row or return to 15.6.4.4 Fit or 15.6.1 Create Table or 15.6 CAD Table.
15.6.4.4.2 Fit Row

Fit row goes though each cell in the selected row to find the maximum height required to fit the text vertically in the cell, and then makes the height of the row the maximum of all the heights required for each cell. That is, it makes the row high enough to fit the text vertically in every cell in the row.

Click on the Fit row icon and the following message will appear in the screen message area.

Then move over the table until the row you want to fit highlights.

Accepting makes the row high enough to fit any text in the row.

Fit row runs even if Auto sizing is set to no.

Continue to the next section 15.6.4.4.3 Fit Column or return to 15.6.4.4 Fit or 15.6.1 Create Table or 15.6 CAD Table.
15.6.4.4.3 Fit Column

Fit column goes though each cell in the selected column to find the maximum width required to fit the text horizontally in the cell, and then makes the width of the column the maximum of all the widths required for each cell. That is, it makes the column wide enough to fit the text horizontally in every cell in the column.

Click on the Fit column icon and the following message will appear in the screen message area.

Then move over the table until the column you want to fit highlights.

Accepting makes the column wide enough to fit any text in the column.

Fit row runs even if Auto sizing is set to no.

Continue to the next section 15.6.4.4.4 Fit Cell or return to 15.6.4.4 Fit or 15.6.1 Create Table or 15.6 CAD Table.
15.6.4.4 Fit Cell

Fit cell increases the row height enough to fit the text vertically in the cell and also increases the column width enough to fit the text horizontally in the cell. That is, it makes the row and column wide enough to fit the text in the selected cell.

Note that the row height and column width will not be decreased, only increased.

Click on the Fit cell icon and the following message will appear in the screen message area:

\[ \text{<select cell to fit> [picks][fast][Menu]} \]

Then move over the table until the cell you want to fit highlights.

Accepting makes the column wide enough to fit any text in the column.

Fit cell runs if Auto sizing is set to no.

Return to 15.6.4.4 Fit or 15.6.1 Create Table or 15.6 CAD Table.

15.6.4.5 Recalc

Sometime when the object is associated with the Table is modified, the Table does not update.

Recalc forces an update of all the information connected with the Association object.

Return to 15.6.1 Create Table or 15.6 CAD Table.
15.6.4.6 Properties and Associations

See
15.6.4.6.1 Properties
15.6.4.6.2 Table Association

15.6.4.6.1 Properties
Click on the Properties icon and the Table Properties panel comes up with the values for the current table in it.

Change values in the panel and then click Set for them to become the tables new values.

Continue to the next section 15.6.4.6.2 Table Association or return to 15.6.4.6 Properties and Associations or 15.6.1 Create Table or 15.6 CAD Table.
15.6.4.6.2 Table Association

Click on the Association icon and the Table Association panel comes up.
If there is no Association for the table, one can be added with this option.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>choice box</td>
<td>no reference, super alignment</td>
<td>csv file</td>
</tr>
</tbody>
</table>

*If no reference*, then the table is not associated with anything.
*If super alignment*, read in and associate a CSV file with the table. See 15.6.4.6.2.1 Associate a Super Alignment
*If CSV file*, read in and associate a CSV file with the table. See 15.6.4.6.2.2 Associate a CSV File

Set button
set the association for the table.

See
15.6.4.6.2.1 Associate a Super Alignment
15.6.4.6.2.2 Associate a CSV File

Return to 15.6.1 Create Table or 15.6 CAD Table.
15.6.4.6.2.1 Associate a Super Alignment

Choice *super alignment* is selected when a super alignment is to be associated with the table. When *super alignment* is selected, the panel changes to display fields to enter information about the super alignment and how it is to be associated with the table.

For information about the fields in this panel, see 15.6.2 Create Table from a Super Alignment
15.6.4.6.2.2 Associate a CSV File

Choice CSV file is selected when a CSV file is to be associated with the table. When CSV file is selected, the panel changes to display fields to enter for information about the CSV file and how it is to be associated with the table.

For information about the fields in this panel, see 15.6.3 Create Table from a CSV File
15.6.4.7 Content

Click on the Content icon and the Table Content Edit panel comes up with the values for the current table in it.

In the panel you can edit the values in each cell, add new values, add or delete rows or move rows up or down.

Finally click Save for the contents of the panel to become the new values in the table.

Return to 15.6.1 Create Table or 15.6 CAD Table.
15.6.5 Table Styles

Position of option on menu: CAD => Table => Styles

Important Note - all the text in a table will be treated as World Units.

When you click on the option an Edit table_styles.xml panel is brought up and the panel shows the standard areas for looking for the table_styles.XML files - Working folder, Customer (User), User, Set Ups and Other.

For information about where how to find and create table_styles.xml files, see 15.7 Style XML Files for Dimensions, Leaders & Tables.

Once a table_styles.xml has been opened, the Table Styles panel is displayed.
For the description of each of the nodes, see

15.6.5.1 Table Styles - Name Node
15.6.5.2 Table Styles - Title Style Node
15.6.5.3 Table Styles - Header Style Node
15.6.5.4 Table Styles - Data Style Node
15.6.5.1 Table Styles - Name Node

This is on the right hand side of the panel when you click on the Table Styles name.

<table>
<thead>
<tr>
<th>Name</th>
<th>dl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>test table style</td>
</tr>
</tbody>
</table>

Name text box
name of the table style.

Description text box
description of the table style.

Continue to the next section 15.6.5.3.1 Table Styles - Header Style > Text Style Node or return to 15.6.5 Table Styles or 15.6.1 Create Table or 15.6 CAD Table.
15.6.5.2 Table Styles - Title Style Node

This is on the right hand side of the panel when you click on the **Title style** node.

<table>
<thead>
<tr>
<th><strong>Cell linestyle</strong></th>
<th>linestyle box</th>
<th>available linestyles</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Cell line colour</strong></td>
<td>colour box</td>
<td>available colours</td>
</tr>
<tr>
<td><strong>Cell line weight</strong></td>
<td>real box</td>
<td>weight of the line work drawn around the title row.</td>
</tr>
<tr>
<td><strong>Fill colour</strong></td>
<td>colour box</td>
<td>available colours</td>
</tr>
<tr>
<td><strong>Fill blend</strong></td>
<td>real box</td>
<td>blend for the fill colour for the title row.</td>
</tr>
</tbody>
</table>

To control the **text** in the Title row, see [15.6.5.3.1 Table Styles - Header Style >Text Style Node](#).
15.6.5.2.1 Table Styles - Title Style > Text Style Node

**Important Note** - all the text in a table will be treated as World Units.

This is on the RHS of the panel when you click on the **Table style > Title style > Text style** node.

If **Use title** is **yes** in the tables **Properties** then this node controls the drawing of the text in the Title at the top of the table.

These are the standard settings for defining text. See [4.6 Text Definitions](#).

Continue to the next section [15.6.5.3 Table Styles - Header Style Node](#) or return to [15.6.5 Table Styles](#) or [15.6.1 Create Table](#) or [15.6 CAD Table](#).
15.6.5.3 Table Styles - Header Style Node

This is on the RHS of the panel when you click on the **Header style** node.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell linestyle</td>
<td>linestyle box available linestyles linestyles for drawing the line work around the header row in the table.</td>
</tr>
<tr>
<td>Cell line colour</td>
<td>text box colour of the line work drawn around the header row.</td>
</tr>
<tr>
<td>Cell line weight</td>
<td>real box weight of the line work drawn around the header row.</td>
</tr>
<tr>
<td>Fill colour</td>
<td>colour box available colours colour to fill the header row cells.</td>
</tr>
<tr>
<td>Fill blend</td>
<td>real box blend for the fill colour for the header row cells.</td>
</tr>
</tbody>
</table>

To control **text** in the Header row, see [15.6.5.3.1 Table Styles - Header Style >Text Style Node](#).
15.6.5.3.1 Table Styles - Header Style >Text Style Node

**Important Note** - all the text in a table will be treated as World Units.

This is on the RHS of the panel when you click on the **Header style >Text style** node.

If **Use header** is **yes** in the tables **Properties** then this node controls the drawing of the text in the **Header** at the top of each column in the table.

Here is the table:

<table>
<thead>
<tr>
<th>Textstyle</th>
<th>Arial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>world</td>
</tr>
<tr>
<td>Size</td>
<td>0.5</td>
</tr>
<tr>
<td>Angle</td>
<td>0°00'</td>
</tr>
<tr>
<td>X-factor</td>
<td>1.0</td>
</tr>
<tr>
<td>Slant</td>
<td>0°00'</td>
</tr>
<tr>
<td>Offset</td>
<td>0.0</td>
</tr>
<tr>
<td>Raise</td>
<td>0.0</td>
</tr>
<tr>
<td>Colour</td>
<td>green</td>
</tr>
<tr>
<td>Whitespace</td>
<td></td>
</tr>
<tr>
<td>Border</td>
<td></td>
</tr>
<tr>
<td>Border type</td>
<td></td>
</tr>
<tr>
<td>Justify</td>
<td>middle-centre</td>
</tr>
<tr>
<td>TTF Underline</td>
<td>no</td>
</tr>
<tr>
<td>TTF Strikeout</td>
<td>no</td>
</tr>
<tr>
<td>TTF Italic</td>
<td>no</td>
</tr>
<tr>
<td>TTF Outline</td>
<td>no</td>
</tr>
<tr>
<td>TTF Weight</td>
<td>400.0</td>
</tr>
</tbody>
</table>

These are the standard setting for defining text. See [4.6 Text Definitions](#).

Continue to the next section [15.6.5.4 Table Styles - Data Style Node](#) or return to [15.6.5 Table Styles](#) or [15.6.1 Create Table](#) or [15.6 CAD Table](#).
15.6.5.4 Table Styles - Data Style Node

This is on the RHS of the panel when you click on the **Data style** node.

<table>
<thead>
<tr>
<th><strong>Cell linestyle</strong></th>
<th>linestyle box</th>
<th>available linestyles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><em>linestyle for drawing the line work around the data rows in the table.</em></td>
</tr>
<tr>
<td><strong>Cell line colour</strong></td>
<td>text box</td>
<td>colour of the line work drawn around the data rows.</td>
</tr>
<tr>
<td><strong>Cell line weight</strong></td>
<td>real box</td>
<td>weight of the line work drawn around the data rows.</td>
</tr>
<tr>
<td><strong>Fill colour</strong></td>
<td>colour box</td>
<td>available colours</td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>colour to fill the data row cells.</em></td>
</tr>
<tr>
<td><strong>Fill blend</strong></td>
<td>real box</td>
<td>blend for the fill colour for the data row cells.</td>
</tr>
</tbody>
</table>

To control the text in the Data rows, see [15.6.5.3.1 Table Styles - Header Style >Text Style Node](#).
15.6.5.4.1 Table Styles - Data Style > Text Style Node

**Important Note** - all the text in a table will be treated as World Units.

This is on the RHS of the panel when you click on the **Data style > Text style** node.

This node controls the drawing of the text in the **Data** rows in the table.

<table>
<thead>
<tr>
<th>Textstyle</th>
<th>Arial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>world</td>
</tr>
<tr>
<td>Size</td>
<td>0.5</td>
</tr>
<tr>
<td>Angle</td>
<td>0°00'</td>
</tr>
<tr>
<td>X-Factor</td>
<td>1.0</td>
</tr>
<tr>
<td>Slant</td>
<td>0°00'</td>
</tr>
<tr>
<td>Offset</td>
<td>0.0</td>
</tr>
<tr>
<td>Raise</td>
<td>0.0</td>
</tr>
<tr>
<td>Colour</td>
<td>green</td>
</tr>
<tr>
<td>Whiteout</td>
<td></td>
</tr>
<tr>
<td>Border</td>
<td></td>
</tr>
<tr>
<td>Border type</td>
<td></td>
</tr>
<tr>
<td>Justify</td>
<td>middle-centre</td>
</tr>
<tr>
<td>TTF Underline</td>
<td>no</td>
</tr>
<tr>
<td>TTF Strikout</td>
<td>no</td>
</tr>
<tr>
<td>TTF Italic</td>
<td>no</td>
</tr>
<tr>
<td>TTF Outline</td>
<td>no</td>
</tr>
<tr>
<td>TTF Weight</td>
<td>400.0</td>
</tr>
</tbody>
</table>

These are the standard settings for defining text. See [4.6 Text Definitions](#).

Return to [15.6.5 Table Styles](#) or [15.6.1 Create Table](#) or [15.6 CAD Table](#).
15.6.6 Table to CSV

**Position of option on menu:** CAD => Table => Table to csv

This option creates a CSV file for a table that is associated with a CSV file.

Selecting the Table to csv brings up the Write Table Contents to CSV File panel.

![Write Table Contents to CSV File panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Output file</strong></td>
<td>file box</td>
<td>*.csv files</td>
<td><em>name of the CSV file to write to the table out to.</em></td>
</tr>
<tr>
<td><strong>Use title</strong></td>
<td>tick box</td>
<td></td>
<td><em>if ticked, the first line of the CSV file is the title of the table.</em></td>
</tr>
<tr>
<td><strong>Use header</strong></td>
<td>tick box</td>
<td></td>
<td><em>if ticked, the next line of the CSV file is the Headers for each column of the table.</em></td>
</tr>
<tr>
<td><strong>Column separator</strong></td>
<td>choice box</td>
<td>commas</td>
<td>comma, semicolon, tab <em>the column separator used when writing out the CSV file.</em></td>
</tr>
<tr>
<td><strong>Select table</strong></td>
<td>button</td>
<td></td>
<td><em>select the table AND then write out the contents of the table to a CSV file.</em></td>
</tr>
</tbody>
</table>

Return to 15.6 CAD Table.
15.7 Style XML Files for Dimensions, Leaders & Tables

There are XML files to define the styles used for Dimensions, Leaders and Tables:

(a) for Dimensions, the file is *dimensions_styles.xml*

(b) for Leaders, the file is *leader_styles.xml*.

(c) for Tables, the file is *table_styles.xml*.

These XML files are all Set Up files like *colours.4d* and folders are searched in a specific order to find the files.

However, unlike *colours.4d*, it doesn't matter if the styles xml file is found in one folder, the search continues and all the folders that contain the file are found.

And, again unlike *colours.4d*, the styles used are the merger of all the found files.

The search order is still important because if the same name exists in more than one file in the found folders, the first occurrence in the files in the search order is the one that is used.

For example, if you had a dimensions style called *d1* in the file *dimensions_styles.xml* in your working folder, and one called *d1* in the file *dimensions_styles.xml* in Programs files\12d\12dmodel\11.0\set_ups, then the *d1* is your working folder is the one that will be used and seen in any dimensions styles pop ups in *12d Model*.

See

*15.7.1 Create & Editing Dimensions, Leader & Table Styles*
15.7.1 Create & Editing Dimensions, Leader & Table Styles

Position of option on menu:  CAD =>Dimension =>Styles  
Position of option on menu:  CAD =>Leader =>Styles  
Position of option on menu:  CAD =>Table =>Styles

When you click on the options, a **Edit Styles** panel is brought up for the appropriate style and it shows the standard areas for looking for the Styles XML files - Working folder, Customer (User), User, Set Ups and Other - and displays whether the appropriate xml file:

(a) exists and available for editing (Edit)  
If the xml file exists in the folder and you have access to edit it, then the folder name is written in the panel and [Edit] is written on the right hand side of the line.

(b) does not exist but can be created (Create) by the editor  
If the xml file does not exist in the folder and you have access to create it, then the folder name is written in the panel and [Create] is written on the right hand side of the line.  
In this case a new file is created and written out to the given folder.

(c) is in a folder that has no access for editing and so can only be viewed (View)  
If there is no access the folder to create/edit the file, then the folder name is written in the panel and [View] is written on the right hand side of the line. Although the styles can’t be edited, they can be copied.  
This usually applies to the Set Ups folder which normally needs Admin privileges to write to.

(d) is in Customer (User).  
This only appears if a Customer User area has been defined.

(e) is defined separately by the user and then Other is displayed.  
In this case, the full path name of the XML file is given by the user.

See  
15.7.1.1 [Create] for Dimension, Leader and Table Styles  
15.7.1.2 [Edit] for Dimension, Leader and Table Styles
15.7.1.1 [Create] for Dimension, Leader and Table Styles

When [Create] is shown, a new xml file can be created in that folder.

Click on the line with [Create] and the Editor for that Style starts up with a **style group header** but no styles in it.

All the other style files that are found are listed in the **Includes** section displayed at the bottom of the tree.

The included files can not be edited whilst create/editing this file BUT you can copy items from them and paste them into items in this file.

New styles can now be created (see 15.7.1.2.1 Creating New Styles) and a new XML created by clicking on the **Write** button.

Creating and editing of styles is the same as for [Edit] and so is documented in that section. See 15.7.1.2 [Edit] for Dimension, Leader and Table Styles.

**Write** - writes out the information in the panel to the files name given in **Current file**.
15.7.1.2 [Edit] for Dimension, Leader and Table Styles

When [Edit] is shown, an xml file already exists and can be edited.

Click on the line with [Edit] and the Editor for that Style starts up with all the existing styles in that file displayed.

After completing any editing, the XML is saved by clicking on the Write button.

As in the [Create] case, all the other appropriate files that are found are listed in the Includes section are displayed at the bottom of the tree (see 15.7.1.1 [Create] for Dimension, Leader and Table Styles).

The included files can not be edited whilst create/editing this file BUT you and copy items from them and paste them into items in this file.

For editing in the panel, see

15.7.1.2.1 Creating New Styles
15.7.1.2.2 Copy and Paste
15.7.1.2.3 Deleting a Style
15.7.1.2.4 Duplicating a Style
15.7.1.2.5 Editing a Style
15.7.1.2.1 Creating New Styles

To create a new style from scratch when there are no styles already, highlight the style group header (Dimension styles, Leader styles or Table styles) and click on the Add Child icon.

Note - the Add Child icon adds a node as a subnode of the highlighted node.

To create a new style from scratch when some styles already exist, you can highlight the style name (name of the style or Dimension style, Leader style or Table style if it has not been given a name) and click on the Add (Add Sibling) icon.

The Add icon adds a new item at the same level (a sibling) as the highlighted item and that is why a style must already exist so that one can be selected.

In both cases a new style is created with no name and so the general style name (Dimension style, Leader style or Table style) is written in the style list until the style is given a name.

Once the style is given a name then that name will appear in the tree.
Once the new style is created then it can be edited by going into each field of the style and making changes.

**Quicker Methods for Creating New Styles**

When you click on a node to edit that section of the tree, you can not leave the edited node until all the required values are filled in. Similarly you won’t be able to save the style unless all the required values are filled in. And this may involve filling in a lot of values.

So rather than starting from scratch, it is often easier to use **Duplicate** (15.7.1.2.4 Duplicating a Style) if there are already existing styles in the file, or **Copy and Paste** (15.7.1.2.2 Copy and Paste).

**Copy** and **Paste** is particularly useful when there are no styles in the file you are creating styles but there are styles in the other files listed in the **Includes** node. Although these styles can’t be edited, they can be copied.

Continue to the next section 15.7.1.2.2 Copy and Paste or return to 15.7.1.2 [Edit] for Dimension, Leader and Table Styles or 15.7 Style XML Files for Dimensions, Leaders & Tables.
15.7.1.2.2 Copy and Paste

Rather than creating a new style from scratch, it is often easier to use Copy and Paste to create a copy of an existing style, and then edit the copied style.

Although there may be no styles in the folder you are creating styles for, there will usually be some styles in the XML file in Set Ups that can be copied.

In the tree in the Editor, click on the + in front of Set Ups to expand the tree and then click on the item in the tree that you want to copy. Then click on the Copy icon.

Next click on and highlight the style header (Dimension styles, Leader styles or Table styles) and click on Paste. The style will then appear under the style header with the same name as the original style. The copied style can then be edited.

NOTE: If the name of the copied style is not changed then this new style will be used instead of the one in Set Ups.

Continue to the next section 15.7.1.2.3 Deleting a Style or return to 15.7.1.2 [Edit] for Dimension, Leader and Table Styles or 15.7 Style XML Files for Dimensions, Leaders & Tables.
15.7.1.2.3 Deleting a Style

To delete a style, simply click on and highlight the style name, and then click on the Delete icon.

15.7.1.2.4 Duplicating a Style

To duplicate a style, simply click on and highlight the style name, and then click on the Duplicate icon.

A copy of the style, with exactly the same name, is created and added to the end of the list of styles.

The name of the style needs to be changed and any other edits done that are required.

Continue to the next section 15.7.1.2.5 Editing a Style or return to 15.7.1.2 [Edit] for Dimension, Leader and Table Styles or 15.7 Style XML Files for Dimensions, Leaders & Tables.
15.7.1.2.5 Editing a Style

To edit a style, you click on the style name, or expand the style and click on any of the sub nodes, and all the values for that node will be displayed on the right hand side of the panel.

The panel fields on the right hand side of the panel have the same icons as in other 12d Model panels and the standard pop ups are all available. For example, text, colour and choice icons.

When clicking to go to another node, all the fields currently on the right hand side are validated and if there are any problems, the first line with an error is coloured red and an Editor error box is displayed.

If Yes is selected, then all the invalid field values are discarded, the Editor error panel removed, and the data for the new selected node displayed on the right hand side of the panel.

If No is selected, then the right hand side of the panel does not change and can undergo further edits.

Return to 15.7 Style XML Files for Dimensions, Leaders & Tables.
15.8 CAD Multipick

Position of option on menu: CAD => Multipick

This section of documentation is a work in progress and will be updated in subsequent releases.

The Cad Multipick walk-right menu is

![Cad Multipick Menu]

For selecting the data, see 15.8.1 Selecting with Multipick

For the options, see

- Copy 15.8.2 CAD Multipick Copy
- Move 15.8.3 CAD Multipick Move
- Rotate 15.8.4 CAD Multipick Rotate
- Array 15.8.5 CAD Multipick Array
- Mirror 15.8.6 CAD Multipick Mirror
- Mirror X 15.8.7 CAD Multipick Mirror X
- Mirror Y 15.8.8 CAD Multipick Mirror Y
- Scale 15.8.10 CAD Multipick Scale
- Scale Dynamic 15.8.11 CAD Multipick Scale Dynamic
15.8.1 Selecting with Multipick

Upon selecting any of the Multipick options from the CAD Multipick menu

![CAD Multipick Menu]

the Screen Message Area prompts are shown for selecting selection options.

![Screen Message Area]

The default option is <m> for multipick select.

For <m> go to

- Multipick
- Single
- All
- Clear
- Inverse
- Rectangle
- Lasso

Multipick

For <m>, strings are selected by clicking LB on the string, but unlike a normal select, the string is not accepted. After LB is clicked, the string is highlighted and circles placed at the string vertices to indicate that the string is part of the Multipick set.

![Multipick Selection]

Another string is added to the Multipick set by clicking LB on the new string and again not accepting. This string will also be drawn with circles at each of its vertices to indicate that it is part of the Multipick set.
A string is removed from a *Multipick set* by simply clicking LB on the string (and not accepting). The string is then deselected and the circles are removed from the vertices of the string to indicate that it is no longer part of the *Multipick set*.

When all the required strings of the *Multipick set* have been selected, the Multipick selection is terminated by clicking MB (accepting).

The selected strings in the *Multipick set* are then passed on to the CAD Multipick option for processing. For example, if the Multipick was part of *Multipick Copy*, then after Accepting, the *Copy* part of the *Multipick Copy* takes over.

Once the Multipick option (*e.g.* *Multipick Copy*) is completed, the *Multipick set* is cleared and the Multipick CAD option begins again, and the process of building up a new *Multipick set* begins again for that same option.

To terminate the *Multipick option*, simply press <Esc>.

**Note:**

Because LB is used to keep adding new strings to the *Multipick set*, it can’t be used for the normal cycling through a selection set when more than one string satisfies the picking tolerance. So when more than one string satisfies the picking criteria a *Select which string?* panel is placed on the screen with the list of strings satisfying the LB picking criteria.

If the string is already in the *Multipick set*, there will be a tick in the Use? column.
Clicking on a line in the grid highlights the string.

And clicking in the **Use?** column to make a **tick** will add the string to the **Multipick set** and place circles on each of its vertices, or **turning off a tick** will deselect the string from the **Multipick set** and remove the circles from each of its vertices.

Clicking on the **Finish** button or **X** terminates that LB selection.
Single
<s> places the option back into the mode of selecting a single string. That is, Multipick is not used.

All
<a> will add all the strings in the models on the current view to the Multipick set. Note that the strings do not have to be visible on the view to be selected by <a>.

Clear
<c> will clear the current Multipick set. That is, all selected strings are deselected.

Inverse
<i> will take the inverse of the current Multipick set. That is, all strings in the models on the current view that are currently in the Multipick set are deselected, and all strings in the models on the current view that are not in the Multipick set are added to the Multipick set. Note that the strings do not have to be visible on the view to be selected/deselected by <i>. 
Rectangle

\(<r>\) requires the user to create a rectangle and all strings totally enclosed by that rectangle will be added to the Multipick set if they are not already in the Multipick set, or deselected if they are already in the Multipick set.

After pressing \(<r>\), the first corner of the rectangle is selected by pressing and holding down LB, and the cursor is then dragged to the second corner of the rectangle and LB released.

The strings totally enclosed by the rectangle are then added to/removed from the Multipick set.

Lasso

\(<l>\) requires the user to create a lasso, and all strings enclosed by or crossing the lasso will be added to the Multipick set if they are not in the Multipick set, or deselected if they are already in the Multipick set.

After pressing \(<l>\), the lasso start point is selected by pressing and holding down LB and the cursor is then dragged to trace out the lasso. LB is then released to stop adding to the lasso.
MB is pressed and released to accept the lasso. If LB is pressed down before accepting the lasso, further points are added to the lasso until LB is released.

The strings totally enclosed by, or crossing, the lasso are then added/removed from the Multipick set.
15.8.2 CAD Multipick Copy

For selecting the data, see 15.8.1 Selecting with Multipick.

After data has been selected, a base point is selected and the Copy part of the option is the same as the 15.20.2 CAD Copy command.
15.8.3 CAD Multipick Move

For selecting the data, see 15.8.1 Selecting with Multipick

After data has been selected, a base point is selected and the Move part of the option is the same as the 15.20.1 CAD Move command.
15.8.4 CAD Multipick Rotate

For selecting the data, see 15.8.1 Selecting with Multipick

After data has been selected, a base point is selected and the Rotate part of the option is the same as the 15.20.4 CAD Rotate command.
15.8.5 CAD Multipick Array

For selecting the data, see 15.8.1 Selecting with Multipick

After data has been selected, a base point is selected and the Array part of the option is the same as the 15.20.3 CAD Array command.
15.8.6 CAD Multipick Mirror

For selecting the data, see 15.8.1 Selecting with Multipick

After data has been selected, a base point is selected and the Mirror part of the option is the same as the 15.20.5 CAD Mirror command.
15.8.7 CAD Multipick Mirror X

For selecting the data, see 15.8.1 Selecting with Multipick

After data has been selected, a base point is selected and the Mirror X part of the option is the same as the 15.20.6 CAD Mirror X Axis command.
15.8.8 CAD Multipick Mirror Y

For selecting the data, see 15.8.1 Selecting with Multipick.

After data has been selected, a base point is selected and the Mirror Y part of the option is the same as the 15.20.7 CAD Mirror Y Axis command.
15.8.9 Scale About an Origin

A number of options use the concept of **Scaling** about an **Origin**.

To scale a point about an Origin by a given scale factor, the point is moved along the line joining the point to the origin so that

\[
\text{distance between the scaled point and the origin} = \text{scale factor} \times \text{distance from point to origin}
\]

A **string** is scaled about an origin by a given scale factor by scaling each vertex in the string about the origin by the scale factor.
If the Scale Factor is greater than one, then the scaled string is enlarged and is on the same side of the origin as the original string but further from the origin than the original string.

If the Scale Factor is less than one but greater than zero, then the scaled string is reduced and is between the origin and the original string.

If the Scale Factor is negative then the scaled string is on the opposite side of the origin to the original string.

A Scale Factor of zero would put all the vertices of the string on top of the origin.
15.8.10 CAD Multipick Scale

For selecting the data, see 15.8.1 Selecting with Multipick

For the definition of scaling about an origin, see 15.8.9 Scale About an Origin

After data has been selected, an Origin point is selected and the Scale part of the option is the same as the 15.20.8 CAD Scale command.
15.8.11 CAD Multipick Scale Dynamic

For selecting the data, see 15.8.1 Selecting with Multipick
For the definition of scaling about an origin, see 15.8.9 Scale About an Origin

After data has been selected, an Origin point and Start Scale position is selected and the Scale Dynamic part of the option is then similar to the 15.20.9 CAD Scale Dynamic command.
15.9 CAD Point

Position of option on menu: CAD => Point
The Point walk-right menu is

Menu of Options to Create New One Point Strings
- at a user selected position
- at middle of a selected segment
- at the centre point of an arc
- at the IP of a selected arc or transition segment
- at the middle of the two selected points
- at the position of a chainage along a selected string
- a given bearing and distance from a selected position
- at the offset position of a point on a selected string
- at the offset position of a chainage along a selected string
- a given distance at right angles to a selected string
dropped perpendicularly onto a selected string
- a given distance at a given angle to a selected string
- projected a chainage distance along a selected string
distance between two selected positions
distance between two selected positions with interpolated z
- many points at given bearings and distances from a selected position
- points which divide selected seg into a number of equal segs
- points which divide selected seg into segs of given length
- points which divide selected string into a number of equal pieces
- points which divide selected string into pieces of given length
- creates new points for each vertex of a string

For the option Point, go to
- 15.9.1 Point
- 15.9.2 Mid Segment
- 15.9.3 Centre
- 15.9.4 IP
- 15.9.5 Mid point
- 15.9.6 Chainage
- 15.9.7 Bearing and distance
- 15.9.8 Offset
- 15.9.9 Chainage offset
- 15.9.10 Chainage offset extended
- 15.9.11 Deflection
- 15.9.12 Drop Perpendicular
- 15.9.13 Angle
- 15.9.14 Projection
- 15.9.15 Between Points
<table>
<thead>
<tr>
<th>Operation</th>
<th>Section Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between points 3d</td>
<td>15.9.16</td>
</tr>
<tr>
<td>Radiation</td>
<td>15.9.17</td>
</tr>
<tr>
<td>Divide segment by number</td>
<td>15.9.18</td>
</tr>
<tr>
<td>Divide segment by chainage length</td>
<td>15.9.19</td>
</tr>
<tr>
<td>Divide string by number</td>
<td>15.9.20</td>
</tr>
<tr>
<td>Divide string by chainage length</td>
<td>15.9.21</td>
</tr>
<tr>
<td>String IPs</td>
<td>15.9.22</td>
</tr>
</tbody>
</table>
15.9.1 Point

**Position of option on menu:** CAD => Point => Point

or by selection of appropriate icon from the toolbar.

This option creates a single vertex (point) string.

On selecting Point, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

The user can select a position with the mouse and on accepting that point (Middle mouse button or enter) the point is created at the selected position. The model, colour, height, etc. are defined in the Cad Control Bar.

The snap mode will influence the mouse selection. For example if cursor snap is on, the user can choose a position not yet defined. If point snap is on and the selection snaps to an existing point, the option will place another point at that location.

The user can also activate the selection menu used with the mouse (right button) that allows various positioning options.

Specification of a position can also be done by the direct input of the xyz coordinate of the point by pressing the space bar to bring up the enter XYZ panel or by typing of the value to bring up the XYZ panel. **NOTE:** The z value will default to the value entered into the Cad Control Bar whether or not it is specified in the XYZ box. If no height value exists in the Cad Control Bar then a value will be interpolated if possible, otherwise a null value will be assigned.
15.9.2 Mid Segment

Position of option on menu: CAD =>Point =>Mid segment

or by selection of appropriate icon from the toolbar.

This option creates a point in the middle of a selected line or arc segment.

On selecting Mid segment, the user is prompted to select a segment and a vertex is created at the mid point of the segment. The model, colour, height, etc. are defined in the Cad Control Bar.
15.9.3 Centre

**Position of option on menu:** CAD =>Point =>Centre

or by selection of appropriate icon from the toolbar.

This option creates a point at the centre of a selected arc or circle.

On selecting Centre the user is prompted to select an arc and a vertex is created at the centre of the arc. The model, colour, height, etc. are defined in the **Cad Control Bar**.
15.9.4 IP

Position of option on menu: CAD => Point => IP
or by selection of appropriate icon from the toolbar.

This option creates a point at the IP of a selected arc or transition segment. That is, it creates a point at the intersection of the tangent from the start of the segment and the tangent at the end of the segment. Picking a straight segment will give an error.

On selecting IP the user is prompted to select an arc or transition segment and a new point is created at the IP of the selected segment. The model, colour, height, etc. are defined in the Cad Control Bar.
15.9.5 Mid point

Position of option on menu: CAD => Point => Mid point
or by selection of appropriate icon from the toolbar.

This option creates a point in the middle of two selected positions.

On selecting Mid point, the user is prompted to select the first position and then the second position. A vertex is created at the mid point of the two selected positions. The model, colour, height, etc. are defined in the Cad Control Bar.
15.9.6 Chainage

**Position of option on menu:** CAD => Point => Chainage

or by selection of appropriate icon from the toolbar.

This option creates a new point at the position of a user specified chainage of an existing string.

On selecting Chainage, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

The user selects a valid string (left mouse button) and accepts that string (Middle mouse button or <Enter>.

**STEP 2:**

The user enters a chainage value where a point should be placed followed by the <Enter> key. This chainage is with respect to the selected string.
**STEP 3:**

A new one point string is created at the positioned on the string at the given chainage.

To create another point, the user is prompted for the string as per **STEP 1**.
15.9.7 Bearing and distance

Position of option on menu: CAD => Point => Bearing and distance
or by selection of appropriate icon from the toolbar.

This option calculates a point string that is located a given bearing and distance from a start position.

On selecting Bearing and distance, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
A start position is selected and accepted.

**STEP 2:**
A bearing is selected with the mouse or entered in via the keyboard. For typed entry, simply start typing or press the space bar to bring up the bearing entry box. The value is entered into the input box followed by the enter key.

The line drawn represents the bearing value and changes with movement of the mouse. If the user wants to see what the current value of the bearing is, simply press the D key (dynamic value). This puts the value into the input box where it can be accepted to create the point or the input box can be closed and the rubber banding (graphically changing) of the bearing continued.

**Note:** The Page up and page down keys can be used when the input angle box comes up to add or subtract intervals of 90 degrees.
This option also allows the definition of the bearing by the selection of the 2nd point perpendicular or tangential to a selected segment. For this, the line snap should be on. The user selects the segment (line or arc) and then by pressing P for perpendicular or T for tangential a solution is shown. As there is often two solutions with respect to arcs, the user can move the mouse to change from one solution to the next. The example shown below is the perpendicular case.

**STEP 3:**
A distance is selected and accepted with the mouse or entered in via the keyboard. For typed entry, simply start typing or press the space bar to bring up the distance entry box. The value is entered into the input box followed by the Enter key.

The circle drawn represents the distance value and changes with movement of the mouse. If the
user wants to see what the current value of the distance is, simply press the D key (dynamic value). This puts the value into the input box where it can be accepted to create the point or the input box can be closed and the rubber banding (graphically changing) of the circle continued.

This option also allows the definition of the distance by the selection of the 2nd point perpendicular or tangential to a selected segment. For this, the line snap should be on. The user selects the segment (line or arc) and then by pressing P for perpendicular or T for tangential a solution is shown. As there is often two solutions with respect to arcs, the user can move the mouse to change from one solution to the next. The example shown below is the perpendicular case.

The perpendicular distance shown below by the purple line will be use at the defined bearing to create the point.
STEP 4:
A point string is created using the information supplied. By entry into the input boxes:

Or by using the perpendicular/tangential tools:
15.9.8 Offset

Position of option on menu: CAD => Point => Offset
or by selection of appropriate icon from the toolbar.

This option creates a one point string that is located by reference to a string, a control point, a
chainage distance along the string from the control point and an offset to the selected string.

After selection and acceptance of a string, a control point is selected and accepted. This point is
dropped perpendicular onto the string. The distance along the string is measured from this
dropped point. Positive distances are in the direction that the string was picked. Finally a offset to
the string can be specified for the placement of the new point string.

On selecting Offset, the user is prompted for the relevant data in the screen message box located
at the bottom left hand corner of the 12d Model application window.

STEP 1:
The user selects and accepts a string with direction. This defines what side the offset applies to.

STEP 2:
The user picks and accepts a control point to be dropped onto the selected string.
STEP 3:
A distance along from the dropped point is specified. Positive distances are in the direction of the string selection pick. The value is entered into the input box followed by the Enter key.

STEP 4:
An offset relative to the selected string (and direction) is specified in the input box followed by the enter key.
STEP 5:
A point string is created using the information supplied.
15.9.9 Chainage offset

This option creates a one point string that is located perpendicular to the reference string with a defined offset.

**STEP 1:**
The user selects the reference string with direction.

**STEP 2:**
The user specifies a chainage on the reference string.

**STEP 3:**
The user specifies an offset distance from the reference string.
A one point string is created using the information supplied.
15.9.10 Chainage offset extended

Is similar to chainage offset except the specified chainage can be extended beyond the start and end chainages of the selected string.
15.9.11 Deflection

Position of option on menu:  CAD =>Point =>Deflection
or by selection of appropriate icon from the toolbar.

This option creates a one point string that is located by reference to a string, a control point, a
distance along the string from the control point, a deflection angle and deflection distance.

After selection of a string, a control point is selected. This point is dropped perpendicular onto the
string. A distance along the string can be entered to move the measure point. Positive distances
are in the direction that the string was picked. A deflection angle is specified which is a clockwise
angle from the measure point. The deflection distance is the distance from the measure point to
the point which is to be created.

On selecting Deflection, the user is prompted for the relevant data in the screen message box
located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
The user selects and accepts a string with direction.

**STEP 2:**
The user picks and accepts a control point to be dropped onto the selected string.
STEP 3:
A distance along from the dropped point is specified. Positive distances are in the direction of the string selection pick. The value is entered into the input box followed by the enter key.

STEP 4:
A deflection angle is specified. This angle is clockwise, relative to the direction of the string selection pick. The value is entered into the input box followed by the enter key.

Note: The Page up and page down keys can be used when the input angle box comes up to add or subtract intervals of 90 degrees.
STEP 5:
A deflection distance is supplied. Positive is in the direction of the string selection pick. The value is entered into the input box followed by the enter key.

STEP 6:
A point string is created using the information supplied.
15.9.12 Drop Perpendicular

Position of option on menu: CAD => Point => Drop perpendicular
or by selection of appropriate icon from the toolbar.

This option creates a one point string by dropping from a user selected position perpendicularly onto a user selected string.

On selecting Drop perpendicular, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:

The user selects a string and accepts (with direction) to have the point dropped onto.

STEP 2:

The user picks and accepts a position to drop onto the nominated string.
STEP 3:
A point string is created at the perpendicular drop point.
15.9.13 Angle

This option creates a one point string that is located by projecting a selected position back to a string by a specified angle.

**STEP 1:**
User selects and accepts a string to have the point projected onto.

**STEP 2:**
User specifies an angle for the projection.

**STEP 3:**
User selects a position on the screen to be projected back to the string.

**STEP 4:**
A one point string is created, which form the nominated angle with the selected position on **STEP 3**.
15.9.14 Projection

Position of option on menu: CAD => Point => Projection
or by selection of appropriate icon from the toolbar.

This option creates a one point string that is located by firstly dropping a point onto a string and then giving a distance along the string from the dropped point.

On selecting Projection, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
The user selects and accepts a string (with direction) to have the point dropped onto

![Diagram of CAD projection step 1](image1.png)

**STEP 2:**
The user picks and accepts a position to drop onto the nominated string

![Diagram of CAD projection step 2](image2.png)
STEP 3:
The user is prompted for the distance along the string. Positive distances are in the direction that
the string was picked. A value is entered into the input box followed by the enter key.

STEP 4:
The point string is created the nominated distance along the string from the dropped point.
15.9.15 Between Points

Position of option on menu: CAD => Point => Between points
or by selection of appropriate icon from the toolbar.

This option creates a one point string that is on the line between two selected positions and a given distance from the first point.

On selecting Between points, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

The user selects a start point. Specification of a position can be done by the direct input of the xyz coordinate of the point by pressing the space bar to bring up the enter XYZ panel or by typing of the value to bring up the XYZ panel. The user can also select a point with the mouse and accepts that point (Middle mouse button or enter).

**STEP 2:**

The user picks a 2nd point and accepts that point (Middle mouse button or enter) to define the reference line.
STEP 3:
A distance from the 1st point to create the point is given either by selection with the mouse or by typing a value. To type a value, simply start typing and the input box for the distance will appear. Alternatively you can press the space bar to bring up the input box. Enter the value and then the enter key.

The circle drawn represents the distance value and changes with movement of the mouse. If the user wants to see what the current value of the distance is, simply press the D key (dynamic value). This puts the value into the input box where it can be accepted to create the point or the input box can be closed and the rubber banding (graphically changing) of the circle continued.

STEP 4:
A point is created on the segment specified by the selection of the 1st and 2nd points, at the nominated distance. Negative distances can be entered as in this example.
15.9.16 Between points 3d

**Position of option on menu:** CAD => Point => Between points 3d

or by selection of appropriate icon from the toolbar.

This option creates a one point string that is on the line between two selected positions and a given distance from the first point. The z-value of the string is interpolated from the two selected positions.

On selecting Between points 3d, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

The user selects a start point. Specification of a position can be done by the direct input of the xyz coordinate of the point by pressing the space bar to bring up the enter XYZ panel or by typing of the value to bring up the XYZ panel. The user can also select a point with the mouse and accepts that point (Middle mouse button or enter).

**STEP 2:**

The user picks a 2nd point and accepts that point (Middle mouse button or enter) to define the reference line.
STEP 3:
A distance from the 1st point to create the point is given either by selection with the mouse or by typing a value. To type a value, simply start typing and the input box for the distance will appear. Alternatively you can press the space bar to bring up the input box. Enter the value and then the enter key.

The circle drawn represents the distance value and changes with movement of the mouse. If the user wants to see what the current value of the distance is, simply press the D key (dynamic value). This puts the value into the input box where it can be accepted to create the point or the input box can be closed and the rubber banding (graphically changing) of the circle continued.

STEP 4:
A point is created on the segment specified by the selection of the 1st and 2nd points, at the nominated distance. Negative distances can be entered as in this example.
15.9.17 Radiation

**Position of option on menu:**  CAD => Point => Radiation
or by selection of appropriate icon from the toolbar.

This option creates a series of one point strings that are located by given bearings and distances from a chosen start position.

On selecting Radiation, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**  
A start position is selected and accepted.

**STEP 2:**  
A bearing is selected with the mouse or entered in via the keyboard. For typed entry, simply start typing or press the space bar to bring up the bearing entry box. The value is entered into the input box followed by the enter key.

The line drawn represents the bearing value and changes with movement of the mouse. If the user wants to see what the current value of the bearing is, simply press the D key (dynamic value). This puts the value into the input box where it can be accepted to create the point or the input box can be closed and the rubber banding (graphically changing) of the bearing continued.

**Note:** The Page up and page down keys can be used when the input angle box comes up to add or subtract intervals of 90 degrees.
This option also allows the definition of the bearing by the selection of the 2nd point perpendicular or tangential to a selected segment. For this, the line snap should be on. The user selects the segment (line or arc) and then by pressing P for perpendicular or T for tangential a solution is shown. As there is often two solutions with respect to arcs, the user can move the mouse to change from one solution to the next. The example shown below is the perpendicular case.

**STEP 3:**

A distance from the start point to create the point is given either by selection with the mouse or by typing a value. To type a value, simply start typing and the input box for the distance will appear. Alternatively you can press the space bar to bring up the input box. The value is entered into the input box followed by the enter key.

The circle drawn represents the distance value and changes with movement of the mouse. If the user wants to see what the current value of the distance is, simply press the D key (dynamic
value). This puts the value into the input box where it can be accepted to create the point or the input box can be closed and the rubber banding (graphically changing) of the circle continued.

This option also allows the definition of the distance by the selection of the 2nd point perpendicular or tangential to a selected segment. For this, the line snap should be on. The user selects the segment (line or arc) and then by pressing P for perpendicular or T for tangential a solution is shown. As there is often two solutions with respect to arcs, the user can move the mouse to change from one solution to the next. The example shown below is the perpendicular case.

The perpendicular distance shown below by the purple line will be use at the defined bearing to create the point.
**STEP 4:**
A point string is created using the information supplied.

**STEP 5**
The next bearing and distance is prompted for as per step 3 and 4. Consequent points are created from the original start point selected.
15.9.18 Divide segment by number

Position of option on menu:  CAD =>Point =>Divide segment by number
or by selection of appropriate icon from the toolbar.

This option creates one point strings which will break up a super string segment into equal pieces based on a user given number of intervals. The first and last points are not created since they are taken to be the end points of the selected segment. So for five intervals, four new one point strings are created. The option works for line or arc segments of a super string.

NOTES:
1. No vertices are inserted into the selected super string - the option Strings =>Strings edits =>Segment strings does that.
2. This option is for super strings only.

On selecting Divide segment by number, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
A super string segment is selected and accepted.

STEP 2:
The user is prompted for the number of divisions. The value is entered into the input box followed by the enter key.
**STEP 3:**

Given the above information, the new points are created.
15.9.19 Divide segment by chainage length

Position of option on menu: CAD => Point => Divide segment by chainage length
or by selection of appropriate icon from the toolbar.

This option creates one point strings which will break up a super string segment into pieces based on a user given chainage length. The process starts from the 1st point of the segment and continues until no more pieces can be created without going past the last point of the segment (the last piece may not be the correct length). This option works for line or arc segments of a super string.

NOTES:
1. No vertices are inserted into the selected super string - the option Strings => Strings edits => Segment strings does that.
2. This option is for super strings only.

On selecting Divide segment by chainage length, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
A super string segment is selected and accepted.

STEP 2:
The user is prompted for the chainage distance. The value is entered into the input box followed by the enter key.
STEP 3:
Given the above information, the new points are created.
15.9.20 Divide string by number

**Position of option on menu:**  CAD => Point => Divide string by number

or by selection of appropriate icon from the toolbar.

This option creates one point strings which will break up a super string into equal pieces based on a user given number of divisions. The first and last points are not created since they are taken to be the end points of the selected string. So for five intervals, four new one point strings are created.

**NOTES:**

1. No vertices are inserted into the selected super string - the option Strings => Strings edits => Segment strings does that.
2. This option is for super strings only.

On selecting **Divide string by number**, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the *12d Model* application window.

**STEP 1:**
A super string is selected and accepted.

**STEP 2:**
The user is prompted for the number of divisions. The value is entered into the input box followed by the enter key.

**STEP 3:**
Given the above information, the new points are created.
15.9.21 Divide string by chainage length

Position of option on menu: CAD => Point => Divide string by chainage length
or by selection of appropriate icon from the toolbar.

This option creates one point strings which will break up a super string into pieces based on a user given chainage length. The process starts from the 1st vertex of the strings and continues until no more pieces can be created without going past the last vertex of the string (the last piece may not be the correct length).

NOTES:
1. No vertices are inserted into the selected super string - the option Strings => Strings edits => Segment strings does that.
2. This option is for super strings only.

On selecting Divide string by chainage length, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
A super string is selected and accepted.

STEP 2:
The user is prompted for the chainage distance. The value is entered into the input box followed by the <Enter> key.

STEP 3:
Given the above information, the new points are created.
15.9.22 String IPs

**Position of option on menu:** CAD => Point => String IPs

This option creates a separate point at each vertex of a selected string.

On selecting String IPs the user is prompted to select a string and a new point (a one vertex super string) is created for each vertex on the selected string. The model, colour, height, etc. for the new points are defined in the **Cad Control Bar**.
15.10 CAD Intersection

Position of option on menu:  CAD => Intersection

The Intersection walk-right menu is

Menu of Options to Create One Point Strings by Intersections
by intersecting two selected segments
by intersecting two offset selected segments
by given bearings from two selected positions
create a point with given distances from two selected positions
by selecting posn and bearing and another selected posn and dist

For the option 2 segments, go to  15.10.1 2 segments
2 offset segments  15.10.2 2 offset segments
2 points and 2 bearings  15.10.3 2 points and 2 bearings
2 points and 2 distances  15.10.4 2 points and 2 distances
2 points with bearing and distance  15.10.5 2 points with bearing and distance

distance
15.10.1 2 segments

Position of option on menu: CAD => Intersection => 2 segments
or by selection of appropriate icon from the toolbar.

This option creates a point at the intersection of the projections of two line or arc segments. On selecting 2 segments, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The 1st segment is selected and accepted.

STEP 2:
The 2nd segment is selected and accepted.

STEP 3:
A point is created at the intersection of the two segments (if a solution exists). Note that the 2nd segment in this case has been projected to enable a solution to be calculated.
15.10.2 2 offset segments

Position of option on menu:  CAD =>Intersection=> 2 offset segments
or by selection of appropriate icon from the toolbar.

This option creates a point at the intersection of the offsets of two selected segments.

On selecting 2 offset segments, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

The 1st segment is selected and accepted with direction. This sets the positive direction of the offset to the right of the direction of pick.

**STEP 2:**

The offset is given by into an offset input box. The positive direction is at 90 degrees to the direction of pick for the segment. The value is entered into the input box followed by the enter key.

**STEP 3:**

The 2nd segment is selected with direction and accepted. This sets the positive direction of the offset to the right of the direction of pick.
STEP 4:
The offset is given by into an offset input box. The positive direction is at 90 degrees to the direction of pick for the segment. The value is entered into the input box followed by the enter key.

STEP 5:
A point is created at the intersection of the projected lines offset to the segments (if a solution exists).
15.10.3 2 points and 2 bearings

**Position of option on menu:**  
CAD => Intersection => 2 points and 2 bearings

or by selection of appropriate icon from the toolbar.

This option creates a point by using two points and two bearings.

On selecting **2 points and 2 bearings**, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the **12d Model** application window.

**STEP 1:**
The 1st point is selected and accepted.

**STEP 2:**
A bearing from the 1st point to create the point is given either by selection with the mouse or by typing a value. To type a value, simply start typing and the input box for the bearing will appear. Alternatively you can press the space bar to bring up the input box. The value is entered into the input box followed by the enter key.

The line drawn represents the bearing value and changes with movement of the mouse. If the user wants to see what the current value of the bearing is, simply press the D key (dynamic value). This puts the value into the input box where it can be accepted to create the point or the input box can be closed and the rubber banding (graphically changing) of the line continued.

**Note:** The Page up and page down keys can be used when the input angle box comes up to add or subtract intervals of 90 degrees.
This option also allows the definition of the bearing by the selection of the 2nd point perpendicular or tangential to a selected segment. For this, the line snap should be on. The user selects the segment (line or arc) and then by pressing P for perpendicular or T for tangential a solution is shown. As there is often two solutions with respect to arcs, the user can move the mouse to change from one solution to the next.

**STEP 3:**

The 2nd point to create the point from is selected and accepted.

**STEP 4:**

A bearing from the 2nd point to create the point is given using the optional outlined in **STEP 2** above.

**STEP 5:**

The point is created if there is a valid solution.
15.10.4 2 points and 2 distances

Position of option on menu: CAD =>Intersection=>2 points and 2 distances
or by selection of appropriate icon from the toolbar.

This option creates a point using two points and two distances.

On selecting 2 points and 2 distances, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
The 1st point is selected and accepted.

**STEP 2:**
A distance from the 1st point to create the point is given either by selection with the mouse or by typing a value. To type a value, simply start typing and the input box for the distance will appear. Alternatively you can press the space bar to bring up the input box. The value is entered into the input box followed by the enter key.

The circle drawn represents the distance value and changes with movement of the mouse. If the user wants to see what the current value of the distance is, simply press the D key (dynamic value). This puts the value into the input box where it can be accepted to create the point or the input box can be closed and the rubber banding (graphically changing) of the circle continued.

This option also allows the definition of the distance by the selection of the 2nd point perpendicular or tangential to a selected segment. For this, the line snap should be on. The user
selects the segment (line or arc) and then by pressing P for perpendicular or T for tangential a solution is shown. As there is often two solutions with respect to arcs, the user can move the mouse to change from one solution to the next. The example shown below is the perpendicular case.

**STEP 3:**
The 2nd point to create the point from is selected.

**STEP 4:**
A distance from the 2nd point to create the point is given using the optional outlined in **STEP 2** above.

**STEP 5:**
As there is two solutions, the user can select the correct one depending on the method of
construction. This can be done by the direct entry of distances or by use of the mouse.

1. Distance entry. After the entry of the 1st distance, the 2nd point is selected. Following the selection of the 2nd point, the 2nd radius is shown (rubber banding). The user can select one of the two solutions by choosing with a LB mouse click over the approximate position of the required solution. The solution chosen is the closest solution to the selected point. The final radius can then be entered via the keyboard by simply starting typing which brings up the radius entry panel automatically. This panel can also be activated by pressing the space bar.

2. Use of the mouse. The 1st point is selected and the radius entered by using the mouse or by direct entry from the keyboard. The 2nd point is then selected and the 2nd radius is displayed (rubber banding). A solution can be chosen by selecting with a LB mouse click over the required solution. The final solution will be the closest one to the selection. MB to accept the intersection and create the point.

**STEP 6:**
The point is created if there is a valid solution.
15.10.5 2 points with bearing and distance

Position of option on menu:  CAD =>Intersection=>2 points with bearing and distance
or by selection of appropriate icon from the toolbar.

This option creates a point from a given point and a bearing, and a second point and a distance.
On selecting 2 points with bearing and distance, the user is prompted for the relevant data in the
screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The 1st point is selected and accepted.

STEP 2:
A bearing from the 1st point to create the point is given either by selection with the mouse or by
typing a value. To type a value, simply start typing and the input box for the bearing will appear.
Alternatively you can press the space bar to bring up the input box. The value is entered into the
input box followed by the enter key.

The line drawn represents the bearing value and changes with movement of the mouse. If the
user wants to see what the current value of the bearing is, simply press the D key (dynamic
value). This puts the value into the input box where it can be accepted to create the point or the
input box can be closed and the rubber banding (graphically changing) of the line continued.

Note: The Page up and page down keys can be used when the input angle box comes up
to add or subtract intervals of 90 degrees.
This option also allows the definition of the bearing by the selection of the 2nd point perpendicular or tangential to a selected segment. For this, the line snap should be on. The user selects the segment (line or arc) and then by pressing P for perpendicular or T for tangential a solution is shown. As there is often two solutions with respect to arcs, the user can move the mouse to change from one solution to the next.

STEP 3:
The 2nd point to create the point from is selected and accepted.

STEP 4:
A distance from the 2nd point to create the point is given either by selection with the mouse or by typing a value. To type a value, simply start typing and the input box for the distance will appear. Alternatively you can press the space bar to bring up the input box. The value is entered into the input box followed by the enter key.

The circle drawn represents the distance value and changes with movement of the mouse. If the user wants to see what the current value of the distance is, simply press the D key (dynamic value). This puts the value into the input box where it can be accepted to create the point or the input box can be closed and the rubber banding (graphically changing) of the circle continued.
perpendicular or tangential to a selected segment. For this, the line snap should be on. The user selects the segment (line or arc) and then by pressing P for perpendicular or T for tangential a solution is shown. As there is often two solutions with respect to arcs, the user can move the mouse to change from one solution to the next. The example shown below is the perpendicular case.

A line is drawn between the two possible solutions.

**STEP 5:**

As there is two solutions, the user can select the correct one with the mouse.
15.11 CAD Line

**Position of option on menu:**  CAD => Line

The Line walk-right menu is

<table>
<thead>
<tr>
<th>Menu of Options to Create Strings</th>
</tr>
</thead>
<tbody>
<tr>
<td>create a two vertex (point) super string</td>
</tr>
<tr>
<td>create tangent to two selected items (vertices and/or arcs)</td>
</tr>
<tr>
<td>create a many vertex super string</td>
</tr>
<tr>
<td>create a two points string perpendicular to a reference string</td>
</tr>
<tr>
<td>create many vertex super string by bearing distances from previous vertex</td>
</tr>
<tr>
<td>append to a super string using bearing distance entry</td>
</tr>
<tr>
<td>modify the bear/distance of a selected segment</td>
</tr>
<tr>
<td>create string with vertices a dist along and dist offset to a line</td>
</tr>
<tr>
<td>create string with vertices a dist along and dist offset absolute to a line</td>
</tr>
</tbody>
</table>

For the option 2 points, go to 15.11.1 2 Points
Tangent 15.11.2 Tangent
Line string 15.11.3 Line string
Perpendicular 15.11.4 Perpendicular
Traverse 15.11.5 Traverse
Traverse append 15.11.6 Traverse append
Traverse edit 15.11.7 Traverse edit
Tape baseline 15.11.8 Tape baseline
Tape baseline absolute 15.11.9 Tape baseline absolute
15.11.1 2 Points

Position of option on menu: CAD =>Line =>2 points
or by selection of appropriate icon from the toolbar.

This option creates two vertex super strings with a line between the two vertices.

On selecting 2 points, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

The user can select a position with the mouse and on accepting that point (Middle mouse button or enter) the point is created at the selected position. The model, colour, height etc. are defined in the Cad Control Bar.

The snap mode will influence the mouse selection. For example if cursor snap is on, the user can choose a position not yet defined. If point snap is on and the selection snaps to an existing point, the option will place another point at that location.

The user can also activate the selection menu used with the mouse (right button) that allows various positioning options.

Specification of a position can also be done by the direct input of the xyz coordinate of the point by pressing the space bar to bring up the enter XYZ panel. NOTE: The z value will default to the value entered into the Cad Control Bar whether or not it is specified in the XYZ box. If no height value exists in the Cad Control Bar

The 2nd point is selected in the same way as the 1st point. The line is created after successful selection and acceptance of the 2nd point. The option remains current so that a number of lines can be created.
15.11.2 Tangent

Position of option on menu:  CAD => Line => Tangent
or by selection of appropriate icon from the toolbar.

This option creates the tangential line between two elements.

NOTE: This option is for super strings only. When selecting an arc or circle, the selection must be a line snap with direction. If a point is selected on the arc/circle the line will be drawn between the selected points and not the tangent.

On selecting Tangent, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
A start position of the reference line is selected and accepted.

![Diagram of Tangent Step 1](image)

STEP 2:
The user selects and accepts the arc/circle segment with direction. The direction is required because there are two possible solutions. In this case, the direction was anti clockwise.

![Diagram of Tangent Step 2](image)

STEP 3:
After accepting the segment, a line is drawn from the 1st selected point to the tangent point. Note that in this example, the arc is produced around so that a solution can be found.

![Diagram of Tangent Step 3](image)
15.11.3 Line string

Position of option on menu:  CAD =>Line =>Line string
or by selection of appropriate icon from the toolbar.
This option creates a string of many points.
On selecting Line string, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The position of each vertex of the string is selected and accepted in order from the first to the last vertex.
15.11.4 Perpendicular

This option creates a string by selecting a reference string and a reference point the create a line from the reference point perpendicular to the reference string.

On selecting Perpendicular, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
A reference string is selected and accepted.

**STEP 2:**
A line is drawn from the current mouse position perpendicular to the reference string

**STEP 3:**
After the final position is accepted, a line string is created which start from the selected position and perpendicular to the reference string.
15.11.5 Traverse

**Position of option on menu:** CAD => Line => Traverse

or by selection of appropriate icon from the toolbar.

This option creates a string by giving the bearing and distance of each vertex from the previous vertex. The position of the first vertex is the start of the string and then the bearing and distance is given to define the position of the next vertex. The created vertex then becomes the position to take the next bearing and distance from.

On selecting Traverse, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

A start position is selected and accepted. This becomes the first vertex of the string.

**STEP 2:**

A line is drawn from the vertex to the current mouse position. If the user wants to see what the current value of the bearing is, simply press the D key (dynamic value). This puts the value into the input box where it can be accepted to create the point or the input box can be closed and the rubber banding (graphically changing) of the bearing continued.

For typed entry, simply start typing or press the space bar to bring up the bearing entry box. The value is entered into the input box followed by the enter key.

**Note:** The Page up and page down keys can be used when the input angle box comes up to add or subtract intervals of 90 degrees.
This option also allows the definition of the bearing by the selection of the 2nd point perpendicular or tangential to a selected segment. For this, the line snap should be on. The user selects the segment (line or arc) and then by pressing P for perpendicular or T for tangential a solution is shown. As there is often two solutions with respect to arcs, the user can move the mouse to change from one solution to the next. The example shown below is the perpendicular case.

**STEP 3:**

A distance from the start point to create the point is given either by selection with the mouse or by typing a value. To type a value, simply start typing and the input box for the distance will appear. Alternatively you can press the space bar to bring up the input box. The value is entered into the input box followed by the enter key.
The circle drawn represents the distance value and changes with movement of the mouse. If the user wants to see what the current value of the distance is, simply press the D key (dynamic value). This puts the value into the input box where it can be accepted to create the point or the input box can be closed and the rubber banding (graphically changing) of the circle continued.

This option also allows the definition of the distance by the selection of the 2nd point perpendicular or tangential to a selected segment. For this, the line snap should be on. The user selects the segment (line or arc) and then by pressing P for perpendicular or T for tangential a solution is shown. As there is often two solutions with respect to arcs, the user can move the mouse to change from one solution to the next. The example shown below is the perpendicular case.

The perpendicular distance shown below by the purple line will be use at the defined bearing to create the point.
STEPS 4-5:
The next bearing and distance is prompted for as per step 4 and 5. The start point is now the last created point. A number of segments can be entered in this way.
15.11.6 Traverse append

**Position of option on menu:** CAD => Line => Traverse append

or by selection of appropriate icon from the toolbar.

This option adds vertices to the end of a super string by giving the bearing and distance of each vertex from the previous vertex. When a string is selected, the end of the string becomes the position that the bearing distance is taken from. The created vertex then become the position to take the next bearing and distance from.

On selecting Traverse append, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

A string to append vertices to is selected and accepted. The end of this string becomes the position to define the first bearing distance from.

**STEP 2:**

A line is drawn from the last vertex to the current mouse position. If the user wants to see what the current value of the bearing is, simply press the D key (dynamic value). This puts the value into the input box where it can be accepted to create the point or the input box can be closed and the rubber banding (graphically changing) of the bearing continued.

For typed entry, simply start typing or press the space bar to bring up the bearing entry box. The value is entered into the input box followed by the enter key.

**Note:** The Page up and page down keys can be used when the input angle box comes up to add or subtract intervals of 90 degrees.

This option also allows the definition of the bearing by the selection of the 2nd point perpendicular or tangential to a selected segment. For this, the line snap should be on. The user selects the segment (line or arc) and then by pressing P for perpendicular or T for tangential a solution is shown. As there is often two solutions with respect to arcs, the user can move the mouse to change from one solution to the next. The example shown below is the perpendicular case.
STEP 3:

A distance from the start point to create the point is given either by selection with the mouse or by typing a value. To type a value, simply start typing and the input box for the distance will appear. Alternatively you can press the space bar to bring up the input box. The value is entered into the input box followed by the enter key.

The circle drawn represents the distance value and changes with movement of the mouse. If the user wants to see what the current value of the distance is, simply press the D key (dynamic value). This puts the value into the input box where it can be accepted to create the point or the input box can be closed and the rubber banding (graphically changing) of the circle continued.

This option also allows the definition of the distance by the selection of the 2nd point perpendicular or tangential to a selected segment. For this, the line snap should be on. The user
selects the segment (line or arc) and then by pressing P for perpendicular or T for tangential a solution is shown. As there is often two solutions with respect to arcs, the user can move the mouse to change from one solution to the next. The example shown below is the perpendicular case.

The perpendicular distance shown below by the purple line will be use at the defined bearing to create the point.

**STEPS 4-5:**

The next bearing and distance is prompted for as per step 4 and 5. The start point is now the last created point. A number of segments can be entered in this way.
15.11.7 Traverse edit

Position of option on menu: CAD => Line => Traverse edit

or by selection of appropriate icon from the toolbar. 🔄

This option changes the bearing and length of a selected line segment of a super string.

On selecting Traverse edit, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

A line segment of a string is selected and accepted. This segment is the one to have its bearing distance redefined.

**STEP 2:**

A **Bearing** and then the **Distance** typed input boxes are presented with the current values for the line segment displayed. After new values are entered (or just <enter> if the original value is to be maintained) then the new bearing and distance values are applied to the start vertex of the segment to produce a new end vertex. The rest of the string keeps the same bearing/distances are in the original string.

**Note:** The Page up and page down keys can be used when the input bearing box comes up to add or subtract intervals of 90 degrees.
15.11.8 Tape baseline

Position of option on menu: CAD =>Line =>Tape baseline
or by selection of appropriate icon from the toolbar.

This option creates a line string by entering distances between points and the offset distance to a user defined reference line string.

On selecting Tape baseline, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
A start position of the reference line is selected and accepted.

*Note: Originating at the start point, the reference line will extend to infinity after intercepting the 2nd point. The offset values are made relative to this reference line. The reference line will be removed once the option has been terminated.*

**STEP 2:**
The interception point for the reference line is selected and accepted.

**STEP 3:**
After the start and interception points are accepted, the reference line is constructed and the Distance Input box appears. A distance value is to be entered into the Input box, followed by the enter key. For the first point, the distance entered is relative to the start point of the reference line. A positive value means a distance towards the intercept point (from the start point).

*Note: The distance is always relative to the previously entered vertex (positive is from start point to intercept point along the reference line).*
STEP 4:
After the distance value has been entered, the Offset Input box will appear. Type the required offset value into the Input box and press the enter key.

Note: The offset distance is always relative to the reference line (negative is to the left).

STEP 5:
Steps 3 and 4 should be repeated until the required number of vertices have been created in the line string.

STEP 6:
The option can be terminated by click on the close button on the Input box, followed by the Esc key.
15.11.9 Tape baseline absolute

Position of option on menu: CAD =>Line =>Tape baseline absolute

or by selection of appropriate icon from the toolbar.

This option creates a line string by entering distances from the start point and the offset distance to a user defined reference line string.

On selecting Tape baseline absolute, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
A start position of the reference line is selected and accepted.

Note: Originating at the start point, the reference line will extend to infinity after intercepting the 2nd point. The offset values are made relative to this reference line. The reference line will be removed once the option has been terminated.

STEP 2:
The interception point for the reference line is selected and accepted.

STEP 3:
After the start and interception points are accepted, the reference line is constructed and the Distance Input box appears. A distance value is to be entered into the Input box, followed by the enter key. For the absolute option, all distances entered are relative to the start point of the reference line. A positive value means a distance towards the intercept point (from the start point).

Note: For the absolute option, distances are always relative to the start point of the reference line (positive is from start point to intercept point along the reference line).
STEP 4:
After the distance value has been entered, the Offset Input box will appear. Type the required offset value into the Input box and press the enter key.

Note: The offset distance is always relative to the reference line (negative is to the left).

STEP 5:
Steps 3 and 4 should be repeated until the required number of vertices have been created in the line string.

STEP 6:
The option can be terminated by click on the close button on the Input box, followed by the Esc key.
15.12 CAD Circle

**Position of option on menu:**  
CAD => Circle

The Circle walk-right menu is

- from 3 selected points
- tangential to 3 tangents (including points)
- tangential to 3 directed tangents (including points)
- known radius and tangential to 2 tangents
- known radius and tangential to 2 directed tangents
- from 2 points on diameter
- through 2 points and known radius
- through point with known radius and a bearing at point
- centre position and specified radius
- centre position and point on circle

For the option 3 points, go to

- 3 tangents
- 3 directed tangents
- 2 tangents and radius
- 2 directed tangents and radius
- 2 points
- 2 points and radius
- Point, radius and bearing
- Centre and radius
- Centre and point
- Centre and circumference

15.12.1 3 Points
15.12.2 3 tangents
15.12.3 3 directed tangents
15.12.4 2 tangents and radius
15.12.5 2 directed tangents and radius
15.12.6 2 points
15.12.7 2 point and radius
15.12.8 Point, radius and bearing
15.12.9 Centre and radius
15.12.10 Centre and point
15.12.11 Centre and circumference
15.12.1 3 Points

Position of option on menu:  CAD =>Circle =>3 points
or by selection of appropriate icon from the toolbar.

This option creates the circle through three selected points.

On selecting 3 points, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The 1st point is selected with the mouse or entered in via the keyboard. To specify the 1st point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter the 1st point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key.

STEP 2:
The 2nd point is selected and accepted.

After the 2nd point is accepted a circle will be displayed ‘rubber banding’ to the various solutions according to the position of the cursor. This will continue until the 3rd point is selected and accepted.

STEP 3:
The 3rd point is selected and accepted.
STEP 4:
A circle is constructed through the three selected points
15.12.2 3 tangents

**Position of option on menu:**  CAD =>Circle=>3 tangents
or by selection of appropriate icon from the toolbar.

This option creates a circle that is tangential to three selected segments.

On selecting 3 tangents, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
The 1st tangent is selected with the mouse (Left Button) and accepted (Middle Button).

**STEP 2:**
The 2nd tangent is selected and accepted.

**STEP 3:**
The 3rd tangent is selected and accepted.

**STEP 4:**
A circle is constructed that touches each of the three selected tangents.
15.12.3 3 directed tangents

**Position of option on menu:**  CAD => Circle => 3 directed tangents

or by selection of appropriate icon from the toolbar.

This option creates a circle that is tangential to three selected segments. The segments are selected in order and with direction and the circle is to the right of the direction of the selected segments.

On selecting 3 directed tangents the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

Select and accept the 1st tangent.

**Note:** For this option the direction of the selected tangents is important. The circle will be constructed to the right of a tangent. A user may reverse the direction of a tangent by selecting the tangent with direction. For further notes on picking tangents with direction, see Picking with Direction.

**Note:** The Vertex indices can be displayed by toggling the option on the Toggle Menu.

**STEP 2:**

The 2nd tangent is selected and accepted.

**STEP 3:**

The 3rd tangent is selected and accepted.

**STEP 4:**
If a solution exists, a circle is constructed using the given information.
15.12.4 2 tangents and radius

Position of option on menu:  CAD =>Circles=>2 tangents and radius
or by selection of appropriate icon from the toolbar.

This option creates a circle with a given radius that is tangential to two selecting segments.

On selecting 2 tangents and radius, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
Select the 1st tangent with the mouse (Left Button) and accept it (Middle Button).

**STEP 2:**
Select the 2nd tangent and accept it.

**STEP 3:**
After the 2nd tangent is accepted, the Radius Input box will appear. Type the radius value into the Input box and press the enter key. The browse button on the Input box can be used to define the radius by measuring existing elements.

**STEP 4:**
If a solution exists, a circle is fitted touching the two selected tangents using the given radius.
15.12.5 2 directed tangents and radius

Position of option on menu:  CAD =>Circle=>2 directed tangents and radius
or by selection of appropriate icon from the toolbar.

This option creates a circle with a given radius that is tangential to two selected segments that
are picked with direction.

On selecting 2 directed tangents and radius, the user is prompted for the relevant data in the screen
message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
Select and accept the 1st tangent.

Note: For this option the direction of the selected tangents is important. The circle will be
constructed to the right of a tangent. A user may reverse the direction of a tangent by selecting
the tangent with direction. For further notes on picking tangents with direction, see Picking with
Direction.

Note: The Vertex indices can be displayed by toggling the option on the Toggle Menu.

---

STEP 2:
The 2nd tangent is selected and accepted.

---

STEP 3:
After the 2nd tangent is accepted, the Radius Input box will appear. Type the radius value into the
Input box and press the Enter key. The browse button on the Input box can be used to
define the arc radius by measuring existing elements.

---

STEP 4:
If a solution exists, a circle is constructed using the given information.
15.12.6 2 points

**Position of option on menu:**  CAD => Circle => 2 points
or by selection of appropriate icon from the toolbar.

This option creates a circle by selecting two points that define the diameter of the circle.

On selecting 2 points, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

The 1st point is selected with the mouse or entered in via the keyboard. To specify the 1st point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter the 1st point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key.

After the 1st point is accepted a circle will be displayed ‘rubber banding’ to the various solutions according to the position of the cursor (cursor position taken as the other end of a diameter). This will continue until the 2nd point is selected and accepted.

**STEP 2:**

The 2nd point is selected and accepted.

**STEP 3:**

The circle is constructed through the two selected points. The two points define the diameter.
15.12.7 2 point and radius

**Position of option on menu:** CAD => Circle => 2 point and radius

or by selection of appropriate icon from the toolbar.

This option creates a circle of a given radius that goes through two selected points.

On selecting 2 point and radius, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

The 1st point is selected with the mouse or entered in via the keyboard. To specify the 1st point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter the 1st point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key.

After the 1st point is accepted a circle will be displayed ‘rubber banding’ to the various solutions according to the position of the cursor. This will continue until the 2nd point is selected and accepted.

**STEP 2:**

The 2nd point is selected and accepted.

**STEP 3:**

After the 2nd point is accepted, the Radius Input box will appear. The radius value is entered into the input box followed by the enter key.
STEP 4:
If a solution exists, the circle is fitted through the two selected points using the given radius.
15.12.8 Point, radius and bearing

**Position of option on menu:** CAD => Circle => Point, radius and bearing or by selection of appropriate icon from the toolbar.

This option creates a circle of a given radius, a selected point on the circle and the bearing of the tangent to the circle at that point.

On selecting **Point, radius and bearing**, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

The 1st point is selected with the mouse or entered in via the keyboard. To specify the 1st point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter a 1st point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the Enter key.

**STEP 2:**

After the 1st point is accepted, the **Enter radius** input box will appear. Type the radius value into the Input box and press the enter key. The browse button on the Input box can be used to define the arc radius by measuring existing elements.

**STEP 3:**

After the radius has been entered, the **Enter bearing** input box will appear. Type the bearing into the Input box and press the enter key. The browse button on the Input box can be used to define the bearing by measuring existing elements.

**Note:** The Page Up and Page Down keys can be used when the Enter Bearing input box comes up to add or subtract intervals of 90 degrees.
STEP 4:
If a solution exists, a circle is fitted from the given bearing at the selected point using the selected radius.
15.12.9 Centre and radius

Position of option on menu: CAD =>Circle =>Centre and radius
or by selection of appropriate icon from the toolbar.

This option creates a circle of a given radius and a selected centre point.

On selecting Centre and radius, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:

A centre point is selected with the mouse or entered in via the keyboard. To specify a centre point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter a centre point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key.

STEP 2:

After the centre point is accepted a circle will be displayed ‘rubber banding’ to the various solutions according to the position of the cursor. This will continue until a radius value is entered.

A radius value is selected with the mouse or entered in via the keyboard.

To specify a radius value with the mouse, a point must be selected (Left Button) and accepted (Middle Button). This option also allows the definition of the radius by the selection of the 2nd point perpendicular or tangential to a selected segment. For this, the line snap should be on. The user selects the segment (line or arc) and then by pressing P for perpendicular or T for tangential a solution is shown. As there is often two solutions with respect to arcs, the user can move the mouse to change from one solution to the next.

To enter a radius value with the keyboard, simply start typing or press the space bar to bring up the Radius Input box. Type the radius value into the Radius Input box and press the enter key. The browse button on the Input box can be used to define the arc radius by measuring existing elements.

STEP 3:

The circle is constructed through the centre point using the specified radius.
15.12.10 Centre and point

Position of option on menu: CAD =>Circle =>Centre and point
or by selection of appropriate icon from the toolbar.

This option creates a circle by selecting a centre point and then using the cursor to select a second point that is on the circle.

On selecting Centre and point, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:

A centre point is selected with the mouse or entered in via the keyboard. To specify a centre point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter a centre point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key.

STEP 2:

After the centre point is accepted a circle will be displayed ‘rubber banding’ to the various solutions according to the position of the cursor. This will continue until a radius value is entered.

A radius value is selected with the mouse or entered in via the keyboard.

To specify a radius value with the mouse, a point must be selected (Left Button) and accepted (Middle Button). This option also allows the definition of the radius by the selection of the 2nd point perpendicular or tangential to a selected segment. For this, the line snap should be on. The user selects the segment (line or arc) and then by pressing P for perpendicular or T for tangential a solution is shown. As there is often two solutions with respect to arcs, the user can move the mouse to change from one solution to the next.

To enter a radius value with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the point into the Input box and press the enter key.

STEP 3:

A circle is constructed using the two points defined by the user.
CAD Circle
15.12.11 Centre and circumference

Position of option on menu: CAD =>Circle=>Centre and circumference
or by selection of appropriate icon from the toolbar.

This option creates a circle by selecting the centre point and giving a circumference value.

On selecting Centre and circumference, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

A centre point is selected with the mouse or entered in via the keyboard. To specify a centre point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter a centre point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key.

![Image of circle creation](image1)

**STEP 2:**

After the centre point is accepted, the Circumference Input box will appear. Type the circumference length into the Input box and press the enter key. The browse button on the Input box can be used to define the arc radius by measuring existing elements.

![Image of circumference input](image2)

**STEP 3:**

A circle is constructed using the centre point and the given circumference.

![Image of constructed circle](image3)
15.13 CAD Arc

**Position of option on menu:** CAD => Arc

The arc options creates *super string arcs*, not arc strings. The options Strings => Create => Arc create arc strings.

The Arc walk-right menu is

- 3 points
- 3 tangents
- 3 directed tangents
- 2 tangents and radius
- 2 directed tangents and radius
- 2 points and radius
- 2 points and arc length
- 2 points and end bearing
- Centre and end points
- Centre, radius and end points
- Centre, start point and sweep angle
- Start point, radius and bearing
- Start point, radius and chord
- Start point, radius, chord length and bearing
- Fillet
- Fillet by start point

from 3 selected points
tangential to 3 tangents (including points)
tangential to 3 directed tangents (including points)
known radius and tangential to 2 tangents
known radius and tangential to 2 directed tangents
through 2 points and known radius
2 points and known arc length
2 points and known bearing at first point
centre and end points
centre, radius and end points
centre, start point and sweep angle
through point with known radius and a bearing at point
start point, radius and chord length
start point, radius and chord length and bearing
fillet between 2 segments and given radius
fillet between 2 segments with selected start point
For the option 3 points, go to

- 3 tangents
- 3 directed tangents
- 2 tangents and radius
- 2 directed tangents and radius
- 2 points and radius
- 2 points and arc length
- 2 points and end bearing
- Centre and end points
- Centre, radius and end points
- Centre, start point and sweep angle
- Start point, radius and bearing
- Start point, radius and chord
- Start point, radius, chord length and bearing
- Centre and end points
- Centre, radius and end points
- Centre, start point and sweep angle
- Start point, radius, and bearing
- Start point, radius and chord
- Start point, radius, chord length and bearing
- Centre, end points
- Centre, radius and end points
- Centre, start point and sweep angle
- Start point, radius, and bearing
- Start point, radius and chord
- Start point, radius, chord length and bearing
- Centre, end points
- Centre, radius and end points
- Centre, start point and sweep angle
- Start point, radius, and bearing
- Start point, radius and chord
- Start point, radius, chord length and bearing
- Centre, end points
- Centre, radius and end points
- Centre, start point and sweep angle
- Start point, radius, and bearing
- Start point, radius and chord
- Start point, radius, chord length and bearing

Fillet
- 15.13.15 Fillet
- 15.13.16 Fillet by start point
15.13.1 3 points

Position of option on menu: CAD =>Arc =>3 points

or by selection of appropriate icon from the toolbar.

This option creates the arc through three selected points and the first and third points are the
start and end of the arc.

On selecting 3 points, the user is prompted for the relevant data in the screen message box
located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
The 1st point is selected with the mouse or entered in via the keyboard. To specify the 1st point
with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter
the 1st point with the keyboard, simply start typing or press the space bar to bring up the XYZ
Input box. Type the coordinates into the XYZ Input box and press the Enter key.

**STEP 2:**
The 2nd point is selected and accepted.

After the 2nd point is accepted an arc will be displayed ‘rubber banding’ to the various solutions
according to the position of the cursor. This will continue until the 3rd point is selected and
accepted.

**STEP 3:**
The 3rd point is selected and accepted.

**STEP 4:**
An arc is constructed through the three selected points.
15.13.2 3 tangents

Position of option on menu: CAD =>Arc =>3 tangents
or by selection of appropriate icon from the toolbar.

This option creates an arc that is tangential to three selected segments. The first and third segments are the start and end of the arc.

On selecting 3 tangents, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The 1st tangent is selected with the mouse (Left Button) and accepted (Middle Button).

STEP 2:
The 2nd tangent is selected and accepted.

STEP 3:
The 3rd tangent is selected and accepted.

STEP 4:
The arc is constructed touching the three selected tangents.
15.13.3 3 directed tangents

Position of option on menu:  
CAD =>Arc =>3 directed tangents
or by selection of appropriate icon from the toolbar.

This option creates an arc that is tangential to three selected segments. The segments are
selected in order and with direction and the arc is to the right of the direction of the selected
segments. The first and third segments are the start and end of the arc.

On selecting 3 directed tangents, the user is prompted for the relevant data in the screen message
box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
Select and accept the 1st tangent.

Note: For this option the direction of the selected tangents is important. The arc will be
constructed to the right of the tangent. A user may reverse the direction of the tangent by
selecting a tangent with direction. For further notes on picking tangents with direction, see
Picking with Direction.

Note: The Vertex indices can be displayed by toggling the option on the Toggle Menu.

STEP 2:
The 2nd tangent is selected and accepted.

STEP 3:
The 3rd tangent is selected and accepted.

STEP 4:
If a solution exists, an arc is constructed using the given information.
15.13.4 2 tangents and radius

Position of option on menu:  CAD =>Arc => 2 tangents and radius
or by selection of appropriate icon from the toolbar.

This option creates an arc with a given radius that is tangential to two selecting segments. This is the same as a fillet.

On selecting 2 tangents and radius, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The 1st tangent is selected with the mouse (Left Button) and accepted (Middle Button).

STEP 2:
The 2nd tangent is selected and accepted.

STEP 3:
After the start point is accepted, the Radius Input box will appear. Type the radius value into the Input box and press the enter key. The browse button on the Input box can be used to define the arc radius by measuring existing elements.

STEP 4:
If a solution exists, the arc is fitted through the two selected tangents using the given radius.
15.13.5 2 directed tangents and radius

**Position of option on menu:** CAD => Arc => 2 directed tangents and radius

or by selection of appropriate icon from the toolbar.

This option creates an arc with a given radius that is tangential to two selected segments that are picked with direction.

On selecting **2 directed tangents and radius**, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the **12d Model** application window.

**STEP 1:**

Select and accept the 1st tangent.

**Note:** For this option the direction of the selected tangents is important. The arc will be constructed to the right of a tangent. A user may reverse the direction of a tangent by selecting the tangent *with direction*. For further notes on picking tangents with direction, see **Picking with Direction**.

**Note:** The Vertex indices can be displayed by toggling the option on the Toggle Menu.

**STEP 2:**

The 2nd tangent is selected and accepted.

**STEP 3:**

After the start point is accepted, the Radius Input box will appear. Type the radius value into the Input box and press the enter key. The browse button on the Input box can be used to define the arc radius by measuring existing elements.

**STEP 4:**
If a solution exists, the arc is fitted through the two selected tangents using the given radius.
15.13.6 2 points and radius

Position of option on menu: CAD =>Arc =>2 points and radius
or by selection of appropriate icon from the toolbar.

This option creates an arc of a given radius that starts and ends on two selected points.

On selecting 2 points and radius, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
The 1st point is selected with the mouse or entered in via the keyboard. To specify the 1st point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter the 1st point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key.

**STEP 2:**
After the start point is accepted, the Radius Input box will appear. Type the radius value into the Input box and press the enter key. The browse button on the Input box can be used to define the arc radius by measuring existing elements.

**STEP 3:**
The 2nd point is selected and accepted.

**STEP 4:**
If a solution exists, an arc is constructed using the given information.
15.13.7 2 points and arc length

Position of option on menu:  CAD => Arc => 2 points and arc length
or by selection of appropriate icon from the toolbar

This option creates an arc of a given arc length that starts and ends on two selected points.
On selecting 2 points and arc length, the user is prompted for the relevant data in the screen
message box located at the bottom left hand corner of the 12d Model application window.

STEP 1: 12d

The 1st point is selected with the mouse or entered in via the keyboard. To specify the 1st point
with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter
the 1st point with the keyboard, simply start typing or press the space bar to bring up the XYZ
Input box. Type the coordinates into the XYZ Input box and press the enter key.

STEP 2:

After the start point is accepted, the Arc length Input box will appear. Type the arc length value
into the Input box and press the enter key. The browse button on the Input box can be used
to define the arc length by measuring existing elements.

STEP 3:

The 2nd point is selected and accepted.

STEP 4:

If a solution exists, an arc is constructed using the given information.
15.13.8 2 points and end bearing

Position of option on menu:  
CAD => Arc => 2 points and end bearing  
or by selection of appropriate icon from the toolbar.

This option creates an arc that starts and end on two selected points and has a given bearing of 
the tangent at the end point (the end bearing).

On selecting 2 points and end bearing, the user is prompted for the relevant data in the screen 
message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The 1st point is selected with the mouse or entered in via the keyboard. To specify the 1st point 
with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter 
the 1st point with the keyboard, simply start typing or press the space bar to bring up the XYZ 
Input box. Type the coordinates into the XYZ Input box and press the enter key.

STEP 2:
The 2nd point is selected and accepted.

STEP 3:
After the 2nd point is accepted, the Enter bearing input box will appear. Type the bearing into the 
Input box and press the enter key. The browse button on the input box can be used to define 
the bearing by measuring existing elements.

Note: The Page Up and Page Down keys can be used when the Enter Bearing input box 
comes up to add or subtract intervals of 90 degrees.

STEP 4:
If a solution exists, the arc is fitted through the two selected points with the end point of the given bearing.
15.13.9 Centre and end points

Position of option on menu:  CAD => Arc => Centre and end points
or by selection of appropriate icon from the toolbar.

This option creates an arc by selecting in order, the centre point and the start and end points. The radius of the arc is the distance between the centre and the start point.

On selecting Centre and end points, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
A centre point is selected with the mouse or entered in via the keyboard. To specify a centre point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter a centre point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key.

After the centre point is accepted a circle will be displayed ‘rubber banding’ to the various solutions according to the position of the cursor. This will continue until the start point is selected and accepted.

STEP 2:
Select and accept the start point. This point defines the radius and the start of the arc.

STEP 3:
The end point of the arc is specified.

STEP 4:
The arc is constructed using the given information.
15.13.10 Centre, radius and end points

**Position of option on menu:**  CAD => Arc => Centre, radius and end points

or by selection of appropriate icon from the toolbar.

This option allows the creation of an arc given a centre point, radius, start and end points.

This option creates an arc of a given radius by selecting in the centre point and the start and end positions.

On selecting Centre, radius and end points the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

A centre point is selected with the mouse or entered in via the keyboard. To specify a centre point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter a centre point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key.

After the centre point is accepted a circle will be displayed ‘rubber banding’ to the various solutions according to the position of the cursor. This will continue until the start point is selected and accepted.

**STEP 2:**

A radius value is selected with the mouse or entered in via the keyboard. To specify a radius value with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter radius value with the keyboard, simply start typing or press the space bar to bring up the Radius Input box. Type the radius value into the Radius Input box and press the Enter key. The browse button on the Input box can be used to define the arc distance by measuring existing elements.

**STEP 3:**

A start point defines the start of the sweep angle to define where to start the arc. It can be selected with the mouse or entered in via the keyboard. To specify a start point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter a start point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the Enter key.
STEP 4:
The end point of the arc is specified. The start and end points define the sweep angle to define the arc. The rubber banding of the arc will use the cursor position as the end position until a end point is selected and accepted. It can be selected with the mouse or entered in via the keyboard. To specify a start point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter a start point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key. The end point does not have to be on the arc itself. It is used to define the sweep angle.

STEP 5:
The arc is constructed using the given information.
15.13.11 Centre, start point and sweep angle

**Position of option on menu:**  CAD =>Arc =>Centre, start point and sweep angle

or by selection of appropriate icon from the toolbar.

This option creates an arc by selecting a centre point and a start points and giving a sweep angle. The radius of the arc is the distance between the centre and start point.

On selecting Centre, start point and sweep angle, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

A centre point is selected with the mouse or entered in via the keyboard. To specify a centre point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter a centre point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key.

After the 1st point is accepted a circle will be displayed 'rubber banding' to the various solutions according to the position of the cursor. This will continue until the 2nd point is selected and accepted.

**STEP 2:**

The 2nd point is selected with the mouse or entered in via the keyboard. This point defines the radius as well as the start point of the arc. To specify the 2nd point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter the 2nd point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key.

**STEP 3:**

After the 2nd point is accepted, the **Sweep Angle** input box will appear. Type the sweep angle value into the input box and press the enter key. The browse button on the Input box can be used to define the arc radius by measuring existing elements.

**Note:** The Page up and page down keys can be used when the input angle box comes up to add or subtract intervals of 90 degrees.
STEP 4:
The arc is created using the information supplied.
15.13.12 Start point, radius and bearing

**Position of option on menu:**  
CAD => Arc => Start point, radius and bearing  
or by selection of appropriate icon from the toolbar.

This option creates an arc of a given radius, starting at a selected point and bearing of the tangent at the start point and going for a given arc length.

On selecting the *Start point, radius and bearing* option, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
A start point is selected with the mouse or entered in via the keyboard. To specify a start point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter a start point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key.

**STEP 2:**
After the start point is accepted, the Arc Radius Input box will appear. Type the radius value into the Input box and press the enter key. The browse button on the Input box can be used to define the arc radius by measuring existing elements.

**STEP 3:**
After the radius has been entered, the *Arc Length* Input box will appear. Type the arc length into the Input box and press the enter key. The browse button on the Input box can be used to define the arc distance by measuring existing elements.

**STEP 4:**
After the arc length is accepted, the Bearing Input box will appear. Type the bearing into the Input box and press the enter key. The browse button on the Input box can be used to define the bearing by measuring existing elements.

**Note:** The Page Up and Page Down keys can be used when the Bearing Input box comes up to add or subtract intervals of 90 degrees.

**STEP5:**
The arc is created with the given information.
15.13.13 Start point, radius and chord

Position of option on menu:  CAD => Arc => Start point, radius and chord
or by selection of appropriate icon from the toolbar.

This option creates an arc of a given radius, starting from a selected point and with a given chord bearing at the start point and a given arc length.

On selecting Start point, radius and chord, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

The start point is selected with the mouse or entered in via the keyboard. To specify the start point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter the start point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key.

**STEP 2:**

After the start point is accepted, the Arc Radius Input box will appear. Type the radius value into the Input box and press the enter key. The browse button on the Input box can be used to define the arc radius by measuring existing elements.

**STEP 3:**

After the arc radius is entered, the Arc Length Input box will appear. Type the arc length into the Input box and press the enter key. The browse button on the Input box can be used to define the arc distance by measuring existing elements.

**STEP 4:**
After the arc length is entered, the **Chord Bearing** Input box will appear. Type the bearing into the Input box and press the enter key. The browse button on the Input box can be used to define the bearing by measuring existing elements.

**Note:** The Page Up and Page Down keys can be used when the Chord Bearing Input box comes up to add or subtract intervals of 90 degrees.

---

**STEP 5:**
An arc is created with the given information.

---

![Typed Input](image)
15.13.14 Start point, radius, chord length and bearing

Position of option on menu: CAD =>Arc =>Start point, radius, chord length and bearing
or by selection of appropriate icon from the toolbar.

This option creates an arc of a given radius, starting from a selected point, with a given bearing of the tangent at the start point and a given chord length from the start point.

On selecting Start point, radius, chord length and bearing, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
A start point is selected with the mouse or entered in via the keyboard. To specify a start point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter a start point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key.

STEP 2:
After the start point is accepted, the Arc Radius Input box will appear. Type the radius value into the Input box and press the enter key. The browse button on the Input box can be used to define the arc radius by measuring existing elements.

STEP 3:
After the radius has been entered, the Chord Length Input box will appear. Type the chord length into the Input box and press the enter key. The browse button on the Input box can be used to define the chord length by measuring existing elements.
After the chord length has been entered, the Bearing Input box will appear. Type the bearing of the start tangent into the Input box and press the enter key. The browse button on the Input box can be used to define the bearing by measuring existing elements.

**Note:** The Page Up and Page Down keys can be used when the Bearing Input box comes up to add or subtract intervals of 90 degrees.

**STEP 5:**
The arc is created with the given information.
15.13.15 Fillet

Position of option on menu: CAD => Arc => Fillet
or by selection of appropriate icon from the toolbar.

This option creates an arc given a fillet radius
On selecting Fillet, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The 1st segment where the fillet is to depart from is selected and accepted. This should be done by a pick with direction. The direction will influence the calculations as there are a number of solutions for intersecting segments. In the case shown, the direction was in a north-east direction.

STEP 2:
The 2nd segment where the fillet is to arrive from is selected and accepted. This should be done by a pick with direction. The direction will again influence the calculations as there are a number of solutions for intersecting segments. In the case shown the direction was in a south-east direction.

STEP 3:
After the 2nd segment is accepted, the Arc Radius Input box will appear. Type the radius of the fillet in the Input box (positive radius for curves curving to the right) and press the enter key. The browse button on the Input box can be used to define the arc radius by measuring existing elements.

STEP 4:
The fillet arc is placed between the selected segments.
15.13.16 Fillet by start point

**Position of option on menu:** CAD => Arc => Fillet by start point

or by selection of appropriate icon from the toolbar.

This option creates an arc that is a fillet between two selected sections and with a selected fillet start point (which will be a tangent point of the created arc).

On selecting Fillet by start point, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

The 1st segment where the fillet is to depart from is selected and accepted. This should be done by a pick with direction. The direction will influence the calculations as there are a number of solutions for intersecting segments. In the case shown the direction was in a north-east direction.

**STEP 2:**

The 2nd segment where the fillet is to arrive from is selected and accepted. This should be done by a pick with direction. The direction will again influence the calculations as there are a number of solutions for intersecting segments. In the case shown the direction was in a south-east direction.

**STEP 3:**

The tangent start point of the fillet is selected and accepted.

**STEP 4:**

The fillet arc is placed between the selected segments.
15.14 CAD Polygon

Position of option on menu: CAD =>Polygon

The Cad polygon walk-right menu is

- Rectangle from 2 points
- Rectangle with width and height
- Rectangle from 3 points
- Parallelogram
- Polygon inscribed
- Polygon circumscribed
- Polygon free hand
- Boundary polygon

For the option Rectangle from 2 points, go to

- Rectangle with width and height
- Rectangle from 3 points
- Parallelogram
- Polygon inscribed
- Polygon circumscribed

For the option Parallelogram, go to

- Polygon free hand
- Boundary polygon

For the option Polygon circumscribed, go to

- Polygon free hand
- Boundary polygon

For the option Polygon inscribed, go to

- Polygon free hand
- Boundary polygon

For the option Rectangle from 2 points, go to

- Rectangle with width and height
- Rectangle from 3 points
- Parallelogram
- Polygon inscribed
- Polygon circumscribed

For the option Rectangle from 3 points, go to

- Rectangle with width and height
- Parallelogram
- Polygon inscribed
- Polygon circumscribed

For the option Parallelogram, go to

- Polygon free hand
- Boundary polygon

For the option Polygon inscribed, go to

- Polygon free hand
- Boundary polygon

For the option Polygon circumscribed, go to

- Polygon free hand
- Boundary polygon

For the option Polygon free hand, go to

- Boundary polygon
15.14.1 Rectangle from 2 points

**Position of option on menu:** CAD =>Polygon =>Rectangle from 2 Points
or by selection of appropriate icon from the toolbar.

This option creates a rectangle parallel to the x and y axis by selecting two diagonal corners of the rectangle.

On selecting **Rectangle from 2 Points**, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

The 1st point is selected with the mouse or entered in via the keyboard. To specify the 1st point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter the 1st point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key.

After the 1st point is accepted a rectangle will be displayed ‘rubber banding’ to form a rectangle with the first point and the cursor position being diagonal corners. This will continue until the 2nd point is selected and accepted.

**STEP 2:**

The following message is displayed in the screen message box:

```
<N> Pick opposite corner or (r)adius, (c)hamfer, (l)ength > [pick] [fast] [Menu]
```

If filleted corners are required, type *r* and enter the **corner radius**.

If chamfered corners are required, type *c* and enter the **chamfer length**.

If a fillet or chamfer has been selected, type *n* to turn it off.

**STEP 3:**

The 2nd point is selected with the mouse or entered in via the keyboard. To specify the 2nd point with the mouse, a point must be selected and accepted. To enter the 2nd point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key.
STEP 4:
The rectangle is created with the given information.
15.14.2 Rectangle with width and height

Position of option on menu: CAD => Polygon => Rectangle with width and height

or by selection of appropriate icon from the toolbar.

This option creates a rectangle parallel to the x and y axis by selecting a start point and giving the width and height of the rectangle.

On selecting Rectangle with width and height, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

The start point is selected with the mouse or entered in via the keyboard. To specify the start point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter the start point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key.

This point defines the bottom left point of the rectangle.

After the start point is accepted, the width will be displayed ‘rubber banding’ to right of the start point (positive distance). The width is equal to the distance from the start point to the position of the cursor. This will continue until the width is selected and accepted.

**STEP 2:**

The width is selected with the mouse or entered in via the keyboard. To specify the width with the mouse, a point must be selected and accepted. To enter the width with the keyboard, simply start typing or press the space bar to bring up the Distance Input box. Type the distance into the Distance Input box and press the enter key. The browse button on the Input box can be used to define the distance by measuring existing elements.

A negative distance (to the left of the 1st point) can be entered via the Distance Input box in two ways. Either type a negative distance, or use the browse button to select a distance, then place a minus "-" sign in front of the distance value.

After the width is accepted, the width of the rectangle is confirmed and the height will be displayed ‘rubber banding’ upwards on the screen. The height is equal to the distance from the found width point to the position of the cursor. The rectangle will be created once the height is selected and accepted.

**STEP 3:**

The height is selected with the mouse or entered in via the keyboard. To specify the height with
the mouse, a point must be selected and accepted. To enter the height with the keyboard, simply start typing or press the space bar to bring up the Distance Input box. Type the distance into the Distance Input box and press the enter key. The browse button on the Input box can be used to define the distance by measuring existing elements.

A negative distance (below of the 2nd point) can be entered via the Distance Input box in two ways. Either type a negative distance, or use the browse button to select a distance, then place a minus "-" sign in front of the distance value.

**STEP 4:**

The rectangle is created with the given information.
15.14.3 Rectangle from 3 points

**Position of option on menu:**  CAD => Polygon => Rectangle from 3 points or by selection of appropriate icon from the toolbar.

This option creates a rectangle by selecting three points. The first and second point define the base of the rectangle, which can be at any angle, and the third point is on the opposite side of the rectangle. The rectangle can be filleted or chamfered.

On selecting Rectangle from 3 points, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

The 1st point is selected with the mouse or entered in via the keyboard. To specify the 1st point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter the 1st point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key.

After the 1st point is accepted, the base of the rectangle will be displayed ‘rubber banding’ on the screen. The baseline length is equal to the distance from the 1st point to the position of the cursor. This will continue until the 2nd point is selected and accepted.

**STEP 2:**

The 2nd point is selected with the mouse or entered in via the keyboard. To specify the 2nd point with the mouse, a point must be selected and accepted. To enter the 2nd point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key. The browse button on the Input box can be used to define the distance by measuring existing elements.

After the 2nd point is accepted, the baseline of the rectangle is confirmed and the height will be displayed ‘rubber banding’ on the screen. The height is equal to the distance from the 2nd point to the position of the cursor. The rectangle will be created once the height is selected and accepted.

**STEP 3:**

The following message is displayed in the screen message box:
If filleted corners are required, type r and enter the corner radius.

If chamfered corners are required, type c and enter the chamfer length.

If a fillet or chamfer has been selected, type n to turn it off.

**STEP 4:**
The height is selected with the mouse or entered in via the keyboard. To specify the height with the mouse, a point must be selected and accepted. To enter the 3rd point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key. The browse button on the Input box can be used to define the distance by measuring existing elements.

**STEP 5:**
The rectangle is created with the given information.
15.14.4 Parallelogram

**Position of option on menu:**  
CAD => Polygon => Parallelogram  
or by selection of appropriate icon from the toolbar.

This option creates a parallelogram by selecting three points. The first and second point define the base of the parallelogram, which can be at any angle, and the third point is the end point of the opposite side of the parallelogram.

On selecting Parallelogram, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

The 1st point is selected with the mouse or entered in via the keyboard. To specify the 1st point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter the 1st point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key.

After the 1st point is accepted, the baseline of the rectangle will be displayed ‘rubber banding’ on the screen. The baseline length is equal to the distance from the 1st point to the position of the cursor. This will continue until the 2nd point is selected and accepted.

**STEP 2:**

The 2nd point is selected with the mouse or entered in via the keyboard. To specify the 2nd point with the mouse, a point must be selected and accepted. To enter the 2nd point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key. The browse button on the Input box can be used to define the distance by measuring existing elements.

After the 2nd point is accepted, the baseline of the parallelogram is confirmed and the height will be displayed ‘rubber banding’ on the screen. The height is equal to the distance from the 2nd point to the position of the cursor. The parallelogram will be created once the height is selected and accepted.

**STEP 3:**

The height is selected with the mouse or entered in via the keyboard. To specify the height with the mouse, a point must be selected and accepted. To enter the 3rd point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key. The browse button on the Input box can be used to define the distance by measuring existing elements.
STEP 4:
The parallelogram is created with the given information.
15.14.5 Polygon inscribed (in a circle)

Position of option on menu:  CAD =>Polygon =>polygon inscribed
or by selection of appropriate icon from the toolbar.

This option creates a polygon with a user defined number of sides on the inside of a circle.
The polygon is constructed inside a circle, thus each corner of the polygon touches the
 circumference of the circle defined by the user. Conversely using the Polygon circumscribed option,
the midpoint of each side of the polygon touches the circumference of the circle creating a
polygon outside the circle.

On selecting polygon inscribed, the user is prompted for the relevant data in the screen message
box located at the bottom left hand corner of the 12d Model application window.

STEP 1:

The centre point is selected with the mouse or entered in via the keyboard. To specify the centre
point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To
enter the centre point with the keyboard, simply start typing or press the space bar to bring up the
XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key.

STEP 2:

After the centre point is accepted, the Number of Sides Input box will appear. Type in the desired
number of sides for the polygon into the Input box and press the enter key.

After the number of sides have been selected, the polygon will be displayed ‘rubber banding’ on
the screen. The polygon will be created once the radius is selected and accepted.

STEP 3:

Before a polygon can be created inside the circle, its radius must be defined by the user. To
specify the radius with the mouse, a point must be selected and accepted. To enter the point with
the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the
coordinates into the XYZ Input box and press the enter key.

Note: One of the polygon's corners will be located on the point selected to defined the
circle's radius
**STEP 4:**
A polygon is created inside a circle with a radius defined by the user.
15.14.6 Polygon Circumscribed About a Circle

**Position of option on menu:** CAD =>Polygon =>Polygon circumscribed

or by selection of appropriate icon from the toolbar.

This option creates a polygon with a user defined number of sides on the outside a circle. The polygon is constructed outside a circle, thus the midpoint of each side of the polygon touches the circumference of the circle defined by the user. Conversely using the **Polygon inscribed** option, each corner of the polygon touches the circumference of the circle creating a polygon inside the circle.

On selecting **Polygon circumscribed**, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

The centre point is selected with the mouse or entered in via the keyboard. To specify the centre point with the mouse, a point must be selected (Left Button) and accepted (Middle Button). To enter the centre point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key.

**STEP 2:**

After the centre point is accepted, the Number of Sides Input box will appear. Type in the desired number of sides for the polygon into the Input box and press the enter key.

After the number of sides have been selected, the polygon will be displayed ‘rubber banding’ on the screen. The polygon will be created once the radius is selected and accepted.

**STEP 3:**

Before a polygon can be created outside the circle, its radius must be defined by the user. To specify the radius with the mouse, a point must be selected and accepted. To enter the point with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key.

**Note:** One midpoint of the polygon’s side will be located on the point selected to defined the circle’s radius.
STEP 4:
A polygon is created outside the circle with a radius defined by the user.
15.14.7 Free Hand Polygon

**Position of option on menu:**  CAD => Polygon => Polygon free hand
or by selection of appropriate icon from the toolbar.

This option creates a closed polygon from selected vertices.

On selecting **Polygon free hand**, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
Pick and accept the position to form the vertices of the polygon. As each vertex is accepted, the polygon is automatically closed.

**STEP 2:**
The polygon is finished by pressing the <Esc> key.
15.14.8 Create Boundary Polygon

**Position of option on menu:** CAD => Polygon => Boundary polygon

**or by selection of appropriate icon from the toolbar.**

This option tries to form a boundary from a selected set of segments.

On selecting **Boundary polygon**, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d *Model* application window.

**STEP 1:**
Pick a position inside the lines, arcs and strings to form a bounding polygon from.

**STEP 2:**
A circle is then drawn centred on the selected position with circumference going through the position of the cursor. Drag the cursor out until it encloses all the data to be used to create the closest bounding polygon around the centre.

**STEP 3:**
On accepting the circle position, an attempt is made to create the inner polygon using all the strings inside the circle.
15.15 CAD Text

Position of option on menu: CAD => Text
Position of option on menu: Various toolbars

Text can occur as a text string, on vertices and segments of a super string or on vertices of a 4d string. But the display position of text is not as straightforward as simply placing a point. For more information about text, go to the section 4.6 Text Definitions.

The Text walk-right menu is

- edit text string using typed commands and grips
- create text string using typed commands and grips
- delete text
- label perpendicular offset distance
- menu of individual Text options

For the option Edit, go to
- 15.15.2 Edit Text
- 15.15.1 Create Text
- 15.15.20 Text Delete
- 15.15.18 Label Perpendicular Offset
- 15.15.3 CAD Text Commands
15.15.1 Create Text

**Position of option on menu:** CAD => Text => Create

or by selection of appropriate icon from the toolbar.

For information about text and its definitions, go to the section 4.6 Text Definitions.

**12d Model** has two CAD text options Create and Edit. However both of these run the same option which starts up in different modes - Create is in the mode to create text as straight text, or text on a super string vertex or on a super string segment and Edit which edits existing text.

Once either CAD text option is started it is possible to change between the Create and Edit modes at any time.

The Create option creates text strings, text at super string vertices and text on super string segments, and then displays a list key commands in the screen message area, and grips on screen, to quickly allow editing of the text, text size, colour, rotation, style, angle, raise, justification point etc.

After selecting the option, the **Pick position** message is displayed in the screen message area.

To go from Create to Edit mode, type e - go to To Go from Create to Edit Mode - Typing e

To create a text string, type c - go to Creating a Text String - Typing c

To create vertex text, type v - go to Creating Text at a Super String Vertex- Typing v

To create segment text, type s - go to Creating Text at a Super String Segment- Typing s

Creating a Text String - Typing c

After typing c, the **Pick position** message is again displayed in the screen message area and the position of the text is then selected with the cursor.

When the position is accepted an **Enter text** typed input box is then displayed on the screen.

The text is typed into the box and the <enter> key pressed.

The text vertex and text justification point is placed at that position and the direction of the text is parallel to the x-axis. The angle and raise are both zero and the text justification is (left x, bottom y).
When the text is displayed, grips for quick editing of size, rotation and moving of the justification point are also shown. The appropriate grip can then selected for quick editing. For details on using the grips, go to the section 4.14 Text Grips.

For the new text, the style and height are taken from the Text controlbar and the model and colour from the CAD controlbar (see 15.1 Controlbars, 15.1.2 Symbol Controlbar and 15.1.1 CAD Controlbar).

After the text is created, a list of typed options is then displayed in the screen message area.

C is the default if nothing is typed.

Creating Text at a Super String Vertex- Typing v

After typing v, the Pick vertex message is displayed in the screen message area and the vertex of the super string to place the text at is then selected with the cursor.

When the vertex is accepted an Enter text typed input box is then displayed on the screen.
The text is typed into the box and the <enter> key pressed.

The text justification point is placed at the selected string vertex and the direction of the text is parallel to the x-axis. The angle and raise are both zero and the text justification is (left x, bottom y).

When the text is displayed, grips for quick editing of size, rotation, moving of the justification point and string vertex are also shown. The appropriate grip can then selected for quick editing. For details on using the grips, go to the section 4.14 Text Grips.

For the new text, the style and height are taken from the Text controlbar and colour from the CAD controlbar (see 15.1 Controlbars, 15.1.2 Symbol Controlbar and 15.1.1 CAD Controlbar). The created text will be part of the super string so no model is required.

After the vertex text is created, a list of typed options is then displayed in the screen message area.

If m is typed, the rest of the options are shown

These option are the same as when editing existing text, and will be described in detail in the section 15.15.2 Edit Text.
Creating Text at a Super String Segment- Typing s

After typing **s**, the **Pick segment** message is displayed in the screen message area and the segment of the super string to place the text on is then selected with the cursor.

When the segment is accepted an **Enter text** typed input box is then displayed on the screen.

The text is typed into the box and the <enter> key pressed.

The text justification point is placed at the centre of the segment and the direction of the text is parallel to the segment. The angle and raise are both zero and the text justification is (left x, bottom y).

When the text is displayed, grips for quick editing of size, rotation and moving of the justification point are also shown. The appropriate grip can then selected for quick editing. For details on using the grips, go to the section 4.14 **Text Grips**.

For the new text, the style and height are taken from the **Text controlbar** and colour from the **CAD controlbar** (see 15.1 **Controlbars**, 15.1.2 **Symbol Controlbar** and 15.1.1 **CAD Controlbar**). The created text will be part of the super string so no model is required.

After the segment text is created, a list of typed options is then displayed in the screen message
and if \( m \) is typed, the rest of the options are shown:

```
< [S] Pick grip point or (c)clour, (s)yle, (c)ontent, (h)eight, (w)factor, (n)ew, (f)inish, (m)ore... > [picks][fast][Menu]
```

These option are the same as when editing existing text, and will be described in detail in the section 15.15.2 Edit Text.

**To Go from Create to Edit Mode - Typing e**

After typing \( e \), the **Pick text** message is displayed in the screen message area.

```
< [Pick text] (e)dit, (c)reate, (v)ertex, (s)egment > [picks][fast][Menu]
```

This is the same as when selecting the Edit option from the CAD Text toolbar and will be described in detail in the section 15.15.2 Edit Text.
15.15.2 Edit Text

Position of option on menu:  CAD => Text => Edit

or by selection of appropriate icon from the toolbar.

For information about text and its definitions, go to the section 4.6 Text Definitions.

12d Model has two CAD text options Create and Edit. However both of these run the same option which starts up in different modes - Create is in the mode to create text as straight text, or text on a super string vertex or on a super string segment and Edit which edits existing text.

Once either CAD text option is started it is possible to change between the Create and Edit modes at any time.

The Edit option edits text as either text strings, text at super string vertices or text on super string segments.

After typing e, the Pick text message is displayed in the screen message area

```
< [Pick text] (e)dit, (c)reate, (v)ertex, (s)egment > [picks][fast][Menu]
```

and text either as a text string, or text on a super string vertex or segment, is then selected by the mouse for editing.

The selected text with the text edit grips is shown on screen, and a list of available typed commands in the screen message area to quickly allow editing of the text, text size, colour, rotation, style, angle, raise, justification point, vertex, etc.

Options displayed after selecting text

```
< [] > Grip point or (v)ertex, (c)olour, (s)cale, (o)ffset, (h)eight, (w)idth, (i)mage, (r)otate, (j)ustify, (n)ext, (p)rev, (f)ill, (b)ack, no auto[p]an > [picks][fast][Menu]
```

and by typing m

```
< [] > Item or (a)ngle, (j)ustify, (y)justification, (d)efault, (n)ext, (p)rev, (f)ill, (b)ack, no auto[p]an > [picks][fast][Menu]
```

Output: Window

---

Options displayed after selecting text:

- Grip point or (v)ertex
- (c)olour
- (s)cale
- (o)ffset
- (h)eight
- (w)idth
- (i)mage
- (r)otate
- (j)ustify
- (n)ext
- (p)rev
- (f)ill
- (b)ack
- no auto[ p ]an

Output: Window
To change the text colour, type `c` - go to Change Text Colour - Typing c
To change the text style, type `s` - go to Change Text Style - Typing s
To change the actual text, type `t` or press space bar - go to Change Text - Pressing space bar or Typing t
To change the text height, type `h` - go to Change Text Height - Typing h
To change the text width factor, type `w` - go to Change Text Width Factor - Typing w
To create/edit a new text, type `n` - go to Create/Edit New Text - Typing n
To end the create/edit option, type `f` - go to Finish the Create/Edit - Typing f
To show the other line of options, type **m** - go to _Show Other Line of Options - Typing m_

To change the text offset, type **o** - go to _Change Text Offset - Typing o_
To change the text raise, type **r** - go to _Change Text Raise - Typing r_
To change the text angle, type **a** - go to _Change Text Angle - Typing a_
To change the text x justification, type **x** - go to _Change Text X Justification - Typing x_
To change the text y justification, type **y** - go to _Change Text Y Justification - Typing y_
To reset some text values to their defaults, type **d** - go to _Reset Text Parameters to Defaults - Typing d_
To change focus to the next text, press **->** - go to _Change Focus to the Next Text in String - Pressing right arrow key (->)_
To change focus to the previous text, press **<-** - go to _Change Focus to the Previous Text in String - Pressing left arrow key (<-)_
To show the other line of options, type **m** - go to _Show Other Line of Options - Typing m_
To toggle vertex lock on and off, type **l** - go to _Toggle Lock - Typing l_
To toggle autopan on and off, type **p** - go to _Toggle Autopan - Typing p_

**Change Text Colour - Typing c**

After typing **c**, a Colour *Typed input* box appears with the current text colour displayed.

![12d Model](image)

The new colour for the text is typed into the Colour input box followed by the <enter> key, or by selecting a colour from the *Select Colour* box which is brought up by clicking B1 on the colour button.

**Change Text Style - Typing s**

After typing **s**, a Style *Typed input* box appears with the current text style displayed.
The new style for the text is typed into the Style input box followed by the <enter> key, or by selecting a style from the Select Text Style box which is brought up by clicking B1 on the style button.

Change Text - Pressing space bar or Typing t
After typing t or pressing the space bar, an Enter Text Typed input box appears with the current text in it.

The new text is typed into the Enter Text input box followed by the <enter> key.

Change Text Height - Typing h
After typing h, a Size Typed input box appears with the current text height in it.
The new height is typed into the Size input box followed by the <enter> key.

**Note** - Many arithmetic expressions are supported in the Size typed input box (e.g. 10+27). See the section 4.19.1 Expressions in Panel Fields.

**Change Text Width Factor - Typing w**

After typing w, a X-Factor Typed input box appears with the current width (x-factor) in it.

The new width (x-factor) is typed into the X-factor input box followed by the <enter> key.

**Note** - Many arithmetic expressions are supported in the X-factor typed input box (e.g. 0.5*2.2). See the section 4.19.1 Expressions in Panel Fields.

**Create/Edit New Text - Typing n**

If the option was in Edit mode and n is typed, a new Edit is started (e mode). The **Pick text** message is displayed in the screen message area and another text is selected to edit.

Or a **new** text can be created by typing C, V or S. See the section 15.15.1 Create Text for more information on C, V and S.

If the option was in Create mode and n is typed, a new Create is started in the C mode. The
*Pick position* message is displayed in the screen message area and a new text is created.

Or a new segment or vertex text can be created by typing *v* or *S* or the Edit mode can be entered by typing *e*. See the section 15.15.1 *Create Text* for more information on *c*, *v* and *S*.

**Change Text Offset - Typing o**

After typing *o*, an Offset Typed input box appears with the current text offset in it.

The new offset is typed into the Offset input box followed by the <enter> key. The text justification point will be offset by the new amount.

Note - Many arithmetic expressions are supported in the Offset typed input box (e.g. 10+27).

For information about text and the definition of offset, go to the section 4.6 *Text Definitions*.

**Change Text Raise - Typing r**

After typing *r*, a Raise Typed input box appears with the current text raise in it.

Segment text - offset = 20
The new raise is typed into the Raise input box followed by the <enter> key. The text justification point will be raised by the new amount.

For information about text and the definition of raise, go to the section 4.6 Text Definitions. Note - Many arithmetic expressions are supported in the Raise typed input box (e.g. 10+27). See the section 4.19.1 Expressions in Panel Fields.

Change Text Angle - Typing a

After typing a, a Rotation Typed input box appears with the current text angle in it.

The new angle is typed into the Rotation input box followed by the <enter> key.
The direction of the text point will be rotated by the new amount.

For information about text and the definition of angle, go to the section 4.6 Text Definitions.

**Note** - Some arithmetic expressions are supported in the Rotation typed input box (e.g. 10+90). See the section 4.19.1.2 Expressions in Bearing, Angle Panel Fields for what is allowed in angle/bearing panel fields.

**Change Text X Justification - Typing x**

After typing x, a Justify X Typed input box appears with the current text x justification in it.

The new x justification for the text is typed into the Justify X input box followed by the <enter> key, or by selecting a justification from the Select Choice box which is brought up by clicking B1 on the choice button.

For information about text and the definition of justification, go to the section 4.6 Text Definitions.
Change Text Y Justification - Typing y

After typing y, a Justify Y Typed input box appears with the current text y justification in it.

The new y justification for the text is typed into the Justify Y input box followed by the <enter> key, or by selecting a justification from the Select Choice box which is brought up by clicking B1 on the choice button.

For information about text and the definition of justification, go to the section 4.6 Text Definitions.

Reset Text Parameters to Defaults - Typing d

After typing d, some of the text parameters are set back to their default values.

That is for a:

Text String, Vertex Text and Segment Text:
- Text style is set to the Text style in the Cad Text Controlbar
- Colour is reset to the colour in the Cad Controlbar
- Size is set to the size in the Cad Text Controlbar
- Angle is set to 0
- Offset is set to 0
- Raise is set to 0
- X Factor is set to 1
- X Justification is set to left
- Y Justification is set to bottom
- Model stays the same

For information about text definitions, go to the section 4.6 Text Definitions.
Change Focus to the Next Text in String - Pressing right arrow key (->)
For vertex text on a super string, pressing ->, moves the focus of the edit commands to the vertex text on the next vertex of the super string. If the text is on the last vertex, pressing -> does nothing.
For segment text on a super string, pressing ->, moves the focus of the edit commands to the segment text on the next segment of the super string. If the text is on the last segment, pressing -> does nothing.

For information about text definitions, go to the section 4.6 Text Definitions.

Change Focus to the Previous Text in String - Pressing left arrow key (<-)
When editing vertex text on a super string, pressing <-, moves the focus of the edit commands to the vertex text on the previous vertex of the super string. If the text is on the first vertex, pressing <-> does nothing. If Autopan is on, the selected vertex text is made the centre of the active plan view.
When editing segment text on a super string, pressing <->, moves the focus of the edit commands to the segment text on the previous segment of the super string. If the text is on the first segment, pressing <-> does nothing. If Autopan is on, the selected segment text is made the centre of the active plan view.

For information about text definitions, go to the section 4.6 Text Definitions.

Toggle Lock - Typing l
Typing l toggles locking the vertex on and off.
When vertex lock is on, the vertex grip can not be selected and used to move the position of the string vertex.
When the screen message area reads (l) lock (l)ock, this means that vertex lock is off (unlocked) and typing l locks it.
When the screen message area reads un(l) lock, un(l)ock, this means that the vertex is locked and typing l unlocks it.

For information about the vertex text grip, go to the section 4.14 Text Grips.
For information about text definitions, go to the section 4.6 Text Definitions.

Toggle Autopan - Typing p
Typing p toggles autopan on and off.
When editing vertex text on a super string and Autopan is on, pressing -> or <-, moves the focus of the edit commands to the vertex text on the next/previous vertex of the super string, and the selected vertex text is made the centre of the active plan view.
When editing segment text on a super string and Autopan is on, pressing -> or <-, moves the focus of the edit commands to the vertex text on the next/previous segment of the super string, and the selected segment text is made the centre of the active plan view.
When vertex lock is on, the vertex grip can not be selected and used to move the position of the string vertex.
When the screen message area reads `auto(p)an`, this means that autopan is off and typing `p` turns autopan on.

When the screen message area reads `no auto(p)an`, this means that autopan is on and typing `p` turns it off.

For information about text definitions, go to the section 4.6 Text Definitions.

**Show Other Line of Options - Typing m**

There are too many Edit options to fit onto one line of the screen message and two lines of options are required. Typing `m` toggles between the two lines of options.

Finish the Create/Edit - Typing f

Typing `f` exits the create/edit text option.
15.15.3 CAD Text Commands

The *Cad Text Commands* do just one text modification at a time but once one selected text has been modified, another text can then be selected to have the same type of modification. So the CAD Text Commands perform the same modification on progressively selected texts whereas the CAD Text Create and CAD Text Edit options perform any of the modifications on the one selected text.

The *Cad text commands* walk-right menu is

```
Menu of Individual Options to Create and Manipulate Text
earlier version of CAD Text Edit - edit text using grips
earlier version of CAD Text Create - create text string and edit using grips
create text string at a selected position
create text at a user selected super string vertex
create text at a user selected super string segment
rotate text about its vertex
rotate text about its justification points (which may be offset from the vertex
move text by its vertex
move text by its justification point (the vertex does not move)
change the height of text
change the characters of the text
change the style of text
change the colour of text
reset the text justification point so that it is on top of the vertex posn
label perpendicular offset distance
menu to make most of the above changes to one selected text
delete text
```

For the option *Simple edit*, go to

- 15.15.4 Simple Text Edit
- 15.15.5 Simple Text Create
- 15.15.6 Text Create
- 15.15.7 Create Text on Vertex of Super String
- 15.15.8 Text Create on Segment of Super Strings
- 15.15.9 Rotate Text around Vertex
- 15.15.10 Rotate Text about the Justification Point
- 15.15.11 Move the Text Vertex Point
- 15.15.12 Move the Text Justification Point
- 15.15.13 Height of Text
- 15.15.14 Change Text
- 15.15.15 Style of Text
- 15.15.16 Text Colour
- 15.15.17 Reset Text Justification Point
- 15.15.18 Label Perpendicular Offset
- 15.15.19 All Text Edits
- 15.15.20 Text Delete
15.15.4 Simple Text Edit

Position of option on menu: CAD => Text => Commands => Simple edit or by selection of appropriate icon from the toolbar.

This option edits text strings, and text on super string vertices or segments, using grips to quickly define the mode of editing (sizing, rotating or moving the justification point).

On selecting Simple edit, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:

When the text to be edited is selected, grips for size, rotating and moving the justification point are displayed. The appropriate grip is then selected for quick editing.

Size Grip (diamond):

If the Size grip is selected, the text size is dynamically adjusted by moving the cursor. The size of the text is displayed as part of the Enter height prompt in the message area.

The text size is set when a position is accepted.

An exact text size can be entered by hitting the <space bar> or by starting to type a size. This brings up the Enter distance typed input box. The size is typed in and the <enter> key pressed.

To return to dynamic sizing without entering a distance, simply select the X on the top of the input box. The box will disappear and dynamic sizing will resume.

If the text is being dynamically sized, the current size of the text can be displayed by pressing the d key which brings up the Enter distance typed input box with the current text size in it.
The size can be modified and the value used by pressing the <enter> key. To return to dynamic sizing without entering a distance, simply select the X on the top of the input box.

**Rotate Grip (circle):**

If the **Rotate grip** is selected, the text bearing is dynamically adjusted by moving the cursor. The bearing of the text is displayed as part of the *Enter bearing* prompt in the message area. The text bearing is set when a position is accepted.

An **exact** bearing can be entered by hitting the <space bar> or by starting to type a bearing. This brings up the *Enter bearing* typed input box. The **bearing** is typed in and the <enter> key pressed.

To return to dynamic rotating without entering a bearing, simply select the X on the top of the input box. The box will disappear and dynamic sizing will resume.

If the text is being dynamically rotated, the **current** bearing of the text can be displayed by pressing the d key which brings up the *Enter bearing* typed input box with the current text bearing in it.

The **bearing** can be modified and the value used by pressing the <enter> key. To return to dynamic rotation without entering a bearing, simply select the X on the top of the input box.

**Justification Grip (square):**

If the **Justification grip** is selected, the text justification point is dynamically adjusted by moving the cursor. The (x,y) position of the text is displayed in the message area. The text justification point is set when a position is accepted.
An exact coordinate can be entered by hitting the <space bar> or by starting to type a coordinate. This brings up the Enter X Y Z typed input box. The x and y coordinates are typed in, separated by a space, and the <enter> key pressed.

To return to dynamic moving without entering a coordinate, simply select the X on the top of the input box. The box will disappear and dynamic moving will resume.
15.15.5 Simple Text Create

Position of option on menu: CAD => Text => Simple create or by selection of appropriate icon from the toolbar.

This option creates text strings and then displays grips to quickly allow editing of text size, rotation and justification point.

The text style and height are taken from the Text controlbar and the model and colour from the CAD controlbar (see 15.1 Controlbars, 15.1.2 Symbol Controlbar and 15.1.1 CAD Controlbar).

The text will be placed with the vertex and justification point at the selected position.

After defining one piece of text, the option restarts so that another of text can be defined. Picking Cancel from the Pick Ops menu, hitting <esc> or selecting another option terminates the option.

On selecting Simple create, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

An insertion point for the text is selected and accepted and an Enter text typed input box is then displayed on the screen.

The text is typed into the box and the <enter> key pressed.

The text will be placed with the vertex and justification point at the selected position and using values such as colour, model, text height and text style given in the CAD controlbar and Text controlbar (See 15.1 Controlbars).

When the text is displayed, grips for quick editing of size, rotation and moving of the justification point are also shown. The appropriate grip can then selected for quick editing. For details on using the grips, go to the section 15.15.5 Simple Text Create.
15.15.6 Text Create

**Position of option on menu:** CAD => Text => Create
or by selection of appropriate icon from the toolbar.

This option creates text strings at a selected insertion point (a cursor snap is valid).
After defining one piece of text, the option restarts so that another piece of text can be defined.
Picking Cancel from the Pick Ops menu, hitting <esc> or selecting another option terminates the option.

On selecting Create, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
An insertion point is selected and accepted. The text will be placed relative to the insertion point given other parameters such as justification, as defined in the textstyle data panel.

**STEP 2:**
The actual text is entered into the text input box followed by the enter key.

**STEP 3:**
The text is created using the specified settings.
15.15.7 Create Text on Vertex of Super String

**Position of option on menu:** CAD => Text => Create v or by selection of appropriate icon from the toolbar.

This option creates text at a vertex of a super string. One piece of text is allowed per super string vertex, so if this option is used on existing vertex text, the existing value is displayed in the text input box.

After defining one piece of text, the option restarts so that another piece of text can be defined. Picking Cancel from the Pick Ops menu, hitting <esc> or selecting another option terminates the option.

On selecting Create v, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
An insertion point is selected and accepted. The point snap is forced on so that a vertex can be selected. The text will be placed relative to the insertion point given other parameters such as justification, as defined in the textstyle data panel.

**STEP 2:**
The actual text is entered into the text input box followed by the Enter key.

**STEP 3:**
The text is created using the specified settings. Picking Cancel from the Pick Ops menu, hitting <esc> or selecting another option terminates the option.
15.15.8 Text Create on Segment of Super Strings

**Position of option on menu:**  
CAD => Text => Create s

or by selection of appropriate icon from the toolbar.

This option creates text at the mid point of a selected super string segment. One piece of text is allowed per super string segment, so if this option is used on existing segment text, the existing value is displayed in the text input box.

After defining one piece of text, the option restarts so that another piece of text can be defined. Picking Cancel from the Pick Ops menu, hitting <Esc> or selecting another option terminates the option.

On selecting Create s, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

A super string segment is selected and accepted. The line snap is forced on so that a segment can be selected. The text will be placed relative to the insertion point which is the midpoint of the segment given other parameters such as justification, as defined in the textstyle data panel.

**STEP 2:**

The actual text is entered into the text input box followed by the Enter key.

**STEP 3:**

The text is created using the specified settings. Picking Cancel from the Pick Ops menu, hitting <Esc> or selecting another option terminates the option.
mid text
15.15.9 Rotate Text around Vertex

**Position of option on menu:** CAD => Text => Rotate v

or by selection of appropriate icon from the toolbar. ⬤

This option rotates text about its vertex. This applies to text strings, super string segment or vertex text and 4d string vertex text. For super string segment text, the vertex is taken to be the mid point of the segment.

After defining one piece of text, the option restarts so that another piece of text can be defined. Picking Cancel from the Pick Ops menu, hitting <Esc> or selecting another option terminates the option.

On selecting Rotate v, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

A text string to be rotated is selected and accepted.

**STEP 2:**

The rotation bearing (the final bearing of the text) is specified by selection and acceptance of a point with the mouse or by entry into an input box followed by the enter key. To bring up the input box start typing or press the space bar. The value is entered into the input box followed by the enter key.

**Note:** The typed bearing is not relative but absolute. i.e. the value given will not rotate the existing text by that amount, rather it will reposition the text at that bearing.

The line drawn represents the bearing value and changes with movement of the mouse. If the user wants to see what the current value of the bearing is, simply press the D key (dynamic value). This puts the value into the input box where it can be accepted to specify the bearing or the input box can be closed and the rubber banding (graphically changing) of the angle continued.

**Note:** The Page up and page down keys can be used when the input angle box comes up to add or subtract intervals of 90 degrees.
This option also allows the definition of the bearing by the selection of the 2nd point perpendicular or tangential to a selected segment. For this, the line snap should be on. The user selects the segment (line or arc) and then by pressing P for perpendicular or T for tangential a solution is shown. As there is often two solutions with respect to arcs, the user can move the mouse to change from one solution to the next. The example shown below is the perpendicular case.

**STEP 3:**
The text is rotated to the specified bearing.

Picking Cancel from the Pick Ops menu, hitting <Esc> or selecting another option terminates the option.
15.15.10 Rotate Text about the Justification Point

**Position of option on menu:**  CAD => Text => Rotate j

or by selection of appropriate icon from the toolbar.

This option rotates text about its justification point. Note that the vertex point and the justification point do not coincide when either the raise or offset for the text is not zero.

**Note:** The typed bearing is not relative but absolute. i.e. the value given will not rotate the existing text by that amount, rather it will reposition the text at that bearing.

On selecting **Rotate j**, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

The text to be rotated is selected and accepted.

**STEP 2:**

The rotation bearing (the final bearing of the text) is specified by selection and acceptance of a point with the mouse or by entry into an angle box followed by the enter key. To bring up the angle box start typing or press the space bar. The value is entered into the input box followed by the enter key.

The line drawn represents the bearing value and changes with movement of the mouse. If the user wants to see what the current value of the bearing is, simply press the D key (dynamic value). This puts the value into the input box where it can be accepted to specify the bearing or the input box can be closed and the rubber banding (graphically changing) of the bearing continued.

**Note:** The Page up and page down keys can be used when the bearing input box comes up to add or subtract intervals of 90 degrees.

This option also allows the definition of the bearing by the selection of the 2nd point perpendicular or tangential to a selected segment. For this, the line snap should be on. The user selects the segment (line or arc) and then by pressing P for perpendicular or T for tangential a
solution is shown. As there is often two solutions with respect to arcs, the user can move the mouse to change from one solution to the next. The example shown below is the perpendicular case.

**STEP 3:**
The text is rotated to the specified bearing.
Picking Cancel from the Pick Ops menu, hitting <Esc> or selecting another option terminates the option.
15.15.11 Move the Text Justification Point

**Position of option on menu:** CAD => Text => Move j
or by selection of appropriate icon from the toolbar.

This option moves the text justification point, and hence the text with it.

On selecting Move j, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
The text to be moved is selected and accepted.

**STEP 2:**
The new position for the text is selected and accepted.

**STEP 3:**
The text is moved to the new position.

Picking Cancel from the Pick Ops menu, hitting <Esc> or selecting another option terminates the option.
15.15.12 Move the Text Vertex Point

Position of option on menu:  CAD => Text => Move v
or by selection of appropriate icon from the toolbar.

This option moves the vertex that vertex text is attached to, and hence moves the text with it. The option works for text strings, vertex text for super strings and 4d string but will not work for segment text where there is no actual vertex at the mid segment position where the segment text is initially placed.

On selecting Move v, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
The vertex text to be moved is selected and accepted.

**STEP 2:**
The new position for the vertex and the text is selected and accepted.

**STEP 3:**
The vertex and the vertex text is moved to the new position.

Picking Cancel from the Pick Ops menu, hitting <Esc> or selecting another option terminates the option.
15.15.13 Height of Text

**Position of option on menu:** CAD => Text => Height

or by selection of appropriate icon from the toolbar.

This option changes the height of text.

On selecting Height, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the *12d Model* application window.

**STEP 1:**

The text of which the height is to be changed is selected and accepted.

**STEP 2:**

A height for the text is given either by selection with the mouse or by typing a value. To type a value, simply start typing and the input box for the height will appear. Alternatively you can press the space bar to bring up the input box. The value is entered into the input box followed by the enter key.

The circle drawn represents the height value and changes with movement of the mouse. If the user wants to see what the current value of the height is, simply press the D key (dynamic value). This puts the value into the input box where it can be accepted to create the point or the input box can be closed and the rubber banding (graphically changing) of the circle continued.

This option also allows the definition of the distance by the selection of the 2nd point perpendicular or tangential to a selected segment. For this, the line snap should be on. The user selects the segment (line or arc) and then by pressing P for perpendicular or T for tangential a solution is shown. As there is often two solutions with respect to arcs, the user can move the mouse to change from one solution to the next.

**STEP 3:**

The text height is changed.

Picking Cancel from the Pick Ops menu, hitting <Esc> or selecting another option terminates the
option.
15.15.14 Change Text

Position of option on menu: CAD => Text => Text
or by selection of appropriate icon from the toolbar.

This option edits the characters of selected text.
On selecting Text, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The text to be changed is selected and accepted.

STEP 2:
The new text is entered into the text input box followed by the Enter key.

STEP 3:
The text is changed.
Picking Cancel from the Pick Ops menu, hitting <Esc> or selecting another option terminates the option.
new text
15.15.15 Style of Text

Position of option on menu: CAD => Text => Style
or by selection of appropriate icon from the toolbar. 
This option changes the textstyle of selected text.

On selecting Style, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The text to be changed is selected and accepted.

STEP 2:
The new textstyle is selected from the style pop-up list.

STEP 3:
The textstyle is changed.
Picking Cancel from the Pick Ops menu, hitting <Esc> or selecting another option terminates the option.
15.15.16 Text Colour

**Position of option on menu:**  
CAD => Text => Colour

or by selection of appropriate icon from the toolbar.

This option changes the colour of selected text.

On selecting Colour, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

The text to be changed is selected and accepted.

**STEP 2:**

The new colour for the text is entered into the text input box or by selecting the colour square on the input box to bring up the select colour choice box followed by the enter key.

**STEP 3:**

The text colour is changed.

Picking Cancel from the Pick Ops menu, hitting <Esc> or selecting another option terminates the option.
15.15.17 Reset Text Justification Point

Position of option on menu:  

```
CAD => Text => Reset j
```

or by selection of appropriate icon from the toolbar.

This option resets the text justification point back to being the same as the vertex for vertex text, and to the segment mid point for segment text. That is, the offset and raise for the selected text are both set to zero.

On selecting `Reset j`, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
The text to be changed is selected and accepted.

**STEP 2:**
A warning message is shown giving the user the option of resetting the justification point or not.

**STEP 3:**
The text is reset if accepted.
15.15.18 Label Perpendicular Offset

Position of option on menu: CAD => Text => Label perp. Offset
or by selection of appropriate icon from the toolbar.

This option creates a perpendicular line from a selected segment to a selected position, and creates text with the value of the perpendicular distance between the segment and the selected position, on the line.

On selecting Label perp. Offset, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
A string is selected and accepted.
After the string is accepted a perpendicular line will be displayed ‘rubber banding’ to the various solutions according to the position of the cursor. This will continue until a 2nd point is selected and accepted.

STEP 2:
Select a 2nd point and accept it.

STEP 3:
A perpendicular line is constructed between the accepted string and point. The length value of this line will be displayed in text. This text can be modified or changed using the other CAD Text options.

STEP 4:
After the labelled perpendicular line is constructed, another perpendicular rubber banding line will be displayed. This will continue until the option is terminated (via the Esc key).
To create another labelled perpendicular line, select another point and accept it.

**STEP 5:**
Another labelled perpendicular line is constructed. Another perpendicular *rubber banding* line will be displayed. This will continue until the option is terminated (via the Esc key).
15.15.19 All Text Edits

Position of option on menu: CAD => Text => All
or by selection of appropriate icon from the toolbar.

This option positions text using a menu made up of most of text edits already described.
On selecting All, the user is prompted for the relevant data in the screen message box located at
the bottom left hand corner of the 12d Model application window.

STEP 1:
The text to be changed is selected and accepted.

STEP 2:
After the selection and acceptance of a piece of text, the positioning menu is shown. This also
allows various other text editing functions such as colour, height and text.

STEP 3:
The user can select the appropriate option from the menu and make the changes. The menu
remains active allowing a number of operations to be made in succession.

Picking Cancel from the Pick Ops menu, hitting <Esc> or selecting another option terminates the
option.
15.15.20 Text Delete

Position of option on menu: CAD => Text => Delete or by selection of appropriate icon from the toolbar.

This option deletes selected text.

On selecting Delete, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
The text to be deleted is selected and accepted.

**STEP 2:**
The selected text is deleted.

Picking Cancel from the Pick Ops menu, hitting <Esc> or selecting another option terminates the option.
15.16 CAD Symbol

Position of option on menu: CAD => Symbol
Position of option on menu: Various toolbars

12d Model symbols are world styles at a vertex of a super string. The symbol is attached to a vertex (these are displayed when Vertices are toggle on in a plan view) and has a justification point, a rotation, a delta x and a delta y. The vertex and justification point only coincide if the delta x and delta y values are both zero.

In some symbol options, the symbol type, size and angle are defined by the Symbol Controlbar and model and colour from the CAD Controlbar (for more information, go to the section 15.1.2 Symbol Controlbar).

The symbols are defined in the symbols.4d file.

For more information on the control bars, go to the sections 15.1.2 Symbol Controlbar and 15.1.1 CAD Controlbar.

The Cad Symbol walk-right menu is

Menu of Options to Create and Manipulate Symbols
edit symbols using grips
create symbols and edit using grips
delete a symbol

For the option Edit, go to 15.16.2 Edit Symbol
Create 15.16.1 Create Symbol
Delete 15.16.3 Symbol Delete
Commands 15.16.3.1 Cad Symbol Commands
15.16.1 Create Symbol

**Position of option on menu:** CAD => Symbol => Create
or by selection of appropriate icon from the toolbar.

For information about Symbol and its definitions, go to the section 4.7 Symbol Definitions.

**12d Model** has two CAD symbol options Create and Edit. However both of these run the same option which starts up in different modes - Create is in the mode to create symbols on a super string vertex and Edit which edits existing symbols.

Once either CAD symbol option is started it is possible to change between the Create and Edit modes at any time.

The **Create** option creates a new super string with a symbol on the vertex, or create a symbol on an existing super string vertex which does not already have a symbol, and then displays a list key commands in the screen message area, and grips on screen, to quickly allow editing of the symbol type, size, colour, rotation, angle, x and y offset etc.

After selecting the option, the **Pick position** message is displayed in the screen message area.

To go from Create to Edit mode, type **e** - go to **To Go from Create to Edit Mode - Typing e**
To create a symbol and a new super string, type **c** - go to **Creating a Symbol - Typing c**
To create vertex symbol, type **v** - go to **Creating Text at a Super String Vertex - Typing v**

**Creating a Symbol - Typing c**

After typing **c**, the **Pick position** message is again displayed in the screen message area and the position of the symbol is then selected with the cursor.

When the position is accepted a new one vertex super string is created with the symbol on it.

The super string vertex and symbol justification point is placed at that position. The x and y offset both zero.

When the symbol is displayed, grips for quick editing of height, rotation and moving of the justification point are also shown. The appropriate grip can then selected for quick editing. For details on using the grips, go to the section 4.15 Symbol Grips.

For the new symbol, the symbol name, height and angle are taken from the **Symbol controlbar**
and the model and colour from the **CAD controlbar** (see [15.1 Controlbars, 15.1.2 Symbol Controlbar](#) and [15.1.1 CAD Controlbar](#)).

After the symbol is created, a list of typed options is then displayed in the screen message area.

and if **m** is typed, the rest of the options are shown

These option are the same as when editing existing symbols, and will be described in detail in the section [15.16.2 Edit Symbol](#).

**Creating a Symbol at a Super String Vertex- Typing v**

After typing **v**, the **Pick grip point** message is displayed in the screen message area and the vertex of the super string to place the symbol on is then selected with the cursor.

The symbol and symbol justification point are placed at that vertex. The x and y offset both zero.

When the symbol is displayed, grips for quick editing of size, rotation, moving of the justification point and string vertex are also shown. The appropriate grip can then selected for quick editing. For details on using the grips, go to the section [4.15 Symbol Grips](#).

For the new symbol, the symbol name, height and angle are taken from the **Symbol controlbar** and colour from the **CAD controlbar** (see [15.1 Controlbars, 15.1.2 Symbol Controlbar](#) and [15.1.1 CAD Controlbar](#)). The created symbol will be part of the super string so no model is required.
After the vertex symbol is created, a list of typed options is then displayed in the screen message area.

\[
\text{<[Y] Pick grip point or (j)ustification, (c)olour, (s)ymbol, (h)eight, (n)ew, (f)inish, (m)ore...> \text{[picks][fast][Menu]}}
\]

and if \text{m} is typed, the rest of the options are shown

\[
\text{<[Y] offset (x), offset (y), rot(ation), (d)efault, (m)ore... (l)ock, no auto(pan), <previous, - >next> [picks][fast][Menu]}
\]

These option are the same as when editing existing symbols, and will be described in detail in the section 15.16.2 Edit Symbol.

To Go from Create to Edit Mode - Typing e

After typing \text{e}, the \text{Pick Symbol} message is displayed in the screen message area.

\[
\text{<[Pick symbol](e)dit, (c)reate, (v)ertex> [picks][fast][Menu]}
\]

This is the same as when selecting the Edit option from the CAD Symbol toolbar and will be described in detail in the section 15.16.2 Edit Symbol.
15.16.2 Edit Symbol

Position of option on menu:  CAD => Symbol => Edit
or by selection of appropriate icon from the toolbar.

For information about Symbol and its definitions, go to the section 4.7 Symbol Definitions.

12d Model has two CAD symbol options Create and Edit. However both of these run the same option which starts up in different modes - Create is in the mode to create a new symbol, or a symbol on a super string vertex and Edit which edits existing symbols.

Once either CAD symbol option is started it is possible to change between the Create and Edit modes at any time.

After typing e, the Pick symbol message is displayed in the screen message area

```plaintext
<[Pick symbol](e)dit, (c)reate, (v)ertex> [picks][fast][Menu]
```

and a symbol s then selected by the mouse for editing.

The selected symbol with the symbol edit grips is shown on screen, and a list of available typed commands in the screen message area to quickly allow editing of the symbol name, symbol size, colour, rotation, angle, x and y offset, justification point, vertex, etc.

Options displayed after selecting symbol

```plaintext
<[J]Pick grip point or (v)ertex, (c)olour, (s)ymbol, (h)eight, (n)ew, (f)inish, (m)ore...> [picks][fast][Menu]
```

and by typing m

```plaintext
<[J] offset (x), offset (y), rot(a)tion, (d)efault, (m)ore...,[l]ocal, [n]o auto[pt]an> [picks][fast][Menu]
```

To change the symbol colour, type c - go to Change Symbol Colour - Typing c
To change the symbol name, type **s** - go to **Change Symbol Name - Typing s**
To change the symbol height, type **h** - go to **Change Symbol Height - Typing h**
To create/edit a new symbol, type **n** - go to **Create/Edit a New Symbol - Typing n**
To end the create/edit option, type **f** - go to **Finish the Create/Edit - Typing f**
To show the other line of options, type **m** - go to **Show Other Line of Options - Typing m**

To change the x offset, type **x** - go to **Change Offset x - Typing x**
To change the y offset, type **y** - go to **Change Offset y - Typing y**
To change the symbol angle, type **a** - go to **Change Symbol rotation - Typing a**
To reset some symbol values to their defaults, type **d** - go to **Reset Symbol Parameters to Defaults - Typing d**
To show the other line of options, type **m** - go to **Show Other Line of Options - Typing m**
To toggle vertex lock on and off, type **l** - go to **Toggle Lock - Typing l**
To toggle autopan on and off, type **p** - go to **Toggle Autopan - Typing p**
To change focus to the next symbol press **-&gt;** - go to **Change Focus to the Next Vertex in String - Pressing right arrow key (&gt;)**
To change focus to the previous symbol, press **&lt;-** - go to **Change Focus to the Previous Vertex in String - Pressing left arrow key (&lt;)**

**Change Symbol Colour - Typing c**
After typing **c**, a Colour **Typed input** box appears on the screen.

![Typed Input Box](image)

The new colour for the symbol is typed into the Typed input box followed by the &lt;enter&gt; key, or
by selecting a colour from the Select Colour box which is brought up by clicking on the colour button.

If the symbol has an existing colour, other then the default colour, typing C will display the Typed Input box with the current colour displayed.

Change Symbol Name - Typing s

After typing s, a Symbol Typed input box appears with the current symbol style displayed.
The new style for the symbol is typed into the Style input box followed by the <Enter> key, or by selecting a style from the Select Symbol box which is brought up by clicking on the style button.
Change Symbol Height - Typing h

After typing h, a Size Typed input box appears with the current symbol height in it.

The new height is typed into the Size Typed input box followed by the <Enter> key.

**Note** - Many arithmetic expressions are supported in the Size typed input box (e.g. 10+27). See the section 4.19.1 Expressions in Panel Fields.

Create/Edit a New Symbol - Typing n

If the option was in Edit mode and n is typed, a new Edit is started (e mode). The Pick symbol message is displayed in the screen message area and another symbol is selected to edit.

Or a new symbol can be created by typing c or v. See the section 15.16.1 Create Symbol for more information on c and v.

If the option was in Create mode and n is typed, a new Create is started in the c mode. The Pick position message is displayed in the screen message area and a new symbol is created.

Or a new vertex symbol can be created by typing v, or the Edit mode can be entered by typing e. See the section 15.16.1 Create Symbol for more information on c and v.

Change Offset x - Typing x

After typing x, an Offset x Typed input box appears with the current symbol x offset in it.
The new offset \( x \) is typed into the Offset \( x \) input box followed by the <Enter> key. The symbol justification point will be offset \( x \) by the new amount.

For information about Symbol and the definition of offset, go to the section 4.7 Symbol Definitions.

**Note** - Many arithmetic expressions are supported in the Offset typed input box (e.g. 10+27). See the section 4.19.1 Expressions in Panel Fields.

**Change Offset y - Typing y**

After typing \( o \), an Offset \( y \) **Typed input** box appears with the current symbol offset in it.
The new offset is typed into the Offset y **Typed Input** box followed by the <Enter> key. The symbol justification point will be offset y by the new amount.

For information about symbol and the definition of **offset**, go to the section 4.7 Symbol Definitions.
**Note** - Many arithmetic expressions are supported in the **Offset** typed input box (e.g. 10+27). See the section 4.19.1 **Expressions in Panel Fields**.

**Change Symbol rotation - Typing a**

After typing **a**, a Rotation **Typed input** box appears with the current symbol angle in it.

![Symbol rotation diagram]

**Symbol - angle rotation = 0**

The new angle is typed into the Rotation **Typed input** box followed by the <Enter> key. The direction of the symbol point will be rotated by the new amount.
For information about symbol and the definition of **angle rotation**, go to the section 4.7 Symbol Definitions.

**Note** - Some arithmetic expressions are supported in the Rotation typed input box (e.g. 10+90). See the section 4.19.1.2 Expressions in Bearing, Angle Panel Fields for what is allowed in angle/bearing panel fields.

**Reset Symbol Parameters to Defaults - Typing d**

After typing **d**, some of the symbol parameters are set back to their default values. That is:

- Symbol type is set to the symbol in the Cad Symbol Controlbar
- Height is set to the height in the Cad Symbol Controlbar
- Angle is set to the angle in the Cad Symbol Controlbar
- Model is left as it is
- Colour is rest to the string colour.
The default symbol type, height and angle are defined by the Symbol Controlbar and model and colour from the CAD Controlbar (for more information, go to the section 15.1.2 Symbol Controlbar).

For information about Symbol definitions, go to the section 4.7 Symbol Definitions.

**Change Focus to the Next Vertex in String - Pressing right arrow key (->)**

For vertex symbol on a super string, pressing ->, moves the focus of the edit commands to the vertex symbol on the next vertex of the super string. If the symbol is on the last vertex, pressing -> does nothing.

For information about symbol definitions, go to the section 4.7 Symbol Definitions.

**Change Focus to the Previous Vertex in String - Pressing left arrow key (<-)**

When editing vertex symbol on a super string, pressing <-, moves the focus of the edit commands to the vertex symbol on the previous vertex of the super string. If the symbol is on the first vertex, pressing < does nothing. If Autopan is on, the selected vertex symbol is made the centre of the active plan view.

For information about symbol definitions, go to the section 4.7 Symbol Definitions.

**Toggle Lock - Typing l**

Typing l toggles locking the vertex on and off.

When vertex lock is on, the vertex grip can not be selected and used to move the position of the string vertex.

When the screen message area reads (l) lock (lock), this means that vertex lock is off (unlocked) and typing l locks it.

When the screen message area reads un(l) lock (unlock), this means that the vertex is locked and typing l unlocks it.

For information about the vertex symbol grip, go to the section 4.15 Symbol Grips.

For information about symbol definitions, go to the section 4.7 Symbol Definitions.

**Toggle Autopan - Typing p**

Typing p toggles autopan on and off.

When editing vertex symbol on a super string and Autopan is on, pressing -> or <-, moves the focus of the edit commands to the vertex symbol on the next/previous vertex of the super string, and the selected vertex symbol is made the centre of the active plan view.

When vertex lock is on, the vertex grip can not be selected and used to move the position of the string vertex.

When the screen message area reads auto(p)an (autopan), this means that autopan is off and typing p turns autopan on.

When the screen message area reads no auto(p)an (no autopan), this means that autopan is on and typing p turns it off.
For information about symbol definitions, go to the section 4.7 Symbol Definitions.

**Show Other Line of Options - Typing m**

There are too many Edit options to fit onto one line of the screen message and two lines of options are required. Typing m toggles between the two lines of options.

```
<[J] Pick grip point or (v)ertex, (c)olour, (s)ymbol, (n)eight, (n)ew, (f)inish, (m)ore... > [picks][fast][Menu]

<[J] offset (x), offset (y), rot(at)ion, (d)efault, (m)ore... , (l)ock, no auto(pan) > [picks][fast][Menu]
```

**Finish the Create/Edit - Typing f**

Typing f exits the create/edit symbol option.
15.16.3 Symbol Delete

Position of option on menu: CAD => Symbol => Delete
or by selection of appropriate icon from the toolbar.

This option deletes symbols.

On selecting Delete, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
The Symbol to be deleted is selected and accepted.

**STEP 2:**
The selected Symbol is deleted.

Picking Cancel from the Pick Ops menu, hitting <Esc> or selecting another option terminates the option.

15.16.3.1 Cad Symbol Commands

Position of option on menu: CAD => Symbol => Commands

The Cad Symbol Commands walk-right menu is
Menu of Options to Create and Manipulate Symbols

- edit symbols using grips
- create symbols and edit using grips
- create a symbol at a selected position - a one point string is created
- create a symbol at a user selected super string vertex
- rotate symbol about its justification pt (which may be offset from the vertex)
- move symbol by its vertex
- move symbol by its justification point (the vertex does not move)
- change the height of a symbol
- change the symbol
- change the colour of a symbol
- reset the symbol justification point so that it is on top of the vertex posn

For the option *Simple edit*, go to

- 15.16.4 Simple Symbol Edit
- 15.16.5 Simple Symbol Create
- 15.16.6 Create Symbol
- 15.16.7 Create Symbol at the Vertex of a Super String
- 15.16.8 Rotate Symbol about the Justification Point
- 15.16.10 Move the Symbol Vertex Point
- 15.16.9 Move the Symbol Justification Point
- 15.16.11 Height of Symbol
- 15.16.12 Change Symbol
- 15.16.13 Symbol Colour
- 15.16.14 Reset the Symbol Justification Point
- 15.16.15 All Symbol Edits
- 15.16.3 Symbol Delete
15.16.4 Simple Symbol Edit

Position of option on menu: CAD => Symbol => Commands => Simple edit
or by selection of appropriate icon from the toolbar.

This option edits symbols using grips to quickly define the mode of editing (sizing, rotating or moving the justification point).

On selecting Simple edit, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
When the symbol to be edited is selected, grips for size, rotating and moving the justification point are displayed. The appropriate grip is then selected for quick editing.

Size Grip (diamond):
If the Size grip is selected, the symbol size is dynamically adjusted by moving the cursor. The size of the symbol is displayed as part of the Enter height prompt in the message area.

The symbol size is set when a position is accepted.

An exact symbol size can be entered by hitting the <space bar> or by starting to type a size. This brings up the Enter distance typed input box. The size is typed in and the <enter> key pressed.

To return to dynamic sizing without entering a distance, simply select the X on the top of the input box. The box will disappear and dynamic sizing will resume.
If the symbol is being dynamically sized, the *current* size of the symbol can be displayed by pressing the d key which brings up the **Enter distance** typed input box with the current dynamic symbol size in it.

![Typed Input](image)

The size can be modified and the value used by pressing the <Enter> key.

To return to dynamic sizing without entering a distance, simply select the X on the top of the input box.

**Rotate Grip (circle):**

If the **Rotate grip** is selected, the symbol bearing is dynamically adjusted by moving the cursor. The bearing of the symbol is displayed as part of the **Enter bearing** prompt in the message area.

The symbol bearing is set when a position is accepted.

![Rotate Grip](image)

An *exact* bearing can be entered by hitting the <space bar> or by starting to type a bearing. This brings up the **Enter bearing** typed input box. The bearing is typed in and the <Enter> key pressed.

![Typed Input](image)

To return to dynamic rotating without entering a bearing, simply select the X on the top of the input box. The box will disappear and dynamic sizing will resume.

If the symbol is being dynamically rotated, the *current* bearing of the symbol can be displayed by pressing the d key which brings up the **Enter bearing** typed input box with the *current* symbol bearing in it.

![Typed Input](image)

The bearing can be modified and the value used by pressing the <Enter> key.

To return to dynamic rotation without entering a bearing, simply select the X on the top of the input box.

**Justification Grip (square):**

If the **Justification grip** is selected, the symbol justification point is dynamically adjusted by moving the cursor. The (x,y) position of the symbol is displayed in the message area.

The symbol justification point is set when a position is accepted.
An exact coordinate can be entered by hitting the <space bar> or by starting to type a coordinate. This brings up the Enter X Y Z typed input box. The x and y coordinates are typed in, separated by a space, and the <Enter> key pressed.

To return to dynamic moving without entering a coordinate, simply select the X on the top of the input box. The box will disappear and dynamic moving will resume.
15.16.5 Simple Symbol Create

Position of option on menu: CAD => Symbol => Commands => Simple create or by selection of appropriate icon from the toolbar.

This option creates symbols and then displays grips to allow quick editing of symbol size, rotation and justification point.

The symbol and symbol height and symbol angle are taken from the Symbol controlbar (See 15.1 Controlbars) and the model and colour (if the symbol does not have an inbuilt colour) from the CAD controlbar (see 15.1 Controlbars, 15.1.2 Symbol Controlbar and 15.1.1 CAD Controlbar).

The symbol will be placed with the vertex and justification point at the selected position.

After defining one symbol, the option restarts so that another symbol can be defined. Picking Cancel from the Pick Ops menu, hitting <Esc> or selecting another option terminates the option.

On selecting Simple create, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

An insertion point for the symbol is selected and accepted, the symbol is displayed on the screen.

*Warning* - if no symbol appears, then there is probably no symbol selected in the Symbol controlbar.

When the symbol is displayed, grips for quick editing of size, rotation and moving of the justification point are also shown. The appropriate grip can then selected for quick editing. For details on using the grips, go to the section 15.16.4 Simple Symbol Edit.
15.16.6 Create Symbol

**Position of option on menu:** CAD => Symbol => Commands => Create

or by selection of appropriate icon from the toolbar.

This option creates a symbol (as a one vertex super string) at a selected point (a cursor snap is valid).

After defining a symbol, the option restarts so that another symbol can be defined. Picking Cancel from the Pick Ops menu, hitting <esc> or selecting another option terminates the option.

On selecting Create, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
An insertion point is selected and accepted. A one vertex super string is created and the symbol placed at that vertex. The symbol is placed relative to the insertion point given in the symbol definition (See symbols.4d file).

**STEP 2:**
The symbol style (name) is entered into the input box or selected from the select symbol choice box. The choice box is opened by pressing the symbol icon on the right of the input box. A valid symbol type can be found by walking right on the symbol menu.

**STEP 3:**
A symbol size is given either by selection with the mouse or by typing a value. To type a value, simply start typing and the input box for the size will appear. The user can also press the space bar to bring up the input box. The value is entered into the input box followed by the enter key.

The circle drawn represents the size value and changes with movement of the mouse. If the user wants to see what the current value of the height is, simply press the D key (dynamic value). This puts the value into the input box where it can be accepted to create the symbol or the input box can be closed and the rubber banding (graphically changing) of the circle continued.

This option also allows the definition of the size by the selection of a point perpendicular or tangential to a selected segment. For this, the line snap should be on. The user selects the segment (line or arc) and then by pressing P for perpendicular or T for tangential a solution is shown. As there is often two solutions with respect to arcs, the user can move the mouse to change from one solution to the next.
STEP 4:
The symbol is created together with a point super string at the selected point.
15.16.7 Create Symbol at the Vertex of a Super String

Position of option on menu:   CAD => Symbol => Commands => Create v
or by selection of appropriate icon from the toolbar.

This option creates a symbol at a vertex of a super string. One symbol is allowed per super string vertex, so if this option is used on existing vertex symbol, the existing value is displayed in the symbol input box.

After defining a symbol, the option restarts so that another symbol can be defined. Picking Cancel from the Pick Ops menu, hitting <esc> or selecting another option terminates the option.

On selecting Create v, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:

An insertion point is selected and accepted. The point snap is forced on so that a vertex can be selected. The Symbol will be placed relative to the insertion point given other parameters such as justification, as defined in the symbol definition.

STEP 2:

The symbol style is entered into the input box or selected from the select symbol choice box. The choice box is opened by pressing the symbol icon on the right of the input box. A valid symbol type can be found by walking right on the symbol menu.
STEP 3:

A symbol size is given either by selection with the mouse or by typing a value. To type a value, simply start typing and the input box for the size will appear. The user can also press the space bar to bring up the input box. The value is entered into the input box followed by the enter key.

The circle drawn represents the size value and changes with movement of the mouse. If the user wants to see what the current value of the height is, simply press the D key (dynamic value). This puts the value into the input box where it can be accepted to create the symbol or the input box can be closed and the rubber banding (graphically changing) of the circle continued.

This option also allows the definition of the size by the selection of a point perpendicular or tangential to a selected segment. For this, the line snap should be on. The user selects the segment (line or arc) and then by pressing P for perpendicular or T for tangential a solution is shown. As there is often two solutions with respect to arcs, the user can move the mouse to change from one solution to the next.
STEP 4:
The symbol is created at the vertex of the super string.
15.16.8 Rotate Symbol about the Justification Point

Position of option on menu:  CAD => Symbol => Commands => Rotate j
or by selection of appropriate icon from the toolbar.

This option rotates a symbol about its justification point. The vertex point and the justification point often do not coincide. This occurs when non zero value is specified for either the x or y offset.

Note: The typed bearing is not relative but absolute. i.e. the value given will not rotate the existing symbol by that amount, rather it will reposition the symbol at that bearing.

On selecting Rotate j, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:

The Symbol to be rotated is selected and accepted.

STEP 2:

The rotation bearing (the final bearing of the symbol) is specified by selection and acceptance of a point with the mouse or by entry into an angle box followed by the enter key. To bring up the angle box start typing or press the space bar. The value is entered into the input box followed by the enter key.

The line drawn represents the bearing value and changes with movement of the mouse. If the user wants to see what the current value of the bearing is, simply press the D key (dynamic value). This puts the value into the input box where it can be accepted to specify the bearing or the input box can be closed and the rubber banding (graphically changing) of the bearing continued.

Note: The Page up and page down keys can be used when the bearing input box comes up to add or subtract intervals of 90 degrees.

STEP 3:

This option also allows the definition of the bearing by the selection of the 2nd point perpendicular or tangential to a selected segment. For this, the line snap should be on. The user selects the segment (line or arc) and then by pressing P for perpendicular or T for tangential a solution is shown. As there is often two solutions with respect to arcs, the user can move the mouse to change from one solution to the next. The example shown below is the perpendicular case.
The Symbol is rotated to the specified bearing.
Picking Cancel from the Pick Ops menu, hitting <esc> or selecting another option terminates the option.
15.16.9 Move the Symbol Justification Point

**Position of option on menu:** CAD => Symbol => Commands => Move j

or by selection of appropriate icon from the toolbar.

This option moves a symbol by moving its justification point.

On selecting Move j, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
The Symbol to be moved is selected and accepted.

**STEP 2:**
The new position for the Symbol is selected and accepted.

**STEP 3:**
The Symbol moves to the new position.

Picking Cancel from the Pick Ops menu, hitting <esc> or selecting another option terminates the option.
15.16.10 Move the Symbol Vertex Point

**Position of option on menu:** CAD => Symbol => Commands => Move V

or by selection of appropriate icon from the toolbar.

This option moves a symbol by moving the vertex that the symbol is attached to. Hence the symbol and the justification point for the symbol will move.

On selecting Move V, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
The Symbol to be moved is selected and accepted.

**STEP 2:**
The new position for the vertex of the Symbol is selected and accepted.

**STEP 3:**
The Symbol moves to the new position.

Picking Cancel from the Pick Ops menu, hitting <esc> or selecting another option terminates the option.
15.16.11 Height of Symbol

Position of option on menu: CAD => Symbol => Commands => Height
or by selection of appropriate icon from the toolbar.

This option changes the height of a symbol.

On selecting Height, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The Symbol of which the height is to be changed is selected and accepted.

STEP 2:
A height for the Symbol is given either by selection with the mouse or by typing a value. To type a value, simply start typing and the input box for the height will appear. Alternatively you can press the space bar to bring up the input box. The value is entered into the input box followed by the enter key.

The circle drawn represents the height value and changes with movement of the mouse. If the user wants to see what the current value of the height is, simply press the D key (dynamic value). This puts the value into the input box where it can be accepted to create the point or the input box can be closed and the rubber banding (graphically changing) of the circle continued.

This option also allows the definition of the distance by the selection of the 2nd point perpendicular or tangential to a selected segment. For this, the line snap should be on. The user selects the segment (line or arc) and then by pressing P for perpendicular or T for tangential a solution is shown. As there is often two solutions with respect to arcs, the user can move the mouse to change from one solution to the next.

STEP 3:
The Symbol height is changed.

Picking Cancel from the Pick Ops menu, hitting <esc> or selecting another option terminates the option.
15.16.12 Change Symbol

**Position of option on menu:** CAD => Symbol => Commands => Symbol

or by selection of appropriate icon from the toolbar.

This option changes the actual symbol defined at a super string vertex.

On selecting **Symbol**, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the *12d Model* application window.

**STEP 1:**

The Symbol to be changed is selected and accepted.

**STEP 2:**

The symbol style is entered into the input box or selected from the select symbol choice box. The choice box is opened by pressing the symbol icon on the right of the input box. A valid symbol type can be found by walking right on the symbol menu.

**STEP 3:**

The Symbol is changed.

Picking Cancel from the Pick Ops menu, hitting <esc> or selecting another option terminates the option.
15.16.13 Symbol Colour

Position of option on menu:  CAD =>Symbol =>Commands=>Colour

or by selection of appropriate icon from the toolbar.

This option changes the default colour of a symbol.

Important Note: if the symbol has inbuilt colours, changing the default colour will not change the symbols displayed colours. For this case, the definition of the symbol itself will need to be changed.

On selecting Colour, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The symbol to have the default colour changed is selected and accepted.

STEP 2:
The new colour for the Symbol is entered into the Symbol input box or by selecting the colour square on the input box to bring up the select colour choice box followed by the enter key.

STEP 3:
The Symbol colour is changed.
Picking Cancel from the Pick Ops menu, hitting <esc> or selecting another option terminates the option.
15.16.14 Reset the Symbol Justification Point

**Position of option on menu:** CAD => Symbol => Commands => Reset j

or by selection of appropriate icon from the toolbar.

This option resets justification point of a selected symbol. That is, the x and y offsets for the justification point are set to zero.

On selecting Reset j, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
The Symbol to be changed is selected and accepted.

**STEP 2:**
A warning message is shown giving the user the option of resetting the justification point or not.

**STEP 3:**
The symbol is reset if accepted.
15.16.15 All Symbol Edits

Position of option on menu: CAD => Symbol => Commands => All
or by selection of appropriate icon from the toolbar.

This option allows a number of symbol editing options to be done in succession using a menu made up of many of the options defined above.

On selecting All, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The Symbol to be changed is selected and accepted.

STEP 2:
After the selection and acceptance of a symbol, the positioning menu is shown. This also allows various other symbol editing functions such as colour, height and rotate.

STEP 3:
The user can select the appropriate option from the menu and make the changes. The menu remains active allowing a number of operations to be made in succession.

Picking Cancel from the Pick Ops menu, hitting <esc> or selecting another option terminates the option.
15.17 CAD Hole

**Position of option on menu:**  CAD => Hole

The Cad Hole walk-right menu is

![Cad Hole menu](image)

For the option *Add*, go to

*Remove*

15.17.1 Add Holes
15.17.2 Remove Holes
15.17.1 Add Holes

**Position of option on menu:**  CAD => Hole => Add

or by selection of appropriate icon from the toolbar.

This option adds holes to a polygon.

On selecting **Add holes**, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

First select the parent string. That is the polygon that is to have holes added to it.

**STEP 2:**

Then select the polygons that are to be the holes in the parent polygon (the child strings).

The selection of holes is terminated by pressing the `<esc>` key.

It is easier to see the result by colour filling the parent polygon.
15.17.2 Remove Holes

Position of option on menu:  CAD => Hole => Remove
or by selection of appropriate icon from the toolbar.

This option removes all holes from a polygon with holes.

On selecting Remove holes, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
Select the parent string. That is the polygon that contains holes.

**STEP 2:**
On selecting and accepting the string, all holes are removed from the string. Super strings are created for each of the hole boundaries.
15.18 CAD Fill

Position of option on menu: CAD => Fill

The Fill walk-right menu is

For the option Solid, go to

Solid many

15.18.1 Solid Fill
15.18.2 Solid Fill Many Strings
15.18.1 Solid Fill

Position of option on menu:  
CAD => Fill => Solid 
or by selection of appropriate icon from the toolbar.

This option fills a super string with a user defined colour and blend.

On selecting Solid Fill, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

Select and accept a string.

If the string selected is an enclosed shape, then the filled area is simply the closed shape. If the string isn't closed (such as two perpendicular lines), for the purposes of this option, the string will be temporarily closed and closed area coloured.

**Note:** If the string selected is a straight line, then its area is zero. When the colour fill of a line is completed, the line will simply disappear. This is because there is no area to colour.

**STEP 2:**

After the string is accepted, the Fill Colour Input box will appear. Type the name of the required colour into the Input box and press the enter key. The browse button on the Input box can be used to define the blend by measuring existing elements.

**STEP 3:**

After the colour is accepted, the Blend Input box will appear. This selection determines the transparency of the filled colour. A value between 0 (totally opaque) and 1 (totally transparent) must be selected.
**STEP 4:**
The selected super string is then filled.

![Blend 0 and Blend 1](image)
15.18.2 Solid Fill Many Strings

Position of option on menu: CAD => Fill => Solid many
or by selection of appropriate icon from the toolbar.

This option fills many selected super strings with the same user defined colour and blend.

On selecting Solid fill many, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
After selecting the option, the Fill Colour Input box is displayed.

Type the name of the required colour into the Input box and press the enter key. The browse button on the Input box can be used to define the blend by measuring existing elements.

**STEP 2:**
After the colour is accepted, the Blend Input box will appear. This selection determines the transparency of the filled colour. A value between 0 (totally opaque) and 1 (totally transparent) must be selected.

**STEP 3:**
Select and accept a string and the string is coloured filled.

The selected super string is then filled.
Then select and accept the next string to fill and the same colour and blend is used to colour fill the next string.

If the string selected is an enclosed shape, then the filled area is simply the closed shape. If the string isn’t closed (such as two perpendicular lines), for the purposes of this option, the string will be temporarily closed and closed area coloured.

**Note:** If the string selected is a straight line, then its area is zero. When the colour fill of a line is completed, the line will simply disappear. This is because there is no area to colour.
15.19 CAD Image

Position of option on menu: CAD => Image

The Cad Image walk-right menu is

For the option Move, go to
- Rotate
- Scale
- Change width
- Change height
- Insert
- Insert JPEG(s)
- Insert many
- Delete

15.19.1 Move Image
15.19.2 Rotate Image
15.19.3 Scale Image
15.19.4 Change Width
15.19.5 Change Height
15.19.6 Insert Image
15.19.7 Insert JPEG(s)
15.19.8 Insert Many
15.19.9 Delete Image
## 15.19.1 Move Image

**Position of option on menu:** CAD => Image => Move

or by selection of appropriate icon from the toolbar.

This option moves an inserted image by modifying the x and y offset for the image. The vertex that the image is attached to does not move.

On selecting Move Image, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

Select the vertex that the image is attached to.

**Note:** The position of the image is defined relative to the vertex. To select the image, the vertex that the image is attached to must be selected. The image itself can not be picked.

**STEP 2:**

After a vertex of an image is accepted, an outline of the image is displayed and moves with the position of the cursor. This will continue until the new position is selected and accepted.

Select the new position and accept it.

The cursor position can be selected with the mouse or entered via the keyboard. To enter a position with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the <enter> key.

**STEP 3:**

The image is then displayed at its new position.
Note: The **CAD Move Image** option only moves the image offset relative to the vertex. Use the option **CAD Move** to move the vertex (and the corresponding image moves with it).
15.19.2 Rotate Image

Position of option on menu: CAD => Image => Rotate

or by selection of appropriate icon from the toolbar.

This option rotates an image around its justification point.

On selecting Rotate Image, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
Select the vertex that the image is attached to.

Note: The position of the image is defined relative to the vertex. To select the image, the vertex that the image is attached to must be selected. The image itself can not be picked.

STEP 2:
After the vertex of an image is accepted, an outline of the image is displayed. The outline is rotated dynamically as the position of the cursor changes. This will continue until a final position is selected and accepted.

Select the new rotated position and accept it.

The cursor position can be selected with the mouse or entered via the keyboard. To enter a position with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the <enter> key.

STEP 3:
The rotated image is then displayed.
15.19.3 Scale Image

**Position of option on menu:** CAD => Image => Scale

or by selection of appropriate icon from the toolbar.

This option changes the size of an image.

On selecting **Scale Image**, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
Select the **vertex** that the image is attached to.

**Note:** The position of the image is defined relative to the **vertex**. To select the image, the **vertex** that the image is attached to must be selected. The image itself can not be picked.

**STEP 2:**
After the vertex of an image is accepted, an outline of the image is displayed. The size of the outline is determined by the position of the cursor. Both the height and the width of the image increase/decrease in the same ratio so that the image is not distorted.

Select the new size as given by the cursor position, and accept it.

The cursor position can be selected with the mouse or entered via the keyboard. To enter a position with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the <enter> key.

**STEP 3:**
The scaled image is then displayed.
15.19.4 Change Width

**Position of option on menu:** CAD => Image => Change width

or by selection of appropriate icon from the toolbar.

This option is user to increase or decrease the width of an image. The height of the image is not changed so the images will be stretched.

On selecting *Width Image*, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the *12d Model* application window.

**STEP 1:**
Select the *vertex* that the image is attached to.

**Note:** The position of the image is defined *relative to the vertex*. To select the image, the *vertex* that the image is attached to *must be selected*. The image itself can not be picked.

![Diagram showing selection of vertex](image)

**STEP 2:**
After the vertex of an image is accepted, the outline of the image is displayed. The width of the outline is determined by the position of the cursor. Whilst the height remains constant, the width of the outline increases and decreases dynamically as the position of the cursor changes.

![Diagram showing outline change](image)

Select the new width as given by the cursor position, and accept it.

The cursor position can be selected with the mouse or entered in via the keyboard. To enter a position with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the <enter> key.

**STEP 3:**
The image with the new width is then displayed.
15.19.5 Change Height

**Position of option on menu:**  
CAD => Image => Change height

or by selection of appropriate icon from the toolbar.

This option allows the user to increase or decrease the height of an image. The width of the image is not changed so the images will be stretched.

On selecting **Height Image**, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the *12d Model* application window.

**STEP 1:**
Select the **vertex** that the image is attached to.

**Note:** The position of the image is defined relative to the vertex. To select the image, the vertex that the image is attached to **must be selected**. The image itself can not be picked.

**STEP 2:**

After the vertex of an image is accepted, the outline of the image is displayed. The height of the outline is determined by the position of the cursor. Whilst the width remains constant, the height of the outline increases and decreases dynamically as the position of the cursor changes.

Select the new height as given by the cursor position, and accept it.

The cursor position can be selected with the mouse or entered in via the keyboard. To enter a position with the keyboard, simply start typing or press the space bar to bring up the XYZ Input box. Type the coordinates into the XYZ Input box and press the <enter> key.

**STEP 3:**
The image with the new height is then displayed.
15.19.6 Insert Image

Position of option on menu: CAD => Image => Insert or by selection of appropriate icon from the toolbar.

This option takes a user selected image file and creates a super string vertex with the image inserted at that vertex.

If the file type is JPEG and it includes the EXIF and GPS information, the information is loaded into attributes for the image.

On selecting Insert, the Cad Insert Plan Image panel is displayed.

![Cad Insert Plan Image panel]

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format</td>
<td>input box</td>
<td></td>
<td>BMP, DIB, ECW, GIF, JPEG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JPEG 2000, PNG, TGA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TIFF, 12D</td>
</tr>
</tbody>
</table>

select the type of image file to insert. If the file type is JPEG and it includes the EXIF and GPS information, the information is loaded into attributes for the image and they can be examined by clicking '+' next to the Attributes field.

Image file input box

Select the image filename to be inserted into the project.

X/Y co-ordinate XY Pick button
select the x/y co-ordinate for origin (bottom left corner) of the image.

Origin X coordinate input box
enter the x coordinate for the bottom left of the image.

Origin Y coordinate input box
enter the y coordinate for the bottom left of the image.

Pixel to mm input box
the units for images are pixels (width and height). The pixel width and height of the image are multiplied by the Pixel to mm (mm being millimetres) value to give width and height size in world unit.
(metres) which is needed when inserting the image.

**Attributes**

*when JPEG is selected for the Format and the JPEG file includes the EXIF and GPS information, the information is loaded into attributes for the image. The attributes can be looked at by clicking on the ‘+’.*

**Model for image input box**

*select the model for the image to be inserted into.*

**Insert button**

*when all the fields have been entered, the Insert button creates an image from the selected file.*
15.19.7 Insert JPEG(s)

This option is for reading in JPEG files which must include EXIF and GPS information. This information is then used to position the image.

If a Projection is selected by the user, then it is used to convert the lat/long of the GPS values to the XYZ co-ordinates. If no Projection is given, then the co-ordinates are left as lat/long.

On selecting Insert JPEG(s), the Cad Insert JPEG Plan Images panel is displayed.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced</td>
<td>clicking Advanced brings up a grid to allow the user to enter many JPEG files.</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td>File to read</td>
<td>the JPEG files to read in and create images from. The JPEG file must include EXIF and GPS information, which is used to position the image. If Projection is not blank, then it is used to convert the lat/long of the GPS values to the XYZ co-ordinates. If Projection is blank, then the co-ordinates are left as lat/long.</td>
<td>file box</td>
<td>available *.jpg files</td>
<td></td>
</tr>
<tr>
<td>Projection choice</td>
<td>if a Project Projection is set, then it is placed in the Projection field. This can be changed to any other projection. The projection is used to convert the lat/long of the GPS values to the XYZ co-ordinates. If no projection is set, then the co-ordinates are left as lat/long.</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotate images</td>
<td>if ticked, the rotate value from the EXIF will be used to rotate the image.</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td>Pixel to mm</td>
<td>the units for images are pixels (width and height). The pixel width and height of the image are multiplied by the Pixel to mm (mm being millimetres) value to give width and height size in world unit (metres) which is needed when inserting the image.</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for images</td>
<td>the model for the image to be inserted into.</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create</td>
<td>when all the fields have been entered, the Create button creates images from the selected files.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15.19.8 Insert Many

Position of option on menu: CAD => Image => Insert Many
or by selecting the icon from the Cad Images toolbar.

This option allows the attachment of an image to a selection of super point strings.
As shown on the panel, the images are to be stored in a directory folder and must be in the following format.
Image Format: P1000.jpg [P + point number]
Note: Attachment to Single Point super strings only

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type - for a full description go to 4.19.3 Data Source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source of data to be processed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image Folder</td>
<td>directory</td>
<td></td>
<td>select folder</td>
</tr>
</tbody>
</table>
browse for a folder containing the images (folder only)

**Pixel to mm**
- measure box
- At Point, Point to Point, String from Point, String to Point

**scale factor for image (check pixel size first)**

**Offset X**
- measure box
- At Point, Point to Point, String from Point, String to Point

**image offset in the x direction from point**

**Offset Y**
- measure box
- At Point, Point to Point, String from Point, String to Point

**image offset in the y direction from point**

**Read**
- button
- searches the image folder for the jpg images and displays them in the list box above

**Process**
- button
- attaches the image to appropriate point
15.19.9 Delete Image

Position of option on menu:  CAD => Image => Delete
or by selection of appropriate icon from the toolbar.

This option deletes an image.

On selecting Delete Image, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
Select the vertex that the image is attached to.

Note: The position of the image is defined relative to the vertex. To select the image, the vertex that the image is attached to must be selected. The image itself can not be picked.

STEP 2:
When the selected image is accepted, it is then deleted.

Note that the vertex that the image was attached to is not deleted.
15.20 CAD Modify

**Position of option on menu:** CAD => Modify

The Modify walk-right menu is

![Modify Walk-Right Menu](image)

For the option *Move*, go to
- [15.20.1 CAD Move](#)
- [15.20.2 CAD Copy](#)
- [15.20.3 CAD Array](#)
- [15.20.4 CAD Rotate](#)
- [15.20.5 CAD Mirror](#)
- [15.20.6 CAD Mirror X Axis](#)
- [15.20.7 CAD Mirror Y Axis](#)
- [15.20.8 CAD Scale](#)
- [15.20.9 CAD Scale Dynamic](#)
15.20.1 CAD Move

Position of option on menu: CAD => Modify => Move
or by selection of appropriate icon from the toolbar.

This option moves a selected string.

On selecting Move, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

For CAD Multipick Move, go straight to Step 2.

**STEP 1:**
A super string or circle is picked.

**STEP 2:**
A base position is picked and then an outline of the selected string will be drawn and moved with the cursor, plus a line will be drawn from the base position to the current cursor position.

**NOTE:** If the <Spacebar> or any other key is pressed, an Enter X Y Z typed input box is displayed on the screen.

X, Y and Z are entered, separated by a space, and <Enter> accepts the values and removes the Enter X Y Z box from the screen. If values are not going to be typed in, clicking X on the top right-hand corner of the Enter X Y Z box removes the box from the screen and the option returns to selecting the base position by moving the cursor.

**Note:** The base position is not required to lie on the string itself.

**STEP 3:**
A final cursor position is selected which defines a distance and direction from the base position to the final position.

**STEP 4:**
On accepting the final position, the selected super string is moved by the determined distance and direction.
15.20.2 CAD Copy

Position of option on menu: CAD =>Modify =>Copy
or by selection of appropriate icon from the toolbar.

This option copies a super string.

On selecting Copy, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

For CAD Multipick Copy, go straight to Step 2.

**STEP 1:**
Select a super string.

**STEP 2:**
A base position is picked and then an outline of the selected string will be drawn and moved with the cursor, plus a line will be drawn from the base position to the current cursor position.

**NOTE:** If the <Spacebar> or any other key is pressed, an Enter X Y Z typed input box is displayed on the screen.

X, Y and Z are entered, separated by a space, and <Enter> accepts the values and removes the Enter X Y Z box from the screen. If values are not going to be typed in, clicking on X on the top right-hand corner of the Enter X Y Z box removes the box from the screen and the option returns to selecting the base position by moving the cursor.

**Note:** The base position is not required to lie on the string itself.

**STEP 3:**
A final cursor position is selected which defines a distance and direction from the base position to the final position.
STEP 4:
On accepting the final position, a copy of the selected super string is moved by the determined distance and direction.
15.20.3 CAD Array

Position of option on menu: CAD => Modify => Array
or by selection of appropriate icon from the toolbar.

This option copies a super string a number of times. The Multipick Array option works in the same way once the Multipick set is selected.

On selecting Array, either the Cad Array panel (for CAD Array) or the CAD Multi Array panel (for CAD Multipick Array) is displayed.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rows</td>
<td>Input box</td>
<td>number of rows</td>
<td></td>
</tr>
<tr>
<td>Columns</td>
<td>Input box</td>
<td>number of columns</td>
<td></td>
</tr>
<tr>
<td>Row offset</td>
<td>Input box</td>
<td>distance between the rows</td>
<td></td>
</tr>
<tr>
<td>Column offset</td>
<td>Input box</td>
<td>distance between the columns</td>
<td></td>
</tr>
<tr>
<td>Rotation</td>
<td>angle box</td>
<td>the angle to use for the rows and columns of copies</td>
<td></td>
</tr>
<tr>
<td>Pick</td>
<td>button</td>
<td>pick the super string to copy and when it is accepted the super string is copied</td>
<td></td>
</tr>
</tbody>
</table>

**STEPS:**
Fill in the fields in the Cad Array panel, click Pick and select the super string to copy.
15.20.4 CAD Rotate

**Position of option on menu:**  CAD => Modify => Rotate

This option rotates a super string.

On selecting Rotate, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

For CAD Multipick Rotate, go straight to Step 2.

**STEP 1:**
Select the super string to rotate.

**STEP 2:**
A base position is picked and then an outline of the selected string is drawn and rotated around the base position with the cursor, plus a line will be drawn from the base position to the current cursor position.

**NOTE:** If the <Spacebar> or any other key is pressed, an Enter X Y Z typed input box is displayed on the screen.

X, Y and Z are entered, separated by a space, and <Enter> accepts the values and removes the Enter X Y Z box from the screen. If values are not going to be typed in, clicking on X on the top right-hand corner of the Enter X Y Z box removes the box from the screen and the option returns to selecting the base position by moving the cursor.

**Note:** The base position is not required to lie on the string itself.

When the line has an angle of 0 degrees (bearing of 90 degrees), the outline will be on top of the selected string (i.e. there is no rotation). As the line rotates around the base position, the outline rotates around the base position. This rotation will continue until the final point is selected and accepted.

**NOTE:** If the <Spacebar> or any other key is pressed, an Enter Angle Typed Input box is displayed on the screen.
An angle (measured counter-clockwise from the positive X-axis and in 4.17.1 HP Notation) can be typed in and <Enter> will accept the value and remove the Typed Input box from the screen. If a value is not going to be typed in, clicking on X on the top right-hand corner of the Typed Input box removes the box from the screen and the option returns to selecting the rotation by moving the cursor.

**STEP 3:**

A final cursor position is selected which defines the rotation about the base position.

On accepting the final position, or after an angle has been entered, the selected string is rotated around the base position through the defined angle.
15.20.5 CAD Mirror

**Position of option on menu:** CAD => Modify => Mirror

or by selection of appropriate icon from the toolbar.

This option creates a mirrored image of a selected string.

On selecting Mirror, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

For CAD Multipick Mirror, go straight to Step 2.

**STEP 1:**
Select a super string to mirror.

**STEP 2:**
Select the 1st point of the mirror axis.

The 1st point is selected with the mouse or entered via the keyboard. To enter a point with the keyboard, simply start typing or press the space bar to bring up the X Y Z Input box. Type the coordinates into the XYZ Input box and press the <Enter> key.

After the 1st point is accepted a line will be drawn from the 1st point to the position of the cursor. This line forms the mirroring axis. The outline of the reflected image will be dynamically displayed according to the changing cursor position.

**STEP 3:**
Select and accept the 2nd point of the mirror axis.

**STEP 4:**
For CAD Mirror, after the base point is accepted, the Delete Source String box will appear.

Select Yes if you want the original super string to be deleted when the new mirrored string is constructed.

Select No if you want the original super string to remain when the new mirrored string is constructed.
STEP 5:
The selected super string will be mirrored using the information given.

Delete the source string
Don’t delete the source string

For **CAD Multipick Mirror**, the original strings are always deleted.
15.20.6 CAD Mirror X Axis

Position of option on menu: CAD => Modify => Mirror X axis
or by selection of appropriate icon from the toolbar.

This option mirrors a string through the X axis.

On selecting Mirror X Axis, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

For CAD Multipick Mirror X axis, go straight to Step 2.

**STEP 1**: Picking a string

Select a super string to mirror through the X axis.

**STEP 2**: 

After the string is accepted the position of the cursor on the Y axis determines the position of the mirror (which runs parallel to the X axis). As the cursor moves along the Y axis, a reflection of the selected string will be dynamically displayed. This will continue until a final position is selected, thus determining the mirror axis.

Select the final Y-position of the mirror X-axis.

The final position is selected with the mouse or entered via the keyboard. To enter a base point with the keyboard, simply start typing or press the <Spacebar> to bring up the Enter X Y Z box. Type the coordinates into the Enter X Y Z box and press the <Enter> key.

**STEP 3**: 

For CAD Mirror X axis, after the final position is accepted, a Delete Source String box will appear.

Select Yes if you want the original super string to be deleted when the new mirrored string is constructed.

Select No if you want the original super string to remain when the new mirrored string is constructed.
STEP 4:
The selected super string will be mirrored using the information given.

For **CAD Multipick Mirror X axis**, the original strings are always deleted.
15.20.7 CAD Mirror Y Axis

Position of option on menu:  CAD => Modify => Mirror Y Axis
or by selection of appropriate icon from the toolbar.

This option mirrors a string through the Y axis.

On selecting Mirror Y Axis, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

For CAD Multipick Mirror Y Axis, go straight to Step 2.

STEP 1:
Select a super string to mirror through the Y axis.

STEP 2:
After the string is accepted the position of the cursor on the X axis determines the position of the mirror (which runs parallel to the Y axis). As the cursor moves along the X axis, a reflection of the selected string will be dynamically displayed. This will continue until a final position is selected, thus determining the mirror axis.

Select the final X-position of the mirror Y-axis.

The final position is selected with the mouse or entered via the keyboard. To enter a base point with the keyboard, simply start typing or press the <Spacebar> to bring up the Enter X Y Z box. Type the coordinates into the Enter X Y Z box and press the <Enter> key.

STEP 3:
After the final position is accepted, a Delete Source String box will appear.

Select Yes if you want the original super string to be deleted when the new mirrored string is constructed.

Select No if you want the original super string to remain when the new mirrored string is constructed.
STEP 4:
The selected super string will be mirrored using the information given.

Delete the source string  Don’t delete the source string
15.20.8 CAD Scale

**Position of option on menu:**  CAD => Modify => Scale

or by selection of appropriate icon from the toolbar.

This option increases or decreases the size of a string by a given scale about a user selected origin. Go to 15.8.9 Scale About an Origin for the definition of scaling.

On selecting Scale, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

For **CAD Multipick Scale**, go straight to Step 2.

**STEP 1:**

Select a super string to scale.

**STEP 2:**

After a string is accepted, the Scale Typed Input box will appear. Type the desired scale factor into the input box and press the <Enter> key. The browse button on the Input box can be used to define the scale by measuring existing elements.

Note: the Scale/Scale Factor can be positive or negative.

**STEP 3:**

After a scale value has been entered the user is required to select the position of the origin.

An origin position can be selected with the mouse or entered via the keyboard.

To enter an origin position with the keyboard, simply start typing or press the space bar to bring up the Enter X Y Z box. Type the coordinates into the Enter X Y Z box and press the <Enter> key.

If the position of the origin is given by the cursor, the position of the scaled highlighted string moves dynamically as the position of the origin changes as the cursor moves. The final selected origin position establishes the location of the scaled string relative to the original selected string.

The dimensions of the highlighted string are defined by the Scale value.

For example, if you selected a scale of 2, the distance between the cursor and a point on the highlighted string would be double the distance between the cursor and the corresponding point on the original super string.
STEP 4:
After the final position has been accepted, the original string will be removed and the newly scaled highlighted string constructed.
15.20.9 CAD Scale Dynamic

Position of option on menu:  CAD =>Modify =>Scale Dynamic
or by selection of appropriate icon from the toolbar.

This option dynamically increases or decreases the size of a string.
This option dynamically increases or decreases the size of a string about a user selected origin
by selecting a point to define the scale factor. Go to 15.8.9 Scale About an Origin for the
definition of scaling.

On selecting Scale Dynamic, the user is prompted for the relevant data in the screen message box
located at the bottom left hand corner of the 12d Model application window.

For CAD Multipick Scale Dynamic, go straight to Step 2.

**STEP 1:**
Select a super string to scale.

**STEP 2:**
An Origin point is required to be defined. An Origin point can be selected with the mouse or
entered in via the keyboard.

To enter an Origin point with the keyboard, simply start typing or press the space bar to bring up
the Enter X Y Z box. Type the coordinates into the Enter X Y Z box and press the <Enter> key.

To enter the origin by the cursor, simply select and accept the required origin position.

**STEP 3:**
For CAD Scale Dynamic:

After an Origin point has been accepted, the cursor then defines the Projection point.

**Note:** the Projection Point is the cursor position dropped perpendicularly onto the line from
the origin through the original point selected on the string.

The scale factor is taken to be the ratio of the distance from the projection point to the origin
and the distance from the original point selected on the string to the origin.

That is,

Scale factor = (the distance from the projection point to the origin) divided by (the distance
from the original point selected on the string to the origin)
The highlighted string is projected from the Origin point to the Projection point (which is being defined by the cursor).

For **CAD Multipick Scale Dynamic**:

After an Origin point has been accepted, a Start Scale Position is selected.

After that the cursor then dynamically defines the End Scale position.

For Multipick, the Projection Point is the End Scale position dropped perpendicularly onto the line from the origin through the Start Scale position.

The scale factor is taken to be the ratio of the distance from the Projection Point to the origin and the distance from the Start Scale position to the origin.

That is,

\[\text{Scale factor} = \frac{\text{the distance from the Projection Point to the origin}}{\text{the distance from the Start Scale position to the origin}}\]

The highlighted strings are projected from the Origin point using the scale factor dynamically defined by the cursor (and hence the Projection point).
Hence for both the CAD Scale Dynamic and the CAD Multipick Scale Dynamic, the size and position of the highlighted string will move dynamically as the position of the Projection point moves with the cursor.

The highlighted string will increase in size if the cursor moves the Projection point further from the Origin than the original string point/Start Scale position, or decrease in size if the cursor moves the Projection point closer to the Origin than the original string point/Start Scale position. This will continue until a Projection point is accepted.

**STEP 4:**

After the Projection point has been accepted, the new scaled strings are created and the original strings deleted.
15.21 CAD Vertex

Position of option on menu: CAD => Vertex

This section of documentation is a work in progress and will be updated in subsequent releases.

The Cad Vertex walk-right menu is

Menu of Options to Move Vertices

move a vertex
move a vertex and modify its height
move a vertex along its segment - keep the same height
move a vertex along its segment - interpolate/extrapolate the height
move a vertex by a given chainage distance along a segment - keep height
move a vertex a given chainage dist along a segment - extrapolate height
append a vertex to an existing string
create a vertex on the segment joining two adjacent vertices of a string
insert a vertex between two adjacent vertices of a string
edit the height of a vertex
edit the point (vertex) ID

These options allow the editing of vertices on super strings.

For the option Move, go to 15.21.1 Move a Vertex while Keeping its Height
Move 3d 15.21.2 Move a Vertex and Modify its Height
Extend 15.21.3 Extend a Vertex while Keeping its Height
Extend 3d 15.21.4 Extend Segment and Extrapolating Heights
Extend by length 15.21.5 Extend Segment by Length and Keeping
Extend by length 3d 15.21.6 Extend Segment by Length and Extrapolating
Append 15.21.7 Append a Vertex
Between 15.21.8 New Vertex on a Segment (Between Two
<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert</td>
<td>15.21.9 Insert a Vertex</td>
</tr>
<tr>
<td>Edit height</td>
<td>15.21.10 Change Height of a Vertex</td>
</tr>
<tr>
<td>Edit ID</td>
<td>15.21.11 Edit ID</td>
</tr>
</tbody>
</table>
15.21.1 Move a Vertex while Keeping its Height

Position of option on menu:  CAD => Vertex => Move
or by selection of appropriate icon from the toolbar.

This option moves the vertex of a super string. The height of the vertex is not modified.

On selecting Move, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
A vertex on a super string is selected and accepted.

**STEP 2:**
The position of the selected vertex moves with the cursor until the final position of the vertex is selected and accepted. Alternatively, the user can type in the final coordinate of the vertex by the using the Enter XYZ box. This box is brought up by simply typing a value or by pressing the space bar.

**STEP 3:**
The selected vertex is moved to the new position.
15.21.2 Move a Vertex and Modify its Height

**Position of option on menu:** CAD => Vertex => Move 3d or by selection of appropriate icon from the toolbar.

This option moves the vertex of a super string and the height of the vertex is taken from the height of the final selected position.

On selecting **Move 3d**, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the *12d Model* application window.

**STEP 1:**
A vertex on a super string is selected and accepted.

**STEP 2:**
The position of the selected vertex moves with the cursor until the final position of the vertex is selected and accepted. Alternatively, the user can type in the final coordinate of the vertex by the using the **Enter XYZ** box. This box is brought up by simply typing a value or by pressing the space bar.

**STEP 3:**
The selected vertex is moved to the new position and takes on the height of the string it is snapped to, or the Z value entered into the **Enter XYZ** box.
15.21.3 Extend a Vertex while Keeping its Height

**Position of option on menu:** CAD => Vertex => Extend
or by selection of appropriate icon from the toolbar.

This option extends (or shortens) a segment by moving a vertex along the segment joining the vertex to its neighbouring vertex. The height of the vertex is not modified.

On selecting Extend, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
Most vertices are on two segments so it is necessary to indicate which segment is to be extended, This is done by selecting **not the vertex**, but by selecting **on the segment** that is to be extended, close to the vertex to be moved.

**STEP 2:**
As the cursor is moved, the string is redrawn reflecting the changing position of the moved vertex. The final position of the vertex is selected and accepted. Alternatively, the user can type in the final coordinate of the moved vertex into the **Enter XYZ** box. This box is brought up by simply typing a value or by pressing the space bar.

**STEP 3:**
The selected vertex is moved to the new position. The height of the vertex is not changed.
the vertex height is unchanged
15.21.4 Extend Segment and Extrapolating Heights

**Position of option on menu:** CAD => Vertex => Extend 3d or by selection of appropriate icon from the toolbar.

This option extends (or shortens) a segment by moving a vertex along the segment joining the vertex to its neighbouring vertex. The height of the vertex is extrapolated.

On selecting Extend 3d, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
Most vertices are on two segments so it is necessary to indicate which segment is to be extended. This is done by selecting **not the vertex**, but by selecting **on the segment** that is to be extended, close to the vertex to be moved.

**STEP 2:**
As the cursor is moved, the string is redrawn reflecting the changing position of the moved vertex. The final position of the vertex is selected and accepted. Alternatively, the user can type in the final coordinate of the moved vertex into the **Enter XYZ** box. This box is brought up by simply typing a value or by pressing the space bar.

The point selected is moved to the cursor position in a rubber banding fashion. The final position of the point is selected and accepted. Alternatively, the user can enter the final coordinate value of the moved point by the Enter XYZ box. This box can be brought into view by simply typing a value or by pressing the space bar.

**STEP 3:**
The selected vertex is moved to the new position. The height of the vertex has been extrapolated.
from the heights at either end of the original segment.

The vertex height has been extrapolated from the height at the ends of the original segment (3 and 1).
15.21.5 Extend Segment by Length and Keeping Height

**Position of option on menu:** CAD => Vertex => Extend by length
or by selection of appropriate icon from the toolbar.

This option extends (or shortens) a segment by moving a vertex along the segment joining the vertex to its neighbouring vertex by a user defined distance. The height of the vertex is not modified.

On selecting **Extend by length**, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
Most vertices are on two segments so it is necessary to indicate which segment is to be extended, This is done by selecting **not the vertex**, but by selecting **on the segment** that is to be extended, close to the vertex to be moved.

**STEP 2:**
The user enters the distance to extend the segment. This value is positive in the direction that the string was created.

**STEP 3:**
The point selected is moved to the new position and the string topology maintained.
the vertex height is unchanged
15.21.6 Extend Segment by Length and Extrapolating Heights

Position of option on menu: CAD => Vertex => Extend by length 3d
or by selection of appropriate icon from the toolbar.

This option extends (or shortens) a segment by moving a vertex along the segment joining the vertex to its neighbouring vertex by a user defined distance. The height of the vertex is extrapolated modified.

On selecting Extend by length 3d, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
Most vertices are on two segments so it is necessary to indicate which segment is to be extended, This is done by selecting not the vertex, but by selecting on the segment that is to be extended, close to the vertex to be moved.

STEP 2:
The user enters the length value for which the point is to be extended by. This value is positive in the direction that the string was created.

STEP 3:
The point selected is moved to the new position and the height adjusted according to the grade of the extended segment.
the vertex height has been extrapolated from the height at the ends of the original segment (3 and 1)
15.21.7 Append a Vertex

**Position of option on menu:**  CAD => Vertex => Append

or by selection of appropriate icon from the toolbar. This option adds vertices to an existing super string.

On selecting **Append**, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

Select a string by picking near the end of the string that vertices are to be added to (added to the beginning of the string - prepend, or added to the end of the string - append).

**STEP 2:**

After the string is accepted, a line is drawn from the end of the string to the current cursor position.

Select the position for the new vertex.

**STEP 3:**

After the new vertex is accepted, a line is drawn from that vertex to the current cursor position. That is, the process of adding points is repeated.

**STEP 4:**

This step should be repeated until the required number of vertices has been added.
STEP 5:

STEP 6:
After the required number of vertices have been added, the option is terminated for this string by pressing the <Esc> key.
15.21.8 New Vertex on a Segment (Between Two Vertices)

Position of option on menu: CAD => Vertex => Between
or by selection of appropriate icon from the toolbar.

This option adds a vertex to a string but it is constrained to be on an existing segment of the string. The height of the vertex is interpolated from the heights at the end of the segment.

On selecting *Between*, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

Select the string on the segment of the string that is to have a vertex added to it. The new vertex will be constrained to be on the segment.

**STEP 2:**

After the segment is accepted, a perpendicular line is drawn from the selected segment of the string to the position of the cursor.

**STEP 3:**

A position is selected with the mouse or typed in via the keyboard and the new vertex is created by *dropping* the position perpendicularly onto the segment.

Note - to enter via the keyboard, simply start typing or press the space bar to bring up the *Enter XYZ* Input box. Type the coordinates into the XYZ Input box and press the enter key.
15.21.9 Insert a Vertex

Position of option on menu: CAD => Vertex => Insert
or by selection of appropriate icon from the toolbar. 

This option inserts a vertex into a string between two adjacent vertices but it is constrained to be on the existing segment joining the vertices. The height of the vertex is taken from the final selected position.

On selecting Insert, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
Select the string on the segment of the string that is to have a vertex added to it. The new vertex is *not* constrained to be on the segment.

**STEP 2:**
After a string is accepted, two lines will be drawn from the cursor position to either end of the selected segment.

**STEP 3:**
A final position is selected with the mouse or typed in via the keyboard and the new vertex is created at the final position.

Once the new vertex is created the original segment is no longer drawn.

**Note** - to enter via the keyboard, simply start typing or press the space bar to bring up the Enter XYZ Input box. Type the coordinates into the XYZ Input box and press the enter key.
15.21.10 Change Height of a Vertex

Position of option on menu: CAD => Vertex => Edit height or by selection of appropriate icon from the toolbar.

This option changes the height (z value) of a vertex.

On selecting Edit height, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

To see the effects of this option, use the Toggle menu to toggle on Z values. The height of each vertex (z value) is then displayed on the plan view so any modification to the height will be visible.

**STEP 2:**

Select a vertex with either the mouse or via the keyboard.

**Note** - to enter via the keyboard, simply start typing or press the space bar to bring up the Enter XYZ Input box. Type the coordinates into the Enter XYZ Input box and press the <Enter> key.

**STEP 3:**

After a point is accepted, the Height input box will appear with the current height displayed in it.

Type the new height (z value) of the vertex into the Height input box and press the <Enter> key. The browse button on the Input box can also be used to define the point's height.
STEP 4:

The height (z value) of selected point will have changed to the new value.
If z values have been turned on, the new value will be displayed in the view.
15.21.11 Edit ID

Position of option on menu: CAD => Vertex => Edit ID or by selection of appropriate icon from the toolbar.

This option changes the point id of the vertex of a super string.

On selecting Edit ID, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:

To see the effects of this option, use the Toggle menu to toggle on Point id's. The Point id of each vertex is then displayed on the plan view so any modification to the point id will be visible.

STEP 2:

Select a vertex with either the mouse or via the keyboard.

Note - to enter via the keyboard, simply start typing or press the space bar to bring up the Enter XYZ Input box. Type the coordinates into the Enter XYZ Input box and press the Enter key.

STEP 3:

After the vertex is accepted, the Point ID input box will appear. Type the point id into the input box and press the Enter key.
STEP 4:
The point id of selected vertex is changed to the new value. If Point id’s have been turned on, the new value will be displayed in the view.
15.22 CAD Segment

Position of option on menu: CAD => Segment

The Cad Segment walk-right menu is

For the option Colour, go to 15.22.1 Colour
Radius 15.22.2 Radius
Insert 3-points curve 15.22.3 Insert 3-points curve
Remove 3-points curve 15.22.4 Remove 3-points curve
15.22.1 Colour

Position of option on menu: CAD => Cad Segment => Colour
or by selection of appropriate icon from the toolbar.
This option changes the colour of a selected segment.

On selecting Segment colour, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
Select the segment of the super string that is to have a colour change.

**STEP 2:**
After the segment is accepted, the Colour Input box will appear. Type the desired colour into the Input box and press the enter key. Alternatively you can select a colour from a list by clicking the browse button on the Input box.

**STEP 3:**
The colour of the selected segment is drawn in the new colour.
15.22.2 Radius

Position of option on menu:  CAD => Cad Segment => Radius
or by selection of appropriate icon from the toolbar.
This option changes the radius of a segment.

On selecting Segment radius, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
Select the segment of the super string that is to have a change of radius.

STEP 2:
After the segment is accepted, the Radius box will appear. Type the desired radius into the Input box and press the enter key. The browse button on the Input box can be used to define the radius by measuring existing elements.

STEP 3:
The selected segment is then drawn with the new radius.
15.22.3 Insert 3-points curve

Position of option on menu: CAD => Cad Segment => Insert 3-points curve
or by selection of appropriate icon from the toolbar.

This option allows the creation of a 3 point curve using 2 existing segments.

On selecting Insert 3pt curve, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

Select a vertex of a super string a vertex with a segment on either side, or segment of a super string.

If a vertex is selected, that vertex will be the middle vertex of the constructed 3 point curve. If a segment is selected, the closest vertex will become the middle vertex of the 3 point curve.

**STEP 2:**

After the vertex or segment is selected and accepted, an arc is through the three vertices is calculated and its radius used for the tow segments on either side of the vertex.
15.22.4 Remove 3-points curve

Position of option on menu:  CAD => Cad Segment => Remove 3-points curve
or by selection of appropriate icon from the toolbar.
This option removes the arcs from either side of a selected vertex. If a segment is selected, the closest vertex is used and the arcs removed from either side of the vertex.

On selecting Remove 3pt curve, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
Select a vertex of a super string with arcs on one or two sides of the vertex.

STEP 2:
After the vertex is selected and accepted, arc on either side will removed (the radius is set to zero). Two line segments are then drawn.
15.23 CAD Edit Strings

Position of option on menu:  CAD => String
These options are currently under development.

The Cad String walk-right menu is

Menu of Options to Edit Strings
- close a string
- open a string
- reverse the direction of a string
- copy a string
- parallel a string
- trim a string back to a selected string
- extend a string until it cuts a selected string
- extend a string by a typed chainage length
- clip a string and keep the outer strings
- clip a string and keep the internal string
- deletes the selected link from the string (making two strings)
- split a string
- splits two strings where they first intersect each other
- join two strings
- join many strings
- fillet and join
- string parallel and more
- trace over parts of strings to form a new string

For the option Close, go to:
- 15.23.1 Close String
- 15.23.2 Open String
- 15.23.3 Reverse a String
- 15.23.4 Copy a String
- 15.23.5 Parallel a String
- 15.23.6 Trim a String
- 15.23.7 Extend a String
- 15.23.8 Extend String by Chainage

For the option Open:
- 15.23.9 Clip String
- 15.23.10 Delete an Internal Section of a

For the option Reverse:
- 15.23.11 Delete a Segment

For the option Copy:
- 15.23.12 Split String

For the option Parallel:
- 15.23.13 Split Crossing Strings

For the option Trim:
- 15.23.14 Join String

For the option Extend:
- 15.23.15 Join String Many

For the option Extend by chainage length:
- 15.23.16 Join Fillet

For the option Clip:
- 15.23.17 Offset

For the option Trace:
- 15.23.18 Trace
15.23.1 Close String

Position of option on menu: CAD => String => Close
or by selection of appropriate icon from the toolbar.

This option closes an open string.

On selecting Close, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
An open string is selected and accepted.

STEP 2:
The string is closed

After closing of a string, the option restarts so that another string can be selected. Picking Cancel from the Pick Ops menu, hitting <esc> or selecting another option terminates the option.
15.23.2 Open String

Position of option on menu: CAD => String => Open
or by selection of appropriate icon from the toolbar.

This option opens a closed string.
On selecting Open, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
A closed string is selected and accepted.

**STEP 2:**
The string is opened by deleting the last segment of the closed string.

*Note* - this may not be where the string was selected.

After opening of a string, the option restarts so that another string can be selected. Picking Cancel from the Pick Ops menu, hitting <esc> or selecting another option terminates the option.
15.23.3 Reverse a String

Position of option on menu: CAD => String => Reverse
or by selection of appropriate icon from the toolbar.

This option reverses the direction of a string.

On selecting Reverse, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
A string is selected and accepted.

**STEP 2:**
The string is reversed.

After reversing of a string, the option restarts so that another string can be selected. Picking Cancel from the Pick Ops menu, hitting <esc> or selecting another option terminates the option.
15.23.4 Copy a String

**Position of option on menu:** CAD => String => Copy

or by selection of appropriate icon from the toolbar.

This option copies a string. The copied strings takes its attributes from the Cad Control Bar. Copy is particularly helpful in backing up strings.

On selecting Copy, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
A string is selected and accepted. The copied string will take on the values in the control bar at the time of accepting.

**STEP 2:**
A copy of the original string will be saved into the model **bu hse string**.
15.23.5 Parallel a String

Position of option on menu: CAD => String => Parallel
or by selection of appropriate icon from the toolbar.

This option parallel a string by a given to a selected string.
Note that if there are arcs in the string, the string can not be paralleled by a distance that would collapse the arcs.

On selecting Parallel, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The string to parallel is picked with direction. The direction determines what it means to parallel to the right or left of the string.

STEP 2:
The parallel option can be applied to all of the selected string or only part of the string.
After the string is selected, a panel is displayed asking if only part of the string is to be paralleled. If only part of the string is to be paralleled (i.e. yes selected) the user picks the start and end positions of where the string is to be paralleled. This does not necessarily have to be at the end of the segments as the user can select a position anywhere on the segment to define these values. If the whole string is to be paralleled the user should select no.

STEP 3:
The user is prompted for the parallel distance. Positive distance is to the right of the selected
string. Negative to the left.

STEP 4:
The user is prompted for the offset height. This height value will be added to the selected string values to produce the heights for the paralleled string.

STEP 5:
The paralleled string is then generated using the supplied information.
15.23.6 Trim a String

Position of option on menu:  CAD => String => Trim
or by selection of appropriate icon from the toolbar.

This option trims a string to another nominated cutting string.

On selecting Trim, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
The cutting string which will be used to define the trim extent is selected and accepted.

**STEP 2:**
The string to trim is selected. The position of the pick relative to the cutting string will dictate which part of the string will be trimmed. In this case, the selection is above the cutting string and so the trim will be of the top part of the string.

**STEP 3:**
The string is trimmed.
15.23.7 Extend a String

Position of option on menu:    CAD =>String=>Extend
or by selection of appropriate icon from the toolbar.

This option extends a string to another nominated string.

On selecting Extend, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
The string to extend to is selected and accepted.

**STEP 2:**
The string to extend to is selected and accepted.

**STEP 3:**
The string is extended.
15.23.8 Extend String by Chainage Length

Position of option on menu: CAD => String => Extend by chainage length
or by selection of appropriate icon from the toolbar.

This option extends a string by a given chainage value.

On selecting Extend by chainage length, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The string to extend is selected and accepted.

STEP 2:
The chainage length to extend the string is entered into the Length input Box. Positive is in the direction of the string. Negative in the opposite direction of the string.

STEP 3:
The string is extended by the given chainage amount.
15.23.9 Clip String

Position of option on menu: CAD => String => Clip
or by selection of appropriate icon from the toolbar.

This option deletes part of a string.

On selecting Clip, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
The string to be clipped is selected and accepted.

**STEP 2:**
The first and second positions defining what part of the string is to remain are selected and accepted.
The positions do not have to be at vertices but can be anywhere on segments

**STEP 3:**
The string is clipped.
15.23.10 Delete an Internal Section of a String

Position of option on menu: CAD => String => Clip internal

or by selection of appropriate icon from the toolbar.

This option deletes an internal part of a string and leaves the two end sections.

On selecting Clip internal, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
The string to be clipped is selected and accepted.

**STEP 2:**
The first and second position defining what part of the string is to remain is selected and accepted. This does not necessarily have to be at the end of the segments as the user can select a position anywhere on the segment to define these values.

The first and second positions defining what part of the string is to be deleted are selected and accepted.

The positions do not have to be at vertices but can be anywhere on the segments.

**STEP 3:**
The part of the string between the two selected clip points is deleted leaving two strings.
15.23.11 Delete a Segment

Position of option on menu: CAD => String => Link clip

or by selection of appropriate icon from the toolbar.

This option deletes a segment from a string.

On selecting Link clip, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
The segment to be deleted is selected and accepted.

STEP 2:
The selected segment is deleted.

Note - unless the selected string was a closed string, two strings are produced.
15.23.12 Split String

Position of option on menu: CAD => String => Split

or by selection of appropriate icon from the toolbar.

This option splits one string into two strings at a given split position.

On selecting split, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
The string to be split is selected and accepted.

**STEP 2:**
The split position is selected and accepted.

**STEP 3:**
The split is made at the position selected. If no vertex exists at that position, a vertex is created.
15.23.13 Split Crossing Strings

**Position of option on menu:** CAD => String => Cross split

*or by selection of appropriate icon from the toolbar.*

This option splits two crossing strings at the position of their crossing.

If there are multiple intersections between the two strings, then it splits the strings at the intersection that is the shortest distance to a pick position.

On selecting **Cross split**, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the *12d Model* application window.

**STEP 1:**
Pick the first string.

**STEP 2:**
Pick the second string.

**STEP 3:**
The two strings are then split where the strings crossed (at the intersection that is the shortest distance to a pick position). This will create four strings.
four strings created

added vertex
15.23.14 Join String

Position of option on menu:  CAD => String => Join
or by selection of appropriate icon from the toolbar.

This option joins two super strings together at their end points.

There are four possible ways of joining the strings and the required case is determined by picking the strings with direction.

On selecting the Join option, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

STEP 1:
Select and accept a super string with direction.

For notes on picking strings with direction, see Picking with Direction.

Note: Vertex indices can be displayed by toggling the option on the Toggle Menu.

STEP 2:
Select and accept another super string with direction.

STEP 3:
The head of the first string (as determined by the picking direction) is then joined to the tail of the second string (as determined by the picking direction).

After the strings are joined, the vertex indices will change since the order of the vertices in the string is now different.

The colour of the constructed line is adopted from first selected super string. The colour of the second string will remain unchanged.

Note: The constructed line and selected strings are stored in the model of the first selected string.
15.23.15 Join String Many

**Position of option on menu:** CAD => String => Join many

or by selection of appropriate icon from the toolbar.

This option joins many strings together. Picking with direction is used to specify which ends of the strings are joined.

On selecting the **Join many** option, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
Pick a super string *with direction*.

For notes on picking strings with direction, see Picking with Direction.

**Note:** The Vertex indices can be displayed by toggling the option on the Toggle Menu.

**STEP 2:**
Select and accept another super string, again picking *with direction*.

**STEP 3:**
The head of the first string is then joined to the tail of the second string. What is the head or tail of the strings is determined by the picking direction.

After the strings are joined, the vertex indices to reflect the new order of the vertices in the string. The colour of the constructed segment will be the same as that of the first selected super string. The colour of the second string will remain unchanged.

**Note:** The constructed segment and selected strings are stored in the model which contains the 1st selected string.
STEP 4:
The *Join Many* option joins extra strings to the already selected (and joined) strings. The user may continue selecting additional strings to join together by select and accept additional super strings by picking with direction.

This option can be terminated by the user with the **Esc** key.

**Note:** Each further construction line adopts the same colour as the 1st selected string. Both the constructed line and selected strings are stored in the model which contains the first selected string.
15.23.16 Join Fillet

Position of option on menu: CAD => String => Join fillet
or by selection of appropriate icon from the toolbar.

This option fillets, trims and joins strings.

There are eight possible ways of filleting the strings and the required case is determined by picking the strings with direction and by the sign of the radius.

On selecting the **Join strings** option, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

Pick a super string *with direction*.

For notes on picking strings with direction, see **Picking with Direction**.

**Note:** The Vertex indices can be displayed by toggling the option on the Toggle Menu.

**STEP 2:**

Select and accept another super string, again picking *with direction*.

**STEP 3:**

After the second super string is accepted, the **Radius** input box will appear. Type the *fillet radius* into the input box and press the Enter key. The browse button on the input box can be used to define the fillet radius by measurement of existing elements.

**Note:** A positive fillet radius value will curve to the right, whereas a negative fillet radius will curve to the left.
A fillet arc with the radius is constructed and joined to the two strings and the ends of the two strings are automatically trimmed back to the arc.

The vertex indices will change to accommodate the new vertices in the string. The colour of the constructed line and 2nd selected string adopts the colour of the 1st selected super string. 

**Note:** The constructed arc and selected strings are stored in the model of the first selected string.
15.23.17 Offset

Position of option on menu: CAD => String => Offset
or by selection of appropriate icon from the toolbar.

This option allows the user to create "parallel" strings, i.e. creating a string that is offset by a
given distance from a selected string.

There are five possible ways of offsetting the strings as well as options for offsetting full strings or
partial strings.

The string to offset is selected by picking with direction, and the offset distance is negative to
offset to the left of the pick direction and positive to offset to the right of the pick direction.

On selecting the Offset option, the user is prompted for the relevant data in the screen message
box located at the bottom left hand corner of the 12d Model application window.

e.g.

<N> or 

The letters in the square brackets indicate which offset modes are currently selected.

For example, [N][J] at the front indicates that (n)ormal and (j)oin are the selected options.

For the option N for (n)ormal, go to

Typing N for (n)ormal
Typing P for (p)artial
Typing J for (j)oin
Typing I for (i)ntersect
Typing F for (f)illet
Typing D for (d)ual
Typing C for (c)lip

Typing N for (n)ormal

Typing N or n for (n)ormal causes the whole string to be offset.

Note - the other choice is Partial when only part of a string is offset.

When N is typed, the first character in the square brackets changes to [N].

Continue to the next mode Typing P for (p)artial or to the beginning of the Offset documentation
15.23.17 Offset.
Typing J for (j)oin

For Join, each segment of the selected string is offset by the given distance and the end points of adjacent offset segments are joined together.

So when J or j is typed, the second character in the square brackets changes to [J] and the string to offset is then selected by picking with direction.

After the string is selected, the Offset distance typed input box is placed on the screen and the distance to offset is typed into the box followed by the <Enter> key.

NOTE: The offset distance is negative to offset to the left of the pick direction and positive to offset to the right of the pick direction.

The selected string is then offset.

After the string is offset, the mode can be changed or left the same and another string selected to offset using the new mode(s).

The option is terminated by pressing the <Esc> key or by clicking X on the top right corner of the Offset distance typed input box.

Continue to the next mode Typing I for (i)ntersect or to the beginning of the Offset documentation 15.23.17 Offset.
Typing I for (i)ntersect

For **Intersect**, each segment of the selected string is offset by the given distance and the ends of adjacent offset segments are extended or contracted so that they intersect.

![Intersect offset in cyan](image)

**Offset Intersect with Offset Distance of -10**

So when I or i is typed, the second character in the square brackets changes to [I] and the string to offset is then selected by picking with direction.

< ![Pick string to offset or type (n)ormal, (p)artial, (j)oin, (i)ntersect, (f)illet, (d)ual, (c)lip]?>[picks][fast][Menu]

After the string is selected, the **Offset distance** typed input box is placed on the screen and the distance to offset is typed into the box followed by the <Enter> key.

![Offset distance typed input box](image)

**NOTE**: The offset distance is negative to offset to the left of the pick direction and positive to offset to the right of the pick direction.

The selected string is then offset.

After the string is offset, the mode can be changed or left the same and another string selected to offset using the new mode(s).

The option is terminated by pressing the <Esc> key or by clicking X on the top right corner of the **Offset distance** typed input box.

Continue to the next mode **Typing F for (f)illet** or to the beginning of the Offset documentation 15.23.17 Offset.
Typing F for (f)illet

For Fillet, each segment of the selected string is offset by the given distance and the ends of adjacent offset segments are extended or contracted so they intersect. If the change of direction between adjacent segments is greater than 180 degrees, an arc is used instead of an intersect of the two segments.

So when F or f is typed, the second character in the square brackets changes to [F] and the string to offset is then selected by picking with direction.

After the string is selected, the Offset distance typed input box is placed on the screen and the distance to offset is typed into the box followed by the <Enter> key.

NOTE: The offset distance is negative to offset to the left of the pick direction and positive to offset to the right of the pick direction.

The selected string is then offset.

After the string is offset, the mode can be changed or left the same and another string selected to offset using the new mode(s).

The option is terminated by pressing the <Esc> key or by clicking X on the top right corner of the Offset distance typed input box.

Continue to the next mode Typing D for (d)ual or to the beginning of the Offset documentation 15.23.17 Offset.
Typing D for (d)ual

For **Dual**, construction strings are created by offset fillets to both the left and right with the given offset distance.

**Construction Strings for Offset Dual with Offset Distance of 10**

Then the **Offset Dual** is created for the given offset distance but the created string does not cut either of the two left and right offset construction strings.
More than one string may be created by the **Dual** option.

So when D or d is typed, the second character in the square brackets changes to [D] and the string to offset is then selected by picking with direction.

```
<N>[D] Pick string to offset or type (n)ormal, (p)artial, (j)oin, (i)ntersect, (f)illet, (d)ual, (c)lip> [picks][fast][Menu]
```

After the string is selected, the **Offset distance** typed input box is placed on the screen and the distance to offset is typed into the box followed by the <Enter> key.

**NOTE**: The offset distance is negative to offset to the left of the pick direction and positive to offset to the right of the pick direction.

The selected string is then offset.

After the string is offset, the mode can be changed or left the same and another string selected to offset using the new mode(s).

The option is terminated by pressing the <Esc> key or by clicking X on the top right corner of the **Offset distance** typed input box.

**NOTE**: Running the Dual offset command twice, one with an offset and then again with the negative of the offset (-offset)

Continue to the next mode **Typing C for (c)lip** or to the beginning of the Offset documentation 15.23.17 Offset.
Typing C for (c)lip

For Clip, construction strings are created as for the Dual option by offsetting the selected string to both the left and right by the given offset distance as an offset fillet and a buffer zone defined by the construction strings and end caps with radius equal to the offset distance at each end of the selected string.

Then the Offset Clip is created for the given offset distance, but it does not cut the buffer zone for the selected string.
More than one string may be created by the **Clip** option.
So a Clip is like the Dual option except everything is removed from the buffer zone.

So when `C` or `c` is typed, the second character in the square brackets changes to `[C]` and the string to offset is then selected by picking with direction.

```
[N][C] Pick string to offset or type (n)ormal, (p)artial, (j)oin, (i)ntersect, (f)illet, (d)ual, (c)lip > [picks][fast][Menu]
```

After the string is selected, the **Offset distance** typed input box is placed on the screen and the distance to offset is typed into the box followed by the `<Enter>` key.

**NOTE**: The offset distance is negative to offset to the left of the pick direction and positive to offset to the right of the pick direction.

The selected string is then offset.

After the string is offset, the mode can be changed or left the same and another string selected to offset using the new mode(s).

The option is terminated by pressing the `<Esc>` key or by clicking `X` on the top right corner of the **Offset distance** typed input box.

**NOTE**: Running the Clip offset command twice, one with an offset and then again with the negative of the offset (-offset)

Continue to the first mode  **Typing N for (n)ormal** or to the beginning of the Offset documentation 15.23.17 Offset.
Typing P for (p)artial

Selecting P for (p)artial allows for a part of the string to be offset. When P or p is typed, the first character in the square brackets changes to [P].

* e.g. *

< [P][I] Pick string to offset or type (n)ormal, (p)artial, (j)oin, (i)ntersect, (f)illet, (o)val, (c)lip> [picks][fast][Menu]

After P is typed, the two positions on the string are selected to indicate the subsection of the string that is to be offset.

**STEP 1:**
Pick your first position. This does not have to be on the string to offset because it will be dropped perpendicular onto the string to give the first point of the partial offset.

![Diagram showing step 1](image1)

**STEP 2:**
Pick your second position. This does not have to be on the string to offset because it will be dropped perpendicular onto the string to give the second point of the partial offset.

![Diagram showing step 2](image2)

**STEP 3:**
After accepting the second position, the part of the string between the two dropped positions is offset.

![Diagram showing step 3](image3)
After the string is offset, the mode can be changed or left the same and another string selected to offset using the new mode(s).

The option is terminated by pressing the <Esc> key or by clicking X on the top right corner of the Offset distance typed input box.

Continue to the next mode Typing J for (j)oin or to the beginning of the Offset documentation 15.23.17 Offset.
15.23.18 Trace

Position of option on menu: CAD => String => Trace

or by selection of appropriate icon from the toolbar.

This option allows the user to create a new string by
(a) creating points as in a normal string
and/or
(b) selecting parts of existing string to copy and make part of the new string (i.e. tracing over part of an existing string)
and/or
(c) closing the new string

On selecting the Trace option, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model screen message area at the bottom of the window.

e.g.

```
<[P] Pick point to append or (t)race, (c)lose> [picks][fast][Menu]
```

The letter in the square brackets indicate which trace mode is currently selected.

For example, [T] at the front indicates that (t)race mode is selected

For the option P for (p)ick go to

- Typing N for (n)ormal
- Typing P for (p)artial
- Typing C for (c)lose
- Typing J for (j)oin

Typing P for (p)ick

Typing P or p for pick means that new vertices of the string will be created in the normal way for a string editor, and the created vertices are appended to the end of the new string being created.

When P or p is typed, the first character in the square bracket changes to [P].

e.g.

```
<[P] Pick point to append or (t)race, (c)lose> [picks][fast][Menu]
```

Points are then created for the new string by the normal pick and accept.

The option is terminated by pressing the <Esc> key.

Continue to the next mode. Typing T for (t)race or to the beginning of the Trace documentation 15.23.18 Trace.
Typing T for (t)race

For Trace, an part of an existing string is selected to copy and make part of the new string. That is, part of an existing string is traced over to form part of the new string.

When T or t is typed, the second character in the square brackets changes to [T]

\[\text{[T] Select start point to trace or (p)ick, (c)lose} [\text{picks}][\text{fast}][\text{Menu}]\]

and the string to trace over is then selected by picking the string at the start position of the section of the string to trace over.

The cursor is then moved along the string in the direction of the trace. Vertices on the traced section are displayed as diamonds and a non-vertex start on the string of the trace is shown as a circle.

The final position of the trace on the string is then selected and the traced portion is copied to the string being created.
Another string can then be selected to trace over, or P or C typed to change modes.

The option is terminated by pressing the <Esc> key.

Continue to the next mode. Typing C for (c)lose or to the beginning of the Trace documentation 15.23.18 Trace.

**Typing C for (c)lose**

Typing C or c will Close the string and ends the creation of the new string.

A new Trace option then begins.

The option is terminated by pressing the <Esc> key.

Go to the beginning of the Trace documentation 15.23.18 Trace.
15.24 CAD Edit

For the option *Paste*, please go to
- Copy rectangle
- Copy many

*15.24.1 Paste*

*15.24.2 12d Copy Rectangle*

*15.24.3 12d Copy Many*
15.24.1 Paste

Paste the 12da data from the clipboard into the current view in 12d.
15.24.2 12d Copy Rectangle

In the chosen view select the first point and then drag the cursor to visualise your desired rectangle. When the second point is accepted, the data inside the rectangle is copied to the clipboard in 12da format, ready for pasting into an open 12d project. The data is copied into models of the same model names as the original data.
15.24.3 12d Copy Many

Data is copied to the clipboard by selecting data from the Data to Copy field and then selecting Copy.

On selecting the Copy many option, a Cad 12d Copy panel is displayed.

![Cad 12d Copy Panel]

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data to Copy</td>
<td>data selection type - for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>model box</td>
<td>select the data from the specified model.</td>
<td></td>
</tr>
<tr>
<td>Copy</td>
<td>button</td>
<td>Copies the selected data to the clipboard in 12da format.</td>
<td></td>
</tr>
</tbody>
</table>
15.25 CAD Delete

Position of option on menu: CAD => Delete

The Cad Delete walk-right menu is

Menu of Options to Delete Vertices, Segments and Strings
- delete a vertex
- delete a segment
- delete a string

For the option Vertex, go to 15.25.1 Delete Vertices
For the option Segment, go to 15.25.2 Delete Segments
For the option String, go to 15.25.3 Delete Strings
15.25.1 Delete Vertices

Position of option on menu:  CAD =>Delete =>Points
or by selection of appropriate icon from the toolbar.

This option deletes vertices of super strings.

On selecting Points, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
The vertex to be deleted is selected and accepted (This must be a super string).

**STEP 2:**
The vertex point is deleted and the string redrawn.
15.25.2 Delete Segments

Position of option on menu: CAD =>Delete =>Segments

or by selection of appropriate icon from the toolbar.

This option deletes segments of super strings.

On selecting Segments, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**

The segment to be deleted is selected and accepted.

**STEP 2:**

The segment is deleted leaving two separate strings in this case.
15.25.3 Delete Strings

Position of option on menu: CAD => Delete => Strings 
or by selection of appropriate icon from the toolbar.

This option deletes selected strings. The string type does not specifically have to be a super string.

On selecting Strings, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.

**STEP 1:**
The string to be deleted is selected and accepted.

**STEP 2:**
The string is deleted.
15.25.4 Delete Selection of Strings

Position of option on menu: CAD =>Delete =>Selection
or by selection of appropriate icon from the toolbar.

This option allows the deleting of selected objects specified in a source box. For help on this option see 28.9.14 Delete.

On selecting the Delete option, the user is prompted for the relevant data in the screen message box located at the bottom left hand corner of the 12d Model application window.
15.26 Cad Acad

Position of option on menu: CAD => Acad

The Cad Acad walk-right menu is

For the option Paste, go to
- Copy rectangle
- Copy many
- Paste parameters
- Copy parameters

[Image: Cad Acad menu]

For the option Copy rectangle, go to 15.26.2 Copy rectangle
For the option Copy many, go to 15.26.3 Copy many
For the option Paste parameters, go to 15.26.4 Paste parameters
For the option Copy parameters, go to 15.26.5 Copy parameters
15.26.1 Paste

Pastes the Dwg/Dxf data from the clipboard into the current view in 12d.
15.26.2 Copy rectangle

In the chosen view select the first point and then drag the cursor to visualise your desired rectangle. When the second point is accepted, the data inside the rectangle is copied to the clipboard for pasting.
15.26.3 Copy many

Data is copied to the clipboard by selecting data from the Data to Copy field and then selecting Copy.
Selecting the Copy many option, brings up the Cad Acad Copy panel.

![Cad Acad Copy Panel]

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data to Copy</td>
<td>data selection type - for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>select the data from the specified model.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copy</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copies the selected data to the clipboard.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15.26.4 Paste parameters

The parameters for this panel are the same as parameters in the Read DWG/DXF Data panel. Selecting Paste parameters brings up the Acad Paste Parameters panel:

For more information please go to 8.1.10 DWG/DXF Input.
15.26.5 Copy parameters

The parameters for this panel are the same as parameters in the Write DWG/DXF file for panel. Selecting Copy parameters brings up the Acad Copy Parameters panel:
For more information please go to 8.2.7 Output DWG/DFX/DXB Files.
15.27 CAD Regression

Position of option on menu:  CAD => Regression

This section of documentation is a work in progress and will be updated in subsequent releases.

The Cad Regression walk-right menu is

For the option Line, go to 15.27.1 Line
Arc 15.27.2 Arc
General 15.27.3 General
15.27.1 Line

This section of documentation is a work in progress and will be updated in subsequent releases.
15.27.2 Arc

This section of documentation is a work in progress and will be updated in subsequent releases.
15.27.3 General

This section of documentation is a work in progress and will be updated in subsequent releases.
16 Tins

Position of menu: Tins

A Tin (triangulated irregular network) is an accurate method of representing 2.5D surfaces, especially those described by ground points or design strings. See 4.5.4 Tins.

12d Model uses tins in most operations involving surfaces. For example, contouring, interfacing and volume calculations.

Unlike strings, tins can be in more than one model, or even no model at all. However, to be displayed in a view or used for profiling on a section view, tins need to be in at least one model. It is suggested that each tin be in its own model called “tin tin_name”. This makes it easy to know the model a tin is in, and also to see which models contain tins and obtain lists of all tins.

The Triangles walk-right menu is

Each of these options will now be discussed.

For the option Tins, go to

<table>
<thead>
<tr>
<th>Option</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tins info</td>
<td>16.2 Tin Info</td>
</tr>
<tr>
<td>Check breaklines</td>
<td>16.3 Check Breaklines, Duplicate Vertices, Identicals</td>
</tr>
<tr>
<td>Create</td>
<td>16.5 Create</td>
</tr>
<tr>
<td>Edit</td>
<td>16.6 Edit</td>
</tr>
<tr>
<td>Boundary</td>
<td>16.7 Boundary</td>
</tr>
<tr>
<td>Colour</td>
<td>16.8 Colour</td>
</tr>
<tr>
<td>Contour</td>
<td>16.9 Contour</td>
</tr>
<tr>
<td>Drape</td>
<td>16.10 Drape</td>
</tr>
<tr>
<td>Tin analysis</td>
<td>16.11 Tin Analysis</td>
</tr>
<tr>
<td>Inquire</td>
<td>16.12 Inquire</td>
</tr>
<tr>
<td>Null</td>
<td>16.13 Null</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangles</td>
<td></td>
</tr>
<tr>
<td>Tins</td>
<td></td>
</tr>
<tr>
<td>Tin info</td>
<td></td>
</tr>
<tr>
<td>Tin manager</td>
<td></td>
</tr>
<tr>
<td>Check breaklines</td>
<td></td>
</tr>
<tr>
<td>Create</td>
<td></td>
</tr>
<tr>
<td>Edit</td>
<td></td>
</tr>
<tr>
<td>Boundary</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td></td>
</tr>
<tr>
<td>Contour</td>
<td></td>
</tr>
<tr>
<td>Drape</td>
<td></td>
</tr>
<tr>
<td>Tin analysis</td>
<td></td>
</tr>
<tr>
<td>Inquire</td>
<td></td>
</tr>
<tr>
<td>Null</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

list of tins
information on project tins
check crossing breaklines
triangulate a model or view, Super Tin
modify model list, etc. for tin
construct tin boundary
colour of tin, colour in polygon
contouring hts, depths, labelling
drape strings onto tin
slope, aspect, viewshed etc.
tin values at cursor position
remove unwanted triangles
various tin options
creating x-sections, mesh, long sec
tin sharing
Triangles User menus
delete tins from disk
16.1 Tins

**Position of menu:**  
Tins⇒Tins

The **Tins** walk-right menu provides options to list all the tins in the project (project tins) and all the tins in the project area but not in the project (removed tins).

The **Tin List** walk-right menu is

<table>
<thead>
<tr>
<th>Tin List</th>
<th>Project tins</th>
<th>Removed tins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>list of tins in project</td>
<td>list of removed tins in project area</td>
</tr>
</tbody>
</table>

For the option Project tins, go to  
16.1.1 Project Tins

Removed tins  
16.1.2 Removed Tins
16.1.1 Project Tins

**Position of option on menu:**  Tins => Tins => Project Tins

The project tins walk-right menu provides a list of all the tins in the project and there is a walk-right on each tin name showing what models the tin is in. If a tin name is selected from the list of tins, the tin information panel is fired up with the selected tin name already in the tin field.
16.1.2 Removed Tins

**Position of option on menu:** Tins => Tins => Removed Tins

The removed tins walk-right menu provides a list of all the tins in the project area that have been removed from the project (using the removed from project option).
16.2 Tin Info

**Position of option on menu:**  Tin => Tin info

Selecting Tin info fires up the Tin information panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>xmin, xmax</td>
<td>output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ymin, ymax</td>
<td>output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zmin, zmax</td>
<td>output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Points</td>
<td>output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tris</td>
<td>output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Info</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calc Extent</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- _input the name of the tin to get information on_
- _returns the tin x, y, z limits_
- _returns the number of points in the tin_
- _returns the number of triangles in the tin_
- _get the information for the tin given in the Tin field._
- _recalculate the x, y, z bounding box for the tin given in the model field._

**How to Use the Panel**

The information for the tin given in the Tin field is retrieved and placed in the appropriate panel fields when the tin name is piped into the Tin field from the pop-ups, or an <enter> is entered after typing the tin name into the Tin field, or on selecting the info button.
16.3 Check Breaklines, Duplicate Vertices, Identicals

Position of option on menu: 
- Tins => Check breaklines
- Utilities => A-G => Check/clash => Check breaklines

The Check breaklines option is used to test whether any of the line segments from any line strings in a model or view intersect (cross) the line segments from any other string in the model/view. This includes self intersections of strings.

The option also checks for any points with the same x and y coordinates (same plan position) but different z-values, and for totally duplicated strings (identicals).

Intelligent log lines are written to the output window for showing any crossing breaklines, duplicate vertices, etc.

Selecting Check breaklines displays the Check Breaklines, Duplicate Vertices and Identical Strings for panel.

![Check Breaklines, Duplicate Vertices and Identical Strings for Panel](image)

The fields and buttons in the panel have the following functions.
Field Description	Type	Defaults	Pop-Up
**Data set 1**

*if Data set 2 is ticked off*, then all the selected strings in Data set 1 are checked against all the other selected strings from Data set 1.

*If Data set 2 is ticked on*, then all the selected strings in Data set 1 are checked against all the selected strings in Data set 2, **BUT** the strings in Data set 1 are not checked against each other and the strings in Data set 2 are not checked against each other.

**Data set 1 source type** | Model | data selection type - for a full description go to 4.19.3 Data Source.

**Data set 1 source** | input | data to be processed.

**Data set 2**

*if Data set 2 is ticked off*, then all the selected strings in Data set 1 are checked against all the other selected strings from Data set 1.

*If Data set 2 is ticked on*, then all the selected strings in Data set 1 are checked against all the selected strings in Data set 2, **BUT** the strings in Data set 1 are not checked against each other and the strings in Data set 2 are not checked against each other.

**Data set 2 source type** | Model | data selection type - for a full description go to 4.19.3 Data Source.

**Data set 2 source** | input | data to be processed.

**Intersecting strings with valid heights** | model box | available models

*if non-blank, check for any crossing line segments and place either a copy of the crossing segments into the model given in this field or a diamond depending on the state of Simple crosses.*

**Duplicate vertices of different heights** | model box | available models

*if non-blank, copies of any strings that are completely duplicated are placed in the model given in this field and circles are placed in this model at any duplicate points that aren’t from an entire string.*

**Identical strings in all details** | model box | available models

*if non-blank, the duplicates of any strings are moved to model given in this field. That is, if any strings are identical in all ways, then the second and subsequent identical strings are moved to the this model. This is especially for the case when a second copy of some data has been supplied.*

**Self check strings** | tick box | tick

*if ticked, a string is not check against itself for crossing breaklines etc.*

*If not ticked, a string is not checked against itself for crossing breaklines. This speeds up processing.*

**Colour for intersections** | colour box | available colours

*colour for the copies of the crossing segments.*

**Clean models beforehand** | tick box | tick

*if ticked, the models for intersecting string, duplicate points, identicals are cleaned before the option is run.*

**Report type** | choice box | 12d Report Format, original xml

*if 12d Report Format, the xml format is converted to the 12d Report Format for check breaklines*

*if original xml, report is in xml format*

**Report file** | file box | if non-blank, a report file of this name is created giving details of all the crossing breaklines and...
duplicate plan points with different z-values.

**Simple crosses**

Tick box

If ticked, create diamonds at the position where strings cross, otherwise create a string in the shape of a cross with parts of the crossing strings.

**Check**

After selecting the check button, all the strings in the model/view are tested for any crossing line segments or duplicate points. If requested, a report is generated.

<esc> can be used to abort the checking option.
16.4 Check Breaklines - Old

**Position of option on menu:** Utilities => Old => Check breaklines

The check breakline option is used to test whether any of the line segments from any line strings in a model or view intersect (cross) the line segments from any other string in the model/view. This includes self intersections of strings.

The option also checks for any points with the same x and y co-ordinates (same plan position) but different z-values, and for totally duplicated strings.

On selecting Check breaklines option and then the appropriate Data Source in the panel, the Check Breaklines for panel is displayed.

The fields and buttons in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type - for a full description go to 4.19.3 Data Source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>data to be processed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersecting strings with valid heights</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>if non-blank, check for any crossing line segments and place either a copy of the crossing segments into the model given in this field or a diamond depending on the state of Simple crosses.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duplicate vertices of different heights</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>if non-blank, copies of any strings that are completely duplicated are placed in the model given in this field and circles are placed in this model at any duplicate points that aren’t from an entire string.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Identical strings in all details

Model box

available models

if non-blank, the duplicates of any strings are moved to model given in this field. That is, if any strings are identical in all ways, then the second and subsequent identical strings are moved to the this model. This is especially for the case when a second copy of some data has been supplied.

Self check strings

tick box

tick

if ticked, a string is not check against itself for crossing breaklines etc.
If not ticked, a string is not checked against itself for crossing breaklines. This speeds up processing.

Colour for intersections

colour box

available colours

colour for the copies of the crossing segments.

Clean models beforehand

tick box

tick

if ticked, the models for intersecting string, duplicate points, identicals are cleaned before the option is run.

Report file

file box

if non-blank, a report file of this name is created giving details of all the crossing breaklines and duplicate plan points with different z-values.

Simple crosses

tick box

tick

if ticked, create diamonds at the position where strings cross, otherwise create a string in the shape of a cross with parts of the crossing strings.

Check

button

after selecting the check button, all the strings in the model/view are tested for any crossing line segments or duplicate points. If requested, a report is generated.

<esc> can be used to abort the checking option.
16.5 Create

**Position of menu:** Tins => Create

The input data for a triangulation is either all the data in a selected model or all the data from all the models on a selected view or a list of models. The options for each method of selecting data are on the Create walk-right menu.

A Super Tin™ is a list of Tins and a Tin function creates a re-calc function name for an existing Tin. Each of these options are also on the Create walk-right menu.

The Create walk-right menu is

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangulate data</td>
<td>triangulate a model or view of data</td>
<td>16.5.1 Triangulate Data</td>
</tr>
<tr>
<td>Supertin</td>
<td>create a supertin</td>
<td>16.5.2 Create Super Tin™</td>
</tr>
<tr>
<td>Function</td>
<td>create a triangulate function</td>
<td>16.5.3 Function</td>
</tr>
<tr>
<td>Quick tin</td>
<td>create a quick tin of selected strings</td>
<td>16.5.4 Quick Tin</td>
</tr>
</tbody>
</table>

For the option *Triangulate data*, go to 16.5.1 Triangulate Data
For the option *Supertin*, go to 16.5.2 Create Super Tin™
For the option *Function*, go to 16.5.3 Function
For the option *Quick tin*, go to 16.5.4 Quick Tin
16.5.1 Triangulate Data

**Position of option on menu:**   Tins =>Create =>Triangulate data

For simple jobs, the data to triangulate is all in the one model. However, it often occurs that the data one needs to triangulate is not in one model but is in the models displayed on a particular view.

The **Triangulate data source** option allows you to either select the data to triangulate from a single model, a list of models or to use the data points from all the models attached to a particular view, rather than the data from a particular model.

In each case, the models used in creating the triangulation are recorded so that the models can be easily retriangulated if any of the data changes.

Selecting **Triangulate data** displays the **Triangulate a Data Source** panel.

![Triangulate a Data Source panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>General tab</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retriangulate function</td>
<td>function box</td>
<td>box</td>
<td></td>
</tr>
<tr>
<td>* if non blank, name of the tin function. The function can be recalced to recreate a new tin from the current data in the models used to construct the original tin. This is optional.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New tin name</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* name of the tin created from the triangulation of the model/view. If <code>&lt;enter&gt;</code> is type after the name, the model for tin field is filled out with the name tin new_tin_name.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin colour</td>
<td>input</td>
<td>default tin colour</td>
<td>available colours</td>
</tr>
<tr>
<td>* colour to draw the triangles whenever they are displayed in a view. This is called the base tin colour. It is possible to change the colour of individual triangles so they are different to base tin colour.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The **Triangulate** button does the triangulation.

The **Finish** button finishes the triangulation process.

The **Help** button provides help on the panel.

---

*Note: Image and table content adapted for readability.*
Tin style input 1 available line styles
line style used for drawing sections through the tin on the section view.

Model for tin input available models
if non-blank, the created tin will be added to the model given in this field.
if blank, the name tin new_tin_name will be placed in the field when the triangulate button is selected.

Preserve strings tick box tick
if ticked, all strings with breakline type line or segment type tinable will be preserved as sides of triangles. Otherwise, all line strings or segments of type tinable will be treated as point strings for the triangulation.

Remove bubbles tick box
if ticked, post-processing occurs to try and stop all the points of a triangle coming from the same string. This helps prevents triangles with all three points coming from the one contour string and hence forming a flat triangle.

Weed tin tick box
if ticked, all duplicate points all removed from the tin database. This helps to reduce the size of the tin files if there was a large amount of duplicate data. This flag is automatically set to tick for triangle data.

Triangle data tick box
if ticked, then it is assumed the original data was triangles and 12d will ensure that the triangles produced by the triangulation exactly match (including null regions) the original triangle data. Weed tin is automatically set to tick if face data is set to tick.

Cell method tick box
if ticked, try to create the triangles in cells - an alternate method of ordering the data which is often faster when the data comes in lines rather than randomly.

Colour by triangle data tick box
if ticked and Triangle data is ticked, the colour of each triangle in the created tin is made the same as the triangle from the triangle data.

Create many tick box
if ticked, once the tin has been triangulated, the panel will stay up so you can create another tin. If not ticked, after the tin has been created, the panel is replaced by a Retriangulate Tin panel so if there are any mods to be made, no time is wasted in needed to select the panel.

Data tab

Data source type Model
data selection type - for a full description go to 4.19.3 Data Source.
For this option, only data types involving models can be used - model, view, model list and the models from a favourite.

Data source input
source of data is to be triangulated - only Model or View allowed for this option.

Data polygon string-select
if a string is selected as a data polygon, only string points that are inside the data polygon are used in the triangulation.
If no string is selected, then all the points in all the model/view are used in the triangulation.

Nulling tab

Apply nulling tick box
if ticked, null the resultant tin using Angle, Length, Combined angle and Combined length.

**Angle**

angle box 5

if a triangle has an external side (that is not a breakline) with an angle on it less than **Angle**, then the triangle is nulled. The default value works most of the time.

*If blank then no triangles are nulled by this test.*

**Length**

real value 100

if a triangle has an external side (that is not a breakline) greater than **Length**, the triangle is nulled.

*If blank then no triangles are nulled by this test.*

**Combined angle**

angle box 60

**Combined length**

real box 20

For the Combined case, a triangle is nulled if it:

- has an external side (that is not a breakline) and the sum of the two angles on it is less than **Combined angle** (the default value works most of the time)

  *and*

- has an external side (that is not a breakline) whose length is greater than **Combined length**. A suggested value is one third to one half of Length.

*If either Combined angle or Combined length is blank, then no triangles are nulled by this test.*

**Null polygon**

string-select

if a string is selected as a null polygon, any triangle whose centroid is outside the null polygon is automatically nulled.

**Button at bottom**

**Triangulate**

button

Triangulate the model/view given in the **model/view to triangulate** field. The created tin will be stored with the name given in the **new tin name** field. The tin will be the colour given in the tin colour field. If the **model/view for tin** field is non-blank, the created tin will be added to the model given in that field - if the model does not exist, it will be created.

**Panel Messages**

Progress messages - sent to the panel message area

- no of points in model/view = no. of points
- no. points pts no. break lines break lines
- no. points pts no. of secs s no. pts/s no. dup
- break lines finished. time taken = secs

Completion message - sent to the panel message area

- average no of pts per sec = no.

<esc> can be used to abort the triangulation option.
16.5.2 Create Super Tin™

**Position of option on menu:**  Tins => Create => Supertin

The Super Tin™ option is designed to create a super triangulation from other triangulations.

With Super Tins, existing triangulations can be combined to form the equivalent of a merged triangulation without having to completely re-build a merged model and retriangulating it.

This means there are less steps in creating a Super Tin merged triangulation so a lot less time is required and there is less opportunity for errors. Also, if any of the component triangulations of the Super Tin are modified, then the Super Tin is also instantly modified.

The Super Tin is defined by a list of triangulations in increasing number order. Wherever two triangulations overlap, the triangulation of higher number takes precedence and is used to defined z-values and sections.

Hence, for any (x,y) point, the z-value on the Super Tin is defined to be the z-value from the triangulation of the highest number which is under the (x,y) point.

A section through a Super Tin is made up of the sections through the tin of highest number at each point along the section and so may involve more than one tin.

All Super Tins support Sections, Apply MTFs, Site Lines and volumes by end area calculations.

For a Super Tin, there is also an **Exact calculations flag** and if this is set to on, extra calculations are done when creating a Super Tin (and every time a tin included in a Super Tin is modified) so that the Super Tin can be used for Exact Volumes and Visualisation.

So Super Tins with the **Exact calculations** flag set support sections, Apply MTFs, site lines, and volumes by end area methods, as well as volumes by exact methods, and can also be used in visualisations.

**Note** - the reason that **Exact calculations** may be turned off is that for some tins, it may add significant processing time whenever a tin in the Super Tin is changed. So if that is slowing down your project and you don’t need exact volumes or visualisations all the time, turn off **Exact calculations** for the Super Tin. **Exact calculations** can always be turned back on when you need them.

Selecting **Supertin** brings up the Create Super Tin panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Super tin</strong></td>
<td>name of the tin created from the triangulation of the model/view. If &lt;enter&gt; is type after the name, the model for tin field is filled out with the name tin new_tin_name.</td>
<td>super tin box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Tin colour</strong></td>
<td>the tin colour is used as the section colour when sectioning through the Super Tin. When displayed on plan or section views, the each tin making up the Super Tin is drawn in its own colour.</td>
<td>colour box</td>
<td>default tin colour</td>
<td>available colours</td>
</tr>
<tr>
<td><strong>Tin style</strong></td>
<td>line style used for drawing sections through the Super Tin on the section view.</td>
<td>linestyle box</td>
<td>1</td>
<td>available line styles</td>
</tr>
<tr>
<td><strong>Model for tin</strong></td>
<td>if non-blank, the created Super Tin will be added to the model given in this field. If blank, the name tin new_tin_name will be placed in the field when the Create button is selected.</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td><strong>Exact calculations</strong></td>
<td>if ticked, when a Super Tin is created or a tin included in a Super Tin is modified, extra calculations are done for the Super Tin so that is can be used for Exact Volumes and in visualisations. If not ticked, no extra calculations are done for the Super Tin and it can only be used in options that use sections. For example, end area volumes and site lines.</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Tin Grid</strong></td>
<td>name of the tin to be included in the Super Tin. The order is critical since the higher number tins take precedence over the lower number tins. There can be up to 127 tins in a Super Tin.</td>
<td>Tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td><strong>Mode</strong></td>
<td>replace, subtract</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Replace

where ever this tin exists, use it instead of any tins of a lower number in the Tin column of the grid.

Subtract

where ever this tin exists, all parts of the tins of a lower number in the Tin column, are removed. So where ever the tin exists, it creates holes in all the tins of a lower number.

An example would be a tin that is the position of many gully pits. Using this tin in subtract mode will punch holes in all the tins of a lower number in the Tin column. So in effect, it does a nulling that also nulls parts of triangles from the tins of a lower number.

Active

if yes, the tin is included in the Super Tin.
If no, the tin is not included in the Super Tin. So the tin can be taken out of the Super Tin without having to remove it from the Tin list.

Create button

create a Super Tin from the tins in the Tins to include table. The created Super Tin will be stored with the name given in the New tin name field.

If there are no errors in creating the Super Tin, the panel then turns into a 16.6.2 Edit Super Tin panel to allow any other edits to be made before finishing.
16.5.3 Function

**Position of option on menu:**  Tins -> Create -> Function

The function option is used to construct a function which when recalced, will run a retriangulate on the tin. Since a function name can be given when a tin is first created, this option is rarely needed.

Selecting function displays the Retriangulate Function panel.

![Retriangulate Function panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function name</td>
<td>input</td>
<td>available functions</td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>input</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Create/Set</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Function name**
  the name to give to the retriangulate function.

- **Tin**
  name of the tin to be retriangulated when the function is recalced.

- **Create/Set**
  create or modify the retriangulate function.
16.5.4 Quick Tin

**Position of option on menu:**  Tins => Create => Quick tin

The Quick tin option create a temporary tin from strings selected in a data source, and restricted to a user selected rectangular window. Contours of a user given increment can also be generated. Each time the option is run, is creates a tin called 12d Quick Tin in the model 12d Quick Tin so the tin is over written each time the option is run.

Selecting Quick tin displays the Quick Triangulation Selection panel.

![Quick Triangulation Selection panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour of tin</td>
<td>colour box</td>
<td>available colours</td>
<td>the colour or the tin, and any contours.</td>
</tr>
<tr>
<td>Tin contour increment</td>
<td>real value box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Window</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Data source type**: Model
- **Data source**: input
- **Colour of tin**: colour box
- **Tin contour increment**: real value box
- **Window**: button

After clicking on Window, two corners to define a window are selected in a view. The tin for the selected data restricted to the Window is then created with the name 12d Quick Tin, added to the model 12d Quick Tin, and then the model added to the view that the Window was defined. Tin contours is also turned off for the view.
16.6 Edit

Position of menu: Tins => Edit

Once a tin is created, it can be edited in a variety of ways. The Edit walk-right menu is

- edit a tin definition and retriangulate
- edit Super Tin definitions
- recalculate a Super Tin
- modify a retriangulate function
- retriangulate an existing tin
- set tin style
- settings for rendering V6.1
- add breakline
- swap triangle edges

For the option Tin, go to

- 16.6.1 Edit a Tin
- 16.6.2 Edit Super Tin
- 16.6.3 Recalc Super Tin
- 16.6.4 Edit Tin Function
- 16.6.5 Retriangulate
- 16.6.6 Style
- 16.6.7 Render Settings
- 16.6.8 Add Breaklines
- 16.6.9 Flip Triangles
16.6.1 Edit a Tin

**Position of option on menu:**  Tins \(\Rightarrow\) Edit \(\Rightarrow\) Tin

When a tin is created, the settings and models used in the triangulation are recorded with the tin data. The Edit \(\Rightarrow\) Tin option can be used to modify the models and setting used to define the tin and then recreate the tin from the new models and settings.

Selecting Edit \(\Rightarrow\) Tin displays the **Retriangulate Tin** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>General tab</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>name of the tin to be retriangulated. When the tin name is given, the list of models used for the tin and other settings, are displayed.</td>
<td>tin box</td>
<td>original tin name</td>
<td></td>
</tr>
<tr>
<td>Tin colour</td>
<td>original colour of the tin - this can be modified. Note that this only modifies the base tin colour and any triangles that have had their colour modified, will keep the modified colour.</td>
<td>colour box</td>
<td>original colour</td>
<td>available colours</td>
</tr>
<tr>
<td>Tin style</td>
<td>original line style of the tin - this can be modified.</td>
<td>line style box</td>
<td>original line style</td>
<td>available line styles</td>
</tr>
<tr>
<td>Preserve strings</td>
<td>if ticked, all strings with breakline type line will be preserved as sides of triangles. Otherwise, all line strings will be treated as point strings for the triangulation.</td>
<td>tick box</td>
<td>original setting</td>
<td></td>
</tr>
<tr>
<td>Remove bubbles</td>
<td>if ticked, post-processing occurs to try and stop all the points of a triangle coming from the same string.</td>
<td>tick box</td>
<td>original setting</td>
<td></td>
</tr>
<tr>
<td>Weed tin</td>
<td>if ticked, all duplicate points all removed from the tin database.</td>
<td>tick box</td>
<td>original setting</td>
<td></td>
</tr>
</tbody>
</table>

[Diagram of the Retriangulate Tin panel]
Triangle data

Triangle data tick box original setting

If ticked, only triangles in the tin that are under the centroid of a string representing a triangle in the model/view are considered valid, all others are set to null. That is, any triangles not under the centroid of a string from the model/view will be set to null. This is extremely useful when the original string data represents triangles and it will ensure that the triangles produced by the triangulation will exactly match, including null regions, the original triangle data. Weed tin is automatically set to tick if face data is set to tick.

Cell method

Cell method tick box original setting

If ticked, try to create the triangles in cells - an alternate method of ordering the data for use when the triangulation takes too long by the non-cell method.

Data tab

Model List models in the tin

List of models used to create the original tins. The models and the order can be modified.

Data polygon string-select original data polygon

If a string is selected as a data polygon, only string points that are inside the data polygon are used in the triangulation.

If no string is selected, then all the points in all the models are used in the triangulation.

Nulling tab

Apply nulling tick box original setting

If ticked, null the resultant tin using Angle, Length, Combined angle and Combined length.

Angle angle box original setting

If a triangle has an external side (that is not a breakline) with an angle on it less than Angle, then the triangle is nulled. The default value works most of the time.

If blank then no triangles are nulled by this test.

Length real value original setting

If a triangle has an external side (that is not a breakline) greater than Length, the triangle is nulled.

If blank then no triangles are nulled by this test.

Combined angle angle box original setting

Combined length real box original setting

For the Combined case, a triangle is nulled if it:

has an external side (that is not a breakline) and the sum of the two angles on it is less than Combined angle (the default value works most of the time)

and

has an external side (that is not a breakline) whose length is greater than Combined length. A suggested value is one third to one half of Length.

If either Combined angle or Combined length is blank, then no triangles are nulled by this test.

Null polygon string-select original null polygon

If a string is selected as a null polygon, any triangle whose centroid is outside the null polygon is automatically nulled.

Retriangulate button

The original tin is deleted and the data in the models to include table used to create a new triangulation which is given the original tin name. The settings in this panel are used for the retriangulation.
16.6.2 Edit Super Tin

**Position of option on menu:**  
Tins => Edit => Supertin

When a Super Tin is created, the tins and settings used to create the Super Tin are recorded. The Edit=>Supertin option modifies the tins and setting used to define the Super Tin.

On selecting the edit=>supertin option, the edit super tin panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Super tin name</td>
<td>sup tin box</td>
<td>original super tin name</td>
<td>existing Super Tins</td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the Super Tin to be modified.</td>
<td></td>
</tr>
<tr>
<td>Tin colour</td>
<td>colour box</td>
<td>existing super tin colour</td>
<td>available colours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>original colour for drawing sections through the Super Tin - this can be modified.</td>
<td></td>
</tr>
<tr>
<td>Tin style</td>
<td>line style box</td>
<td>existing Super Tin style</td>
<td>available line styles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>original linestyle for drawing sections through the Super Tin - this can be modified.</td>
<td></td>
</tr>
<tr>
<td>Exact calculations</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, when a Super Tin is created or a tin included in a Super Tin is modified, extra calculations are done for the Super Tin so that is can be used for Exact Volumes and in visualisations.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If not ticked, no extra calculations are done for the Super Tin and it can only be used in options that use sections. For example, end area volumes and site lines.</td>
<td></td>
</tr>
<tr>
<td>Tin Grid</td>
<td>Tin table</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the tin to be included in the Super Tin. The order is critical since the higher number tins take precedence over the lower number tins.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>There can be up to 127 tins in a Super Tin.</td>
<td></td>
</tr>
</tbody>
</table>
Mode

Replace

where ever this tin exists, use it instead of any tins of a lower number in the Tin column of the grid.

Subtract

where ever this tin exists, all parts of the tins of a lower number in the Tin column, are removed. So where ever the tin exists, it creates holes in all the tins of a lower number.

An example would be a tin that is the position of many gully pits. Using this tin in subtract mode will punch holes in all the tins of a lower number in the Tin column. So in effect, it does a nulling that also Nulls parts of triangles from the tins of a lower number.

Active

if yes, the tin is included in the Super Tin.

If no, the tin is not included in the Super Tin. So the tin can be taken out of the Super Tin without having to remove it from the Tin list.

Update button

update the Super Tin definition with the information in the above panel fields.
16.6.3 Recalc Super Tin

**Position of option on menu:**  
Tins => Edit => Recalc super tin

This option gets a super tin that has **Exact calculations** ticked on, to recalculate itself.

That is, the super tin updates all the interfaces with its component tins if there were any changes to the component tins.

The option can be used in a Chain.

Selecting **Edit** => **Recalc super tin** displays the **Super Tin Recalc** panel.

![Super Tin Recalc Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Super tin</strong></td>
<td>super tin box</td>
<td>existing Super Tins</td>
<td></td>
</tr>
<tr>
<td><strong>Force recalc</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*name of the Super Tin to be recalculated.*

If ticked and **Exact calculations** is ticked on for the super tin, a recalc of the super tin is done.

If not ticked and **Exact calculations** is ticked on for the super tin, a recalc of the super tin is only done if the super tin believes it is necessary.

If **Exact calculations** is not ticked on for the super tin, then no recalc occurs.

**Recalc** button

recalculates the super tin.
16.6.4 Edit Tin Function

**Position of option on menu:** Tins => Edit => Function

The edit => function option is used to edit a tin function.

On selecting the function option, the **retriangulate function** panel is displayed which is the same as for the option Tins => Create => Function (see 16.5.3 Function).
16.6.5 Retriangulate

**Position of option on menu:** Tins => Edit => Retriangulate

When a tin is created, the settings and models used in the triangulation are recorded with the tin data. The *retriangulate* option is used to recreate the tin from the same models and settings.

The *retriangulate* menu item operates two ways.

(a) The *retriangulate* walk-right brings up the *tins* menu which is a list of all the existing tins.

   By choosing one of the tins from the *tins* menu, the tin is retriangulated.

(b) If *retriangulate* itself is activated (by clicking LB when *retriangulate* is highlighted), the *retriangulate tin* panel appears. The *retriangulate tin* panel can be used to modify the tin definition and retriangulate the tin.
16.6.6 Style

Position of option on menu:  Tins => Edit => Style

When a tin is created, it is given a linestyle (the tin linestyle) which is used for drawing the tin whenever it is profiled on a section view or plotted in long and cross section plots.

The style option is used to modify the tin linestyle.

On selecting the style option, the tin linestyle panel is displayed.

![Tin Linestyle Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td></td>
<td>available tins</td>
</tr>
<tr>
<td>Style</td>
<td>linestyle box</td>
<td>1</td>
<td>available linestyles</td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td></td>
<td>set the tin linestyle to that given in the style panel field.</td>
</tr>
</tbody>
</table>

name of the tin to modify the linestyle of:

linestyle for the tin.
16.6.7 Render Settings

**Position of option on menu:**  Tins => Edit => Render settings

**Position of option on menu:**  Tins => Visualisation => Tin render settings

This option sets blending, texture mappings, raster draping, one/two sides, draping of polygons, text, billboards and images for triangles in a tin. It has already been documented as

Tins => Visualisation => Tin render settings

in the section 12.13.1 Tin Render Settings.

**IMPORTANT NOTE:**  the Visualisation module is required for the Tin Render Settings to be used on a Perspective OpenGL view.
16.6.8 Add Breaklines

**Position of option on menu:**  Tins => Edit => Add breaklines

This option allows extra breaklines joining existing vertices in the tin to be created. The new breaklines can be added to a model so that the results can be reproduced on a retriangulation. Selecting Add breakline displays the Add Breaklines panel.

![Add Breaklines Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>name of the tin to add a breakline to.</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Model for breaklines</td>
<td>if non-blank, then as breaklines are created with this option, then the breakline is automatically added to this model so that the breakline modifications will try to be preserved on a retriangulation (this may not be possible with crossing breaklines).</td>
<td>model box</td>
<td>1</td>
<td>available models</td>
</tr>
<tr>
<td>Breakline</td>
<td>add a breakline by clicking near the two vertices of the tin that are to be connected by a breakline (cursor snap will do). As each breakline is added, the triangles are rearranged. If fast contours are turned on, the effect will be immediate. Note that you can have fast contours and tin edges toggled on at the same time.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### 16.6.9 Flip Triangles

**Position of option on menu:**  
Tins => Edit => Flip triangles

This option works on a triangle side and if it is possible, it finds the two triangles with this common side, removes the common side and replaces it with a new common side which joins the non common triangle points in the original triangle. Note that this can’t be done when the new side goes outside the two triangles.

A new breaklines can also be automatically added to a model so that the results can be reproduced on a retriangulation.

Selecting Flip triangles displays the Flip Triangles panel.

![Flip Triangles Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
</tbody>
</table>

name of the tin to add a breakline to.

| Model for breaklines       | model box | 1 | available models |

if non-blank, then as triangles are selected and flipped, then breaklines are automatically added to this model so that the flip modifications will try to be preserved on a retriangulation (this may not be possible with crossing breaklines).

| Flip                       | button    |

flip a triangle by clicking near the common edge (cursor snap will do). As each flip is done, the triangles are rearranged. If fast contours are turned on, the effect will be immediate. Note that you can have fast contours and tin edges toggled on at the same time.
16.7 Boundary

**Position of option on menu:** Tins => Boundary

The **Boundary** option is used to construct the boundary strings for a tin, i.e. the strings going around the edges between the null and non-null triangles in the tin.

If the tin has holes (internal null regions), then there will be more than one boundary string created.

Often the boundary strings is used as a first step in creating a polygon to be used to null out further triangles not required in the tin.

Selecting **Boundary** displays the **Create Boundaries for Tin** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tin</strong></td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td><strong>Model for boundaries</strong></td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td><strong>Create super string(s)</strong></td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td><strong>Solid fill string(s)</strong></td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td><strong>Boundaries draped</strong></td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td><strong>Boundary colour</strong></td>
<td>input</td>
<td>cyan</td>
<td>available colours</td>
</tr>
<tr>
<td><strong>Attach to tin</strong></td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
</tbody>
</table>

The **Tin** box (name of the tin (not a super tin) to calculate the boundary strings for).

The **Model for boundaries** box (the model to place the boundary strings in).

If **ticked**, the boundary strings are super strings.

If **not ticked**, the boundary strings are 3d strings.

If **ticked**, each of the boundaries is solid filled with the tin colour.

If **ticked**, the points of the boundary have the z-values from the tin.

If **not ticked**, the z-value is set to 1.

The **Boundary colour** box (the colour for the boundary strings).

If **ticked**, the boundaries are remembered with the tin and when you have the 250M version of
12d Model and have Model Density turned on, if the density is such that the tin would only be drawn as a red rectangle, the boundaries are drawn instead of the red rectangle.

Create button

create the boundary polygons for the tin.
16.8 Colour

**Position of menu:** Tins => Colour

When a tin is created, all the triangles have the same colour (called the tin’s base colour). This is the colour given by the user when creating the tin with the **Triangulate a Data Source** panel. The base colour can be changed at any time using the colour of tin option.

However, it often necessary to colour specific triangles in some other colour than the base colour. The option Colour within polygon is designed to do just that.

When the Triangles menu is torn off the main menu, the Colour menu item on it operates in two ways:

First, clicking on Colour without walking right brings up the Colour of Tin panel (see the next section). Secondly, the Colour walk-right brings up the Tin Colouring menu.

The Tin Colouring walk-right menu is

For the option Colour of tin, go to
- Colour within polygon
- Reset
- Tin height colour
- Tins depths colour
- Aspect colouring
- Slope colouring

For the option Colour within polygon, go to
- Colour within polygon
- Reset
- Tin height colour
- Tins depths colour
- Aspect colouring
- Slope colouring

For the option Reset, go to
- Reset

For the option Tin height colour, go to
- Tin height colour

For the option Tins depths colour, go to
- Tins depths colour

For the option Aspect colouring, go to
- Aspect colouring

For the option Slope colouring, go to
- Slope colouring

For the option Colour of Tin, go to
- 16.8.1 Colour of Tin

For the option Colour Within Polygon, go to
- 16.8.2 Colour Within Polygon

For the option Reset, go to
- 16.8.3 Reset

For the option Tin Height Colour, go to
- 16.8.4 Tin Height Colour

For the option Tins Depths Colour, go to
- 16.8.5 Tins Depths Colour

For the option Aspect Colouring, go to
- 16.8.6 Aspect Colouring

For the option Slope Colouring, go to
- 16.8.7 SlopeColouring
16.8.1 Colour of Tin

**Position of option on menu:**  Tins => Colour => Colour of tin

A tin is given a base colour when it is originally constructed. The colour of tin option allows the user to change the base colour of the tin.

On selecting the Colour of tin option, the Tin Colour panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>colour box</td>
<td>default tin colour</td>
<td>available colours</td>
</tr>
<tr>
<td>Colour button</td>
<td>button</td>
<td>colour all the base triangles with the colour given in the Colour field.</td>
<td></td>
</tr>
</tbody>
</table>

name of the tin to have its base colour modified. The tin must exist in 12d Model. When the tin name is entered, the existing colour of the tin is displayed in the Colour panel field.

the new base colour for the tin given.
16.8.2 Colour Within Polygon

Position of option on menu:  Tins => Colour => colour within polygon

Although a tin is given a base colour when constructed, it is useful to be able to change the
colour of selected triangles. For example, in a design tin with a road and terrain, the road and the
terrain could be displayed in different colours. This is particularly effective in shades.

The colour within polygon option allows the user to colour all the triangles whose centroids lie
inside (or outside) a selected polygon, or for all the polygons in a given model, with either a user
specified colour or the colour of each polygon. If a model of polygons is used, the polygons are
processed in the order that they occur in the model. The option can be applied any number of
times to a tin.

On selecting the colour within polygon option, the colour triangles by polygons panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the tin to have some of its triangles coloured. The tin must exist in 12d Model.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use experimental fast colouring</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, an experimental fast colouring algorithm is used.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use polygons colour</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, the colour of the polygons is used as the colour for the triangles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New colour</td>
<td>input</td>
<td>default tin colour</td>
<td>available colours</td>
</tr>
<tr>
<td></td>
<td>if Use polygons colour is not set to tick, this is the colour to set all the triangles within/out a polygon to.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Poly mode choice inside inside, outside

mode to select whether the triangles with centroids inside or outside the selected polygons are to be coloured.

Use a polygon tick box

if ticked, then individual polygons are selected and the tin coloured within them.

Colour on accept of polygon tick box

if ticked, then the colouring is done as soon as a polygon is accepted.

Polygon polygon select string pop-up

this is used to
(a) select an individual string to use as a polygon for colouring
(b) dynamically define a rectangle to use as a polygon for colouring
(c) dynamically define a parallelogram to use as a polygon for colouring
(d) dynamically define a lasso to use as a polygon for colouring
(e) edit a string already selected with the polygon select
(f) get information on a string already selected with the polygon select
(g) delete a string already selected with the polygon select
(h) clear any selection already made by the polygon select
(i) toggle on/off the checks made the string selected by the polygon select

Use a model of polygons tick box

if ticked, then all the polygons in the given model are used for colouring.

Model model box available models

model of polygons which are used for selecting triangles to be coloured. Colour happens when the Colour button is selected.

Colour button

for a model of polygons, each string in the Model of polygons is used to colour the triangles in the tin given in the tin field. If Colour on accept of polygon is off, colour within the selected string.
16.8.3 Reset

**Position of option on menu:**  Tins => Colour => Reset

The reset option is used to change all the non base-coloured triangles in a tin back to the base colour.

On selecting the reset option, the reset colour of triangles panel is displayed.

![Reset Colour of Triangles Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td></td>
<td>available tins</td>
<td></td>
</tr>
</tbody>
</table>

*name of the tin to have any non base-coloured triangles reset to the base colour. The tin must exist in 12d Model.*

<table>
<thead>
<tr>
<th>Reset</th>
<th>button</th>
<th></th>
<th>change any selectively coloured triangles back to the base colour.</th>
</tr>
</thead>
</table>
16.8.4 Tin Height Colour

**Position of option on menu:**  Tins => Colour => Tin height colour

The tin height colour option is used to calculate height bands for the tin and colour a view and/or create faces for the height bands. The calculations can be restricted to within a user selected polygon, or if no polygon is selected, the entire tin is used.

The calculated heights and colours are given in a user supplied height range file. A plan view can be temporarily coloured on the height basis using the range file. The temporary colours will disappear next time the view is refreshed.

For permanency, the option can also create coloured faces with the appropriate range colour. The faces can be displayed on any plan view using a solid fill colour or a hatch pattern.

For more information on the height range file, see 8.9.6 Height Range File.

Selecting Tin height colour displays the Colour Height Range for Tin panel

![Colour Height Range for Tin panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Range file</td>
<td>height range file box</td>
<td>*.hrf</td>
<td></td>
</tr>
<tr>
<td>Plan view to paint</td>
<td>view box</td>
<td>available views</td>
<td></td>
</tr>
<tr>
<td>Model for faces</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Clean faces model beforehand</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poly</td>
<td>polygon-select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On selecting this button, the heights of the triangles of the tin within the selected bounding polygon are...
calculated.

<esc> can be used to terminate the option during height calculations.
16.8.5 Tins Depths Colour

**Position of option on menu:**  Tins => Colour => Tin depths colour

The **Tins depths colour** option calculates colour bands for the **depths** between two tins, and colours a view and/or create faces. The calculations can be restricted to within a user selected polygon, or if no polygon is selected, the common portions of the tins are used.

The calculated depths and colours are given in a user supplied depth range file. A plan view can be temporarily coloured on the depth basis using the **range** file. The temporary colours will disappear next time the view is refreshed.

For permanency, the option can also create coloured faces with the appropriate range colour. The faces can be displayed on any plan view using a solid fill colour or a hatch pattern.

For more information on the depth range file, see [8.9.4 Depth Range File](#).

On selecting the **Tins depths colour** option, the **Colour Depth Range for Tins** panel is displayed.

![Colour Depth Range for Tins](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original/New tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>range file</td>
<td>depth range file box</td>
<td>*.drf</td>
<td></td>
</tr>
</tbody>
</table>

*name of the original/new tin to colour depths between. Cut is when the new tin is below the original tin.*

the user supplied depth range file is used to give the colour ranges for depths. See [8.9.4 Depth Range File](#).

**Plan view to paint**

*if non-blank, the given plan view will be painted according to the range colours given in the range file.*

**Model for faces**

*if non-blank, faces will be created with colours according to the range colours given in the range file.*

**Clean faces model beforehand**

*if tick, the model of faces is cleaned out before the option runs.*

**Poly**

*if selected, this string is used as the bounding polygon for the depth calculations.*

**Colour**

*colour the depths between the tins within the selected bounding polygon.*
<esc> can be used to terminate the option during depth calculations.
16.8.6 Aspect Colouring

Position of option on menu: Tins => Colour => Aspect colouring

The aspect colouring option is used to colour the triangles according to the aspect (direction) of the triangles in the tin. An aspect range file is used to define the colour ranges. Note that the actual colours of the triangles are changed - not a face model produced.

For more information on the aspect range file, see 8.9.5 Aspect Range File.

For each range in the file, the boundary strings for areas of common range can be created and also coloured faces that can be displayed on any plan view.

On selecting the Aspect colouring option, the Aspect Analysis Colour panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Range file</td>
<td>aspect range file box</td>
<td>*.arf</td>
<td></td>
</tr>
<tr>
<td>Aspect</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On selecting this button, the aspects of the triangles of the tin are calculated and the triangle coloured according to the range file.

<esc> can be used to terminate the option during aspect calculations.
16.8.7 Slope Colouring

**Position of option on menu:** Tins => Colour => Slope colouring

The **Slope colouring** option is used to colour the triangles in the tin according to the slope of the triangles. A slope range file is used to define the colour ranges.

Note that the actual colours of the triangles are changed - not a face model produced.

For more information on the slope range file, see [4.24 Defaults](#).

The values can be percent cross fall, “1v in” slope or degrees (in 12d Model dms format).

The `range_colour` is used to colour all triangles in the tin satisfying the range.

On selecting the **Slope colouring** option, the **Slope Analysis Colour** panel is displayed.

![Slope Analysis Colour Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>Name of the tin for which the slope of the triangles will be calculated and then the tin coloured.</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Range file</td>
<td>The user supplied range file is used to give the colour ranges for slopes to use to colour the triangles. See <a href="#">4.24 Defaults</a>.</td>
<td>slope range file</td>
<td>*.srf</td>
<td></td>
</tr>
<tr>
<td>Slope type</td>
<td>The units used for slope in the range file.</td>
<td>input</td>
<td>percent cross fall</td>
<td>percent cross fall, degrees, 1v in</td>
</tr>
</tbody>
</table>

On selecting this button, the slopes of the triangles of the tin are calculated and coloured according to the slope range file.

<esc> can be used to terminate the option during aspect calculations.
16.9 Contour

**Position of menu:** Tins => Contour

The Tin Contours walk-right menu is

- create, smooth and label contours
- create depth contours and also label and smooth them
- change colour/model
- colour contours using a height range file
- create contours
- create depth contours
- label contours
- smooth contours

For the option **Contour, smooth and label**, go to
- 16.9.2 Contour, Smooth and Label
- 16.9.3 Depth Contour, Smooth and Label Function
- 16.9.4 Change Contours
- 16.9.5 Colour
- 16.9.6 Contour
- 16.9.7 Depth Contours
- 16.9.8 Label Contours
- 16.9.9 Smooth

For information on creating contours, go to the section 16.9.1 Creating, Smoothing and Labelling Contours.
16.9.1 Creating, Smoothing and Labelling Contours

Creating Contours

Contours (or level lines) for a surface are the strings of constant height. Contours are often produced on maps and labelled with the height of the contours.

A 12d Model tin represents a surface in three dimensions and there is an option in 12d Model for producing the contours for the tin.

For a triangle in three dimensions, a string of constant height is actually a straight line across the triangle and the contour lines of different heights for a triangle are parallel lines.

Because triangles in a tin have common sides, a contour of a given height for one triangle will connect to the contour of the same height in an adjacent triangle.

So the contour lines on adjacent triangles join up to form continuous contour strings, each segment of which is straight across a triangle.

The contours for a tin lie on the surface of the tin.

The options to create contours in 12d Model has five parameters to define which contours are calculated. They are the

- minimum contour value
- maximum contour value
- contour increment
- contour reference
- bold increment

The elevation range over which the contours are to be produced is defined by the minimum and maximum contour values. If the minimum (maximum) value is not specified, the tin minimum (maximum) z-value is used.

The increment between successive contours is given by the contour increment.
For example, if contours are required every two metres from 100.0 metres to 200.0 metres, the parameters needed are

- contour minimum = 100.0
- contour maximum = 200.0
- contour increment = 2.0

This would be sufficient information to produce the contours 100.0, 102.0, 104.0... 198.0, 200.0.

However, 12d Model also provides a parameter to allow the following contours to be produced 101.0, 103.0, 105.0 .... 197.0, 199.0

For this and similar cases, the contour reference value is used.

When a contour reference value is specified, all the contour increments are taken from the contour reference value.

In the first example, the contour reference value is the default value of 0.0. In the second example, the contour reference value is 1.0.

If major (or bold or index) contours are required, the major contour increment is given a non-zero value. Major contours will be drawn at the integer multiples of the major increment instead of the standard contours.

For information on labelling contours, go to the section Labelling Contours.
For information on smoothing contours, go to the section Smoothing Contours.

Smoothing Contours

If the triangles in a tin, or sections of a tin, are large then the contours for that section of the tin may appear angular. Consequently some people like to smooth the contours to take out the angularity.

Be careful of smoothing because smoothing of contours produces strings that no longer sit on the triangulation.

12d Model smooths contours by apply a smoothing algorithm to each of the contour strings that were produced from the triangulation.

Two smoothing algorithms are available

(a) Preserve string points - this method ensures that the smoothed contour goes through all the vertices from the original contour string.
(b) Don’t preserve string points - this method does not have to include the vertices from the original contours in the smoothed contour.

For information on creating contours, go to the section Creating Contours.
For information on labelling contours, go to the section Labelling Contours.

Labelling Contours

12d Model labels contours by placing text labels at user controlled distances along the contour string.

The position and frequency of the contour labels along a contour string is controlled by two parameters, the start distance and the separation distance.

The first contour label is placed at a chainage distance of start distance from the beginning on the contour and the labels are repeated at a chainage distance of separation distance from the
previous contour label.

There is also a parameter to specify that contours are to be labelled at the start and the end regardless of the *start distance* and *separation distance*.

The number of decimal places used for the contour label is also user specified.

**12d Model** has seven methods for positioning the contour labels. They are the

(a) above line contour direction

> contour labels are created with the text parallel to the contours line and in the same direction as the contour string. The text is raised slightly above the contour string.

(b) above line read from below

> contour labels are created with the text parallel to the contour line and in the same direction as the contour string but at an angle between -90 and +90 degrees. The text is raised slightly above the contour string.

(c) centre line read from below

> contour labels are created with the text parallel to the contour line and in the same direction as the contour string but at an angle between -90 and +90 degrees. The text is centred on the contour string so the contour string goes through the text.
(d) line removal & centred line read from below

Contour labels are created with the text parallel to the contour line and in the same direction as the contour string but at an angle between -90 and +90 degrees. The text is centred on the contour string so the contour string goes through the text. Also the contours are cut so that gaps are left for the labels.

(e) above line facing up hill

Contour labels are created with the text parallel to the contours line in the same direction as the contour string. The text is orientated so that it faces uphill. The text is raised slightly above the contour string.

(f) centre line facing up hill

Contour labels are created with the text parallel to the contours line in the same direction as the contour string. The text is orientated so that it faces uphill. The text is centred on the contour string so the contour string goes through the text.
(g) line removal & centred line facing up hill

Contour labels are created with the text parallel to the contour line. The text is orientated so that if it faces uphill. The text is centred on the contour string so the contour string goes through the text. Also the contours are cut so that gaps are left for the labels.

For information on creating contours, go to the section Creating Contours.
For information on smoothing contours, go to the section Smoothing Contours.
16.9.2 Contour, Smooth and Label

Position of option on menu:  Tins => Contour => Contour, smooth and label

One method of visualizing tin data is with contours. In 12d Model, contour strings can be produced over any user defined elevation range and at any interval.

This option creates contours and can also smooth and label them. It is a function and so if a function is re-run it will remove any data from its last run.

For more information on contouring, smoothing and labelling in 12d Model, go to the section Creating Contours.

Selecting Contour, smooth and label displays the Contour, Smooth and Label panel.

The fields and buttons used in this panel have the following functions.

Field Description | Type | Defaults | Pop-Up
Function name | function box | available contour fns | name of the contour, smooth and label function.
Tin to contour | input | available tins | name of the tin to be contoured.

Contours tab

Model for contours | model box | available models | name of the model to place the contours in.
Contour increment | input | 1.0 | increment between contoured values.
Contour

Name
input
if non-blank, name to give the contour strings.

Colour
input cyan available colours
colour of the contours

Linestyle
input 1 available linestyles
linestyles for the contour strings.

Weight
input
if non-blank, weight to give the contour strings.

Smooth contours
tick box
if ticked, the contours are smoothed.

Preserve string points
tick box
if ticked, then the smoothed string goes through the original vertices of the non-smoothed contour strings.
If not ticked, then the smoothed strings do not have to include the vertices from the non-smoothed contours.

Major Contours tab

Create major contours
tick box
if ticked, then major contours can be given a different name, colour, style, weight and model.

Model for major contours
model box available models
if non blank, the name of the model to place the major contours in. If blank, the same model is used as for the ordinary contours.

Major contour increment
input 5.0
increment for the major contours.
If blank or zero, then no bold contours are drawn. If non-zero, it must be an integer multiple of the contour increment.

Name
input
if non-blank, name to give the major contour strings. If blank, the same name is used as for the ordinary contours.

Colour
input off yellow available colours
colour of the major contours. If blank, the same colour is used as for the ordinary contours.

Linestyle
input 1 available linestyles
if non blank, linestyles for the major contour strings. If blank, the same linestyle is used as for the ordinary contours.

Weight
input
if non-blank, weight to give the major contour strings. If blank, the same weight is used as for the ordinary contours.

Range tab

Contour minimum
input
minimum value of the z range to be contoured. If blank, the tin's minimum z-value is used.

Contour maximum
input
maximum value of the z range to be contoured. If blank, the tin's maximum z-value is used.

Contour reference
input 0
reference value for the contour increments.

Colour by range  
tick box

* if ticked, then the contours are coloured according to a height range file rather than bold colour. See 8.9.6 Height Range File.  

Height range file  
height range file box  *.hrf

* the range file used to colour the contours.

Interpolate colours  
tick box

* if ticked, the colour of the contour will be interpolated between the colour for the range and the colour for the next range in the height range file.

If not ticked, all contours in the same range in the height range file will have the same colour

Colour text labels  
tick box

* if ticked, then any contour height text is also coloured the same colour as the contour.

Labels tab

Label contours  
tick box

* if ticked, then the contours are labelled.

Label major contours only  
tick box

* if ticked, then only the major contours are labelled.

Model for labels  
model box  available models

* if non blank, the name of the model to place the contour labels in. If blank, the same model is used as for the contours.

Contour method  
choice box  above line contour direction  above line read from below  centred line read from below  line removal and centred line read from below  above line facing uphill  centred line facing uphill  line removal & centred facing uphill

* For information on each of the methods of labelling contours, go to the section Labelling Contours.

Decimal places

number of decimal places used in the contour label.

Textstyle data  
1  textstyle favourites

textstyle information to use for the contour labels.

Start dist (w)  
input 0

chainage distance to the first label on the string - world units

Separation (w)  
input 250

chainage interval between the labels - world units

Model of label lines  
model box  available models

* if non blank then instead of using the start distance and separation parameters to define where the contour labels are placed, the Model of label lines is used. In this case, a label is created where ever s string in the Model of label lines cuts a contour.

Label start and end  
tick box  tick

* if ticked, the start and end of the contours are labelled regardless of the values of start distance and separation.

Process  
button
contour, smooth and label the tin given in the tin field and place the contours in the model given in the model field.
16.9.3 Depth, Contour and Label Function

This function allows the user to create depth contours and also label and smooth them.

Position of option on menu:  Tins => Contour => Depth contour, smooth and label

Selecting Depth contour, smooth and label displays the Tins: Depth Contour, Smooth and Label panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function name</td>
<td>function box</td>
<td>available depth contour fns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the depth contour, smooth and label function.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Original/New tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the original/new tin to contour between. Cut is when the new tin is below the original tin.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contours tab

Cut/Zero/Fill strings sections

<table>
<thead>
<tr>
<th>More</th>
<th>tick box</th>
<th>not ticked</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>if not tick then only the Colour panel field is displayed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked then the extra fields Name, Colour, Linestyle are Weight are shown.</td>
<td></td>
</tr>
</tbody>
</table>

Colour

colour box  cyan  available colours

if non-blank, colour for the strings
If More is ticked then Name, Colour, Linestyle and Weight fields are displayed

![Contour settings]

**Name** name box available names
**Colour** colour box cyan available colours
**Linestyle** linestyle box 1 available linestyles
**Weight** weight box

**Smooth contours** tick box
- if ticked, the contours are smoothed.

**Preserve string points** tick box
- if ticked, then the smoothed string goes through the original vertices of the non smoothed contour strings.
- if not ticked, then the smoothed strings do not have to include the vertices from the non-smoothed contours.

**Super string type** choice box 2d, 3d original, 3d new
- If 2d, the created strings are 2d super strings with a z-value equal to the depth.
- If 3d original, the depth strings are draped over the original tin to form 3d super strings.
- If 3d new, the depth strings are draped over the new tin to form 3d super strings.

**Range tab**
**Start level** real box -10
- the minimum depth to start the depth contours at.
**End level** real box 10
- the maximum depth to calculate the depth contours to.
**Interval** real box 1
- the interval between the depth contours.

**Colour by range** tick box
- if ticked, then the contours are coloured according to a depth range file rather than cut and fill colours.
See XX.

**Depth range file** depth range file box *.drf
- the range file used to colour the depth contours.

**Interpolate colours** tick box
if ticked, the colour of the contour will be interpolated between the colour for the range and the colour for the next range in the height range file.

If not ticked, all contours in the same range in the height range file will have the same colour

Colour text labels  

if ticked, then any contour value text is also coloured the same colour as the contour.

Labels tab

Label contours  

if ticked, then the depth contours are labelled.

The text is given the z value of XX

Model for labels  

if non blank, the name of the model to place the contour labels in. If blank, the same model is used as for the contours.

Label method  

above line contour direction  

above line read from below  

centred line read from below  

line removal and centred line read from below

For information on each of the methods of labelling contours, go to the section XX.

Decimal places

number of decimal places used in the contour label.

Textstyle data

textstyle favourites

textstyle information to use for the contour labels.

Start dist (w)  

chainage distance to the first label on the string - world units

Separation (w)  

chainage interval between the labels - world units

Model of label lines  

if non blank then instead of using the start distance and separation parameters to define where the contour labels are placed, the Model of label lines is used. In this case, a label is created where ever s string in the Model of label lines cuts a contour.

Label start and end  

if ticked, the start and end of the contours are labelled regardless of the values of start distance and separation.

Button at bottom

Calculate  

generate, smooth and label the depth contours between the two tins
16.9.4 Change Contours

**Position of option on menu:** Tins => Contour => Change

The Change option is for changing the model and/or colour of contours with a given height interval.

The main purpose of the option is to separate contours to be used as index contours from other contours. For example, when contours are supplied by a third party and all the contours are in the same model with the same colour, change contour colour can move contours to be used as index contours to a different model and give them a different colour.

For this option the selection process for a Data source is extended.

After the data is selected as defined by the Data source, the two extra parameters, `interval` and `reference`, are used to further specify which contours are to be moved and/or coloured.

Only contour strings whose heights satisfy

\[ \text{height} = \text{reference} + \text{integer} \times \text{interval} \]

are selected.

For example, if the contours 5, 10, 15 etc. are required, the reference and interval would be

`reference = 0`
`interval = 5`

However, to modify the contours 6, 11, 16 etc., the required parameters are

`reference = 1`
`interval = 5`

Selecting Change displays the Change Contours panel.

The fields and buttons used in the panel have the following functions.
<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*data selection type - for a full description go to [4.19.3 Data Source]*

Data source input

*source of data to be processed.*

Reference input 0

*the reference value to use to select contours.*

Interval input 10

*the interval to use to select contours.*

New colour input available colours

*if non-blank, then the colour of the selected strings will be changed to the colour given in the New colour field.*

Target type

*Data target type - where to put the processed strings. For a full description go to [4.19.4 Data Target]*

Target info input

*extra information required for the target.*

Change button

*process the selected strings*
16.9.5 Colour

**Position of option on menu:**  Tins =>Contour =>Colour

The Colour option is used to colour contours in a model according to a selected height range file. For more information on the height range file, see 8.9.6 Height Range File.

On selecting Colour, the Colour Contours panel is displayed.

The fields and buttons in this panel are used as follows

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contour model</td>
<td>model box</td>
<td>model of contours to colour</td>
<td></td>
</tr>
<tr>
<td>Height range file</td>
<td>height range file box</td>
<td>.hrf files</td>
<td>height range file to specify the colour of the contour. See 8.9.6 Height Range File.</td>
</tr>
</tbody>
</table>

Interpolate colours         tick box

*If ticked*, the colour of the contour will be interpolated between the colour for the range and the colour for the next range in the height range file.

*If not ticked*, all contours in the same range in the height range file will have the same colour

Colour text labels          tick box tick

*If ticked*, any text labels in the model will also be coloured.

Run                        button

colour the contours and text according to the height range file.
16.9.6 Contour

**Position of option on menu:**  Tins => Contour => Contours

One method of visualizing tin data is with contours. In 12d Model, contour strings can be produced over any user defined elevation range and at any interval.

For more information on contouring in 12d Model, go to the section Creating Contours.

The **contour** option can be applied to a tin any number of times. This may be necessary if the contour parameters vary over the total range to be contoured.

On selecting the **contour** option, the **contour a tin** panel is displayed.

![Contour a Tin Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tin to contour</strong></td>
<td>tin box</td>
<td>available tins</td>
<td>name of the tin to be contoured.</td>
</tr>
</tbody>
</table>

**Contours tab**

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Model for conts</strong></td>
<td>model box</td>
<td>available models</td>
<td>name of the model to place the contours in.</td>
</tr>
<tr>
<td><strong>Cont inc</strong></td>
<td>input</td>
<td>1.0</td>
<td>increment between contoured values.</td>
</tr>
<tr>
<td><strong>Name</strong></td>
<td>input</td>
<td></td>
<td>if non-blank, name to give the contour strings.</td>
</tr>
<tr>
<td><strong>Colour</strong></td>
<td>colour box</td>
<td>cyan</td>
<td>available colours</td>
</tr>
<tr>
<td><strong>Linestyle</strong></td>
<td>linestyle box</td>
<td>1</td>
<td>available linestyles</td>
</tr>
<tr>
<td><strong>Weight</strong></td>
<td>weight box</td>
<td></td>
<td>if non-blank, weight to give the contour strings.</td>
</tr>
</tbody>
</table>
Bold Contours tab

Model for bolds
model box
name of the model to place the bold contours in. If blank, the same model is used as for the ordinary contours.

Bold inc
input 5.0
increment for the bold contours.
If blank or zero, then no bold contours are drawn. If non-zero, it must be an integer multiple of the contour increment.

Name
input
if non-blank, name to give the bold contour strings.

Colour
colour box cyan available colours
colour of the bold contours

Linestyle
input 1 available linestyles
linestyles for the bold contour strings.

Weight
input
if non-blank, weight to give the bold contour strings.

Range tab

Cont min
input
minimum value of the z range to be contoured. If blank, the tin's minimum z-value is used.

Cont max
input
maximum value of the z range to be contoured. If blank, the tin's maximum z-value is used.

Cont ref
input 0.0
reference value for the contour increments.

Contour button
contour the tin given in the tin field and place the contours in the model given in the model field. The contour range, contour increment and bold contour increment are used to specify which contours are calculated.

Panel Messages

Progress messages - sent to the panel message area
start contouring
contouring level z-value

Completion message - sent to the panel message area
finished contouring - no. contours

<esc> can be used to abort the calculation of contours.
16.9.7 Depth Contours

**Position of option on menu:**  
Tins => Contour => Depth contours

The *depth contours* option finds the contours lines for the difference between two tins. That is, it calculates the isopachs between the two tins.

Selecting *Depth contours* displays the **Depth Contours** panel.

![Depth Contours panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original/New tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>name of the original/new tin to contour between. Cut is when the new tin is below the original tin.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for depth strings</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>name of the model to contain the depth strings.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cut/Zero/Fill strings section More</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if no tick then only the Colour panel field is displayed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>colour box</td>
<td>cyan</td>
<td>available colours</td>
</tr>
<tr>
<td>if non-blank, colour for the strings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if tick then Name, Colour, Linestyle and Weight fields are displayed</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Contour

<table>
<thead>
<tr>
<th>Name</th>
<th>input</th>
<th>if non-blank, name to give the strings.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>colour box</td>
<td>cyan</td>
</tr>
<tr>
<td>Linestyle</td>
<td>linestyle box</td>
<td>1</td>
</tr>
<tr>
<td>Weight</td>
<td>weight box</td>
<td>if non-blank, weight to give the strings.</td>
</tr>
<tr>
<td>Start level</td>
<td>input</td>
<td>-10</td>
</tr>
<tr>
<td>End level</td>
<td>input</td>
<td>10</td>
</tr>
<tr>
<td>Interval</td>
<td>input</td>
<td>1</td>
</tr>
<tr>
<td>Super string type</td>
<td>choice box</td>
<td>2d</td>
</tr>
</tbody>
</table>

- If **2d**, the created strings are 2d strings with a z-value equal to the depth.
- If **3d original**, the depth strings are draped over the original tin to form 3d strings.
- If **3d new**, the depth strings are draped over the new tin to form 3d strings.

**Calculate**

- calculate the depth contours between two tins given in the panel fields. The resulting strings are added to the model given in the **Model for depth strings** field.
16.9.8 Label Contours

**Position of option on menu:**  
Tins ➞ Contour ➞ Label

The **label contours** option can be used to label individual contour (2d) strings, or all the contour strings in a model.

The user has control over the label size, colour, number of decimal places, the distance between the labels and the distance to the first label on a string (start distance).

Note - this option cannot label fast contours. Contours strings must already exist or be generated using Tins ➞ Contour ➞ Contour, Smooth and Label Or Tins ➞ Contour ➞ Contour

For more information on labelling contours, go to the section [Labelling Contours](#).

On selecting the **label contours** option, the **label contours** panel is displayed.

![Label Contours Panel](image)

When the **Label** button is selected, all the contour strings given by the data source field will be labelled according to the parameters in the panel fields.

The fields and buttons used in the **label contours** panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source type</strong></td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>data selection type - for a full description go to <a href="#">4.19.3 Data Source</a></em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Data source</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>source of data is to be triangulated - only Model or View allowed for this option.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Model for labels</strong></td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td><em>name of the model to place the contour labels in.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Label method</strong></td>
<td>choice box</td>
<td>above line contour direction</td>
<td></td>
</tr>
<tr>
<td><em>above line contour direction above line read from below centred line read from below line removal and centred line read from below</em></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
above line facing uphill
centred line facing uphill
line removal & centred facing uphill

in all cases, contour labels are created and added to the model Model for contours.

For information on each of the methods of labelling contours, go to the section Labelling Contours.

Original tin  tin box  available tins
only needed for the "facing uphill" methods - name of the tin used to generate the contours. This is needed to calculate which direction is uphill.

Num dec places  input  1  0,1,2,3,4,5
number of decimal places used in the contour label.

Textstyle data  textstyle data box  1  textstyle favourites
textstyle information to use for the contour labels.

Start dist (w)  input  0
chainage distance to the first label on the string - world units

Separation (w)  input  250
chainage interval between the labels - world units

Pick  button
if a number of individual contour strings need to be labelled, the pick button is used. After pick is chosen, any strings selected are then labelled using the information in the panel fields. After labelling one string, another pick and label cycle automatically begins.

The cycle is terminated by clicking RB to raise the pick ops menu and selecting cancel from it.

Label  button
label all the contour strings selected by the "Data to label" data source.
16.9.9 Smooth

**Position of option on menu:**  Tins => Contour => Smooth

The smooth options are used to add extra points into a contour string (2d strings) to make a smoother string.

For more information on labelling contours, go to the section [Smoothing Contours](#).

Selecting Smooth displays the Smooth Contours in panel.

```
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model data selection type - for a full description go to 4.19.3 Data Source.</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for smoothed strings</td>
<td>model box</td>
<td>available models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preserve string points</td>
<td>tick box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, the smoothed contour will still contain all the original points.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if not ticked, the smoothed contour may deviate from the original string points</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pass other strings</td>
<td>tick box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, any non-contour string is copied and added to the smoothed strings model.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smooth</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

The fields and buttons in this panel are used as follows:

- **Data source type**
  - Model data selection type - for a full description go to 4.19.3 Data Source.

- **Data source**
  - Input

- **Model for smoothed strings**
  - Model box

- **Preserve string points**
  - Tick box
  - If ticked, the smoothed contour will still contain all the original points.
  - If not ticked, the smoothed contour may deviate from the original string points.

- **Pass other strings**
  - Tick box
  - If ticked, any non-contour string is copied and added to the smoothed strings model.

- **Smooth**
  - Button
  - Smooth the selected contour (2d) strings.
16.10 Drape

**Position of menu:** Tins => Drape

The **drape** option sections along a string and creates a new 3d-string which sits over the original string in plan view (with line approximations for arcs and spirals) but with z-values taken from a triangulated surface (a tin).

The drape alignment option takes an alignment string and creates a new alignment string with the identical horizontal geometry and vertical intersection points with z-values taken from a tin.

The **tin drape** walk-right menu is

For the option **Drape**, go to

- **16.10.1 Drape**
- **16.10.2 Drape Alignment**
- **16.10.3 Drape Alignment (Macro)**
- **16.10.4 Heights for Tin Boundary or Drape Using Closest**

The options in the tin contours menu will now be discussed.
16.10.1 Drape

**Position of option on menu:**  Tins => Drape

The drape operation is simply sectioning along a string.

Draping is a very useful method for attaching a z-value for strings defined in plan only. For example, cadastral information often has only (x,y) co-ordinates. The drape operation could be used to apply z-values to the cadastral information, for example, z-values from the natural surface tin. The draped cadastral information would then sit on the natural surface and could be used effectively in perspective views as well as plan views to delineate properties etc.

The draped strings can also have a z-offset applied so that the draped strings are a constant distance above or below the tin.

Instead of simply producing a section along a string, drape can also be used to produce a face for every segment of the string by draping the segment onto the tin and forming a face by perpendicularly connecting the end points of the segment and the draped segment. For example, if the strings represented the tops of buildings, the created faces would be the sides of the buildings down to the terrain.

On selecting Drape, the Drape panel is displayed.

![Drape panel](image)

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.19.3 Data Source.
data to drape.

**Tin**
- tin box
- available tins
  - name of the tin to drape the strings over.

**Drape mode**
- choice box
  - Normal
  - Normal, Vertices only
  - If **Normal**, the section through the tin is created.
  - If **Vertices only**, only the z-value from the tin is calculated at the vertices of the strings.

**Z offset**
- real value box
  - If non-blank, the z-value of all the draped strings is increased by this value.

**Produce faces**
- tick-box
  - If **ticked**, drape each segment of the string to form faces.
  - If **not ticked**, simply drape the string onto the tin.

**Keep source linestyles**
- tick box
  - If **ticked**, the linestyles of the draped strings are the same as the original string that was draped.

**Target type**
- Data target type - where to put the processed strings. For a full description go to [4.19.4 Data Target](#).

**Target info**
- input
  - models where the draped strings are placed.

**Drape**
- button
  - drape the strings selected by the "data to drape" data source over the tin given in the tin field.

Note: if faces rather than sections are to be produced, tick on the **produce faces**.

<esc> can be used to abort the drape option.
16.10.2 Drape Alignment

The Drape alignment operation takes an alignment/super alignment string and creates a new alignment/super alignment string with identical horizontal geometry and the z-value for vertical intersection points taken from a tin. The z-values are taken over a user specified chainage interval and chainage increment. Vertical intersection points outside the chainage range can be kept.

The draped alignments can also have a z-offset applied so that the draped alignments are a constant distance above or below the tin.

On selecting Alignment, the Drape Alignment Many panel is displayed.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>tin box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chainage increment</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The chainage interval to create VIP points for. Each created VIP point is given the z-value from the tin and the (x,y) position of the VIP.
Start/End chainage input
  if non blank, the chainage range to create VIP’s over.
  If blank, use the start/end chainage of the selected string.

Z offset input
  if non blank, the value is added to the z-values from the tin.

Include critical points tick box tick
  if ticked, VIP’s are created at the horizontal tangent points.

Keep existing VIPs tick box
  if ticked, any existing VIP’s outside the given chainage range are kept.
  If not ticked, don’t create any VIP points outside the chainage range.

Target type
  Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target

Target info input
  extra information required for the target.

Drape button
  create new alignment/super alignment strings with the same horizontal geometry as the selected strings
  and the z-value for VIP points taken from the given tin.
16.10.3 Drape Alignment (Macro)

**Position of option on menu:**  
Tins => Drape => Alignment (macro)

This is the Drape => Alignment option from V7C1f. It has now been superseded.

The Drape alignment (macro) operation takes an alignment string and creates a new alignment string with identical horizontal geometry and the z-value for vertical intersection points taken from a tin. The z-values are taken over a user specified chainage interval and chainage increment. Vertical intersection points outside the chainage range can be kept.

On selecting Alignment (macro), the drape alignment panel is displayed.

![Drape Alignment Panel]

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alignment</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start/End chainage</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Include critical points</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td>Keep existing VIPs</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch increment</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>tin box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for new string</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour for string</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Alignment string select**
  - alignment string to drape.

- **Start/End chainage input**
  - the chainage range to create VIP’s over. If blank, use the start/end chainage of the selected string.

- **Include critical points tick box**
  - If ticked, VIP’s are created at the horizontal tangent points.

- **Keep existing VIPs tick box**
  - If ticked, any existing VIP’s outside the given chainage range are kept.
  - If not ticked, don’t create any VIP points outside the chainage range.

- **Ch increment input**
  - the chainage interval to create VIP points for. Each created VIP point is given the z-value from the tin and the (x,y) position of the VIP.

- **Tin tin box**
  - triangulation to take z-values from.
Model for new string  model box
model for the draped string.

Colour for string  colour box
Colour for the draped string.

Process  button
create a new alignment string with the same horizontal geometry as the selected string and the z-value for VIP points taken from the given tin.
16.10.4 Heights for Tin Boundary or Drape Using Closest Tin Node

**Position of option on menu:**  
Tins => Drape => Heights for boundary

This option takes strings and for each vertex of each string, replaces the z-value by the z-value at the same (x,y) position from a given tin, or if there is no tin at the (x,y) position, takes the z-value from the closest non-null tin node to the (x,y) position.

The option is useful for taking a tin boundary with no z-values and creating z-values for each vertex from the tin.

Since V8 the option Tins => Boundary option has a Boundaries draped flag which performs the same calculations as this option.

On selecting Heights from boundary, the Update Z-values from Tin panel is displayed.

![Drape or Closest Tin Node](image)

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source</strong></td>
<td>choice box</td>
<td>model</td>
<td>model, view, string</td>
</tr>
</tbody>
</table>

  *type of the data source*

**Model/View/String name**

  *source of the data to drape vertices for:*

**Tin**

  *tin to drape the vertices onto.*

**Model for draped/node data**

  *model for the draped strings.*

**Set z-null if no point found**

  *tick box*  
  *tick*  
  *if ticked, the vertex z-value is set to null if no tin exists at the vertex.*

  *If not ticked and the tin does not exist at the vertex, the z-value for the vertex is taken from the closest non-null tin node.*

**Process**

  *button*  
  *run the option.*
16.11 Tin Analysis

**Position of menu:**  Tins => Tin analysis

The **Tin analysis** options are used to calculate the direction and slope of triangles, the intersection between tins, surface areas, flow arrows, ridge and valley lines and viewsheds.

The Tin analysis walk-right menu is

```
<table>
<thead>
<tr>
<th>Option</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspect</td>
<td>16.11.1 Aspect</td>
</tr>
<tr>
<td>Slope</td>
<td>16.11.2 Slope</td>
</tr>
<tr>
<td>Intersection</td>
<td>16.11.3 Intersection</td>
</tr>
<tr>
<td>Surface area</td>
<td>16.11.4 Surface Area</td>
</tr>
<tr>
<td>Surface area 2</td>
<td>16.11.5 Surface Area 2</td>
</tr>
<tr>
<td>Flow arrows</td>
<td>16.11.6 Flow Arrows</td>
</tr>
<tr>
<td>Ridges/Valleys</td>
<td>16.11.7 Ridge/Valleys</td>
</tr>
<tr>
<td>Depth range polygons</td>
<td>16.11.8 Depth Range Polygons</td>
</tr>
<tr>
<td>Polygons from colours</td>
<td>16.11.9 Polygons from Tin Colours</td>
</tr>
<tr>
<td>Rain drop</td>
<td>29.9.2 Raindrop/Teardrop</td>
</tr>
</tbody>
</table>
```

colour and report for ranges of aspects

colour and report for ranges of slopes

lines of intersection between two tins

report surface area within a polygon

report surface area for a model of polygons

create flow arrows for a tin.

create ridge and valley lines for a tin

create polygons for depth ranges

creates polygons around coloured regions of tin

creates flow lines from a selected point

For the options **Aspect**, go to 16.11.1 Aspect
For the options **Slope**, go to 16.11.2 Slope
For the options **Intersection**, go to 16.11.3 Intersection
For the options **Surface area**, go to 16.11.4 Surface Area
For the options **Surface area 2**, go to 16.11.5 Surface Area 2
For the options **Flow arrows**, go to 16.11.6 Flow Arrows
For the options **Ridges/Valleys**, go to 16.11.7 Ridge/Valleys
For the options **Depth range polygons**, go to 16.11.8 Depth Range Polygons
For the options **Polygons from colours**, go to 16.11.9 Polygons from Tin Colours
For the options **Rain drop**, go to 29.9.2 Raindrop/Teardrop
16.11.1 Aspect

**Position of menu:**  
Tins => Tin analysis => Aspect

The Tin aspect options calculate and report on the directions of the triangles. The Tin aspect walk-right menu is

![Tin Aspect Menu](image)

The Tin aspect options calculate and report on the directions of the triangles. The Tin aspect walk-right menu is

The options in this menu will now be discussed.

For the option Aspect analysis, go to  
16.11.1.1 Aspect Analysis
Aspect analysis 2  
16.11.1.2 Aspect Analysis 2 and 2 (new)
Aspect analysis 2 (new)  
16.11.1.2 Aspect Analysis 2 and 2 (new)

16.11.1.1 Aspect Analysis

**Position of option on menu:**  
Tins => Tin analysis => Aspect => Aspect Analysis

This panel is used to calculate the aspect or direction that the triangles of a tin face. The calculations can be restricted to within a user selected polygon, or if no polygon is selected, the entire tin is used.

The calculated aspects can be produced and reported over user supplied bearing ranges. Similarly, a plan view can be temporarily coloured on an aspect basis using the same range file. The temporary colours will disappear next time the view is refreshed.

For permanency, the option can also create coloured faces with the appropriate range colour. The faces can be displayed on any plan view using a solid fill colour or a hatch pattern.

For more information on the aspect range file, see 8.9.5 Aspect Range File.

For each range in the file, the plan and slope areas of the triangles in the bearing range will be reported on, and the range_colour can be used to colour all areas on a plan view satisfying the range.

On selecting the aspect analysis option, the Aspect Analysis panel is displayed.

![Aspect Analysis Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan view to paint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for faces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean faces model beforehand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report File</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poly</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions.
Tin
name of the tin for which the aspects of the triangles will be calculated.

Range file
aspect range file box *.arf
the user supplied range file is used to split up the aspect report and define the range colours used for
painting a plan view. See 8.9.5 Aspect Range File.

Plan view to paint
view box available views
if non-blank, the given plan view will be painted according to the range colours given in the range file.

Model for faces
model box available models
if non-blank, faces will be created with colours according to the range colours given in the range file.
The z-value for a face is the line number in the range file of the range that the face satisfies.

Clean faces model beforehand
tick box
if ticked, the model of faces is cleaned out before the option runs.

Report file
file box *.rpt
name of the file to contain the aspect report. If the file already exists, the report will be appended to the
file. If no name is given, no report is produced.

Poly
string-select
if selected, this string is used as the bounding polygon for the aspect calculations.

Aspect
button
the aspects of the triangles of the tin within the selected bounding polygon are calculated.

<esc> can be used to terminate the option during aspect calculations.

16.11.1.1 Example of an Aspect Range File

// aspect range file
// format: lower_bearing upper_bearing colour_for_range
0  45  red     // colour red the triangles with bearing greater than 0 and less than or equal to 45
45  90  green  // colour green the triangles with bearing > 45, and <= 90
90 123.30 "dark green" // colour dark green triangles with bearing > 90 and <=1 to 123 deg 30'

16.11.2 Aspect Analysis 2 and 2 (new)

Position of option on menu: Tins => Tin analysis => Aspect => Aspect Analysis 2
Position of option on menu: Tins => Tin analysis => Aspect => Aspect Analysis 2 (new)
As with the aspect analysis option, the aspect analysis 2 option is used to calculate the aspect or
direction that the triangles in the tin face.
However, this option can also create the strings that bound the triangles in the same aspect
range. The aspect analysis 2 (new) option is the same as aspect analysis 2 except the boundary
polygons have slightly different names.
One restriction for this option is that the calculations can not be restricted to be within a polygon
and the entire tin is used.
For more information on the aspect range file, see 8.9.5 Aspect Range File.
For each range in the file, the boundary strings for areas of common range can be created and
also coloured faces that can be displayed on any plan view.
On selecting the Aspect analysis 2 option, the Aspect Analysis 2 panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the tin for which the aspects of the triangles will be calculated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range file</td>
<td>aspect range file box</td>
<td>*.arf</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the user supplied range file is used to split the triangles into groups of common aspects so that boundary strings can be created and the range colours used for faces and the boundary strings. See 8.9.5 Aspect Range File.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for faces</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if non-blank, a faces will be created (with the colour given in the range file) for each triangle. The z-value for a face is the line number in the range file of the range that the face satisfies.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for boundaries</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if non-blank, for each range of aspects in the range file, boundary strings will be created for regions of common aspect. The boundary strings are given the name &quot;aspect boundaries&quot; plus the number of the entry in the range file. Many of the boundaries will exist twice since they are the upper boundary for one range and the lower boundary for the next range but will have a different colour and name. For aspect analysis 2 (new), the boundary name also has the addition of &quot;face&quot; and a number to more clearly differentiate the boundaries of the same range.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boundaries as faces</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, output the regions of common aspect as faces.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boundaries draped</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, the z-values for the boundary are taken from the tin. If not ticked, the z-value for a boundary is the line number in the range file of the range that the boundary satisfies.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boundary colour</td>
<td>colour box</td>
<td>cyan</td>
<td>available colours</td>
</tr>
<tr>
<td></td>
<td>not used - was the colour for the aspect boundaries.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspect</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>On selecting this button, the aspects of the triangles of the tin are calculated and the appropriate boundaries and faces created.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
<esc> can be used to terminate the option during aspect calculations.
16.11.2 Slope

**Position of menu:**  
Tins => Tin analysis => Slope

The tin slope options calculate and report on the slopes of the triangles. The tin slope walk-right menu is

![Tin Slope Menu]

The options in this menu will now be discussed.

For the option Slope analysis, go to

- Slope analysis 2: [16.11.2.2 Slope Analysis 2 and 2 (new)]
- Slope analysis 2 (new): [16.11.2.2 Slope Analysis 2 and 2 (new)]
- Slope analysis (flag): [16.11.2.3 Slope Analysis - Flag Slopes]
16.11.2.1 Slope Analysis

Position of option on menu:  Tins => Tin analysis => Slope => Slope analysis

This panel is used to calculate the slopes of triangles in the tin. The calculations can be restricted to within a user selected polygon, or if no polygon is selected, the entire tin is used.

The calculated slopes can be produced and reported over user supplied slope ranges. Similarly, a plan view can be temporarily coloured on a slope basis using the same range file. The temporary colours will disappear next time the view is refreshed.

For permanency, the option can also create coloured faces with the appropriate range colour. The faces can be displayed on any plan view using a solid fill colour or a hatch pattern.

For more information on the slope range file, see 4.24 Defaults.

The slopes in the file can be percent cross fall, “1v in” slope or degrees (in 12d Model dms format) but they must all be of the same type in the file.

Note - if 1v in is used, the range is converted to:

\[
\text{smaller_slope_as_percent_cross_fall} < \text{slope} \leq \text{larger_slope_as_percent_crossfall}
\]

For each range in the file, the plan and slope areas of the triangles in the range will be reported on, and the range_colour used to colour all areas on a plan view satisfying the range.

On selecting the Slope analysis option, the Slope Analysis panel is displayed.

![Slope Analysis Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the tin for which the slopes of the triangles will be calculated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range file</td>
<td>slope range file</td>
<td>* .srf</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the user supplied range file is used to split up the slope report and define the range colours used for painting a view. See 4.24 Defaults.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope type</td>
<td>choice box</td>
<td>percent cross fall, degrees, 1v in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the units used for slope in the range file.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan view to paint</td>
<td>view box</td>
<td>available views</td>
<td></td>
</tr>
</tbody>
</table>
if non-blank, the given plan view will be painted according to the range colours given in the range file.

**Clean faces model beforehand**  tick box

if ticked, the model of faces is cleaned out before the option runs.

**Model for faces**  model box  available models

if non-blank, faces will be created with colours according to the range colours given in the range file.

The z-value for a face is the line number in the range file of the range that the face satisfies.

**Report file**  file box  *.rpt

name of the file to contain the slope report. If the file already exists, the report will be appended to the file. If no name is given, no report is produced.

**Poly**  string-select

if selected, this string is used as the bounding polygon for the slope calculations.

**Slope**  button

On selecting this button, the slopes of the triangles of the tin within the selected bounding polygon are calculated.

<esc> can be used to terminate the option during slope calculations.

### 16.11.2.1.1 Example of a Slope Range File

```plaintext
// slope range file in percent cross fall
// format: lower_slope upper_slope colour_for_range
0 5 red // colour red the triangles with slope greater than 0% and less than
// or equal to 5% x-fall
5 10 green // colour green the triangles with slope > 5%, and <= 10% x-fall
10 300 "dark green" // colour dark green triangles with slope greater than 10%
// and less than or equal to 300% x-fall

// slope range file in 1v in slopes
// format: lower_slope upper_slope colour_for_range
0 20 red // colour red the triangles with slope greater than flat and
// or equal to 1:20
20 10 green // colour green the triangles with slope between 1:20 and equal to 1:10
10 1 blue // colour blue triangles with slope between 1:10 and equal to 1:1
```
16.11.2.2 Slope Analysis 2 and 2 (new)

Position of option on menu: Tins => Tin analysis => Slope => Slope analysis 2

Position of option on menu: Tins => Tin analysis => Slope => Slope analysis 2 (new)

As with the Slope analysis option, the slope analysis 2 option is used to calculate the slope of triangles in the tin. However, this option can also create the strings that bound the triangles in the same slope range.

The slope analysis 2 (new) option is the same as Slope analysis 2 except the boundary polygons have slightly different names.

One restriction for this option is that the calculations can not be restricted to be within a polygon and the entire tin is used.

The range file for Slope analysis 2 has the same format as for Slope analysis.

For more information on the slope range file, see 4.24 Defaults.

For each range in the file, the boundary strings for areas of common range can be created and also coloured faces that can be displayed on any plan view.

On selecting the slope analysis 2 option, the Slope Analysis 2 new panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>input</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Range file</td>
<td>input</td>
<td>* .srf</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the user supplied range file is used to split the triangles into groups of common slopes so that boundary strings can be created and the range colours used for faces. See 4.24 Defaults.</td>
<td></td>
</tr>
<tr>
<td>Slope type</td>
<td>input</td>
<td>percent cross fall, degrees, 1v in</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the units used for slope in the range file.</td>
<td></td>
</tr>
<tr>
<td>Model for faces</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if non-blank, a faces will be created (with the colour given in the range file) for each triangle.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The z-value for a face is the line number in the range file of the range that the face satisfies.</td>
<td></td>
</tr>
</tbody>
</table>
**Model for boundaries** input available models

if non-blank, for each range of slopes in the range file, boundary strings will be created for regions of common slope. The boundary strings are given the name "slope boundaries" plus the number of the entry in the range file. Many of the boundaries will exist twice since they are the upper boundary for one range and the lower boundary for the next range but they will have a different colour and name. For slope analysis 2 (new), the boundary name also has the addition of "face" and a number to more clearly differentiate the boundaries of the same range.

**Boundaries as faces** tick box

if ticked, output the regions of common slope as faces.

**Boundaries draped** tick box

if ticked, the z-values for the boundary are taken from the tin.

If not ticked, the z-value for a boundary is the line number in the range file of the range that the boundary satisfies.

**Boundary colour** input cyan available colours

not used - was the colour for the slope boundaries.

**Slope** button

On selecting this button, the slopes of the triangles of the tin are calculated and the appropriate boundaries and faces created.

<esc> can be used to terminate the option during slope calculations.
16.11.2.3 Slope Analysis - Flag Slopes

**Position of option on menu:** Tins => Tin analysis => Slope => Slope analysis (flag)

This panel analyses the slope of triangles in a tin and reports on triangles that fall within the supplied range file.

For more information on the slope range file, see 4.24 **Defaults**.

The results are listed in the results box.

Selecting a result line will pan the last selected view to display that triangle, as well as highlighting it on screen.

Selecting Slope analysis (flag) displays the **Slope Analysis - Flag Slopes** panel on the screen.

![Slope Analysis - Flag Slopes panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>the tin to analyse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope type</td>
<td>the type of range file</td>
<td>choice box</td>
<td>percent cross file, 1v in,</td>
<td>degrees minute seconds</td>
</tr>
</tbody>
</table>

**Tin Analysis**
Polygon

an optional polygon to constraint the analysis within

Results

the list of results

Slope button

performs the analysis

Import/Export button

opens the 16.11.2.3.1 Import/Export Slope Analysis (Flag) panel
16.11.2.3.1 Import/Export Slope Analysis (Flag)

This panel imports and exports the results of a slope analysis.

![Import/Export Slope Analysis (Flag)]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report file</td>
<td>file</td>
<td>the file to read / write from</td>
<td></td>
</tr>
<tr>
<td>Export button</td>
<td>button</td>
<td>exports the results to the supplied file</td>
<td></td>
</tr>
<tr>
<td>Import button</td>
<td>button</td>
<td>imports the results from the supplied file</td>
<td></td>
</tr>
</tbody>
</table>
16.11.3 Intersection

**Position of option on menu:**   Tins => Tin analysis => Intersection

The **intersection** option finds the lines of intersection between two tins.

Selecting **intersection** displays the **Tin Tin Intersection** panel.

![Tin Tin Intersection panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Original tin</strong></td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of one of the tins to be intersected.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>New tin</strong></td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the other tin to be intersected.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Model for intersection</strong></td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the model to contain the intersection strings.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Colour for intersection</strong></td>
<td>colour box</td>
<td>default colour</td>
<td>available colours</td>
</tr>
<tr>
<td></td>
<td>colour to make the intersection strings</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Experimental fast mode</strong></td>
<td>tick box</td>
<td></td>
<td>if ticked, a faster method is used to calculate the intersection strings</td>
</tr>
<tr>
<td><strong>Calculate</strong></td>
<td>button</td>
<td>calculate the intersection between two tins given in the panel fields. The resulting intersection strings are added to the model given in the <strong>model for intersection</strong> field.</td>
<td></td>
</tr>
</tbody>
</table>
16.11.4 Surface Area

**Position of option on menu:**  Tins => Tin analysis => Surface area

The **surface area** option is used to calculate the surface area of a tin within a user selected string. Selecting **surface area** displays the **surface area within a polygon** panel.

![Surface Area Within a Polygon](image)

The fields and buttons have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td>file box</td>
<td>file box</td>
<td>*.rpt files</td>
<td></td>
</tr>
<tr>
<td>Poly</td>
<td>poly-select</td>
<td>poly-select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>button</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Tin**: The tin to calculate the surface area on.
- **Report file**: If non-blank, the name of the file to write the surface area within the selected polygon to.
- **Poly**: Select the string to find the slope area within.
- **Area**: Calculate the surface area of the tin within the selected polygon.
16.11.5 Surface Area 2

**Position of option on menu:**  Tin => Tin analysis => Surface area 2

The **surface area 2** option is used to calculate the surface area of a tin within each polygon in a model.

Selecting **surface area 2** displays the **Surface Area Within a Model of Polygons** panel.

![Surface Area Within a Model of Polygons panel](image)

The fields and buttons have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>the tin to calculate the surface area on.</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>the model of polygons for calculating surface area within.</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td>if non-blank, the name of the file to write the surface area within each polygons in the model, plus the total of the surface area.</td>
<td>file box</td>
<td>*.rpt files</td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>calculate the surface area of the tin within each polygons in the model, and sum the areas.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
16.11.6 Flow Arrows

**Position of option on menu:** Tins => Tin analysis => Flow arrows

The flow arrows option draws arrows indicating the flow direction across triangles in a tin.

The flow arrows can be drawn for selected points, for all the triangles within a polygon, or if no polygon is selected, for all triangles in the tin.

The arrows are drawn at the centroid of the triangle and have a fixed user given length.

On selecting the *flow arrows* option, the *flow arrows* panel is displayed.

![Flow Arrows Panel](image.png)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
</tbody>
</table>

name of the tin to calculate flow arrows for:

<table>
<thead>
<tr>
<th>Arrow length (w)</th>
<th>real value box</th>
<th></th>
</tr>
</thead>
</table>

length in world units to draw the flow arrows.

| Colour for arrows             | colour box    | cyan            | available colours |
|-------------------------------|----------------|-----------------|

colour for the arrows.

<table>
<thead>
<tr>
<th>Colour by range file</th>
<th>tick box</th>
<th></th>
</tr>
</thead>
</table>

if ticked, the flow arrows are coloured by their slope using a slope range file. See 4.24 Defaults.

<table>
<thead>
<tr>
<th>Range file type</th>
<th>choice box</th>
<th>Percent</th>
<th>Percent, 1v in</th>
</tr>
</thead>
</table>

the units used for slopes in the range file

*Percent* - percent cross fall

*Iv in* - one vertical in ? horizontal

<table>
<thead>
<tr>
<th>Range file</th>
<th>slope range file box</th>
<th>.srf files</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Model for arrows</th>
<th>model box</th>
<th>available models</th>
</tr>
</thead>
</table>

model to put flow arrows in. Must be non-blank.

<table>
<thead>
<tr>
<th>Poly</th>
<th>polygon select</th>
<th></th>
</tr>
</thead>
</table>

if a polygon is selected, then the spot heights will be restricted to within the polygon.
If no polygon is selected, the spot heights will be calculated over the entire tin.

**Point** button

After selecting **Point**, a flow arrow is drawn at each selected point. This continues until cancel is selected from the pick ups menu.

**Flow** button

Calculate the flow arrows for all the triangles in the tin, or if a polygon has been selected, for the triangles whose centroid is inside the polygon.
16.11.7 Ridge/Valleys

**Position of option on menu:** Tins => Tin analysis => Ridges/Valleys

In the ridge/valleys option, ridge and valley lines are calculated for the given tin. On selecting the ridge/valley option, the tin ridges and valleys panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Ridges model</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Colour for ridges</td>
<td>colour box</td>
<td>default colour</td>
<td>available colours</td>
</tr>
<tr>
<td>Valleys model</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Colour for valleys</td>
<td>colour box</td>
<td>default colour</td>
<td>available colours</td>
</tr>
<tr>
<td>Calculate</td>
<td>button</td>
<td></td>
<td>ridge and valley lines will be calculated for the given tin and placed in the ridge and valley models.</td>
</tr>
</tbody>
</table>
16.11.8 Depth Range Polygons

**Position of option on menu:** Tins => Tin analysis => Depth range polygons

In the Depth range polygons option, polygons are created around the regions given by a depth range file.

For more information on the depth range file, see 8.9.4 Depth Range File.

On selecting the Depth range polygons option, the Tin Tin Depth Range Polygons panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original/New Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Range file</td>
<td>input</td>
<td>*.drf</td>
<td></td>
</tr>
<tr>
<td>Model for polygons</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Blend value for polygons</td>
<td>real value</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Max points per polygon (approx)</td>
<td>real value</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>2d/3d strings</td>
<td>choice box</td>
<td>2d</td>
<td>2d, 3d original, 3d new</td>
</tr>
</tbody>
</table>

**Calculate button:** create the polygons surrounding regions of different heights between the tins.
16.11.9 Polygons from Tin Colours

Position of option on menu:  Tins => Tin analysis => Polygons from colours

In the Polygons from colours option, polygons are created around the different coloured regions of the tin.

On selecting the Polygons from colours option, the Colour Analysis panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the tin to calculate polygons around the coloured regions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for boundaries</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>model to contain the polygons.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boundaries draped</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, the z-values for the vertices for the boundary strings come from the vertices of the coloured triangles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked, the boundaries have constant z-values.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour for boundaries</td>
<td>colour box</td>
<td>default colour</td>
<td>available colours</td>
</tr>
<tr>
<td></td>
<td>colour for the polygons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>create the polygons surrounding regions of different colours on the tin.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
16.12 Inquire

**Position of menu:** Tins => Inquire

The inquire options are used to display at the current cursor position the height (z-value) on a tin, the colour of the triangle, the depth from a fixed height to a tin, and the depth between two tins.

Once the user specifies which tin or tins are to be analysed, then as the cursor moves around in any plan view, the triangles below the cursor are examined and the appropriate information displayed.

The tin inquire walk-right menu is

```
Tin Inquire
Aspect
Colour
Depth from height
Depth from string
Depth between tins
Height
Slope
Drop onto tin in 3d
Drop tin to tin in 3d
Tins on a view
User
```

display aspect of triangles
display colour of tin
calculate depth from height to tin
calculate depth from string to a tin
calculate depth between tins
display height on tin
display slope of triangles
drop onto a tin in 3d
display perpendicular height between two tins
dynamically list all tins under the cursor

The options in the Tin inquire menu will now be discussed.

For the options Aspect, go to 16.12.1 Aspect Inquire.
Colour 16.12.2 Colour Inquire
Depth from height 16.12.3 Depth from Height
Depth from string 16.12.4 Depth from String
Depth between tins 16.12.5 Depth Between Tins
Height 16.12.6 Height Inquire
Slope 16.12.7 Slope Inquire
Drop onto tin 3d 16.12.8 Tin Drop Point 3d
Drop tin to tin in 3d 16.12.9 Tin Tin Drop Point 3d
Tins on a view 16.12.10 Tins on View Inquire
16.12.1 Aspect Inquire

Position of option on menu: Tins => Inquire => Aspect

The aspect inquire option calculates and displays the aspect (direction) of the triangles under the current plan view cursor position. The aspect is displayed in bearings in degrees, minutes and seconds.

Selecting tin aspect inquire displays the tin aspect inquire panel.

![Tin Aspect Inquire Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
</tbody>
</table>

*name of the tin for which the aspect of the triangle that the cursor is above will be displayed in the panel’s message area.*
16.12.2 Colour Inquire

**Position of option on menu:**  Tins => Inquire => Colour

colour inquire displays the colour of the triangles under the current plan view cursor position.

Selecting tin colour inquire displays the tin colour inquire panel.

![Tin Colour Inquire Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(name of the tin for which the colour of the triangle at the current cursor position is displayed in the panel's message area.)
16.12.3 Depth from Height

**Position of option on menu:** Tins => Inquire => Depth from height

The depth from height option calculates and displays the difference between the z-value of a tin and a given height for the current plan view cursor position.

Selecting depth from height displays depth from height to tin inquire panel.

![Depth From Height to Tin Inquire](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tin</strong></td>
<td>tin box</td>
<td>available tins</td>
<td>name of the tin used for calculating the distance from the tin to the given height at the cursor position.</td>
<td></td>
</tr>
<tr>
<td><strong>Height</strong></td>
<td>input</td>
<td>0</td>
<td>the difference between the tin value and the value given in this field is displayed in the panel's message area.</td>
<td></td>
</tr>
</tbody>
</table>

Finish | Help
16.12.4 Depth from String

**Position of option on menu:**  Tins => Inquire => Depth from string

The **depth from string** option calculates and displays the difference between the z-value of a tin and the height of a selected string at the current plan or section view cursor position projected back onto the selected string.

The obvert (top of the string) value is also known as the cover above a string to a tin.

Selecting **Depth from string** displays the **Depth From String to Tin Inquire** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>name of the tin used for calculating the z-value at the cursor position.</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>String</td>
<td>if a string is selected, the difference between the tin value and the height of the selected string (to the invert, centre and obvert of the string) at the current plan or section view cursor position, projected back onto the selected string, is displayed in the panel’s message areas.</td>
<td>string-select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invert/Centre/Obvert</td>
<td>displays the distance between the tin and the invert (bottom), centre (axial) and obvert (top) of the selected string</td>
<td>output</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
16.12.5 Depth Between Tins

**Position of option on menu:**  Tins => Inquire => Depth between tins

The *depth between tins* option calculates and displays the difference between the z-values of two given tins at the current plan view cursor position.

Selecting *depth between tins* displays the *depth between tins inquire* panel.

![Depth Between Tins Inquire panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original/new tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
</tbody>
</table>

*Rname of the two tins or which the z-value is to be calculated at the current plan view cursor position and the difference between the z-values (z_new - z_original) is displayed in the panel’s message area.*
16.12.6 Height Inquire

**Position of option on menu:**  Tins => Inquire => Height

The height inquire option calculates and displays the height (z-value) of triangles from a tin at the current plan view cursor position.

Selecting tin height inquire displays the tin height inquire panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
</tbody>
</table>

name of the tin for which the z-value at the current plan view cursor position is displayed in the panel’s message area.
16.12.7 Slope Inquire

**Position of option on menu:**  Tins => Inquire => Slope

The *slope inquire* option calculates and displays the slope of triangles from a tin at the current plan view cursor position. The slope is displayed as a percent cross fall, a “1v in “slope and as an angle in degrees, minutes and seconds.

Selecting *tin slope inquire* displays the *tin slope inquire* panel.

![Tin Slope Inquire Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td>name of the tin for which the slope of the triangle that the cursor is above is displayed in the panel’s message area.</td>
</tr>
</tbody>
</table>
16.12.8 Tin Drop Point 3d

**Position of option on menu:**  Tins =>Inquire =>Drop onto tin in 3d

The Drop onto tin in 3d option takes a cursor position and a user defined height of the point and drops perpendicularly onto the closest triangle.

Selecting Drop onto tin in 3d displays the Tin Drop Point 3d panel.

The Tin Drop Point 3d panel allows you to drop a point perpendicularly onto a tin. The fields in the panel and their functions are as follows:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>3d tin</td>
<td>tin box</td>
<td>available tins</td>
<td>name of the tin to drop the point perpendicularly onto. This cannot be a Super Tin.</td>
</tr>
<tr>
<td>Height of point</td>
<td>real value</td>
<td></td>
<td>the height to use at the (x,y) cursor position.</td>
</tr>
<tr>
<td>Drop coordinates</td>
<td></td>
<td></td>
<td>X, Y, Z coordinate of the point dropped perpendicularly to the tin from the (x,y) cursor position and height from Height of point field</td>
</tr>
<tr>
<td>3d drop diff</td>
<td>real</td>
<td></td>
<td>the perpendicular distance to the tin. positive if the point being dropped is above the tin negative if the point being dropped is below the tin</td>
</tr>
<tr>
<td>Drop triangle</td>
<td>number box</td>
<td></td>
<td>the number of the triangle the point was dropped to.</td>
</tr>
</tbody>
</table>
16.12.9 Tin Tin Drop Point 3d

**Position of option on menu:**  
Tins => Inquire => Drop tin to tin in 3d

The **Tin Tin Drop Point 3d** panel allows the 3d, (perpendicular) height difference between 2 tins to be displayed at any position. Once both tins are selected and a valid 3d drop can occur the difference is displayed and the triangle dropped to highlighted.

Selecting **Drop tin to tin in 3d** brings up the **Tin Tin Drop Point 3d** panel.

![Tin Tin Drop Point 3d Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>3d Tin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>the tin to drop the point to perpendicularly in 3d, this tin cannot be a Super Tin.</em></td>
<td></td>
</tr>
<tr>
<td>Height tin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>the tin to get a z value for the current position to use in the 3d drop, this tin can be a Super Tin.</em></td>
<td></td>
</tr>
<tr>
<td>Drop coordinate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>the x, y, z positions of the drop on the 3d Tin.</em></td>
<td></td>
</tr>
<tr>
<td>3d drop diff</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>the 3d, (perpendicular) difference between the 2 tins, a positive value means the 3d Tin is below the Height tin at the current position, a negative value the 3d Tin is above the Height tin.</em></td>
<td></td>
</tr>
<tr>
<td>Drop triangle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>the index of the triangle dropped to in the 3d Tin.</em></td>
<td></td>
</tr>
</tbody>
</table>
16.12.10 Tins on View Inquire

**Position of option on menu:**  Tins => Inquire => Tins on a view

As the cursor is moved over any plan view, the Tins on a view option lists all the tins and super tins on that view, and at the (x,y) location of the cursor, dynamically displays the z-value of each tin or super tin at that (x,y) location, and the colour, slope and aspect of the triangle from the tins or super tins currently under the cursor.

For a super tin, it also displays the name of the tin being used from the super tin at that cursor location.

Selecting Tins on a view brings up the Tins on View Inquire panel.

The fields and buttons used in the this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin output when the cursor is over a plan view, the Tin column list all the tins and super tins in the view. When the cursor is actually over a tin or super tin, on the row in the grid for that tin or super tin, the height of the tin or super tin at the cursor (x,y) location, and the colour, slope and aspect of the triangle under the cursor is displayed in the rest of the columns of the grid. If it is a super tin and the cursor is over the super tine, then the name of the super tin is given and then a &quot;/&quot; and then the name of the tin from the super tin that is being used to give the height, colour, slope and aspect. For example, in the Tin column the name &quot;combined/final&quot; means that the tin the cursor is over is a super tin called &quot;combined&quot; and it is using the tin called &quot;final&quot; from the super tin &quot;combined&quot; at that location.</td>
<td>Height output when in a plan view and the cursor is actually over the tin given in the Tin column, this is the height</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
from the tin/super tin at the cursor location.

**Colour/Slope/Aspect** output

when in a plan view and the cursor is actually over the tin or super tin given in the Tin column, this is the colour/slope/aspect of the triangle from the tin or super tin at that cursor location.
16.13 Null

Position of menu:  Tins => Null

The triangulation process forms triangles throughout the convex polygon enclosing the data set. This means that triangles may cross regions where there is very little data and may produce strange results in the ill-defined regions.

In 12d Model, it is possible to make triangles invisible (called nulling triangles) so that they are not used in any options.

Note - nulled triangles are not deleted and can be made visible again at any time.

The Null walk-right menu is

- set a polygon to include/exclude all triangles inside the polygon
- null triangles outside a polygon
- reset all null triangles
- null triangles by length of sides
- null triangles by length of sides and angle
- null by angle and length starting at a seed point
- null/reset triangle under the centroid of strings
- null triangles that are crossed by strings
- pick triangles to null/reset
- null/reset triangles inside/outside polygons

The three options in the tin colouring menu will now be discussed.

For the options Include/exclude, go to

- Include/Exclude Boundaries
- Null
- Reset
- by length
- by angle/length
- by angle/length (seed)
- by centroids
- by string
- by points
- by polygons
- Null by Length
- Null by Angle and Length
- Null by Angle and Length (Seed)
- Null by Centroids
- Null by Strings
- Null by Points
- Null by polygons
16.13.1 Include/Exclude Boundaries

**Position of option on menu:** Tins => Null => Include/excludes

The Include/exclude option is used to tag a polygon that is part of the data set for a Tin so that all the triangles inside the polygon are either set to null or non-null.

On selecting the Include/exclude option, the Tin Include/Exclude Boundaries panel is displayed.

![Tin Include/Exclude Boundaries Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boundary mode</td>
<td>choice box</td>
<td>none</td>
<td>none, include, exclude</td>
</tr>
</tbody>
</table>

*Boundary mode*

- **mode to set the polygon to.**
  - If `exclude`, then any triangles inside the polygon are set to null.
  - If `include`, then any triangles inside the polygon are reset so that they aren’t null.
  - If `none`, then the polygon is not used for automatically nulling/resetting triangles.

**Pick**

- `button`
  - select the polygon to define a boundary mode for.

**Set**

- `button`
  - set the boundary mode for the selected polygon.
16.13.2 Null

**Position of option on menu:** Tins => Null => Null

The null option is used to null any triangle whose centroid is outside a user selected polygon. Selecting Null displays the Null Triangles Outside Polygon panel.

![Null Triangles Outside Polygon panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td><strong>Null on accept of polygon</strong></td>
<td>tick box</td>
<td></td>
<td>If ticked, the triangles will be nulled as soon as the string is accepted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If not ticked, the triangles will not be nulled until the Set button is selected.</td>
</tr>
<tr>
<td><strong>Polygon</strong></td>
<td>polygon select</td>
<td></td>
<td>The string to be used as the polygon is selected after choosing this button. If Null on accept of polygon is set, then the polygon is processed immediately.</td>
</tr>
<tr>
<td><strong>Set</strong></td>
<td>button</td>
<td></td>
<td>Process the selected string. Any triangle whose centroid is outside the selected boundary polygon is set to null.</td>
</tr>
</tbody>
</table>

Null
16.13.3 Reset

Position of option on menu: Tins => Null => Reset

The reset option is used to change all the nulled triangles in a tin back to the visible triangles. Selecting reset displays the Null Triangles Reset panel.

![Null Triangles Reset Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td></td>
<td>available tins</td>
<td></td>
</tr>
</tbody>
</table>

*name of the tin to have any nulled triangles reset to being visible triangles.*

Reset button

*the reset button resets all null triangles in the tin to the base colour.*
16.13.4 Null by Length

**Position of option on menu:** Tins => Null => by length

The **null by length** option is used to null any triangle with a side of length greater than a user specified length.

Warning - this option will null out *internal* triangles. The next option, Null by angle/length will only null triangles on the outer shell.

On selecting the **by length** option, the **null triangles by length of side** panel is displayed.

![Null Triangles by Length of Side Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*name of the tin to null triangles in.*

*length to check triangle sides against.*

*after selecting the *set* button, the tin will be processed and any triangle with a side of length greater than the value given in the *length* panel field, will be nulled.*
16.13.5 Null by Angle and Length

Position of option on menu: Tins => Null => by angle/length

The null by angle/length option is a more powerful nulling option which tries to remove most of the external triangles that one expects should be removed. For example, for a T-intersection, all the long, thin outer triangles should be removed. The option has two sets of tests - one to remove long thin triangles and the other which uses a combined test to remove squat triangles.

Unlike the null by length option, null by angle/length only works on triangles which have an outer null triangle on one or two sides (it does not work on internal holes). These triangles are called external triangles and sides with an outer null triangle on them are called external sides.

The null by angle and length option does not remove triangles whose external side is a breakline. Hence, as expected, breaklines will stop the nulling process.

Note that null by angle and length keeps processing the remaining non-nulled triangles until no more can be nulled or are stopped by breaklines. Hence the nulling works inwards as outer triangles are nulled revealing new external triangles to be tested. The nulling process is like peeling off layers of an onion.

Important note - the setting for this option are stored by the triangulation and the option is automatically re-run if the triangulation is re-run. To turn off the tests, just set the panel fields to blank.

Warning - this option should be the first nulling option used because all null triangles are first reset to valid triangles before this option is applied.

On selecting the null by angle/length option, the Null Triangles by Angle and Length panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin to null</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
</tbody>
</table>

name of the tin to have triangles nulled. If this option has been previously run on the tin, the previous panel values are written into the panel fields.

<table>
<thead>
<tr>
<th>Angle</th>
<th>angle box</th>
<th>5</th>
</tr>
</thead>
</table>

if a triangle has an external side (that is not a breakline) with an angle on it less than Angle, then the triangle is nulled. The default value works most of the time.

If blank then no triangles are nulled by this test.
if a triangle has an external side (that is not a breakline) greater than Length, the triangle is nulled.
If blank then no triangles are nulled by this test.

For the Combined case, a triangle is nulled if it:
has an external side (that is not a breakline) and the sum of the two angles on it is less than Combined angle (the default value works most of the time)
and
has an external side (that is not a breakline) whose length is greater than Combined length. A suggested value is one third to one half of Length.

If either Combined angle or Combined length is blank, then no triangles are nulled by this test.

after selecting the Null button, all nulled triangles are reset to be valid triangles and the tin then processed and triangles nulled.
16.13.6 Null by Angle and Length (Seed)

Position of option on menu: Tins => Null => by angle/length (seed)

The null by angle/length (seed) option is similar to the powerful null by angle/length option (see 16.13.5 Null by Angle and Length) except it has the additional start point.

That is, a start triangle is selected by the cursor and the nulling starts from the triangle under the cursor.

The null by angle/length (seed) option then starts nulling triangles from the start triangle using the angle/length parameters until stopped by breaklines.

Hence the nulling works outwards from the start triangle revealing new triangles to be tested until stopped by breaklines.

This option is particularly useful for nulling internal areas of a tin.

Selecting null by angle/length (seed) displays the Null Triangles by Angle and Length from Point panel.

![Null Triangles by Angle and Length from Point](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin to null</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the tin to have triangles nulled. If this option has been previously run on the tin, the previous panel values are written into the panel fields.</td>
<td></td>
</tr>
<tr>
<td>Point to null from</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the X/Y co-ordinates of a position to start nulling from.</td>
<td></td>
</tr>
<tr>
<td>Angle</td>
<td>angle box</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if a triangle has an external side (that is not a breakline) with an angle on it less than Angle, then the triangle is nulled. The default value works most of the time. If blank then no triangles are nulled by this test.</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>input</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if a triangle has an external side (that is not a breakline) greater than Length, the triangle is nulled.</td>
<td></td>
</tr>
</tbody>
</table>
If blank then no triangles are nulled by this test.

<table>
<thead>
<tr>
<th>Combined angle</th>
<th>input</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined length</td>
<td>input</td>
<td>20</td>
</tr>
</tbody>
</table>

For the Combined case, a triangle is nulled if it:

- has an external side (that is not a breakline) and the sum of the two angles on it is less than Combined angle (the default value works most of the time)
- has an external side (that is not a breakline) whose length is greater than Combined length. A suggested value is one third to one half of Length.

If either Combined angle or Combined length is blank, then no triangles are nulled by this test.

Null button

After selecting the Null button, the triangle under the (X,Y) position is determined and null processing starts from that triangle.
16.13.7 Null by Centroids

Position of option on menu: Tins => Null => by centroids

null by centroids is used to null/reset any triangle that lies under the centroid of a string. On selecting the by centroids option, the null triangles by centroids of strings panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>name of the tin to null/reset triangles in.</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Model of strings</td>
<td>model of strings to be used to select triangles that are under a centroid of one of the model's strings.</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Null mode</td>
<td>if null, any triangle under the centroid of a string from the model of strings, will be nulled. reset, any triangle under the centroid of a string from the model of strings, will be made visible again.</td>
<td>choice box</td>
<td>Reset</td>
<td>Reset, Null</td>
</tr>
<tr>
<td>Set button</td>
<td>after selecting the set button, the tin will be processed and any triangle under the centroid of a string will be set according to the null mode panel field.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
16.13.8 Null by Strings

**Position of option on menu:**  
Tins => Null => by strings

The null by strings option is used to null any triangle that is cut by a string.  
On selecting the by strings option, the null triangles by strings panel is displayed.

![Null Triangles by Strings panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>name of the tin to null triangles in.</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Use a string</td>
<td>radio button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if set, strings will be selected and used to null any triangle that the string passes through.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Null on accept of string</td>
<td>tick box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if ticked, the triangles will be nulled as soon as the string is accepted.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If not ticked, the triangles will not be nulled until the Set button is selected.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>String</td>
<td>string select</td>
<td>existing string</td>
<td>string pop-up</td>
<td></td>
</tr>
</tbody>
</table>
if string, a string will be selected and used to null any triangle that the string passes through.

If line, a temporary two point line is drawn and used to null any triangle that the line passes through.

If polyline, a temporary polyline is drawn and used to null any triangle that the string passes through.

If closed polyline, a temporary closed polyline is drawn and used to null any triangle that the string passes through.

Use a model of strings radio button

if set, a model of strings is used and a triangle is nulled if it is cut by any one of the strings.

Model model box available models
model of strings to cut the triangles.

Set button

after selecting the set button, the tin will be processed and any triangle that is cut by a string from the Model, or a selected string for the User a string case, will be nulled.
16.13.9 Null by Points

**Position of option on menu:**  Tins => Null => by points

The **null by points** null or reset any triangle that the user clicks LB whilst over the triangle in a plan view.

On selecting the **by points** option, the **null triangles by points** panel is displayed.

![Null Triangles by Points panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>Name of the tin to null/reset triangles in.</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Null mode</td>
<td>Choice box</td>
<td>Null</td>
<td>Reset, Null</td>
<td></td>
</tr>
<tr>
<td>Pick</td>
<td>Button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*name of the tin to null/reset triangles in.*

**Null mode**

*if null, any triangles under a cursor pick will be nulled.*

*reset, any nulled triangles under a cursor pick will be turned back on.*

**Pick**

*any triangle under the cursor select will be processing according to the null mode panel field.*
16.13.10 Null by polygons

Position of option on menu:  Tins => Null => by polygons

The null by polygons option is used to null/reset any triangles that are inside or outside a user selected polygon, or model of polygons.

If a string is selected to use and it is not closed, then a polygon is formed by joining the first and the last points of the string.

On selecting the by polygons option, the null triangles by polygons panel is displayed.

![Null Triangles By Polygons Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td>name of the tin to null/reset triangles in.</td>
<td></td>
</tr>
<tr>
<td>Null mode</td>
<td>choice box</td>
<td>Null</td>
<td>Reset, Null</td>
<td>if null, any triangles selected will be nulled. reset, any nulled triangles selected will be turned back on.</td>
</tr>
<tr>
<td>Poly mode</td>
<td>choice box</td>
<td>inside</td>
<td>inside, outside</td>
<td>mode to select whether the triangles with centroids inside or outside the selected polygons are to be nulled.</td>
</tr>
<tr>
<td>Use a polygon</td>
<td>radio button</td>
<td></td>
<td></td>
<td>if set, strings will be selected and used as the polygon to null/reset all triangles with centroids inside/ outside the polygon.</td>
</tr>
<tr>
<td>Null on accept of polygon</td>
<td>tick box</td>
<td></td>
<td></td>
<td>if ticked, the triangles will be nulled/reset as soon as the polygon (string) is accepted.</td>
</tr>
</tbody>
</table>
If not ticked, the triangles will not be nulled/reset until the **Set** button is selected.

**Null on accept of string**  tick box

if ticked, the triangles will be nulled as soon as the string is accepted.

If not ticked, the triangles will not be nulled until the **Set** button is selected.

**Polygon**  polygon select  polygon pop-up

Polygon to null or rest triangles when the centroid is inside/outside the polygon

**Use a model of polygons**  radio button

if set, a model of strings will be used as the polygons to null/reset triangles whose centroids are inside/outside one of the polygons.

**Model**  model box  available models

model of strings to provide the polygons for nulling/resetting triangles.

**Set**  button

each string in the **model of polygons** is used to null/reset the triangles in the tin given in the tin field according to the **null mode** and **poly mode** panel field.
16.14 Utilities

**Position of option on menu:** Tins => Utilities => Tin Utilities

The `triangles=>utilities` menu contains miscellaneous options involving tins.

The Utilities walk-right menu is

```
Tin Utilities
Add Copy
Copy project tin
Create TIN faces
Grid DTM
Rotated grid DTM
DEMs
Remove
Rename
Report
Save
Tin to strings
Translate/copy
Weed
Z diffs from tins
Z diffs from string to tin
Min/Max of tins
User
```

Each option will now be described.

For the options *Add*, go to 16.14.1 Add

*Copy*  16.14.2 Copy

*Copy project tin*  16.14.3 Copy Project Tin

*Create TIN faces*  16.14.4 Create TIN Faces

*Grid DTM*  16.14.5 Grid DTM

*Rotated grid DTM*  16.14.6 Rotated Grid

*DEMs*  16.14.7 DEMs

*Remove*  16.14.8 Remove

*Rename*  16.14.9 Rename


*Save*  16.14.11 Save

*Tin to strings*  16.14.12 Tin to Strings

*Translate/copy*  16.14.13 Translate/Copy

*Weed*  16.14.14 Weed

*Z diffs from tins*  16.14.15 Z Differences from Tins

*Z diffs from string to tin*  16.14.16 Z Differences from String to Tin

*Min/Max of tins*  16.14.17 Grid of Min / Max of Tins
16.14.1 Add

**Position of menu:**  Tins => Utilities => Add

Tins can be added to the project and to models.

The **tin adds** walk-right menu is

```
 Tin Adds
 Add to project
 Add all to project
 Add to model
```

The options in this menu will now be described.

For the option Add to project, go to 16.14.1.1 Add to Project
Add all to project 16.14.1.2 Add All To Project
Add to model 16.14.1.3 Add to Model

16.14.1.1 Add to Project

**Position of option on menu:**  Tins => Utilities => Add => Add to project

The **add to project** option is used to add a removed tin back into the project.

On selecting the **add tin to project** option, the **add tin to the project** panel is displayed.

```
Add Tin to the Project

Removed tin
Model for tin

Add Finish Help
```

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removed tin</td>
<td><em>name of the tin to be added to the working project. The tin must exist on the disk in the project area and not already be in the project.</em></td>
<td>box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Model for tin</td>
<td><em>if non-blank, the loaded tin will be added to the model given in this field.</em></td>
<td>box</td>
<td>available models</td>
<td></td>
</tr>
</tbody>
</table>

**Add** button

*Add the tin given in the Tin field to the working project.*

*If the model for tin field is non-blank, the tin will be added to the model given in that field - if the model does not exist, it will be created.*

16.14.1.2 Add All To Project
Position of option on menu: Tins => Utilities => Add => Add all to project

The add all tins option is used to add all the removed tins back into the project.
On selecting the add all to project option, the add all tins to project panel is displayed.

![Add All Tins To Project Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*after selecting this button, all removed tins in the working project will be added to the project.*

16.14.1.3 Add to Model

Position of option on menu: Tins => Utilities => Add => Add to model

On selecting the add to model output option, the add tin to a model panel is displayed.

![Add Tin to a Model Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
</tbody>
</table>

*name of the tin to be added to a model.*

<table>
<thead>
<tr>
<th>Add to model</th>
<th>model box</th>
<th>available models</th>
<th></th>
</tr>
</thead>
</table>

*name of the model to which the tin given in the tin field will be added.*

<table>
<thead>
<tr>
<th>Add</th>
<th>button</th>
<th></th>
</tr>
</thead>
</table>

*add the tin given in the tin field to the model given by the add to model field.*
16.14.2 Copy

**Position of option on menu:** Tins => Utilities => Copy

A copy of an existing tin can be made using the copy option.

A Super Tin can also be copied and what is created is a new super tin with a new name but with exactly the same tins making it up as the original tin.

On selecting copy, the tin copy panel is displayed.

![Tin Copy Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old tin</td>
<td>name of the tin to be copied.</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>New tin</td>
<td>name of the copy of the tin - this can’t be the same as any existing tin in the project.</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Colour of tin</td>
<td>if non-blank, the colour of the new tin. If blank, use the old tin colour</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td>Model for tin</td>
<td>if non-blank, the name of the model for the new tin. If blank, the tin is not put in any model.</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Copy</td>
<td>after selecting this button, the tin given in the old tin field will be copied and the copy given the name in the new tin field and placed in the model given in the model for tin field.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
16.14.3 Copy Project Tin

**Position of option on menu:**  
Tins => Utilities => Copy project tin

On selecting the *copy project tin* option, the *copy project tin* panel is displayed.

![Copy Project Tin Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Copy on selection</strong></td>
<td>tick box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if ticked, the project is copied as soon as it is selected. The same tin name and default model containing the tin is used.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Folder</strong></td>
<td>folder box</td>
<td></td>
<td>working folder</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>name of the working folder containing the project from which the tin should be copied</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Project</strong></td>
<td>project box</td>
<td></td>
<td>current projects</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>name of the project in the folder given in the <em>Folder</em> field, from which the tin should be copied.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Tin</strong></td>
<td>tin box</td>
<td></td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>name of the tin to be copied.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>New name</strong></td>
<td>tin box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if non-blank, the new name to be given to the copied tin which must be different to all the exiting tins names in the working project.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If blank, keep the name of the original tin (as long as it is different to the existing tins).</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>New model</strong></td>
<td>model box</td>
<td></td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if non-blank, the tin will be placed in this model.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Copy</strong></td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>copy to this project, the tin given in the <em>Tin</em> field from the project given in the <em>Project</em> field.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
16.14.4 Create Tin Faces

**Position of option on menu:**  
Tins => Utilities => Create tin faces

This option creates a separate face for each triangle in a tin.

Selecting Create tin faces displays the Create Tin Faces panel.

![Create Tin Faces panel](image.png)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Tin polygon</td>
<td>polygon select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Face colour</td>
<td>colour box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid fill ?</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blend (0 ... 1)</td>
<td>real value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output model</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
</tbody>
</table>

**Tin**

Name of the tin to have faces created for each triangle.

**Tin polygon**

If selected, faces are created for triangles whose centroid is inside the selected polygon.

**Face colour**

If blank, the tin triangle colour is used for the face colour. If not blank, this colour is used for all faces.

**Solid fill ?**

If ticked, the faces are solid filled with a blend value.

**Blend (0 ... 1)**

The value of blending is between 0 and 1.

0 means the face is totally transparent (and hence invisible) and 1 means that the face is opaque (non-translucent) and can’t be seen through at all.

If blank, then the value is taken as 1 and the polygon is opaque (non-translucent).

**Output model**

Model for the faces

**Process**

Create faces for selected triangles.
16.14.5 Grid DTM

**Position of option on menu:** Tins => Utilities => Grid

The grid option calculates heights at points at regular x and y increments between given minimum and maximum x and y values. If a polygon is given, a z-value is only calculated for points inside the polygon.

Also see the [16.14.7 DEMs](#) options for creating a file of a regular grid to different formats (Arc View, Quantm, Sokkia).

On selecting the Grid option, the Regular Grid of Tin panel is displayed.

![Regular Grid of Tin panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td>name of the tin on which the spot heights will be calculated.</td>
</tr>
<tr>
<td>Min x/y</td>
<td>input</td>
<td></td>
<td>minimum x/y values to calculate spot heights for.</td>
</tr>
<tr>
<td>Max x/y</td>
<td>input</td>
<td></td>
<td>maximum x/y values to calculate spot heights for.</td>
</tr>
<tr>
<td>Delta x/y</td>
<td>input</td>
<td></td>
<td>difference between the x/y-values for the grid.</td>
</tr>
<tr>
<td>Only 1 string per grid row</td>
<td>tick box</td>
<td></td>
<td>if ticked, all the grid points for a row are joined in a point string. If not ticked, individual one vertex strings are created for each grid point.</td>
</tr>
<tr>
<td>Model for points</td>
<td>model box</td>
<td>available models</td>
<td>if blank, no point strings will be created. If non-blank, points strings of the spots heights will be created and stored in this model.</td>
</tr>
</tbody>
</table>
**Colour for points**  
colour box  
default colour  
available colours  
*colour to make the point strings.*

**Poly**  
poly-select  

*if a polygon is selected, then the spot heights will be restricted to within the polygon.*  
*If no polygon is selected, the spot heights will be calculated over the entire tin.*

**Grid**  
button  

*calculate the spot heights at regular points over the area given by the min and maximum x and y values and restricted to be inside the polygon.*
16.14.6 Rotated Grid

**Position of option on menu:**  Tins => Utilities => Rotated Grid

This panel is used to create a grid of points with z-values from a given tin. The grid can be rotated and a polygon can be used to restrict the created points. A report of grid points can also be calculated in either simple x y z (one point per line) form or if no polygon is used, in a format accepted by Quantm (formerly Align 3d).

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin to drape on to</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td><strong>Fence (opt)</strong></td>
<td>string select</td>
<td>Optional – if selected, the grid is restricted to being inside the polygon.</td>
<td></td>
</tr>
<tr>
<td>Model for grid</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Colour for grid</td>
<td>colour box</td>
<td>dark green</td>
<td>available colours</td>
</tr>
<tr>
<td>Point on grid</td>
<td>point select box</td>
<td>The selected point is on the grid. The other grid points are integer multiples of the “Grid X increment” and “Grid Y increment” (with the bearing “Bearing of grid”) from this point.</td>
<td></td>
</tr>
<tr>
<td>Bearing of grid</td>
<td>bearing box</td>
<td>Bearing of the side of the grid.</td>
<td></td>
</tr>
</tbody>
</table>
Grid X increment input box

The grid is made up of points of integer multiple of “Delta X” in the X direction.

Grid Y increment input box

The grid is made up of points of integer multiple of “Delta Y” in the Y direction.

Keep grid null value points tick box

If ticked, the “Output null value” is written out for any null z-values.

Report file type radio button align 3d/xyz xyz

If xyz – the grid is written out as x y z with one point per line. The “Output null value” is used for any null z-values in the grid.

If align 3d – the grid is written out in a format suitable for align 3d (Quantm). The “Output null value” is used for any null z-values in the grid.

Output null value input box -9999

The z-value to write out if any grid z-value is null.

Output file name file box *.rpt files

Name of the output file for the grid data.

Process button

Run the option

Undo button

Undo the last grid created whilst the panel is up.
16.14.7 DEMs

**Position of menu:** Tins => Utilities => DEMs
**Position of menu:** File I/O => Data output => DEMs

DEMS (Digital Elevation Models) can be created from a tin. DEMS are only regular arrays of z-values, rather than the random values and break lines supported by Tins.

Unfortunately there is not just one formats for DEMs.

The DEMS walk-right menu is

![Tin DEMs menu](image)

For the option *Arc View*, go to
- 16.14.7.1 Write Arc View DEM
- 16.14.7.2 Write Arc View DEM (Actual, Min, Max, Av)
- 16.14.7.4 Sokkia
- 16.14.7.3 Quantm
16.14.7.1 Write Arc View DEM

**Position of option on menu:**  Tins => Utilities => DEMs => Arc View

**Position of menu:**  File I/O => Data output => DEMs => Arc View

The Arc View option calculates heights at points at regular x and y increments (cell size) between given minimum and maximum x and y values and writes out the data in the Arc View DEM format.

On selecting the Arc View option, the **Write Arc View DEM** panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td><strong>Min x/y</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Max x/y</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Cell size</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Null value for file</strong></td>
<td>input</td>
<td>-9999</td>
<td></td>
</tr>
<tr>
<td><strong>File</strong></td>
<td>file box</td>
<td>*.grd</td>
<td></td>
</tr>
<tr>
<td><strong>Grid</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

name of the tin on which the DEM heights will be calculated.

minimum x/y values to calculate spot heights for.

maximum x/y values to calculate spot heights for.

size of the delta x and delta y - cell is a square.

value to use when writing null z-values out to the file.

the file name for the spot height values in Arc View DEM format.

calculate the spot heights at regular points over the area given by the min and maximum x and y values and write out the file.
16.14.7.2 Write Arc View DEM (Actual, Min, Max, Av)

Position of option on menu:  Tins => Utilities => DEMs => Arc View Act/Min/Max/Av

Position of menu:  File I/O => Data output => DEMs => Arc View Act/Min/Max/Av

The Arc View Act/Min/Max/Av option calculates heights at points at regular x and y increments (cell size) between given minimum and maximum x and y values, and also the minimum, maximum and average values for the cell. The data is written out in the Arc View DEM format.

On selecting the Arc View Act/Min/Max/Av option, the Write Arc View DEM (Act/Min/Max/Av) panel is displayed.

![Write Arc View DEM (Act/Min/Max/Av) panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>name of the tin on which the DEM heights will be calculated.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X/Y coordinate</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X/Y coordinates for the origin of the DEM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle</td>
<td>angle box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>angle of rotation of the DEM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell size</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>size of the delta x and delta y - cell is a square.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Number of rows/columns input 1
number of rows/columns in the DEM

Files tab - Arc DEM files for

Actual heights file box
if non blank, write the z-values for the tin at the middle of each cell, out to a dem file

Minimum heights file box
if non blank, write the minimum z-values for the tin for the each cell, out to a dem file

Maximum heights file box
if non blank, write the maximum z-values for the tin for the each cell, out to a dem file

Average heights file box
if non blank, write the average z-values for the tin for the each cell, out to a dem file

Null value for file input -9999
value to use when writing null z-values out to the DEM files.

Bottom up DEM tick box
if ticked, the DEM files are written from the bottom row of the grid and work up.
If not ticked, the DEM files are written from to top row of the grid and work down

Models tab - Models for

Actual heights model box
if non blank, create points of z-values for the tin at the middle of each cell

Minimum heights model box
if non blank, create points of minimum z-values for the tin for the each cell

Maximum heights model box
if non blank, create points of maximum z-values for the tin for the each cell

Average heights model box
if non blank, create points of average z-values for the tin for the each cell

Colour for points colour box
colour for the point strings

Grid button
calculate the spot heights at regular points over the area given by the min and maximum x and y values and write out the file.
16.14.7.3 Quantm

**Position of option on menu:**  Tins => Utilities => DEMs => Quantm

**Position of menu:**  File I/O => Data output => DEMs => Quantm

The Quantm option calculates heights at points at regular x and y increments between given minimum and maximum x and y values. If a polygon is given, a z-value is only calculated for points inside the polygon.

Actual point strings and/or a file of heights at the points in Quantm (formerly Align 3D) format can be generated. For Quantm no polygon should be used and if there is no z-value (no tin) at a point, then a null z-value is written to the output file.

On selecting the Quantm option, the Write Quantm DEM panel is displayed.

![Write Quantm DEM panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>name of the tin on which the spot heights will be calculated.</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>One row</td>
<td>If ticked, null points are added in for any missing (x,y) so that there is only one row of data (one string) for each x-value.</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min x/y</td>
<td>minimum x/y values to calculate spot heights for.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max x/y</td>
<td>maximum x/y values to calculate spot heights for.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta x/y</td>
<td>difference between the x/y-values.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 16  Tins

**Model for points**  
model box  
available models  
if blank, no point strings will be created.  
If non-blank, points strings of the spots heights will be created and stored in this model.

**Colour for points**  
colour box  
default colour  
available colours  
colour to make the point strings.

**Null value for file**  
input  
-3200  
value to use when writing null z-values out to the file.

**File**  
file box  
*.grd  
If non-blank, a file of the spot height values in Quantm format is created.

**Poly**  
poly-select  
if a polygon is selected, then the spot heights will be restricted to within the polygon.  
If no polygon is selected, the spot heights will be calculated over the entire tin.

**Grid**  
button  
calculate the spot heights at regular points over the area given by the min and maximum x and y values and restricted to be inside the polygon.
16.14.7.4 Sokkia

**Position of option on menu:**  Tins =>Utilities =>DEMs =>Sokkia

**Position of menu:**  File I/O =>Data output =>DEMs =>Sokkia

The Sokkia option calculates heights at points at regular x and y increments between given minimum and maximum x and y values. If a polygon is given, a z-value is only calculated for points inside the polygon. A file of heights at the points in Sokkia format is generated.

On selecting the Sokkia option, the **Write Sokkia DEM** panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td><strong>tin box</strong> available tins name of the tin on which the spot heights will be calculated.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min x/y</td>
<td>input minimum x/y values to calculate spot heights for.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max x/y</td>
<td>input maximum x/y values to calculate spot heights for.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta x/y</td>
<td>input difference between the x/y-values.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poly</td>
<td>poly-select if a polygon is selected, then the spot heights will be restricted to within the polygon. If no polygon is selected, the spot heights will be calculated over the entire tin.</td>
<td>poly-select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>File</td>
<td>file box <em>.</em>,grd If non-blank, a file of the spot height values in Sokkia format is created.</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grid</td>
<td>button calculate and write a file of the spot heights at regular points over the area given by the min and maximum x and y values and restricted to be inside the polygon.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
16.14.8 Remove

**Position of menu:**  Tins => Utilities => Remove

Tins can be removed from models and from the project. Remove tins are not deleted but simply taken off the tin list in the project. Removed tins are left in the project area and can be added in again using the add option.

The tin removes walk-right menu is

- Remove from project
- Remove all from project
- Remove from model

The options in the menu will now be described.

For the option Remove from project, go to

- Remove all from project
- Remove from model

Related sections:
- 16.14.8.1 Remove From Project
- 16.14.8.2 Remove All From Project
- 16.14.8.3 Remove From Model
16.14.8.1 Remove From Project

**Position of option on menu:**  Tins => Utilities => Remove => Remove from project

On selecting the remove from project option, the remove tin from the project panel is displayed.

![Remove Tin From the Project](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
</tbody>
</table>

*name of the tin to be removed from the working project.*

**Remove** button

*remove the tin given in the tin field from the project.*

16.14.8.2 Remove All From Project

**Position of option on menu:**  Tins => Utilities => Remove => Remove all from project

On selecting the Remove all from project option, the remove all tins from project panel is displayed.

![Remove All Tins From the Project](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*remove all the tins from the working project. If no errors occur, the panel will be removed after the tins have been removed.*
16.14.8.3 Remove From Model

**Position of option on menu:**  Tins => Utilities => Remove => Remove from model

On selecting the remove from model option, the remove tin from a model panel is displayed.

![Remove Tin from a Model Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>name of the tin to be removed from a model.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>name of the model from which the tin given in the tin field will be removed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>remove the tin given in the tin field from the model given in the model field.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
16.14.9 Rename

**Position of option on menu:** Tins =>Utilities =>Rename

On selecting the *rename* option, the *tin rename* panel is displayed.

This panel can be used to change the names of existing tins.

![Tin Rename Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old tin</td>
<td>tin box</td>
<td></td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>New tin</td>
<td>tin box</td>
<td></td>
<td>new name for the tin</td>
<td></td>
</tr>
<tr>
<td>Rename</td>
<td>button</td>
<td></td>
<td></td>
<td>change the name of the tin in the <em>old</em> tin field to the name given in the <em>new</em> tin field.</td>
</tr>
</tbody>
</table>
16.14.10 Report

**Position of option on menu:**  Tins => Utilities => Report

This panel produces a report on the tin including the models making up the tin and all the settings used when creating the tin.

On selecting the *Tin report* option, the *Report Tin* panel is displayed.

![Report Tin panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins or super tins</td>
<td>name of the tin to create report for.</td>
</tr>
<tr>
<td>File</td>
<td>file box</td>
<td>*.rpt files</td>
<td>name of the report file</td>
</tr>
<tr>
<td>Report</td>
<td>button</td>
<td></td>
<td>create the tin report.</td>
</tr>
</tbody>
</table>
16.14.11 Save

**Position of menu:**  Tins => Utilities => Save

Tins are automatically saved on disk when they are first created but various operations can then be applied to tins which may not be immediately updated on disk.

The tin saves walk-right menu is

![Tin Saves Menu]

The options in the menu will now be described.

For the option Save a tin, go to 16.14.11.1 Save a Tin

For the option Save all tins, go to 16.14.11.2 Save/Forced Save All Tins

For the option Forced Save all tins, go to 16.14.11.2 Save/Forced Save All Tins
16.14.11.1 Save a Tin

On selecting the save a tin option, the save tin panel is displayed.

![Save Tin Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td></td>
<td>available tins</td>
<td></td>
</tr>
</tbody>
</table>

name of the tin to be saved to disk.

Save button

after selecting this button, the tin given in the tin field will be saved to disk.
16.14.11.2 Save/Forced Save All Tins

**Position of option on menu:** Tins => Utilities => Save => Save all tins

**Position of option on menu:** Tins => Utilities => Save => Forced Save all tins

On selecting the save/force save all tins option, the **save/forced save all tins** panel is displayed.

![Save All Tins and Forced Save All Tins panels](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Save button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*for save all tins: after selecting this button, all tins in the working project that have been modified since their last save, will be saved to disk. Unless an error occurs, the panel will be removed after the saving is completed.*

*for force save all tins: after selecting this button, all tins in the working project will be saved to disk. Unless an error occurs, the panel will be removed after the saving is completed.*
16.14.12 Tin to Strings

**Position of option on menu:**  Tins => Utilities => Tin to strings

The points and breaklines of an existing tin can be extracted using the Tin to strings option.

Note that only the final points and breaklines used in creating the tin are extracted. Original string name, colours etc. are not obtainable.

Selecting Tin to strings displays the Tin to Strings panel:

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin to extract strings</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Model for strings</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Extract</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Tin to extract strings: *name of the tin to extract points and breaklines from.*
- Model for strings: *model to hold the extracted point and breakline strings.*
- Extract: *extract the points and breaklines that make up a tin.*
16.14.13 Translate/Copy

**Position of option on menu:**  Tins => Utilities => Translate/copy

An existing tin can be translated and/or copied using the Translate/copy option. Selecting Translate/copy, displays the Tin Translate/Copy panel:

![Tin Translate/Copy panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Old tin</strong></td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>name of the tin to be copied/translated.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Copy the tin</strong></td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td><em>if ticked, the New tin, Model for Tin and Colour for tin fields are activated and supply the information for the new tin.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>New tin</strong></td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td><em>name of the copy of the tin - this can't be the same as any existing tin in the project.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Model for tin</strong></td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td><em>if non-blank, the name of the model for the new tin. If blank, the tin is not put in any model.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Colour for tin</strong></td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td><em>if non-blank, the colour of the new tin. If blank, use the old tin colour</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Translate the tin</strong></td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td><em>if ticked, the dx, dy and dz fields are activated and supply the information for translating the tin</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>dx/dy/dz</strong></td>
<td>real box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td><em>the delta amounts to translate the tin by.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Process</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>translate/copy the tin.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
16.14.14 Weed

**Position of option on menu:**  Tins =>Utilities =>Weed

When a tin is created, a copy of all the points and lines used in creating the tin is saved with the tin, including any duplicate points and lines.

The *weed* option will remove all the duplicate points and lines from the tin database.

On selecting the *Weed* option, the *tin weed* panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin to weed</td>
<td>name of the tin to weed.</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Weed</td>
<td>button</td>
<td></td>
<td></td>
<td>remove all duplicate points and lines from the tin database.</td>
</tr>
</tbody>
</table>
16.14.15 Z Differences from Tins

Position of option on menu:  Tins => Utilities => Z diffs from tins

This option takes a data source and for each point in the data source, creates a new point whose z-value is the difference in z-values from two given tins at the plan position of the data source point.

On selecting the Z diffs from Tins option, the Create Z-Values from Tin Differences panel is displayed.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>choice box</td>
<td>Model</td>
<td>model, string, view</td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Original tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>New tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Model for tin differences</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field Description:
- Data to settle
  - **Data source type**: choice box
    - Model
      - model, string, view
  - **Data source**: input
  - **Original tin**
    - name of the tin to get the z-value from
  - **New tin**
    - name of the tin to get the z-value from
  - **Model for tin differences**
    - model to place the strings containing the z values with the difference between the tins
  - **Process**
    - for all strings in the data source, calculate the difference in the z-values from the two tins at the string vertices
16.14.16 Z Differences from String to Tin

**Position of option on menu:**  Tins =>Utilities =>Z diffs from string to tin

This option takes a data source and for each string in the data source, creates a plan copy of the string and for each vertex in the new string, the z-value at a vertex is the difference in z-values from the original string vertex and the z-value of the tin at the (x,y) position of the vertex.

On selecting the Z diffs from string to tin option, the Create Z-Values from String to Tin Differences panel is displayed.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source type</strong></td>
<td>choice box</td>
<td>Model</td>
<td>model, string, view</td>
</tr>
<tr>
<td><strong>Data source</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Tin</strong></td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td><strong>Model for tin differences</strong></td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
</tbody>
</table>

- **Process** button
  - for all strings in the data source, calculate the difference in the z-values from the string to the tin.
16.14.17 Grid of Min / Max of Tins

Position of option on menu:  
Tins =>Utilities => Min/ Max of Tins

This option takes one to three tins and creates a regular grid of points where the z-value at each point is the minimum of the tins at that point.

Selecting Min/ Max of Tins brings up the Grid of Min / Max of Tins panel.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin 1, Tin 2, Tin 3</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if non blank, this tin is used to use in the calculation to find the minimum of the tins at each grid point.</td>
<td></td>
</tr>
<tr>
<td>Calculate tins min, max</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>when pressed, the minimum and maximum x and y values for the union of the three tins is calculated and the values written to the Grid xmin, ymin, Grid xmax, ymax fields.</td>
<td></td>
</tr>
<tr>
<td>Grid xmin, ymin</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the minimum x value, then one or more spaces, and then the minimum y values, to be used for creating the grid.</td>
<td></td>
</tr>
<tr>
<td>Grid xmax, ymax</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the maximum x value, then one or more spaces, and then the maximum y values, to be used for creating the grid.</td>
<td></td>
</tr>
<tr>
<td>x grid size</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the x coordinates for the grid points are created starting at the Grid xmin and then incremented by &quot;x grid size&quot; for as long as the x value is less than or equal to Grid xmax</td>
<td></td>
</tr>
<tr>
<td>y grid size</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the y coordinates for the grid points are created starting at the Grid ymin and then incremented by &quot;y grid size&quot; for as long as the y value is less than or equal to Grid ymax</td>
<td></td>
</tr>
</tbody>
</table>
grid size" for as long as the y value is less than or equal to Grid ymax

Calculate minimum: tick box ticked

If ticked, then grid points are created with the z-value being the minimum of tins Tin1, Tin 2, Tin3.

If not ticked, then grid points are created with the z-value being the maximum of tins Tin1, Tin 2, Tin3.

File to write results to: File

name of the file to write the grid points out to. The format of the file is x, y and z, separated by spaces and with one point per line. The "File to write results to" must be non-blank.

No decimals for output: input 3

number of decimal places to use for the x, y and z values

Process: button

when this button is pressed, the grid of either the tin minimums or maximums is created and written to the file
16.15 Sections

**Position of menu:** Tins => Sections

The triangles => sections menu contains options involving sections through the tin.

The sections walk-right menu is

```
Tin Sections
Long section
Mesh
Polygon sections
X sections
```

- section along a string
- create sets of sections through tin at right angles
- limit sections to a polygon
- x-sections along a string

For the option **Long section**, go to [16.15.1 Long Sections](#).

Mesh, [16.15.2 Mesh](#)

**Polygon sections** [16.15.3 Polygon Sections](#)

**X-sections** [16.15.4 X-Sections](#)
16.15.1 Long Sections

**Position of option on menu:**  
Tins => Sections => Long Section

The long section option calculates the section through a tin along a particular string. This option is rarely used because tins are automatically profiled through on the section view and in long section and x-section plots.

On selecting the **long section** option, the **long section along a string** panel is displayed.

![Long Section along a String Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>name of the tin that the string will be sectioned against.</em></td>
<td></td>
</tr>
<tr>
<td>Section name</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>name to give the long section string</em></td>
<td></td>
</tr>
<tr>
<td>Colour for section</td>
<td>colour box</td>
<td>default colour</td>
<td>available colours</td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>colour to make the long section string</em></td>
<td></td>
</tr>
<tr>
<td>Model for section</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>name of the model to contain the long section string</em></td>
<td></td>
</tr>
<tr>
<td>Pick</td>
<td>string-select</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>select the string to be sectioned along.</em></td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>calculate the long section along the string selected by the pick button, against the tin given in the tin field. The resulting section string is added to the model given in the Model for Section field.</em></td>
<td></td>
</tr>
</tbody>
</table>
16.15.2 Mesh

**Position of option on menu:**  
Tins => Sections => Mesh

A 12d Model mesh is simply a series of lines cutting through the tin (sections) at a given angle and spacing, and at right angles to the given angle with the same spacing.

A mesh is an effective method of visualizing a triangulation when displayed in a perspective view and for hidden views.

On selecting the mesh option, the mesh over tin panel is displayed.

![Mesh Over Tin Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td><strong>name of the tin that the mesh sections will be calculated through.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle for mesh sections</td>
<td>angle box</td>
<td>90.0</td>
<td>0,45,90</td>
</tr>
<tr>
<td><strong>angle (in degrees) of the lines to section along. The sections are also created at right angles to this angle as well.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dist between mesh sections</td>
<td>input</td>
<td>10.0</td>
<td>1,10,100</td>
</tr>
<tr>
<td><strong>distance between the lines to section along</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour for mesh sections</td>
<td>colour box</td>
<td>default colour</td>
<td>available colours</td>
</tr>
<tr>
<td><strong>colour to make the calculated sections</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for mesh sections</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td><strong>name of the model to contain the calculated sections.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean sections model beforehand</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>if ticked, the model of sections is cleaned out before the option runs.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poly</td>
<td>polygon select</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>if a polygon is selected, then the sections are restricted to remaining within the polygon.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesh</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>two sets of sections through the tin given in the tin field are created within the selected polygon, or if no polygon is selected, the bounding polygon for the tin. One set of sections are calculated along straight lines at the angle given by the angle field and at a separation given by the dist field and the second set at right angles to the first set.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
<esc> can be used to abort the mesh option.
16.15.3 Polygon Sections

**Position of option on menu:**  Tins => Sections => Polygon sections

In the **polygon sections** option, sections are calculated for a series of parallel lines covering the polygon, or if no polygon is given, the tin. The angle of the parallel lines and the distance between them are set by the user.

This option provides a quick method for producing a one directional set of sections covering a polygonal region on a tin.

On selecting the **polygon sections** option, the **sections within a polygon** panel is displayed.

![Sections Within a Polygon](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>name of the tin that the sections will be calculated through</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle for sections</td>
<td>angle box</td>
<td>90.0</td>
<td>0,45,90</td>
</tr>
<tr>
<td>angle (in degrees) of the lines to section along</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dist between sections</td>
<td>input</td>
<td>10.0</td>
<td>1,10,100</td>
</tr>
<tr>
<td>distance between the lines to section along</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour for sections</td>
<td>colour box</td>
<td>default colour</td>
<td>available colours</td>
</tr>
<tr>
<td>colour to make the calculated sections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for section</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>name of the model to contain the calculated sections.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean sections model beforehand</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, the model of sections is cleaned out before the option runs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poly</td>
<td>polygon-select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A polygon is selected from a view. If <strong>no polygon</strong> is selected, sections are created over the entire tin.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Sections within the polygon selected by poly** will be calculated along parallel straight lines at the angle given by the **angle** field and at a separation given by the **dist** field. The sections are made against the tin given by the Tin field. The sections colour is that given in the **colour** field and the section strings
are placed in the model given in the model field.
16.15.4 X-Sections

**Position of option on menu:** Tins => Sections => X Sections

The X-sections (cross sections) option calculates cross sections at a given interval along a string.

On selecting the x-section option, the **x-sections along a string** panel is displayed.

![X-Sections Along a String panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Dist between x-sections</td>
<td>input</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Chord/arc tolerance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regular chainages only</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left x-section length</td>
<td>input</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Right x-section length</td>
<td>input</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>X-sections colour</td>
<td>colour box</td>
<td>default colour</td>
<td>available colours</td>
</tr>
</tbody>
</table>

- **Tin**: name of the tin that the x-sections will be calculated through.
- **Dist between x-sections**: the distance between points on the selected string where the x-sections are calculated.
- **Regular chainages only**: tick box
  - If **ticked**, sections are only calculated at points at the given chainage distance apart.
  - If **not ticked**, extra sections are created at horizontal tangent points and horizontal IPs.
- **Left x-section length**: the plan distance for the left side of the x-section - that is, the distance that the x-section extends to the left of the selected string.
- **Right x-section length**: the plan distance for the right side of the x-section - that is, the distance that the x-section extends to the right of the selected string.
- **X-sections colour**: colour to make the x-sections
**Model for x-sections**  
model box  
available models

*name of the model to contain the x-sections.*

**Start/End chainage**  
input

*the string chainage to start/end the x-sections. If blank, the start/end chainage is taken to be the chainage at the beginning/finish of the string.*

**Special chainages**  
file box  
*.*spc files

*if non blank, a file of special chainages to also create x-sections at*

**String for sections**  
string-select

*select the string to calculate the x-sections along.*

**Section**  
button

*calculate the x-sections along the string selected by the pick button, against the tin given in the tin field. The resulting x-section strings are added to the model given in the model for x-sections field.*
16.16 Sharing

**Position of menu:**  Tins => Sharing

Sharing allows tins from a project (the server project) to be added to other projects (client projects).

Before any tins can be added to a client project, they must first be tagged in the server project as allowed to be shared.

The **Sharing** walk-right menu is

```
Shared Tins ✓
Share
Add
Remove
Synchronize
```

- **Share** allow tins in this project to used by other projects
- **Add** add a shared tin from another project
- **Remove** remove a tin shared from another project
- **Synchronize** updated tins shared from other projects

For the option **Share**, go to  
16.16.1 Share Tins

For the option **Add**, go to  
16.16.2 Add Shared Tins

For the option **Remove**, go to  
16.16.3 Remove Shared Tins

For the option **Synchronize**, go to  
16.16.4 Synchronize Shared Tins
16.16.1 Share Tins

**Position of option on menu:** Tins => Sharing => Share

Before tins in a server project can be added to client projects, the tins must be made available for sharing in the server project by using the Share option.

All tins that have been made available for sharing are displayed in tin lists in a colour defined by an environment variable. The default colour is a yellow (RGB of (255,166,0)).

This option also can reverse the process. That is, remove the availability of a tin for sharing. If this is done then clients who have shared this tin will be warned when starting up their project and/or synchronizing occurs.

Selecting Share displays the **Share Project Tins** panel.

The fields and buttons used in this panel have the following functions.
<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

All the models in the project are listed in the **Share Project Tins** panel and if a tin has been tagged for Sharing, a ticked will be displayed in the **Share** column of the grid.

**Pattern**

If a pattern is typed then all the tins matching the pattern will have a tick placed in the **Share** column. If * is typed then all tins are ticked for sharing.

**Share**

tick if the tin is to be made available for sharing when the **Set** button is pressed.

All tins that have been made available for sharing are displayed in tin lists in a colour defined by an environment variable. The default colour is a yellow (RGB of (255,166,0)).

Clicking RB on **Share** at the top of the column brings up a menu to **Toggle** the ticks, **Set** all the ticks on, **Clear** to turn all the ticks off.

**Tin**

this column lists all the tins in the project

**Share as**

an optional name with which the tin will be shared out to clients. Leave it blank to share under the original name.

**Only show project tins**

tick box

if ticked, only tins originating from the current project are shown.

**Set**

button

clicking **Set** marks all the tins with a tick in the **Tick** column as being available for sharing. Those tins without a tick will not be available for sharing.
16.16.2 Add Shared Tins

**Position of option on menu:**  Tins =>Sharing =>Add

The Add option is used to add shared tins from a server project, to this project (a client project). All tins that have been added as shared tins are displayed in tin lists in a colour defined by an environment variable. The default colour is blue.

Selecting Add displays the Add Shared Tins to Project panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folder</td>
<td>folder box</td>
<td>select folder</td>
<td></td>
</tr>
</tbody>
</table>

*folder to look for 12d Model projects. When a folder is selected, all the 12d Model projects in the folder will be displayed in a Projects pop-up list.*
name of the **12d Model** project in the folder given in the **Folder** field, to search for tins marked for sharing. Once a project is selected, all the tins marked for sharing from that project will be listed in the *Original Tin Name* column.

**Search/Replace**

section for renaming tins from the selected server project

**Match sub strings**

**tick box**

*If ticked*, the **Search** expression is used to match against part of each tin name.

*If not ticked*, the **Search** expression is used to match against the entire tin name.

**Pattern expression**

**radio button**

*If set on, then Pattern expressions given in the **Search** and **Replace** fields are used to modify tin names. Pattern expressions include the standard wild card * and wild character !.

**Search**

*pattern to search for in the tin names. For example "* exist" will select all tins with a name ending with " exist"

**Replace**

*replacement for the search pattern found in the tin name. For example, "exist " in the Replace field, takes the matched part of the tin name and adds "exist " to the front of it.

*Hence the Search pattern "* exist" and Replace pattern "*" finds all tin with names ending in " exist" and renames them with the name starting with "exist " (and the " exist" at the end of the name is dropped off).

**Regular expression**

**radio button**

*If set on, then Regular expressions given in the **Search** and **Replace** fields are used to modify tin names.

**Search**

*regular expression to search for in the tin names.

**Replace**

*replacement for the search expression found in the tin name.

**Tin Names Grid**

The tins available for sharing in the selected project are shown in the *Original Tin Name* column. Any renaming by the Search and Replace expressions are shown in the *New Tin Name* column. Note that if the tin already exists in the current project, then the cell for that model in *Original Tin Name* column will be displayed in yellow.

**Add**

*tick boxes in grid column

*If ticked*, the tin will be added to the project when the **Add** button is pressed.

*If not ticked*, the tin will not be added to this project as a shared tin.

*Clicking RB on Add at the top of the column brings up a menu to Clear which turns all the ticks off.

*Note - a shared tin that has been previously added can only be removed by using the Tins => Sharing => Remove option.*

**Original Tin Name**

*column

*this column lists all the tins in the server project that are available for adding to this client project.

**New Tin Name**

*column

*if non blank*, the name to use instead of the Original Tin Name when the tin is added to the project.
If blank, the Original Tin Name is used for the tin when it is added to the project.

The New Tin Names can be from applying the **Search and Replace**, or by just typing them in.

**Model for Tin**

<table>
<thead>
<tr>
<th>Grid column</th>
<th>if non blank, the model name to use in the client project for this tin added to the project</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>If blank, the model name is the same as that in the server project.</td>
</tr>
</tbody>
</table>

**Status**

<table>
<thead>
<tr>
<th>Output column</th>
<th>displays if their has been a match or no match for the search/replace for renaming tins</th>
</tr>
</thead>
</table>

**Add**

*add to this project (a client project) as a shared tin, the ticked tins given in the Original Tin Name field from the project given in the **Project** field, and add them to the model in the Model for Tin field.*

**Refresh**

*clicking Refresh refreshes the list of all tins available for sharing in the selected **12d Model** project (server project).*
16.16.3 Remove Shared Tins

**Position of option on menu:**  
Tins => Sharing => Remove

The **Remove** option is used to remove shared tins from the project. The shared tins would have been previously added to the project with the Tins => Sharing => Add option.

Selecting **Remove** displays the **Remove Shared Tins from Project** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search/Replace</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Match sub strings</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*If ticked, the Search expression is used to match against part of each tin name.*

*If not ticked, the Search expression is used to match against the entire tin name.*

<table>
<thead>
<tr>
<th>Pattern expression</th>
<th>radio button</th>
<th></th>
</tr>
</thead>
</table>

*If set on, then Pattern expressions given in the Search field are used to select tin names. Pattern expressions include the standard wild card * and wild character !.*
Sharing

pattern to search for in the tin names. For example "* exist" will select all tins with a name ending with " exist"

Regular expression radio button
if set on, then Regular expressions given in the Search field are used to select shared tin names.

Search input
regular expression to search for in the shared tin names.

Tin Names Grid
list of all shared tins added to the project.

Remove tick boxes in grid column
if ticked, the tin will be removed from this project as a shared tin when the Remove button is pressed.
Clicking RB on Remove at the top of the column brings up a menu to Toggle the ticks, Set all the ticks on, Clear to turn all the ticks off.

Tin Name grid column
this column lists all the tins in this project added as shared tins from other server projects

Share path
this column lists the path name to the server project and the original tin name in the server project

Status grid column
displays if their has been a match or no match for the Search for selecting shared tins

Remove button
clicking Remove removes as shared tins form this project, all the tins with a tick.

Refresh button
clicking Refresh refreshes the list of all shared tins previously added to the project
16.16.4 Synchronize Shared Tins

**Position of option on menu:**  Tins => Sharing => Syncronize

The **Synchronize** option is used to updated any added shared tins. The shared tins would have been previously added to the project with the Tins => Sharing => Add option.

Three environment variables control the synchronization of updates of added shared models and tins. For more information on synchronizing, go to the section 7.6.13.4 Project Share Settings.

Selecting Synchronize displays the **Synchronize Shared Tins** panel.

![Synchronize Shared Tins panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Synchronize</strong></td>
<td>tick boxes in grid column</td>
<td><strong>Type</strong></td>
<td><strong>Defaults</strong></td>
<td><strong>Pop-Up</strong></td>
</tr>
<tr>
<td></td>
<td><em>if ticked and the tin has changed in the server project, then it will be re-copied from the server project when the Synchronize button is pressed.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Clicking RB on Copy at the top of the column brings up a menu to Toggle the ticks, Set all the ticks on, Clear to turn all the ticks off.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>grid column</td>
<td><strong>Type</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>this column lists all the tins in this project that have been added from other (server) projects</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Synchronize</strong></td>
<td>button</td>
<td><strong>Type</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>clicking Synchronize re-copies any tins with a tick from the server projects</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td><strong>Status will either be Ok or No Longer Shared</strong> to reflect the status of the tin on that row.</td>
<td><strong>Type</strong></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Redraw views tick box

Whether or not to redraw all the views any of the synchronized tins are on.

Refresh button

clicking Refresh refreshes the list of all shared tins previously added to the project
16.17 Delete

**Position of menu:**  Tins ➞ Delete

The delete option is used to delete tins from the project and from the computer disk so that they no longer can be accessed or take up disk space.

To help protect against disasters, a yes-no pop-up menu is used to confirm that the user did intend deleting the tin. If deletion is confirmed, the selected tin is removed from the project (if its in the project) and deleted from the disk.

If a 12d Model trash bin is being used, the deleted tins may be moved to the trash bin rather than deleted from disk (see 7.6.15 Trash Bin).

The tin Deletes walk-right menu is

For the option *Delete a tin*, go to 16.17.1 Delete a Tin

For the option *Delete all tins*, go to 16.17.2 Delete All Tins
16.17.1 Delete a Tin

**Position of option on menu:**   Tins => Delete => Delete a tin

The delete a tin option can be used to delete a tin in the project.

If a 12d Model trash bin is being used, the deleted tins may be moved to the trash bin rather than deleted from disk (see 7.6.15 Trash Bin).

On selecting the delete a tin option, the delete tin panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>input</td>
<td>project tins</td>
<td></td>
</tr>
</tbody>
</table>

- *name of the tin to be deleted from the computer disk.*

- **Delete tin models if empty**   tick box

  if ticked then the models containing the tin are also deleted if they are empty after the tin is deleted.

- **Permanently delete**   tick box

  if tick, the deleted tins will not go to the trash bin but will be permanently deleted from disk.

- **Delete**   button

  after selecting this button, the tin given in the tin field will be deleted from the computer disk. A **yes-no** pop-up is used to confirm that deletion is required.
16.17.2 Delete All Tins

**Position of option on menu:** Tins => Delete => Delete all tins

The delete all option will delete all tins in the working project. It does not delete tins that are in the working project area but not yet added to the project.

If a 12d Model trash bin is being used, the deleted tins may be moved to the trash bin rather than deleted from disk (see 7.6.15 Trash Bin).

On selecting the delete all option, the delete all tins panel is displayed.

![Delete All Tins Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete tin models if empty</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permanently delete</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Delete tin models if empty** tick box
  - if ticked then the models containing the tins are also deleted if they are empty after the tins are deleted.

- **Permanently delete** tick box
  - if ticked, the deleted tins will not go to the trash bin but will be permanently deleted from disk.

- **Delete** button
  - after selecting this button, a yes-no pop-up is used to confirm that deletion is required. If it is, all tins in the working project will be deleted from disk. Unless an error occurs, the panel will be removed.
17 Survey

Position of menu: Survey

The Survey walk-right menu is laid out to reflect the normal sequence of operations when handling field survey data.

The description of the options on the Survey menu assumes that the reader is familiar with surveying, the 12d Model method of field coding for their particular data collector, data collector definitions and the 12d Model field file.

A description of the 12d Model field coding and data collector definitions is given in the Appendix 36 12d Survey Guide.

17.2 Network
17.3 Setup
17.4 Download Raw
17.5 Convert Raw
17.6 Create Survey Function
17.7 Edit Survey Function
17.8 Report
17.9 Adjustments

See
18.2 12d Field - this is a separate chapter on 12d Field.
17.2 Network
17.3 Setup
17.4 Download Raw
17.5 Convert Raw
17.6 Create Survey Function
17.7 Edit Survey Function
17.8 Report
17.9 Adjustments
17.10 Conversions
17.11 Geodetic Measures and Entry
17.12 Traverse Spreadsheet
17.13 Conformance
17.14 Extras
17.15 Leica
17.16 Topcon
17.17 Trimble
17.18 Setout
17.19 Upload
17.20 TP Stakeout/Setout
17.1 12d Field

**Position of menu:**  Survey => 12d Field

The 12d Field module is for communicating directory with survey grade GPS units and Total Station theodolites through radio, blue tooth, Wi-Fi and cable. Survey data is displayed live on screen in conjunction with full road project design and existing surface data.

Because of its specialist nature, the documentation of the 12d Field module is in a separate chapter and also in the 12d Field Training manual.

The 12d Field walk-right menu is:

![12d Field Menu]

See 18 12d Field.- this is a separate chapter on 12d Field.
17.2 Network

Position of option on menu:  Survey => Network
Selecting Network brings up the Network menu

See

17.2.1 Creating a Least-Square Network
17.2.2 ePlan - this refers to a separate chapter on ePlan.
17.2.1 Creating a Least-Square Network

**Position of menu:** Survey => Network => Least-square

Selecting **Least-square** brings up the Create Least-square Network panel

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model <em>the model</em></td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>name box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level network</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weighting</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Style</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>File type</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input file</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
17.2.2 ePlan

Position of menu:  Survey => Network => ePlan

See 19 ePlan... this is a separate chapter on ePlan.
17.3 Setup

Position of option on menu:  Survey => Setup
Selecting Setup brings up the Survey data setup panel

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data collector</td>
<td>input</td>
<td>available data collectors</td>
<td></td>
</tr>
</tbody>
</table>

name of the data collector definition used to define how to read and interpret the raw survey data file. The list of available data collectors definitions is given in the file pointed to by the environment variable DATA_COLLECTORS_4D.

A data collector definition can be created/edited by
(a) clicking on the choice button at the end of the Data collector panel field and selecting [Edit] at the bottom of the pop-up list of defined data collectors to bring up the Survey.4d Edit/Create panel.

(b) using Project=>Browse=>Survey data collectors the create/edit the Survey.4d file. Please see the 36.9 Data Collector Definitions of Appendix 36 12d Survey Guide for more information on setting up a data collector definition.

Station prefix input
if non-blank, the prefix to be used for any text given for new instrument stations.

Set button
store the selected data collector as being the currently selected one.

Note: Selecting [Edit] at the bottom of the pop-up list of data collectors will bring up the Survey.4d Create/Edit panel.
17.4 Download Raw

Position of option on menu: Survey => Download raw

The download raw option will read data from the data collector connected to the computer’s serial port, save it in a file (the raw data file) and once the download is completed, automatically convert the raw data file into a 12d field file using the currently defined data collector.

Hence the download option downloads data from the data recorder and creates a data collector raw file and an equivalent 12d field file.

For more detailed information on the survey reduction process in 12d Model, go to the Appendix 3.6 12d Survey Guide.

Selecting Download raw brings up the Survey Data Download panel

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>input</td>
<td>from configuration file</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the computer serial port that the data collector is connected to. The default port is specified in the data collector configuration file.</td>
<td></td>
</tr>
<tr>
<td>Data bits</td>
<td>input</td>
<td>from configuration file</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>number of bits</td>
<td>5,6,7,8</td>
</tr>
<tr>
<td>Baud rate</td>
<td>input</td>
<td>from configuration file</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>speed of the serial port</td>
<td></td>
</tr>
<tr>
<td>Stop bits</td>
<td>input</td>
<td>from configuration file</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>number of stop bits</td>
<td></td>
</tr>
<tr>
<td>Parity</td>
<td>input</td>
<td>from configuration file</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>parity</td>
<td></td>
</tr>
<tr>
<td>DTR/DSR</td>
<td>tick</td>
<td>from configuration file</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, use DTR/DSR flow control</td>
<td></td>
</tr>
<tr>
<td>RTS/CTS</td>
<td>tick</td>
<td>from configuration file</td>
<td></td>
</tr>
</tbody>
</table>

![Survey Data Download panel](image.png)
if ticked, use RTS/CTS flow control

**XON/XOFF**

- tick from configuration file

if ticked, use Xon/Xoff

**ACK/NAK**

- tick from configuration file

if ticked, use ACK/NAK

**12d Field file**

- input *.fld files
  
  name of the 12d field file that the raw file is to be converted to. The raw file is given the same name but with the extension specified in the configuration file, e.g., "*.gre".

**Download**

- button

  On clicking the download button, the software will read a data stream from the serial port and store the raw data into a file. The extension of this file, will be specified in the configuration file. The name will be the same as the field file, with any "*.fld" removed.

  On completion of the download, the raw data file is automatically converted to a 12d field file of name given in the field file field.
17.5 Convert Raw

Position of option on menu:  Survey => Convert raw

The convert raw option is used to convert an existing raw data file of the type given by the data collector setup, into a 12d field file.

The raw data file may have been previously downloaded by 12d Model or obtained via another mechanism.

For more detailed information on the survey reduction process in 12d Model, go to the Appendix 36 12d Survey Guide.

Selecting Convert raw brings up the Survey Data Convert Raw panel.

![Survey Data Convert Raw panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw file</td>
<td>input</td>
<td>available raw files</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the raw data file to be converted to a 12d field file. The popup will contain all files with the extension specified in the configuration file for raw data files, e.g. “.gre”.</td>
<td></td>
</tr>
<tr>
<td>Field file</td>
<td>input</td>
<td>*.fld files</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the 12d field file that the raw file is to be converted to. When the raw file name is given, the file of the same name but with the extension .fld is automatically piped into the field file field.</td>
<td></td>
</tr>
<tr>
<td>Convert</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>convert the raw data given in the raw file field into the 12d field file format and save it in the file given in the field file field.</td>
<td></td>
</tr>
</tbody>
</table>
17.6 Create Survey Function

Position of menu: Survey => Create

The create walk-right menu contains options to create a 12d Model Survey function from either a 12d field file or from scratch using Survey Reduction edit commands.

Basically, a Survey function keeps track of the field data, the information involved in the survey reduction and all the strings and models created by the Survey function. The field data for the Survey function can be edited and the reduction re-run and all the old reduced strings automatically deleted and replaced by the updated reduced strings.

For more detailed information on the survey reduction process in 12d Model, go to the Appendix 36 12d Survey Guide.

The field data can be read in from a 12d field file using the Field file option, or the Typed entry option can be used to enter all the data by hand.

The create walk-right menu is:

For the option Field file, go to 17.6.1 Field File
Typed entry 17.6.2 Typed Entry
17.6.1 Field File

Position of option on menu: Survey => Create => Field file

The field file option creates a Survey function from a 12d field file.

For more detailed information on the survey reduction process in 12d Model, go to the Appendix 36 12d Survey Guide.

Selecting field file brings up the survey data reduction function panel

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function name</td>
<td>input</td>
<td>available Survey functions</td>
<td>name of the 12d Survey function. If the Survey function exists, then it is loaded into the panel. If the Survey function does not exist, then a new Survey function is created.</td>
</tr>
<tr>
<td>Default model</td>
<td>input</td>
<td>available models</td>
<td>if a feature code is not found in the map file, or no map file is selected, the strings and points of that feature code will be placed in the default model. The colour used will be the default line or point colour for 12d Model. The default model field is compulsory. Check measurements will be always placed in the default model if a check model is not given (on the Advanced tab).</td>
</tr>
</tbody>
</table>
Report file input *.rpt
if non-blank, a log of the reduction steps, including new instrument stations, new target heights, scale factors, backsights and check measurements is created. Any errors are also logged.

Button at Bottom

Reduce button
On clicking the reduce button, the software converts the field measurements in the selected 12d field file, using coordinates from the control model if necessary, and produces super strings. The super strings will be assigned names and models using the name library and map file.

For descriptions of each of the tabs on the panel, go to:
- Field Files tab
- Map File tab
- Libraries tab
- Advanced tab
- Traverse tab
- Geodetics tab
- Others tab
- Attachments tab

Field Files tab
list of field files to read in
Create Survey Function

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field file</td>
<td>input</td>
<td></td>
<td>*.fld files</td>
</tr>
</tbody>
</table>

*name of the 12d field file to be read into the function as its initial field data, and then reduced. The field data in the Survey function can be edited either by command or graphically.*

| Attachment wildcards    | input   |          | not yet used    |

*not yet used*
Map File tab

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map file</td>
<td>input</td>
<td>*.mf files</td>
<td></td>
</tr>
</tbody>
</table>

*If non-blank, the map file is used to map feature codes to string names, models, colours, line styles, etc. In general, strings will be created as line strings by assigning a non-zero string number in the field, and strings will be created as point strings by assigning a zero string number in the field. This behaviour may be overridden with field codes 92, 93 and 94.*

<table>
<thead>
<tr>
<th>Pre*postfix for models</th>
<th>input</th>
<th>available models</th>
<th></th>
</tr>
</thead>
</table>

*The pre*postfix for models text is applied to all model names in the map file.*

| Use pt/line mapping        | tick   |                 |             |

*If ticked and a Map File is used, the column in the map file that specifies the point/line type of the string is be used to set the point/line type of the string. If not ticked and a Map File is used, the column is ignored (not used for setting point/line type of the string).*
Libraries tab

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name library</td>
<td>input</td>
<td>*.nl files</td>
<td></td>
</tr>
</tbody>
</table>

If non-blank, the **name library** can be used to automatically create vertex text for the string if no vertex text is given in the field. A name library file contains two columns separated by one or more spaces. The text in the first column is matched against the feature code (wild cards * and ? can be used). The second column contains the vertex text to use if a match occurs. Note that if vertex text is given in the field then it is used instead of the text in the name library.

Pre-super strings: if non-blank, the **name library** will be used to automatically create 4d strings and to assign text to 4d strings. Name library files will contain two columns. The first column in the name library will be matched against the feature code. Note that if a match is found, a 4d string is always created, as opposed to another string type. The second column will contain the text for the 4d string.

| Attribute library | input    | *.al files|        |

If non-blank, the **attribute library** is used to give names to any unnamed attributes. The first word of each line in the file is the code to define the attribute for (can include wild cards) and the next n words are the names for each unnamed attribute in order. If the attribute library is mission, then the unnamed attributes will be given the names **unnamed attribute i** for i=1, ....
### Advanced tab

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control model</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Heights model</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Check model</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Curvature/refraction correction</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td>Job swing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Control model**: If not blank, name of the model containing instrument and backsight stations that can be referenced during the reduction. The name of the string is taken as the station name and if the string contains more than one point, the first point in the string is used for the coordinates of the station.

- **Heights model**: In not blank, name of the model containing points that are used for the heights of points during reduction. The points in the heights model have the point id of required point and a height which is used whenever that point id is found in the reduction. The (x,y) co-ordinates of the point are ignored.

- **Check model**: If non-blank, then all check shots will go to this model. If blank then check shots go to the default model.

- **Curvature/refraction correction**: If ticked, during the reduction, each EDM tacheometry measurement (field code 7) has a correction for earth curvature and refraction applied to the measurement.

- **Job swing**: If non-blank, then the job is swung through this value. The rotation is in a clockwise direction and the
value is in hp dms format.

**Use GIS post processing** tick box  
if ticked, run the given 12d macro to process attribute blocks

**Join strings across field files** tick box  
if ticked, points with the same code and string number will be included in the same string in any of the field files. The order that the points are placed in the string is the order of the field files in the Field File tab.  
if not ticked, any strings will terminate at the end of a field file. Even if the string has the same name and string number is any following field file, a new string is started in the following field files.

**Use coordinate commands (opcode 2)** tick box  
if ticked,

**Allow backsights with Azimuth to calc coordinate** tick box  
If ticked, for backsight commands that reference unknown backsight points, and the backsight has the horizontal angle, vertical angle, slope distance, and Azimuth defined, the backsight point will be created from that information.  
This option was only included to allow reduction from legacy external formats, and should not be used as it is not good survey practise.

**Traverse tab**

The fields and buttons used in this panel have the following functions.
**Field Description**	**Type**	**Defaults**	**Pop-Up**
**Do traverse calcs** | tick box | not tick |  
*if ticked*, the traverse coded points are placed into a network model, and an adjustment done at the time of reduction.

**Traverse code** | input |  
*if valid, this code will be used to identify traverse data. This will effectively be the same as stringing features in the field except the user has the option of isolating the model, adjusting the strings etc.*

E.g. TL. The reduction function will look at the field file and extract any observations involving field codes with the TL code. Only backsights and measurements with the point name field populated will be processed.

*Each traverse will have a separate string number. i.e. The main traverse with a feature code/string number of e.g. TL7 and a side traverse having a feature code/string number of e.g. TL3. Note the string numbers do not have to be in any particular order. The reduction will determine the order on which the separate traverses will be processed (by dependencies).*

See [36.6 Traverse coding](#) in Appendix [36 12d Survey Guide](#).

**Adjustment method** | choice | bowditch, compass, transit, least square, none |  
*method of adjustment. The adjustment will be made to the extracted traverse strings from known point to known point. If a traverse string goes through a number of known points (known coordinates), the adjustment will made from known point to known point rather than the first known to the last known point.*

**Network model** | model box |  
*if non blank, any valid traverse strings are placed in this model*
Geodetics tab

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Projection</strong></td>
<td>projection box</td>
<td>current projection</td>
<td>available projections</td>
</tr>
<tr>
<td>The projection of the data to be reduced. If a valid projection is specified, the reduction will be done taking into account the projection scale factors. <strong>If this method is used it is paramount that the known coordinates (e.g. station setups) are in terms of the projection coordinates and are not truncated (i.e. full coordinate values).</strong> These coordinates will allow the calculation of the relative longitude and latitude values which are used to compute coordinates from observations from the setup points. For more information about how to setup different projections see the section 7.6.6 Projections.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>N values</strong></td>
<td>choice box</td>
<td>currently set method</td>
<td>Available n value methods</td>
</tr>
<tr>
<td>The N value method allows the conversion of non-ellipsoid heights to ellipsoid. The methods are defined in the project n value settings. For more information on the n value settings see the sections 7.6.7 N values.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The N value will be used to convert a geoid height (e.g. AHD) into an ellipsoid height. Ellipsoid height = geoid height + N value. The conversion is used for the calculations only. The original z value for the point will remain unchanged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For more information about geodetic terminology including projections and N values, see the Appendix 38 Geodetics Summary.
Others tab

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explode 4d strings</td>
<td>tick box</td>
<td></td>
<td></td>
<td>If ticked, any 4d strings created during the reduction process will have only one vertex (point), i.e., no stringing of 4d strings will occur.</td>
</tr>
<tr>
<td>Explode point strings</td>
<td>tick box</td>
<td></td>
<td></td>
<td>If ticked, point strings are created as one vertex (point) strings i.e., no stringing of any point strings will occur.</td>
</tr>
<tr>
<td>Use named points as measurements</td>
<td>tick box</td>
<td></td>
<td></td>
<td>If ticked, named points are also created as measurements.</td>
</tr>
<tr>
<td>Reprompt all</td>
<td></td>
<td></td>
<td></td>
<td>If ticked, all check measurements are redisplayed on recalcs. Also if Backsight prompt mode is set to prompt, then backsights are redisplayed on recalcs. If not ticked, check measurements are not redisplayed on a recalc and backsights depend on the backsight prompt mode.</td>
</tr>
<tr>
<td>Show check measurements</td>
<td>tick box</td>
<td></td>
<td></td>
<td>If ticked, when a check measurement is processed a panel is displayed showing the calculated (x,y,z)</td>
</tr>
</tbody>
</table>
What's New in 12d Model

for the check measurement.

**Backsight prompt mode**  choice box  prompt, assume yes  assume no

*If prompt*, then the backsight panel is brought up in a command has not been answered adequately previously or if something has changed that warrants a redisplay of the panel.

*If assume yes*, then *yes* is assumes for all the backsights and the panel is not brought up.

*If assume no*, then *no* is assumes for all the backsights and the panel is not brought up.

**Attachments tab**

![Survey Data Reduction Function](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Wildcard(s)</strong></td>
<td>space delimited list of wildcards for attaching files to shots. For example, photo images taken in the field.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Tolerance (seconds)</strong></td>
<td>input</td>
<td>600</td>
<td></td>
</tr>
</tbody>
</table>

*The shot must be taken first and then any files with time less than this number of seconds after the shot, but before any subsequent shots, are attached to the shot.*
Photos to plan images  tick box
if ticked, 12d plan images are created for any attached image in jpeg, tiff, bmp or png format

During the reduction, the coordinates of a point may need to be supplied. This occurs when:
- an undefined point is named as the new instrument point (field code 3)
- backsight measurements are made to an undefined point (field code 4)
- check measurements are made to an undefined point (field code 6)

In this situation, a **define station coordinate** panel will pop up:

![Define Station Coordinate Panel](image)

The coordinates may be typed in, or selected from existing strings. The station may also be added to a model to allow it to be used as a station later.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station name</td>
<td>output</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>the station name</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use control model</td>
<td>radio button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>if ticked, the point is added to the control model.</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>if not ticked, the point is created but is not placed in the control model.</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Easting/Northing/Height</td>
<td>input</td>
<td>xyz ops menu</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>the easting (x)/northing (y)/height (z) co-ordinates for the station.</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station prefix</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>if non-blank, the created station name will be prefixed by this value.</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add to model</td>
<td>input</td>
<td>control model</td>
<td>available models</td>
</tr>
<tr>
<td></td>
<td><strong>if not blank, a 4d string is created using the Easting/Northing/Height values as co-ordinates, and the station name (with a possible prefix) as the text and name of the 4d string. The station can then be referred to later in the reduction.</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pick</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>pick a point whose co-ordinates are piped into the Easting/Northing/Height fields.</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>on selecting ok, the coordinates entered in the station xyz field are used as the station co-ordinates</strong></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
and if the add to model field is not blank, a 4d string created.

**Edit** button

on selecting Edit, the next new instrument station entry is shown which allows the station number and associated fields to be edited.

**Cancel** button

the cancel button will remove the panel and terminate the reduction.

If the Backsight prompt mode is set on, then at each backsight measurement, the bearing datum difference panel is displayed.

If **yes** button is selected, the bearing datum difference is applied to this horizontal circle reading.

If **yes to all** button is selected, the bearing datum difference is applied to all subsequent horizontal circle readings.

The **cancel** button terminates the reduction.

If **no** is selected, this horizontal circle reading is treated as actual bearing.

If **no to all** is selected, all the horizontal circle reading are treated as actual bearings.

This facility allows the horizontal circle to have any orientation during data capture.

At each check measurement, the check measurement panel is displayed giving information about the measurement, the point it was a check measurement for and the differences between the two.
If the Continue button is selected, the reduction continues.
The Cancel button terminates the reduction.

17.6.2 Typed Entry

Position of option on menu: Survey => Create => Typed entry

The Typed entry option creates a Survey function from scratch using the edit commands.

For more detailed information on the survey reduction process in 12d Model, go to the Appendix 36 12d Survey Guide.

Selecting Typed entry brings up the survey Data Typed Entry Function panel.
17.7 Edit Survey Function

Position of menu: Survey => Edit => Edit Reduction

The Edit walk-right menu is

- edit 12d Survey function
- edit field data for a 12d Survey function
- edit 12d Survey function by selecting a string
- point code correction
- re-order points
- graphically selected field edits for individual shots
- graphically selected field edits for strings
- insert and/or modify target heights

The fields and buttons are identical to those in the Survey Data Reduction Function panel in the previous section 17.6.1 Field File.
The Edit reduction walk-right menu contains options to create a 12d Model Survey function from either a 12d field file or from scratch using Survey Reduction edit commands.

Basically, a Survey function keeps track of all the information involved in the survey data reduction and all the strings and models created by the Survey function. The Survey function can be re-run and all the old information automatically deleted and replaced by the updated information.

Once the Survey function is created, it then reduces the data according to the information supplied and stored with the Survey function. As with other 12d Model functions, the Survey function information can be modified and the function recalculated.

Many errors in a raw data file are only detected after the reduction has taken place. These are then corrected and the function recalculated to re-reduce the data.

Some of the types of problems that regularly occur during electronic field surveys are:

- Instrument height incorrectly entered
- Target height incorrectly entered
- Change of target height not entered
- Backsight station incorrectly named
- Instrument station incorrectly named
- Feature code and string number errors

The 12d Survey edits allow for all commands in the field data to be modified and new commands added. Selection for some edits can be done graphically (for example incorrect target height) and others through interactive editing of the Survey field data. In all cases, once the edit is completed, the effect is immediately calculated and displayed.

For more detailed information on the survey reduction process in 12d Model, go to the Appendix 36 12d Survey Guide.

Each option will now be described in detail.

For the option Function, please go to

- 17.7.1 Function
- 17.7.2 Field Data
- 17.7.3 Field Data by String
- 17.7.4 Coding
- 17.7.7 Order
- 17.7.8 SDR Point Edits
- 17.7.9 SDR Strings Edit
- 17.7.10 Target Height

### 17.7.1 Function

**Position of option on menu:** Survey => Edit => Function

The function option is used to edit the set-up panel values for a Survey function.

**Note** - to edit the field data rather than the set-up panel, the Field data option is used.

Selecting Function brings up the Survey Data Reduction Function panel (which is the same panel used to create the function in the Survey => Create => Field file option).
A Survey function is selected for editing by choosing the survey function from the **Function name** pop-up list which loads up the panel information for that function.

The panel information is then modified and the new values stored and used by selecting the **Reduce** button. This recalcs the function which re-reduces the data using the new panel fields.

For more information on the fields in the panel, go to the section **17.7 Edit Survey Function**.

For information on the **Survey Field Data Editor**, go to the section **17.7.5 Survey Field Data Editor**.

For more detailed information on the survey reduction process in **12d Model**, go to the Appendix **36 12d Survey Guide**.

Please continue to the next section **17.7.2 Field Data**.

### 17.7.2 Field Data

**Position of option on menu:** Survey => Edit => Field data

The **field data** option is used to edit the **field data** from a Survey function. As the changes are made, the field data is automatically reduced to reflect the changes.
Selecting **Field data** brings up the **Edit Survey Field Data** panel:

![Edit Survey Field Data panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Function name</strong></td>
<td>function box</td>
<td>all survey functions</td>
<td><em>name of the Survey function to have the field data modified.</em></td>
</tr>
</tbody>
</table>

**Edit**

Clicking **edit** will start the Survey Field Data Editor for the given Survey function. This will be documented in the section **Survey Field Data Editor**.

For information on the **Survey Field Data Editor**, go to the section [17.7.5 Survey Field Data Editor](#).

Please continue to the next section [17.7.3 Field Data by String](#).

### 17.7.3 Field Data by String

**Position of option on menu:**  
Survey =>Edit =>Field data by string

The **Field data by string** option is used to edit the **field data** by selecting a string created from a Survey function.

Selecting **Field data by string** brings up the **Edit MTF/Survey Function Data** panel:

![Edit MTF/Survey Function Data panel](image)

After selecting the **Pick Edit** button, a string created by Survey function is selected and the Survey Field Data Editor is started for the given Survey function.

For information on the **Survey Field Data Editor**, go to the section [17.7.5 Survey Field Data Editor](#).

Please continue to the next section [17.7.4 Coding](#).

### 17.7.4 Coding

**Position of menu:**  
Survey =>Edit =>Coding

The **coding** options are used to modify the feature code and/or string number of selected points. The 12d field file is automatically updated.

The **coding** walk-right menu is
Each option will now be described in detail.

For the option Change, go to 17.7.4.1 Change
Quick change 17.7.4.2 Quick Change
Quick multi-code 17.7.4.3 Quick Multi Coding

17.7.4.1 Change

Position of option on menu: Survey => Edit => Coding => Change

Change is used to modify a points feature code and/or string number. When a point is selected, its point id, station name and target height are displayed as well as feature code and string number.

If either the feature code or string number is then modified in the panel, selecting the set button will give the selected point the new values for feature code and/or string number.

Selecting Change brings up the SDR Change Code/String panel:

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prev</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point id</td>
<td>display only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station name</td>
<td>display only</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

select a point whose information will be displayed in the panel fields. A highlighted line joining the point to the station that it was surveyed from is also displayed.

move to the previous point in the string.

move to the next point in the string.

point id of the selected point.
What's New in 12d Model 17

17.7.4.2 Quick Change

Position of option on menu: Survey => Edit => Coding => Quick change

The quick change option is for more advanced users wishing to modify the same feature code and/or string number for many points.

The new feature code and/or string number is entered into the panel and whenever a point is selected and accepted, it is given the new feature code and/or string number. The picking of points continues until the picking is cancelled from the pick ops menu.

The fields and buttons used in this panel have the following functions.

Field Description	Type	Defaults	Pop-Up
Feature code | input/output | if not blank, when a point is accepted its feature code is changed to the value in this field. |
String number | input | if not blank, when a point is accepted its string number is changed to the value in this field. |
Same as | button | |

Please continue to the next section 17.7.4.2 Quick Change.
after selecting **same as**, a point is selected and its feature code and string number are piped into the panel fields.

**Pick button**

*selecting pick* starts the picking sequence and any accepted point will have its feature code and/or string number modified if the corresponding panel field is not blank. The pick is terminated by selecting **cancel** from the **pick ops** menu.

Please continue to the next section **17.7.4.3 Quick Multi Coding**.

17.7.4.3 Quick Multi Coding

**Position of option on menu:**  
Survey =>Edit =>Coding =>Quick multi-code

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Pick button</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*after selecting Pick, pick the vertex that you want to multi-code, and then pick a string and the code and string number from the string will be added to the selected vertex as a multi-code.*

The sequence start again and continues until the pick is terminated by selecting **Cancel** from the **Pick ops** menu.

Please continue to the next section **17.7.5 Survey Field Data Editor**.

17.7.5 Survey Field Data Editor

The **Survey Field Data Editor** is used to interactively edit the field data of a **Survey** function. All the commands in the field data can be modified or deleted, or new commands added. When changes are made, the field data is automatically re-reduced so the effects can be immediately checked.

If the Editor is opened using the **Survey=>Create=>Typed Entry** option the editor will appear blank.
For information on using things inside the panel, go to 17.7.5.1 Using the Survey Field Data Panel.

For information on the field commands, go to 17.7.6 List of Field Data Commands and Panels.

For information on the icons and buttons on the panel:

- **Insert** go to Insert and Batch Add button
- **Delete** Delete
- **Go to** Goto
- **Find** Find
- **Find/Replace** Find/Replace
- **Find by Pick** Find by Pick
- **Toggle** Toggle
- **Make backsight** Make Measurement into a Backsight
- **Make check measurement** Make Measurement into a Check Measurement
- **Change to measurement** Make into a Measurement
- **Autopan** Autopan
- **Batch add** Insert and Batch Add button

### 17.7.5.1 Using the Survey Field Data Panel

#### 17.7.5.1.1 Colour Coding of the Field Data

Normally data has been loaded into the Survey function by a raw data file being downloaded.
from a data collector, converted to a 12d field file and then loaded into a Survey function.

When 12d Model converts the raw file to a 12d field file, all the raw data can be included in the 12d field file as comments.

All comments lines are displayed in green.

Each line (or lines if necessary) of raw data is converted into one or more equivalent 12d field file commands. These field file commands are placed straight after the commented line containing the raw data lines so it is easy to see what the raw data was converted to.

The original 12d field commands converted form the raw data are displayed in black.

If a field command has been inserted, it is coloured in blue. If a comment has been inserted, it will still be displayed in green but the word : added will be appended to the end of the comment.

If a field command has been modified, it is displayed in magenta.

If an original command has been deleted, the original command is left in the file but it has a large red cross placed on the left hand side of the line to indicate that it has been deleted. Any original command that has been deleted can be undeleted by simply deleting the command again.

17.7.5.1.2 Modifying the Field Data

To modify an existing command in the field data, double click on the line to be modified and the appropriate panel for the line of field data is displayed. The data in the panel can then be modified and stored by selecting either the OK or Apply buttons. The colour of the line of modified field data is then magenta.

For example, double clicking on target height command in the field file brings up the Target Height panel with the values loaded into the appropriate panel field. The data in the panel can be modified and saved by clicking OK.
17.7.5.1.3 Deleting Field Data

To delete a line from the field data, simply highlight the data by clicking in the line and then delete key on the keyboard or select the delete icon from the top of the panel. If the line was an original command, a red cross is placed.

If an original command has been deleted, the original command is left in the file but it has a large red cross placed on the left hand side of the line to indicate that it has been deleted. Any original command that has been deleted can be undeleted by simply highlighting the deleting command and pressing the delete icon or delete key again.

If an inserted command has been deleted, the command is removed from the field data.

More than one line can be selected for deletion by using the standing Windows selection commands to highlight the commands and then press the delete key on the keyboard or select the delete icon from the top of the panel. Similarly to undelete multiple commands.

For information on the field commands, go to 17.7.6 List of Field Data Commands and Panels.
For information on the icons and buttons on the Survey Field Data panel, go to 17.7.5.2 Icons and Buttons on the Survey Field Data Editing Panel.
Selecting either the icon or the **Batch Add** button, displays the **New Field Data Command** panel.

![New Field Data Command Panel](image)

By clicking on the **Command** choice box selector, a full list of field commands is displayed and the required command is selected from the list.

Clicking **Create** then brings up the panel for the selected command type. The description of the field data commands panels is given in the section [17.7.6 List of Field Data Commands and Panels](#).

Alternatively, if the **12d Field Data Op Code** is known, this can be entered into the choice box instead of selecting from the list. For example, to enter a **Measurement EDM** field data command, the number 7 can be inserted in the choice box field.

When using **Batch Add**, once a command is selected, it will remain as a default for subsequent entries until another type is chosen. This allows a number of the same command to be quickly entered such as in the case of **Measurement EDM** by entering data into the appropriate fields and continuing to press <enter> through the default choices.

For a more detailed explanation on each of the fields within the panels and the appropriate field **12d Field File Op Codes** see the section [36.10.4 Full Description of 12d Field File Op Codes](#).

For a summary of just the field file op codes, see the section [36.10.5 Summary of 12d Field File Op Codes](#).

### Delete

To delete a line from the field data, highlight the data by clicking in the line and then either use the **Delete** key on the keyboard or select the **Delete** icon from the top of the panel.

If an original command has been deleted, the original command is left in the file but has a large red cross placed on the left hand side of the line to indicate that it has been deleted. Any original command that has been deleted can be undeleted by simply highlighting the deleted command and pressing the **Delete** icon or **Delete** key again.

If an inserted command has been deleted, the command is removed from the field data.

More than one line can be selected for deletion by using the standing Windows selection commands to highlight the commands and then press the **Delete** key on the keyboard or the **Delete** icon from the top of the panel. Similarly to undelete multiple commands.

### Goto

Selecting the **Goto** icon brings up the **Field Data Goto** panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line number</td>
<td>Goto</td>
<td>button</td>
<td></td>
</tr>
</tbody>
</table>

*Line number to go to*

*Goto* button: go to the given line number

### Find

Selecting **Find** brings up the **Field Data Find** panel.

Each of the tabs sets the panel for the required data.

- **Named**: find given code, string number, point id etc.
- **Numbers**: find numbers between given minimum and maximum.
- **State**: find a field command in a given modification state (added, changed, deleted, field)
- **Text**: find text containing given text.
- **Type**: find a field command of a given type. For example "New String".

The up/down radio button define which direction to search in the field data.
Find/Replace

Selecting the Find/replace icon brings up the Field Data Find/Replace panel.

![Field Data Find/Replace Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old</td>
<td>Code</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>String number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New</td>
<td>Code</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>String number</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The user specifies the old and new Code and old and new String number fields, and the search and replace is done using those parameters.

The Up/Down radio button define which direction to search in the field data.

Find by Pick

After selecting Find by pick, the user selects a point created by the Survey function and the field data editor will scroll to the line of the field data that created the point.

Toggle

The toggle button allows commented information to be shown/ not shown. Simply press the Toggle icon to move from one state to another.

Make Measurement into a Backsight

The Make Backsight icon is visible when a measurement line has been selected (highlighted) in the field data.
When the measurement line is highlighted, clicking on the Make Backsight icon brings up the Backsight panel with the highlighted measurement details filled in.
The **Azimuth** and **Backsight point** fields are filled in and the **OK** or **Apply** button selected.
The original measurement will then be shown as deleted and a new Backsight record created.

Make Measurement into a Check Measurement

The **Make Check Measurement** icon is only visible when a **measurement** or **backsight** line has been selected (highlighted) in the field data.

When the measurement line is highlighted, clicking on the **Make Check Measurement** icon brings up the **Check Measurement** panel with the details from the highlighted measurement filled in.
The **Check point** is then filled in and the **OK** or **Apply** button selected. The original measurement will then be shown as deleted and a new **Check measurement** record created.

**Note** - if the **Check point** does not exist, a **Define Station Coordinate** panel is displayed for the user to enter the coordinates for the **Check point**.
Make into a Measurement

The Make into a Measurement icon is visible when a backsight or check measurement line has been selected (highlighted) in the field data.

When the measurement line is highlighted, clicking on the Make Measurement icon brings up the EDM Measurement panel with the highlighted backsight or check measurement details filled in.
The **String number** field may need to be filled in and the **OK** or **Apply** button selected. The original **backsight** or **check measurement** will then be shown as deleted and a new **Measurement** record created.
Ticked on - when a line is selected (highlighted) in the survey data editor panel, if the point is not visible in a plan view that the model for the data is on, the view is modified so that the selected point is at the centre of the view (keeping the same scale for the view).

Please continue to the next section 17.7.6 List of Field Data Commands and Panels.

17.7.6 List of Field Data Commands and Panels

Panel buttons

The buttons that appear on the bottom of the panels used in this section have the following functions.

OK
Changes field data and closes the panel

Apply
Changes the field data but keeps the panel in view

Reset
If the record was an original field record (i.e. the command was not inserted manually) pressing the reset button will revert the record back to the original values.

Help and Finish
standard 12d buttons.

Existing point search

Some commands such as Backsight, New instrument and Check allow the user to enter existing point names (i.e. backsight point, Setup point and Check point) or in the case of measurements from a data collector, both point name and point ids.

The difference between point names and point ids is that point names are usually specified by the user and should be a unique identifier for a point, whilst for that same physical point a number of measurements (and hence point ids) may be assigned (usually by the data collector). This may be particularly true of control station measurements where measurements are made to a given point name but each measurement is given a different point id by the data collector.

In most instances, a measurement to a point has a point id (from the data collector) and 12d automatically gives it the same point name as it is rare to measure a non-control point more than once (the point name can be over ridden by the user).

The names allow the reduction routine to search for the details of that point (eg coordinates). The order in which this searching takes place is as follows:

First search the Control model (if it exists):

1. A search is made of the control model for a string whose name is the same as the specified point name. If a string is found, the first point of the string is used for the (x,y,z) co-ordinates.

2. A search is made of the control model for a vertex of a string whose point id is the same as the specified point name. If a vertex is found its (x,y,z) co-ordinates are used.

3. If only a point id was specified, a search is made of the control model for a vertex of a string whose point id is the same as the specified point id. If a vertex is found its (x,y,z) co-ordinates are used.

Next search the already entered directly entered co-ordinates (DEC) in the field file:

4. A search is made of previously entered directly entered co-ordinates in the field file for a directly entered co-ordinate whose point name is the same as the specified point name. If a
DEC is found, its (x,y,z) co-ordinates are used.

5. A search is made of previously entered directly entered co-ordinates in the field file for a directly entered co-ordinate whose point id is the same as the specified point name. If a DEC is found, its (x,y,z) co-ordinates are used.

6. A search is made of previously entered directly entered co-ordinates in the field file for a directly entered co-ordinate whose point id is the same as the specified point id. If a DEC is found, its (x,y,z) co-ordinates are used.

Next search the previous measurements in the field file:

7. A search is made of previous measurements in the field file for a measurement whose point name is the same as the specified point name. If a measurement is found, its (x,y,z) co-ordinates are used.

8. A search is made of previous measurements in the field file for a measurement whose point id is the same as the specified point name. If a measurement is found, its (x,y,z) co-ordinates are used.

9. A search is made of previous measurements in the field file for a measurement whose point id is the same as the specified point id. If a measurement is found, its (x,y,z) co-ordinates are used.

Finally

10. If no match is found, the user will be prompted for the details of the previously undefined point. The user is asked to type in the (x,y,z) co-ordinates in the Define Station coordinate panel. If a model is specified in the Add to model field of the panel, then a new one point super string is created with the name point name, and as the vertex text for the point, the Station label prefix field value followed by point name.

Field Data commands

The list of field commands in the pop-up from Insert or Batch Add are:

For a summary of the field file op codes see the section 36.10.5 Summary of 12d Field File Op Codes.

For details on each option in the pop-up:
Arc fitting end (opcode 62), go to Arc Fitting (opcodes 17, 60, 61, 62)
Arc fitting start (opcode 61) Arc Fitting (opcodes 17, 60, 61, 62)
Arc through last 3 points (opcode 17) Arc Fitting (opcodes 17, 60, 61, 62)
Arc through next 3 points (opcode 60) Arc Fitting (opcodes 17, 60, 61, 62)
Attachment (opcode 126) Attachment (opcode 126)
Attribute for next segment (Measurement) (opcode 122) Measurement Attributes (Opcode 120 to 123)
Attribute for next segment (integer) (opcode 74) Attributes (opcode 68 to 79)
Attribute for next segment (real) (opcode 75) Attributes (opcode 68 to 79)
Attribute for next segment (text) (opcode 76) Attributes (opcode 68 to 79)
Attribute for previous segment (measurement) (opcode 123) Measurement Attributes (Opcode 120 to 123)
Attribute for previous segment (integer) opcode 77 Attributes (opcode 68 to 79)
Attribute for previous segment (real) opcode 78 Attributes (opcode 68 to 79)
Attribute for previous segment (text) opcode 79 Attributes (opcode 68 to 79)
Attribute for string (measurement) (opcode 120) Measurement Attributes (Opcode 120 to 123)
Attribute for string (integer) (opcode 68) Attributes (opcode 68 to 79)
Attribute for string (real) (opcode 69) Attributes (opcode 68 to 79)
Attribute for string (text) (opcode 70) Attributes (opcode 68 to 79)
Attribute for vertex (measurement) (opcode 121) Measurement Attributes (Opcode 120 to 123)
Attribute for vertex (integer) (opcode 71) Attributes (opcode 68 to 79)
Attribute for vertex (real) (opcode 72) Attributes (opcode 68 to 79)
Attribute for vertex (text) (opcode 73) Attributes (opcode 68 to 79)
Attribute set start (opcode 125) Attribute Set (opcode 124 and 125)
Attribute set end (opcode 124) Attribute Set (opcode 124 and 125)
Backsight (opcode 4) Backsight (opcode 4)
Backsight reference (opcode 50) Backsight Reference (opcode 50)
Building start (opcode 111) Buildings (opcodes 110, 111)
Building end (opcode 110) Buildings (opcodes 110, 111)
Check coordinate (opcode 14) Check Coordinate (opcode 14)
Check measurement (opcode 6) Check Measurement (opcode 6)
**Circle feature (opcode 18)**

**Feature (opcode 18)**

**Code file (opcode 119)**

**Code file (opcode 119)**

**Comment (opcode -2)**

**Comment (opcode -2)**

**Coordinate (opcode 2)**

**Coordinate (opcode 2)**

**Delta height (opcode 28)**

**Height Or Depth (opcode 28)**

**Description (opcode 1)**

**Job Data (opcode 1)**

**Distance correction (opcode 127)**

**Distance correction (opcode 127)**

**Distances (opcode 49)**

**Distances (opcode 49)**

**Error (opcode -1)**

**Error (opcode -1)**

**File end (opcode 99)**

**End File (opcode 99)**

**Invisible next segment (opcode 108)**

**Invisible (opcodes 107, 108, 109)**

**Invisible point (opcode 109)**

**Invisible (opcodes 107, 108, 109)**

**Invisible previous segment (opcode 107)**

**Invisible (opcodes 107, 108, 109)**

**Join first points of strings (opcode 23)**

**Strings Join (opcodes 21 to 24)**

**Join first to last point of strings (opcode 22)**

**Strings Join (opcodes 21 to 24)**

**Join last points of strings (opcode 21)**

**Strings Join (opcodes 21 to 24)**

**Join last to first point of strings (opcode 24)**

**Strings Join (opcodes 21 to 24)**

**Measure EDM (opcode 7)**

**EDM Measurement (opcode 7)**

**Measure EDM HT (opcode 11)**

**EDM Measurement (HA,HD,HT) (opcode 11)**

**Measure EDM VD (opcode 12)**

**EDM Measurement (HA,HD,Diff HT) (opcode 12)**

**Measure Stadia (opcode 10)**

**Stadia Measurement (opcode 10)**

**Multiple coding (opcode 16)**

**Multiple Coding (opcode 16)**

**New instrument (opcode 3)**

**New Instrument (opcode 3)**

**Non tinable next segment (opcode 38)**

**Tinable (opcodes 38, 39, 40)**

**Non tinable point (opcode 40)**

**Tinable (opcodes 38, 39, 40)**

**Non tinable previous segment (opcode 39)**

**Tinable (opcodes 38, 39, 40)**

**Note (opcode 29)**

**Note (opcode 29)**

**Offset height (opcode 44)**

**Offset Measurement (opcodes 42, 43, 44)**

**Offset radial (opcode 42)**

**Offset Measurement (opcodes 42, 43, 44)**
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset tangential (opcode 43)</td>
<td>Offset Measurement (opcodes 42, 43, 44)</td>
</tr>
<tr>
<td>PPM Correction (opcode 131)</td>
<td>PPM Correction (opcode 131)</td>
</tr>
<tr>
<td>Pipe axial (opcode 81)</td>
<td>Pipe Justification (opcodes 80, 81, 82)</td>
</tr>
<tr>
<td>Pipe invert (opcode 80)</td>
<td>Pipe Justification (opcodes 80, 81, 82)</td>
</tr>
<tr>
<td>Pipe obvert (opcode 82)</td>
<td>Pipe Justification (opcodes 80, 81, 82)</td>
</tr>
<tr>
<td>Remove height (opcode 30)</td>
<td>Remove Height (opcode 30)</td>
</tr>
<tr>
<td>Resection end (opcode 129)</td>
<td>Resection end (opcode 129)</td>
</tr>
<tr>
<td>Resection start (opcode 128)</td>
<td>Resection Start (opcode 128)</td>
</tr>
<tr>
<td>Scale factor (opcode 9)</td>
<td>Scale Factor (opcode 9)</td>
</tr>
<tr>
<td>Shape end (opcode 84)</td>
<td>Shaping (opcodes 83 to 86)</td>
</tr>
<tr>
<td>Shape extrude (opcode 86)</td>
<td>Shaping (opcodes 83 to 86)</td>
</tr>
<tr>
<td>Shape parallel (opcode 85)</td>
<td>Shaping (opcodes 83 to 86)</td>
</tr>
<tr>
<td>Shape record (opcode 83)</td>
<td>Shaping (opcodes 83 to 86)</td>
</tr>
<tr>
<td>String close (opcode 20)</td>
<td>String Close (opcode 20)</td>
</tr>
<tr>
<td>String end (opcode 48)</td>
<td>String End (opcode 48)</td>
</tr>
<tr>
<td>String rectangle (opcode 45)</td>
<td>Rectangle (opcode 45)</td>
</tr>
<tr>
<td>String rectangle by 2 points (opcode 37)</td>
<td>Rectangle By 2 Points (opcode 37)</td>
</tr>
<tr>
<td>String reverse (opcode 19)</td>
<td>String Reverse (opcode 19)</td>
</tr>
<tr>
<td>String start (opcode 47)</td>
<td>String Start (opcode 47)</td>
</tr>
<tr>
<td>String tinable (opcode 46)</td>
<td>Breakline String (String tinable (opcode 46))</td>
</tr>
<tr>
<td>String type 2d (opcode 92)</td>
<td>String Type (opcodes 92, 93, 94)</td>
</tr>
<tr>
<td>String type 3d (opcode 93)</td>
<td>String Type (opcodes 92, 93, 94)</td>
</tr>
<tr>
<td>String type 4d (opcode 94)</td>
<td>String Type (opcodes 92, 93, 94)</td>
</tr>
<tr>
<td>String type culvert (opcode 96)</td>
<td>Culvert (opcode 96)</td>
</tr>
<tr>
<td>String type pipe (opcode 95)</td>
<td>Pipe Diameter (opcode 95)</td>
</tr>
<tr>
<td>Target height (opcode 5)</td>
<td>Target Height (opcode 5)</td>
</tr>
<tr>
<td>Template change (opcode 59)</td>
<td>Templating (opcodes 51 to 59)</td>
</tr>
<tr>
<td>Template continue (opcode 54)</td>
<td>Templating (opcodes 51 to 59)</td>
</tr>
<tr>
<td>Template delete (opcode 57)</td>
<td>Templating (opcodes 51 to 59)</td>
</tr>
<tr>
<td>Template end (opcode 52)</td>
<td>Templating (opcodes 51 to 59)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Template insert (opcode 58)</td>
<td>Templating (opcodes 51 to 59)</td>
</tr>
<tr>
<td>Template pause (opcode 53)</td>
<td>Templating (opcodes 51 to 59)</td>
</tr>
<tr>
<td>Template record (opcode 55)</td>
<td>Templating (opcodes 51 to 59)</td>
</tr>
<tr>
<td>Template skip (opcode 56)</td>
<td>Templating (opcodes 51 to 59)</td>
</tr>
<tr>
<td>Template start (opcode 51)</td>
<td>Templating (opcodes 51 to 59)</td>
</tr>
<tr>
<td>Text (opcode 41)</td>
<td>Additional Text For Point (opcode 41)</td>
</tr>
<tr>
<td>Vertical circle correction (opcode 15)</td>
<td>Vertical Circle Correction (opcode 15)</td>
</tr>
</tbody>
</table>

**Arc Fitting (opcodes 17, 60, 61, 62)**

Fitting arcs through measurements.

See [36.3.9 Arcs Through Points](#), in Appendix [36 12d Survey Guide](#).
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>choice box</td>
<td></td>
<td>Arc through last 3 points (opcode 17)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Arc through next 3 points (opcode 60)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Arc fitting start (opcode 61)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Arc fitting end (opcode 62)</td>
</tr>
</tbody>
</table>

For *Arc through last 3 pts*

- Named point is not used.

If no feature code, string number, named point or point id is given, then the current measurement point and the two previous points with the same feature code and string number as the current measurement point, are joined by an arc. If there is less than three such points, no arc is fitted.

If the feature code and string number exist, the last three previous measurement points of the same
feature code and string number are joined by an arc. If the current measurement point has that feature
code and string number, then it is the third of the three points used. If there is less than three points, no
arc is fitted.
If a point id exists, then the feature code and string number are taken from the previous measurement
point with that point id. That point and two measurement points previous to the predefined point of
the same feature code and string number, are joined by an arc. If there is less than three points, no arc
is fitted.

for Arc through next 3 pts

Named point is not used.
If no feature code, string number, named point or point id is given, an arc is inserted through the
current measurement point and the next two measured points with the same feature code and string
number as the current measurement point. If there is less than three points, no arc is fitted.
If a feature code, string number or point id exists, then either the feature code and/or string number
and/or the point id section of the point description can be used.
If the feature code or string number exist, a search is made for a previously defined measurement with
the same feature code or string number. An arc is inserted through this previous measurement and the
next two measured points following this previous measurement with the same feature code and string
number. If the current point has that feature code and string number, then it is the first of the three
points. If there is less than three points, no arc fitted.
If the point id exists, then the feature code and string number are taken from the previous
measurement point with that point id, and an arc is inserted through that point and the next two
measurement points with the same feature code and string number. If there is less than three points,
no arc is fitted.

for Start arc fitting

Named point is not used.
If no feature code, string number, named point or point id is given, arcs are inserted through the
following sets of measurement points with the same feature code and string number as the current
measurement point. The current measurement point is the first of the points.
The arcs are fitted as follows - the first arc is fitted through points one, two and three, the next arc
through points three, four and five etc. If the current point has that feature code and string number,
then it is the first of the points. If there is less than three points, then no arc is fitted.
If the feature code and string number exist, a search is made for a previously defined measurement with
the same feature code or string number. An arc is inserted through the following measured points
with the same feature code and string number as given. If the current point has that feature code and
string number, then it is the first of the points.
If the point id exists, then the feature code and string number are taken from the previous
measurement point with that point id, and arcs are inserted through that point and the following
measured points with the same feature code and string number.

for End arc fitting

Named point is not used.
If no feature code, string number, named point or point id is given, the fitting of arcs through the
current string is stopped. The current measurement point is the last of the points used in the arc fitting.
If the feature code and string number exist, then the fitting of arcs through the points of the previous
string with the same feature code and string number is stopped. If the current measurement point has
that feature code and string number, then it is the last point used in the arc fitting.
If the point id from the point description exists, then the point with that point id is the last point used
in the arc fitting.
If 12d Model encounters an End Arcs (62) but no Start Arcs through sets of three points (61)
command for the string, then a Start Arcs through sets of three points (61) is assumed to apply at the
beginning of the string and hence arc fitting will be applied to the entire string.

**Code**

*feature code. See the description of the panel field Arc mode for usage*

**String number**

*string number. See the description of the panel field Arc mode for usage*

**Named point**

*not used*

**Point id**

*point id. See the description of the panel field Arc mode for usage*

**Comment**

*comment for the command within the field file.*

**OK, Apply, Reset, Finish, Help**  See the description for the panel buttons in the section Panel buttons.

**Attachment (opcode 126)**

Attach a file to the measurement.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>File name</td>
<td>file to attach to the measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time surveyed</td>
<td>time when the command (op code) was created</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>comment for the command within the field file.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**OK, Apply, Reset, Finish, Help**  See the description for the panel buttons in the section Panel buttons.
Measurement Attributes (Opcode 120 to 123)

This section of documentation is a work in progress and will be updated in subsequent releases.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute for string (Measurement) (opcode 120)</td>
<td>Attribute for vertex (Measurement) (opcode 121)</td>
<td>Attribute for next segment (Measurement) (opcode 122)</td>
<td>Attribute for previous segment (Measurement) (opcode 123)</td>
</tr>
</tbody>
</table>
Attributes (opcode 68 to 79)

Create attributes of type measurement, integer, real or text, to string, vertices or segments.
Edit Survey Function
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>choice box</td>
<td>Attribute for string (integer) (opcode 68)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attribute for string (real) (opcode 69)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attribute for string (text) (opcode 70)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attribute for vertex (integer) (opcode 71)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attribute for vertex (real) (opcode 72)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attribute for vertex (text) (opcode 73)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attribute for next segment (integer) (opcode 74)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attribute for next segment (real) (opcode 75)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attribute for next segment (text) (opcode 76)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attribute for previous segment (integer) (opcode 77)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attribute for previous segment (real) (opcode 78)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attribute for previous segment (text) (opcode 79)</td>
</tr>
</tbody>
</table>

for **String** (integer)
Add an user defined integer attribute to the current string.

for **String** (real)
Add a real (floating point) user defined attribute to the current string.

for **String** (text)
Add a text user defined attribute to the current string.

for **Vertex** (integer)
Add an integer user defined attribute to the current measurement point.

for **Vertex** (real)
Add a real (floating point) user defined attribute to the current measurement point.

for **Vertex** (text)
Add a text user defined attribute to the current measurement point.

for **Next segment** (integer)
Add an integer user defined attribute to the next segment from the current measurement point.

\textit{for Next segment (real)}

Add a real (floating point) user defined attribute to the next segment from the current measurement point.

\textit{for Next segment (text)}

Add a text user defined attribute to the next segment from the current measurement point.

\textit{for Previous segment (integer)}

Add an integer user defined attribute to the previous segment for the current measurement point.

\textit{for Previous segment (real)}

Add a real (floating point) user defined attribute to the previous segment for the current measurement point.

\textit{for Previous segment (text)}

Add a text user defined attribute to the previous segment for the current measurement point.

\textbf{Name}  
\textit{The name of the attribute.}

\textbf{Value}  
\textit{The attribute data in the form specified by the mode.}

\textbf{Time surveyed}  
\textit{time when the command (op code) was created}

\textbf{Comment}  
\textit{comment for the command within the field file.}

\textbf{OK, Apply, Reset, Finish, Help}  
See the description for the panel buttons in the section \textit{Panel buttons}.

\textbf{Attribute Set (opcode 124 and 125)}

This section of documentation is a work in progress and will be updated in subsequent releases.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute set start (opcode 124)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attribute set end (opcode 125)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Backsight (opcode 4)**

Denote the measurement as a backsight measurement.

Individual backsight measurements can be entered, or they can consist of pairs of Face1/Face2 measurements.

To enter a Face1/Face2 measurement, the backsight command should be entered twice, with the appropriate values entered into the panel each time.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Horizontal angle</strong></td>
<td>the horizontal angle to the backsight in dd.mmss format.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Vertical angle</strong></td>
<td>the vertical angle to the backsight in dd.mmss format. If the value is in the range 0 -180 degrees the measurement is considered a Face 1 measurement, and for measurements in the range 180-360 degrees they are considered Face2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Slope distance</strong></td>
<td>the slope distance to the measurement to the backsight. If a pair of face1/face2 measurements exist, the mean value of the slope distance is used for reduction purposes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Value</strong></td>
<td>the azimuth to the backsight in dd.mmss format. This allows backsights to be specified by azimuth only. In the case of a differing azimuth and horizontal angle, a swing will be computed by the subtraction of the azimuth value and the horizontal angle.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Code</strong></td>
<td>the feature code of the measurement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>String number</strong></td>
<td>the string number of the measurement.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Backsight point

point name of the backsight point. This can be an integer, real, text or alphanumeric. For a more
detailed description of how the reduction finds/uses the appropriate point see the section Existing
point search.

Point id

point id of the backsight point. This can be an integer, real, text or alphanumeric. For a more detailed
description of how the reduction finds/uses the appropriate point see the section Existing point
search. If a new backsight entry is inserted into the file, this field will be non-editable since only the
backsight point is required.

Attribute

Time surveyed
time when the command (op code) was created

Comment
comment for the command within the field file.

OK, Apply, Reset, Finish, Help See the description for the panel buttons in the section Panel buttons.

Backsight Reference (opcode 50)

Specify an angle (measured positive, clockwise from north) to swing the following measurements
by.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearing swing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time surveyed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The direction of the swing is positive in the clockwise direction.

Time surveyed
time when the command (op code) was created
Comment

Comment for the command within the field file.

OK, Apply, Reset, Finish, Help See the description for the panel buttons in the section Panel buttons.

Buildings (opcodes 110, 111)

Create a building face.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Surveyed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**for Building end**

If no name exists, the current building face observation set is finished (including the current measurement point).

**for Buildings start**

Start recording a building face with the given name. If name is non-blank, then the default building face is defined by the feature code and string number.

The following measurements until a Finish code (111), are stored as the building face. There is no limit to the number of points in a building face.

Name

Name has the meaning as outlined above in Building end/start definition.

Time surveyed

Time when the command (op code) was created

Comment

Insert a comment within the field file.

OK, Apply, Reset, Finish, Help See the description for the panel buttons in the section Panel buttons.
Check Coordinate (opcode 14)

This section of documentation is a work in progress and will be updated in subsequent releases

![Check Coordinate dialog box]

Check Measurement (opcode 6)

Denote the measurement as a check measurement.

Individual check measurements can be entered, or they can consist of pairs of Face1/Face2 measurements.

To enter a Face1/Face2 measurement the check command should be entered twice, with the appropriate values entered into the panel each time.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal angle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the horizontal angle to the check point in dd.mmss format.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical angle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the vertical angle to the check point in dd.mmss format. If the value is in the range 0 - 180 degrees the measurement is considered a Face 1 measurement, and for measurements in the range 180-360 degrees they are considered Face2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope distance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the slope distance to the measurement to the check point. If a pair of face1/face2 measurements exist, the mean value of the slope distance is used for reduction purposes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the feature code of the measurement.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>String number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the string number of the measurement.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>point name of the check point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section Existing point search.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point id</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>point id of the check point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section Existing point.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
search. If a new check point entry is inserted into the file, this field will be non-editable since only the check point is required.

**Attribute**

**Time surveyed**
- time when the command (op code) was created

**Comment**
- comment for the command within the field file.

**OK, Apply, Reset, Finish, Help**  See the description for the panel buttons in the section [Panel buttons](#).

### Feature (opcode 18)
Create a circle of a given radius around the current measurement point.

See 36.3.7 Feature in Appendix 36 12d Survey Guide.

![Feature Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Radius</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the radius of the circle to be drawn around the current measurement point.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Time surveyed</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time when the command (op code) was created</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Comment</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>comment for the command within the field file.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**OK, Apply, Reset, Finish, Help**  See the description for the panel buttons in the section [Panel buttons](#).

### Code file (opcode 119)
This section of documentation is a work in progress and will be updated in subsequent releases.
Comment (opcode -2)

Insert a comment in the field file.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time surveyed</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Comment**

_The comment to insert into the field file._

**Time surveyed**

_Time when the command (op code) was created_

**OK, Apply, Reset, Finish, Help**  See the description for the panel buttons in the section Panel buttons

Coordinate (opcode 2)

Create a point with specified coordinates.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>X coordinate</td>
<td>double box</td>
<td>the x coordinate value of the nominated point.</td>
<td></td>
</tr>
<tr>
<td>Y coordinate</td>
<td>double box</td>
<td>the y coordinate value of the nominated point.</td>
<td></td>
</tr>
<tr>
<td>Z coordinate</td>
<td>double box</td>
<td>the z coordinate value of the nominated point.</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>String number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Named point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point Id</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attribute</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Point id of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section [Existing point search](#). If a new check point entry is inserted into the file, this field will be non-editable since only the check point is required.
Attribute

Time surveyed

time when the command (op code) was created

Comment

insert a comment within the field file.

OK, Apply, Reset, Finish, Help  See the description for the panel buttons in the section  Panel buttons.

Height Or Depth (opcode 28)

Note - this option  does not alter heights. It just adds a text comment of the given value.

![Height or Depth Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>value is converted to text and added to the string name as specified in the description fields.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Code, String number, Named point

Named point is not used.

If no feature code, string number, named point or point id is given, the value is added to all string names with the same code and string number as the current measurement. This applies to the entire field file.

If the feature code and string number exist, then the value is added to all string names with the same code and string number. This applies to the entire field file.

If the point id exists, then the value is added to all string names with the same code and string number as the point defined by the point id. This applies to the entire field file.

Time surveyed

time when the command (op code) was created
Comment

*insert a comment within the field file.*

**OK, Apply, Reset, Finish, Help** See the description for the panel buttons in the section [Panel buttons](#).

**Job Data (opcode 1)**

Enter text to be added as header information

![Job Data Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data</strong></td>
<td>extra text to be added as header information</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Time Surveyed</strong></td>
<td>time when the command (op code) was created</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Comment</strong></td>
<td>insert a comment within the field file.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Distance correction (opcode 127)**

This section of documentation is a work in progress and will be updated in subsequent releases.
Distances (opcode 49)

This section of documentation is a work in progress and will be updated in subsequent releases.

Error (opcode -1)

Enter text to be added as error information.

If the field file was reduced from a raw data collector file, any records that can't be parsed correctly will be made into an error comment.
The fields and buttons used in this panel have the following functions.

Field Description	Type	Defaults	Pop-Up
**Data** | extra text to be added as error information. If the field file was reduced from a raw data collector file, any records that can’t be parsed correctly will have an error comment.  
**Time surveyed** | time when the command (op code) was created  
**Comment** | insert a comment within the field file.  
**OK, Apply, Reset, Finish, Help** | See the description for the panel buttons in the section [Panel buttons](#)  

**End File (opcode 99)**

Command to stop the processing of the 12d field file at this line.  
This is useful for debugging errors.
Time surveyed

*time when the command (op code) was created*

Comment

*Stop processing the 12d field file at this line. Useful for debugging errors.*

**OK, Apply, Reset, Finish, Help**  See the description for the panel buttons in the section [Panel buttons](#).

**Invisible (opcodes 107, 108, 109)**

Make segments or vertices invisible.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>choice box</td>
<td>Invisible previous segment (opcode 107)</td>
<td>Invisible next segment (opcode 108)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Invisible point (opcode 109)</td>
</tr>
</tbody>
</table>

**for Make the previous segment invisible**

If no *description* is given, the previous segment containing the current measurement point is set to invisible.

If a *description* exists, then either the *feature code* and *string number* or the *point id* section of the *description* can be used.

If the *feature code* and *string number* exist, then the last segment of the previous string with that *feature code* and *string number* is set to invisible.

If the *point id* exists, then the segment containing the point with that *point id* as an end point, is set to invisible.

**for Make the next segment invisible**

If no *description* is given, the next segment containing the current measurement point as a starting point is set to invisible. That is, it will not be treated as a breakline in triangulations.

If a *description* exists, then either the *feature code* and *string number* or the *point id* section of the *description* can be used.

If the *feature code* and *string number* exist, then the segment that is created in the future from the last point of the previous string with that *feature code* and *string number* is set to invisible.

If the *point id* exists, then the segment containing the point with that *point id* as a start point, is set to invisible.

**for Make a point invisible**

If no *description* is given, the current measurement point is set to invisible. That is, it will not be included in triangulations.

If a *description* exists, then either the *feature code* and *string number* or the *point id* section of the *description* can be used.
If the feature code and string number exist, then the last point of the previous string with that feature code and string number is set to invisible.

If the point id exists, then the point with that point id is set to invisible.

**Code**
the feature code of the nominated point.

**String number**
the string number of the nominated point.

**Named point**
point name of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section [Existing point search](#).

**Point id**
point id of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section [Existing point search](#). If a new check point entry is inserted into the file, this field will be non-editable since only the check point is required.

**Time surveyed**
time when the command (op code) was created

**Comment**
comment for the command within the field file.

[**OK, Apply, Reset, Finish, Help**](#) See the description for the panel buttons in the section [Panel buttons](#).

---

**Strings Join (opcodes 21 to 24)**
Join two strings together.

See [36.3.8 Joining Strings](#) in Appendix 36 12d Survey Guide .
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>choice box</td>
<td>Join last points of strings (opcode 21)</td>
<td>Join first to last point of strings (opcode 22)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Join first points of strings (opcode 23)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Join last to first point of strings (opcode 24)</td>
</tr>
<tr>
<td>Code</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>String number 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>String number 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**for Join last points of strings**

In the final reduction, the last point of the string with the given feature code and string_number_1 is joined to the last point of the string with given feature code and string_number_2. The created string has the given feature code (no string number is needed since it is the final phase of reduction when the string numbers are dropped).

**for Join first to last point of strings**

In the final reduction, the first point of the string with the given feature code and string_number_1 is joined to the last point of the string with given feature code and string_number_2. The created string has the given feature code (no string number is needed since it is the final phase of reduction when the string numbers are dropped).

**for Join first points of strings**

In the final reduction, the first point of the string with the given feature code and string number 1 is joined to the first point of the string with given feature code and string number 2. The created string has the given feature code (no string number is needed since it is the final reduction when the string numbers are then dropped).

**for Join last to first point of strings**

In the final reduction, the last point of the string with the given feature code and string_number_1 is joined to the first point of the string with given feature code and string_number_2. The created string has the given feature code (no string number is needed since it is the final phase of reduction when the string numbers are dropped).

**Code**

*the feature code of the strings to be joined*

**String number 1**

*the string number of the first string*

**String number 2**
the string number of the second string

**Time surveyed**

*time when the command (op code) was created*

**Comment**

*insert a comment within the field file.*

**OK, Apply, Reset, Finish, Help**  See the description for the panel buttons in the section [Panel buttons](#).
EDM Measurement (opcode 7)

Store a measurement given by Horizontal angle, Vertical angle and Slope distance. Individual measurements can be entered or they can consist of pairs of Face1/Face2 measurements.

To enter a Face1/Face2 measurement the command should be entered twice, with the appropriate values entered into the panel each time.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal angle</td>
<td>the horizontal angle to the point in dd.mmss format.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical angle</td>
<td>the vertical angle to the point in dd.mmss format. If the value is in the range 0-180 degrees the measurement is considered a Face 1 measurement, and for measurements in the range 180-360 degrees they are considered Face2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope distance</td>
<td>the slope distance to the measurement to the point. If a pair of face1/face2 measurements exist, the mean value of the slope distance is used for reduction purposes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>the feature code of the measurement.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>String number</td>
<td>the string number of the measurement.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Named point</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
point name of the point. This can be an integer, real, text or alphanumerical. For a more detailed description of how the reduction finds/uses the appropriate point see the section Existing point search.

**Point id**

point id of the point. This can be an integer, real, text or alphanumerical. For a more detailed description of how the reduction finds/uses the appropriate point see the section Existing point search. If a new check point entry is inserted into the file, this field will be non-editable since only the check point is required.

**Attribute**

**Time surveyed**

time when the command (op code) was created

**Comment**

comment for the command within the field file.

**OK, Apply, Reset, Finish, Help**  See the description for the panel buttons in the section Panel buttons.
EDM Measurement (HA, HD, HT) (opcode 11)

Store a measurement given by Horizontal angle, Horizontal distance and Height.

Individual measurements can be entered or they can consist of pairs of Face1/Face2 measurements.

To enter a Face1/Face2 measurement the command should be entered twice, with the appropriate values entered into the panel each time.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal angle</td>
<td>the horizontal angle to the point in dd.mmss format.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal distance</td>
<td>the reduced horizontal distance.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>the height of the observation point.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>the feature code of the measurement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>String number</td>
<td>the string number of the measurement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Named point</td>
<td>point name of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section Existing point.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
search

Point id
point id of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section Existing point search. If a new check point entry is inserted into the file, this field will be non-editable since only the check point is required.

Attribute

Time surveyed
time when the command (op code) was created

Comment
comment for the command within the field file.

OK, Apply, Reset, Finish, Help See the description for the panel buttons in the section Panel buttons.
Edm measurement (HA,HD,Diff HT) (opcode 12)

Store a measurement given by Horizontal angle, Horizontal distance and Vertical distance. Individual measurements can be entered or they can consist of pairs of Face1/Face2 measurements.

To enter a Face1/Face2 measurement the command should be entered twice, with the appropriate values entered into the panel each time.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal angle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal distance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical distance</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Horizontal angle**

_the horizontal angle to the point in dd.mmss format._

**Horizontal distance**

_the reduced horizontal distance._

**Vertical distance**

_the change in height as measured from the collimation height of the instrument to the target point (usually centre of target)._
description of how the reduction finds/uses the appropriate point see the section [Existing point search].

**Point id**

point id of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section [Existing point search]. If a new check point entry is inserted into the file, this field will be non-editable since only the check point is required.

**Attribute**

**Time surveyed**

time when the command (op code) was created

**Comment**

comment for the command within the field file.

**OK, Apply, Reset, Finish, Help** See the description for the panel buttons in the section [Panel buttons].

---

**Stadia Measurement (opcode 10)**

Store a measurement given by Horizontal angle, Horizontal distance and the Top, Middle and Bottom hair readings.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Readings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal angle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical angle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>String number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Named point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point Id</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attribute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Surveyed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Horizontal angle
the horizontal angle to the point in dd.mmss format.

Vertical angle
the vertical angle to the point in dd.mmss format.

Top
the top hair reading.

Middle
the middle hair reading.

Bottom
the bottom hair reading.

Code
the feature code of the measurement.

String number
the string number of the measurement.

Named point
point name of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section Existing point search.

Point id
point id of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section Existing point search. If a new check point entry is inserted into the file, this field will be non-editable since only the check point is required.

Attribute

Time surveyed
time when the command (op code) was created

Comment
comment for the command within the field file.

OK, Apply, Reset, Finish, Help  See the description for the panel buttons in the section Panel buttons.

Multiple Coding (opcode 16)
Record a new point at the same position as the current measurement point but with possibly a different feature code and string number.
A new point is created at the same position as the current measurement point but with the specified feature code and string number.

The point id and text are recorded as the point id and text for that vertex of the super string.

If a point name exists, then it is a named measurement and a 4d point string of name point name is created and mapped using the Map File. The 4d text is the station prefix followed by point name. The point name is added to the internal list of named points for searching for co-ordinates.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>String number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Named point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point Id</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attribute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Surveyed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Code
the feature code of the new point.

String number
the string number of the new point.

Named point
point name of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section Existing point search.

Point id
point id of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section Existing point search. If a new check point entry is inserted into the file, this field will be non-editable since only the check point is required.

Attribute

Time surveyed
time when the command (op code) was created

Comment
comment for the command within the field file.
New Instrument (opcode 3)

Define a new instrument setup.

![New Instrument Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument ht</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the height of the instrument setup.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the feature code of the measurement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>String number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the string number of the measurement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Named point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>point name of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section Existing point search.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point id</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
point id of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section Existing point search. If a new check point entry is inserted into the file, this field will be non-editable since only the check point is required.

Easting
this field is non-editable and is populated if a valid coordinate exists for the nominated setup point.

Northing
this field is non-editable and is populated if a valid coordinate exists for the nominated setup point.

Height
this field is non-editable and is populated if a valid coordinate exists for the nominated setup point.

Attribute

Time surveyed
time when the command (op code) was created

Comment
comment for the command within the field file.

OK, Apply, Reset, Finish, Help See the description for the panel buttons in the section Panel buttons.

Tinable (opcodes 38, 39, 40)
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>choice box</td>
<td>Non tinable previous segment (opcode 39)</td>
<td>Non tinable next segment (opcode 38)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Non tinable point (opcode 40)</td>
</tr>
</tbody>
</table>

**for Make the previous segment non-tinable**

If no *description* is given, the previous segment containing the current measurement point is set to non-tinable. That is, it will not be treated as a breakline in triangulations.

If a *description* exists, then either the *feature code* and *string number* or the *point id* section of the *description* can be used.

If the *feature code* and *string number* exist, then the last segment of the previous string with that *feature code* and *string number* is set to non-tinable.

If the *point id* exists, then the segment containing the point with that point id as an end point, is set to non-tinable.

**for Make the next segment non-tinable**

If no *description* is given, the next segment containing the current measurement point as a starting point is set to non-tinable. That is, it will not be treated as a breakline in triangulations.

If a *description* exists, then either the *feature code* and *string number* or the *point id* section of the *description* can be used.

If the *feature code* and *string number* exist, then the segment that is created in the future from the last point of the previous string with that *feature code* and *string number* is set to non-tinable.

If the *point id* exists, then the segment containing the point with that point id as a start point, is set to non-tinable.

**for Make a point not tinable**

If no *description* is given, the current measurement point is set to not tinable. That is, it will not be included in triangulations.

If a *description* exists, then either the *feature code* and *string number* or the *point id* section of the *description* can be used.
If the feature code and string number exist, then the last point of the previous string with that feature code and string number is set to not tinable.

If the point id exists, then the point with that point id is set to not tinable.

**Attribute**

- **Time surveyed**
  
  *time when the command (op code) was created*

- **Comment**
  
  *comment for the command within the field file.*

**OK, Apply, Reset, Finish, Help**  See the description for the panel buttons in the section Panel buttons.

---

**Note (opcode 29)**

Give extra text to be added as information in the field file.

![Memo dialog box](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data</strong></td>
<td>extra text to be added as information in the field file.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Time surveyed</strong></td>
<td><em>time when the command (op code) was created</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Comment</strong></td>
<td>insert a comment within the field file.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**OK, Apply, Reset, Finish, Help**  See the description for the panel buttons in the section Panel buttons.

---

**Offset Measurement (opcodes 42, 43, 44)**

It is not always possible to measure a point directly but it may be possible to measure a point nearby and then measure an offset to adjust the measured point by and so produce the coordinates of the required point.
See 36.3.2 Offsets in Appendix 36 12d Survey Guide.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td></td>
<td></td>
<td>Offset radial (opcode 42)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Offset tangential (opcode 43)</td>
</tr>
</tbody>
</table>

Offset radial (opcode 42)
Offset tangential (opcode 43)
for Radial

The radial offset is used to adjust the position of the specified point by a plan distance from the specified points original position, along the plan line joining the current station to the specified point. A positive offset is away from the station, negative is toward the station.

If no point description is given, the offset is used to adjust the position of the current measured point.

If a point description exists, then either the feature code and string number or the point id section of the point description can be used.

If the feature code and string number exist, then the last point of the previous string with that feature code and string number is adjusted.

If the point id exists, then the point with that point id is adjusted.

for Tangential

The tangential offset is used to adjust the position of the specified point by a plan distance from the specified points original position, at rights angles to the plan line joining the current station to the specified point. A negative offset is to the left (looking from the station), and positive is to the right (looking from the station).

If no point description is given, the offset is used to adjust the position of the current measured point.

If a point description exists, then either the feature code and string number or the point id section of the point description can be used.

If the feature code and string number exist, then the last point of the previous string with that feature code and string number is adjusted.

If the point id exists, then the point with that point id is adjusted.

for Height

If the height of the specified point is not null, then the height offset adjusts the height of the point. A positive offset adds to the height, a negative offset reduces the height.

If no point description is given, the offset is used to adjust the position of the current measured point.

If a point description exists, then either the feature code and string number or the point id section of the point description can be used.

If the feature code and string number exist, then the last point of the previous string with that feature code and string number is adjusted.

If the point id exists, then the point with that point id is adjusted.

Time surveyed

time when the command (op code) was created

Comment

comment for the command within the field file.

OK, Apply, Reset, Finish, Help  See the description for the panel buttons in the section Panel buttons.

PPM Correction (opcode 131)

This section of documentation is a work in progress and will be updated in subsequent releases.
Pipe Justification (opcodes 80, 81, 82)

Specify what type of pipe justification point that the current measurement is.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td></td>
<td></td>
<td>Pipe invert (opcode 80)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pipe axial (opcode 81)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pipe obvert (opcode 82)</td>
</tr>
</tbody>
</table>

**for Pipe invert (opcode 80)**

If no point description is given, the current measurement point is on the invert (bottom) of a pipe. This is the default for measurements to points on pipe strings. If the point is not part of a pipe string, it is ignored.

If the feature code and string number exist, the last point of the previous string with the same feature code and string number as given in point description is on the invert (bottom) of a pipe. If the point is not part of a pipe string, it is ignored.

If the point id exists, then the point with that point id is on the invert (bottom) of a pipe. If the point is not part of a pipe string, it is ignored.

**for Pipe axial (opcode 81)**

If no point description is given, the current measurement point is on the axis (centre) of a pipe. If the point is not part of a pipe string, it is ignored.

If the feature code and string number exist, the last point of the previous string with the same feature code and string number as given in point description is on the axis (centre) of a pipe. If the point is not part of a pipe string, it is ignored.

If the point id exists, then the point with that point id is on the axis (centre) of a pipe. If the point is not part of a pipe string, it is ignored.

**for Pipe obvert (opcode 82)**

If no point description is given, the current measurement point is on the obvert (top) of a pipe. If the point is not part of a pipe string, it is ignored.

If the feature code and string number exist, the last point of the previous string with the same feature code and string number as given in point description is on the obvert (top) of a pipe. If the point is not part of a pipe string, it is ignored.

If the point id exists, then the point with that point id is on the obvert (top) of a pipe. If the point is not part of a pipe string, it is ignored.
Code
the feature code of the measurement.

String number
the string number of the measurement.

Named point
point name of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section Existing point search.

Point id
point id of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section Existing point search. If a new check point entry is inserted into the file, this field will be non-editable since only the check point is required.

Time surveyed
time when the command (op code) was created

Comment
comment for the command within the field file.

OK, Apply, Reset, Finish, Help See the description for the panel buttons in the section Panel buttons.

Remove Height (opcode 30)
Set the height of a measurement to null.

If no point description is given, the height of the current measurement point is set to null.
If the feature code and string number exist, then the height of the last point of the previous string with that feature code and string number is set to null.
If the point id exists, then the height of the point with that point id is set to null.

The fields and buttons used in this panel have the following functions.
<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Code</strong></td>
<td>the feature code of the measurement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>String number</strong></td>
<td>the string number of the measurement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Named point</strong></td>
<td>point name of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section <a href="#">Existing point search</a>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Point id</strong></td>
<td>point id of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section <a href="#">Existing point search</a>. If a new check point entry is inserted into the file, this field will be non-editable since only the check point is required.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Time surveyed</strong></td>
<td>time when the command (op code) was created</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Comment</strong></td>
<td>comment for the command within the field file.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>OK, Apply, Reset, Finish, Help</strong></td>
<td>See the description for the panel buttons in the section <a href="#">Panel buttons</a>.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Resection Start (opcode 128)**

This option is under development.
OK, Apply, Reset, Finish, Help  See the description for the panel buttons in the section Panel buttons.

Resection end (opcode 129)

This option is under development.
OK, Apply, Reset, Finish, Help  See the description for the panel buttons in the section Panel buttons.

Scale Factor (opcode 9)
Specify the scale factor for subsequent measurements.

![Scale Factor panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale factor</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Scale factor**
the scale factor to be applied to subsequent distance measurements. It is applied by multiplying raw distances by the scale factor to give the corrected distance.

**Time surveyed**
time when the command (op code) was created

**Comment**
comment for the command within the field file.

**OK, Apply, Reset, Finish, Help**  See the description for the panel buttons in the section Panel buttons.

Shaping (opcodes 83 to 86)
See 36.5 Shape field coding in Appendix 36 12d Survey Guide.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>choice box</td>
<td></td>
<td>Shape end (opcode 84)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shape record (opcode 83)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shape extrude (opcode 86)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shape parallel (opcode 85)</td>
</tr>
</tbody>
</table>
for Shape end
Stops using the current shape or stops recording a shape.

for Shape record
Start recording a shape with the shape name. If Shape_name is not blank, then the default field Shape is defined by the feature_code and string_number of the following measurements until a shape end co. There is no limit to the number of points in a shape.

for Shape extrude
extrude the current shape along the specified super string.

for Shape parallel
parallel the current shape along the specified super string. This creates a number of strings to represent each feature code of the shape record. In the case of shapes which contain curves, a number of strings will be created according to an arc/chord tolerance.

Name
the name of the shape.

Time surveyed
time when the command (op code) was created

Comment
comment for the command within the field file.

OK, Apply, Reset, Finish, Help See the description for the panel buttons in the section Panel buttons.

String Close (opcode 20)
Close a string.
See 36.3.4 Close String in Appendix 36 12d Survey Guide.

If no point description is given, the current string is closed.
If the feature code and string number from the point description exist, the last previous string with that feature code and string number is closed.
If the point id from the point description exists, then the string containing that point id will be closed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>the feature code of the measurement.</td>
<td>String number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>String number</td>
<td>the string number of the measurement.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Named point</td>
<td>point name of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section Existing point search.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point id</td>
<td>point id of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section Existing point search. If a new check point entry is inserted into the file, this field will be non-editable since only the check point is required.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time surveyed</td>
<td>time when the command (op code) was created</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>comment for the command within the field file.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**OK, Apply, Reset, Finish, Help**  
See the description for the panel buttons in the section Panel buttons.

**String End (opcode 48)**

Stop a string.
If no Description exists, the current string is terminated (including the current measurement point).

If Code (feature code) and String number exist, then the last point of the previous string with that feature code and string number becomes the last point of that string.

If Point id exists, then the previous string containing the point with that point id is terminated after the point id point.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

**Code**

the feature code of the measurement.

**String number**

the string number of the measurement.

**Named point**

point name of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section Existing point search.

**Point id**

point id of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section Existing point search. If a new check point entry is inserted into the file, this field will be non-editable since only the check point is required.

**Time surveyed**

time when the command (op code) was created

**Comment**

comment for the command within the field file.

**OK, Apply, Reset, Finish, Help**  See the description for the panel buttons in the section Panel buttons.

**Rectangle (opcode 45)**

Create a parallelogram (squashed rectangle) from three points.

See 36.3.5 Rectangle in Appendix 36 12d Survey Guide.
If no Description is given, the current measurement point and the two previous points from the current string are used and a fourth point is created to form a parallelogram (squashed rectangle) and the height of the fourth point is set to null. The string is then closed.

If the feature code and string number exist, the last three points with that feature code and string number are used and a fourth point is created to form a parallelogram (squashed rectangle) and the height of the fourth point is set to null. The string is then closed.

If the point id exists, then the feature code and string number of the point with that point id are used and processed as above. Note that the point with the point id is not necessarily used.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the feature code of the measurement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>String number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the string number of the measurement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Named point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>point name of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section Existing point search</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point id</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>point id of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section Existing point search. If a new check point entry is inserted into the file, this field will be non-editable since only the check point is required.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time surveyed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>time when the command (op code) was created</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>comment for the command within the field file.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rectangle By 2 Points (opcode 37)

Create a rectangle from two points and a given offset.

See 36.3.6 Rectangle by 2 Points, in Appendix 36 12d Survey Guide.

The rectangle is defined by two points (reference side) and an offset.

- If a positive offset value is given, two points will be created to the right of the reference side.
- If a negative offset value is given, two points will be created to the left of the reference side.
- If no Description is given, the two new points will be joined to the given points in a closed rectangular string, and will have the same feature code as the points given.
- If the feature code and string number exist, then a search is made for the last occurrence of two points with the same feature code and string number. If found, then these points are used to define the reference side of the rectangle.
- If the point id exists, then a search is made for the last occurrence of two points with the same feature code and string number as the point given by the point id. If found, then these points are used to define the reference side of the rectangle.
- Two consecutive rectangles are unable to be defined side by side. In other words if the two points given are part of string of greater than two vertices, the command will only work for sets of two points that are exclusively defined. i.e. For a 5 point string, a rectangle can be defined by points 1 and 2, and 4 and 5.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
the feature code of the measurement.

**String number**
the string number of the measurement.

**Named point**
point name of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section [Existing point search](#).

**Point id**
point id of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section [Existing point search](#). If a new check point entry is inserted into the file, this field will be non-editable since only the check point is required.

**Time surveyed**
time when the command (op code) was created

**Comment**
comment for the command within the field file.

**OK, Apply, Reset, Finish, Help** See the description for the panel buttons in the section [Panel buttons](#).

**String Reverse (opcode 19)**
Reverse the direction of a string.

If no *point description* is given, the current string is reversed.

If the *feature code* and *string number* from the *point description* exist, the last previous string with that *feature code* and *string number* is reversed.

If the *point id* from the *point description* exists, then the string containing that point id will be reversed.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>the feature code of the measurement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>String number</td>
<td>the string number of the measurement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Named point</td>
<td>point name of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section Existing point search.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point id</td>
<td>point id of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section Existing point search. If a new check point entry is inserted into the file, this field will be non-editable since only the check point is required.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time surveyed</td>
<td>time when the command (op code) was created</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>comment for the command within the field file.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK, Apply, Reset, Finish, Help</td>
<td>See the description for the panel buttons in the section Panel buttons.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

String Start (opcode 47)

Start a new string.

See 36.3.3 Start New String in Appendix 36d Survey Guide.

If no Description is given, the current string is terminated (without including the current measurement point) and the current measurement point becomes the first point of a new string.
with the same feature code and string number.

If the feature code and string number exist, then the last point of the previous string with that feature code and string number becomes the first point of a new string with the same feature code and string number.

If the point id exists, then the previous string containing the point with that point id is terminated before the point id point, and the point becomes the first point of a new string with the same feature code and string number.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>the feature code of the measurement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>String number</td>
<td>the string number of the measurement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Named point</td>
<td>point name of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section Existing point search.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point id</td>
<td>point id of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section Existing point search. If a new check point entry is inserted into the file, this field will be non-editable since only the check point is required.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time surveyed</td>
<td>time when the command (op code) was created</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>comment for the command within the field file.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OK, Apply, Reset, Finish, Help  See the description for the panel buttons in the section Panel buttons.

Breakline String (String tinable (opcode 46))

Make a string a breakline (i.e. all vertices and segments are tinable) or not a breakline.
The **point description** is used to select a string and the **mode** is used to specify if the string is a breakline or not.

If no **point description** is given, the current string is selected.

If the **feature code** and **string number** exist, the last string with that **feature code** and **string number** is selected.

If the **point id** exists, then the string containing the point with that point id is selected.

If no **mode** is given, the selected string is set as a point string (that is, not a breakline).

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakline mode</td>
<td></td>
<td></td>
<td>not a breakline</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>breakline</td>
</tr>
</tbody>
</table>

**for Not a breakline**

the selected string is set to a point string and hence is not a breakline (however the points are tinable).

**for Breakline**

the selected string is set to a line string (all vertices and segments are tinable) and is therefore a breakline.

**Code**

the feature code of the measurement.

**String number**

the string number of the measurement.

**Named point**

point name of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section [Existing point search](#).
Point id

point id of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section Existing point search. If a new check point entry is inserted into the file, this field will be non-editable since only the check point is required.

Time surveyed

time when the command (op code) was created

Comment

comment for the command within the field file.

OK, Apply, Reset, Finish, Help  See the description for the panel buttons in the section Panel buttons.

String Type (opcodes 92, 93, 94)

Specify the string to be a 2d, 3d or 4d string.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>choice box</td>
<td>String type 2d</td>
<td>String type 2d (opcode 92)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>String type 3d (opcode 93)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>String type 4d (opcode 94)</td>
</tr>
</tbody>
</table>

- if 2d - the string has one height for the entire string
- if 3d - the string can have different heights at each vertex
- if 4d - the string can have different heights and text at each vertex

**Code**
- the feature code of the measurement.

**String number**
- the string number of the measurement.

**Named point**
- point name of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section [Existing point search](#).

**Point id**
- point id of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section [Existing point search](#). If a new check point entry is inserted into the file, this field will be non-editable since only the check point is required.

**Time surveyed**
- time when the command (op code) was created

**Comment**
- comment for the command within the field file.

**OK, Apply, Reset, Finish, Help**
- See the description for the panel buttons in the section [Panel buttons](#).
Culvert (opcode 96)

Specify the string to be a culvert and give the culvert width and height.

Culvert strings are always line strings and are stored with the justification of the majority of the string points. Individual culvert points are picked up either top (obvert), centre (axial) or bottom (invert) of the culvert using op codes 80, 81 and 82.

If no point_description is given, the current string is created as a culvert string with the given width and height.

If a point_description exists, then either the feature code and string number or the point id section of the point_description can be used.

If the feature code and string number exist, the last string with the same feature code and string number is created as a culvert with the given width and height.

If the point id exists, then the string containing that point id is created as a culvert string with the given width and height.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>String number</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Named point

point name of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section Existing point search.

Point id

point id of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section Existing point search. If a new check point entry is inserted into the file, this field will be non-editable since only the check point is required.

Time surveyed

time when the command (op code) was created

Comment

comment for the command within the field file

OK, Apply, Reset, Finish, Help

See the description for the panel buttons in the section Panel buttons.
Pipe Diameter (opcode 95)
Specify the string to be a pipe and give the pipe diameter.

Pipe strings are always line strings and are stored with the justification of the majority of the string points. Individual pipe points are picked up either top (obvert), centre (axial) or bottom (invert) of the pipe using op codes 80, 81 and 82.

If no `point_description` is given, the current string is created as a pipe string with the given diameter.

If a `point_description` exists, then either the `feature code` and `string number` or the `point id` section of the `point_description` can be used.

If the `feature code` and `string number` exist, the last string with the same `feature code` and `string number` is created as a pipe with the given diameter.

If the `point id` exists, then the string containing that point id is created as a pipe string with the given diameter.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>the diameter of the pipe.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>the feature code of the measurement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>String number</td>
<td>the string number of the measurement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Named point</td>
<td>point name of the point. This can be an integer, real, text or alphanumeric. For a more detailed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
description of how the reduction finds/uses the appropriate point see the section Existing point search.

Point id
tpoint id of the point. This can be an integer, real, text or alphanumeric. For a more detailed description of how the reduction finds/uses the appropriate point see the section Existing point search. If a new check point entry is inserted into the file, this field will be non-editable since only the check point is required.

Time surveyed
time when the command (op code) was created

Comment
comment for the command within the field file.

OK, Apply, Reset, Finish, Help See the description for the panel buttons in the section Panel buttons.

Target Height (opcode 5)
Define the target height to be used for following measurements.

![Target Height panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target height</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time surveyed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OK, Apply, Reset, Finish, Help See the description for the panel buttons in the section Panel buttons.

Templating (opcodes 51 to 59)
Record and use field templates when picking up string.
See 36.4 Field Templates, in Appendix 36 12d Survey Guide.

For Template start (opcode 51), go to

- Template start
- Template end (opcode 52)
- Template pause (opcode 53)
- Template continue (opcode 54)
- Template record (opcode 55)
- Template skip (opcode 56)
- Template insert (opcode 58)
- Template delete (opcode 57)
- Template change (opcode 59)

Template start

Selecting Template start (opcode 51) brings up the Templating panel with the Command field set to Template start.

Template start starts using the field template given in the field Name.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>Text box</td>
<td>Template start</td>
<td>Template start (opcode 51)</td>
</tr>
<tr>
<td>Name</td>
<td>Text box</td>
<td></td>
<td>Template end (opcode 52)</td>
</tr>
<tr>
<td>Zigzag</td>
<td>choice box</td>
<td>Forward template</td>
<td>Template pause (opcode 53)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Template continue (opcode 54)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Template record (opcode 55)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If zigzag is forward template, then the field template is used as a forward template. See 36.4.1 Forward Direction, in Appendix 36 12d Survey Guide.

If zigzag is reverse template, then the field template is used as a reverse template. See 36.4.2 Reverse Direction, in Appendix 36 12d Survey Guide.
**start on zig**, then the field template is used as a zig_zag template and is used in the forward definition direction first (that is starts on a zig). See 36.4.3 Zig-Zag in Appendix 36 12d Survey Guide.

**start on zag**, then the template is used as a zig_zag template and is used in the reverse direction first (that is, starts on a zag). See 36.4.3 Zig-Zag in Appendix 36 12d Survey Guide.

If zigzag is blank, or anything other than forward, reverse, or start on zag then the field template is used as a zig-zag template starting on a zig.

**Time surveyed**

time when the command (op code) was created

**Comment**

comment for the command within the field file.

**OK, Apply, Reset, Finish, Help** See the description for the panel buttons in the section Panel buttons.

**Template end**

Selecting Template end (opcode 52) brings up the Templating panel with the Command field set to Template end.

Template end stops using the current field template, or stops recording a field template.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td></td>
<td>Template end</td>
<td></td>
</tr>
<tr>
<td>Time surveyed</td>
<td></td>
<td>time when the command (op code) was created</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
<td>comment for the command within the field file</td>
<td></td>
</tr>
</tbody>
</table>
Template pause

Selecting Template pause (opcode 53) brings up the Templating panel with the Command field set to Template pause.

Pause using the current field template or defining a field template, until a continue field template (54) or a finish field template (52) code is given.

![Templating Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>Template pause</td>
<td>Template start (opcode 51)</td>
<td>Template end (opcode 52)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Template pause (opcode 53)</td>
<td>Template pause (opcode 53)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Template continue (opcode 54)</td>
<td>Template record (opcode 55)</td>
</tr>
</tbody>
</table>

**Time surveyed**

*time when the command (op code) was created*

**Comment**

*comment for the command within the field file.*

Template continue

Selecting Template continue (opcode 54) brings up the Templating panel with the Command field set to Template continue.

Continue using or defining the current field template, which has been stopped by a Template pause (opcode 53). The Continue command only needs to be given once and applies to all following measurements until another Pause or Finish command is given.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>Template continue</td>
<td>Template start (opcode 51)</td>
<td>Template end (opcode 52)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Template pause (opcode 53)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Template continue (opcode 54)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Template record (opcode 55)</td>
</tr>
</tbody>
</table>

**Time surveyed**  
_time when the command (op code) was created_

**Comment**  
_comment for the command within the field file._

**OK, Apply, Reset, Finish, Help**  
See the description for the panel buttons in the section [Panel buttons](#).

**Template record**  
Selecting Template record (opcode 55) brings up the Templatining panel with the Command field set to Template record

_Templating record_ stores the _feature code_ and _string number_ of the following measurements as a field template until a Finish code (52) is given.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>Template record</td>
<td></td>
<td>Template start (opcode 51)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Template end (opcode 52)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Template pause (opcode 53)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Template continue (opcode 54)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Template record (opcode 55)</td>
</tr>
</tbody>
</table>

**Name**

name of the template being created

Start recording a field template with the name **Name**. If **Name** is blank, then it is the default field template that is defined.

The feature code and string number of the following measurements are stored as the field template until a Finish code (52) is given. There is no limit to the number of feature code and string number pairs that can be stored in a field template.

**Time surveyed**

time when the command (opcode) was created

**Comment**

comment for the command within the field file.

**OK, Apply, Reset, Finish, Help**

See the description for the panel buttons in the section **Panel buttons**

**Template skip**

Selecting **Template skip (opcode 56)** brings up the **Template Skip** panel.

This panel allows the user to skip picking up one or more points (feature code and string number pairs) from the field template currently being used. The next measurement takes the **feature code** and **string number** from the next point after the skipped points, from the field template definition.

See **36.4.4 Skipping Field Template Points** in Appendix **36 12d Survey Guide**
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points to skip</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the number of points (feature code and string number pairs) of the template to skip. If Points to skip is blank or zero, then only one point is skipped otherwise Points to skip points are skipped.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skip forever</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, the given number of feature code and string number pairs are not used from then on. If not ticked, only skip for this one used of the template.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time surveyed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time when the command (op code) was created</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>comment for the command within the field file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK, Apply, Reset, Finish, Help</td>
<td>See the description for the panel buttons in the section</td>
<td>Panel buttons</td>
<td></td>
</tr>
</tbody>
</table>

Template insert

Selecting Template insert (opcode 58) brings up the Templating panel.

This option allows the user to insert new point definitions into the template. These may be new points or to add a multiple code to an existing point in the template.

See 36.4.5 Insert Template Points or Insert Multiple Codes in Appendix 36 12d Survey Guide.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature code</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>String number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple code</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insert special</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time surveyed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Feature code**
- Feature code to be inserted (as a new point or a multiple code) with the string number, into the template.

**String number**
- String number to be inserted (as a new point or a multiple code) with the feature code, into the template.

**Multiple code**
- If ticked off (the default), a new point is inserted into the template with the Feature code and String number given in the panel.
- If ticked on, no new point is inserted but the current template point will be made a multiple coded point with the Feature code and String number given in the panel. The multiple coding will be used each time the template point is used.

**Insert special**
- If ticked on, the point will be added to the current template being picked up (that is, to the end of the template).
- If not ticked, the point will be added to the next template being picked up (that is, to the beginning of the template).

**Time surveyed**
- Time when the command (op code) was created

**Comment**
- Comment for the command within the field file.

**OK, Apply, Reset, Finish, Help**
- See the description for the panel buttons in the section Panel buttons.

**Template delete**
Selecting Template delete (opcode 57) brings up the Templating panel.
- Allows the user to delete one or more points on the template. Picking up will use the updated template definition.
See 36.4.6 Delete Template Points in Appendix 36. 12d Survey Guide.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of points</td>
<td>type</td>
<td>defaults</td>
<td>pop-up</td>
</tr>
</tbody>
</table>

**Number of points**  
number of points to delete from the template. Any further use of the template will use the updated template definition.

**Time surveyed**  
time when the command (op code) was created

**Comment**  
comment for the command within the field file.

**OK, Apply, Reset, Finish, Help**  
See the description for the panel buttons in the section Panel buttons.

**Template change**  
Selecting Template change (opcode 59) brings up the Templating panel.
The fields and buttons used in this panel have the following functions.

**Field Description**
- **Time surveyed**: time when the command (op code) was created
- **Comment**: comment for the command within the field file.

**Additional Text For Point (opcode 41)**
Add extra text to any existing text for the current measurement.
Data

The given text in **Data** is added to the end of any existing text for the current measurement point.

Time surveyed

*time when the command (op code) was created*

Comment

*comment for the command within the field file.*

**OK, Apply, Reset, Finish, Help**  
See the description for the panel buttons in the section **Panel** buttons.

Vertical Circle Correction (opcode 15)

The given value (in decimal degrees) is **subtracted** from the vertical circle value in subsequent measurements.

![Vertical Circle](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical circle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>the vertical circle (in decimal degrees) is <strong>subtracted</strong> from the vertical circle value in any measurements</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time surveyed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>time when the command (op code) was created</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>comment for the command within the field file.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**OK, Apply, Reset, Finish, Help**  
See the description for the panel buttons in the section **Panel** buttons.
17.7.7 Order

Position of menu: Survey => Edit => Order

This option is still under development.

The order option re-orders points in a string.

The Order walk-right menu is:

- by points
- by CL
- Auto order
- Remove

For information on by points please go to 17.7.7.1 By Points

by CL

Auto order

Remove

17.7.7.1 By Points

Position of option on menu: Survey => Edit => Order => by points

This option is still under development.

17.7.7.2 By CL

Position of option on menu: Survey => Edit => Order => by CL

This option is still under development.
17.7.7.3 Auto Order

Position of option on menu: Survey => Edit => Order => Auto order
This option is still under development.

17.7.7.4 Remove Order

Position of option on menu: Survey => Edit => Order => Remove
This option is still under development.

17.7.8 SDR Point Edits

Position of menu: Survey => Edit => Points
The Points walk-right menu contains options that work on individual points (vertices).

Note - a point may be individual point (one vertex strings) or a vertex of a string.
The Points walk-right menu is:
For the option **Additional text**, go to

- **Attachment**: 17.7.8.1 Additional Text, 17.7.8.2 Attach a File
- **Arc next 3 points**: 17.7.8.3 Arc Through Next Three Points
- **Arc last 3 points**: 17.7.8.4 Arc Through Last Three Points
- **Arc fitting start**: 17.7.8.5 Start Arc Fitting
- **Arc fitting end**: 17.7.8.6 End Arc Fitting
- **Circle feature**: 17.7.8.7 Create a Feature String
- **Invisible**: 17.7.8.8 Make a Vertex Invisible
- **Invisible last seg**: 17.7.8.9 Make the Previous Segment Invisible
- **Invisible next seg**: 17.7.8.10 Make the Next Segment Invisible
- **Non tinable**: 17.7.8.11 Make a Vertex Non Tinable
- **Non tinable last seg**: 17.7.8.12 Make the Previous Segment Non Tinable
- **Non tinable next seg**: 17.7.8.13 Make the Next Segment Non Tinable
- **Pipe invert**: 17.7.8.14 Make a Vertex an Invert Level of a Pipe
- **Pipe axial**: 17.7.8.15 Make a Vertex an Axial Level of a Pipe
- **Pipe obvert**: 17.7.8.16 Make a Vertex an Obvert Level of a Pipe
- **Rectangle last 3 points**: 17.7.8.17 Make a Parallelogram from the Last Three Points
- **Rectangle last 2 points**: 17.7.8.18 Make a Rectangle from the Last Two Points
- **Remove point**: 17.7.8.19 Delete a Vertex
- **Remove height**: 17.7.8.20 Set a Vertex Height to Null

### 17.7.8.1 Additional Text

**Position of option on menu:** Survey => Edit => Points => Additional text
Additional text adds text to selected vertices. The user selects the vertex to add text to, and then types in the text.

Selecting Additional text brings up the SDR Additional Text panel:

![SDR Additional Text](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As soon as the option is selected, the Pick is active and vertices can be selected.

Each time a vertex is picked and accepted, an Additional text typed input panel is displayed to type the text into. A Text code is then inserted into the 12d field file.

The option continues until the Finish button is selected.

If the pick is cancelled by hitting the <Esc> key or selecting Cancel from the Pick Ops menu, the Pick button can be used to restart the option.

17.7.8.2 Attach a File

Position of option on menu: Survey => Edit => Points => Attachment

Attachment adds files to selected vertices. The user selects the vertex to add an attachment to, and then enters the name of the file to attach.

Selecting Attachment brings up the SDR Attachment panel:

![SDR Attachment](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As soon as the option is selected, the Pick is active and vertices can be selected.

Each time a vertex is picked and accepted, an Attachment file name typed input panel is displayed to enter the file name into. An Attachment field code is then inserted into the 12d field file.

The option continues until the Finish button is selected.

If the pick is cancelled by hitting the <Esc> key or selecting Cancel from the Pick Ops menu, the Pick button can be used to restart the option.
17.7.8.3 Arc Through Next Three Points

**Position of option on menu:**  Survey => Edit => Points => Arc next 3 points

**Arc next 3 points** adds an arc through the selected vertex and the next two vertices of the same string.

Selecting **Arc next 3 points** brings up the SDR Arc Next 3 Points panel:

![SDR Arc Next 3 Points panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As soon as the option is selected, the **Pick** is active and vertices can be selected.

Each time a vertex is picked and accepted, an arc is placed through the selected vertex and the next two vertices of the same string by inserting an **Arc through next 3 points** field code.

The option then repeats and continues until the **Finish** button is selected.

If the **Pick** is cancelled by hitting the <Esc> key or selecting **Cancel** from the **Pick Ops** menu, the **Pick** button can be used to restart the option.

17.7.8.4 Arc Through Last Three Points

**Position of option on menu:**  Survey => Edit => Points => Arc last 3 points

**Arc last 3 points** adds an arc through the selected vertex and the previous two vertices of the same string.

Selecting **Arc last 3 points** brings up the SDR Arc Last 3 Points panel:

![SDR Arc Last 3 Points panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As soon as the option is selected, the **Pick** is active and vertices can be selected.

Each time a vertex is picked and accepted, an arc is placed through the selected vertex and the previous two vertices of the same string by inserting an **Arc through last 3 points** field code.

The option then repeats and continues until the **Finish** button is selected.

If the **Pick** is cancelled by hitting the <Esc> key or selecting **Cancel** from the **Pick Ops** menu, the
17.7.8.5 Start Arc Fitting

Position of option on menu:  Survey => Edit => Points => Arc fitting start

Arc fitting start starts arc fitting through from the selected vertex until the end of the string or an stop arc fitting field code is encountered for that string.

Selecting Arc fitting start brings up the SDR Arc Fitting Start panel:

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As soon as the option is selected, the Pick is active and vertices can be selected.

Each time a vertex is picked and accepted, arc fitting is started at the selected vertex by inserting an Arc fitting start field code.

The option then repeats and continues until the Finish button is selected.

If the Pick is cancelled by hitting the <Esc> key or selecting Cancel from the Pick Ops menu, the Pick button can be used to restart the option.

17.7.8.6 End Arc Fitting

Position of option on menu:  Survey => Edit => Points => Arc fitting end

Arc fitting end ends any arc fitting for that string at the selected vertex.

Selecting Arc fitting end brings up the SDR Arc Fitting End panel:

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As soon as the option is selected, the Pick is active and vertices can be selected.

Each time a vertex is picked and accepted, any arc fitting for the string is stopped at the selected vertex by inserting an Arc fitting end field code.
The option then repeats and continues until the Finish button is selected.

If the Pick is cancelled by hitting the <Esc> key or selecting Cancel from the Pick Ops menu, the Pick button can be used to restart the option.

17.7.8.7 Create a Feature String

Position of option on menu: Survey => Edit => Points => Circle feature

Circle feature creates a feature string of a given radius at the selected vertex.

Selecting Circle feature brings up the SDR Feature panel:

![SDR Feature panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As soon as the option is selected, the Pick is active and vertices can be selected.

Each time a vertex is picked and accepted, an Feature radius typed input panel is displayed to type the radius into. A Feature code is then inserted into the 12d field file.

The option then repeats and continues until the Finish button is selected.

If the Pick is cancelled by hitting the <Esc> key or selecting Cancel from the Pick Ops menu, the Pick button can be used to restart the option.

17.7.8.8 Make a Vertex Invisible

Position of option on menu: Survey => Edit => Points => Invisible

Invisible turns the selected vertex invisible.

Even if the segments on either side of the invisible vertex are tagged as visible, the segments cannot be drawn because the start/end point of the segment is invisible.

Selecting Invisible brings up the SDR Invisible Point panel:

![SDR Invisible Point panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>
Pick button

As soon as the option is selected, the Pick is active and vertices can be selected.

Each time a vertex is picked and accepted, the vertex is turned invisible by inserting an Invisible Point code into the 12d field file.

The option then repeats and continues until the Finish button is selected.

If the Pick is cancelled by hitting the <Esc> key or selecting Cancel from the Pick Ops menu, the Pick button can be used to restart the option.

17.7.8.9 Make the Previous Segment Invisible

Position of option on menu: Survey =>Edit =>Points =>Invisible previous segment

Invisible previous segment turns the segment ending on the selected vertex invisible. The vertex itself is not invisible.

Selecting Invisible previous segment brings up the SDR Invisible Previous Segment panel:

![SDR Invisible Previous Segment panel]

The fields and buttons used in this panel have the following functions.

Field Description	Type	Defaults	Pop-Up
Pick button | | | |

As soon as the option is selected, the Pick is active and vertices can be selected.

Each time a vertex is picked and accepted, the segment ending on the vertex is turned invisible by inserting an Invisible Previous Segment code into the 12d field file.

The option then repeats and continues until the Finish button is selected.

If the Pick is cancelled by hitting the <Esc> key or selecting Cancel from the Pick Ops menu, the Pick button can be used to restart the option.

17.7.8.10 Make the Next Segment Invisible

Position of option on menu: Survey =>Edit =>Points =>Invisible next segment

Invisible next segment turns the segment starting on the selected vertex invisible. The vertex itself is not invisible.

Selecting Invisible next segment brings up the SDR Invisible Next Segment panel:
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As soon as the option is selected, the **Pick** is active and vertices can be selected.

Each time a vertex is picked and accepted, the segment starting on the vertex is turned invisible by inserting an **Invisible Next Segment** code into the 12d field file.

The option then repeats and continues until the **Finish** button is selected.

If the **Pick** is cancelled by hitting the <Esc> key or selecting **Cancel** from the **Pick Ops** menu, the **Pick** button can be used to restart the option.

17.7.8.11 Make a Vertex Non Tinable

**Position of option on menu:**  Survey => Edit => Points => Non tinable

**Non tinable** sets the selected vertex to be non tinable (that is, the vertex is not included in any triangulation).

Even if the segments on either side of the non tinable vertex are tinable, the segments can not be included in any triangulation because the start/end point of the segment is non tinable.

Selecting **Non tinable** brings up the SDR **Non Tinable Point** panel:

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As soon as the option is selected, the **Pick** is active and vertices can be selected.

Each time a vertex is picked and accepted, the vertex is set to non tinable (that is, the vertex is not included in any triangulations) by inserting a **Non tinable point** code into the 12d field file.

The option then repeats and continues until the **Finish** button is selected.

If the **Pick** is cancelled by hitting the <Esc> key or selecting **Cancel** from the **Pick Ops** menu, the **Pick** button can be used to restart the option.
17.7.8.12 Make the Previous Segment Non Tinnable

**Position of option on menu:** Survey => Edit => Points => Non tinable previous segment

**Non tinable previous segment** sets the segment ending on the selected vertex non tinable. That is, the segment is not included as a breakline in any tins (triangulations). The vertex itself can be tinable.

Selecting **Non tinable previous segment** brings up the **SDR Non Tinable Previous Segment** panel:

![SDR Non Tinable Previous Segment Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Pick</strong> button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As soon as the option is selected, the **Pick** is active and vertices can be selected.

Each time a vertex is picked and accepted, the segment ending on the vertex is set to non tinable by inserting a **Non tinable previous segment** code into the 12d field file.

The option then repeats and continues until the **Finish** button is selected.

If the **Pick** is cancelled by hitting the <Esc> key or selecting **Cancel** from the **Pick Ops** menu, the **Pick** button can be used to restart the option.

17.7.8.13 Make the Next Segment Non Tinnable

**Position of option on menu:** Survey => Edit => Points => Non tinable next segment

**Non tinable next segment** sets the segment starting on the selected vertex non tinable. That is, the segment is not included as a breakline in any tins (triangulations). The vertex itself can be tinable.

Selecting **Non tinable next segment** brings up the **SDR Non Tinable Next Segment** panel:

![SDR Non Tinable Next Segment Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Pick</strong> button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As soon as the option is selected, the **Pick** is active and vertices can be selected.

Each time a vertex is picked and accepted, the segment starting on the vertex is set to non tinable by inserting an **Non tinable next segment** code into the 12d field file.
17.7.8.14 Make a Vertex an Invert Level of a Pipe

Position of option on menu:  Survey => Edit => Points => Pipe invert

Pipe invert sets the z-value of the selected vertex to be used as an invert level (pipe top) when the vertex is in a pipe string.

Selecting Pipe invert brings up the SDR Pipe Invert Justification panel:

```
The option then repeats and continues until the Finish button is selected.
If the Pick is cancelled by hitting the <Esc> key or selecting Cancel from the Pick Ops menu, the Pick button can be used to restart the option.
```

17.7.8.15 Make a Vertex an Axial Level of a Pipe

Position of option on menu:  Survey => Edit => Points => Pipe axial

Pipe axial sets the z-value of the selected vertex to be used as an axial level (pipe centre) when the vertex is in a pipe string.

Selecting Pipe axial brings up the SDR Pipe Axial Justification panel:

```
The option then repeats and continues until the Finish button is selected.
If the Pick is cancelled by hitting the <Esc> key or selecting Cancel from the Pick Ops menu, the Pick button can be used to restart the option.
```
As soon as the option is selected, the Pick is active and vertices can be selected.

Each time a vertex is picked and accepted, the vertex is set to be an axial level (centre of the pipe) for any pipe string it is in by inserting a Pipe axial code into the 12d field file.

The option then repeats and continues until the Finish button is selected.

If the Pick is cancelled by hitting the <Esc> key or selecting Cancel from the Pick Ops menu, the Pick button can be used to restart the option.

17.7.8.16 Make a Vertex an Obvert Level of a Pipe

Position of option on menu: Survey => Edit => Points => Pipe obvert

Pipe obvert sets the z-value of the selected vertex to be used as an obvert level (bottom of pipe) when the vertex is in a pipe string.

Selecting Pipe obvert brings up the SDR Pipe Obvert Justification panel:

![SDR Pipe Obvert Justification Panel]

The fields and buttons used in this panel have the following functions.

As soon as the option is selected, the Pick is active and vertices can be selected.

Each time a vertex is picked and accepted, the vertex is set to be an obvert level (bottom of the pipe) for any pipe string it is in by inserting a Pipe obvert code into the 12d field file.

The option then repeats and continues until the Finish button is selected.

If the Pick is cancelled by hitting the <Esc> key or selecting Cancel from the Pick Ops menu, the Pick button can be used to restart the option.

17.7.8.17 Make a Parallelogram from the Last Three Points

Position of option on menu: Survey => Edit => Points => Rectangle last 3 points

Rectangle last 3 points creates a parallelogram (squashed rectangle) from the selected vertex and the previous two vertices in the same string.

Selecting Rectangle last 3 points brings up the SDR Rectangle panel:
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As soon as the option is selected, the **Pick** button is active and vertices can be selected.

Each time a vertex is picked and accepted, a parallelogram (squashed rectangle) is created using the selected vertex and the previous two vertices of the same string (three vertices in total) and creating a fourth vertex to form the parallelogram of four vertices. The three vertices are removed from the original string and any following vertices are used in a new string.

A *String rectangle* code is inserted into the 12d field file.

The option then repeats and continues until the **Finish** button is selected.

If the **Pick** is cancelled by hitting the <Esc> key or selecting **Cancel** from the **Pick Ops** menu, the **Pick** button can be used to restart the option.

### 17.7.8.18 Make a Rectangle from the Last Two Points

**Position of option on menu:** Survey => Edit => Points => Rectangle last 2 points

**Rectangle last 2 points** creates a rectangle from the selected vertex and the previous vertex in the same string, and a width supplied by the user.

The rectangle is formed by using the two vertices as the base of the rectangle and using the given width as the length of the other side of the rectangle. Two new vertices are created to from the rectangle.

Selecting **Rectangle last 2 points** brings up the **SDR Rectangle by 2 Points** panel:

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As soon as the option is selected, the **Pick** button is active and vertices can be selected.

Each time a vertex is picked and accepted, a *Rectangle width* type input box is displayed and filled in.

The rectangle is formed by using the two vertices as the base of the rectangle and using the given width as the length of the other side of the rectangle. Two new vertices are created to from the rectangle.

The two vertices are removed from the original string and any following vertices are used in a new string.
A string rectangle by 2 points code is inserted into the 12d field file.
The option then repeats and continues until the Finish button is selected.
If the Pick is cancelled by hitting the <Esc> key or selecting Cancel from the Pick Ops menu, the Pick button can be used to restart the option.

17.7.8.19 Delete a Vertex

Position of option on menu: Survey => Edit => Points => Remove point

Remove point deleted the selected vertex.
The adjacent vertices in the string containing the deleted vertex will then be joined together.
Selecting Remove point brings up the SDR Delete Point panel:

![SDR Delete Point panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As soon as the option is selected, the Pick is active and vertices can be selected.
Each time a vertex is picked and accepted, the vertex deleted from the field file.
The option then repeats and continues until the Finish button is selected.
If the Pick is cancelled by hitting the <Esc> key or selecting Cancel from the Pick Ops menu, the Pick button can be used to restart the option.

17.7.8.20 Set a Vertex Height to Null

Position of option on menu: Survey => Edit => Points => Remove height

Remove height sets the height of the selected vertex to null.
Selecting Remove height brings up the SDR Remove Height panel:

![SDR Remove Height panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As soon as the option is selected, the Pick is active and vertices can be selected.
Each time a vertex is picked and accepted, the height of the selected vertex is set to null by inserting a Remove height code into the 12d field file.

The option then repeats and continues until the Finish button is selected.

If the Pick is cancelled by hitting the <Esc> key or selecting Cancel from the Pick Ops menu, the Pick button can be used to restart the option.

17.7.9 SDR Strings Edit

Position of menu: Survey => Edit => Stringing

The Stringing walk-right menu contains options that work on strings rather than individual points. The Stringing walk-right menu is:

For the option New string, go to

End string
Close
Join
Reverse
2d string
3d string
4d string
Pipe string
Culvert string
Assign string numbers

Feature Code

Reverse
2d string
3d string
4d string
Pipe string
Culvert string
Assign string numbers

17.7.9.1 New String

Position of option on menu: Survey => Edit => Stringing => New string

New string corrects the problem of not changing string numbers which creates the error of the last point of one string being joined to the first point of what should have been the next string. Hence there is a link between the two points that should not exist.

With new string, the user selects the incorrect link and a new string command is inserted into the 12d field file which removes the link by starting a new string at the end point of the link.

Selecting New string brings up the SDR Start New String panel:
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Pick</strong> button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As soon as the option is selected, the Pick is active and string links can be selected. If the pick is cancelled for some reason, the Pick button can be used to restart the option.

Each time a string segment is picked and accepted, a string start command is inserted into the 12d field file which removes the link by starting a new string at the end point of the link.

The option then repeats and continues until the Finish button is selected.

If the Pick is cancelled by hitting the <Esc> key or selecting Cancel from the Pick Ops menu, the Pick button can be used to restart the option.

17.7.9.2 End String

**Position of option on menu:** Survey =>Edit =>Stringing =>End string

End string corrects the problem of not changing string numbers which creates the error of the last point of one string being joined to the first point of what should have been the next string. Hence there is a link between the two points that should not exist.

With end string, the user selects the incorrect link and a **end string** command is inserted into the 12d field file which removes the link by starting a new string at the end point of the link.

Selecting End string brings up the SDR End String panel:

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Pick</strong> button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As soon as the option is selected, the Pick is active and string links can be selected. If the pick is cancelled for some reason, the Pick button can be used to restart the option.

Each time a string segment is picked and accepted, an string end command is inserted into the 12d field file which removes the link by starting a new string at the end point of the link.

The option then repeats and continues until the Finish button is selected.

If the Pick is cancelled by hitting the <Esc> key or selecting Cancel from the Pick Ops menu, the Pick button can be used to restart the option.
17.7.9.3 Close String

Position of option on menu: Survey => Edit => Stringing => Close

With Close, the user selects any part of the string to be closed and a close string command is inserted into the 12d field file.

Selecting Close brings up the SDR Close String panel:

![SDR Close String Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As soon as the option is selected, the Pick button is active and string can be selected. If the pick is cancelled for some reason, the Pick button can be used to restart the option.

Each time a string is picked and accepted, a string close command is inserted in the 12d field file which closes the selected string.

The option then repeats and continues until the Finish button is selected.

If the Pick is cancelled by hitting the <Esc> key or selecting Cancel from the Pick Ops menu, the Pick button can be used to restart the option.

17.7.9.4 Join Two Strings of Same Feature Code

Position of option on menu: Survey => Edit => Stringing => Join

With Join, the two strings of the same name (code) are selected with direction and the strings are joined by inserting the appropriate join string command in the 12d field file.

Selecting Join brings up the SDR Join Strings panel:

![SDR Join Strings Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As soon as the option is selected, the Pick button is active and string can be selected. If the pick is cancelled for some reason, the Pick button can be used to restart the option.

Each time two strings of the same name (code) are picked with direction, the appropriate join string field code (Join first points of strings, Join first to last point of strings, Join last points of strings, Join last to first point of strings) is inserted into the 12d field file.

The option then repeats and continues until the Finish button is selected.
If the Pick is cancelled by hitting the <Esc> key or selecting Cancel from the Pick Ops menu, the Pick button can be used to restart the option.

17.7.9.5 Reverse String Direction

Position of option on menu: Survey => Edit => Stringing => Reverse

With Reverse, the selected strings is reversed by inserting the **String reverse** command into the 12d field file.

Selecting Reverse brings up the SDR Reverse String panel:

![SDR Reverse String Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick button</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As soon as the option is selected, the Pick is active and string can be selected. If the pick is cancelled for some reason, the Pick button can be used to restart the option.

Each time a string is selected, a **String reverse** field code is inserted into the 12d field file.

The option then repeats and continues until the Finish button is selected.

If the Pick is cancelled by hitting the <Esc> key or selecting Cancel from the Pick Ops menu, the Pick button can be used to restart the option.

17.7.9.6 Make a 2d String

Position of option on menu: Survey => Edit => Stringing => 2d string

With 2d string the user selects any vertex of a string and a **string type 2d** command is then inserted into the 12d field file.

Selecting 2d string brings up the SDR String Type 2d panel:

![SDR String Type 2d Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick button</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As soon as the option is selected, the Pick is active and string can be selected. If the pick is cancelled for some reason, the Pick button can be used to restart the option.
Each time a string is picked and accepted, a **String type 2d** command is inserted in the 12d field file. The option then repeats and continues until the **Finish** button is selected.

If the **Pick** is cancelled by hitting the <Esc> key or selecting **Cancel** from the Pick Ops menu, the **Pick** button can be used to restart the option.

### 17.7.9.7 Make a 3d String

**Position of option on menu:** Survey => Edit => Stringing => 3d string

With **3d string** the user selects any vertex of a string and a **string type 3d** command is then inserted into the 12d field file.

Selecting **3d string** brings up the SDR String Type 3d panel:

![SDR String Type 3d Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Pick</strong> button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As soon as the option is selected, the **Pick** is active and string can be selected. If the pick is cancelled for some reason, the **Pick** button can be used to restart the option.

Each time a string is picked and accepted, a **String type 3d** command is inserted in the 12d field file. The option then repeats and continues until the **Finish** button is selected.

If the **Pick** is cancelled by hitting the <Esc> key or selecting **Cancel** from the Pick Ops menu, the **Pick** button can be used to restart the option.

### 17.7.9.8 Make a 4d String

**Position of option on menu:** Survey => Edit => Stringing => 4d string

With **4d string** the user selects any vertex of a string and a **string type 4d** command is then inserted into the 12d field file.

Selecting **4d string** brings up the SDR String Type 4d panel:

![SDR String Type 4d Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>
Pick button

As soon as the option is selected, the Pick is active and string can be selected. If the pick is cancelled for some reason, the Pick button can be used to restart the option.

Each time a string is picked and accepted, a String type 4d command is inserted in the 12d field file.

The option then repeats and continues until the Finish button is selected.

If the Pick is cancelled by hitting the <Esc> key or selecting Cancel from the Pick Ops menu, the Pick button can be used to restart the option.

### 17.7.9.9 Make a Pipe String

Position of option on menu: Survey => Edit => Stringing => Pipe string

With Pipe string, the user selects any vertex of a string, gives a pipe diameter and then a string type pipe command is inserted into the 12d field file.

Selecting Pipe string brings up the SDR Pipe Diameter panel:

![SDR Pipe Diameter Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As soon as the option is selected, the Pick is active and string can be selected. If the pick is cancelled for some reason, the Pick button can be used to restart the option.

Each time a string is picked and accepted, a Pipe diameter text input is displayed and after a value is typed in, a String type pipe command is inserted in the 12d field file.

The option then repeats and continues until the Finish button is selected.

If the Pick is cancelled by hitting the <Esc> key or selecting Cancel from the Pick Ops menu, the Pick button can be used to restart the option.

### 17.7.9.10 Make a Culvert String

Position of option on menu: Survey => Edit => Stringing => Culvert string

With Culvert string, the user selects any vertex of a string, gives a culvert width and height and then a string type culvert command is inserted into the 12d field file.

Selecting Culvert string brings up the SDR Culvert panel:

![SDR Culvert Panel](image)
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As soon as the option is selected, the Pick button is active and string can be selected. If the pick is cancelled for some reason, the Pick button can be used to restart the option.

Each time a string is picked and accepted, Culvert width and Culvert height text inputs are displayed and after values are typed in, a String type culvert command is inserted in the 12d field file.

The option then repeats and continues until the Finish button is selected.

If the Pick is cancelled by hitting the <Esc> key or selecting Cancel from the Pick Ops menu, the Pick button can be used to restart the option.

17.7.9.11 Assign String Numbers

Position of option on menu: Survey => Edit => Stringing => Assign string numbers

Assign string numbers

Selecting Assign string numbers brings up the Assign Survey Field Data String Numbers panel:

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function name</td>
<td>function box</td>
<td>SDR functions</td>
<td></td>
</tr>
</tbody>
</table>

name of the SRD function to give string numbers to.

Start string number

string number to start numbering at.

Assign button

17.7.10 Target Height

Position of menu: Survey => Edit => Target height

The Target height option is used to correct target height errors. This includes giving an incorrect value for a target height or forgetting to change the target height.

The Target height walk-right menu is
Each option will now be described in detail.

17.7.10.1 Insert Target Height

Position of option on menu: Survey => Edit => Target height => Insert

The insert option inserts a new target height command into the 12d field file at a user selected point. The user can choose whether the new target height only applied for that one point or for all following points until a new target height is set.

Selecting insert brings up the insert target height panel:

![Insert Target Height Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target height</td>
<td>input/output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>when a point is selected, the target height for that point is displayed. The value can then be changed by the user and if set is selected, the target height is modified and all affected points updated.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Just one point  
tick  
if ticked, the new target height only applied for that one point and then reverts pack to the previous target height.  
if not tick, the new target height applies for all following points until a new target height is set.

Pick  
button  
pick the point to insert a new target height.

Set  
button  
selecting set inserts the new target height command into the 12d field file.

17.7.10.2 Change Target Height

Position of option on menu: Survey => Edit => Target height => Change

The Change option changes an existing target height to a new value.

Selecting Change brings up the change target height panel:
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick</td>
<td>button</td>
<td></td>
<td>select a point whose information will be displayed in the panel fields. A highlighted line joining the point to the station that it was surveyed from is also displayed.</td>
</tr>
<tr>
<td>Prev</td>
<td>button</td>
<td></td>
<td>move to the previous point in the string.</td>
</tr>
<tr>
<td>Next</td>
<td>button</td>
<td></td>
<td>move to the next point in the string.</td>
</tr>
<tr>
<td>Station name</td>
<td>display only</td>
<td></td>
<td>name of the station that the point was surveyed from.</td>
</tr>
<tr>
<td>Point ID</td>
<td>display only</td>
<td></td>
<td>point ID of the selected point.</td>
</tr>
<tr>
<td>Target height</td>
<td>input/output</td>
<td></td>
<td>when a point is selected, the target height for that point is displayed. The value can then be changed by the user and if set is selected, the target height is modified and all affected points updated.</td>
</tr>
<tr>
<td>Pick</td>
<td>button</td>
<td></td>
<td>pick the point to change the target height.</td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td></td>
<td>selecting set changes the target height command in the 12d field file and updates affected points.</td>
</tr>
<tr>
<td>Reset</td>
<td>button</td>
<td></td>
<td>reset undoes the changes.</td>
</tr>
</tbody>
</table>

17.8 Report

Position of option on menu: Survey =>Report

Report produces a report on the field data from a Survey function.

Selecting report brings up the survey reduction report panel

The fields and buttons used in this panel have the following functions.
### 17.9 Adjustments

**Position of menu:** Survey => Adjustments

The Adjustments walk-right menu is

```
Survey Adjustments
2D Helmert (Advanced)
3D Helmert
Least squares network
Level network
Height adjustment
Traverse adjustment
Traverse Adjustment (new)
Utilities
Network adjustment data
Network adjustment
Network adjustment report
```

For 2D Helmert (Advanced), go to 28.10.4.1 2D Helmert (Advanced).
- For 3D Helmert, see 28.10.4.2 3D Helmert.
- Least squares network: 17.9.3 Least Squares Network
- Level network: 17.9.4 Level Network
- Height adjustment: 17.9.5 Height Adjustment
- Traverse Adjustment: 17.9.6 Traverse Adjustment
- Traverse Adjustment (new): 17.9.6 Traverse Adjustment
- Utilities: 17.9.7 Survey Adjustments Utilities
17.9.1 2D Helmert (Advanced)

Position of option on menu: Survey => Adjustments => 2D Helmert (Advanced)

A 2D Helmert transformation is a two dimensional linear transformation consisting of a scaling, rotation and a 2D-translation (shift) of data. Hence there are four parameters to be specified. The 2D Helmert (Advanced) option calculated and applied a Helmert transformation, and also allows the user to fix the scale for the transformation.

For information on the 2D Helmert transformation, please go to the section 28.9.1 Coordinate Transformations - Helmert and Affine.

The 2D Helmert (Advanced) panel is documented in the section 28.10.4.1 2D Helmert (Advanced).

17.9.2 3D Helmert

Position of option on menu: Survey => Adjustments => 3D Helmert

A 3D Helmert transformation is a three dimensional linear transformation consisting of a scaling, three rotations, and a 3D-translation (shift) of data. Hence there are 7 parameters to be specified.

For information on the 3D Helmert transformation, please go to the section 28.9.1 Coordinate Transformations - Helmert and Affine.

The 3D Helmert panel is documented in the section 28.10.4.2 3D Helmert.

17.9.3 Least Squares Network

Position of option on menu: Survey => Adjustments => Least squares network

The Least square network option performs a least square adjustment on a set of observations that can be manually entered into predefined grid box columns or by reading an existing input file. These observations can be of the form of distances, angles, azimuths or a combination of these.

Selecting Least squares network brings up the Least Squares Horizontal Network Adjustment panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input file</td>
<td>input box</td>
<td>* .in</td>
<td></td>
</tr>
</tbody>
</table>

A pre-existing .in input file can be specified. For the format of the .in file, go to [Format of the LSA .in File](#).

**Read**

button

On selection of the read button, if a valid .in input file has been specified, the relevant parameters will be read into the grid controls.
Distance tab

The fields and buttons used in this tab have the following functions.

**Field Description**	**Type**	**Defaults**	**Pop-Up**
S(in mm) | input box | standard deviation of a single distance measurement in mm. If entered the value will be used for all lines in the grid. This eliminates the need to put the standard deviation on each line.

- ppm button

- parts per million error. If entered the value will be used for all lines in the grid. This eliminates the need to put the ppm on each line.

- the grid control values can be entered using valid inputs into the various fields:
  - **Use** - if ticked, the row is used in the adjustment. If *not ticked* then the row is ignored
  - **From** point id which represents the point from which the distance was read
  - **To** point id which represents the point to which the distance was read
  - **Distance** (horizontal) with all corrections having been made except for that of scale.
  - S(in mm) - if not blank, the standard deviation to use for this single distance measurement in millimetres. If blank, the default value in the panel field S(in mm) is used.
  - ppm - if not blank, the parts per million (ppm) error to use for this single distance measurement. If blank, the default value in the panel field Pmm is used.

Angle tab

The fields and buttons used in this tab have the following functions.

**Field Description**	**Type**	**Defaults**	**Pop-Up**
S(in sec) | input box | standard deviation for a single angle measurement in seconds of arc. If entered the value will be used for all lines in the grid. This eliminates the need to put the standard deviation on each line.

- the grid control values can be entered using valid inputs into the various fields. Angle input must be in the form of degrees minutes and seconds in 4.17.1 HP Notation (e.g. 12.1055)

- **Use** - if ticked, the row is used in the adjustment. If *not ticked* then the row is ignored
**Backsight** - the backsight point id is entered.

**Instrument** - the point id of the instrument or observation station is entered.

**Foresight** - the point id of the foresight station is entered into the **Foresight** column.

**Angle (dms)** - the angle defined by the clockwise measurement from the backsight to foresight station as observed from the instrument station. Valid ranges of 0 - 360 degrees.

**S (in second)** - if non blank, the standard deviation of the angular measurement in seconds of arc to use for this single angle measurement. If blank, the default value in the panel field **S (in sec)** is used.

### Azimuth tab

<table>
<thead>
<tr>
<th>Distance</th>
<th>Angle</th>
<th>Azimuth</th>
<th>Fixed</th>
<th>Initial</th>
<th>Draw</th>
<th>Output</th>
<th>Control Model</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>S (in sec)</strong></td>
<td>Input box</td>
<td>standard deviation for a single azimuth measurement in seconds of arc. If entered the value will be used for all lines in the grid. This eliminates the need to put the standard deviation on each line.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this tab have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>S (in sec)</strong></td>
<td>Input box</td>
<td>standard deviation for a single azimuth measurement in seconds of arc. If entered the value will be used for all lines in the grid. This eliminates the need to put the standard deviation on each line.</td>
<td></td>
</tr>
</tbody>
</table>

Use - if ticked, the row is used in the adjustment. If not ticked then the row is ignored.

From - the instrument station point id should be entered.

To - the point id of the observed station is entered.

**Azimuth** - the true azimuth to the observed point is entered. Azimuth input should be in the form of degrees minutes and seconds (e.g. 12.1055) Valid ranges of 0 - 360 degrees.

**S (in second)** - if non blank, the standard deviation of the azimuth in seconds of arc to use for this single angle measurement. If blank, the default value in the panel field **S (in sec)** is used.

### Fixed tab

<table>
<thead>
<tr>
<th>Distance</th>
<th>Angle</th>
<th>Azimuth</th>
<th>Fixed</th>
<th>Initial</th>
<th>Draw</th>
<th>Output</th>
<th>Control Model</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Use</strong></td>
<td><strong>Point name</strong></td>
<td><strong>X coord</strong></td>
<td><strong>Y coord</strong></td>
<td><strong>Z coord</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

the grid control values can be entered using valid inputs into the various fields.

Use - if ticked, the row is used in the adjustment. If not ticked then the row is ignored.

Point name - the point id of the fixed stations

X coord - the fixed x coordinate value is entered

Y coord - the fixed y coordinate value is entered

Z coord - the fixed z coordinate value is entered

### Initial tab

**12d Model** will try and calculate initial position for each point from the entered measurement but for
some points this is not possible and then the user must enter an initial position.

<table>
<thead>
<tr>
<th>Use</th>
<th>Point name</th>
<th>X coord</th>
<th>Y coord</th>
<th>Z coord</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

the grid control values can be entered using valid inputs into the various fields.

**Use** - if tick, the row is used in the adjustment. If not ticked then the row is ignored

**Point name** - the point id of a free or floating station should be entered.

**X coord** - the initial x coordinate estimate is entered.

**Y coord** - the initial y coordinate estimate is entered.

**Z coord** - the initial z coordinate estimate is entered.

**NB. It is very important that the initial values are approximately equal to the true values. A solution will still be generated for rubbish values.**

**Draw tab**

<table>
<thead>
<tr>
<th>Name</th>
<th>Model</th>
<th>Colour</th>
<th>Fixed station style</th>
<th>Fixed station size</th>
<th>Fixed station colour</th>
<th>Scale for error ellipses</th>
<th>Symbol for given init pts</th>
<th>Symbol for calc init pts</th>
<th>Clear draw model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

the following values can be entered to enable the production of a user defined plot of the adjustment.

**Field Description**	**Type**	**Defaults**	**Pop-Up**
**Name** | name box | defined names from names.4d file |  |
**Model** | model box | available models |  |
**Colour** | colour box | red | available colours | |
**Fixed station style** | input | Station | available line styles |  |
**Fixed station size** | input | 1 | size of symbol in world units |  |
**Fixed station colour** | colour box | green | available colours |  |
Scale for error ellipses  input  1000
this value will be applied to any error ellipses to enable an exaggerated view of the ellipse geometry

Symbol for given init points  input  1 available line styles
line style of the given initial point symbols

Symbol for calc init points  input  1 available line styles
line style of the calculated initial point symbols

Clear draw model beforehand  tick box
if ticked, the draw model will be cleaned before the new strings are created

Output tab

The fields in this panel define the output parameters.

Field Description Type Defaults Pop-Up

Output file  input box *.in
if non blank, an output file is produced that can be read in the future.

Report file  input box *.rpt
if non blank, a report file of this name is creating giving the calculation specific parameters and result.

No. decimal places for output  input box 5
the number of decimal place to use in the report

Report standard error ellipse  tick box ticked
if ticked, error ellipses for each new point are created

Control Model tab

Model  model box
a new model or an existing model containing some control points an be entered.

If a new model, the calculated points will placed into that control model.
If an existing model, if there is a point in the model with the same point id as a point being calculated,
then that rather than a new point being created, the coordinates of the existing point can be updated
after the reduction is complete (depends on the Update existing controls points tick box).

Colour  model box
colour used for control station symbol
**What's New in 12d Model**

**Adjustments**

**Style**
linestyle box
style for control stations.

**Update existing control points**
tick box ticked
if ticked, any existing coordinate positions from the adjustment will be updated in the given control model.

**Update**
button
if pressed, the updating of changed level values in the given control model will be carried out.

The remaining fields refer to those located below the grid control

<table>
<thead>
<tr>
<th>Scale factor</th>
<th>0.9996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add calculated initial values</td>
<td>✓</td>
</tr>
<tr>
<td>Maximum number of iterations</td>
<td>10</td>
</tr>
<tr>
<td>Stop when coords differ by less than</td>
<td>0.0001</td>
</tr>
<tr>
<td>Stop when the variance increases</td>
<td>✓</td>
</tr>
</tbody>
</table>

**Scale factor**
in input box project central meridian scale factor
a scale factor can be defined which will be applied to any entered distances. Final distances used in calculations are derived by multiplying the entered distance by the scale factor.

**Add calculated initial values**
tick box tick
if this box is checked, then the initial values will be included in the report

**Maximum number of iterations**
in input box 10
the calculation of the adjustment can be aborted if a solution is not found after the specified number of iterations

**Stop when coords differ...**
in input box 0.0001
the calculation of the adjustment is stopped when the difference between successive calculations meet the defined tolerance

**Stop when the variance increases**
tick box tick
if ticked, the calculation of the adjustment is stopped when the variance between successive calculations increases

**Process**
button
run the adjustment
Format of the LSA .in File

The data in each line of the .in file is space delimited. That is, each piece of data on the line is separated by one or more spaces.

**Line 1:**
The layout of the data on the first line is as follows:

<table>
<thead>
<tr>
<th>Position</th>
<th>Description</th>
<th>Variable</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Number of distance observations</td>
<td>N-Dist</td>
<td>Integer</td>
</tr>
<tr>
<td>2</td>
<td>Number of angle observations</td>
<td>N-Ang</td>
<td>Integer</td>
</tr>
<tr>
<td>3</td>
<td>Number of true azimuth observations</td>
<td>N-Azi</td>
<td>Integer</td>
</tr>
<tr>
<td>4</td>
<td>Number of control (fixed) stations</td>
<td>N-Fix</td>
<td>Integer</td>
</tr>
<tr>
<td>5</td>
<td>Number of stations (including control stations)</td>
<td>N-Stn</td>
<td>Integer</td>
</tr>
<tr>
<td>6</td>
<td>Distance standard deviation (positive if used)</td>
<td>D-Std</td>
<td>Double</td>
</tr>
<tr>
<td>7</td>
<td>Distance part per million (non-negative if used)</td>
<td>D-Ppm</td>
<td>Double</td>
</tr>
<tr>
<td>8</td>
<td>Angle standard deviation (positive if used)</td>
<td>A-Std</td>
<td>Double</td>
</tr>
<tr>
<td>9</td>
<td>Azimuth standard deviation (positive if used)</td>
<td>Z-Std</td>
<td>Double</td>
</tr>
<tr>
<td>10</td>
<td>Scale factor</td>
<td></td>
<td>Double</td>
</tr>
</tbody>
</table>

*Note: D-Std, is in millimetres, A-Std and Z-Std are in seconds.*

**Example:**

63 71 0 16 35 5.00000 5.00000 15.00000 5.00000 1.00000

**Next N-Stn lines:**
The next *N-Fix* lines are control station records, followed by (*N-Stn - N-Fix*) station records.
The layout of the line of a station record is as follows:

<table>
<thead>
<tr>
<th>Position</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flag (1 if the station is used, otherwise 0)</td>
<td>Integer</td>
</tr>
<tr>
<td>2</td>
<td>Point number</td>
<td>Text</td>
</tr>
<tr>
<td>3</td>
<td>X-coord</td>
<td>Double</td>
</tr>
<tr>
<td>4</td>
<td>Y-coord</td>
<td>Double</td>
</tr>
</tbody>
</table>

**Example:**

1 9338 3889.23700 5341.54800

....

0 9712a 4007.45700 5168.68700

....

**Next N-Dist lines**
The next *N-Dist* lines are distance observation records.
The layout of the line of a distance observation record is as follows:
Note: * Part per million is different to D-Ppm by a factor of 1000. That is, if you want a ppm value of 5, the number in the file should be 0.005

Example:
```
1 9542 9702 100.20200 0.00300 0.00200
1 9542 9703 142.98200 -1.00000 -1.00000
0 9700 9506 72.10700 -1.00000 -1.00000
....
```

Next N-Ang lines

The next N-Ang lines are angle observation records. The layout of the line of a angle observation record is as follows:

<table>
<thead>
<tr>
<th>Position</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flag (1 if the observation is used, otherwise 0)</td>
<td>Integer</td>
</tr>
<tr>
<td>2</td>
<td>Start point number</td>
<td>Text</td>
</tr>
<tr>
<td>3</td>
<td>End point number</td>
<td>Text</td>
</tr>
<tr>
<td>4</td>
<td>Distance</td>
<td>Double</td>
</tr>
<tr>
<td>5</td>
<td>Standard deviation (in meter, negative if not used)</td>
<td>Double</td>
</tr>
<tr>
<td>6</td>
<td>Part per million*</td>
<td>Double</td>
</tr>
</tbody>
</table>

Example:
```
1 9542 9702 100.20200 0.00300 0.00200
1 9542 9703 142.98200 -1.00000 -1.00000
0 9700 9506 72.10700 -1.00000 -1.00000
....
```

Next N-Azi lines

The next N-Azi lines are true azimuth observation records. The layout of the line of a true azimuth observation record is as follows:

<table>
<thead>
<tr>
<th>Position</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flag (1 if the observation is used, otherwise 0)</td>
<td>Integer</td>
</tr>
<tr>
<td>2</td>
<td>Backsight point number</td>
<td>Text</td>
</tr>
<tr>
<td>3</td>
<td>Instrument point number</td>
<td>Text</td>
</tr>
<tr>
<td>4</td>
<td>Foresight point number</td>
<td>Text</td>
</tr>
<tr>
<td>5</td>
<td>Degree</td>
<td>Integer</td>
</tr>
<tr>
<td>6</td>
<td>Minute</td>
<td>Integer</td>
</tr>
<tr>
<td>7</td>
<td>Second</td>
<td>Double</td>
</tr>
<tr>
<td>8</td>
<td>Standard deviation (in mm, negative if not used)</td>
<td>Double</td>
</tr>
</tbody>
</table>

Example:
```
1 19206 9506 9701 174 29 20.00000 -1000.00000
....
```
17.9.4 Level Network

Position of option on menu: Survey => Adjustments => Level network

The level network option performs a least square adjustment on a set of level observations that can be manually entered into predefined grid box columns or by reading an existing input file.

Selecting Level network brings up the Adjustment of Level Nets panel

<table>
<thead>
<tr>
<th>Position</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flag (1 if the observation is used, otherwise 0)</td>
<td>Integer</td>
</tr>
<tr>
<td>2</td>
<td>Backsight point number</td>
<td>Text</td>
</tr>
<tr>
<td>3</td>
<td>Instrument point number</td>
<td>Text</td>
</tr>
<tr>
<td>4</td>
<td>Foresight point number</td>
<td>Text</td>
</tr>
<tr>
<td>5</td>
<td>Degree</td>
<td>Integer</td>
</tr>
<tr>
<td>6</td>
<td>Minute</td>
<td>Integer</td>
</tr>
<tr>
<td>7</td>
<td>Second</td>
<td>Double</td>
</tr>
<tr>
<td>8</td>
<td>Standard deviation (in mm, negative if not used)</td>
<td>Double</td>
</tr>
</tbody>
</table>

Example:

1 19206 9506 174 29 20.00000 3.00000

....

That is the end of data in the file.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input file</td>
<td>input box</td>
<td>*.in</td>
<td>a pre existing input file can be specified.</td>
</tr>
<tr>
<td>Read</td>
<td>button</td>
<td></td>
<td>on selection of the read button, if a valid input file has been specified, the relevant parameters will be read into the grid controls.</td>
</tr>
<tr>
<td>Use weight</td>
<td>choice box</td>
<td>none</td>
<td>none, distance, standard deviation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a weighting per observation can be made according to the none, distance, and standard deviation choices</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>None - no weighting will be applied.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Distance - if the distance of the level network legs are to be used. The horizontal distance is entered into the weight field. e.g. 101.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard deviation - to define a standard deviation. e.g. 0.005</td>
</tr>
<tr>
<td>Output file</td>
<td>input box</td>
<td>*.in</td>
<td>an output file can be defined which will allow for the reading of the file in the future.</td>
</tr>
<tr>
<td>Report file</td>
<td></td>
<td></td>
<td>*.rpt files</td>
</tr>
</tbody>
</table>
a report using the nominated file name is created.

**No. decimal places for output**, input box 5

the number of decimal places for the new levels can be defined.

**Observation tab**

![Observation tab image](image)

the grid control values can be entered using valid inputs into the various fields:

- **From** point id which represents the first point of the level difference
- **To** point id which represents the second point to which the level difference refers
- **Difference** the difference between the levels defined by the **From** point and the **To** point, i.e. the difference = (to point) level - (from point) level
Benchmark tab

- The grid control values can be entered using valid inputs into the various fields.
- **Station.** The point id of a fixed level station should be entered.
- **Level.** The corresponding level value of the fixed station.
Unknown tab

The grid control values can be entered using valid inputs into the various fields.

Station. The point id of any free or floating level stations should be entered.
Level. The corresponding approximate level value of free or floating level station.

A report using the nominated file name is created.
Control Model tab

Model

model box

an existing control model can be entered so that changes to level values can be updated.

Update existing control points tick box ticked

if ticked, any new level values from the adjustment will be updated in the given control model.

Update button

if pressed, the updating of changed level values in the given control model will be carried out.

17.9.5 Height Adjustment

Position of option on menu: Survey =>Adjustments =>Height adjustment

The Height adjustment option adjusts the selected data using either a constant z value, a plane defined by parameters, a plane defined by points (least square fit) or a tin of height differences. Selecting Height adjustment brings up the Height Adjustment panel
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>file box</td>
<td></td>
<td>*.haf files</td>
</tr>
<tr>
<td>Read button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data to adjust</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- *a filename can be specified for reading or writing a file.*
- *if a valid file exists, the file contents can be loaded into the panel.*
- *if a valid name is specified, the user can write the input data to a file.*
- *the source of the data to be adjusted is selected using the data source box. For more information on the data source box see 4.19.3 Data Source.*
Adjustments

**Adjustment method**

<table>
<thead>
<tr>
<th>Adjustment method</th>
<th>choice box</th>
<th>Constant</th>
<th>Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The adjustment method should be selected from the list. A description of each method is given below.

**Report file**

*.rpt files

A report using the nominated file name is created.

**Target**

The target for the adjusted data should be specified. For more information on how to use a data target box see the section 4.19.4 Data Target.

**Transform**

Perform the transformation.

**Constant adjustment method**

**Corr constant**

The value to be added to the selected data. This method is the same as a translation in the z values only.

**Plane parameters adjustment method**

**Corr constant**

The value to be added to the selected data.

**Corr per unit N**

The z value correction per unit nothing.

**Corr per unit E**

The z value correction per unit easting.

**Origin point**

String select [same as]

The name of the string of the origin pt.
North coord input box
the northing value of the origin point.

East coord input box
the easting value of the origin point.

**Plane by points adjustment method**

The grid control values can be entered to build up the benchmark points from which the plane will be fitted to.

**Use pt**. the point (benchmark point) can be included in the derivation of the parameters by selecting the **Use pt** option. If the point is not to be included, then uncheck the box.

**Point**. The point id of the benchmark

**Northing**. The northing value of the benchmark

**Easting**. The Easting value of the benchmark

**Current_Ht**. The current level value of the benchmark

**Correct_Ht**. The correct height in the adjusted level plane.

**Adjusted_Ht**. This field shows the adjusted height after the adjustment is performed.

**Residual**. This field shows the difference between the correct height and the adjusted height. This value is shown after the adjustment is performed.

The **Add pt** button used in this panel can be used to add points into the grid control from selecting points from a current view. After the button is selected, consequent selection and acceptance of points from the view will add the value into the grid. The **Correct_Ht** parameter will then have to be filled out by the user.
The Calculate button can be used to calculate the adjustment parameters and residuals so that they can be inspected before the adjustment is made.

**Difference tin adjustment method**

The fields used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difference tin</td>
<td>tin box</td>
<td>available tins</td>
<td>the difference tin to be used to interpolate adjustment values.</td>
</tr>
<tr>
<td>Add difference tin values</td>
<td>radio button</td>
<td>if the button Add difference tin values is checked the interpolated value from the difference tin will be added to the existing levels of the adjusted points.</td>
<td></td>
</tr>
<tr>
<td>Subtract difference tin values</td>
<td>radio button</td>
<td>if the button Subtract difference tin values is checked the interpolated value from the difference tin will be subtracted from the existing levels of the adjusted points.</td>
<td></td>
</tr>
</tbody>
</table>

if *Constant, a given value is subtracted from each z-value*

- **Corr constant**
  the value to be subtracted from all z-values

- **Origin points**
  the value to be added to all z-values

if *Plan parameters, a 3d-plane is defined and the z-value of the plane subtracted from any points*

- **Corr constant**
  *z-correction at the original point*

- **Corr per unit N**
  *z-correction per unit is the North (y) direction about the origin point*

- **Corr per unit E**
  *z-correction per unit is the East (x) direction*

- **Origin point**
  2d select box
  *pick box for selected a pint to use for North and East coordinates about the origin point*

- **North coordinate**
- **East coordinate**
if Constant, a given value is subtracted from each z-value

Corr constant
the value to be subtracted from all z-values

Origin points
the value to be added to all z-values

if Plan by points a 3d-plane is fitted using least squares adjustment to selecting points. The z-value of the plane is then subtracted from any points.

Corr constant
z-correction at the original point

Corr per unit N
z-correction per unit is the North (y) direction about the origin point

Corr per unit E
z-correction per unit is the East (x) direction

Origin point
2d select box
pick box for selecting a point to use for North and East coordinates about the origin point

North coordinate
East coordinate

if Difference tin, the z-value from a triangulation is added/subtracted from any points

Difference tin
tin box
available tins
tin of values to be added/subtracted from the z-values of points

Add difference tin values radio button
if on, the values of the tin are added to the selected points

Subtract difference tin values radio button
if on, the values of the tin are subtracted to the selected points

17.9.6 Traverse Adjustment

Position of option on menu: Survey => Adjustments => Traverse adjustment

The Traverse adjustment option performs a Bowditch, Transit, Compass or Least Square adjustment on a selected string. The adjustment can be for a closed string (loop) or an open string (non-loop).

Selecting Traverse adjustment brings up the Traverse Adjustment panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjust Settings tab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traverse type</td>
<td>choice box</td>
<td>loop</td>
<td>loop, non-loop</td>
</tr>
<tr>
<td>the traverse can be a closed loop or a non loop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last point coord</td>
<td>xyz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>co-ordinates of the last point of the traverse. Only applicable for a non-loop traverse.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjustment method</td>
<td>choice box</td>
<td>transit</td>
<td>Transit, Bowditch, Compass, Least Square</td>
</tr>
<tr>
<td>method of adjustment.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribute angular misclose</td>
<td>tick box</td>
<td>unticked</td>
<td></td>
</tr>
<tr>
<td>if ticked, the closing azimuth and bearing fields are enabled, allowing the entry of the values so that a calculation of an angular misclose can be made. i.e. angular misclose = closing azimuth - closing bearing.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This requires a closing observation to be recorded separately to the adjustment string chosen.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This angular misclose can be distributed around the traverse before adjustment. The distribution follows standard survey practice, calculating a misclose value per setup station and then adding this constant to every traverse leg in a accumulative manner.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i.e. The 1st leg angle adjusted bearing = orig bearing 1st leg + 1*misclose/setup stn.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The 2nd leg angle adjusted bearing = orig bearing 1st leg + 2*misclose/setup stn. and so forth.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The closing observation is not taken from the traverse string to be adjusted, but by direct entry into the closing azimuth and bearing fields.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closing azimuth</td>
<td>angle box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| The closing azimuth is the bearing as calculated from the last point (known coordinate; equal to the
start point if a loop traverse) to the closing station (known coordinate or bearing).

**Closing bearing**

angle box

The closing bearing is the observation from the last traverse point to the closing station (known coordinate or bearing)

**Tolerance (relative acc) 1:**

The accuracy can be set which will be used to assess the misclose value before the adjustment is made. If the misclose is out of tolerance, a message box will appear notifying the user that the linear tolerance has not been met and prompting for further action. This may force the adjustment to continue or the exit of the process.

### New String Settings tab

<table>
<thead>
<tr>
<th>Adjust Settings</th>
<th>New String Settings</th>
<th>Least Sq. Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create new string</td>
<td>tick box</td>
<td>tick</td>
</tr>
<tr>
<td>Name</td>
<td>name box</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>model box</td>
<td>available models</td>
</tr>
<tr>
<td>Colour</td>
<td>colour box</td>
<td>available colours</td>
</tr>
</tbody>
</table>

*Create new string* tick box tick

If ticked, a new adjusted string is created. If not tick, the selected string is adjusted.

*Name* name box

If non-blank, the name of the new string. If blank, the original string name is used.

*Model* model box available models

If non-blank, the model of the new string. If blank, the original string model is used.

*Colour* colour box available colours

If non-blank, the colour of the new string. If blank, the original string colour is used.

If the least square method is chosen the following parameters can be set in the **Least Sq. Settings** tab. If a different method is chosen the least square parameters are shown **greyed out** indicating that they are not used in the adjustment.
Least Sq. Settings tab

```
<table>
<thead>
<tr>
<th>Adjust Settings</th>
<th>New String Settings</th>
<th>Least Sq. Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction obs std (sec)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance obs std (mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum number of iterations</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Stop when coords differ <</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Stop when variance increase</td>
<td>tick box</td>
<td>ticked</td>
</tr>
</tbody>
</table>
```

**Direction obs std (sec)**

standard deviation of a single angular measurement in seconds of arc.

**Distance obs std (mm)**

standard deviation of a single distance measurement.

**Distance ppm**

distance error in parts per million.

*This value is defined by the edm scale error which is dependant on the length of line measured (e.g. 5ppm = 5mm error over a 1km distance)*

**Iterations**

input box 10

the calculation of the adjustment can be aborted if a solution is not found after the specified number of iterations.

**Coords differ**

input box 0.0001

the calculation of the adjustment can stopped when the difference between successive calculations meet the defined tolerance.

**Variance increase**

tick box ticked

the calculation of the adjustment can stopped when the variance between successive calculations increases.

The remaining values are as follows:

**Report file**

*.rpt files

if non-blank, a report for the adjustment is created with this name. If non-blank, no report is created.

**Partial**

tick box

if ticked, only part of the selected string is adjusted.

**Pick**

button

select the string to adjust.

**Adjust**

button

perform the adjustment.

17.9.7 Survey Adjustments Utilities

Position of option on menu: Survey => Adjustments => Utilities
The options on the Survey Adjustment Utilities menu are designed to get data from external sources into the Least Squares Network and Level Network formats, (.IN/.LIN files respectively) for processing by 12d.

The data conversion is a multistep process as it is designed to bring in several different formats into the 12d .IN/.LIN formats.

.SOA files

The SOA files are an intermediate text file generated onboard a Leica 1200/Viva TPS/GPS instrument.

The format files to generate these files from a Leica DBX are shipped in the library directory.

- **ANG_Code_Office.FRT** is the format file used when the Station number is put in as a code
- **ANG_ID_Office.FRT** is the format file used when the Station number is put in as a Point ID

The use of format files is out of the scope of this manual and described in the Leica documentation.

The SOA file format is intermediary and not documented.

.ANG files

ANG files are a text file containing rounds of angles, they are generated by the Leica DBX to ANG panel or can be generated in TP-Setout or TP-Stakeout.

The format of an .ANG is such

```
<Backsight ID> <Backsight Height> <Station ID> <Station Height>
<Foresight ID> <Foresight Height> <Backsight bearing> <Backsight Vertical angle> <Backsight slope distance> <Foresight bearing> <Foresight Vertical angle> <Foresight slope distance>
```

Bearing and angles are in radians and station Ids must be quoted if they have spaces.

```
"34748A" 1.300 "34872A" 1.660 "34978B" 0.000 5.49580322 1.58360594 159.477 2.83371620 1.53209318 117.170
```

.LSF files

LSF files are a TP-Setout/TP-Stakeout format for a least squares network adjustment.

The format consists of several sections, each section is terminated by an END.

The first a list of station coordinates and weighting definitions.

```
<Station name> <Easting> <Northing> <Weight> <Level> <Weight>
GB117 9808.1480 168635.6450 1000 4.0314 1000
```

A weight of 1000 means fixed, 1 completely free.

The second section is the horizontal observations.

```
<Backsight ID> <Station ID> <Foresight ID> <Backsight bearing> <Foresight bearing>
KHABB KHP14 KHP13 0.0000 3.15157367
```
Bearing and angles are in radians and station IDs must be quoted if they have spaces.

The 3rd section is the horizontal distances.

<Station name> < Station name > < Horizontal distance>
KHABB GB117 68.909

The 4th section is the height difference information.

<Station name> < Station name > < Vertical distance>
KHABB GB117 -11.138

A complete sample:

<table>
<thead>
<tr>
<th>Station Name</th>
<th>N</th>
<th>E</th>
<th>Z</th>
<th>Height Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB117</td>
<td>9808.1480</td>
<td>168635.6450</td>
<td>1000</td>
<td>4.0314</td>
</tr>
<tr>
<td>KHP17</td>
<td>9839.3686</td>
<td>168651.5200</td>
<td>1</td>
<td>18.2912</td>
</tr>
<tr>
<td>KHABB</td>
<td>9813.0536</td>
<td>168704.3997</td>
<td>1</td>
<td>15.1675</td>
</tr>
<tr>
<td></td>
<td>END</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GB117</td>
<td>KHP17</td>
<td>0.0000</td>
<td>5.74994583</td>
<td></td>
</tr>
<tr>
<td>KHABB</td>
<td>KHP17</td>
<td>0.0000</td>
<td>3.13833713</td>
<td></td>
</tr>
<tr>
<td></td>
<td>END</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KHABB</td>
<td>KHP17</td>
<td>59.053</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KHABB</td>
<td>GB117</td>
<td>68.909</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KHP17</td>
<td>KHP16</td>
<td>71.045</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>END</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KHABB</td>
<td>KHP17</td>
<td>3.119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KHABB</td>
<td>GB117</td>
<td>-11.138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KHP17</td>
<td>KHP16</td>
<td>3.757</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>END</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Utilities walk-right menu is

![](image)

For the option Leica DBX to ANG go to 17.9.7.1 Leica DBX to ANG

Position of option on menu: Survey => Adjustments => Utilities => Leica DBX to ANG

This option converts the .SOA file produced on the Leica instrument into a rounds of angles .ANG file.

Selecting Leica DBX to ANG brings up the Leica DBX to ANG panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOA file</td>
<td>select the SOA file produced from a Leica DBX to process.</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANG file</td>
<td>enter the ANG to be created, if existing you will be warned it will be overwritten.</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td>a report file is generated to allow scrutiny of the conversion process to detect gross errors.</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if it looks as below containing details of each collated measurement, this report should be checked before further processing of the created ANG fie.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Report for conversion of &quot;6404-CONTROL.SOA&quot; to &quot;QQ.ANG&quot;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overall stations 50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overall measures 1816</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17 meas's from SSM139008 to target PM42949</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hz: mean 49°54'55.7&quot; std dev 0°00'03.0&quot;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Va: mean 87°34'50.4&quot; std dev 0°00'05.0&quot;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sd: mean 385.938 std dev 0.0003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TH: mean 1.784 std dev 0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>process the SOA file and produce the ANG file.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17.9.7.2 ANG to LSF

Position of option on menu: Survey => Adjustments => Utilities => ANG to LSF

The panel converts a round of angles ANG file into the LSF least squares network format.

As a prerequisite to using this panel a PTA file of the fixed control points must be created.

The PTA format is a space delimited <Easting> <Northing> <Level> <"ID"> format.

12343.345 234435.236 500.127 "STN1"
12654.877 234435.345 501.457 "STN2"
12456.345 234543.866 499.345 "STN3"

The PTA file can come in from TP-Setout/TP-Stakeout or it can be written out using the File I/O => Data output => x y z general option. See 8.2.5.4 User X Y Z and Attributes Output.
Set the following fields in the xyz output for creating a PTA format file.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANG file</td>
<td>file box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTA file</td>
<td>file box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSF file</td>
<td>file box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td>file box</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selecting ANG to LSF brings up the Convert TP- Stakeout ANG to LSF panel.

The fields and buttons used in this panel have the following functions.

17.9.7.3 LSF to 12d
Position of option on menu: Survey => Adjustments => Utilities => LSF to 12d
This panel converts a LSF format file into the 12d Least squares network and Level network file formats.
Selecting **LSF to 12d** brings up the TP- Stakeout .LSF to 12d .IN/.LIN panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSF file</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Least Squares Network file</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create Level Network file?</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level Network file name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**LSF file**

*the LSF file to be processed.*

**12d Least squares network file**

*the 12d .IN file to be created.*

**Create Level Network file?**

*if ticked enter the Level Network .LIN file will be created.*

**Level Network file name**

*the Level Network .LIN file to be created.*

**Process**

*create the .IN and optional .LIN file from the LSF file.*

---

17.9.7.4 Leica DNA to 12d

Position of option on menu: Survey => Adjustments => Utilities => Leica DNA to 12d
This panel converts a GSI format file from a Leica digital level into the 12d Level network file format.
Selecting **Leica DNA to 12d** brings up the Leica DNA GSI to 12d .LIN panel.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSI file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level Network file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write GSI line to .LIN file?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**GSI file**

*the GSI format file to be processed.*

**Level Network file**

*the Level Network .LIN file to be created.*

**Write GSI line to .LIN file?**

*if ticked write the GSI line to the .LIN file.*

**Process**

*create the .IN and .LIN files from the GSI file.*
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSI file</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level Network file</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **GSI file**: the GSI file to process
- **Level Network file**: the .LIN file to create
- **Write GSI line to .LIN file?**: tick box
  - if ticked the raw data from the GSI file will be written as a comment line into the .LIN file.
- **Process**: button
  - create the level network LIN file.

### 17.10 Conversions

**Position of menu:** Survey => Conversions

The Conversions walk-right menu contains survey transformations for converting between most projections (or longitude, latitude) including Transverse Mercator, UTM etc. conversion options.

Conversions can involve the same ellipsoid or different ellipsoids. When using different ellipsoids, either a 7-parameter transformation or NTVT2 grids can be used to convert between the ellipsoids.

The Conversion walk-right menu is

![Survey Conversions]

For converting between projections using the same ellipsoid:

- For the option **Australian conversions**, go to [17.10.1 Australian Conversions](#).
- Cartographic, [17.10.2 Cartographic](#).
- NZ conversions, [17.10.3 NZ Conversions](#).

For converting between projections with different ellipsoids:

- For the option **AGD66/84 <--> GDA94**, go to [17.10.4 AGD66/84 <--> GDA94](#).
- General transformations, [17.10.6 General Transformations](#).
- **IGN72 <--> RGN1991**, [17.10.7 IGN72 <--> RGN1991](#).
- **NZ49 <--> NZ2000**, [17.10.5 NZ49 <--> NZ2000](#).
- MGRS <--> UTM, [17.10.8 MGRS <--> UTM](#).
For more information about terminology used in these sections, see the Appendix [38 Geodetics Summary].

17.10.1 Australian Conversions

Position of option on menu:  Survey => Conversions => Australian conversions

The Australian conversions option converts data from one form (AMG/MGA, Long Lat, Global XYZ) to another for the same common datum (AGD66/84 or GDA94). The option also allows for the conversion from one zone to another for a common datum. (e.g. from zone 54 to 55 in MGA).

For converting ISG co-ordinates in the same datum, use the option  
Survey => Conversions => Cartographic (see [17.10.2 Cartographic]).

For converting between the different datums AGD66/84 and GDA94, use the option  
Survey => Conversions => AGD66/84 <-> GDA94 (see [17.10.4 AGD66/84 <-> GDA94]).

For more information, go to the section [38.5 Converting Between AMG, ISG and MGA] in the Appendix [38 Geodetics Summary].

Selecting Australian conversions brings up the Australian conversions panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum</td>
<td>choice box</td>
<td>AGD66/84</td>
<td>AGD66/84, GDA94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>either AGD66/84 or MGA94 is selected.</td>
<td></td>
</tr>
<tr>
<td>Input data type</td>
<td>choice box</td>
<td>AMG/MGA</td>
<td>AMG/MGA, Long Lat Global XYZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>type of the input data type.</td>
<td></td>
</tr>
<tr>
<td>Input Lat/Long unit</td>
<td>choice box</td>
<td>degrees</td>
<td>radians, degrees, decimal degrees</td>
</tr>
<tr>
<td></td>
<td></td>
<td>if Lat/Long was selected, the Lat-Long coords have the selected units.</td>
<td></td>
</tr>
<tr>
<td>Output data type</td>
<td>choice box</td>
<td>AMG/MGA</td>
<td>AMG/MGA, Long Lat Global XYZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>type of the input data type.</td>
<td></td>
</tr>
<tr>
<td>Output Lat/Long unit</td>
<td>choice box</td>
<td>degrees</td>
<td>radians, degrees, decimal degrees</td>
</tr>
<tr>
<td></td>
<td></td>
<td>if Lat/Long was selected, the Lat-Long coords have the selected units.</td>
<td></td>
</tr>
<tr>
<td>From zone no.</td>
<td></td>
<td>49 -&gt; 59</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if AMG/MGA was selected for the input data type, the AMG/MGA zone is given is this field.</td>
<td></td>
</tr>
<tr>
<td>To zone no.</td>
<td></td>
<td>49 -&gt; 59</td>
<td></td>
</tr>
</tbody>
</table>
if AMG/MGA was selected for the output data type, the AMG/MGA zone is given in this field.

Use data source tick box if ticked, a data source is used to select the data to be transformed. If not ticked, a given co-ordinate is transformed.

Data source input

if use data source is ticked, the source of data to transform. The source of the data to be adjusted is selected using the data source box. For more information on the data source box see 4.19.3 Data Source.

Target target

if use data source in the data source is ticked, the target of the transformed data should be specified. The target for the data is selected using the data target box. For more information on the data target box see 4.19.4 Data Target.

Input coordinates XYZ box

if use data source is not ticked, the coordinates in this field is transformed.

Output coordinates XYZ box

if use data source is not ticked, the transformed co-ordinates are displayed in this field.

Transform button perform the transformation.

17.10.2 Cartographic

Position of option on menu: Survey => Conversions => Cartographic

Position of option on menu: Utilities => A-G => Cartographic

The Cartographic option is used to transform data based on the same datum between

(a) two different cartographic projections (based on the same datum)

(b) longitude and latitude and a cartographic projection (based on the same datum)

(c) a cartographic projection and longitude and latitude (based on the same datum).

The datum, relates to the ellipsoid model used. This should be the same for both the to and from fields. i.e. a transform between data based on the ANS ellipsoid, to data based on the WGS84 ellipsoid would be incorrect.

(a) Transforming Between Two Cartographic Projections

For the first case, the data starts in one cartographic projection and is to be transformed into another cartographic projection.

This is achieved by converting the data in (x,y) co-ordinates in the original projection, to (longitude, latitude) and then converting from (longitude, latitude) to (x,y) in the new projection.

original projection ————> (longitude, latitude) ————> new projection

For example, to transform from MGA zone 50 to MGA zone 51, the original data starts in MGA zone 50, is transformed to (longitude, latitude) and then transformed from (longitude, latitude) to MGA zone 51.

Note that to make the transformation, the two cartographic projection must already be defined, That is in the example above, the two projections MGA zone 50 and MGA zone 51 must already be defined.

In 12d Model, a Cartographic projection is defined by the option
and is documented in the section 7.6.6.2 Create/Edit Projection.

The two cartographic projection definitions for the conversion are given in the Cartographic panel.

(b) Transform Between Longitude-Latitude and a Cartographic Projection

For the second case, the data starts in (longitude, latitude) is to be transformed into (x,y) co-
ordinates in a cartographic projection.

\[(\text{longitude, latitude}) \quad \mapsto \quad \text{cartographic projection}\]

For example, to transform (longitude, latitude) to MGA zone 51.

To make the transformation, the required cartographic projection must already be defined by the option

\[\text{Project} \Rightarrow \text{Projections} \Rightarrow \text{Create/edit}\]

which is documented in the section 7.6.6.2 Create/Edit Projection.

Notes
1. In the southern hemisphere, the latitude values are negative. If the latitude is given as positive rather than negative, then the option Factor can be used to multiply the latitude by -1.
2. If the information is given in (latitude, longitude) rather than the required (longitude, latitude), then the option Swap XY can be used to swap the order of the co-ordinates.

(c) Transform Between a Cartographic Projection and Longitude-Latitude

For the third case, the data starts in (x,y) co-ordinates in a cartographic projection and need to be transformed to (longitude, latitude).

\[(\text{cartographic projection}) \quad \mapsto \quad (\text{longitude, latitude})\]

For example, to transform from MGA zone 51 to (longitude, latitude).

To make the transformation, the required cartographic projection must already be defined by the option

\[\text{Project} \Rightarrow \text{Projections} \Rightarrow \text{Create/edit}\]

which is documented in the section 7.6.6.2 Create/Edit Projection.

Notes
1. In the southern hemisphere, the latitude values are negative. If a positive value for latitude is required, then the option Factor can be used to multiply the latitude by -1.
2. If the information is required to be given in (latitude, longitude) rather than the (longitude, latitude) produced by the transformation, then the option Swap XY can be used to swap the order of the co-ordinates.

On selecting the Cartographic option, the Cartographic panel is displayed.
The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>data selection type</td>
<td>non-blank</td>
<td>for a full description go to 4.19.3 Data Source.</td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td>source of data to be processed.</td>
</tr>
</tbody>
</table>
| X/Y Coordinates to Long/Lat               | choice box      | available projections | if non-blank, the name of the cartographic projection to map the selected string co-ordinates into longitude-latitude values.  
If blank, the initial co-ordinates are not transformed from (x,y) to (longitude, latitude). Hence the initial co-ordinates are then assumed to be in (longitude, latitude) form ready to be transformed to (x,y) by the transformation given in the Long/Lat to x/y coordinates field. Note that in the southern hemisphere, the latitude values must be given as negative. |
| Long/Lat to X/Y Coordinates               | choice box      | available projections | if non-blank, the cartographic projection to apply the longitude-latitude values.  
If blank, the co-ordinates are not transformed from (longitude, latitude) to (x,y). Hence the initial (x,y) co-ordinates are transformed to (longitude, latitude) by the transformation given in the x/y coordinates to Long/Lat field and then left in (longitude, latitude). Note that in the southern hemisphere, the latitude values are negative. |
| Long/Lat stored as                         | input           | degrees  | radians, degrees, decimal degrees |
| Target type                                |                 |          | Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target |
| Target info                               |                 | input    | |

Format for the longitude and latitudes - either radians, degrees (in 4.17.1 HP Notation for degrees, minutes and seconds) or decimal degrees.
extra information required for the target.

**Transform button**

Transform the selected strings to longitude-latitude co-ordinates using the **x/y coordinates to long/lat (radians)** transformation, and then project those longitude-latitude co-ordinates into the new co-ordinate system using the **long/lat (radians) to x/y coordinates** transformation.

**Note**

The **Cartographic** option can be used to transform just **x/y coordinates** to **long/lat** or **long/lat** to **x/y coordinates** by simply leaving the appropriate panel field blank. The units for **longitude** and **latitude** are either degrees (dms), decimal degrees or radians.

### 17.10.3 NZ Conversions

**Position of option on menu:** Survey => Conversions => NZ conversions

The **NZ conversions** option converts data from one form (NZMG/NZTM2000, Long Lat) to another for the same ellipsoid (i.e. datum NZ49 or NZ2000).

For converting between the **different** datums NZ 49 and NZ 2000, use the option Survey => Conversions => NZ49 <-> NZ2000 (see 17.10.5 NZ49 <-> NZ2000).

Selecting **NZ conversions** brings up the **New Zealand Conversions** panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum</td>
<td>choice box</td>
<td>NZ49</td>
<td>NZ49, NZ2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>either NZ49 or NZ2000 is selected.</td>
<td></td>
</tr>
<tr>
<td>Input data type</td>
<td>choice box</td>
<td>NZMG/NZTM2000NZMG. Circuit, Long Lat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>type of the input data type.</td>
<td></td>
</tr>
<tr>
<td>Input Lat/Long unit</td>
<td>choice box</td>
<td>degrees</td>
<td>radians, degrees,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>decimal degrees</td>
</tr>
<tr>
<td></td>
<td></td>
<td>if Lat/Long was selected, the Lat-Long coords have the selected units.</td>
<td></td>
</tr>
<tr>
<td>Output data type</td>
<td>choice box</td>
<td>NZMG/NZTM2000NZMG. Circuit, Long Lat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>type of the input data type.</td>
<td></td>
</tr>
<tr>
<td>Output Lat/Long unit</td>
<td>choice box</td>
<td>degrees</td>
<td>radians, degrees,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>decimal degrees</td>
</tr>
<tr>
<td></td>
<td></td>
<td>if Lat/Long was selected, the Lat-Long coords have the selected units.</td>
<td></td>
</tr>
<tr>
<td>From Circuit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if Circuit was selected for the input data type, the NZ Circuit is given is this field.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>To Circuit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if Circuit was selected for the output data type, the NZ Circuit is given is this field.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use data source</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, a data source is used to select the data to be transformed. If not ticked, a given co-ordinate is transformed.</td>
<td></td>
</tr>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if use data source is ticked, the data selection type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if use data source is ticked, the source of data to transform. The source of the data to be adjusted is selected using the data source box. For more information on the data source box see <a href="#">4.19.3 Data Source</a>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target</td>
<td>target</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if use data source in the data source is ticked, the target of the transformed data should be specified. The target for the data is selected using the data target box. For more information on the data target box see <a href="#">4.19.4 Data Target</a>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input coordinates</td>
<td>XYZ box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if use data source is not ticked, the co-ordinates in this field is transformed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output coordinates</td>
<td>XYZ box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if use data source is not ticked, the transformed co-ordinates are displayed in this field.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transform</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>perform the transformation.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**17.10.4 AGD66/84 <---> GDA94**

Position of option on menu: Survey => Conversions => AGD66/84 <---> GDA94

This option converts data between the two Australian Datums, AGD 66/84 and GDA 94. The transformation between the two datums can be by either a seven parameter similarity transformation for a State, or a NTv2 grid for either a State or Australia.
**12d Model** is GDA compliant for both the similarity transformations and NTv2 grids.

The AGD 66/84 data can be either longitude and latitude, co-ordinates in an AMG Zone or co-ordinates in an ISG Zone.

The GDA 94 data can be either longitude and latitude, Global XYZ or co-ordinates in a MGA Zone.

Hence the option will converts data from AMG 66/84 or ISG 66/84 to MGA 94 and vice-versa.

For more information, go to the section **38.5 Converting Between AMG, ISG and MGA** in the Appendix **38 Geodetics Summary**.

Selecting agd66/84 $\iff$ gda94 brings up the agd66/84 $\iff$ gda94 panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGD Settings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGD66  AGD84</td>
<td>radio button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>either AGD66 or AGD84 is selected. (AGD = Australian Geodetic datum)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMG  Lat/Long ISG</td>
<td>radio button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>either AMG, Lat/Long or ISG is selected. (AMG = Australian Map Grid, ISG = Integrated Survey Grid). The ISG relates to the state of New South Wales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMG Zone no.</td>
<td>choice box</td>
<td>49 - 59</td>
<td></td>
</tr>
<tr>
<td>if AMG was selected, the AMG zone is given is this field.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lat/Long unit</td>
<td>choice box</td>
<td>degrees</td>
<td>radians, degrees, decimal degrees</td>
</tr>
<tr>
<td>if Lat/Long was selected, the Lat-Long coords have the selected units.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISG Zone no.</td>
<td>choice box</td>
<td>ISG54/2 -&gt; ISG56/3</td>
<td></td>
</tr>
<tr>
<td>if ISG was selected, the ISG zone is given is this field.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![AGD66/84 to GDA94 conversion panel](image-url)

The AGD66/84 and GDA94 panels allow for the conversion of geodetic and map grid coordinates. The AGD66 and AGD84 are Australian Geodetic datums, while AMG represents the Australian Map Grid. The ISG grid is used in New South Wales. The panels provide options for selecting the appropriate settings and units for the conversion process.
### GDA Settings

![GDA Settings Panel](Image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGA  Lat/Long  Global XYZ radio button</td>
<td>one of the three choices is selected.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGA Zone no.</td>
<td>choice box</td>
<td>49 -&gt; 59</td>
<td></td>
</tr>
<tr>
<td>Lat/Long unit</td>
<td>choice box</td>
<td>degrees</td>
<td>radians, degrees, decimal degrees</td>
</tr>
</tbody>
</table>

*If MGA was selected, the MGA zone is given in this field.*

*If Lat/Long was selected, the Lat-Long coordinates have the selected units.*
Transformation Settings

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGD66/84 --&gt; GDA94</td>
<td>radio button</td>
<td>one of the two choices is selected.</td>
<td></td>
</tr>
<tr>
<td>Medium accuracy</td>
<td>radio box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td>High accuracy</td>
<td>radio button</td>
<td>if ticked, the NT V2 grid shift file is used.</td>
<td></td>
</tr>
<tr>
<td>Select State</td>
<td>choice box</td>
<td>ACT, NSW, TAS, VIC</td>
<td></td>
</tr>
<tr>
<td>Grid shift file</td>
<td>file box</td>
<td>*gsb</td>
<td></td>
</tr>
</tbody>
</table>

If the AGD66 datum has been selected, and the 7 parameter transformation is to be used, the seven parameter transformation parameters are different for each state. (i.e the states which adopted the AGD66 datum). By selecting the appropriate state, the corresponding values will be used.

If the AGD84 datum has been selected, the parameters used are the Australian wide values and therefore the state selection is not appropriate.

For high accuracy, the NTv2 grid shift files can be used.
Data Source

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use data source</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
</tbody>
</table>

- **Use data source**
  - **Tick box**: tick
  - **Type**: If ticked, a data source is used to select the data to be transformed. If not ticked, a given coordinate is transformed.

<table>
<thead>
<tr>
<th>Data source</th>
<th>input</th>
</tr>
</thead>
</table>

- **Data source**
  - **Input**: If **Use data source** is ticked, the source of data to transform. The source of the data to be adjusted is selected using the data source box. For more information on the data source box see 4.19.3 Data Source.

<table>
<thead>
<tr>
<th>Input coordinates</th>
<th>XYZ box</th>
</tr>
</thead>
</table>

- **Input coordinates**
  - **XYZ box**: If **Use data source** is not ticked, the coordinates in this field is transformed.

<table>
<thead>
<tr>
<th>Output coordinates</th>
<th>XYZ box</th>
</tr>
</thead>
</table>

- **Output coordinates**
  - **XYZ box**: If **Use data source** is not ticked, the transformed coordinates are displayed in this field.

<table>
<thead>
<tr>
<th>Transform</th>
<th>button</th>
</tr>
</thead>
</table>

- **Transform**
  - **Button**: Perform the transformation.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>target</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*if use data source in the data source is ticked, the target of the transformed data should be specified*

The target for the data is selected using the data target box. For more information on the data target box see 4.19.4 Data Target.

17.10.5 NZ49 <---> NZ2000

**Position of option on menu:** Survey => Conversions => NZ49 <--- NZ2000

This option converts data from the NZ 49 datum to the NZ 2000 datum and vice-versa.

The transformation between the two datums can be by either the NZ seven parameter similarity transformation or a NTv2 grid.

The data to be converted can be longitude and latitude, NZMG, circuits or Global XYZ.

Selecting NZ49 <--- NZ2000 brings up the NZ49 <--- NZ2000 panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>NZ 49 Settings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuit (49)</td>
<td>radio button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NZMG</td>
<td>radio button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lat/Long</td>
<td>radio button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global XYZ</td>
<td>radio button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NZ 49 Settings

Circuit (49) radio button

If the data in the NZ49 datum is of circuit type, the circuit radio button is selected.

NZMG radio button

If the data in the NZ49 datum is of NZMG type, the radio button is selected.

Lat/Long radio button

If the data in the NZ49 datum is of Lat/Long type, the radio button is selected.

Global XYZ radio button

If the data in the NZ49 datum is of Global XYZ type, the radio button is selected.

Circuit name choice box

If Circuit (49) was selected, the specific NZ Circuit should be selected.

Lat/Long unit choice box

If Lat/Long was selected, the Lat-Long coords have the selected units.

NZ 2000 Settings
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit (2000)</td>
<td>radio button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if the data in the NZ2000 datum is of circuit type the circuit radio button is selected.</td>
<td></td>
</tr>
<tr>
<td>NZTM2000</td>
<td>radio button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if the data in the NZ2000 datum is of NZTM2000 type the radio button is selected.</td>
<td></td>
</tr>
<tr>
<td>Lat/Long</td>
<td>radio button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if the data in the NZ2000 datum is of Lat/Long type the radio button is selected.</td>
<td></td>
</tr>
<tr>
<td>Global XYZ</td>
<td>radio button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if the data in the NZ2000 datum is of Global XYZ type the radio button is selected.</td>
<td></td>
</tr>
<tr>
<td>Circuit name</td>
<td>choice box</td>
<td>All NZ 1949 circuits</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if Circuit (2000) was selected, the specific NZ Circuit should be selected.</td>
<td></td>
</tr>
<tr>
<td>Lat/Long unit</td>
<td>choice box</td>
<td>degrees</td>
<td>radians, degrees, decimal degrees</td>
</tr>
<tr>
<td></td>
<td></td>
<td>if Lat/Long was selected, the Lat-Long coords have the selected units.</td>
<td></td>
</tr>
</tbody>
</table>
Transformation Settings

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>NZ49 --&gt; NZ2000  NZ2000 --&gt; NZ49</td>
<td>radio button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium accuracy</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td>High accuracy</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grid shift file</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ellipsoid Height</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

the direction of the transformation is specified by the selection of one of the two choices.

if ticked, a seven parameter similarity transformation for NZ is used.

if ticked, the NT V2 grid shift file is used.

if High accuracy is ticked, a NTv2 grid shift should be selected. A single file for New Zealand can be used.

this is only required if the data to be transformed contains null values and when

1) The 7 parameter similarity transformation is used and/or
2) When either the input or output types are of Global XYZ type

An approximate ellipsoid level needs only to be +/- 100 m from the true value for most accuracy requirements. (An error in estimation of the ellipsoid height of a few hundred metres will introduce an error in the transformed horizontal position in the order of millimetres only).
Data Source

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use data source</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>if ticked, a data source is used to select the data to be transformed. If not ticked, a given co-ordinate is transformed.</td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>if use data source is ticked, the source of data to transform. The source of the data to be adjusted is selected using the data source box. For more information on the data source box see 4.19.3 Data Source</td>
</tr>
<tr>
<td>Input coordinates</td>
<td>XYZ box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>if use data source is not ticked, the co-ordinates in this field is transformed.</td>
</tr>
<tr>
<td>Output coordinates</td>
<td>XYZ box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>if use data source is not ticked, the transformed co-ordinates are displayed in this field.</td>
</tr>
</tbody>
</table>
Target

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>target</td>
<td>if use data source in the data source is ticked, the target of the transformed data should be specified. The target for the data is selected using the data target box. For more information on the data target box see 4.19.4 Data Target</td>
<td>Copy to model</td>
</tr>
</tbody>
</table>

17.10.6 General Transformations

**Position of option on menu:** Survey => Conversions => General transformations

This option converts data between two datums (i.e. different ellipsoids).

The transformation between the two datums can be by either a seven parameter similarity transformation or a NTv2 grid.

The data to be converted can be longitude and latitude, a 12d supported projection (eg TM, UTM) or Global XYZ.

Selecting **General transformations** brings up the **General Transformations** panel
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum A Settings, Datum B Settings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data format</td>
<td>choice box</td>
<td></td>
<td>Global XYZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Easting Northing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Long Lat - radians</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Long Lat - degrees (dms)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Long Lat - decimal degrees</td>
</tr>
</tbody>
</table>

The type of data to be transformed/transformed to.

- **Datum A Settings, Datum B Settings**
  - **Data format**: choice box
  - **Projection**: projection box

- **Projection**: projection box
  - defined projections

*the name of the cartographic projection that the data is in.*

**Transformation Settings**
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum A (\rightarrow) Datum B</td>
<td>radio button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datum B (\rightarrow) Datum A</td>
<td>radio button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*the direction of the transformation is specified by the selection of one of the two choices.*

- **Medium accuracy**
  - tick box
  - tick
  - if ticked, a seven parameter similarity transformation is used.

- **High accuracy**
  - tick box
  - if ticked, a NTv2 grid shift file is used.

- **Seven parameters**
  - file box
  - available 7 param definitions
  - if **Medium accuracy** is ticked, a seven parameter similarity transformation is selected.

- **Grid shift file**
  - file box
  - available gsb files
  - if **High accuracy** is ticked, a NTv2 grid shift is selected.

- **Ellipsoid Height**
  - input box
  - this is only required if the data to be transformed contains null values *and* when

  1) The **7 parameter similarity transformation** is used and/or
  2) When either the input or output types are of **Global XYZ** type

  *An approximate ellipsoid level needs only to be +/- 100 m from the true value for most accuracy requirements. (An error in estimation of the ellipsoid height of a few hundred metres will introduce an error in the transformed horizontal position in the order of millimetres only).*

**Data Source**
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use data source</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If ticked, a data source is used to select the data to be transformed. If not ticked, a given co-ordinate is transformed.</td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If use data source is ticked, the source of data to transform. The source of the data to be adjusted is selected using the data source box. For more information on the data source box see 4.19.3 Data Source.</td>
</tr>
<tr>
<td>Input coordinates</td>
<td>XYZ box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If use data source is not ticked, the co-ordinates in this field is transformed.</td>
</tr>
<tr>
<td>Output coordinates</td>
<td>XYZ box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If use data source is not ticked, the transformed co-ordinates are displayed in this field.</td>
</tr>
</tbody>
</table>

Target
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Target</strong></td>
<td>target</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*if use data source in the data source is ticked, the target of the transformed data should be specified.*

*The target for the data is selected using the data target box. For more information on the data target box see [4.19.4 Data Target](#).*

**Process** button

*perform the transformation.*

### 17.10.7 IGN72 <--> RGNC1991

**Position of option on menu:** Survey =>Conversions =>IGN72 <->RGNC1991

This option converts data between the old and new datums for New Caledonia.

The transformation between the two datums can be by either a seven parameter similarity transformation or a NTv2 grid.

The data to be converted to/from can be (longitude, latitude) or (Easting, Northing).
17.10.8 MGRS <---> UTM

Position of option on menu: Survey => Conversions => MGRS<->UTM
# 17.11 Geodetic Measures and Entry

**Position of menu:** Survey => Geodetics

The **Geodetics** walk-right menu is:

<table>
<thead>
<tr>
<th>Geodetic Measure</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projection bearing/distance entry</td>
<td>Bearing distance entry for a projection</td>
</tr>
<tr>
<td>E,N from ellip dist, plane bearing</td>
<td>Use ellipsoid dist, plane brg to create point</td>
</tr>
<tr>
<td>Plane bearing/distance measure</td>
<td>Measure bearing, distance, with user input for scale</td>
</tr>
<tr>
<td>Projection bearing/distance measure</td>
<td>Measure plane brg, ellip dist, given projection</td>
</tr>
<tr>
<td>GD94/AGD66-84 bearing/distance measure</td>
<td>Bearing dist between 2 pts for GDA/AGD</td>
</tr>
<tr>
<td>Long, lat from grid coordinates</td>
<td>Long and lat from projection (grid) coords</td>
</tr>
<tr>
<td>GD94/AGD66-84 point scale factor</td>
<td>Point scale factor at a grid point for GDA/AGD</td>
</tr>
<tr>
<td>Non-projection to projection coordinates</td>
<td>Non-projection to projection coordinate conversion</td>
</tr>
<tr>
<td>Projection to non-projection coordinates</td>
<td>Projection to non-projection coordinate conversion</td>
</tr>
<tr>
<td>Bearing/distance label</td>
<td>Bearing distance label for selected string/segment</td>
</tr>
<tr>
<td>Projection bearing/distance label</td>
<td>Projection brg-dist label for selected string/segment</td>
</tr>
<tr>
<td>Geodetic reporting</td>
<td>Create a report based on projection coordinates</td>
</tr>
<tr>
<td>Solar reduction</td>
<td>Reduce solar observations</td>
</tr>
<tr>
<td>Star reduction</td>
<td>Reduce star observations</td>
</tr>
</tbody>
</table>

For more information about terminology used in these sections, see the Appendix 38 Geodetics Summary.

## 17.11.1 Projection Bearing/Distance Entry

**Position of option on menu:** Survey => Geodetics => Projection bearing/distance entry

This section of documentation is a work in progress and will be updated in subsequent releases.
The **Projection bearing/distance entry** option allows the input of a traverse by manual input of projection bearings (the plane bearing) and ellipsoid distances or by selecting an existing string. For each point, the projection co-ordinates are used with the projection bearing and ellipsoid distance from that point to calculate the projection co-ordinates for the new point taking the map projection into account.

Selecting **Projection bearing/distance entry** brings up the **Projection Bearing/Distance Entry** panel.

![Projection Bearing/Distance Entry GUI](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>name box</td>
<td>defined names from names.4d file</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>colour box</td>
<td>red</td>
<td></td>
</tr>
<tr>
<td>Linestyle</td>
<td>input</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Projection</td>
<td>input</td>
<td>project projection</td>
<td></td>
</tr>
<tr>
<td>Point number</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*This field is optional. If non-blank, the name of the new string.*

*If non-blank, the model of the new string. If blank, the original string model is used.*

*If non-blank, the colour of the new string. If blank, the original string colour is used.*

*Line style of the string.*

*This is the projection that is used for calculating the (Easting, Northing) values.*
Start point coords measure box
Use z-value tick box transit

if ticked, the z-values for each point are entered.
If no ticked then z-values are not entered and are not displayed in the grid.

Point id input typed none, auto increment, typed

if none, no point ids are entered and the grid control will not show a column for point ids.
If auto increment then the values of point ids will be incremented by a value of 1 starting from the specified Start point id. If no Start point id is specified then no point ids will be allocated. No column for point ids is shown in the grid control.

if typed then the values of point ids will be incremented by a value of 1, starting from the specified Start point id. If no Start point id is specified then no point ids will be allocated unless a value is entered in the grid control on which time the next value in the grid will have a incremented value. The column for point ids is shown in the grid control.

VALUES IN GRID grid box
The columns shown in the grid will depend on the selection of the Use z-value and Point id fields.

To Pt. input

if none is selected for the Point id field, this column will not be displayed.

if auto increment is selected for the Point id field, this column will not be displayed.

if typed is selected for the Point id field, this column will be displayed. In this case, the point id will increment automatically by entering over the field. If a new value is typed into the To Pt. field, the next line will increment from that number.

Proj.Brg angle box
The user should enter the projection bearing for the segment into this field. The projection bearing can be defined as the bearing resulting from plane geometry calculations between the two projection coordinates. This is sometimes called the grid bearing in some countries (e.g. New Zealand) and the plane bearing in others such as Australia as defined in the GDA technical manual (ICSM).

Ellip Dist input box
the user should enter the ellipsoid distance. This distance is the measured horizontal distance that has been reduced onto the ellipsoid taking into account the heights above the ellipsoid at each end of the measured line. This reduction may be by the use of a height scale factor for example. Distances that are measured near mean sea level approximate the ellipsoid distance (since the MSL approximates the ellipsoid in many reference ellipsoids (e.g AGD)). The amount of correction will be dependant on the length of line, the heights above the ellipsoid and the reference ellipsoid being used.

Height input box
This column will only be visible in the grid if the Use z-value tickbox has been ticked. The user should enter the height of the point. This value will not be used for calculation of the segment. It will simply be assigned to the newly created vertex.

Select button
on pressing the select button, a user is able to pick an existing string from the current view. If a non-traverse type string is selected an option to convert it to a traverse string will be given. The grid control will be filled with the relevant information for the traverse string.

If a traverse string has been modified by some other process (e.g. move) an option will be given to adopt the new characteristics of the string as displayed or revert back to the information that originally defined the traverse string. Depending on which option is selected, the grid will be filled with the
relevant information.

**Process** button changes to the traverse can be made in the grid control for lines already defined. For example, a distance entry may be incorrectly typed in and edited some time later. By using the process button the traverse string is re-calculated using the current values in the grid control.

### 17.11.2 E,N from Ellipsoid Distance and Plane Bearing

**Position of option on menu:** Survey => Geodetics => E,N from ellip dist, plane bearing

The E,N calc from ellip dist, plane brg option allows users to calculate projection coordinates given the projection, start coordinate, plane bearing and ellipsoid distance. The results are given inside the panel.

On selecting the E,N calc from ellip dist, plane brg option, the **Projection Coords from plane brg and ellipsoid dist** panel is displayed.

![Projection Coords From Plane Brg And Ellipsoid Dist](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Projection selection</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projection</td>
<td>choice box</td>
<td>current projection</td>
<td>available projections</td>
</tr>
<tr>
<td><strong>Start coordinates</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Easting</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northing</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

the projection of the data to be used.

**Start coordinates**

- **Easting**
- **Northing**

the easting value of the start coordinate.

the northing value of the start coordinate.
Select Pt button

if the point exists in a view, the coordinate can be entered by selecting the button and then on the required point. The selected points coordinates will be returned to the relevant coordinate boxes.

**Bearing/Dist obs**

**Plane bearing** input

the plane bearing (or Projection brg) of the line from the nominated start coordinate. The projection bearing can be defined as the bearing resulting from plane geometry calculations between the two projection coordinates. This is sometimes called the grid bearing in some countries (e.g. New Zealand) and the plane bearing in others (e.g Australia as defined in the GDA technical manual (ICSM)).

**Ellipsoid distance** input

the ellipsoid distance of the line from the nominated start coordinate

**Reduced coordinates**

**Easting** input

the calculated easting value of the 2nd point.

**Northing** input

the calculated northing value of the 2nd point.

**Buttons at bottom**

**Process** button

perform the calculation.

**Clear** button

clear the input fields

---

**17.11.3 Plane Bearing and Distance Measure**

**Position of option on menu:** Survey => Geodetics => Plane bearing/distance measure

Measures the plane angle and plane distance between two selected points.

This option has already been documented in the section 28.6.2 Bearing and Distance.

**17.11.4 Projection Bearing and Distance Measure**

**Position of option on menu:** Survey => Geodetics => Projection bearing/distance measure

The **Projection bearing and dist** option allows users to measure projection plane bearing, plane distance, ellipsoid distance, arc-to chord values and a line scale factor.

On selecting the **Projection bearing and dist** option, the Measure Projection Plane bearing and ellipsoid dist panel is displayed.
This panel is principally used to display the distances between, and bearing of the line joining, pairs of user selected points.

- **message area 1**: point selection comment
- **message area 2**: \(dx = dy =\)
- **message area 3**: plane brg = plane dist = ellipsoid dist =
- **message area 4**: t-T fwd = t-T rev = l.s.f =

where \(dx\) is the \(x\) coordinate difference between the points, \(dy\) is the \(y\) coordinate difference between the points.

plane brg is the angle measured clockwise from north and is calculated using the coordinate values (Inverse value).

plane dist is the distance calculated using the coordinate values (Inverse value).

ellipsoid dist is the ellipsoid distance calculated using the specified projection and coordinate values.

\(t-T\) fwd is the forward arc-to chord correction.

\(t-T\) rev is the reverse arc-to chord correction.

l.s.f is the line scale factor. It is calculated by plane distance/ellipsoid distance.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mode</strong></td>
<td>input</td>
<td>input</td>
<td>disjoint</td>
<td>disjoint, continuous</td>
</tr>
</tbody>
</table>

*In disjoint mode, only the distance between the two points and the bearing (in degrees, minutes and seconds) of the (imaginary) line connecting the two points are displayed.*

*In continuous mode, after the initial reporting of the bearing/distance, the user is prompted to select the next point (2nd point). In this case the previously selected second point becomes the first point.*

<table>
<thead>
<tr>
<th><strong>Projection</strong></th>
<th>choice</th>
<th>current projection</th>
<th>available projections</th>
</tr>
</thead>
</table>

*the projection of the data to be used.*

<table>
<thead>
<tr>
<th><strong>Clear</strong></th>
<th>button</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

*when this button is selected, the selection sequence is re-initialised.*

17.11.5 GDA94/AGD66-84 Bearing and Distance Measure

Position of option on menu: Survey => Geodetics => GDA94/AGD66-84 bearing/distance
measure
The Bearing and distance (GDA94/AGD66-84) is specifically for Australian use. It allows users to select two AMG/MGA coordinates and return the calculated geodetic parameters.

On selecting the Bearing and distance (GDA94/AGD66-84) option, the Bearing and distance (GDA94/AGD66-84) panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>input</td>
<td>disjoint</td>
<td>disjoint, continuous</td>
</tr>
</tbody>
</table>

In disjoint mode, the geodetic parameters between the two points are displayed. After the first calculation, further selections must include both the first and second points.

In continuous mode, after the initial reporting of the values, the user is prompted to select the next point (2nd point). In this case, the previously selected second point becomes the first point.

Datum choice current projection AGD66/84 GDA94

the datum of the data to be used.
Select N value setting  radio button selected  

if the data has non-ellipsoid heights then a conversion to ellipsoid heights is available using a method defined in the N value interpolation method choice box.

Note: The ellipsoid height is required to calculate the values. However most level datums, such as AHD approximate geoid heights. Therefore, one of the selected points should at least have a non-null value and a means for computing a ellipsoid height. If one point has a valid height and the other does not, an option will be given to assume the other point has the same value.

Various options of converting non-ellipsoid geoid heights to ellipsoid are given by the N value interpolation method choice box or the user can enter N values for the first and second points.

N value interpolation method  choice box  currently set method Available n value methods

the N value method allows the conversion of non-ellipsoid heights to ellipsoid. The methods are defined in the project n value settings. For more information on the n value settings see the section 7.6.7 N values.

The N value will be used to convert a geoid height (e.g. AHD) into an ellipsoid height. Ellipsoid height = geoid height + N value. The conversion is used for the calculation only. The original z value for the point will remain unchanged.

the zone of the data to be used.
Input N values radio button unselected
if an N value is known for the area or for the selected points, it will be used to convert a geoid height (e.g. AHD) into an ellipsoid height. Ellipsoid height = geoid height + N value. The conversion is used for the calculation only. The original z value for the point will remain unchanged

1st pt N value input box
if the Input N value option is chosen, an N value is entered for the first point.

2nd pt N value input box
if the Input N value option is chosen, an N value is entered for the second point.

How to Use the Panel and Panel Messages
The results are returned to the panel in the following format:
message area 1 Messages
message area 2 plane brg =, plane dist, dx =, dy =
measure area 3 grid brg =, ellipsoid dist =, line scale factor =
message area 4 Mean height factor =, (Plane dist/level terrain dist) scale factor =
measure area 5 Mean level terrain distance =

Note: Mean height factor is the factor to apply to a measured horizontal distance (usually measured at a height above or below the ellipsoid) to reduce it down to an ellipsoid distance. The other geodetic values and terminology are clearly defined in the GDA technical manual. See http://www.anzlic.org.au/icsm/gdatm/

The cycle can then be repeated for another point by simply selecting another point without leaving the option. The clear button resets the message areas.

17.11.6 Longitude, Latitude from Grid Coordinates

Position of option on menu: Survey =>Geodetics =>Long, lat from grid coordinates
The Longitude, latitude from grid coordinates option allows a user to calculate Longitude, latitude and convergence of a point, given a projection and selection of a grid coordinate.

On selecting the Longitude, latitude from grid coordinates option, the Longitude, latitude from grid coordinates panel is displayed.

The fields and buttons used in this panel have the following functions.
Field Description Type Defaults Pop-Up
Projection choice current projection available projections
the projection of the data to be used.

The cycle can then be repeated for another point by simply selecting another point without leaving the option. The clear button resets the message areas.

17.11.7 GDA94/AGD66-84 Point Scale Factor
Position of option on menu: Survey => Geodetics => GDA94/AGD66-84 point scale factor

The Point scale factor (GDA94/AGD66-84) is specifically for Australian use. It allows users to select AMG/MGA coordinates and return the point scale factor and latitude and longitude of the point.

On selecting the Point scale factor (GDA94/AGD66-84) option, the Point scale factor (GDA94/AGD66-84) panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum</td>
<td>choice</td>
<td>current projection</td>
<td>AGD66/84</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GDA94</td>
</tr>
</tbody>
</table>

The datum of the data to be used.
the zone of the data to be used.

Note: The ellipsoid height is required to calculate the point scale factor. However most level datums, such as the AHD approximate geoid heights. Therefore, selected points should at least have a non-null value and a means for computing a ellipsoid height. Various options of converting non-ellipsoid geoid heights to ellipsoid are given.

Select N value setting
- radio button selected if the data has non-ellipsoid heights then a conversion to ellipsoid heights is available using a method defined in the **N value interpolation method** choice box.

N value interpolation method choice box currently set method Available n value methods the N value method allows the conversion of non-ellipsoid heights to ellipsoid. The methods are defined in the project n value settings. For more information on the n value settings see the section 7.6.7 N values.

The N value will be used to convert a geoid height (e.g. AHD) into an ellipsoid height. Ellipsoid height = geoid height + N value. The conversion is used for the calculation only. The original z value for the point will remain unchanged.

Input N value radio button unselected if an N value is known for the area or for the selected point, it will be used to convert a geoid height (e.g. AHD) into an ellipsoid height. Ellipsoid height = geoid height + N value. The conversion is used for the calculation only. The original z value for the point will remain unchanged.

Enter N value input box if the Input N value option is chosen, an N value is entered.

How to Use the Panel and Panel Messages
The results are returned to the panel in the following format:
- message area 1 Messages
- message area 2 Point scale = , Interpolated or entered N value = (if applicable)
- measure area 3 Combined point scale/height factor =
- message area 4 Longitude = Latitude =

The cycle can then be repeated for another point by simply selecting another point without leaving the option. The **clear** button resets the message areas.

17.11.8 Non-Projection to Projection Coordinates

Position of option on menu: Survey => Geodetics => Non-projection to projection coordinate conversion

The **Non-projection to projection coordinate conversion** is for the conversion of non-
projection coordinates (plane) to a specified projection system. This is done by calculating a series of vectors from an origin point. The origin coordinates in both the plane and projection are known. The plane vector is calculated between the origin and other selected points. Then using the projection coordinates of the origin and the plane vector a projection vector is calculated which allows the projection coordinates of the selected points to be calculated. The azimuth orientation should be the same in both systems, i.e. no swing should be required.

The process will convert the vertex of straight segments very effectively. However, care should be taken when trying to convert non-linear segments such as curves. These may have construction entities such as TP’s that no longer have the same relationship with a centre point after conversion for example. This is due to differing scale factors of points due to the projection.

On selecting the **Non-projection to projection coordinates** option, the **Non-projection to projection coordinate conversion** panel is displayed.

![Non-projection to projection coordinate conversion panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data to change</strong></td>
<td>source box</td>
<td>model</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the source of objects to be converted are selected using the data source box. For more information on the data source box see <a href="#">4.19.3 Data Source</a>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Projection</strong></td>
<td>projection box</td>
<td>current projection</td>
<td>available projections</td>
</tr>
<tr>
<td></td>
<td>the projection to which the data is to be converted to is specified in the projection box.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Plane easting</strong></td>
<td>input box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
the plane easting value of the origin point.

**Plane northing** input box
the plane northing value of the origin point.

**Select Plane Pt** button
selection of the button allows the point to picked from a view. The user selects and accepts the point and then the values are placed into the relevant input boxes.

**Projection easting** input box
the projection easting value of the origin point.

**Projection northing** input box
the projection northing value of the origin point.

**Select Projection Pt** button
selection of the button allows the point to picked from a view. The user selects and accepts the point and then the values are placed into the relevant input boxes.

**Target** target
the target of the transformed data should be specified. The target for the data is selected using the data target box. For more information on the data target box see 4.19.4 Data Target.

### 17.11.9 Projection to Non-Projection Coordinates

**Position of option on menu:** Survey => Geodetics => Projection to non-projection coordinate conversion

The **Projection to non-projection coordinate conversion** is for the conversion of projection coordinates to plane coordinates. This is done by calculating a series of vectors from an origin point. The origin coordinates in both the plane and projection are known. The projection vector is calculated between the origin and other selected points. Then using the plane coordinates of the origin and the projection vector a plane vector is calculated which allows the projection coordinates of the selected points to be calculated. The azimuth orientation should be the same in both systems, i.e. no swing should be required.

The process will convert the vertex of straight segments very effectively. However, care should be taken when trying to convert non-linear segments such as curves. These may have construction entities such as TP’s that no longer have the same relationship with a centre point after conversion for example. This is due to differing scale factors of points due to the projection.

On selecting the **Projection to non-projection coordinates** option, the **Projection to non-projection coordinate conversion** panel is displayed.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data to change</td>
<td>source box</td>
<td>model</td>
<td></td>
</tr>
<tr>
<td><strong>the source of objects to be converted are selected using the data source box. For more information on the data source box see</strong> <a href="#">4.19.3 Data Source</a></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projection</td>
<td>choice box</td>
<td>current projection</td>
<td>available projections</td>
</tr>
<tr>
<td><strong>the projection to which the data is to be converted from is specified in the projection box.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projection easting</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>the projection easting value of the origin point.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projection northing</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>the projection northing value of the origin point.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select Proj. Pt</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>selection of the button allows the point to picked from a view. The user selects and accepts the point and then the values are placed into the relevant input boxes.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plane easting</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>the plane easting value of the origin point.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plane northing</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>the plane northing value of the origin point.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Select Plane Pt button
selection of the button allows the point to picked from a view. The user selects and accepts the point and then the values are placed into the relevant input boxes.

Target target
the target of the transformed data should be specified. The target for the data is selected using the data target box. For more information on the data target box see 4.19.4 Data Target.

17.11.10 Bearing/Distance Label

Position of option on menu: Survey => Geodetics => Bearing/distance label

The Bearing/distance label is for the labelling of a selected string with bearing and distance information. It allows a parameter file to be setup (*.lbf) which can be written and read into the option. This file allows the setting of panel parameters such as rounding, textstyle data etc.

The pick should be with direction. This will effect the bearing that is labelled (+/-180 degrees).

On selecting the Bearing/distance label option, the Bearing/distance label panel is displayed.

![Bearing/Distance Label Panel]

The fields and buttons used in this panel have the following functions.
**Parameter file**

- **Type:** file box
- **Defaults:** *.lbf files

The parameter file can be read in which will fill in the remaining values within the panel. The user can make changes and save the choices as a different file, thus enabling a library of labelling options to be created.

**Read button**

If a valid parameter file is entered into the parameter file field, the user can press the read button to load the information in the file into the panel.

**Write button**

If a valid parameter file name is entered into the parameter file field, the user can press the write button to save the edited panel information into a file so that it can be read in at a later date.

**Scale factor**

- **Type:** input box
- **Defaults:** Current Scale factor at Central meridian if set

If a scale factor is specified, the distance values labelled will use the scale factor to compute the label distance. This scale factor will be applied to the calculated plane distance from coordinates in the following manner:

\[
\text{label distance} = \frac{\text{plane distance}}{\text{scale factor}}.
\]

**Label style**

- **Type:** choice box
- **Defaults:** bearing and distance

Bearing and distance equates to having the bearing and distance justification point at the same point on the midpoint of the segment (the text justification can make the bearing bottom-middle and the distance top-middle for example to show the bearing above the line and the distance below).

Bearing distance equates to having the bearing and distance justification point along side. For example, a label may be a bearing on the left and a distance on the right.

Distance bearing equates to having the distance and bearing justification point along side. For example, a label may be a distance on the left and a bearing on the right.

**Label all segments**

- **Type:** tick box
- **Defaults:** unticked

If ticked all the segments of the selected string will be labelled.

### Bearing tab

The following fields are located on the bearing tab:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>model box</td>
<td>current models</td>
<td></td>
</tr>
</tbody>
</table>
if a valid model name is specified, the bearing text will be created in that model.

Textstyle data

Textstyle data

on pressing the textstyle data button a list of available textdata predefined names read from the `textstyles_name.4d` file are displayed.

If no names exist, the user can edit the current settings by selecting the edit button and bring up the textstyle data panel. This allows for definition of textstyle, units, height offset raise etc.

The textstyle data panel enables the user to define multiple text parameters.

Zero padding

if ticked, the labels will have zero's inserted so that at least 2 characters exist for the minutes and second part of the label. For example, A bearing of 10° 6’ 5” would become 10° 06’ 05” with padding.

The values in the grid relate to the rounding of bearings for labelling. Many different ranges can be specified in the grid with each line representing a valid rounding range.

To(m)

the rounding upper range limit in meters. This value together with the rounding specified, allow the bearings between certain distance ranges to be rounded to a certain value. The first line in the grid is
from 0 to the specified distance range. Any following lines in the grid use the To(m) value in the
previous line for the lower limit to the To(m) value in that line.

**Rounding (sec) input box**

the rounding value given relates to the distance range. Any bearing within the distance range specified
will be rounded to the value in seconds. e.g for a rounding value of 60 seconds the bearing will be
rounded to the nearest minute.

**Distance tab**

the following fields are located on the distance tab.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>model box</td>
<td>current models</td>
<td></td>
</tr>
<tr>
<td>Textstyle data</td>
<td>textstyle box</td>
<td>current textstyle names</td>
<td>on pressing the textstyle data button a list of available textdata predefined names read from the texstyles_name.4d file are displayed.</td>
</tr>
<tr>
<td>Suffix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To(m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rounding(m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decimals</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If no names exist, the user can edit the current settings by selecting the edit button and bring up the textstyle data panel. This allows for definition of textstyle, units, height offset raise etc.
The textstyle data panel enables the user to define multiple text parameters.

**Suffix**
- **input box**
  - if entered, this suffix will be appended to the end of the distance label.

The values in the grid relate to the rounding of distances for labelling. Many different ranges can be specified in the grid with each line representing a valid rounding range.

**To(m)**
- **input box**
  - the rounding upper range limit in meters. This value together with the rounding and number of decimals specified, allow the distance to be rounded to a certain value. The first line in the grid is from 0 to the specified distance range. Any following lines in the grid use the **To(m)** value in the previous line for the lower limit to the **To(m)** value in that line.

**Rounding (m)**
- **input box**
  - the rounding value given relates to the distance range. Any distance within the distance range specified will be rounded to the value in metres. e.g for a rounding value of 0.05 a distance of 125.261 will be rounded to a value of 125.25

**Decimals**
- **input box**
  - the number of decimal places can be specified. For a distance of 125.261, rounding of 0.05 and Decimals equal to 3, the label will be 125.250.

**Short segment tab**
- the following fields are located on the short segment tab.
What’s New in 12d Model

Geodetic Measures and Entry

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Model</strong></td>
<td>model box</td>
<td>current models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>if a valid model name is specified, the short segment text will be created in that model.</em></td>
<td></td>
</tr>
<tr>
<td><strong>Textstyle data</strong></td>
<td>textstyle box</td>
<td>current textstyle names</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>on pressing the textstyle data button a list of available textdata predefined names read from the texstyles_name.4d file are displayed.</em></td>
<td></td>
</tr>
</tbody>
</table>

If no names exist, the user can edit the current settings by selecting the edit button and bring up the **Textstyle data** panel. This allows for definition of textstyle, units, height offset raise etc.

The textstyle data panel enables the user to define multiple text parameters.

**Max. length**

*input box*

*if entered, this value will be compared with the selected segment distance. If the selected distance is less than this distance, the short line labelling will override any bearing and distance labelling.*

**Number**

*input box*

*if entered, this value will be used for the short segment text.*
Pick button

on selection the user can then select a segment/line from a view with direction. The direction will give the bearing direction which is usually +/- 180 degrees different. eg a segment with a bearing of 24 degrees can be labelled with a bearing of 204 by picking in a south west direction.

17.11.11 Projection Bearing/Distance Label

Position of option on menu: Survey => Geodetics => Projection bearing/distance label

The Projection bearing/distance label is for the labelling of a selected string with plane bearing and ellipsoid distance information that is in terms of a selected projection. It allows a parameter file to be setup (*.lbf) which can be written and read into the option. This file allows the setting of panel parameters such as rounding, textstyle data etc.

The pick should be with direction. This will effect the bearing that is labelled (+/-180 degrees of actual direction).

On selecting the Projection bearing/distance label option, the Projection bearing/distance label panel is displayed.

The fields and buttons used in this panel have the following functions.
What's New in 12d Model

Geodetic Measures and Entry

Field Description	Type	Defaults	Pop-Up
**Parameter file** | file box | | *.lbf files
the parameter file can be read in which will fill in the remaining values within the panel. The user can make changes and save the choices as a different file, thus enabling a library of labelling options to be created.

**Read** | button | | 
if a valid parameter file is entered into the parameter file field, the user can press the read button to load the information in the file into the panel.

**Write** | button | | 
if a valid parameter file name is entered into the parameter file field, the user can press the write button to save the edited panel information into a file so that it can be read in at a later date.

**Projection** | choice | current projection | available projections
the projection of the data to be used for labelling.

**Label style** | choice box | bearing and distance | bearing and distance, bearing distance, distance bearing
the label style.

*Bearing and distance* equates to having the bearing and distance justification point at the same point on the midpoint of the segment (the text justification can make the bearing bottom-middle and the distance top-middle for example to show the bearing above the line and the distance below)

*Bearing distance* equates to having the bearing and distance justification point along side. For example, a label may be a bearing on the left and a distance on the right

*Distance bearing* equates to having the distance and bearing justification point along side. For example, a label may be a distance on the left and a bearing on the right

**Label all segments** | tick box | unticked | 
if ticked all the segments of the selected string will be labelled.

**Bearing tab**
the following fields are located on the bearing tab.

Field Description	Type	Defaults	Pop-Up
**Model** | model box | current models | 
if a valid model name is specified, the bearing text will be created in that model.

**Textstyle data** | textstyle box | current textstyle names | 
on pressing the textstyle data button a list of available textdata predefined names read from the `texstyles_name.4d` file are displayed.
If no names exist, the user can edit the current settings by selecting the edit button and bring up the textstyle data panel. This allows for definition of textstyle, units, height offset raise etc.

The textstyle data panel enables the user to define multiple text parameters.

Zero padding tick box unticked
if ticked, the labels will have zero’s inserted so that at least 2 characters exist for the minutes and second part of the label. For example, A bearing of 10° 6’ 5” would become 10° 06 ’ 05” with padding.

The values in the grid relate to the rounding of bearings for labelling. Many different ranges can be specified in the grid with each line representing a valid rounding range.

To(m) input box
the rounding upper range limit in meters. This value together with the rounding specified, allow the bearings between certain distance ranges to be rounded to a certain value. The first line in the grid is from 0 to the specified distance range. Any following lines in the grid use the To(m) value in the previous line for the lower limit to the To(m) value in that line.

Rounding (sec) input box
the rounding value given relates to the distance range. Any bearing within the distance range specified
will be rounded to the value in seconds. e.g. for a rounding value of 60 seconds the bearing will be rounded to the nearest minute.

**Distance tab**

The following fields are located on the distance tab.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Model</strong></td>
<td>model box</td>
<td>current models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if a valid model name is specified, the distance text will be created in that model.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Textstyle data</strong></td>
<td>textstyle box</td>
<td>current textstyle names</td>
<td></td>
</tr>
<tr>
<td></td>
<td>on pressing the textstyle data button a list of available textdata predefined names read from the texstyles_name.4d file are displayed.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If no names exist, the user can edit the current settings by selecting the edit button and bring up the textstyle data panel. This allows for definition of textstyle, units, height offset raise etc.
The textstyle data panel enables the user to define multiple text parameters.

**Suffix** input box
if entered, this suffix will be appended to the end of the distance label.

The values in the grid relate to the rounding of distances for labelling. Many different ranges can be specified in the grid with each line representing a valid rounding range.

**To(m)** input box
the rounding upper range limit in meters. This value together with the rounding and number of decimals specified, allow the distance to be rounded to a certain value. The first line in the grid is from 0 to the specified distance range. Any following lines in the grid use the To(m) value in the previous line for the lower limit to the To(m) value in that line.

**Rounding (m)** input box
the rounding value given relates to the distance range. Any distance within the distance range specified will be rounded to the value in metres. e.g for a rounding value of 0.05 a distance of 125.261 will be rounded to a value of 125.25

**Decimals** input box
the number of decimal places can be specified. For a distance of 125.261, rounding of 0.05 and Decimals equal to 3, the label will be 125.250.

**Short segment tab**
the following fields are located on the short segment tab.

---

**Geodetic Measures and Entry**

Page 3259
**Model**

*model box*  
*current models*

If a valid model name is specified, the short segment text will be created in that model.

**Textstyle data**

*textstyle box*  
*current textstyle names*

On pressing the textstyle data button a list of available textdata predefined names read from the `textstyles_name.4d` file are displayed.

If no names exist, the user can edit the current settings by selecting the edit button and bring up the *textstyle data* panel. This allows for definition of textstyle, units, height offset raise etc.

The textstyle data panel enables the user to define multiple text parameters.

**Max. length**

*input box*

If entered, this value will be compared with the selected segment distance. If the selected distance is less than this distance, the short line labelling will override any bearing and distance labelling.

**Number**

*input box*

If entered, this value will be used for the short segment text.
Pick button on selection the user can then select a segment/line from a view with direction. The direction will give the bearing direction which is usually +/- 180 degrees different. eg a segment with a bearing of 24 degrees can be labelled with a bearing of 204 by picking in a south west direction.

17.11.12 Geodetic Reporting

Position of option on menu: Survey => Geodetics => Geodetic reporting

The Geodetic reporting option is for the reporting of selected data (projection coordinates) in terms of geodetic positions and variables. The user can choose from a number of different reporting options including, point scale factor, Longitude and latitude, point IDs, etc.

On selecting the Geodetic reporting option, the Geodetic Reporting panel is displayed.

![Geodetic Reporting panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field to report</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source box</td>
<td>model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

the source of objects to be reported are selected using the data source box. For more information on the data source box see 4.19.3 Data Source. The selected data must be in terms of the selected map projection.coordinate system.

Projection choice current projection available projections

the projection of the data to be reported.

N value interpolation method choice box currently set method Available n value methods

the N value method allows the conversion of non-ellipsoid heights to ellipsoid. The methods are defined in the project n value settings. For more information on the n value settings see the section 7.6.7 N values.
The N value will be used to convert a geoid height (e.g. AHD) into an ellipsoid height. Ellipsoid height = geoid height + N value. The conversion is used for the reporting only. The original z value for the point will remain unchanged.

String name tick box
if selected, any valid string names will be shown in the report.

Point IDs tick box
if selected, any valid point ids will be shown in the report.

Vertex indices tick box
if selected, vertex numbers will be shown in the report.

X,Y coordinates tick box ticked
if ticked, the coordinates of the selected data will be reported.

Z coord tick box
if selected, any valid z values will be shown in the report.

N values tick box
if ticked, the N value calculated for the given point will be reported (if valid).

Ellipsoid heights tick box
if selected, the calculated ellipsoid height will be reported. If no N values are calculated, this will be the same as the Z value.

Long, Lat tick box
if selected, the calculated longitude and latitude will be reported.

Point scale tick box ticked
if selected, the point scale for each point will be reported.

Combined point scale tick box
if selected, the combined point scale for each point will be reported. This combined scale factor is the product of the point scale factor and a height scale factor. The height scale factor is computed from the ellipsoid height of the point.

Text tick box
if selected, any valid text values will be shown in the report.

Report file input *.rpt
name of the file to report to.

Report button

17.11.13 Solar Reduction

Position of option on menu: Survey => Geodetics => Solar reduction

The Solar reduction option allows the reduction of observations to the sun by the hour angle method. The user can specify either limb or the centre of the sun, and a number of observations can be processed together. The option does not require almanac details as these are processed internally using algorithms supplied by the US naval observatory. These algorithms will produce accuracy in the order of 2 arc seconds in azimuth for the period AD1800 - 2050.

On selecting the Solar reduction option, the Solar Observations panel is displayed.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>file box</td>
<td>* .ast files</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read button</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write button</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projection</td>
<td>choice</td>
<td>current projection</td>
<td>available projections</td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td>input</td>
<td>* .rpt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin station</td>
<td>input</td>
<td>name of the origin station</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RO station</td>
<td>input</td>
<td>name of the reference object station</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin longitude</td>
<td>input</td>
<td>the observation station's longitude should be specified in DMS format.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin latitude</td>
<td>input</td>
<td>the observation station's latitude should be specified in DMS format.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>date box</td>
<td>current system date</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If a valid file exists, the file contents can be loaded into the panel.

If a valid name is specified and the valid values are entered into all of the fields, the user can write the input data to a file.

A projection can be specified so that a grid convergence value can be computed. This value will be used to compute the grid or projection bearing to the RO. If left blank, only the True azimuth will be reported.

The date of the observations as at the observers position should be entered. This can be by direct entry.
into the date field or by selecting the day, month, year from a date pop-up panel. The user can scroll through different months by selecting the arrow buttons on the pop-up date panel.

**Time zone**
- **time zone box**
- **major time zones**

A valid time zone for the observer's position and local time should be selected from the pop-up list.

**Timing corr. (hh:mm:ss)**
- **input**

The correction to apply for any timing error including stopwatch corrections should be entered. The value should be in hours, minutes, seconds in **hh:mm:ss** format.

**GRID VALUES:**
- **input**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local time</td>
<td>input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the local time of the observation specified in 24 hour time in HMS. eg. 18.121002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horiz obs to RO</td>
<td>input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the horizontal angle (bearing) observed to the RO for the set of measurements. A set in this case includes a pointing to the RO and sun (at a certain time) in the same face.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horiz obs to SUN</td>
<td>input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the horizontal angle (bearing) observed to the Sun for the set of measurements. (The observation should not be corrected for the sun's semi diameter as this is done internally by the reduction process)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If observations are made on both faces, a separate line should be entered for each face. E.g., Face 1 to RO may be 0.0000 and the face 1 to the sun may be 50.0000 which would be on the same line, then the observer may change face to face 2 and observe to the sun again followed by the RO. The face 2 observations should appear on the next line e.g. 180.0004 230.0110.

| Limb of sun             | choice box  | Centre        | Left limb | Right limb |
|                        |             |               |          |           |
| the limb of the sun observed should be specified. This enables the sun's semi diameter correction to be applied. This also allows the observations to be read in any order. |

| Az to cen. SUN          | output      |               |          |          |
| the true azimuth to the sun will be displayed in this field on successful reduction of the observations. |

| Az to RO                | output      |               |          |          |
| the true azimuth to the RO will be displayed in this field on successful reduction of the observations. |

| Conv. angle             | output      |               |          |          |
| the convergence angle at the observation point will be displayed in this field if a valid projection is specified and there is a successful reduction of the observations. |

| Grid brg to RO          | output      |               |          |          |
| the grid bearing to the RO will be displayed in this field if a valid convergence angle is calculated and there is a successful reduction of the observations. The grid bearing is calculated by: |

**Grid brg = True azimuth + convergence**

The fields and buttons used in this panel below the grid have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average RO azimuth</td>
<td>output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if there is a successful reduction, the average RO azimuth value will be reported in this field.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Average RO grid bearing output
if there is a successful reduction, and the projection given, the average RO grid bearing value will be reported in this field.

Standard deviation in the mean output
this is a statistical measure of the reduced observations.

17.11.14 Star Reduction

Position of option on menu: Survey => Geodetics => Star reduction

The **Star reduction** option allows the reduction of observations to the nominated star by the hour angle method. A number of observations can be processed together. **The option does not require almanac details as these are processed internally using algorithms supplied by the US naval observatory.** These algorithms will produce accuracy in the order of 2 arc seconds in azimuth for the period AD1800 - 2050

On selecting the **Star reduction** option, the **Star Observations** panel is displayed.

![Star Observations panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>file box</td>
<td>file box</td>
<td>* .ast files</td>
<td></td>
</tr>
<tr>
<td>Read</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

*a filename can be specified for reading or writing a file.*

*if a valid file exists, the file contents can be loaded into the panel.*

*if a valid name is specified and the valid values are entered into all of the fields, the user can write the input data to a file.*
the star can be identified by a number of different means. The stars available are based on the Fifth Fundamental Catalogue (FK5) catalogue. Cross matching of id's are not possible in some instances. e.g. A star may have no known general name.

The selection of an id method will force the changing of the id list so the particular star can be selected.

Star id choice
1st star id in list available id's for that type
the star id can be selected from the list.

Report file input *.rpt
name of the file to report to.

Origin station input
name of the origin station

RO station input
name of the reference object station

Origin longitude input
the observation station's longitude should be specified in DMS format.

Origin latitude input
the observation station's latitude should be specified in DMS format.

Date date box current system date
the date of the observations as at the observers position should be entered. This can be by direct entry into the date field or by selecting the day, month, year from a date pop-up panel. The user can scroll through different months by selecting the arrow buttons on the pop-up date panel.

Time zone time zone box major time zones
a valid time zone for the observers position and local time should be selected from the pop-up list.

Timing corr. (hh.mmss) input
the correction to apply for any timing error including stopwatch corrections should be entered. The value should be in a hours, minutes seconds in h/m/s format.

GRID VALUES:

<table>
<thead>
<tr>
<th>Local Time</th>
<th>Horiz obs to RO</th>
<th>Horiz obs to Star</th>
<th>Az to Star</th>
<th>Az to RO</th>
<th>Conv. angle</th>
<th>Grid brg to RO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Local time input
the local time of the observation specified in 24 hour time in HMS, eg. 18.121002

Horiz obs to RO input
the horizontal angle (bearing) observed to the RO for the set of measurements. A set in this case includes a pointing to the RO and star (at a certain time) in the same face.

If observations are made on both faces, a separate line should be entered for each face. e.g. Face 1 to RO may be 0.0000 and the face 1 to the star may be 50.0000 which would be on the same line, then the observer may change face to face 2 and observe to the star again followed by the RO. The face 2 observations should appear on the next line eg 180.0004 230.0110.
Horiz obs to Star input
the horizontal angle (bearing) observed to the Star for the set of measurements.

Az to Star output
the true azimuth to the sun will be displayed in this field on successful reduction of the observations.

Az to RO output
the true azimuth to the RO will be displayed in this field on successful reduction of the observations.

Conv. angle output
the convergence angle at the observation point will be displayed in this field if a valid projection is specified and there is a successful reduction of the observations.

Grid brg to RO output
the grid bearing to the RO will be displayed in this field if a valid convergence angle is calculated and there is a successful reduction of the observations. The grid bearing is calculated by:

Grid brg = True azimuth + convergence

The fields and buttons used in this panel below the grid have the following functions.

Field Description Type Defaults Pop-Up

**Average RO azimuth** output if there is as successful reduction, the average RO azimuth value will be reported in this field.

**Average RO grid bearing** output if there is as successful reduction, and the projection given, the average RO grid bearing value will be reported in this field.

**Standard deviation in the mean** output this is a statistical measure of the reduced observations.

---

### 17.12 Traverse Spreadsheet

**Position of menu:** Survey => Traverse spreadsheet

The **Traverse Spreadsheet** options allow the entry of traverse and radiation blocks from the keyboard, selection of strings from the current view or by reading from a file. Adjustments can then be made including transit, Bowditch, compass or least square adjustment. The adjustment can be for a closed string (loop) or an open string (non-loop). Traverse Spreadsheet will often be abbreviated as TSS.

There are two types of traverse spreadsheets (TSS) - Plane and Projection.

For the Plane TSS, entered distances are multiplied by the scale factor to give final distances and hence calculate co-ordinates, whereas for the Projection TSS, ellipsoid distances are entered and **12d Model** calculates the correct co-ordinate position using full projection calculations.

The **Traverse spreadsheet** walk-right menu contains the traverse spreadsheet options.

For the option **Parameters**, go to 17.12.1 TSS Parameters
Create 17.12.2 TSS Create
Edit 17.12.3 TSS Edit

---
17.12.1 TSS Parameters

**Position of option on menu:**  
Survey => Parameters

The Traverse Spreadsheet Parameters sets the parameters for defining the look and feel of the TSS create and edit panels, reports and drafting.

Selecting Parameters brings up the Traverse Spreadsheet Parameters panel:
17.12.2 TSS Create

**Position of option on menu:** Survey => Traverse spreadsheet => Create

A traverse spreadsheet (TSS) can either use a constant scale factor or a cartographic projection to define the relationship between bearings/distances and the (x,y) co-ordinates.
The Traverse Spreadsheet Create option allows the entry of traverse and radiation blocks from the keyboard, selection of strings from the current view or by reading from a file. Adjustments can then be made including transit, Bowditch, compass or least square adjustment. The adjustment can be for a closed string (loop) or an open string (non-loop).

Selecting Traverse Spreadsheet Create brings up the Create Traverse Spreadsheet panel:

![Create Traverse Spreadsheet Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projection spreadsheet</td>
<td>radio button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projection</td>
<td>projection box</td>
<td>first projection</td>
<td>project projections</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scaled spreadsheet</td>
<td>radio button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scale factor</td>
<td>real box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The cartographic projection used in the TSS. For more information on projections go to 7.6.6 Projections. This is a Projection TSS.

The constant scale factor used in the TSS. This is a Plane TSS.
Details section

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spreadsheet name</td>
<td>text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>File name</td>
<td>text box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

name of the *.ts file to store all the TSS data in. The TSS can be brought back for editing by giving this filename.

Create button
create a new traverse spreadsheet using the parameters entered in the above panel field. The appropriate editor (either for a Projection Traverse Spreadsheet or a Plane Traverse Spreadsheet panel) is then brought up for the TSS data to be entered and/or edited.

17.12.3 TSS Edit

Position of option on menu: Survey => Traverse spreadsheet => Edit

The traverse spreadsheet editor reads in an existing TSS file and loads the information into either the Projection Traverse Spreadsheet or the Plane Traverse Spreadsheet panel.

Selecting Traverse Spreadsheet Edit brings up the Edit Traverse Spreadsheet panel:

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>File name</td>
<td>file box</td>
<td>*.ts files</td>
<td></td>
</tr>
</tbody>
</table>

name of the file containing the traverse spreadsheet information to be edited.

Edit button
read the information in the traverse spreadsheet file and load it into either a Projection Traverse Spreadsheet or a Plane Traverse Spreadsheet panel.

For entering/editing either a Projection TSS or Plane TT, please go to the section 17.12.3.1 Traverse Spreadsheets

17.12.3.1 Traverse Spreadsheets

The Projection and Plane TSS panels allows the entry of traverse and radiation blocks from the keyboard, selection of strings from the current view or by reading from a file. Adjustments can then be made including transit, Bowditch, compass or least square adjustment. The adjustment can be for a closed string (loop) or an open string (non-loop).

The two panels are very similar and only the top section is different. The Projection Traverse Spreadsheet requires a Projection rather than a Scale factor.
For more information about terminology used in the projection option, see the Appendix 38, Geodetics Summary.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network name</td>
<td>display only</td>
<td></td>
<td>the entire spreadsheet can be given a name for identification purposes. This was defined when the TSS was created and can only be changed using the TSS Utilities option.</td>
</tr>
<tr>
<td>File name</td>
<td>display only</td>
<td></td>
<td>the file name containing the TSS information. This was defined when the TSS was created and can only be changed using the TSS Utilities option.</td>
</tr>
</tbody>
</table>

The only visible difference between the Plane and Projections Traverse Spreadsheet panel is that the Scale or Projection is given at the top of the panel. All the panel fields are the same.

Of course the calculations are different for the two types of spreadsheets. For the Plane TSS, entered distances are multiplied by the scale factor to give final distances and hence calculated co-ordinates, whereas for the Projection TSS, ellipsoid distances are entered and 12d Model calculates the correct co-ordinate position using full projection calculations.

**Block Settings**

**Position**
- input
  - the order of a block within the spreadsheet can be specified by nominating the block position. Numbering within the list starts at 1. This parameter is used for inserting new blocks into the list. If a user nominates to insert in position 5 and there is only 2 blocks already defined, the block will be placed at the end of the list (i.e. position 3)

**Count**
- input
  - the number of blocks within the spreadsheet.

**Type**
- choice
  - traverse, radiation, radiation backsight, parcel, irregular trace, balance
  - the type of a block within the spreadsheet can be specified by nominating the block type.

The traverse block is for the entry of loop and non-loop traverses starting and ending at points with known coordinate values.

For a hanging traverse, i.e. a traverse that does not close onto a known point, the data can be entered by entering a 0 (zero) in the point id field of the grid control, as well as the end point - point id field.

The radiation block consists of a number of radiations or side shots from a point with known coordinates. This point may be defined in a previous traverse block or it may be from a known point. A valid coordinate must exist for the radiation start point for the radiation block to be used.

A radiation backsight block is the same as a radiation block except that the value set to the backsight is included. After adjustment of previous blocks, the coordinates of setup and backsight points often change. This will introduce swing errors into calculations if not accounted for. By entering the backsight value as set in the field, a comparison is made between what was set and the adjusted value. The difference is then applied to the radiations in the block to reflect the corrected angle measurements.

`XXXX - need 12d NZ documentation on TSS`

**Name**
- input
  - a spreadsheet can consist of a number of different blocks. For each block, a name can be given which can help identify a particular traverse/radiation block within the spreadsheet.

**Flag**
- input
  - the adjustment mode of the current block. The mode is either adjusted or unadjust. All blocks are set to
unadjusted on reading of a file, and the user specifies which blocks are to be adjusted.

**Prev** button
allows the navigation to the previous block in the list.

**Next** button
allows the navigation to the next block in the list.

**New** button
allows for the definition and entry of a new block in the list.

**Update** button
allows for the updating of entries when changes have been made. For example, if a distance measurement were to be changed, pushing the **update** button will ensure the new value will be used in further calculations and adjustments.

**Insert** button
allows for the insertion of a block into the list in the position defined by the **Block position** entry.

**Append** button
allows for the insertion of a block at the end of the list.

**Delete** button
allows for the deletion of the currently displayed block.

**Show EN** tick box ticked
if ticked the easting and northing columns will be shown in the grid. If unticked the columns will not be shown.

**Copy b dsc** tick box ticked
if ticked the bearing and description from the previous line in the grid will automatically be copied down to the next entered line.

**Pick string** button
allows for the loading of the current block by selecting a string from the current view.

**Adjustment method** choice bowditch, compass, transit, least square
method of adjustment.

**Loop** tick box unticked
For loop traverses the tick box should be checked. This assumes that the start and end points are the same.

The fields in this panel define the start and end point details. If the **loop** option is chosen the end point details are assumed to be the same as the start point In this case the end point group is disabled.

**Least square tab**

**Angular std (sec)**
The standard deviation of a single angular measurement in seconds of arc.

**Linear std (mm)**
this value is defined by the standard deviation of a single distance measurement (e.g. 5 mm)

**ppm**
this value is defined by the edm scale error which is dependant on the length of line measured (e.g. 5ppm = 5mm error over a 1km distance)

**Iterations** input box 10
the calculation of the adjustment can be aborted if a solution is not found after the specified number of iterations.

**Coords differ**  
input box 0.0001  
the calculation of the adjustment can stopped when the difference between successive calculations meet the defined tolerance.

**variance increase**  
tick box ticked  
the calculation of the adjustment can stopped when the variance between successive calculations increases

The fields in start point group specify the start point parameters

**Start point**  
button/input  
the start point can be selected by selecting the button and then selection and acceptance of a point in an open view. If valid a point id, easting, northing and description of the selected point will be copied into the appropriate fields.

If the start point is to be entered manually, the point id should be entered into the field adjacent to the start point button.

**N**  
input  
the start point’s northing value.

**E**  
input  
the start point’s easting value.

**Desc**  
input  
the start point’s description.

the grid control values can be entered using valid inputs into the various fields.

**To Point**. The point id of the next traverse station.

**Bearing (dms)**. The bearing of the traverse line.

**Distance**. The distance of the traverse line.

**Point Desc**. The description of the traverse point

**Easting** The easting coordinate of the traverse point. **NB**. This field is only displayed when the calc or adjust buttons are selected.

**Northing** The northing coordinate of the traverse point. **NB**. This field is only displayed when the calc or adjust buttons are selected.

The fields in end point group specify the end point parameters

**end point**  
button/input  
the end point can be selected by selecting the button and then selection and acceptance of a point in an open view. If valid a point id, easting, northing and description of the selected point will be copied into the appropriate fields.

If the end point is to be entered manually, the point id should be entered into the field adjacent to the end point button.

**N**  
input  
the end point’s northing value.

**E**  
input  
the end point’s easting value.

**Desc**  
input  
the end point’s description.
the misclose line near the bottom of the panel have the following functions.

- **Bearing** input box
  - the closing bearing for the traverses.

- **Distance** input box
  - the closing distance of the traverse

- **Delta east** input box
  - the closing vector’s delta east component

- **Delta east** input box
  - the closing vector’s delta east component

- **Misclosure** input box
  - the ratio of the closing distance to the total traverse distance.

The buttons at the bottom of the panel have the following function.

- **Calc** button
  - the calc button is used to calculate coordinate values based on the information input into the grid control and the points tab. The block has to be inserted or appended into the list before this can be done.

- **Adjust** button
  - the adjustment of the current block can be done after the calc stage has been reached. This will use the method of adjustment as stipulated by the user.

- **Adjust All** button
  - the adjustment of all of the blocks in the list can be done after the calc stage has been reached in each of the individual blocks. This will use the method of adjustment as stipulated by the user.

- **Save** button
  - saves the current data in the panel to the TSS file (displayed in the file name box).

### 17.12.4 TSS Utilities

**Position of option on menu:**  Survey => Traverse spreadsheet => Utilities

The traverse spreadsheet utilities are used to change the file containing a TSS, change the name (TSS), change between Plane (constant scale) or Projection type.

Selecting Traverse Spreadsheet Utilities brings up the Traverse Spreadsheet Utilities panel:
17.12.5 Lot Check

Position of option on menu: Survey => Traverse spreadsheet => Lot check

The Lot check option allows the entry of traverse and radiation blocks from the keyboard, selection of strings from the current view or by reading from a file. Adjustments can then be made including transit, Bowditch, compass or least square adjustment. This option can be used to enter existing plan dimensions to check area calculations as well as ensuring lots are closed to prescribed limits.

Selecting Lot check brings up the Lot Check panel
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale factor</td>
<td>input</td>
<td>project scale factor</td>
<td></td>
</tr>
<tr>
<td>a scale factor can be defined which will be applied to any entered distances. Final distances used in calculations are derived by multiplying the entered distance by the scale factor.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block count</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the number of blocks within the spreadsheet.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desc.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a spreadsheet can consist of a number of different blocks. For each block, a block description can be given which can help identify a particular traverse/radiation block within the spreadsheet.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block flag</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the adjustment mode of the current block. The mode is either adjusted or unadjust. All blocks are set to unadjusted on reading of a file, and the user specifies which blocks are to be adjusted.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The scale and datum fields are the only difference between the plane and datum lot check panels.
Prev button
allows the navigation to the previous block in the list.

Next button
allows the navigation to the next block in the list.

New button
allows for the definition and entry of a new block in the list.

Update button
allows for the updating of entries when changes have been made. For example, if a distance measurement were to be changed, pushing the update button will ensure the new value will be used in further calculations and adjustments.

Insert button
allows for the insertion of a block into the list in the position defined by the Block position entry.

Append button
allows for the insertion of a block at the end of the list.

Delete button
allows for the deletion of the currently displayed block.

File name input box *.ts
a file name can be defined which will allow for the reading of an existing file and for defining a new file name for reading in the future.

Read button
the read button allows for the loading of an existing file as specified by the file name box.

Write button
the write button allows for the saving of the current file as specified in the file name box.

Pick string button
allows for the loading of the current block by selecting a string from the current view.

Adjust method choice bowditch, compass, transit, least square, none
method of adjustment.

Show EN tick box ticked
if ticked the easting and northing columns will be shown in the grid. If unticked the columns will not be shown.

Copy b dsc tick box ticked
if ticked the bearing and description from the previous line in the grid will automatically be copied down to the next entered line.

The fields in this panel define the start and end point details. If the loop option is chosen the end point details are assumed to be the same as the start point. In this case the end point group is disabled.

Least square tab
The fields in this panel define the values to be used for least square adjustments.

Angular std (sec)
The standard deviation of a single angular measurement in seconds of arc.

Linear std (mm)
this value is defined by the standard deviation of a single distance measurement (e.g. 5 mm)
ppm

this value is defined by the edm scale error which is dependant on the length of line measured (e.g. 5ppm = 5mm error over a 1km distance)

Iterations

input box

10

the calculation of the adjustment can be aborted if a solution is not found after the specified number of iterations.

Coords differ

input box

0.0001

the calculation of the adjustment can stopped when the difference between successive calculations meet the defined tolerance.

variance increase

tick box

ticked

the calculation of the adjustment can stopped when the variance between successive calculations increases

The fields in start point group specify the start point parameters

Start point

button/input

the start point can be selected by selecting the button and then selection and acceptance of a point in an open view. If valid a point id, easting, northing and description of the selected point will be copied into the appropriate fields.

If the start point is to be entered manually, the point id should be entered into the field adjacent to the start point button.

N

input

the start point’s northing value.

E

input

the start point’s easting value.

Desc

input

the start point’s description.

The grid control values can be entered using valid inputs into the various fields.

To Point. The point id of the next traverse station.

Bearing (dms). The bearing of the traverse line.

Distance. The distance of the traverse line.

Point Desc. The description of the traverse point

Easting The easting coordinate of the traverse point. NB. This field is only displayed when the calc or adjust buttons are selected.

Northing The northing coordinate of the traverse point. NB. This field is only displayed when the calc or adjust buttons are selected.

The fields in end point group specify the end point parameters

end point

button/input

the end point can be selected by selecting the button and then selection and acceptance of a point in an open view. If valid a point id, easting, northing and description of the selected point will be copied into the appropriate fields.

If the end point is to be entered manually, the point id should be entered into the field adjacent to the end point button.

N

input

the end point’s northing value.

E

input

the end point’s easting value.
Desc  input
the end point’s description.

The misclose line near the bottom of the panel has the following functions:

Bearing  input box
the closing bearing for the traverses.

Distance  input box
the closing distance of the traverse

Delta east  input box
the closing vector’s delta east component

Delta east  input box
the closing vector’s delta east component

Misclosure  input box
the ratio of the closing distance to the total traverse distance.

The buttons at the bottom of the panel have the following functions:

Calc  button
the calc button is used to calculate coordinate values based on the information input into the grid control and the points tab. The block has to be inserted or appended into the list before this can be done.

Adjust  button
the adjustment of the current block can be done after the calc stage has been reached. This will use the method of adjustment as stipulated by the user.

Adjust All  button
the adjustment of all of the blocks in the list can be done after the calc stage has been reached in each of the individual blocks. This will use the method of adjustment as stipulated by the user.

Report  button
on selecting this button the NZ traverse spreadsheet report panel appears.

17.12.6 NZ TSS Report

Position of option on menu:  Survey =>Traverse spreadsheet =>NZ report

The NZ report option allows the user to define the report header etc. so as to produce a spreadsheet report which can be printed to a pre-printed NZ sheet.

Selecting NZ report brings up the NZ Traverse Spreadsheet Report panel
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Input format</strong></td>
<td>choice box</td>
<td>*.ts</td>
<td>*.ts, *.lch</td>
</tr>
<tr>
<td><strong>Input file</strong></td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Print</strong></td>
<td>choice box</td>
<td>TS sheet</td>
<td>TS sheet, Calc sheet, Other</td>
</tr>
<tr>
<td><strong>Report parcels</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*either a TSS file (*.ts) or a lot check file (*.lch) can be reported.*

*name of the TSS or lot check file.*

*either TS sheet.*

*If tick, parcel block types are included in the report.*
Traverse Title section

*Traverses of, line 2, line 3, line 4*

The title of the traverses can be entered into the *traverses of* box as well as the following *line 2, line 3* and *line 4* input boxes. Due to the limitation of space on the pre-printed forms supplied by LINZ, the number of characters should be limited to 20 characters (inclusive of space characters) for the *traverse of* line and 33 characters (inclusive of space characters) for *lines 2 to 4*.

The input into the *traverses for* line is compulsory but for *lines 2 to 4* it is optional.

Datum Information section

**NZ Circuit** choice box

*existing NZ circuits*

the circuit in which the current spreadsheet file relates to should be specified.

**Projection** choice box

*Geodetic 1949, Geodetic 2000, Old Cadastral*

the appropriate NZ geodetic datum should be selected.

**Coords in terms of section**

*these parameters are only required to be entered for the Old cadastral datum case. For other datums, the values are automatically updated.*

**Point name** input box

*the name of the origin point should be entered.*

**Northing** input box

*the nothing coordinate of the origin point should be entered.*

**Easting** input box

*the easting coordinate of the origin point should be entered.*

Other Details section

**Field book** input box

*the name of the field book used.*

**Plan no** input box

*the plan no to be created if known.*

**NZ Land District** choice box

*Existing NZ land districts*

the appropriate NZ land district should be selected.

**Report file** files box

*.*rpt files

*file name for the report.*

**Report file** button

*a report using the nominated file name is created.*

17.12.7 Standard TSS Report

**Position of option on menu:**  
Survey => Traverse spreadsheet => Standard report

The *Standard report* allows the user to define the report header etc. so as to produce a standard TSS report which can be printed, saved or edited.

Selecting *Standard report* brings up the *Standard Traverse Spreadsheet Report* panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input format</td>
<td>choice box</td>
<td>*.ts</td>
<td>*.ts, *.lch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input file</td>
<td>input box</td>
<td>*.ts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Print</td>
<td>choice box</td>
<td>TS sheet</td>
<td>TS sheet, Calc sheet, Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report parcels</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions.

Field Description Type Defaults Pop-Up
Input format choice box *.ts *.ts, *.lch
either a TSS file (*.ts) or a lot check file (*.lch) can be reported.
Input file input box *.ts
name of the TSS or lot check file.
Print choice box TS sheet TS sheet, Calc sheet, Other
either TS sheet.
Report parcels tick box
If ticked, parcel block types are included in the report.

Traverse Title section

Job id text input box
text to use as the Job id.

Traverses of, line 2, line 3, line 4

The title of the traverses can be entered into the traverses of box as well as the following line 2, line 3 and line 4 input boxes. Due to the limitation of space on the pre-printed forms supplied by LINZ the number of characters should be limited to 20 characters (inclusive of space characters) for the traverse of line and 33 characters (inclusive of space characters) for lines 2 to 4.

The input into the traverses for line is compulsory but for lines 2 to 4 it is optional.

Surveyor id text input box
text to use as the Surveyor id.

**Computer operator**
- text input box
text to use as the Computer operator.

**Report file**
- files box
  - file name for the report.

**Report file**
- button
  - a report using the nominated file name is created.

### 17.12.8 TSS Drafting

**Position of option on menu:** Survey => Traverse spreadsheet => Drafting

The Traverse spreadsheet drafting produce models, linestyles and colours for data within the TSS.

Selecting **Drafting** brings up the **Traverse Spreadsheet Drafting** panel

![Traverse Spreadsheet Drafting Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Input file</strong></td>
<td>file box</td>
<td>* .ts</td>
<td></td>
</tr>
</tbody>
</table>
  - name of the existing spreadsheet file to create drafting for.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Draft mode</strong></td>
<td>choice box</td>
<td>adjusted</td>
<td>adjusted initial</td>
</tr>
</tbody>
</table>
  - the draft mode will determine if adjusted strings are used for drafting or if the unadjusted values (initial) values are used.
Draft TS sheet tick box
  if ticked,
Draft calc sheet tick box
  if ticked,
Draft other tick box
  if ticked,
Map file Map File box
  Map File to define the drafting
  *.mapfile, *.mf files
Pre*postfix for models text input box
  pre and post text to add to the model names given in the Map File
Short segment max length real input box
  maximum size for a segment to be considered a short segment. Short segments are labelled with a number and the details placed in a table.
Short segment start no. integer input box
  start number for any short segments.
Table location xyz box
  world position for the short segment table.
Process button
  process the traverse spreadsheet and create the drafting and short segment table.

17.12.9 TSS Radiation Table Drafting

Position of option on menu:  Survey => Traverse spreadsheet=> Radiation table

The Traverse spreadsheet radiation table option produces radiation tables for the radiation data in a traverse spreadsheet.

Selecting Radiation table brings up the Radiation Table Drafting panel

The fields and buttons used in this panel have the following functions.
## Traverse Spreadsheet

### Field Description

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input file</td>
<td>file box</td>
<td>* .ts</td>
<td></td>
</tr>
<tr>
<td>Draft TS sheet</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draft calc sheet</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draft other</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map File</td>
<td>Map File box</td>
<td>* .mapfile, * .mf files</td>
<td></td>
</tr>
<tr>
<td>Pre*postfix for models</td>
<td>text input box</td>
<td>pre and post text to add to the model names given in the Map File</td>
<td></td>
</tr>
<tr>
<td>Pre*postfix for headers</td>
<td>text input box</td>
<td>pre and post text to add to the header names for the radiation tables.</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td>process the traverse spreadsheet and create the radiation tables.</td>
</tr>
</tbody>
</table>

### 17.12.10 Landonline XML Read

**Position of menu:** Survey => Traverse spreadsheet => Landonline XML read

The Landonline XML Read option reads in data in the XML format for Landonline New Zealand.

Selecting Landonline XML read brings up the Read Landonline XML File panel.
17.12.11 Landonline XML Write

Position of menu: Survey => Traverse spreadsheet => Landonline XML write

The Landonline XML Write option writes out data in the XML format for Landonline New Zealand.

Selecting Landonline XML write brings up the Write Landonline XML File panel
Documentation is available from 12d NZ Ltd.

17.13 Conformance

Position of menu:  Survey => Conformance

The Conformance walk-right menu contains survey options for generating conformance reports and models on surveyed points representing as-built batter slopes and pavements, compared against string data representing designed batter slopes and pavements.

The Conformance walk-right menu is

For the option Batter slope report, go to Pavement report

17.13.1 Batter slope report
Conformance

**Position of option on menu:**  Survey => Conformance => Batter slope report

The **Batter slope report** option generates a conformance report on surveyed points representing an as-built batter slope, compared against string data representing a designed batter slope. In addition to the conformance report, an output results model of the surveyed points can be generated, grouping the points by colour into their conformance zones (i.e. *within tolerance, above tolerance, below tolerance, and not tested*). The points in the results model can have z-values and vertex text set to show various combinations of point level, point conformance, and point error.

**Note1:** the term *point conformance* is used here to refer to a point’s distance from design (distance from the conformance line on diagram below), while the term *point error* refers to a point’s distance out of tolerance. As such, a point that is within tolerance (i.e. a conformant point) will, in general, have a non-zero conformance and a zero error, while a point that is out of tolerance (i.e. a non-conformant point) will have both a non-zero conformance and a non-zero error.

**Note2:** the point conformances and errors can be measured either vertically or perpendicular to the conformance line. It is perhaps worthwhile to note, especially in the case of the *sliding critical zone*, that the perpendicular measurements are determined from the vertical measurements, and not vice versa. That is, if the slope of the conformance line, measured from horizontal, is denoted by the angle $\alpha$, then a surveyed point $Q$, has a perpendicular conformance $Q_{cp}$, and error $Q_{ep}$, determined from the point’s vertical conformance $Q_{cv}$, and error $Q_{ev}$, via the following relationships:

\[
Q_{cp} = Q_{cv}.\cos\alpha \\
Q_{ep} = Q_{ev}.\cos\alpha
\]

**Note3:** the conformance line is the line from which all point conformances and tolerances are measured, and is always parallel to the design batter slope line. When testing a sub-grade survey, the conformance line will normally be below the design batter slope line, but when testing a completed-construction survey, the two lines should normally coincide.
Typical sections through excavation and embankment batters are shown in the diagram below, along with schematics showing how the surveyed points are tested for conformance:

- **Excavation Batter with Sliding Critical Zone**
  - Control String
  - Primary String

- **Embarkment Batter with Fixed Critical Zone**

---

Conformance Line

**Symbols**:
- $D$ = Sub-grade depth
- $C$ = Critical zone range
- $T$ = Tolerance
- $u$ = upper
- $l$ = lower
- $c$ = critical
- $m$ = main
- $p$ = perpendicular
- $v$ = vertical
- $h$ = horizontal
- $b$ = along batter
Selecting **Batter slope report** brings up the **Batter Slope Conformance Report** panel.

![Batter Slope Conformance Report panel](image)

**Batters Tab:**

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source of points</strong></td>
<td>source box</td>
<td>all points selected with this source box (whether they exist in point-string form or line-string form) will be considered as the set of surveyed points to be tested for conformance.</td>
<td></td>
</tr>
<tr>
<td><strong>Design data</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Control string</strong></td>
<td>string box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the string selected with this box should normally represent the road centreline, and will be used to determine the chainage and offset of each surveyed point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Primary batter string</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Secondary batter string</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Slope control string</strong></td>
<td>string box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the Slope control string is optional (and is not shown on the diagram above). If no string is selected, the Primary string, below, will be used as the Slope control string. The line that is formed in plan, from a...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
surveyed point to the nearest point on the Slope control string, defines the vertical plane used to conform that surveyed point. The slope formed between the primary and secondary strings on this vertical plane, is the design slope for that surveyed point.

**Primary string**

the string selected with this box should represent one edge of the designed batter (normally the edge closer to the road - i.e. the toe string of an excavation batter, or the crest string of an embankment batter).

*The Primary string represents the start of the Critical Zone, which continues horizontally in the direction of the Secondary string, for a distance specified in the Critical zone range field (on the Tolerances Tab).*

**Secondary string**

the string selected with this box should represent the other edge of the designed batter (normally the edge further away from the road - i.e. the interface string)

**Constraints**

**Start chainage**

the start chainage of the surveyed points to be conformed. Any point with a chainage less than the start chainage will not be tested. By default, the start chainage is set when the Control string is selected, but a different value can be typed in.

**End chainage**

the end chainage of the surveyed points to be conformed. Any point with a chainage greater than the end chainage will not be tested. By default, the end chainage is set when the Control string is selected, but a different value can be typed in.

**Chainage bandwidth**

if zero or blank, the surveyed points are simply sorted in ascending chainage order. However, if a value greater than zero is entered, the surveyed points will also be sub-sorted into chainage bands, in ascending offset order. Within each chainage band, the difference between the maximum and minimum chainage will be less than the Chainage bandwidth. This is a useful feature if the surveyed points are set out in rows of roughly equivalent chainage.

**Results**

**Report file**

the name of the conformance report file to be created. If no extension is given, it will be given an extension of ".rpt".

**Results model**

the name of the results model to be created. If blank, the results model is not created.

**Report**

generates the conformance report file and the results model. This button can be activated regardless of which panel tab is currently active.

**Finish**

exits the option and closes the panel. This button can be activated regardless of which panel tab is currently active.
Tolerances Tab:

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerance file</td>
<td>file box</td>
<td>*.tol</td>
<td></td>
</tr>
</tbody>
</table>

the name of the tolerance file used to load and/or save the details of the conformance. If no extension is given, it will be given an extension of ".tol". The tolerance file stores the details of every field on the Tolerances Tab, the Report File Tab, and the Results Model Tab. The tolerance file itself is not required to run a conformance test - it is merely provided as a convenience.

Read button
Pressing this button will populate the panel fields on the last three panel tabs, with the data stored in the tolerance file. If data for a particular field is not found, that field remains unaffected.

Write button
Pressing this button will create a new tolerance file or replace an existing one. The contents of all non-blank fields on the last three panel tabs, are written to the file at this time.

Sub-grade depth from design batter

Depth is measured choice box perpendicular perpendicular to batter vertical

whether the sub-grade depth is measured perpendicular to the batter or vertically (refer to parameters Dp and Dv on the diagram above)
Sub-grade depth  real box  0.0
the depth of the conformance line from the design batter (refer to parameters Dp and Dv on the
diagram above). If testing a sub-grade survey, this value will normally be greater than zero. If testing a
completed-construction survey, however, this value will normally be zero, and the conformance line
will coincide with the design batter slope line.

Critical zone range

<table>
<thead>
<tr>
<th>Zone is defined as</th>
<th>choice box</th>
<th>sliding</th>
<th>sliding</th>
</tr>
</thead>
</table>
| determines whether the Critical Zone is defined as sliding or fixed (refer to diagram above). For
excavation batters, the zone is normally sliding, whilst for embankment batters, it is normally fixed.

<table>
<thead>
<tr>
<th>Range is measured</th>
<th>choice box</th>
<th>vertical</th>
<th>vertical</th>
</tr>
</thead>
</table>
| determines how the size of the Critical Zone is measured (refer to parameters Cb, Cv, and Ch on the
diagram above)

<table>
<thead>
<tr>
<th>Range</th>
<th>real box</th>
</tr>
</thead>
</table>
| the size of the Critical Zone, measured in the specified direction (refer to parameters Cb, Cv, and Ch on the
diagram above). This distance must be zero or greater.

Tolerance details

<table>
<thead>
<tr>
<th>Points inside road</th>
<th>choice box</th>
<th>do not test</th>
<th>do not test</th>
</tr>
</thead>
</table>
| determines what to do with any surveyed points found inside the road. If such points are found, and this
field is set to do not test, the points will be classified as untested, and in the results model, will have
their vertex text set to INR.

Note: untested points do not appear in the conformance report.

<table>
<thead>
<tr>
<th>Tolerances measured</th>
<th>choice box</th>
<th>perpendicular</th>
<th>perpendicular to batter</th>
</tr>
</thead>
</table>
| whether the conformance tolerances are measured perpendicular to the batter or vertically (refer to
parameters T**p and T**v on the diagram above). This field also determines whether the reported
point conformances and point errors are measured perpendicularly or vertically.

Flat-to-Steep transition slope: 1v in

<table>
<thead>
<tr>
<th>real box</th>
</tr>
</thead>
</table>
| It is possible to use two different sets of batter slope tolerances, when producing the conformance
report. The Flat slope tolerance set will be used whenever the design slope is equal to the transition
slope or flatter, and the Steep slope tolerance set will be used whenever the design slope is steeper than
the transition slope. The transition slope must be specified as a positive number, and will be interpreted
as a slope in the form

1[v]: transition slope[h]. Leaving this field blank will disable the Steep slope tolerance set, ensuring
that only the Flat slope tolerance set will ever be used.

Flat slope tolerances

The following four tolerances are used if the transition slope is not specified, or whenever the
design slope is equal to the transition slope or flatter.

<table>
<thead>
<tr>
<th>1 Upper critical</th>
<th>real box</th>
</tr>
</thead>
</table>
| refer to parameters Tucp and Tucv on the diagram above. This value is normally zero or greater.

<table>
<thead>
<tr>
<th>2 Lower critical</th>
<th>real box</th>
</tr>
</thead>
<tbody>
<tr>
<td>refer to parameters Tlcp and Tlcv on the diagram above. This value is normally zero or less.</td>
<td></td>
</tr>
</tbody>
</table>
3 Upper main
the upper allowable distance that a surveyed point, found to be in the Main Zone, may be from the conformance line, in order to be conformant (refer to parameters Tump and Tumv on the diagram above). This value is normally zero or greater.

4 Lower main
the lower allowable distance that a surveyed point, found to be in the Main Zone, may be from the conformance line, in order to be conformant (refer to parameters Tlmp and Tlmv on the diagram above). This value is normally zero or less.

Steep slope tolerances

The following four tolerances are used only if the transition slope is specified, and the design slope is steeper than the transition slope.

5 Upper critical
refer to parameters Tucp and Tucv on the diagram above. This value is normally zero or greater.

6 Lower critical
refer to parameters Tlcp and Tlcv on the diagram above. This value is normally zero or less.

7 Upper main
the upper allowable distance that a surveyed point, found to be in the Main Zone, may be from the conformance line, in order to be conformant (refer to parameters Tump and Tumv on the diagram above). This value is normally zero or greater.

8 Lower main
the lower allowable distance that a surveyed point, found to be in the Main Zone, may be from the conformance line, in order to be conformant (refer to parameters Tlmp and Tlmv on the diagram above). This value is normally zero or less.
Report File Tab:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max lines per page</td>
<td>integer box</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

The maximum number of report lines that can fit on a printed page. This number is needed so that page breaks (form feed characters) can be inserted into the report file at the appropriate places. The number of lines per page will vary depending on the editor/word-processor used for printing, the desired page size and margin widths, the desired page layout (portrait or landscape), and the desired font and font size. As such, the number needs to be tuned for the user’s particular report specifications/requirements.

**Note1:** you may find that MS Notepad is not a good program for printing out the report file (Notepad doesn't seem to interpret form feed characters).

**Note2:** if Max lines per page is set to a large enough number, there will be no page breaks in the report file.

**Header information**

- **Original survey file** input box
  
  optional line of text in the report header to identify the original survey data file

- **Re-check file**
  
  optional line of text in the report header to identify the survey data file where the pavement was rechecked.
Lot number
input box
optional line of text in the report header to identify the lot number

Lot location
input box
optional line of text in the report header to identify the lot location

Lot description
input box
optional line of text in the report header to identify the lot description

Table options

Show design levels tick box off
whether to show the design levels in the column after the point levels

Note: the design levels are always vertically above or below the point levels, even if the tolerances are measured perpendicular to the design slope.

Show non-conformance errors tick box off
whether to show the point errors for non-conformant points (i.e. the distances the points are out of tolerance). If turned on, the point errors will appear in parentheses, ( =, after the conformance and tolerance details.

Show non-conformance slopes tick box off
whether to show the surveyed slopes at non-conformant points. The surveyed slope is the slope between the previous and current point in the report, within a single, offset-sorted chainage band. The slope is calculated as though the previous point lies in the same vertical plane as that of the current point’s design slope. As such, the slope is adjusted for any differences in bearing direction between the two design slopes, and for any incline in the road, as shown in the diagram, below:

If turned on, the surveyed slopes will appear in square brackets, [ =, after the conformance, tolerance and point error details.

Note: if the Chainage bandwidth on the Batters Tab is zero or blank, then the points will only be sorted by chainage, and not sub-sorted by offset within chainage bands. In this case, surveyed slopes will
show vertex ids

if ticked the vertex id of the point rather than the name of the string containing the point will be shown in the report file.

footer information

surveyor name
input box
name of the person required to sign the report (optional)

surveyor title
input box
title of the person required to sign the report (optional)

results model tab:

<table>
<thead>
<tr>
<th>field description</th>
<th>type</th>
<th>defaults</th>
<th>pop-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>clean results model beforehand</td>
<td>tick box</td>
<td>off</td>
<td>whether to clean the contents of an existing results model before re-running the option</td>
</tr>
<tr>
<td>z values are</td>
<td>choice box</td>
<td>levels</td>
<td>levels conformances errors</td>
</tr>
</tbody>
</table>

determines what z values to give the points generated in the results model

note: any untested points in the model will have their z values set to their original point levels,
regardless.

**Vertex text shows**

- choice box
- conformances
- levels
- conformances
- errors

**Vertex text shows** determines what values to show in the vertex text of the points generated in the results model.

*Note 1:* Any points within tolerance will have a zero error. For these points, if the vertex text is set to errors, no text will be set.

*Note 2:* Any untested points in the model will have the vertex text set to show one of four possible error codes, explaining why the point was not tested. The error codes are **NUL** (invalid z-value), **OCR** (outside chainage range), **ERR** (intersection error or similar), and **INR** (inside road).

**Vertex textstyle data**

- textdata box
- user textdata
- favourites

**Vertex textstyle data** controls the appearance of the vertex text for the points generated in the results model.

**Colours**

Separate models by colour

- tick box

If ticked, the results model will be several models, each result colour going to a separate model named with a suffix of the colour name.

**Points within tolerance**

- colour box
- green
- available colours

**Points within tolerance**

**Points above tolerance**

- colour box
- red
- available colours

**Points below tolerance**

- colour box
- cyan
- available colours

**Untested points**

- colour box
- grey
- available colours

**Colour for points within tolerance**

**Colour for points above tolerance**

**Colour for points below tolerance**

**Colour for untested points**

*Note:* Untested points do not appear in the conformance report.

**Create tin of tested results model points**

**Tin name**

- tin box
- available tins

**Tin name**

*Name of the tin to create.* If the tin already exists, a prompt will ask if it should be replaced. If this field is blank, or if the Results model field (on the Batters Tab) is blank, no tin will be created.

*Note:* The tin will be created only with the set of tested points created in the Results model, and can be used to quickly display contour maps of the results. When creating the tin, an attempt is made to null any triangles outside the *shrink-wrapped* boundary of the tested points. The boundary polygon used for this nulling procedure is determined from the extremity points of each offset-sorted chainage band (see Chainage bandwidth on the Batters Tab).

**Model for tin**

- model box
- available models

**Model for tin**

*Model for tin to be placed in, for viewing purposes.* If blank, the tin is not placed into a model.

**Tin colour**

- colour box
- available colours

**Tin colour**

*Colour for tin.* If blank, the tin will adopt the colour selected for Points within tolerance.
12d Field Tab:

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Populate from 12dField attr's</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* if 12dField was used to pick up the points then the attributes can be used to populate the conformance panel automatically, for example the control lines and primary and secondary edge strings. On selecting the string the panel will be updated.*

17.13.2 Pavement report

**Position of option on menu:** Survey => Conformance => Pavement report

The Pavilion report option generates a conformance report on surveyed points representing the top of an as-built pavement, compared against string data representing the top of a designed pavement (level conformance), and compared against tin data representing the bottom of an as-built pavement (thickness conformance).

In addition to the conformance report, an output results model of the surveyed points can be generated, grouping the points by colour into their conformance zones (i.e. within tolerance, above tolerance, below tolerance, and not tested). The points in the results model can have z-values and vertex text set to show various combinations of point level, point conformance, point error, pavement thickness and pavement thickness error.

**Note1:** the term point conformance is used here to refer to a point’s distance from design (distance from the conformance line on diagram below), while the term point error refers to a
point’s distance out of tolerance. As such, a point that is within tolerance (i.e. a *conformant point*)
will, in general, have a non-zero conformance and a zero error, while a point that is out of
tolerance (i.e. a *non-conformant point*) will have both a non-zero conformance and a non-zero
error.

**Note2:** the point conformances and errors can be measured either vertically or perpendicular to
the conformance line. The conformance line is the line from which all point conformances and
tolerances are measured, and is always parallel to the design pavement line. When testing a
sub-grade survey, the conformance line will normally be below the design pavement line, but
when testing a completed-construction survey, the two lines should normally coincide.

**Note3:** the optional pavement thickness measurements are always made vertically downwards
from the surveyed points, to the tin representing the bottom of pavement. Pavement thickness
errors will be non-zero wherever the pavement is found to be too thick or too thin. When testing
for both level conformance and thickness conformance, both tests must pass for a point to be
considered conformant.
A typical section of pavement is shown in the diagram below, along with a schematic showing how the surveyed points are tested for level conformance:

- **Outside Pavement**
- **Inside Pavement**
- **Outside Pavement**

**Slope Control String (optional)**

**Control String**

**Primary String**

**Conformance Line**

**Design Pavement**

**Above Tolerance**

**Within Tolerance**

**Below Tolerance**

**Typical Section of Pavement with Negative Edge Offsets**

- $D = \text{Sub-grade depth}$
- $P = \text{Primary edge offset}$
- $S = \text{Secondary edge offset}$
- $T = \text{Tolerance}$
- $\nu = \text{upper}$
- $l = \text{lower}$
Selecting **Pavement report** brings up the **Pavement Conformance Report** panel

**Pavement Tab:**

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source of points</strong></td>
<td>source box</td>
<td>all points selected with this source box (whether they exist in point-string form or line-string form) will be considered as the set of surveyed points to be tested for conformance.</td>
<td></td>
</tr>
<tr>
<td><strong>Control string</strong></td>
<td>string box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Slope control string</strong></td>
<td>string box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Primary edge string</strong></td>
<td>string box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Secondary edge string</strong></td>
<td>string box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Design data</strong></td>
<td>string box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Design data</strong></td>
<td>string box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Constraints</strong></td>
<td>string box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Start chainage</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>End chainage</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Chainage bandwidth</strong></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td><strong>Results</strong></td>
<td>string box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Report file</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Results model</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Note:** the data for the Point Description column in the report will be taken from the string names of the selected points. If all the string names are blank, however, the point description data in the report will show point ids representing the sequential order that the points are reported in. The results model (if generated) will always have the string names of each point set to match the reported point description.

**Design data**

- **Control string** string box
  the string selected with this box should normally represent the road centreline, and will be used to determine the chainage and offset of each surveyed point

- **Slope control string** string box
  the Slope control string is optional. If no string is selected, the Control string, above, will be used as the...
Slope control string. The line that is formed in plan, from a surveyed point to the nearest point on the slope control string, defines the vertical plane used to conform that surveyed point. The slope formed between the primary and secondary strings on this vertical plane, is the design slope for that surveyed point.

**Primary string** string box
the string selected with this box should represent one edge of the designed pavement (normally the edge that is closer to the Control string)

**Secondary string** string box
the string selected with this box should represent the other edge of the designed pavement (normally the edge that is further away from the Control string).

*Note:* If the selected string is the same as the Primary string, or if no string is selected, then the pavement is defined by one string and is considered to be flat (i.e. zero cross-fall), and to have a width defined by the Primary and Secondary edge offsets (on the Tolerances Tab). This feature can be useful for identifying any surveyed points that are close to an edge line.

**Design pavement tin**
if selected this tin will be used for design levels rather than the primary and secondary strings.

**Data for thickness measurements**

**Bottom of pavement tin** tin box available tins
the Bottom of pavement tin is optional. If not selected, the pavement is not tested for thickness conformance. The tin selected with this box should represent the as-built bottom surface of the pavement currently being tested.

**Constraints**

**Start chainage** real box
the start chainage of the surveyed points to be conformed. Any point with a chainage less than the start chainage will not be tested. By default, the start chainage is set when the Control string is selected, but a different value can be typed in.

**End chainage** real box
the end chainage of the surveyed points to be conformed. Any point with a chainage greater than the end chainage will not be tested. By default, the end chainage is set when the Control string is selected, but a different value can be typed in.

**Chainage bandwidth** real box 5.0
if zero or blank, the surveyed points are simply sorted in ascending chainage order. However, if a value greater than zero is entered, the surveyed points will also be sub-sorted into chainage bands, in ascending offset order. Within each chainage band, the difference between the maximum and minimum chainage will be less than the Chainage bandwidth. This is a useful feature if the surveyed points are set out in rows of roughly equivalent chainage.

**Results**

**Report file** file box *.rpt
the name of the conformance report file to be created. If no extension is given, it will be given an extension of .rpt.

**Results model** model box available models
the name of the results model to be created. If blank, the results model is not created.

**Report** generates the conformance report file and the results model. This button can be activated regardless of which panel tab is currently active.

**Finish** exits the option and closes the panel. This button can be activated regardless of which panel tab is
Tolerances Tab:

The fields and buttons have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerance file</td>
<td>file box</td>
<td>* .tol</td>
<td></td>
</tr>
</tbody>
</table>

The name of the tolerance file used to load and/or save the details of the conformance. If no extension is given, it will be given an extension of .tol. The tolerance file stores the details of every field on the Tolerances Tab, the Report File Tab, and the Results Model Tab. The tolerance file itself is not required to run a conformance test - it is merely provided as a convenience.

Read button

Pressing this button will populate the panel fields on the last three panel tabs, with the data stored in the tolerance file. If data for a particular field is not found, that field remains unaffected.

Write button

Pressing this button will create a new tolerance file or replace an existing one. The contents of all non-blank fields on the last three panel tabs, are written to the file at this time.
Depth from design pavement

Depth is measured choice box vertical perpendicular to pavement vertical

whether the sub-grade depth is measured perpendicular to the pavement or vertically (refer to parameter D on the diagram above)

Note: since pavements typically have cross-fall slopes of less than 7%, the value of this setting should make very little difference to the results.

Depth (+ below) real box 0.0

the depth of the conformance line from the design pavement (refer to parameter D on the diagram above). If testing a sub-grade survey, this value will normally be greater than zero. If testing a completed-construction survey, however, this value will normally be zero, and the conformance line will coincide with the design pavement line.

Vertical tolerance details

Tolerances are measured choice box vertical perpendicular to pavement vertical

whether the conformance tolerances are measured perpendicular to the pavement or vertically (refer to parameters Tu and Tl on the diagram above). This field also determines whether the reported point conformances and point errors are measured perpendicularly or vertically.

Note: since pavements typically have cross-fall slopes of less than 7%, the value of this setting should make very little difference to the results.

Upper tolerance real box

the upper allowable distance that a surveyed point may be from the conformance line, in order to be conformant (refer to parameter Tu on the diagram above). This value is normally zero or greater.

Lower tolerance real box

the lower allowable distance that a surveyed point may be from the conformance line, in order to be conformant (refer to parameter Tl on the diagram above). This value is normally zero or less.

Thickness tolerance details

Maximum thickness real box

the maximum allowable vertical distance that a surveyed point may be above the Bottom of pavement, in order to be conformant. If blank, there will be no upper limit to the pavement thickness.

Minimum thickness real box

the minimum allowable vertical distance that a surveyed point may be above the Bottom of pavement, in order to be conformant. If blank, there will be no lower limit to the pavement thickness.
Edges Tab:

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edge mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Points outside edge</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The settings for Primary edge details and Secondary edge details are the same.

Tolerance file parameters (cont).

Primary edge details /Secondary edge details

- **Edge type**
  - **left**: the string is the left hand edge of the pavement.
  - **right**: the string is the right hand edge of the pavement.
  - **join**: the string is joint between pavements.
  - **none**: the string is not used for edge checks.

- **Edge mode**
  - **test horizontally**: the edge is only tested for horizontal conformance
  - **test vertically & horizontally**: the edge is only tested for both horizontal and vertical conformance

- **Points outside edge**
  - **do not test**, **test vertically**

Determines what to do with any surveyed points found outside the pavement.
**do not test:** points outside the edge are not tested. The points will be classified as untested, and in the results model, will have their vertex text set to EDG. **Note:** untested points do not appear in the conformance report.

**test vertically:** points outside the edge are tested vertically.

**Edge extents**

Enter the range around the nominal edge in which a point is considered to be an edge check. This is relative to the 'left/right' setting for the edge, +ve is outside the pavement and -ve into the pavement.

**Edge tolerance**

Enter the tolerances from the design edge, this is relative to the 'left/right' setting for the edge, +ve is outside the pavement and -ve into the pavement.

**Report File Tab:**

![Pavement Conformance Report](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max lines per page</td>
<td>integer box</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

The maximum number of report lines that can fit on a printed page. This number is needed so that page breaks (form feed characters) can be inserted into the report file at the appropriate places. The number...
of lines per page will vary depending on the editor/word-processor used for printing, the desired page size and margin widths, the desired page layout (portrait or landscape), and the desired font and font size. As such, the number needs to be tuned for the user’s particular report specifications/requirements.

Note1: you may find that MS Notepad is not a good program for printing out the report file (Notepad doesn’t seem to interpret form feed characters).

Note2: if Max lines per page is set to a large enough number, there will be no page breaks in the report file.

Header information

Original survey file input box
optional line of text in the report header to identify the original survey data file

Re-check file
Optional line of text in the report header to identify the survey data file where the pavement was rechecked.

Lot number input box
optional line of text in the report header to identify the lot number

Lot location input box
optional line of text in the report header to identify the lot location

Lot description input box
optional line of text in the report header to identify the lot description

Table options

Show design levels tick box off
whether to show the design levels in the column after the point levels

Note: the design levels are always vertically above or below the point levels, even if the tolerances are measured perpendicular to the design slope.

Show non-conformance errors tick box off
whether to show the point errors and thickness errors for non-conformant points (i.e. the distances the points are out of level and thickness conformance, respectively). If turned on, the point errors will appear in parentheses, ( ), after the conformance and tolerance details, and the thickness errors will appear in parentheses, ( ), after the thickness and max/min thickness details.

Show vertex ids tick box
if ticked the vertex id of the point rather than the name of the string containing the point will be shown in the report file.

Footer information

Surveyor name input box
name of the person required to sign the report (optional)

Surveyor title input box
title of the person required to sign the report (optional)
The next tab on the panel is the Results Model Tab:

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Clean results model beforehand</strong></td>
<td>tick box</td>
<td>off</td>
<td></td>
</tr>
<tr>
<td><strong>Z values are</strong></td>
<td>choice box</td>
<td>levels</td>
<td>conformances</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>errors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>thicknesses</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>thickness errors</td>
</tr>
</tbody>
</table>

*Note:* any untested points in the model will have their z values set to their original point levels, regardless.
Vertex text shows choice box conformances levels
conformances errors thicknesses thickness errors
determines what values to show in the vertex text of the points generated in the results model

Note1: any points that pass the level conformance test will have a zero error. For these points, if the vertex text is set to errors, no text will be set. Likewise, any points that pass the thickness conformance test will have a zero thickness error. For these points, if the vertex text is set to thickness errors, no text will be set.

Note2: any untested points in the model will have the vertex text set to show one of five possible error codes, explaining why the point was not tested. The error codes are NUL (invalid z-value), OCR (outside chainage range), ERR (intersection error or similar), EDG (outside pavement edge), and NTN (bottom of pavement tin not defined at point).

Vertex textstyle data textdata box user textdata favorites
controls the appearance of the vertex text for the points generated in the results model

Colours

Separate models by colour tick box
if ticked the results model will be several models, each result colour going to a separate model named with a suffix of the colour name.

Points within tolerance colour box green available colours
colour for points within tolerance (i.e. points that pass both the level and thickness conformance tests)

Points above tolerance colour box red available colours
colour for points above tolerance (i.e. points that are above the Upper tolerance or points where the pavement is thicker than the Maximum thickness)

Points below tolerance colour box cyan available colours
colour for points below tolerance (i.e. points that are below the Lower tolerance or points where the pavement is thinner than the Minimum thickness)

Untested points colour box grey available colours
colour for untested points

Note: untested points do not appear in the conformance report.

Create tin of tested results model points

Tin name tin box available tins
name of the tin to create. If the tin already exists, a prompt will ask if it should be replaced. If this field is blank, or if the Results model field (on the Pavement Tab) is blank, no tin will be created.

Note: the tin will be created only with the set of tested points created in the Results model, and (depending on what the points’ z-values are set to in the Results model) can be used to quickly display contour maps of the results, or to create a Bottom of pavement tin for the next pavement layer to be tested. When creating the tin, an attempt is made to null any triangles outside the shrink-wrapped boundary of the tested points. The boundary polygon used for this nulling procedure is determined from the extremity points of each offset-sorted chainage band (see Chainage bandwidth on the Pavement Tab).

Model for tin model box available models
model for tin to be placed in, for viewing purposes. If blank, the tin is not placed into a model.

Tin colour colour box available colours
colour for tin. If blank, the tin will adopt the colour selected for Points within tolerance.
12d Field Tab:

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Populate from 12dField attr's</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Populate from 12dField attr's**

if 12dField was used to pickup the points then the attributes can be used to populate the conformance panel automatically, for example the control lines and primary and secondary edge strings. On selecting the string the panel will be updated.

17.14 Extras

**Position of menu:** Survey => Extras

The Survey Extras walk-right menu contains extra survey options, some of which are still being developed.

The Survey Extras walk-right menu is
For the option Auslig AusGeoid98 *.dat -> xyz, go to 17.14.1 AusGeoid98 *.dat -> xyz

Bearing/Distance entry 17.14.2 Plane Bearing/Distance Entry
Traverse/Radiation 17.14.3 Bearing/Distance Entry for Traverse/

Radiation
Catenary measurement 17.14.4 Catenary Measurement
Create Control Station 17.14.5 Create Control Stations
Check control model 17.14.6 Check Control Model
Linear regression 17.14.7 Linear Regression
Reduction to field file 17.14.8 Survey Function to Field File
On grade 17.14.9 On Grade

17.14.1 AusGeoid98 *.dat -> xyz

Position of option on menu:  Survey => Extras => Auslig AusGeoid98 *.dat -> xyz

The Ausgeoid98 *.dat -> xyz option allows the conversion of a standard AusGeoid98 *.dat file into a XYZ format. This format can then be read into 12d. The values in the XYZ file will have the following meaning:

X value will represent the Longitude
Y value will represent the Latitude
Z value will represent the N value

Selecting Ausgeoid98 *.dat -> xyz brings up the Ausgeoid98 *.dat -> xyz panel

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input file</td>
<td>file box</td>
<td>* .dat</td>
<td></td>
</tr>
</tbody>
</table>

this filename of the AusGeoid file. The .dat extension is added by default.
Output file
file box
this filename of the XYZ file to be produced.

Ignore header
tick box
ticked
if ticked, the first line in the *.dat file is ignored (usually the header)

Convert
button
convert the file.

For more information about terminology used in this option, see the Appendix 38 Geodetics Summary.

17.14.2 Plane Bearing/Distance Entry

Position of option on menu: Survey => Extras => Bearing/distance entry

The bearing/distance entry option allows the input of a traverse by manual input of plane bearings and plane distances or by selecting an existing string.

Selecting Bearing/distance entry brings up the Bearing/Distance Entry panel

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>name box</td>
<td>defined names from names.4d file</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>red</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linestyle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scale factor</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point number</td>
<td>typed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start point coords</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start point id</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The panels and buttons used in this panel have the following functions.

- Select
- Process
- Clear
- Finish
- Help
this field is optional. If non-blank, the name of the new string.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>model box available models if non-blank, the model of the new string. If blank, the original string model is used.</td>
</tr>
<tr>
<td>Colour</td>
<td>colour box red available colours if non-blank, the colour of the new string. If blank, the original string colour is used.</td>
</tr>
<tr>
<td>Linestyle</td>
<td>input 1 available line styles line style of the string.</td>
</tr>
<tr>
<td>Scale factor</td>
<td>input projection scale This value will be applied to any entered distances. i.e. final distance = entered distance * scale factor</td>
</tr>
<tr>
<td>Use z-value</td>
<td>tick box transit if ticked, the z-values for each point can be entered. If no ticked then z-values are not entered.</td>
</tr>
<tr>
<td>Point id</td>
<td>input typed none, auto increment, typed if none, no point ids are entered and the grid control will not show a column for point ids. If auto increment then the values of point ids will be incremented by a value of 1 starting from the specified Start point id. If no Start point id is specified then no point ids will be allocated. No column for point ids is shown in the grid control. if typed then the values of point ids will be incremented by a value of 1, starting from the specified Start point id. If no Start point id is specified then no point ids will be allocated unless a value is entered in the grid control on which time the next value in the grid will have a incremented value. The column for point ids is shown in the grid control.</td>
</tr>
</tbody>
</table>

**VALUES IN GRID** grid box The columns shown in the grid will depend on the selection of the Use z-value and Point id fields.

<table>
<thead>
<tr>
<th>To Pt.</th>
<th>Bearing (dms)</th>
<th>Distance</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**To Pt.**

if none is selected for the Point id field, this column will not be displayed.

if auto increment is selected for the Point id field, this column will not be displayed.

if typed is selected for the Point id field, this column will be displayed. In this case, the point id will increment automatically by entering over the field. If a new value is typed into the To Pt. field, the next line will increment from that number.

**Bearing (dms)**

The user should enter the bearing for the segment into this field.

**Distance**

the user should enter the distance of the segment.

**Height**

This column will only be visible in the grid if the Use z-value tickbox has been ticked. The user should enter the height of the point. This value will not be used for calculation of the segment. It will simply be assigned to the newly created vertex.

**Select**

on pressing the select button, a user is able to pick an existing string from the current view. If a non-
traverse type string is selected an option to convert it to a traverse string will be given. The grid control will be filled with the relevant information for the traverse string.

If a traverse string has been modified by some other process (e.g. move) an option will be given to adopt the new characteristics of the string as displayed or revert back to the information that originally defined the traverse string. Depending on which option is selected, the grid will be filled with the relevant information.

**Process** button

changes to the traverse can be made in the grid control for lines already defined. For example, a distance entry may be incorrectly typed in and edited some time later. By using the process button the traverse string is re-calculated using the current values in the grid control.

### 17.14.3 Bearing/Distance Entry for Traverse/Radiation

**Position of option on menu:**  Survey => Extras => Traverse/Radiation

The Traverse/radiation option allows the input of a traverse or radiations by manual input of plane bearings and plane distances or by selecting an existing string.

**Bearing/Distance Traverse/Radiation Entry**

Selecting Traverse/Radiation brings up the Bearing/Distance Traverse/Radiation Entry panel

![Traverse/Radiation Entry Panel](image)

The fields and buttons used in this panel have the following functions.
<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>name box</td>
<td>defined names from names.4d file</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>this field is optional. If non-blank, the name of the new string/strings.</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if non-blank, the model of the new string. If blank, the original string model is used.</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>colour box</td>
<td>red</td>
<td>available colours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>if non-blank, the colour of the new string. If blank, the original string colour is used.</td>
<td></td>
</tr>
<tr>
<td>Linestyle</td>
<td>input</td>
<td>1</td>
<td>available line styles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>line style of the string.</td>
<td></td>
</tr>
<tr>
<td>Scale factor</td>
<td>input</td>
<td>projection scale</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>This value will be applied to any entered distances. i.e. final distance = entered distance * scale factor. The scale factor could be a point scale factor, a line scale factor or a combined scale factor. The final distance will be used for coordinate calculations.</td>
<td></td>
</tr>
<tr>
<td>Start point coords</td>
<td>xyz pick box</td>
<td>coordinates of the first point. The bearing/distances start from this point.</td>
<td></td>
</tr>
<tr>
<td>Start point id</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if Point ids is auto increment, point id of the first point.</td>
<td></td>
</tr>
<tr>
<td>Point id</td>
<td>input</td>
<td>typed</td>
<td>none, auto increment, typed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>if none, no point ids are entered and the grid control will not show a column for point ids.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If auto increment then the values of point ids will be incremented by a value of 1 starting from the specified Start point id. If no Start point id is specified then no point ids will be allocated. No column for point ids is shown in the grid control.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if typed then the values of point ids will be incremented by a value of 1 starting from the specified Start point id. If no Start point id is specified then no point ids will be allocated unless a value is entered in the grid control on which time the next value in the grid will have a incremented value. The column for point ids is shown in the grid control.</td>
<td></td>
</tr>
<tr>
<td>Use z- value</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, the z-values for each point can be entered. If not ticked then z-values are not entered.</td>
<td></td>
</tr>
<tr>
<td>Radiation</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, the bearing distances are used to create points that are radiations from the start point. If not ticked the bearing/distances are used to create a traverse string beginning at the start point.</td>
<td></td>
</tr>
<tr>
<td>Values In Grid</td>
<td>grid box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The columns shown in the grid will depend on the selection of the Use z- value and Point id fields.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>To Pt.</th>
<th>Bearing (dms)</th>
<th>Distance</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To Pt.

if none is selected for the Point id field, this column will not be displayed.

if auto increment is selected for the Point id field, this column will not be displayed.

if typed is selected for the Point id field, this column will be displayed. In this case, the point id will increment automatically by entering over the field. If a new value is typed into the To Pt. field, the next line will increment from that number.
Bearing (dms) angle box
The user should enter the bearing for the segment into this field.

Distance input box
the user should enter the distance of the segment.

Height input box
This column will only be visible in the grid if the Use z-value tickbox has been ticked. The user should enter the height of the point. This value will not be used for calculation of the segment. It will simply be assigned to the newly created vertex.

Select button
on pressing the select button, a user is able to pick an existing string from the current view. If a non-traverse type string is selected an option to convert it to a traverse string will be given. The grid control will be filled with the relevant information for the traverse string.

If a traverse string has been modified by some other process (e.g. move) an option will be given to adopt the new characteristics of the string as displayed or revert back to the information that originally defined the traverse string. Depending on which option is selected, the grid will be filled with the relevant information.

Process button
changes to the traverse can be made in the grid control for lines already defined. For example, a distance entry may be incorrectly typed in and edited some time later. By using the process button the traverse string is re-calculated using the current values in the grid control.

17.14.4 Catenary Measurement

Position of option on menu: Survey => Extras => Catenary measurement

The Catenary measurements option allows for the picking up of data in the vertical plane between two known points using only a bearing and a vertical angle. For example, picking up wires between towers where a distance measurement to the cable is not possible.

Selecting Catenary measurements brings up the Catenary Measurements panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**Instrument setup**

**Coords**  
xyz box  
the xyz coordinates of the instrument.

**Id**  
input box  
the vertex id (point id) of the instrument.

**Height**  
input box  
the height of the instrument.

**1st Attachment**

**Coords**  
xyz box  
the xyz coordinates of the attachment point of the cable on the first tower.

**Id**  
input box  
the vertex id (point id) of the first tower.

**2nd Attachment**

**Coords**  
xyz box  
the xyz coordinates of the attachment point of the cable on the second tower.

**Id**  
input box  
the vertex id (point id) of the second tower.

**Reading**

**Horizontal angle correction**  
angle box  
angle to be subtracted from the Horizontal Angle reading to give true bearing.

**Reading No**  
input box  
number for the reading.

**Horz. Angle**  
angle box  
Horizontal Angle reading. The Horizontal angle correction is subtracted from this to give the true bearing.

**Vert. Angle**  
angle box  
Vertical Angle reading.

**Results**

**Create string**  
tick box  
if ticked, a string of the observed points is created.

**Name**  
input box  
name of the created string.

**Model**  
model box  
name of the model for the created string.

**Colour**  
colour box  
red  
available colours  
the colour of the created string.

**Linestyle**  
input  
1  
available linestyles  
linestyle of the created string.

**Report file**  
file box  
*.rpt files  
if non-blank, the name of the file to write the report to.
17.14.5 Create Control Stations

Position of option on menu: Survey =>Extras =>Create Control stations
Position of option on menu: Strings =>Create =>Create Control Stations

A control station (for surveying) consists of a one point string. For V6, the point name is the name of the control station. For V5 and before, the string name is used as name of the control station.

Control stations are used when reducing 12d field files in the Survey Reduction module.

The Create Control Stations options allows the user to define control stations in a given model. The option checks that the point ids are unique in the control model.

Selecting Create Control Stations brings up the Create Control Station panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>colour box</td>
<td>red</td>
<td>available colours</td>
</tr>
<tr>
<td>Style mode</td>
<td>Linestyles Only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Style</td>
<td>input</td>
<td>1</td>
<td>available line styles</td>
</tr>
<tr>
<td>Use z-value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use point id as control point name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text style data</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Use z-value tick box ticked
if ticked, the height value must be specified for all of the stations.

Use point id as control point name tick box ticked
if ticked, the point names are used as the names of the control points and the point names are checked for uniqueness.
If not ticked, the name of the string is used as the names of the control points and the string names are checked for uniqueness. This is only for compatibility in pre 12d Model V6.0.

Station name Easting Northing Height Remark
the information for stations to be created is entered into the grid. The stations are created by selecting the Process button.

If a station name is typed in and the <enter> key pressed then the Model is searched and if a control station already exists of the same name (either point name or string name depending on the Use point id as control point name flag), the co-ordinates are displayed in the grid.

The grid control values can be entered/displayed using valid inputs into the various fields.

Station name. The associated text that identifies the control point.
Easting The easting coordinate of the control point.
Northing The northing coordinate of the control point.
Height The height of the station. (Only displayed if the use z-value tickbox is selected.)
Remark The description of the control station.

Process button
After the Process button is chosen, the control stations in the grid are created. If a station of the given name already exists in the control Model, the user is asked if the co-ordinates of the station are to be updated by the values given in the grid.

Same as button
After the Same as button is chosen, another string is selected and information about it is used for the Model, Colour and Point style fields in this panel.

17.14.6 Check Control Model
Position of option on menu: Survey =>Extras =>Check Control model

The Check control model option checks that there are no points in the control model with the same point id. A report of all the points in the control models, or only those with clashing point ids, is created.
Selecting Check control model brings up the Check Control Model panel

The fields and buttons used in this panel have the following functions.

Field Description Type Defaults Pop-Up
Control model model box available models
What's New in 12d Model

the model the check for unique point ids.

Report file  
file box  
*.rpt files

if non-blank, the name of the file to write the report to.

Report only duplicated point(s)  
tick box  
ticked

if ticked, only those points with duplicated point ids are reported.
If not ticked, all points in the control model are written out.

Process  
button

check the Control model for duplicated point ids.

17.14.7 Linear Regression

Position of option on menu:  Survey => Extras => Linear regression

Position of option on menu:  Strings => Utilities => Linear regression

The linear regression option will create a line, circle or arc of best fit through points on a string. The line can be constrained to go through a selected point or have a given bearing.

Selecting linear regression brings up the linear regression panel

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression for</td>
<td>choice box</td>
<td>line</td>
<td>line, circle, arc</td>
</tr>
</tbody>
</table>

if line/circle/arc, the line/circle/arc of best fit through the points is created.
Constraints

if ticked, the regression line can be restrained to go through a selected point or be given a selected bearing.

Keep z-values

tick box

if ticked, the z-values of the selected string are used on the regression string.

Create new string

tick box

if ticked, a new adjusted string is created. If not ticked, the selected string is adjusted.

Constraints

Thro point

tick box

if ticked, the regression line is constrained to go through the point with co-ordinates given in the Coordinates field.

Coordinates

if thro point is ticked, the regression line is constrained to go through the point given in this field.

Fixed bearing

tick box

if ticked, the regression line is constrained to have the bearing given in the Bearing value field.

Bearing value

if thro point is ticked, the regression line is constrained to have the bearing given in this field.

Name

name box

if non-blank, the name of the new string. If blank, the original string name is used.

Model

model box available models

if non-blank, the model of the new string. If blank, the original string model is used.

Colour

colour box available colours

if non-blank, the colour of the new string. If blank, the original string colour is used.

Report file

*.rpt files

if non-blank, a report for the adjustment is created with this name. If non-blank, no report is created.

Partial

tick box

if ticked, only part of the string is used in the regression.

Pick

button

select the string to create a regression line/circle/arc from.

Regression

button

perform the regression.

17.14.8 Survey Function to Field File

Position of option on menu: Survey => Extras => Reduction to field file

The reduction to field file option writes out the field data from a Survey function to a file in the standard 12d field file format.

Selecting reduction to field file brings up the survey reduction function export panel

The fields and buttons used in this panel have the following functions.

Field Description	Type	Defaults	Pop-Up
Function name | input | available Survey functions |
17.14.9 On Grade

The on grade option produces a string that is a fixed horizontal distance from a selected string with z-values produced by extrapolating the grade from two strings or from a tin.

Selecting On grade brings up the On Grade String panel

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary string</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>string to produce the on grade string from</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal offset</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>horizontal distance to offset the on grade string from the primary string, relative to the direction of the primary/control string, +ve to the right</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical offset</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vertical distance to offset the on grade string from the primary string</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search distance</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>only string cuts inside this distance will be considered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control string</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if selected, the horizontal distance is measured at right angles to the control string. In this case, the on-grade may not be parallel to the primary string.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not selected, the horizontal distance is measured at right angles to the primary string.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>String points</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Primary string points</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chainage interval</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Special chainage file</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
if **Primary string points**, the on-grade string has vertices on it wherever there is a vertex on the primary string. Extra points will also be included for the given arc tolerance.

- **Arc tolerance** input
  - if **non zero**, chord to arc tolerance to use for adding additional vertices

- **Use proper parallel** tick box
  - if **ticked**, the primary string is paralleled to from the on-grade string

If **Chainage interval**, vertices are created on the on-grade string corresponding to the given chainage interval along the primary/control string.

- **Interval** input
  - the chainage interval the use along the primary/control string for creating on-grade vertices.

If **Special chainage file**, vertices are created on the on-grade string from chainages on the primary or control string, corresponding to the special chainages file.

- **Special chainages** file box .spc files
  - the chainage interval the use along the primary/control string for creating on-grade vertices.

If **Secondary string**, the grade to use to create z-values on the on-grade string is the grade between the secondary string and the primary string.

- **Secondary string** string select
  - the grade to use is taken from the secondary to the primary string

If **Tin**.

- **Tin** tin box
the tin to use

**Offset**

input

offset from the primary string to the point on the tin to create the grade, relative to the primary string direction, +ve to the right

**Results model**

model box

available models

the model for the created on-grade string

**Run**

button

create the on grade string

---

**17.15 Leica**

**Position of menu:** Survey => Leica

The Leica walk-right menu collects options for working with Leica instruments.

The Leica walk-right menu is

![Leica Outputs](image)

For the option GSI, go to

- 17.15.1 Leica GSI
- 17.15.2 Leica 1100
- 17.15.6 Leica 1200
- 17.15.12 Leica GradeSmart 3D

**17.15.1 Leica GSI**

The Leica GSI walk-right menu collects under the one menu, options that can work with Leica GSI format.

![Leica GSI](image)

For the option Points, go to

- 17.19.3 Create Points Upload File
- 17.19.2 Create Triangle Upload File
- 17.19.4 Create Road Upload File

**17.15.2 Leica 1100**

The Leica 1100 walk-right menu collects under the one menu, options that can work with Leica 1100 instruments.
For the option *Triangles*, go to 8.2.13 TP Stakeout Triangles Output

Triangles (TSC) 17.15.3 Write TP Stakeout Binary Triangles (TSC Format)

Strings 8.2.14 TP Stakeout Strings Output

3DP Strings 17.15.4 Write TP Stakeout 3DP String Alignments to HZA/VTA 17.15.5 TP Alignment

17.15.3 Write TP Stakeout Binary Triangles (TSC Format)

**Position of option on menu:** Survey => Leica => 1100 => Triangles (TSC)

The Write TP Stakeout Binary triangles TSC option writes out a tin as a TP Stakeout binary file.

On selecting the *Triangles (TSC)* option, the **Write TP Stakeout Binary Triangles (TSC Format)** panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>name of the tin to write out in TP Stakeout binary format.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin polygon selection</td>
<td>poly string-select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if selected, only triangles with their centroid inside this string are written out</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP Stakeout binary file</td>
<td>input</td>
<td></td>
<td>*.tsc</td>
</tr>
<tr>
<td>name of the file for the triangles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triangles per cell</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>a TP Stakeout parameter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copy to GradeSmart 3D</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GradeSmart 3D folder</td>
<td></td>
<td></td>
<td>Data,Design</td>
</tr>
</tbody>
</table>

**General Design:**

- Leica 1100 / TP-Stakeout
- Triangles
- Triangles (TSC)
- Strings
- 3DP Strings
- Alignments to HZA/VTA

**Image:**

- Leica 1100 / TP-Stakeout panel

- Write TP Stakeout Binary Triangles (TSC Format) panel with fields:
  - Tin
  - Tin polygon selection
  - TP Stakeout binary file
  - Triangles per cell
  - Copy to GradeSmart 3D

**Help:**

- 8.2.13 TP Stakeout Triangles Output
- 17.15.3 Write TP Stakeout Binary Triangles (TSC Format)
- 8.2.14 TP Stakeout Strings Output
- 17.15.4 Write TP Stakeout 3DP String
- 17.15.5 TP Alignment
17.15.4 Write TP Stakeout 3DP String

Position of option on menu: Survey => Leica => 1100 => 3DP Strings
This panel creates a TP-Stakeout 3DP format file
Selecting 3DP Strings brings up the **Write TP Stakeout 3DP String** panel.

![Write TP Stakeout 3DP String panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centreline</td>
<td>select the super alignment or super string to convert, the string must have valid vertical geometry or an error will occur when processing.</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3DP Name</td>
<td>the name of the 3DP file to be created, the name of the file must be &lt;= 8 characters.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hz Tolerance</td>
<td>the arc to chord tolerance of the created horizontal points.</td>
<td></td>
<td>0.0005</td>
<td></td>
</tr>
<tr>
<td>Vt Tolerance</td>
<td>the arc to chord tolerance of the created vertical points.</td>
<td></td>
<td>0.0005</td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>write the 3DP file, any errors in processing the selected string will be displayed.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17.15.5 TP Alignment

Position of option on menu: Survey => Leica => 1100 => Alignments to HZA/VTA
This option converts alignments or super alignments into the TP-Setout/TP-Stakeout alignment format. These programs support the clothoid/natural clothoid and cubic parabola transition types. Due to restrictions in the software using these files the file names and alignment names must be
On selecting the **Alignments to HZA/VTA** option, the **TP Alignment** panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data String source</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Data source type</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>data selection type - for a full description go to <a href="#">4.19.3 Data Source</a></em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Data source model</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Source of the alignment/super alignment strings to convert.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>TP Format</strong></td>
<td>choice box</td>
<td>Stake out</td>
<td>Stake out, Set out</td>
</tr>
<tr>
<td><em>Stake out - write the data out in TP-Stakeout format.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Set out - write the data out in TP-Setout format.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Horiz file (hza) file</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>The HZA file to create, the name must be 8 characters or less.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Report vertical align tick box</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>if ticked the vertical alignment will be written to a .VTA file of the same name as the HZA file.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Create sdf/ldf file tick box</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>if ticked a surface/lane entry will be created for the alignments being written in the SDF/LDF file of the same name as the HZA file.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Start ext input</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>The start extension to all alignments being written, +ve extends before the start chainage, -ve invalidates that distance + into the alignment.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>End ext input</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>The end extension to all alignments being written, +ve extends after the end chainage, -ve invalidates that distance back into the alignment.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Suffix to lane name

A suffix will be added to the alignment name in the SDF/LDF file entry.

Process button

Create the TP-Stakeout/Setout format files, if errors are encountered during the conversion such as names > 8 characters the appropriate warnings will be displayed.

17.15.6 Leica 1200

The Leica 1200 walk-right menu collects under the one menu, options that can work with Leica 1200 instruments.

![Leica 1200 Menu](image)

For the option Strings, go to

- 17.15.7 Create Leica 1200 String Files
- 17.15.8 Create Leica 1200 String Files (Old)
- 17.15.9 Create Leica 1200 Triangle Files
- 17.15.10 Create Leica 1200 Road Files
- 17.15.11 Create Leica 1200 Tunnel Files

17.15.7 Create Leica 1200 String Files

Position of menu: Survey => Leica => 1200 => Strings

This panel creates a points and lines database for use on the Leica 1200 series of TPS/GPS instruments. This is done by creating an intermediate LandXML file and then calling a Leica provided converter to create the DBX files.

Selecting Strings brings up the Create Leica 1200 String Files panel
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Jobname</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The internal jobname</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>seen inside the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leica software</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Create database</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If ticked will create</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the 1200 DBX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if not ticked just</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the LandXML file is</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>created</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>LeicaXML file</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The name of the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leica LandXML file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to create</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Transition mapping</strong></td>
<td>file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Due to the inadequate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>specification of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>transitions in the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LandXML schema users</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>must explicitly map</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12d transition types</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to other vendors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>types</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Allow discontinuities</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If ticked super</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>string discontinuities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>will not be written</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to the DBX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Line vertex ids to CgPoints?</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If ticked will write</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>all of the string</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vertices to CgPoints</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>as well as writing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the strings as plan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Ignore pts without ID's</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If ticked, points</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>without a Point ID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>will be ignored</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Folder for DBXs</strong></td>
<td>file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The folder to create</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the databases in</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Data Strings**

<table>
<thead>
<tr>
<th>Data source type</th>
<th>model</th>
</tr>
</thead>
<tbody>
<tr>
<td>data selection</td>
<td>model</td>
</tr>
<tr>
<td>type - for a full description go to <a href="#">4.19.3 Data Source</a></td>
<td></td>
</tr>
</tbody>
</table>

---

What's New in 12d Model 17
The data source to write to the DBX files

Write button
Create the Leica 1200 Strings DBX files.

17.15.8 Create Leica 1200 String Files (Old)

Position of menu: Survey => Leica => 1200 => Strings (V4)

This panel is identical to 17.15.7 Create Leica 1200 String Files but calls an older version of the Leica LandXML/DBX converter.

Selecting Strings (V4) brings up the Create Leica 1200 String Files (Old) panel

17.15.9 Create Leica 1200 Triangle Files

Position of menu: Survey => Leica => 1200 => Triangles

This panel creates a triangle database for use on the Leica 1200 series of TPS/GPS instruments. This is done by creating an intermediate LandXML file and then calling a Leica provided converter to create the DBX files.

Selecting Triangles brings up the Create Leica 1200 Triangle Files panel
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jobname</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create database</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LeicaXML file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folder for DBXs</td>
<td>file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin Polygon selection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Jobname**

The internal jobname seen inside the Leica software.

**Create database**

Tick box

If ticked will create the 1200 DBX.

If not ticked just the LandXML file is created.

**LeicaXML file**

The name of the Leica LandXML file to create.

**Folder for DBXs**

The folder to create the databases in.

**Tin**

The tin to write to the DBX.

**Tin Polygon selection**

Select a polygon for the region of the tin to write out.

**Write**

Create the Leica 1200 Triangle DBX files.

### 17.15.10 Create Leica 1200 Road Files

**Position of menu:** Survey => Leica => 1200 => Roads

This panel creates a roads database for use on the Leica 1200 series of TPS/GPS instruments. This is done by creating an intermediate Leica LandXML file and then calling a Leica provided converter to create the DBX files.

This panel allows either a flat group of strings to be written to the DBX or multiple roads and layers in those roads dependent on the users needs.

Selecting **Roads** brings up the **Create Leica 1200 Road Files** panel.
The fields and buttons used in this panel have the following functions.

**Jobname**

*The internal jobname seen inside the Leica software.*

**File name**

*The name of the Leica LandXML file to create.*

**Transition mapping**  
*Due to the inadequate specification of transitions in the LandXML schema users must explicitly map 12d transition types to other vendors types.*

**Create database**  
*tick box  
if ticked will create the 1200 DBX,  
if not ticked just the LandXML file is created.*

**Put all stringlines in a layer**  
*tick box  
if not ticked then the strings in the model selected in the Stringlines model box in the "Simple" tab are written to the LandXML file with no layer grouping,  
if ticked there are 2 options.*
Folder for DBXs file
The folder to create the databases in.

Simple Tab
The "Simple" tab allows a centreline and model of strings to be written to a single layer in the DBX.

Alignment string string select
The centreline for the layer.

Include alignment in layer tick box
if ticked the centreline is included in the layer; is cut as part of the road surface.

Stringlines model model box
The model of strings forming the road surface/layer.

Layer name
The default layer name is the model name, this can be changed here.

Advanced Tab
The "Advanced" tab allows multiple centrelines and strings to be written to layers in the DBX.
For each alignment string there can be up to 10 layers, e.g. an entire subdivision can be uploaded by nominating the centreline for each road and adding the models for the final surface layers, boxing layers etc.

Alignment string
The centreline for the 10 optional layers.

Alignment in layer 1
If ticked the centreline is included in the 1st layer, is cut as part of the road surface.

Stringlines models 1
The model of strings forming the road surface/layer.

Layer name 1
The default layer name is the model name, this can be changed here.

To create extra roads/centrelines right click on the row number in the grid box to insert an extra row and fill out to suit.

Write button
Create the Leica 1200 Road DBX files.

17.15.11 Create Leica 1200 Tunnel Files

Position of menu: Survey => Leica => 1200 => Tunnel
This panel creates a tunnel database for use on the Leica 1200 series of TPS instruments. This is done by creating an intermediate Leica LandXML file and then calling a Leica provided converter to create the tunnel DBX files.

This panel allows a single centreline and layer to be written to a tunnel DBX, it uses some industry standard tunnel definition files (.PRO,.PRA) to define the shape of profiles and the chainages they are applied at, these files are created via a text editor or other software packages.

Selecting Tunnel brings up the Create Leica 1200 Tunnel Files panel
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel centreline</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The centreline for the tunnel.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transition mapping</td>
<td>file</td>
<td>Leica_LandXML.trans_map</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Due to the inadequate specification of transitions in the LandXML schema users must explicitly map 12d transition types to other vendors types.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.PRO file</td>
<td>file</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The profiles file containing the definition of the tunnel elements.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create database</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If ticked will create the 1200 tunnel DBX</td>
<td>if not ticked, just the Leica LandXML file is created.</td>
<td></td>
</tr>
<tr>
<td>Jobname</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The internal jobname seen inside the Leica software.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profile type</td>
<td>choice box</td>
<td>perpendicular</td>
<td>perpendicular, vertical</td>
</tr>
<tr>
<td></td>
<td>perpendicular - the profiles are to be interpreted normal to the grade of the tunnel vertical alignment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vertical - the profiles are not adjusted to the grade of the tunnel vertical alignment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer name</td>
<td></td>
<td>Final</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The name of the tunnel DBX layer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create database</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked will create the 1200 DBX</td>
<td>if not ticked, just the LandXML file is created.</td>
<td></td>
</tr>
<tr>
<td>Folder for DBXs</td>
<td>file</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The folder to create the databases in.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Create the tunnel DBX files.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For more information on PRO/PRA tunnel definition files please see 20.12.10 Definition of the PRO and PRA definition files.
17.15.12 Leica GradeSmart 3D

The Leica GradeSmart 3D walk-right menu collects under the one menu, options that can work with Leica GradeSmart software.

The GradeSmart options are all documented in the Leica GradeSmart manual.

Triangles to TSB

The GradeSmart options are all documented in the Leica GradeSmart manual.

17.16 Topcon

The Topcon walk-right menu collects under the one menu, options that can work with Topcon instruments.

For the option Write LN3 file go to

- 17.16.1 Create Topcon LN3 String Files
- 17.16.2 Read Topcon LN3 Strings Files
- 17.16.3 Create Topcon TN3 Triangle Files
- 17.16.4 Read Topcon TN3 Triangle Files
- 17.16.5 Create RD3 Road File
- 17.16.6 Read Topcon RD3 Road File
- 17.16.7 Create Topcon PT3 Points Files
- 17.16.8 Read Topcon PT3 Points Files

17.16.1 Create Topcon LN3 String Files

Position of menu: Survey => Topcon => write LN3 file

This panel writes strings to Topcon LN3 linework files.

Selecting write LN3 file brings up the Create Topcon LN3 String Files panel
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data to write</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source type</td>
<td>model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The data source to write to the LN3 file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The data source to write to the LN3 file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The name of the layer in the LN3 file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer colour</td>
<td>colour</td>
<td>yellow</td>
<td></td>
</tr>
<tr>
<td>The colour of the strings in the Topcon LN3 file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LN3 file name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The name of the LN3 file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The name of the LN3 file you see inside the Topcon software.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17.16.2 Read Topcon LN3 Strings Files

Position of menu:  Survey =>Topcon=> Read LN3 file
This panel reads in strings from the Topcon LN3 linework files.
Selecting Read LN3 file brings up the Read Topcon LN3 String Files panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topcon string file</td>
<td>file</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The LN3 file you wish to read.

Pre* postfix for models

for information please go to 4.19.2 Pre*Postfix in Panel Fields

17.16.3 Create Topcon TN3 Triangle Files

**Position of menu:** Survey => Topcon => Write TN3 file

This panel writes triangles to the Topcon TN3 triangulation files.

Selecting Write TN3 file brings up the Create Topcon TN3 Triangle Files panel

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The tin to write to the TN3 file.

Internal Tin name

The name of the tin you see inside the Topcon software.

**Tin Polygon selection**

Select a polygon for the region of the tin to write out.

Topcon tin file

The name of the TN3 file to create.
17.16.4 Read Topcon TN3 Triangle Files

Position of menu: Survey => Topcon => Read TN3 file
This panel reads in triangles from the Topcon TN3 triangulation files.
Selecting Read TN3 file brings up the Read Topcon TN3 Triangle Files panel.

![Read Topcon TN3 Triangle Files panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topcon tin file</td>
<td>file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre* Postfix for models</td>
<td></td>
<td></td>
<td>4.19.2 Pre*Postfix in Panel Fields</td>
</tr>
</tbody>
</table>

17.16.5 Create RD3 Road File

Position of menu: Survey => Topcon => Write RD3 file
This panel uploads the centreline and cross sections for a Topcon RD3 road definition file. The RD3 file can contain just a centreline, a centreline with vertical alignment or the full definition including cross sections.
Selecting Write RD3 file brings up the Create RD3 Road File panel.

![Create RD3 Road File panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD3 Job</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alignment string</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report vertical alignment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report X-sections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-sections model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start change for X-sections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End change for X-sections</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RD3 Job
   The RD3 file you wish to create.

Alignment string
   The centreline of the road.

Report vertical alignment
   If ticked the vertical alignment is uploaded to the RD3 file

Report X-sections
   If ticked cross sections are uploaded to the RD3 file

X-sections model
   The model containing the cut cross section strings to upload to the RD3 file. These must have been cut normal to the nominated alignment string or the upload will fail. Start chainage for X-sections
   If non blank the start chainage to upload cross sections from.

End chainage for X-sections
   If non blank the end chainage to upload cross sections to.

17.16.6 Read Topcon RD3 Road File

Position of menu: Survey => Topcon => Read RD3 file

This panel reads in the centreline and cross sections from a Topcon RD3 road definition file. Selecting Read RD3 file brings up the Read Topcon RD3 Road File panel.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topcon Road file</td>
<td>model</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The RD3 file you wish to read.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Model</td>
<td>model</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The model for the centreline and cross sections.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sections Colour</td>
<td>colour box</td>
<td>yellow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The colour for the cross section strings.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions.

17.16.7 Create Topcon PT3 Points Files
Position of menu:  Survey =>Topcon=> Write PT3 file
This panel writes strings to Topcon PT3 points files.
Selecting Write PT3 file brings up the Create Topcon PT3 Points Files panel.

![Create Topcon PT3 Points Files panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data to write</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type - for a full description go to 4.19.3 Data Source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td></td>
<td>model</td>
<td></td>
</tr>
<tr>
<td>Layer name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The name of the layer in the PT3 file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer colour</td>
<td></td>
<td>yellow</td>
<td>available colours</td>
</tr>
<tr>
<td>The colour of the points in the Topcon PT3 file. Please note that the PT3 format colours points by layer and hence individual point colours cannot be mapped to a PT3 file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT3 file name</td>
<td></td>
<td>file box</td>
<td></td>
</tr>
<tr>
<td>The name of the PT3 file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The name of the PT3 file you see inside the Topcon software.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17.16.8 Read Topcon PT3 Points Files

Position of menu:  Survey =>Topcon=> Read PT3 file
This panel reads in points from the Topcon PT3 points files.
Selecting Read PT3 file brings up the Read Topcon PT3 Points Files panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Topcon points file</strong></td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>The PT3 file you wish to read.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em><em>Pre</em> postfix for models</em>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>For information please go to 4.19.2 Pre</em>Postfix in Panel Fields*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17.17 Trimble

The Trimble walk-right menu is:

For the option **Write TTM file**, go to

- 17.17.1 Write TTM File
- 17.17.2 Trimble Link Points
- 17.17.3 Trimble Link Triangles
- 17.17.4 Trimble Link Roads
- 17.17.5 SCS900 CSV to XYZ ID Code

17.17.1 Write TTM File

Triangles from a tin (not a super tin) can be written out as a Trimble TTM file.

Note that the Trimble TTM is binary and so can not be viewed or edited.

Selecting **Write TTM file** brings up the Create Trimble TTM Triangles File panel:
The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Job name</td>
<td>text input</td>
<td>name of the job to write into the Trimble TTM file</td>
<td></td>
</tr>
<tr>
<td>Tin Polygon selection</td>
<td>polygon box</td>
<td>if a string is selected, then only those triangles whose centroid is inside the polygon are written to the TTM file. If no string is selected, then all the triangles in the tin are written to the TTM file.</td>
<td></td>
</tr>
<tr>
<td>Trimble tin file</td>
<td>file box</td>
<td>name of the Trimble TTM file. If it is not present, &quot;.TTM&quot; will be automatically added to the end of the file name.</td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td>write out the triangles to the given TTM file.</td>
<td></td>
</tr>
</tbody>
</table>

17.17.2 Trimble Link Points

This option uploads selected vertices with point IDs to a Trimble device or writes the (X, Y, Z, point ID) data to a file.

Selecting Trimble Link points brings up the Create Trimble Link Points panel:
The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source of setout points</strong></td>
<td>data selection</td>
<td>for a full description go to 4.19.3 <a href="#">Data Source</a></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>data source of setout points to create the upload data from.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin X coordinate/Origin Y coordinate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If non-zero, subtract the value from the x/y value before uploading/writing out.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upload directly to Trimble device</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, the selected points are uploaded to the Trimble device.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked, the data is written to a Trimble DC file with the name as the 12d Model project and ending in .DC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Only upload points with numeric point id's</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, only vertices with numeric point IDs are uploaded to the Trimble device or written out.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked, all vertices (whether numeric or alpha-numeric point IDs) are uploaded to the Trimble device or written out.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start point id</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>point ID to start creating upload data from.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End point id</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>last point ID to create upload data to.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note: Start and End point IDs may be left blank, and all point IDs are uploaded.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default for null z values</td>
<td>measure box</td>
<td>999</td>
<td></td>
</tr>
</tbody>
</table>
value to write for null z-values.

**Write** button
send the vertices directly to the Trimble device or write them to a DC file.

### 17.17.3 Trimble Link Triangles

Triangles from a tin (not a super tin) can be uploaded to a Trimble device or written out as a Trimble TTM file.

Note that the Trimble TTM is binary and so cannot be viewed or edited.

Selecting **Trimble Link triangles** brings up the **Create Trimble Link Triangles** panel:

![Create Trimble Link Triangles panel](image)

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>the tin (not a super tin) to either upload directly to the Trimble device or write out to a Trimble TTM file. A super tin can not be written out to a TTM file.</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Job name</td>
<td>name of the Trimble job</td>
<td>text input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin Polygon selection</td>
<td>if a string is selected, then only those triangles whose centroid is inside the polygon are processed. If no string is selected, then all the triangles in the tin are processed.</td>
<td>polygon box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upload directly to Trimble device</td>
<td>if ticked, the selected triangles are uploaded to the Trimble device. If not ticked, the data is written to a Trimble TTM file with the given job name and ending in .TTM</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td><strong>Write</strong></td>
<td>send the triangles directly to the Trimble device or write them to the given TTM file.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 17.17.4 Trimble Link Roads

This option uploads an alignment string and associated x-sections to a Trimble device, or writes the data to a specific roading file.

Selecting **Trimble Link roads** brings up the **Create Trimble Link Roads** panel:
The Trimble upload/DC file has certain limitations and criteria. These include:

1. The alignment string must exist on the X-sections. This allows us to calculate the zero pt so we can split the template into left and right.

2. The X-sections model should be representative of the alignment string, i.e. not generated from a different alignment. Therefore the alignment string should have a 0 offset on the xsections.

3. The alignment string cannot exist above or below the X-sections, i.e. it should be on the section as per 1.

4. The number of points on successive section templates (left and right) should be the same, i.e. if 5 points are on the LHS template for ch0 then the same number of points should exist for the LHS template for ch20. The instruments using this file, may not handle transitions between different number of points effectively and can give incorrect results. The user should limit the upload data by using the chainage range between areas where the number of points on each side of the X-sections are the same.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alignment string</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job name</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upload directly to Trimble device</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td>Use legacy DC Format</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td>Report vertical alignment</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td>Report X-sections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-sections model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start chainage for X-sections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End chainage for X-sections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assume X-sections left end-segment is sideslope</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assume X-sections right end-segment is sideslope</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Side slope tolerance (%)</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>

*the alignment string to be uploaded/written to the file.*

*name of the Trimble job*

*if ticked, the selected data is uploaded to the Trimble device.*

*If not ticked, the data is written to a Trimble DC file with the given job name and ending in .DC*
if ticked, include vertical alignment details in the upload/file.

Report X-sections tick box not ticked
if ticked, the X-sections in X-section model will be uploaded/output to the file.

X-sections model model box
the model of X-sections to be uploaded/written to the file. This can only be filled in if Report vertical alignment and Report X-sections are ticked.

Start chainage for X-sections measure box
if non blank, only X-sections whose chainage is greater than or equal to the Start chainage for X-sections and less than or equal to the End chainage for X-sections are uploaded/written out. If blank, all X-sections that are less than or equal to the End chainage for X-sections are uploaded/written out.

End chainage for X-sections measure box
if non blank, only X-sections whose chainage is less than or equal to the End chainage for X-sections and greater than or equal to the Start chainage for X-sections are uploaded/written out. If blank, all X-sections that are greater to or equal to the Start chainage for X-sections are uploaded/written out.

Assume X-sections left end-segment is sideslope tick box ticked
if ticked, the first segment is considered to be a sideslope, and the Sideslope tolerance (%) field is enabled.

Assume X-sections right end-segment is sideslope tick box ticked
if ticked, the last segment is considered to be a sideslope, and the Sideslope tolerance (%) field is enabled.

Sideslope tolerance (%) measure box 0.01

Write button
send the data directly to the Trimble device or write it to the given DC file.

17.17.5 SCS900 CSV to XYZ ID Code
This option converts a Trimble SCS900 CSV file to an xyz file.
Selecting SCS900 CSV to XYZ ID Code brings up the Convert SCS900 CSV File panel:

The fields and buttons used in this panel have the following functions:
What's New in 12d Model 17

**SCS900 csv file**
file box

name of the SCS900 CSV file

**North/East?**
tick box
ticked

if ticked,

**Output xyz File**
file box

name of the xyz file to convert the SCS900 CSV file to

**Process**
button

convert the SCS900 file to a xyz file

17.18 Setout

**Position of menu:** Survey => Setout

The Setout walk-right menu contains options for creating points numbers and files for uploading to data recorders.

The Setout walk-right menu is .

17.18.1 Create Centre Points for Curves of Strings

**Position of option on menu:** Survey => Setout => Create centres of string curves

This option is used to create points at the centres of arcs in alignment strings, polylines, arcs or circles.

17.18.2 Create X Y Text for Centre Points of Alignments

17.18.3 Setout Lip Line

17.18.4 Create Setout Points

17.18.5 Create Setout Points Using Super String
The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for centre points</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td>Create</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 17.18.2 Create X Y Text for Centre Points of Alignments

**Position of option on menu:** Survey => Setout => Create x y text of centres of HIPs

This option creates text for the x and y co-ordinates of the horizontal arcs on an alignment string.
model for the text of the x and y co-ordinates

Text size (w) input box
size of text in world units.

Text colour input box
colour of text

Pick a string button
select string to create text for.
17.18.3 Setout Lip Line

Position of option on menu:  Survey => Setout => Setout lip line

This panel is used to create bubbles and/or a report for the critical horizontal and vertical points and quarter points (by chord or by chainage) for any arcs in an alignment string.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select a lip string</td>
<td>string select</td>
<td>pick the alignment string to have bubbles created for.</td>
<td></td>
</tr>
<tr>
<td>Select point type:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hcp</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vcp</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quarter point type:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chord</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chainage</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td>input box</td>
<td>name of the report file.</td>
<td></td>
</tr>
<tr>
<td>Create bubbles</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for bubbles/text</td>
<td>input box</td>
<td>model for the bubbles and text.</td>
<td></td>
</tr>
</tbody>
</table>

pick the alignment string to have bubbles created for.

if ticked, the horizontal tangent points are included.

if ticked, the vertical tangent points are included.

if ticked, the quarter points by chord distance are included.

if ticked, the quarter points by chainage distance are included.

if ticked, bubbles are created with the string name and bubble number inside.
Text size (w)  
input box  
size (in world units) for the text inside the bubble.

Colour for text  
input box  
Colour for the bubble and bubble text.

Bubble offset  
input box  
offset distance from the alignment string to place the bubble.

Process  
button  
run the option.

17.18.4 Create Setout Points

Position of option on menu:  Survey => Setout => Setout points

This panel is used to create points with numbers for use in setting out data. This option is usually run before the option to create an instrument upload file. The setout point is created as a 4d string with the point at the data point and with the point id as the text for the 4d string, with a text size of zero.

Separate text for the numbers and circles surrounding the data points and the text numbers are also created. By default, a file called "defaults.sof" is read in containing settings required for the option.
The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Textstyle</strong></td>
<td>input box</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td><strong>Model for setout points</strong></td>
<td>input box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td><strong>Model for points labels</strong></td>
<td>input box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td><strong>Individual points</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Use super strings</strong></td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td><strong>The next number</strong></td>
<td>input box</td>
<td>1 or highest number</td>
<td></td>
</tr>
<tr>
<td><strong>Reset</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Data to label</strong></td>
<td>input box</td>
<td>string</td>
<td>string, model, view, point</td>
</tr>
<tr>
<td><strong>Model/View/String/Point to</strong></td>
<td>output box</td>
<td></td>
<td>data to create point ids for:</td>
</tr>
<tr>
<td><strong>Many points/strings</strong></td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td><strong>Label</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Undo</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Default settings</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Textstyle**
- input box 1
  - textstyle for the created point ids

**Model for setout points**
- input box 0
  - model to place the setout points in

**Model for points labels**
- input box 0
  - model to place the setout point ids and circles in.

**Individual points**
- tick box
  - if ticked, the setout points are created as point strings
  - If not ticked, individual one point strings are created.

**Use super strings**
- tick box
  - if not ticked, super strings are created for the setout points. The super string point id is set to the setout point id.
  - If not ticked, 4d strings are created for the setout points strings with the 4d text as the setout point id (with text size set to zero).

**The next number**
- input box
  - 1 or highest number in model for setout points
  - next numeric point id to use for creating point ids. If a **Model for setout points** is given, the model is searched for any super strings or 4d strings with numbers as text and the **The next number** is set to one more than the highest numeric point id in the model.

**Reset**
- button
  - reset the **The next number** to the highest point in the model for setout points.

**Data to label**
- input box
  - string, model, view, point
  - type of data source.

**Model/View/String/Point to**
- output box
  - data to create point ids for.

**Many points/strings**
- tick box
  - tick
  - if ticked, the each time a string/point is selected, the string/point is processed without having to click on the **Label** button. After a string/point is processed, another string/point can then be selected.
  - If not ticked, the **Label** button must be clicked before the selected string/point is processed.

**Label**
- button
  - create setout points and circles for the selected data.

**Undo**
- button
  - undo the last setout points and s created whilst the panel has been up.

**Default settings**
- button
  - default settings for the s. These can be read in from a file.

### 17.18.5 Create Setout Points Using Super String

**Position of option on menu:** Survey => Setout => Setout points using super string

**Position of option on menu:** Road Toolbar
This option creates a super string over the top of the data selected. The super string allows point numbers. The incremental point numbers are displayed at each vertex inside a circle symbol. The setout numbers are identified on a setout model and incremented each time the panel is activated.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Create Pts</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start Num</td>
<td>integer</td>
<td>1 (or next available number on subsequent runs of the option)</td>
<td></td>
</tr>
<tr>
<td>Pt Offset</td>
<td>real</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td>real</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Alpha *</td>
<td>real</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

*Type in number and <enter> or accept default*
Offset of the setout point, typically a distance behind the back of kerb.
(This will be the setout point x,y location but the z value refers to the original string selected e.g. the kerb return)

Offset  real
Offset of the setout point text and circle, from the actual setout point.

Alpha*  text
If non-blank, Alpha point number prefix is used

Data Source  choice box  String  String, Point, Model, View

String: Allows the selection of a string (using 12d pick with direction), where the setout number is always placed on the right hand side in relation to the pick direction, perpendicular to the string.
Alignment choices: A selection panel is displayed with 3 choices:-

s  by number <divides the string into equal parts>
s  by distance <divides the string and may have a remainder>
s  by special chainage file

String to label  button

Point: Allows the selection of a point. There is no direction involved.

Point to label  button

Model and View: Allows the setout of multiple strings and points but again there is no control over the pick direction or the orientation of the setout number in relation to any string.

Model to label  model
existing model selection required

View to label  view
Existing view to be selected

Label  button
Runs the option and adds the setout model to the view from which the Data Source was selected

Undo  button
Each <Label> creation has an undo
The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit Pts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertex</td>
<td>Integer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>Integer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The Vertex and Point fields above are automatically filled in after a setout string has been picked*

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto</td>
<td>tick box</td>
<td>false</td>
<td></td>
</tr>
</tbody>
</table>

*When ticked on, and a setout point is selected using <Pick>, then the <Move> option is automatically activated*

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Select setout point to move text bubble*

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prev</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Steps backward and highlights the previous point on setout string*

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Steps forward and highlights the next point on setout string*

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Activates the move option allowing the setout text bubble to be dynamically relocated on screen, but still remain attached to the actual setout point*
Link to Setout:

Add button
- Draws a leader line from the actual setout point to the setout text value bubble

Add All button
- Draws a leader line from the actual setout point to the setout text value bubble at all vertices on the selected setout string

Link to Setout:

Delete button
- Deletes the leader line from the actual setout point to the setout text value bubble, if it exists

Delete All button
- Deletes the leader line from the actual setout point to the setout text value bubble at all vertices on the selected setout string

Reverse Setout Numbers:

Select button
- This option reverses the numbering order only on a setout string.

Re numbering / Drape:

This option can renumber the start number used on setout data. When a string or model is selected a prompt for a new start number is displayed.

The tin to drape is used to reset the z value of the setout point. A design tin can be used, but care should be taken to have a design point in the tin, close to the setout point, as a “drop onto the tin” is used to calculate the new z value.

Data Source choice box String String, Model
- String or model are the choices

Tin to drape tin
- If non-blank, setout vertices will be draped to get new z value

Setout String button
- Select the setout string to perform the above Re number ing / Drape

Update Setout + Z Values + Grades + Tabulation:

Select button
- Setout features can be updated as the original string selected for setout (e.g. Kerb return alignment) has been stored as an attribute on the setout string. Care must be taken to re-select the original string.

Toggle Z's <> Grades:

Select button
- Setout features such as labelling Z values and grades on segments are discussed under Options tab. This option toggles the display between the two
The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Source</td>
<td>choice box</td>
<td>String</td>
<td>String, Model</td>
</tr>
<tr>
<td>String or model are the choices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setout String Select</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select a setout string to tabulate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model to Tabulate</td>
<td>model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select existing setout string to tabulate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min num</td>
<td>integer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max num</td>
<td>integer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fields are filled out once setout data is selected, but can be changed manually.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File name</td>
<td>file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If non-blank an xyz file will be created</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location xyz</td>
<td>xyz pick</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select on screen or enter a coord for the top left hand corner of table</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heading</td>
<td>Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if non-blank entry used as heading for tabulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tabulation Model</td>
<td>model</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------------------------</td>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Enter a model name for the tabulation</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textstyle Data</td>
<td>textstyle box</td>
<td>select Textdata</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Setup text colour, height and width</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table Linework Colour</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Colour for any linework in tabulation</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tabulate Reference Chainages</td>
<td>tick box</td>
<td>false</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Chainages can be displayed from the original selected string (e.g. Reference kerb return alignment) in relation to setout vertices</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>runs the option</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Place Text</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Creates the tabulation on the tabulation model</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undo</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Undo for that operation</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Deletes all the entities on the table selected</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move Table</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Moves the complete table on screen (select table and destination point)</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table Update</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Table can be updated if text parameters are changed or Reference Chainages is ticked on or off. Select the tabulation.</em></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Options

Setout Type

Setout number or Z values are the choices

Setout Number:

Point size choice box
Selections are Point and Point 0.5 (refer to the size of the point shown at the setout z, y)

Draw circle around setout point tick true
Refers to the linestyle circle at each setout z, y.

Draw circle around text label tick true
Refers to the circle surrounding each setout point number text value

Circle colour colour box blue
The colour of the circle surrounding each setout point number text value

Point tolerance real
X,Y Tolerance between setout points to handle duplicate or near duplicate points

Draw link from Setout to Label tick box false

Use Highest Project Point ID integer
Search for the highest point number available in the project

Label Grade Approximations tick box false
(Grades can be labelled between setout points, but care must be taken as the z value is used from the setout points, the length from the original reference string selected. The grade is only correct if the points are on grade and or on a parabola. So the grades are reported as approximate only and for a visual check.)

Z Value:

Symbol input ZTICK
Symbol Size real 1
Decimal Places Integer 3
Prefix Text input
if non-blank text value added to text Z value. <e.g. R.L.>

Textstyle Data textstyle box
Setup text style, colour, height and width

Model for setout model box available models
Enter a model name for the setout data

Suffix for Level, Grade, Links Models
Display default values for models that may be created if you choose to draw link lines, label levels or grades. If setout model is “Setout”...then these models would default to “Setout Level” “Setout Link” “Setout Grade”
17.19 Upload

**Position of menu:** Survey => Upload

The Survey Upload walk-right menu contains survey options to upload data the most survey instruments. There are options to upload points, triangulations and road geometry.

The Survey Upload walk-right menu is

![Survey Upload Menu]

Create triangle upload file
Create points upload file
Create roads upload file
Create points upload file (new) - only for Trimble Link
Create roads upload file (new) - only for Leica XML and Trimble Link
Upload data to instrument/device

For the option Create unique coordinates, go to

- 17.19.1 Create Unique Coordinates
- 17.19.2 Create Triangle Upload File
- 17.19.3 Create Points Upload File
- 17.19.4 Create Road Upload File
- 17.19.5 Create Points Upload File (New)
- 17.19.6 Create Road Upload File (New)
- 17.19.7 Create Paveset Upload File
- 17.19.8 Survey Data Upload

17.19.1 Create Unique Coordinates

**Position of option on menu:** Survey => Upload => Create unique coordinates

This option creates points from the selected data so that there is only one point for all vertices within user defined xy and z tolerances.

Selecting Create unique coordinates brings up the Create Model of Unique Points panel.

![Create Model of Unique Points]

The fields and buttons used in this panel have the following functions:
### Data source of setout points

_data selection type - for a full description go to 4.19.3 Data Source._

### Data source

_data source of strings to create unique points from_

### Output model

_model box_

_model for the created vertices._

**xy tolerance**  
real value box  
-0.001

**z tolerance**  
real value box  
-0.001

_all vertices closer than these tolerances are considered to be the same vertex and only one point will be created for all of them._

### Process

_button_

_create the distinct points_

## 17.19.2 Create Triangle Upload File

**Position of option on menu:**  
Survey => Upload => Create triangle upload file

The [Create triangle upload file](#) option allows the creation of a triangle file based on a tin. Various file formats can be selected.

Selecting [Create triangle upload file](#) brings up the Create triangle upload file panel

![Create triangle upload file panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

_name of tin from which the triangle file will be based._

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin polygon selection</td>
<td>selection</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

_allows the user to select a specific area of the tin to be exported as a triangle file._

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

_On clicking the write button, [12d Model](#) will write the specified file._
File type choice box
Leica DTM *.gsi
12d xyzs *.dat
Ortho 12d *.T12
Sokkia *.tri
TP Setout/Stakeout *.tsa
LandXML *.xml

file type to be produced.

For Leica DTM *.gsi format:

Job id input
job id to be included in file. (max 8 characters)
Leica output file input
name of file to be produced
Easting offset input
easting offset to be applied to data. This is important where large coordinate values are used, such as in map projections.
Northing offset input
northing offset to be applied to data. This is important where large coordinate values are used, such as in map projections.

For 12D xyzs *.dat format:

12d output file input
name of file to be produced

For Ortho 12d *.T12 format:

Ortho 12d output file input
name of file to be produced

For Sokkia *.tri format:
17.19.3 Create Points Upload File

**Position of option on menu:** Survey => Upload => Create points upload file

The **Create points upload file** option allows the creation of a file of point ids, x, y and z, for string data (super strings and 4d strings only). Various file formats can be selected.

Selecting **Create points upload file** brings up the **Create Instrument Points Upload File** panel.

Upload files for points can be created for various Leica, Geodimeter, Sokkia, Topcon, UPL, QuikDraw, Trimble XYZ formats as well as a text file of point id, x,y,z data.
The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument choices</td>
<td>choice box</td>
<td>report_xyz</td>
<td>available instruments</td>
</tr>
<tr>
<td>Output Z values</td>
<td>tick box</td>
<td></td>
<td>if ticked, z-values are output - only used for Geodimeter formats</td>
</tr>
<tr>
<td>Create new job on SDR 33</td>
<td>tick box</td>
<td></td>
<td>if ticked, create a new job on SDR33 - only used for Sokkia formats</td>
</tr>
<tr>
<td>Left justify fields</td>
<td>tick box</td>
<td></td>
<td>if ticked, each field is left justified - only used for Sokkia formats</td>
</tr>
<tr>
<td>User definable terminator</td>
<td>input box</td>
<td>&amp;</td>
<td>terminator to use - only used for Geodimeter formats.</td>
</tr>
<tr>
<td>Default char for blank name</td>
<td>input box</td>
<td>z</td>
<td>character used for blank names - only used for Geodimeter formats.</td>
</tr>
<tr>
<td>Data source of setout points</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
data selection type - for a full description go to 4.19.3 Data Source.

Data source
data source of setout points to create the upload file from.

Number of decimal places input box 3
number of decimal places for x, y and z values.

Default for null value input box -9999
value to write for null z-values.

Start point id input box
point id to start creating upload file from.

End point id input box
last point id to write to upload file.

Note: Start and End point ids may be left blank, and all point ids (whether numeric or alpha-numeric) will be written to the upload file.

Origin x/Origin y input box
If non-zero, subtract the value from the x/y value before writing out.

Upload file file box
name of the upload file to create.

Get Point Range button
pressing this button will populate the Start and End point id fields with the minimum and maximum (numeric) point ids found in the selected source data. If the selected source data contains a mix of numeric and alpha-numeric point ids, the alpha-numeric point ids are considered to have a numeric value of zero (0), but are ignored when determining the range. If the selected source data contains alpha-numeric point ids only, then the Start and End point id fields will both be set to zero (0).

Write File button
create the upload file

17.19.4 Create Road Upload File

Position of option on menu: Survey => Upload => Create roads upload file

The Create roads upload file option allows the creation of a specific roading file. Files can be created for various Leica (8 & 16 formats), Geodimeter, Sokkia, Topcon and Trimble Roading formats.

Selecting Create road upload file brings up the Create Roading Upload File panel

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument choices</td>
<td>choice box</td>
<td>Geodimeter Roadline 3d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leica Road Plus 8</td>
<td></td>
</tr>
</tbody>
</table>
For choice of **Geodimeter Roadline 3d**, go to

- **Leica Road Plus 8**
- **Leica Road Plus 16**
- **LMGS - D45**
- **Sokkia Roading - Alignment Road**
- **Sokkia Roading - String Road**
- **Topcon MS2000**
- **Topcon GTS-700 Roads**
- **Trimble Roading**

**Geodimeter Roadline 3D file**

**Position of option on menu:** Survey => Upload => Create roads upload file, Instrument choice = Geodimeter Roadline 3d

The **Geodimeter Roadline 3d** option allows the creation of a specific roading file.

Selecting **Geodimeter Roadline 3d** brings up the **Report Geodimeter Roadline 3D** panel

![Report Geodimeter Roadline 3D](image)

The Geodimeter (trimble), has certain limitations and criteria associated with the 3d file. These include:

1. Each section template (i.e. right or left) has a max number of 12 points.
2. The first and last segments of the alignment must be a straight (for both horizontal and
vertical).

3. The start and end chainages of the horizontal alignment should be the same for the vertical alignment.

4. The alignment string must exist on the xsec's. This allows the calculation of the zero pt so we can split the section into left and right templates.

5. The xsec model should be representative of the alignment string used in the macro. i.e. not generated from a different alignment. Therefore the alignment string should have a 0 offset on the xsections.

6. The alignment string cannot exist above or below the xsection. i.e. it should be on the section as per 4)

7. The number of points on consecutive section templates (left and right) should be the same. i.e. if 5 points are on the LHS template for ch0 then the same number of points should exist for the LHS template for ch20. The instruments using this file, cannot handle transitions between different number of points effectively and can give incorrect results. The user should limit the file by using the chainage range between areas where the number of points on each side of the cross sections is the same.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select H-Align</td>
<td>Select box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>report vertical alignment</td>
<td>tick box</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>report cross sections</td>
<td>tick box</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>cross section model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xsec start ch</td>
<td>input box</td>
<td>min alignment ch</td>
<td></td>
</tr>
<tr>
<td>xsec end ch</td>
<td>input box</td>
<td>max alignment ch</td>
<td></td>
</tr>
<tr>
<td>ignore points on RHS/LHS sections &gt;12</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td>file name</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Leica road plus 8 / 16 file

Position of option on menu: Survey =>Upload => Create roads upload file, Instrument choice = Leica roadplus 8 or Leica roadplus 16

The Leica roadplus 8 and Leica roadplus 16 options allow the creation of specific Leica road files.

Selecting Leica roadplus 8 brings up the Report Leica roadplus 8 panel.
Selecting **Leica roadplus 16** brings up the **Report Leica roadplus 16** panel.

The 8 and 16 formats are different file formats for the leica range of instruments. The user should be aware of the required format for the particular instrument. Please refer to the Leica documentation for specifications.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Job id</strong></td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Select alignment</strong></td>
<td>String select box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Report vertical align</strong></td>
<td>tick box</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td><strong>Report cross sections</strong></td>
<td>tick box</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td><strong>Cross section model</strong></td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>XSec start ch</strong></td>
<td>input box</td>
<td>min alignment ch</td>
<td></td>
</tr>
<tr>
<td><strong>XSec end ch</strong></td>
<td>input box</td>
<td>max alignment ch</td>
<td></td>
</tr>
<tr>
<td><strong>Report cross section assignment</strong></td>
<td>tick box</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td><strong>File name</strong></td>
<td>input box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The name given will be appended with the correct prefix eg ALN for alignment file. As Leica only takes 8 character file names, the name may be truncated.

**Write** button
write appropriate files.

LMGS - D45 file

**Position of option on menu:** Survey => Upload => Create roads upload file, Instrument choice = LMGS - D45 file

The LMGS - D45 file option allows the creation of a specific file format suitable for upload to Leica’s grader and paver control systems. The format has a number of rules that must be satisfied for correct file creation. These include:

1. There must be an equal number of points on each section
2. Points should not be closer than 5cm in both directions
3. Azimuth changes between cross section points should not be greater than 20gon (18 degrees).

Selecting LMGS - D45 file brings up the LMGS - D45 file panel

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross section model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XSec start ch</td>
<td>input box</td>
<td>min alignment ch</td>
<td></td>
</tr>
<tr>
<td>XSec end ch</td>
<td>input box</td>
<td>max alignment ch</td>
<td></td>
</tr>
<tr>
<td>File name</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Write button

write appropriate file.

Sokkia Roading - Alignment Road file

**Position of option on menu:** Survey => Upload => Create roads upload file, Instrument choice = Sokkia Roading - Alignment road

The Sokkia Roading - Alignment road option allows the creation of a specific roading file.

Selecting Sokkia Roading - Alignment road brings up the SDR Roading - Alignment Road panel
The sdr33 roading file has certain limitations and criteria. These include:

1. The alignment string must exist on the xsec’s. This allows us to calculate the zero pt so we can split the template into left and right.

2. The xsec model should be representative of the alignment string used in the macro. i.e. not generated from a different alignment. Therefore the alignment string should have a 0 offset on the xsections.

3. The alignment string cannot exist above or below the xsection. I.e. it should be on the section as per 1).

4. The number of points on adjacent section templates (left and right) should be the same. i.e. if 5 points are on the LHS template for ch0 then the same number of points should exist for the LHS template for ch20. The instruments using this file, may not handle transitions between different number of points effectively and can give incorrect results. The user should limit the file by using the chainage range between areas where the number of points on each side of the cross sections are the same.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select H-Align</td>
<td>Select box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>select valid alignment string.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road Name</td>
<td>input box</td>
<td>Name of selected alignment string</td>
<td>input road name. If a valid alignment is selected, the name of that alignment will be the default road name.</td>
</tr>
<tr>
<td>Report vertical alignment</td>
<td>tick box</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>write vertical alignment details to file mode. If yes vertical alignment details written to the specified file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assume last XSec segment is sideslope</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
</tbody>
</table>

if box is selected, the last segments left and right of 0.0 offset are considered to be side slopes, and the default cut and fill slope fields are enabled.

**Default cut slope (%)**  
this field is optional. From the section data it is only possible to calculate either the cut or fill sideslope. A default value can be specified to be used for the non calculated value.

When the segment is rising (i.e has a positive slope) it is considered a cut slope. Similarly, if the grade is negative the sideslope is considered a fill. If a fill sideslope is calculated, the cut sideslope definition in the file will be given the value as entered into the default cut slope field. If no value is set for the default, the cut slope in this instance will be given a null value. The default value if entered, should be in whole percent e.g. 50.0 for a 1v in 2h slope.

**Default fill slope (%)**  
this field is optional. From the section data it is only possible to calculate either the cut or fill sideslope. A default value can be specified to be used for the non calculated value.

When the segment is rising (i.e has a positive slope) it is considered a cut slope. Similarly, if the grade is negative the sideslope is considered a fill. If a cut sideslope is calculated, the fill sideslope definition in the file will be given the value as entered into the default fill slope field. If no value is set for the default, the fill slope in this instance will be given a null value. The default value if entered, should be in whole percent e.g. 50.0 for a 1v in 2h slope.

**Cross section model**  
This will ask for the model of cross sections. These sections will be written out to the file.

**XSec start ch**  
chainage value to start writing cross sections

**XSec end ch**  
chainage value to end writing cross sections

**File name**  
the name to be used for file creation

**Write**  
write appropriate file

**Sokkia Roading - String Road file**

Position of option on menu: Survey => Upload => Create roads upload file, Instrument choice = Sokkia Roading - String road

The **Sokkia Roading - String road** option allows the creation of a specific string roading file. Selecting **Sokkia Roading - String road** brings up the **SDR Roading - String Road** panel
The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road Name</td>
<td>input box</td>
<td>Name of selected alignment string</td>
<td>input road name. If a valid alignment is selected, the name of that alignment will be the default road name.</td>
</tr>
<tr>
<td>Cross section model</td>
<td>Model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>model of cross sections to write out in SDR33 string format</td>
<td></td>
</tr>
<tr>
<td>XSec start ch.</td>
<td>input box</td>
<td>min alignment ch</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>chainage of the first cross sections to write out</td>
<td></td>
</tr>
<tr>
<td>XSec end ch.</td>
<td>input box</td>
<td>max alignment ch</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>chainage of the last cross sections to write out</td>
<td></td>
</tr>
<tr>
<td>File name</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the name to be used for file creation</td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>write appropriate file.</td>
<td></td>
</tr>
</tbody>
</table>

**Topcon MS2000 Roading file**

**Position of option on menu:** Survey => Upload => Create roads upload file, Instrument choice = Topcon MS2000

The Topcon MS2000 option allows the creation of a specific roading file.

Selecting Topcon MS2000 brings up the Report topcon MS2000 Roading panel.
The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set button</td>
<td>button</td>
<td>(defaults=Set section for alignment panel)</td>
<td>Set the set button will bring up the set sections for alignment panel. This panel allows the user to select multiple alignment/xsection combinations for the one file. The alignment is selected (using the Centreline selection button) followed by the Model of sections for that alignment. The Set button is pressed to accept the selection. This can be repeated for a number of alignments. Finish will close the set sections for alignment panel and return to the original panel.</td>
</tr>
<tr>
<td>Data to setout</td>
<td>choice box</td>
<td>string</td>
<td>model, view, string</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>the data to be included in the file can be selected by choosing a valid model, view or string. Depending on which data source is selected, the appropriate selection button will appear. The user then selects the button and then the items of interest.</td>
</tr>
<tr>
<td>File name</td>
<td>input box</td>
<td></td>
<td>the name to be used for file creation</td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td>write appropriate files.</td>
</tr>
</tbody>
</table>

Topcon GT700 Roading File

Position of option on menu: Survey => Upload => Create roads upload file, Instrument choice = Topcon GTS-700 Roads

The Topcon GTS-700 Roads option allows the creation of a specific roading file.

Selecting Topcon GTS-700 Roads brings up the Report Topcon GT700 Roading panel.
The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>String to setout</td>
<td>select button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>after pressing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the string to</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>setout button,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the user can</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>select a valid</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>string. This</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>string will be</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>used for setting</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>out.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model of sections</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the model of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cross sections.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>These sections</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>will be written</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>out to the file.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>File for horizontal</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the name to be</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>used for</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>horizontal file</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>creation. The</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>file will</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>automatically be</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>given a .hg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>extension.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>File for vertical</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the name to be</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>used for the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vertical file</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>creation. The</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>file will</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>automatically be</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>given a .vg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>extension.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>File for sections</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the name to be</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>used for the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>section file</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>creation. The</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>file will</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>automatically be</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>given a .xs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>extension.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>write appropriate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>files.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Trimble Roading File**

**Position of option on menu:** Survey => Upload => Create roads upload file, Instrument choice = Trimble Roading

The Trimble Roading option allows the creation of a specific roading file.

Selecting Trimble Roading brings up the Report Trimble Roading panel.
The Trimble DC file has certain limitations and criteria. These include:

1. The alignment string must exist on the xsec's. This allows us to calculate the zero pt so we can split the template into left and right.

2. The xsec model should be representative of the alignment string used in the macro. i.e. not generated from a different alignment. Therefore the alignment string should have a 0 offset on the xsections.

3. The alignment string cannot exist above or below the xsection. i.e. it should be on the section as per 1).

4. The number of points on successive section templates (left and right) should be the same. i.e. if 5 points are on the LHS template for ch0 then the same number of points should exist for the LHS template for ch20. The instruments using this file, may not handle transitions between different number of points effectively and can give incorrect results. The user should limit the file by using the chainage range between areas where the number of points on each side of the cross sections are the same.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Select H-Align</strong></td>
<td>Select box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>select valid alignment string.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Road Name</strong></td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Name of selected alignment string</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>input road name. If a valid alignment is selected, the name of that alignment will be the default road name.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Report vertical align</strong></td>
<td>tick box</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td></td>
<td>write vertical alignment details to file mode. If yes vertical alignment details written to the specified file.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Assume last XSec segment is sideslope</strong></td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
</tbody>
</table>
if box is selected, the last segments left and right of 0.0 offset are considered to be side slopes, and the
default cut and fill slope fields are enabled.

**Default cut slope (%)**  
input box

this field is optional. From the section data it is only possible to calculate either the cut or fill
sideslope. A default value can be specified to be used for the non calculated value.

When the segment is rising (i.e has a positive slope) it is considered a cut slope. Similarly, if the grade
is negative the sideslope is considered a fill. If a fill sideslope is calculated, the cut sideslope definition
in the file will be given the value as entered into the **default cut slope** field. If no value is set for the
default, the cut slope in this instance will be given a null value. The default value if entered, should be
in whole percent e.g. 50.0 for a 1v in 2h slope.

**Default fill slope (%)**  
input box

this field is optional. From the section data it is only possible to calculate either the cut or fill
sideslope. A default value can be specified to be used for the non calculated value.

When the segment is rising (i.e has a positive slope) it is considered a cut slope. Similarly, if the grade
is negative the sideslope is considered a fill. If a cut sideslope is calculated, the fill sideslope definition
in the file will be given the value as entered into the **default fill slope** field. If no value is set for the
default, the fill slope in this instance will be given a null value. The default value if entered, should be
in whole percent e.g. 50.0 for a 1v in 2h slope.

**Cross section model**  
model box

This will ask for the model of cross sections. These sections will be written out to the file.

XSec start ch  
input box       min alignment ch

chainage value to start writing cross sections.

XSec end ch  
input box       max alignment ch

chainage value to end writing cross sections.

File name  
input box

the name to be used for file creation

Write  
button

write appropriate files.

---

17.19.5 Create Points Upload File (New)

**Position of option on menu:** Survey => Upload => Create points upload file (new)

The Create points upload file (new) option creates or uploads directly to a Trimble instrument a
file of point ids, x, y and z, for string data (super strings and 4d strings only).

Only Trimble file formats is supported as this stage - the option Create points upload file
(17.19.3 Create Points Upload File) is used to create files for most other instruments.

Selecting Create points upload file (new) brings up the Create Points Upload File panel.
The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Upload directly to Trimble device</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, the points are uploaded to the attached Trimble instrument if not ticked, a dc file will be created.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Data source type</strong></td>
<td>data selection type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Data source</strong></td>
<td>source of data to be processed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Default for null value</strong></td>
<td>input box</td>
<td>999</td>
<td></td>
</tr>
<tr>
<td>value to write for null z-values.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Only upload points with numeric point names</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, only points with numeric (integer) point names are used. if not ticked, alphanumeric point names are used.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Start point id</strong></td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>point id to start creating upload file from.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>End point id</strong></td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>last point id to write to upload file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Note:</strong> Start and End point ids may be left blank, and all point ids (whether numeric or alphanumeric) will be written to the upload file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Origin x/Origin y</strong></td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If non-zero, subtract the value from the x/y value before writing out.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Upload File</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>create the upload file</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
17.19.6 Create Road Upload File (New)

**Position of option on menu:** Survey => Upload => Create road upload file (new)

The Create road upload file (new) option allows the creation of road files or uploads directly to a Trimble instrument and Leica using Leica XML format.

Only Trimble and Leica LandXML file formats are supported as this stage- the option Create road upload file (17.19.4 Create Road Upload File) is used to create files for most other instruments.

Selecting Create road upload file (new) brings up the Create Road Upload File panel.

![Create Road Upload File Panel](image)

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>File type</td>
<td>Choice box</td>
<td>Trimble Link</td>
<td>Leica X-sections LandXML</td>
<td></td>
</tr>
</tbody>
</table>

*For the choice Trimble Link, go to* [Trimble Link](#) and [Leica X-Sections LandXML](#).

**Trimble Link**

**Position of option on menu:** Survey => Upload => Create roads upload file (new), File type = Trimble Link

The Trimble Link options creates a file in Trimble dc format or uploads the data directly to the instrument using Trimble Link.
The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Alignment string</strong></td>
<td>String select box</td>
<td>select valid alignment string.</td>
<td></td>
</tr>
<tr>
<td><strong>Job Name</strong></td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the name for the Trimble job.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Upload directly to Trimble device</strong></td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, the points are uploaded to the attached Trimble instrument</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if not ticked, a dc file will be created.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Use legacy DC format (only supports simple spiral)</strong></td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, the old DC format will be used.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Report vertical alignment</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If ticked, vertical alignment details written to file.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Report X-sections</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, the cross section model box will be enabled.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>X-sections model</strong></td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>model of cross sections to be written out.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Start chainage for X-sections</strong></td>
<td>chainage value to start writing cross sections. If blank, start with first x-section.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>End chainage for X-sections</strong></td>
<td>chainage value to stop writing cross sections. If blank, end with last x-section.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Assume X-sections left end-segment is sideslope</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If ticked, left end segments are tagged as sideslopes.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Assume X-sections right end-segment is sideslope  

*If ticked, right end segments are tagged as sideslopes.*

Sideslope tolerance (%)  

*input 0.01*

Write  

*write out or upload the date.*

**Leica X-Sections LandXML**

**Position of option on menu:**  
Survey => Upload => Create roads upload file (new), File type = Leica X-Sections LandXML  

The **Leica X-Sections LandXML** options creates a file in LandXML format suitable for Leica instruments.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>File name</td>
<td>input box</td>
<td>*.*xml</td>
<td></td>
</tr>
<tr>
<td>Create database</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alignment string</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Name</td>
<td>input box</td>
<td>name of selected alignment string</td>
<td></td>
</tr>
<tr>
<td>Report vertical alignment</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The name of the Leica LandXML file.

If ticked, a DBX file is created.

Select valid alignment string.

Input job name. If a valid alignment is selected, the name of that alignment will be the default job name.
if ticked, vertical alignment details written to file.

**Report cross sections**  tick box
if ticked, the cross section model box will be enabled.

**X-sections model**  model box available models
model of cross sections to be written out.

**Start chainage for X-sections**
chainage value to start writing cross sections. If blank, start with first x-section.

**End chainage for X-sections**
chainage value to stop writing cross sections. If blank, end with last x-section.

**Assume X-sections left end-segment is sideslope**  tick box
If ticked, left end segments are tagged as sideslopes.

**Assume X-sections right end-segment is sideslope**  tick box
If ticked, right end segments are tagged as sideslopes.

**Write**  button
write out file.
### 17.19.7 Create Paveset Upload File

**Position of option on menu:** Survey => Create Paveset upload file

The **Paveset Output** panel produces data in a format used by Paveset machine guidance software used in laying asphalt and other materials.

Selecting **Create Paveset upload file** brings up the **Paveset Output** panel.

![Paveset Output Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data to process</strong></td>
<td>Model             </td>
<td>             </td>
<td>             </td>
</tr>
<tr>
<td><strong>Data source</strong></td>
<td>input</td>
<td>             </td>
<td>             </td>
</tr>
<tr>
<td><strong>Chainage String</strong></td>
<td>string select</td>
<td>             </td>
<td>             </td>
</tr>
<tr>
<td><strong>Paveset file</strong></td>
<td>file select</td>
<td>             </td>
<td>             </td>
</tr>
<tr>
<td><strong>Number of lanes</strong></td>
<td>number box</td>
<td>             </td>
<td>             </td>
</tr>
<tr>
<td><strong>Abutting lane</strong></td>
<td>choice box</td>
<td>None</td>
<td>None, Left, Right</td>
</tr>
<tr>
<td><strong>Missing lanes</strong></td>
<td>choice box</td>
<td>None</td>
<td>None, Left, Right</td>
</tr>
</tbody>
</table>

**Chainage String**

The string for chainages

**Paveset file**

File to write the output data to

**Number of lanes**

The number of lanes for this paving run

**Abutting lane**

If the paving run is abutting an existing lane choose that here

**Missing lanes**

If the paving runs have missing points in some areas choose the side they are missing from here.

- **None** - the same number of points exist at each cross section, an error will occur in processing if a difference is detected.
- **Left/Right** - the output to paveset is padded on the nominated side to match the nominal number of
lanes, when processing is finished you will display a list of chainages where this occurred

X- Sect Ch tol  
input box  
0.5

The chainage variation allowed for each cross section

Design Tin  
input

The design TIN to drop the selected points against for level differences

Height from tin  
input box

The height from the design TIN
+ve = above
-ve = below

Write  
button

Process the points and write the Paveset file

17.19.8 Survey Data Upload

Position of option on menu: Survey => Upload

The upload option take data from the computer and sends it to the data collector connected to the computer's serial port.

Selecting Upload brings up the Survey Data Upload panel

![Survey Data Upload panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>input from configuration file</td>
<td>name of the computer serial port that the data collector is connected to. The default port is specified in the data collector configuration file.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baud rate</td>
<td>input from configuration file</td>
<td>speed of the serial port</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data bits</td>
<td>input from configuration file</td>
<td>number of data bits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stop bits</td>
<td>input from configuration file</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
number of stop bits

Parity input from configuration file

parity

DTR/DSR from configuration file

if ticked, use DTR/DSR flow control

RTS/CTS from configuration file

if ticked, use RTS/CTS flow control

XON/XOFF from configuration file

if ticked, use Xon/Xoff

ACK/NAK from configuration file

if ticked, use ACK/NAK

Field file input *.fld files

name of the 12d field file that the raw file is to be converted to. The raw file is given the same name but with the extension specified in the configuration file, e.g., "*.gre".

Upload button

On clicking the upload button, 12d Model will send the specified file through the serial port and up to the data collector.

17.20 TP Stakeout/Setout

The TP Stakeout /Setout menu contains a variety of options for TP Stakeout and TP Setout users.

These options are not supplied or supported by 12d Solutions Pty Ltd.
17.20.1 Conversions

The TP Stakeout /Setout menu contains a variety of options provided for TP Stakeout and TP Setout users.

These options are not supplied or supported by 12d Solutions Pty Ltd.

TP Setout Conversions

These options are not supplied or supported by 12d Solutions Pty Ltd.
**What's New in 12d Model**

**TP Stakeout/Setout**

- Alignments to TP-setout
- Convert polyline to .HZA format
- Create BTA
- Create BTA User Slope
- Create CFA
- Create CLO
- Create HLA
- Create HLA model
- Create VTA
- Tin to TP-setout TSA
- Tin to TP-setout TSA new
- 2d/3d/4d strings to TP-setout .PTA format
What's New in 12d Model

TP Stakeout/Setout
TP Stakeout Conversions

The TP Stakeout /Setout menu contains a variety of options for TP Stakeout and TP Setout users.

These options are not supplied or supported by 12d Solutions Pty Ltd.
Create TP-Stakeout .HLA files from model

Model for Strings
HLA File Name
Centreline
Hza File Name
Start chainage
End chainage
Ch Inc
Conversion Tolerance
Max Ch/Os pairs

Process
Finish

Create TP-Stakeout .HOL files

Centreline
Max Ch/Os/RL triples
Start chainage
End chainage
Select String
HOL File Name
TPS HZA file

Process
Finish
17.20.2 Piles and Boxes Drafting

The TP Stakeout /Setout menu contains a variety of options provided for TP Stakeout and TP Setout users.

These options are not supplied or supported by 12d Solutions Pty Ltd.
What's New in 12d Model

TP Stakeout/Setout
17.20.3 Subgrade Strings

These options are not supplied or supported by 12d Solutions Pty Ltd.
17.20.4 TP Conformance

These options are not supplied or supported by 12d Solutions Pty Ltd.
17.20.5 TP Conformance
These options are not supplied or supported by 12d Solutions Pty Ltd.

17.20.6 TP Models
These options are not supplied or supported by 12d Solutions Pty Ltd.

17.20.7 TP Triangles
These options are not supplied or supported by 12d Solutions Pty Ltd.
18 12d Field

The 12d Field allows you to take the full functionality of 12d Model out into the field and control and instrument or GPS for Setout and Pickup.

\ See

18.1 12d Field Overview
18.2 12d Field
18.1 12d Field Overview

The 12d Field module is for communicating directory with survey grade GPS units and Total Station theodolites through radio, blue tooth, Wi-Fi and cable. Survey data is displayed live on screen in conjunction with full road project design and existing surface data.
18.2 12d Field

Position of menu:  Survey => 12d Field

The 12d Field walk-right menu is:

12d Field
Setout
GPS Localisation
Setout FLD file to strings
12d Pickup
12d Pickup Codes

See
Setout, go to 18.2.1 Setout
GPS Localisation 18.2.2 GPS Localisation
Setout FLD file to strings 18.2.3 12dField Setout FLD File To Strings
12d Pickup 18.2.4 12d Pickup
12d Pickup Codes 18.2.5 12d Pickup Codes
18.2.1 Setout

Position of menu: Survey => 12d Field => Setout

This section of documentation is a work in progress and will be updated in subsequent releases.

This manual will only refer to the TPS and GPS simulators, for connection details to actual instruments refer to the supplied 12dField documentation.

![12d Field - Last Configuration](image)

Continue to next section 18.2.2 GPS Localisation or return to 18.2 12d Field.

18.2.1.1 TPS

This section of documentation is a work in progress and will be updated in subsequent releases.

For the TPS Simulator this is the only panel to enter 12dField. Press Set and you will enter 12dField proper.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Select the instrument you wish to use with 12dField, dependent on the instrument selected the panel flow will vary.

Surveyor

Enter the name for the surveyor using 12dField.

After selecting Set the 12d Field - Setout TPS Simulator is displayed on the screen. For more information please go to 18.2.1.4 12d Field - Setout (TPS Simulator)

Set
Enter 12dField

Continue to next section 18.2.1.2 GPS or return to 18.2 12d Field.
18.2.1.2 GPS

This section of documentation is a work in progress and will be updated in subsequent releases.

For the GPS-Simulator 2 more panels are required
Select GPS-Simulator from the choice box.

![12d Field Instrument Selection](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td>choice box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select the instrument you wish to use with 12dField, dependent on the instrument selected the panel flow will vary.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surveyor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enter the name for the surveyor using 12dField.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Set

Brings up the Configure GPS Simulator panel.

For more information on the Configure GPS Simulator panel please go to 18.2.1.3 Configure GPS Simulator

Continue to next section 18.2.1.3 Configure GPS Simulator or return to 18.2.12d Field.

18.2.1.3 Configure GPS Simulator

This section of documentation is a work in progress and will be updated in subsequent releases.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMEA file</td>
<td>folder</td>
<td>*.nmea</td>
<td></td>
</tr>
</tbody>
</table>

The GPS simulator needs a NMEA file to run, this can be a file recorded from an actual instrument or constructed from within 12dField itself by 'driving' along an existing string. A default file "Default_LLQ.NMEA" is created automatically for 1st up usage.

**Overwrite time**  
if ticked the time in the NMEA string is ignored and the current computer time used instead.

**Set**  
proceed to the next panel

**Change instrument**  
go back to the instrument selection panel.

**Cancel**  
exit 12dField

Selecting **Set** displays the next **Configure GPS Simulator** panel.

---

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Base Projection</strong></td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Select the projection to use, these are located in the carto.4d file. This projection is used to convert the WGS84 lat/long/elevation into cartesian coordinates which can be used directly or have a localisation applied to them.

**Perform transformation**  
tick box  
if ticked a user defined localisation will be applied to the GPS reading.

**12dF Helmert Params**  
Select the *.TDF_HEL file containing the transformation details to apply, this file is created with the "GPS Localisation" panel in the main 12DField menu.

**Set**  
Enter 12dField

**Change instrument**  
go back to the instrument selection panel.
 Cancel  
 Exit 12dField

After selecting Set the 12d Field - Setout GPS Simulator is displayed on the screen. For more information please go to 18.2.1.5 12d Field - Setout (GPS Simulator).

Continue to next section 18.2.1.5 12d Field - Setout (GPS Simulator) or return to 18.2 12d Field.

### 18.2.1.4 12d Field - Setout (TPS Simulator)

This section of documentation is a work in progress and will be updated in subsequent releases.

The control bar has one user definable setting, in the settings panel under the general tab you can toggle on or off whether you want the current string name on the control bar, this is "Str Name on Control Bar", 12dField will need to be restarted for this setting to change.

<table>
<thead>
<tr>
<th>12d Field - Setout (TPS Simulator)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
</tbody>
</table>

**Names.4d**

controls the string details used by 12dField when storing a point, e.g. model/linestyle/weight etc.

**Setup**

brings up the Store Point Setup panel.

For more information on Store Point Setup panel, please go to 18.2.1.6.1 Store Point Setup.

brings up the Target Heights Panel

Show the current number of satellites and status, pressing the button brings up the GPS Status panel. In the settings panel the user defines the thresholds for GPS errors.

**Shift**

is used by 12dField panels to change buttons to add extra functionality.

Show the current measuring style, pressing brings up the GPS/TPS settings panel.

Select button for tablet PC, allow selection with a press.

**Menu**

brings up the 12d Field panels menu. For more information please go to 18.2.1.7 Options

**Exit**

Exits 12d Field.

Continue to next section 18.2.1.5 12d Field - Setout (GPS Simulator) or return to 18.2 12d Field.

### 18.2.1.5 12d Field - Setout (GPS Simulator)

This section of documentation is a work in progress and will be updated in subsequent releases.
For information on the **12d Field - GPS Status** panel please go to [18.2.1.6 12d Field - GPS Status](#). Continue to next section [18.2.1.6 12d Field - GPS Status](#) or return to [18.2 12d Field](#).

### 18.2.1.6 12d Field - GPS Status

The **12d Field - GPS Status** panel provides information about the current state of the **GPS** instrument such as fix quality and satellites used.

![12d Field - GPS Status panel](image)

**Status Tab**
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS Fix Type</td>
<td>12dF input box</td>
<td></td>
<td>The current fix type of the GPS satellites, e.g. RTK</td>
</tr>
<tr>
<td>GLN Fix Type</td>
<td>12dF input box</td>
<td></td>
<td>The current fix type of the Glonass satellites, e.g. RTK</td>
</tr>
<tr>
<td>Fix Quality</td>
<td>12dF input box</td>
<td></td>
<td>The quality of the GPS, Good, Average, Poor no RTK</td>
</tr>
<tr>
<td>Tot Sat Count</td>
<td>12dF long box</td>
<td></td>
<td>The number of GPS &amp; Glonass satellites</td>
</tr>
<tr>
<td>GPS Sat Count</td>
<td>12dF long box</td>
<td></td>
<td>The number of GPS satellites</td>
</tr>
<tr>
<td>GLN Sat Count</td>
<td>12dF long box</td>
<td></td>
<td>The number of Glonass satellites</td>
</tr>
<tr>
<td>Dilution of precision</td>
<td>12dF double box</td>
<td></td>
<td>The current dilution of precision</td>
</tr>
<tr>
<td>Coordinate Quality</td>
<td>12dF double box</td>
<td></td>
<td>Leica specific coordinate quality</td>
</tr>
<tr>
<td>HRMS</td>
<td>12dF double box</td>
<td></td>
<td>Horizontal Root Mean Square value</td>
</tr>
<tr>
<td>VRMS</td>
<td>12dF double box</td>
<td></td>
<td>Vertical Root Mean Square value</td>
</tr>
<tr>
<td>GPS Latency</td>
<td>12dF double box</td>
<td></td>
<td>The latency of the measurements from the GPS satellites.</td>
</tr>
<tr>
<td>GLN Latency</td>
<td>12dF double box</td>
<td></td>
<td>The latency of the measurements from the Glonass satellites.</td>
</tr>
</tbody>
</table>
**Position Tab**

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Running Easting</strong></td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Running Northing</strong></td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Running Level</strong></td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>WGS84 Lat</strong></td>
<td>12dF angle box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>WGS84 Long</strong></td>
<td>12dF angle box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>WGS84 Elev 1</strong></td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The WGS84 elevation of the running measurement.

**Proj'n X**
12dF double box

The WGS84 cartesian X of the running measurement.

**Proj'n Y**
12dF double box

The WGS84 cartesian Y of the running measurement.

**Proj'n Z**
12dF double box

The WGS84 cartesian Z of the running measurement.

Continue to next section 18.2.1.6.1 Store Point Setup, or return to 18.2 12d Field.

### 18.2.1.6.1 Store Point Setup

The 12d Field - Store Point Setup panel is called up the 1st time a user attempts to store a point to a model in a 12dField setout panel or if the user presses the **Setup** button on the 12dField control bar.

This panel must be validly completed before a point can be stored.

The panel is grouped into 4 separate areas each described below.

#### Model/string settings

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>String</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>String</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point/Line type</td>
<td>Line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>Green</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linestyle</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions.

**Model/string settings**

These settings work the same as your typical 12d settings work, they control the look of the stored string in the model.

**Name**
enter the name of the string to be stored manually or from the pop up select a predefined name (from names.4d) which will also populate the other settings.

**Model**
- **model box**
  - the model to store the string in. (This model will automatically be added to your defined 12dField plan view)

**Point/Line type**
- **choice box**
  - Point, Line
  - whether the string is a point or line string.

**Colour**
- **colour box**
  - the colour of the string.

**Linestyle**
- **linestyle of the string**

**Weight**
- **the thickness of the string.**

**Same as**
- **button**
  - select an existing point/line and the fields will set to it's properties.

**Pre*postfix for models**
- if non blank the pre-postfix will be applied to the nominal model when storing the point.

**FLD backup files**

All 12dField points are stored to a FLD file as well as a model. This is done for backup reasons as every shot is stored to the FLD file on disk when a shot is taken ensuring no data should be lost in the event of an unexpected shutdown of 12d.

The 12dField files have sufficient attributes in them that they can be read directly back into 12d without going through the survey data reduction functions.

**File names from**
- Manual Entry, Populate from model name, Populate from <pre> part of pre-post, Populate from <post> part of pre-post

**Select Choice**

- **Manual entry**
- **Populate from model name**
- **Populate from <pre> part of pre-post**
- **Populate from <post> part of pre-post**

*Manual Entry - enter the name of the file in the File name box.*  
*Populate from model name - the name of the model in the model box is used as the file name.*  
*Populate from <pre> part of pre-post - the name of the file is the pre part.*  
*Populate from <post> part of pre-post - the name of the file is the post part.*

*For example a surveyor might enter a model name of "Asphalt Conformance" in the model box.*  
*They then for a pre fix enter the year month and day and their initials "20113006MG " and they select "Populate from model name" for the FLD file name.*  
*The model and field file written will be "20113006MG Asphalt Conformance"*

**FLD Settings**
Surveyor
the name of the surveyor

Description
a description of the survey (Populated from 12dF_JOB_DESCRIPTIONS.4D)

Lot number
a lot number of the survey (Populated from 12dF_JOB_LOT_NUMBERS.4D)

Category
the category of the survey (Populated from 12dF_JOB_CATEGORIES.4D)

Vertex Id settings
This choice box controls the way the id of each vertex in the string is written.

Pickup Id Type
None, Same each shot, Inc on Rec, Dec on Rec, Chainage, Chainage&Offset, Same as Setout Id

None - no vertex id is written.
Same each shot - the value in the Pickup Id box will be used for all points stored.
Inc on Rec - the value in the Pickup Id box will be used for the next point stored then incremented.
Dec on Rec - the value in the Pickup Id box will be used for the next point stored then decremented.
Chainage - the chainage of the point being stored will be used as it's vertex id.
Chainage&Offset - the chainage and offset of the point being stored will be used as it's vertex id.
Same as Setout Id - the vertex id of the point being setout will be used.

Notes on the incrementing of the Id.
The id is alphanumeric and the number of characters does not change. The increment/decrement applies to the either the numeric or alpha ending of the id, not to a combination of both.

Increment examples 1->2, 9->0, A1>A2, A9->A0, AA->AB, AZ->BA, S099->S100, S999->S000
Decrement examples 6->5, 0->9, A2>A1, A0->A9, AB->AA, AA->ZZ, S100->S099, S000->S999

Pickup Id
This is the id of the next vertex to be stored

Cancel button
if cancel is pressed the panel will close but the next time a point is stored it will open again.

Finish button
if the panel validates correctly it will close and the point will be stored. The panel will only open again if called manually from the control bar or a new setout is started.
18.2.1.7 Options

This section of documentation is a work in progress and will be updated in subsequent releases.

For the option Single String Setout, go to 18.2.1.8.1 Single String Setout
Batter Setout 18.2.1.8.2 Batter Setout
Basic Pickup 18.2.1.8.3 12d Field -Basic Pickup
Tin Setout 18.2.1.8.4 Tin Setout
Crossfall Setout 18.2.1.8.5 Crossfall Setout
Point Setout 18.2.1.8.6 Point Setout
Grid Setout 18.2.1.8.7 Grid Setout
Crown Setout 18.2.1.8.8 Crown Setout
Tunnel Definition 18.2.1.8.9 Tunnel Definition
Tunnel Setout 18.2.1.8.10 Tunnel Setout
Station Helmert 18.2.1.8.11 Station Helmert
18.2.1.8 Common Measurement Buttons

A description of the common measurement buttons on 12dField Setout panels is described below.

The measurement buttons are on a dialog as such:

The INFO and DLG buttons

These buttons do not change in behaviour between all of the different measure modes.
Displays the information panel, this panel contains extra information about the current setout that is not displayed in the standard panel, the contents of the information panel is user configurable via the text file 12dF_INFO_PAGE_CONFIG. When the information panel is active the button changes to INFO-.

DLG-
When pressed the dialog minimises to maximise the screen area, the button changes to DLG+ which when pressed will bring the panel back to full size.

Single (GPS/TPS) and Multiface (TPS only) measurement modes.
The MEAS button.

MEAS
Starts the measurement, on completion the button state changes to this

MEAS

STORE
Store the point as per the settings in the 18.2.1.6.1 Store Point Setup panel, the first store of a point brings this panel up automatically. Once stored the STORE button will be blanked out until a new measurement is taken.

The MS+ST button

MS+ST
Starts a measurement and stores the point as per the settings in the 18.2.1.6.1 Store Point Setup panel. The STORE button remains disabled.
Continuous (GPS/TPS) measurement mode

In continuous mode the MS+ST button is disabled.

**MEAS**
Start continuous measurement

**STOP**
Stop the continuous measurement, the STORE button will remain active until pressed. When the point is stored the button is disabled until a new measurement is started.

**STORE**
Store the point as per the settings in the 18.2.1.6.1 Store Point Setup panel, the button state does not change meaning the user can continue to move storing points at a single press of the button.

Averaging measurement mode (GPS only)
In averaging mode the MS+ST button is disabled.

**MEAS**
Start the averaging measurement, the details of the averaging, std deviations xy&z are displayed in the 3rd message line of the dialog.

**STOP**
Stop the averaging measurement.

**MEAS**
Start a new averaging measurement.

**STORE**
Store the point as per the settings in the 18.2.1.6.1 Store Point Setup panel.

The Chainage Buttons

The chainage buttons commonly appear as the middle row of buttons in a 12dField setout panel.
The CH+ and CH- buttons are used to quickly increment to the next chainage to be setout, the buttons are activated when the Chainage Increment field in the panel has a value other than 0.

**CH+**

When pressed the value in the Chainage Increment field is added to the current setout chainage. The value in Chainage Increment field can be +ve or -ve.

**CH-**

When pressed the value in the Chainage Increment field is subtracted from the current setout chainage. The value in Chainage Increment field can be +ve or -ve.

The CH=CURR and RESTORE buttons are used for where the user has a need to temporarily
use the current chainage for setout purposes.

**CH=CURR**

The button is activated when a measurement has been taken. When pressed the setout chainage is set to the current chainage, the **RESTORE** button is then activated and the **CH+** and **CH-** buttons disabled.

**RESTORE**

When pressed the setout chainage is set back to the chainage when **CH=CURR** was pressed and the **CH+ CH-** buttons enabled if possible.

**The Bottom Button Row**

---

**<-TAB**

changes the active tab in the setout panel to the next left.

**TAB->**
changes the active tab in the setout panel to the next right.

The 

\texttt{{<}\textsc{tab} and 	extsc{tab}>}} keys can be overwritten for special user behaviour.

Overwriting the 

\texttt{{<}\textsc{tab} and 	extsc{tab}>} keys.

The functionality of the TAB keys can be defined in "\texttt{12dF\_DLG\_USER\_KEYS.4D}".

The file allows the user to enter the text for the key and the functionality for the key to take on.

\begin{quote}
\texttt{bt\_tab\_left" P2d" tps\_position\_hz} \\
\texttt{bt\_tab\_right" P XY" tps\_position\_xy} \\
\end{quote}

The 1st field is the keyword for the button to override.

The 2nd field is the text for the button to override.

The 3rd field is the action for the button to perform, any of the 12dField hot keys defined in "\texttt{12dF\_USER\_KEYS.4D}" can be assigned.

Continue to next section \ref{sec:single-setout} or return to \ref{sec:12d-field}.

\section{Single String Setout}

The 12d Field Single String Setout panel is used when the setout point is relative both horizontally and vertically to one string, for example a traffic island or kerb and gutter.

Single string setout works by dropping a point to a nominated control string, then the setout string is cut normal to the dropped point on the control string.

When setting out the setout string is cut normal from a point at the setout chainage on the control string, then the setout offset is then applied from here to create the setout point.

\textbf{Note} the control string and the setout string could be the same string or all different, this dependant on the task being performed.

Selecting the Single String Setout option brings up the 12d Field - Single String Setout panel.
**Setout Tab**

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setout CS Raw Ch</td>
<td>12dF chainage box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>The raw, no equalities setout chainage on the control string, start chainage plus distance along string</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setout Offset</td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>The offset from the setout string to setout, +ve is to the right of the string, -ve left</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chainage Increment</td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>The value the setout chainage will be changed by when chainage increment/decrement is called.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stakeout Hgt Diff</td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>The height diff from the setout surface/string. +ve is above.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compaction Factor</td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>A compaction factor applied to the delta heights, e.g. if you know say asphalt will compact by 23% and you need to cover this enter the value as 1.23. (Note this widget is optional and only appears if activated in the Settings panel).</em></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Buttons**

<table>
<thead>
<tr>
<th>MEAS</th>
<th>button</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Start a measurement, the behaviour is determined by the TPS/GPS measurement setting set from the control bar.</em></td>
<td></td>
</tr>
</tbody>
</table>
INFO+ button
Display the user configurable information panel to view extra information not available on the standard dialog.

DLG- button
Minimises the dialog so only the first 2 rows of buttons are shown.

MS+ST button
Start a measurement and store it on completion.

CH + button
Increment the setout chainage by the value in the chainage increment field.

CH - button
Decrement the setout chainage by the value in the chainage increment field.

CH=CURR button
Set the setout chainage to the chainage of the last measured point.

RESTORE button
Restore the setout chainage to the chainage prior to the "CH=CURR" button being pressed.

<-TAB button
Go to the previous tab in the dialog.

TAB-> button
Go to the next tab in the dialog.

DLG+ button
Restore a minimised panel to it's full size.

INFO- button
Close the user configurable information panel.

Nav P button
Load a saved navigation page configuration.

Sh M button
Start a measurement with a touch on the screen.

Sh M+S button
Start a measurement with a touch on the screen, store it on completion.

READ button
Load previously saved setout settings for reuse.

SAVE button
Save the current setout settings for reuse at a later date.

STOP button
Stop the measurement in process.

STORE button
Store the last measured point.
Strings Tab

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control String</td>
<td>12dF string select box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setout String</td>
<td>12dF string select box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference String</td>
<td>12dF string select box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Shift</td>
<td>choice box</td>
<td>-0.000</td>
<td></td>
</tr>
</tbody>
</table>

Control string, the string to which the other strings are cut normal to for calculations.

Setout String, setout offset & heights are relative to this string at a point cut normal from the setout chainage on the control string/centrelne.

Reference string, a string to which the current point is dropped normally to for information only.

A vertical shift to be applied to the design level, +ve raises the level, can be manually entered or selected from the choice list, (defined in “TDF_SURFACE_SHIFTS.4D”).
Nav Tab

The fields and buttons used in this panel have the following functions.

Field Description    Type    Defaults    Pop-Up

Navigation Box   draw box

*The 12d Field navigation box augments setout by displaying user definable information rows plus a bulls-eye as a visual aid.*

Continue to next section 18.2.1.8.2 Batter Setout or return to 18.2 12d Field.

18.2.1.8.2 Batter Setout

The 12d - Field Batter Setout panel is used to dynamically locate the intersection point of a slope defined by the cut of 2 strings and the natural surface at the user's current position.

It is designed around the user wishing to place batter rails in place for guiding the cut/fill.

**Note**, unlike other string setout routines the batter setout does not have a setout string, just the control string and the 2 design strings.

The user is able to set a shift to move the design surface up or down once the strings are cut.

There are manual modes available for setting the design slope when 2 strings are not able to be cut.

Batter setout works by dropping a point to a nominated control string, the 2 strings used to determine the slope are cut normal to the dropped point on the control string, the delta offset for the pole is dependant on the users height rather than a setout string.
Selecting the Batter Setout option brings up the **12d - Field Batter Setout** panel.

### Setout Tab

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Setout CS Raw Ch</strong></td>
<td>12dF chainage box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Chainage Increment</strong></td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Hgt Rail over Batter</strong></td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Hgt Rail over Ground</strong></td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Compaction Factor</strong></td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The raw, no equalities setout chainage on the control string, start chainage plus distance along string*

*The value the setout chainage will be changed by when chainage increment/decrement is called.*

*The height of the batter rail above the design batter, say 0.1 for cut and 1.0 for fill.*

*The height of the batter rail above the natural ground, typically as large as number as possible to get the rail away from the top/toe of the batter.*

*A compaction factor applied to the delta heights, e.g. if you know say asphalt will compact by 23% and you need to cover this enter the value as 1.23. (Note this widget is optional and only appears if activated the *Settings* panel.)*

### Buttons

**MEAS**  button
Start a measurement, the behaviour is determined by the TPS/GPS measurement setting set from the control bar.

**INFO+** button
Display the user configurable information panel to view extra information not available on the standard dialog.

**DLG-** button
Minimises the dialog so only the first 2 rows of buttons are shown.

**MS+ST** button
Start a measurement and store it on completion.

**CH +** button
Increment the setout chainage by the value in the chainage increment field.

**CH -** button
Decrement the setout chainage by the value in the chainage increment field.

**CH=CURR** button
Set the setout chainage to the chainage of the last measured point.

**RESTORE** button
Restore the setout chainage to the chainage prior to the "CH=CURR" button being pressed.

**<-TAB** button
Go to the previous tab in the dialog.

**TAB->** button
Go to the next tab in the dialog.

**STOP** button
Stop the measurement in process.

**STORE** button
Store the last measured point.

**Nav P** button
Load a saved navigation page configuration.

**Sh M** button
Start a measurement with a touch on the screen.

**Sh M+S** button
Start a measurement with a touch on the screen, store it on completion.

**READ** button
Load previously saved setout settings for reuse.

**SAVE** button
Save the current setout settings for reuse at a later date.

**DLG+** button
Restore a minimised panel to it's full size.

**INFO-** button
Close the user configurable information panel.
### Strings Tab

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control String</td>
<td>12dF string select box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hinge String</td>
<td>12dF string select box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd String</td>
<td>12dF string select box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference String</td>
<td>12dF string select box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Offset Mode</td>
<td>choice box</td>
<td>vertical, normal</td>
<td></td>
</tr>
<tr>
<td>Surface Shift</td>
<td>choice box</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

**Control String**

*Control string, the string to which the other strings are cut normal to for calculations.*

**Hinge String**

*The hinge string is the string the batter is being cut or filled to. Slope distances etc. are given to this string.*

**2nd String**

*The other string along with the hinge string defining the batter slope.*

**Reference String**

*Reference string, a string to which the current point is dropped normally to for information only.*

**Surface Offset Mode**

*Whether the offset to the surface is normal or vertical*

- **Vertical**: The height offset is applied vertically to the design slope.
- **Normal**: The height offset is applied normal/perpendicular to the design slope.

**Surface Shift**

*A vertical shift to be applied to the design level, +ve raises the level, can be manually entered or selected from the choice list, (defined in “TDF_SURFACE_SHIFTS.4D”)*
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batter Mode</td>
<td>choice box</td>
<td></td>
<td>Auto, Centreline, hinge &amp; slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Manual relative (dOS&amp;dHgt), Manual absolute (dOS&amp;RL)</td>
</tr>
<tr>
<td>Offset</td>
<td>12dF double box</td>
<td>Dependant on the 'Batter Mode' setting in use, see description of the options in 'Batter Mode'.</td>
<td></td>
</tr>
<tr>
<td>Delta Hgt/Absolute Height</td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Choose the method to generate the batter slope.

**Auto**: The batter slope is determined by cutting the hinge and secondary string.

**Centreline, hinge & slope**: The batter setout is done by cutting the hinge and applying a manually entered slope from this.

**Manual relative (dOS&dHgt)**: The user manually enters the hinge offset from the control line, the hinge height relative to the control line and the batter slope.

**Manual absolute (dOS&RL)**: The user manually enters the hinge offset from the control line, the absolute hinge height and the batter slope.

**Manual, use current slope**: The batter setout is done by cutting the hinge and applying the last measured slope.
Dependant on the 'Batter Mode' setting in use, see description of the options in 'Batter Mode'.

**Slope H/V**
12dF double box

The slope of the batter in horizontal/vertical from, e.g. 2:1

---

**Nav Tab**

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation Box</td>
<td>draw box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The 12d Field navigation box augments setout by displaying user definable information rows plus a bulls-eye as a visual aid.
18.2.1.8.3 12d Field - Basic Pickup

The 12d Field - Basic Pickup panel enables the user to pickup and store points. Basic Pickup is only for points and simple lines, it has no edit facilities, recalculations for target height corrections etc.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control String</td>
<td>12dF string select box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If selected the chainage and offset of the current point on this string will be displayed.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pickup CS Raw Ch</td>
<td>12dF chainage box</td>
<td>998.0434</td>
<td></td>
</tr>
<tr>
<td>Pickup CS Offset</td>
<td>12dF double box</td>
<td>15.9248</td>
<td></td>
</tr>
<tr>
<td>Pickup Easting</td>
<td>12dF double box</td>
<td>1015.3328</td>
<td></td>
</tr>
<tr>
<td>Pickup Northing</td>
<td>12dF double box</td>
<td>1004.7258</td>
<td></td>
</tr>
<tr>
<td>Pickup Level</td>
<td>12dF double box</td>
<td>1001.3085</td>
<td></td>
</tr>
<tr>
<td>Pickup Id</td>
<td>12dF input box</td>
<td>S998</td>
<td></td>
</tr>
<tr>
<td>Auto Store Dist?</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions.

Field Description       Type        Defaults     Pop-Up
Control String          12dF string select box
Pickup CS Raw Ch        12dF chainage box
Pickup CS Offset        12dF double box
Pickup Easting          12dF double box
Pickup Northing         12dF double box
Pickup Level            12dF double box
Pickup Id               12dF input box

The raw/non equality chainage of the current point on the control string.
The offset of the current point from the control string, +ve is right.
The measured easting.
The measured northing.
The measured level.
The Id of the measured point, the behaviour of the Id is controlled from the 18.2.1.6.1 Store Point Setup panel.

**Auto Store Dist?**

12dF double box

If non zero the distance between shots to automatically store points, the measurement mode must be continuous.

Please see 18.2.1.8 Common Measurement Buttons for information on the buttons.

Continue to next section 18.2.1.8.4 Tin Setout or return to 18.2 12d Field.

### 18.2.1.8.4 Tin Setout

The 12d Field - Tin Setout panel is used when the user needs to get design levels from a tin. The point can be dropped either vertically to the tin or 3d/normal to the tin. Selecting the Tin Setout option brings up the 12d Field - Tin Setout panel.

#### Setout Tab

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setout TIN</td>
<td>12dF tin box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stakeout Hgt Diff</td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drop point 3d</td>
<td>named tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compaction Factor</td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The TIN to use for setting out

The height diff from the setout surface/string. +ve is above.

When this is toggled on the point is dropped normal to the tin.

In the event the point cannot be dropped to triangle face it will try drop to the edge of a triangle that lies inside the 2d boundary of the tin.
A compaction factor applied to the delta heights, e.g. if you know say asphalt will compact by 23% and you need to cover this enter the value as 1.23. (Note this widget is optional and only appears if activated in the Settings panel).

**Buttons**

**MEAS** button

Start a measurement, the behaviour is determined by the TPS/GPS measurement setting set from the control bar.

**INFO+** button

Display the user configurable information panel to view extra information not available on the standard dialog.

**DLG-** button

Minimises the dialog so only the first 2 rows of buttons are shown.

**MS+ST** button

Start a measurement and store it on completion.

**<-TAB** button

Go to the previous tab in the dialog.

**TAB->** button

Go to the next tab in the dialog.

**STOP** button

Stop the measurement in process.

**STORE** button

Store the last measured point.

**Nav P** button

Load a saved navigation page configuration.

**Sh M** button

Start a measurement with a touch on the screen.

**Sh M+S** button

Start a measurement with a touch on the screen, store it on completion.

**READ** button

Load previously saved setout settings for reuse.

**SAVE** button

Save the current setout settings for reuse at a later date.

**INFO-** button

Close the user configurable information panel.
Strings Tab

The fields and buttons used in this panel have the following functions.

Field Description	Type	Defaults	Pop-Up
Reference String   | 12dF string select box

Reference string, a string to which the current point is dropped normally to for information only.

Surface Shift | choice box | 0.000

A vertical shift to be applied to the design level, +ve raises the level, can be manually entered or selected from the choice list, (defined in “TDF_SURFACE_SHIFTS.4D”)

Continue to next section 18.2.1.8.5 Crossfall Setout or return to 18.2 12d Field.

18.2.1.8.5 Crossfall Setout

The 12d Field - Crossfall Setout panel is used when the user wants to generate their design height by cutting 2 strings and projecting the plane of the cuts to their position.

The user is able to set a shift to move the design surface up or down once the strings are cut.

There are manual modes available of setting the design crossfall when 2 strings are not able to be cut.

Crossfall Setout works by dropping a point to a nominated control string, then a setout string and the 2 strings used to determine the crossfall are cut normal to the dropped point on the control string.

Note the control string, the setout string and 1 of the level strings could be the same string or all different, this dependant on the task being performed.

Selecting the Crossfall Setout option brings up the 12d Field - Crossfall Setout panel.
Setout Tab

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setout CS Raw Ch</td>
<td>12dF chainage box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>The raw, no equalities setout chainage on the control string, start chainage plus distance along string</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setout Offset</td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>The offset from the setout string to setout, +ve is to the right of the string, -ve left</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chainage Increment</td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Chainage Increment</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stakeout Hgt Diff</td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>The height diff from the setout surface/string. +ve is above.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compaction Factor</td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>A Compaction Factor applied to the delta heights, e.g. if you know say asphalt will compact by 23% and you need to cover this enter the value as 1.23. (Note this widget is optional and only appears if activated in the Settings panel).</em></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Buttons

MEAS button

*Start a measurement, the behaviour is determined by the TPS/GPS measurement setting set from the control bar.*
INFO+ button
Display the user configurable information panel to view extra information not available on the standard dialog.

DLG- button
Minimises the dialog so only the first 2 rows of buttons are shown.

MS+ST button
Start a measurement and store it on completion.

CH + button
Increment the setout chainage by the value in the chainage increment field.

CH - button
Decrement the setout chainage by the value in the chainage increment field.

CH=CURR button
Set the setout chainage to the chainage of the last measured point.

RESTORE button
Restore the setout chainage to the chainage prior to the "CH=CURR" button being pressed.

<-TAB button
Go to the previous tab in the dialog.

TAB-> button
Go to the next tab in the dialog.

STORE button
Store the last measured point.

Nav P button
Load a saved navigation page configuration.

Sh M button
Start a measurement with a touch on the screen.

Sh M+S button
Start a measurement with a touch on the screen, store it on completion.

READ button
Load previously saved setout settings for reuse.

SAVE button
Save the current setout settings for reuse at a later date.

DLG+ button
Restore a minimised panel to it’s full size.

INFO- button
Close the user configurable information panel.

STOP button
Stop the measurement in process.
Strings Tab

The fields and buttons used in this panel have the following functions.

Field Description     Type                     Defaults   Pop-Up

**Control String**  12dF string select box

*Control string, the string to which the other strings are cut normal to for calculations.*

**Setout String**  12dF string select box

*Setout String, setout offset & heights are relative to this string at a point cut normal from the setout chainage on the control string/centreline*

**1st level string**  12dF string select box

*Level string 1, the string cut for one of the design heights.*

**2nd level string**  12dF string select box

*Level string 2, the string cut for a 2nd design height.*

**Reference String**  12dF string select box

*Reference string, a string to which the current point is dropped normally to for information only.*

**Surface Offset Mode**  choice box    Vertical, Normal

*Whether the offset to the surface is normal or vertical*

*Vertical*: The height offset is applied vertically to the design surface.

*Normal*: The height offset is applied normal/perpendicular to the design surface.

**Surface Shift**  choice box
A vertical shift to be applied to the design level, +ve raises the level, can be manually entered or selected from the choice list, (defined in “TDF_SURFACE_SHIFTS.4D”).

**Manual Tab**

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crossfall Mode</td>
<td>choice box</td>
<td></td>
<td>Auto, Centreline, string &amp; x-fall, Manual, use current x-fall</td>
</tr>
<tr>
<td>Crossfall (%)</td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The method used to generate the design crossfall*

**Auto:** The crossfall is calculated by cutting the 1st and 2nd strings.

**Centreline, string & x-fall:** The crossfall is entered manually, only the 1st string is cut and the crossfall projected from this.

**Manual, use current x-fall:** The crossfall is entered manually defaulting to last calculated crossfall, only the 1st string is cut and the crossfall projected from this.
Nav Tab

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation Box</td>
<td>draw box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The 12d Field navigation box augments setout by displaying user definable information rows plus a bulls-eye as a visual aid.

Continue to next section 18.2.1.8.6 Point Setout or return to 18.2 12d Field.

18.2.1.8.6 Point Setout

The 12d Field - Point Setout panel enables the user to setout individual string points, optionally referenced to a control string.

The point can be either selected from a view, be found automatically or be manually entered.

The panel also allows the offsetting of the point by a defined bearing and distance.

Selecting the Point Setout option brings up the 12d Field - Point Setout panel.
Setout Tab

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Point Selection</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The point can be picked from a view, in this case the Id and Model boxes will be automatically filled out.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The point id can be manually changed but in this case must be unique in the model.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If auto find is on the point will be set to the closest point in the setout model to the current position in the field</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Select Pt</strong></td>
<td>12dF new select box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select the point to setout, will update the Point Id and Model boxes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Setout Id</strong></td>
<td>12dF input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The id/name of the setout point.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Model</strong></td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The model containing the setout point.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Stakeout Hgt Diff</strong></td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Stakeout Height Diff for the setout point.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The height diff from the setout surface/string. +ve is above.

**Auto find pt**
- **named tick box**

**Setout Easting, Setout Northing, Setout Level**
The coordinate boxes are only added to the panel if ticked on under survey in the settings panel.

**Setout Easting**
- 12dF double box
  - The easting to setout.

**Setout Northing**
- 12dF double box
  - The northing to setout.

**Setout Level**
- 12dF double box
  - The height to setout.

**Compaction Factor**
- 12dF double box
  - A compaction factor applied to the delta heights, e.g. if you know say asphalt will compact by 23% and you need to cover this enter the value as 1.23. (Note this widget is optional and only appears if activated in the Settings panel.)

**Buttons**

**MEAS**
- **button**
  - Start a measurement, the behaviour is determined by the TPS/GPS measurement setting set from the control bar.

**INFO+**
- **button**
  - Display the user configurable information panel to view extra information not available on the standard dialog.

**DLG-**
- **button**
  - Minimises the dialog so only the first 2 rows of buttons are shown.

**MS+ST**
- **button**
  - Start a measurement and store it on completion.

**NEXT**
- **button**
  - Make the setout point the next point in the current string.

**PREV**
- **button**
  - Make the setout point the previous point in the current string.

**INC ID**
- **button**
  - Increment the point ID and make this the setout point. E.g. BOLT30 -> BOLT31

**DEC ID**
- **button**
  - Decrement the point ID and make this the setout point. E.g. BOLT31 -> BOLT30

**<-TAB**
- **button**
  - Go to the previous tab in the dialog.

**TAB->**
- **button**
  - Go to the next tab in the dialog.

**STOP**
- **button**
  - Stop the measurement in process.
What's New in 12d Model

STORE button
Store the last measured point.

Nav P button
Load a saved navigation page configuration.

Sh M button
Start a measurement with a touch on the screen.

Sh M+S button
Start a measurement with a touch on the screen, store it on completion.

READ button
Load previously saved setout settings for reuse.

SAVE button
Save the current setout settings for reuse at a later date.

DLG+ button
Restore a minimised panel to its full size.

INFO- button
Close the user configurable information panel.

Strings Tab

The fields and buttons used in this panel have the following functions.
### Control String

Control string, the string to which the other strings are cut normal to for calculations.

**Type:** 12dF new select box

### Reference String

Reference string, a string to which the current point is dropped normally to for information only.

**Type:** 12dF new select box

---

#### Nav Tab

The fields and buttons used in this panel have the following functions.

- **Navigation Box**: draw box

The 12d Field navigation box augments setout by displaying user definable information rows plus a bulls-eye as a visual aid.
Offset Pt Tab

The Offset Point tab allows the current setout point to be offset in a defined direction and distance.

For example if the offset direction was 45° and the offset distance 5m pressing Left would move the point 5m at 315°.

If a control string is nominated then when the point is originally selected it is dropped to the control string and the bearing at this point is the default for the offset direction.

For example, to place offset pegs to a drainage pit select the road centreline and then select the pit. The bearing is that of the road, enter the offset distance and press Right or Left and the point is updated.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset Direction</td>
<td>12dF angle box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset Distance</td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Forw button
Offset the point by the offset distance in the offset direction.

Back button
Offset the point by the offset distance against the offset direction.

Continue to next section 18.2.1.8.7 Grid Setout, or return to 18.2 12d Field.

18.2.1.8.7 Grid Setout

This section of documentation is a work in progress and will be updated in subsequent releases.

The 12d Field - Grid Setout panel creates a setout point at offsets from 2 strings. Most typically used in buildings where points are dimensioned off setout grids. Selecting the Grid Setout option brings up the 12d Field - Grid Setout panel.

Setout Tab

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid String 1</td>
<td>12dF new select box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S/O Os Str 1</td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grid String 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S/O Os Str 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setout Level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RL from 1st string</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setout Tab

The fields and buttons used in this panel have the following functions.

Field Description | Type          | Defaults | Pop-Up  |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid String 1</td>
<td>12dF new select box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S/O Os Str 1</td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The setout offset from the first string

**Grid String 2** 12dF new select box

The second string for grid setout

**S/O Os Str 2** 12dF double box

The setout offset from the second string

**Setout Level** 12dF double box

The height to setout.

**RL from 1st string** tick box

If ticked then the level of the 1st string selected will be the setout level

**Buttons**

**MEAS** button

Start a measurement, the behaviour is determined by the TPS/GPS measurement setting set from the control bar.

**INFO+** button

Display the user configurable information panel to view extra information not available on the standard dialog.

**DLG-** button

Minimises the dialog so only the first 2 rows of buttons are shown.

**MS+ST** button

Start a measurement and store it on completion.

**CH +** button

Increment the setout chainage by the value in the chainage increment field.

**CH -** button

Decrement the setout chainage by the value in the chainage increment field.

**CH=CURR** button

Set the setout chainage to the chainage of the last measured point.

**RESTORE** button

Restore the setout chainage to the chainage prior to the "CH=CURR" button being pressed.

**<-TAB** button

Go to the previous tab in the dialog.

**TAB->** button

Go to the next tab in the dialog.

**STOP** button

Stop the measurement in process.

**STORE** button

Store the last measured point.

**Nav P** button

Load a saved navigation page configuration.

**Sh M** button
Start a measurement with a touch on the screen.

**Sh M+S** button

Start a measurement with a touch on the screen, store it on completion.

**READ** button

Load previously saved setout settings for reuse.

**SAVE** button

Save the current setout settings for reuse at a later date.

**DLG+** button

Restore a minimised panel to its full size.

**INFO-** button

Close the user configurable information panel.

---

**Nav Tab**

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation Box</td>
<td>draw box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The 12d Field navigation box augments setout by displaying user definable information rows plus a bulls-eye as a visual aid.

Continue to next section 18.2.1.8.8 Crown Setout or return to 18.2 12d Field.
18.2.1.8.8 Crown Setout

The 12d Field - Crown Setout panel is effectively 2 12d Field - Crossfall Setout panels. It is typically used on rural roads when the user wants to generate design heights to both sides of the crowned road.

Crown setout works by dropping a point to a nominated control string, then the setout string and the 3 strings used to determine the crown are cut normal to the dropped point on the control string.

The user is able to set a shift to move the design surface up or down once the strings are cut.

Note the setout string and 1 of the level strings could be the same string or different, this dependant on the task being performed.

Selecting the Crown Setout option brings up the 12d Field - Crown Setout panel.

Setout Tab

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setout CS Raw Ch</td>
<td>12dF chainage box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setout Offset</td>
<td>12dF double box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Chainage Increment</td>
<td>12dF double box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Stakeout Hgt Diff</td>
<td>12dF double box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Compaction Factor</td>
<td>12dF double box</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

The raw, no equalities setout chainage on the control string, start chainage plus distance along string.

The offset from the setout string to setout, +ve is to the right of the string, -ve left.

The value the setout chainage will be changed by when chainage increment/decrement is called.
**Stakeout Hgt Diff** 12dF double box  
The height diff from the setout surface/string. +ve is above.

**Compaction Factor** 12dF double box  
A compaction factor applied to the delta heights, e.g. if you know say asphalt will compact by 23% and you need to cover this enter the value as 1.23. (Note this widget is optional and only appears if activated in the Settings panel.)

**Buttons**

**MEAS** button  
Start a measurement, the behaviour is determined by the TPS/GPS measurement setting set from the control bar.

**INFO+** button  
Display the user configurable information panel to view extra information not available on the standard dialog.

**DLG-** button  
Minimises the dialog so only the first 2 rows of buttons are shown.

**MS+ST** button  
Start a measurement and store it on completion.

**CH +** button  
Increment the setout chainage by the value in the chainage increment field.

**CH -** button  
Decrement the setout chainage by the value in the chainage increment field.

**CH=CURR** button  
Set the setout chainage to the chainage of the last measured point.

**RESTORE** button  
Restore the setout chainage to the chainage prior to the "CH=CURR" button being pressed.

**<-TAB** button  
Go to the previous tab in the dialog.

**TAB->** button  
Go to the next tab in the dialog.

**STOP** button  
Stop the measurement in process.

**STORE** button  
Store the last measured point.

**Nav P** button  
Load a saved navigation page configuration.

**Sh M** button  
Start a measurement with a touch on the screen.

**Sh M+S** button  
Start a measurement with a touch on the screen, store it on completion.

**READ** button
Load previously saved setout settings for reuse.

SAVE button

Save the current setout settings for reuse at a later date.

**Strings Tab**

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control String</td>
<td>Control string, the string to which the other strings are cut normal to for calculations.</td>
<td>12dF new select box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setout String</td>
<td>Setout String, setout offset &amp; heights are relative to this string at a point cut normal from the setout chainage on the control string/centreline</td>
<td>12dF new select box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Level String</td>
<td>Level string 1, a string cut for one of the design heights.</td>
<td>12dF new select box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crown String</td>
<td>Crown string, the middle string for design heights in crown setout</td>
<td>12dF new select box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Level String</td>
<td>Level string 2, the string cut for a 2nd design height.</td>
<td>12dF new select box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference String</td>
<td>Reference string, a string to which the current point is dropped normally to for information only.</td>
<td>12dF new select box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Surface Shift  choice box  0.0000

* A vertical shift to be applied to the design level, +ve raises the level, can be manually entered or
selected from the choice list, (defined in "TDF_SURFACE_SHIFTS.4D")

Nav Tab

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation Box</td>
<td>draw box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The 12d Field navigation box augments setout by displaying user definable information rows plus a
bulls-eye as a visual aid.

Continue to next section 18.2.1.8.9 Tunnel Definition, or return to 18.2 12d Field.

18.2.1.8.9 Tunnel Definition

The Tunnel Definition panel combines a centreline, the PRO/PRA tunnel definition files and
information on how the profiles are applied to the centreline into a single file for use by the Tunnel
Setout panel.

For more information on PRO/PRA tunnel definition files please see 20.12.10 Definition of the
PRO and PRA definition files.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control String</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tunnel Profiles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profiles Normal to CL?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profile Chainages 3d?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Field Description**

**Name**
The name of the tunnel, this a file with the extension `12dF_TUN_DEF`.

**Control string**
The centreline the tunnel definitions are applied to, the centreline must have valid vertical geometry for the chainage ranges in the `PRA` file.

**Tunnel Profiles**
The `PRO/PRA` files containing the tunnel definition. For more information on `PRO/PRA` tunnel definition files please see [20.12.10 Definition of the PRO and PRA definition files](#).

**Profiles Normal to CL?**
tick box
- if ticked the tunnel is calculated perpendicular/normal to the vertical alignment of the centreline resulting in a true 3d model.
- if not ticked the tunnel is calculated vertical to the vertical alignment of the centreline, this means an effective loss of clearance on steeper grades.

**Profile Chainages 3d?**
tick box
- if not ticked the chainages in the `PRA` file are taken as plan chainages.
- if ticked the chainages are interpreted as 3d, this is the plan/2d chainage of the 1st point where the horizontal and vertical geometry coincide plus the 3d length along the centreline from there.

**Read**
button
Read in a `12dField` tunnel definition file.

**Write**
button
Write to a `12dField` tunnel definition file.

**Finish**
Exit the panel.

Continue to next section [18.2.1.8.10 Tunnel Setout](#) or return to [18.2 12d Field](#).
18.2.1.8.10 Tunnel Setout

The **Tunnel Setout** option, (available in TPS only) allows the user to locate and setout points on a tunnel previously defined in the **18.2.1.8.9 Tunnel Definition** panel.

### Setout Tab

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setout CS Raw Ch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setout CS 3d Ch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S/O Prof Ele Index</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S/O Prof Ele %</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>S/O Prof Ele Os</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Chainage Increment</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

**Setout CS Raw Ch**

*The plan chainage of the point you wish to setout. If the tunnel chainages are defined as 3d this will be read only and be updated when a 3d chainage is entered.*

**Setout CS 3d Ch**

*The 3d chainage of the point you wish to setout. If the tunnel chainages are defined as 2d this will be read only and be updated when a 2d chainage is entered.*

**S/O Prof Ele Name**

*The name of the element in the profile to setout.*

**S/O Prof Ele %**

*The percentage around the element to setout, 0% means the start of the element, 100% the end of the element.*

**S/O Prof Ele Os**

*The offset from the element to setout, +ve is to the right of the element.*

**Chainage Increment**

*12dF double box*
The value the setout chainage will be changed by when chainage increment/decrement is called.

### Strings Tab

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Name</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Edit tunnel</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Reference String</strong></td>
<td>12dF new select box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Attributes specific to tunnel setout for display on the information and navigation pages.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>pu_tun_ele_name</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>pu_tun_ele_idx</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>pu_tun_ele_per</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**pu_tun_ele_os**

Offset from the tunnel element at the shot taken, +ve is to the right hand side.

**so_tun_ele_name**

Name of the tunnel element at the point setout.

**so_tun_ele_idx**

Index, (zero based) of the tunnel element in the profile at the point setout, 0 is the first element.

**so_tun_ele_per**

Percentage around the tunnel element at the point setout.

**so_tun_ele_os**

Offset from the tunnel element at the point setout, +ve is to the right hand side.

---

**Nav Tab**

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation Box</td>
<td>draw box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The 12d Field navigation box augments setout by displaying user definable information rows plus a bulls-eye as a visual aid.

Continue to next section 18.2.1.8.11 Station Helmert, or return to 18.2 12d Field.
18.2.1.8.11 Station Helmert

The 12d Field - Helmert Resection panel can be used to establish a station setup by taking readings to up to 6 known points.

The horizontal position is obtained by a Helmert transformation; translation, rotation and uniform scaling of the readings.

The vertical position is obtained by meaning the z values of the readings, the z value is not weighted on distance measured.

Readings can be used for either horizontal position, vertical position or both.

Selecting Station Helmert displays the 12d Field - Helmert Resection panel on the screen.

Main Tab

A point for use in the resection can either be picked from the screen or manually entered.

If picked from the screen the Id and Model boxes will be filled automatically.

If entered manually the Id must be unique in the point model.

Note in 12dField the Id always refers to the Vertex Id.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Point</td>
<td>string select box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point Id</td>
<td>12dF input box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Select the point for the next shot to be used in the resection.
The Id/name of the target point.

**Point Model**

*model box*

The model containing the point for use in the resection.

**Smart Find On**

*tick box*

Smart find can be used when you can clearly identify one point in a resection, e.g. in a tunnel you can see multiple targets but only identify the one closest to you.

Smart find can be used after you have measured to the identified point.

If ticked on then after a reading to a station smart find will look through the points model to find one that the reading matches, both horizontally and vertically.

The horizontal and vertical tolerances can be set on the parameters tab.

Use smart find to identify all stations measured to automatically.

The surveyor can optionally store the resection point to a model if need be.

**Setup name**

*input box*

The Id of the setup to be stored.

**Setup Model**

*model box*

The model to store the setup to.

**Height Instrument**

*12dF double box*

The height of the instrument above the setup point.

**Buttons**

**MEAS**

*button*

Take a measurement to a station.

**INC ID**

*button*

Increment the point ID and make this the setout point. E.g. BOLT30 -> BOLT31

**DEC ID**

*button*

Decrement the point ID and make this the setout point. E.g. BOLT31 -> BOLT30

**Shot Count**

Number of shot used so far in the resection.

**Finish**

*button*

Leave the panel and make this the new station setup, if any of the position tolerances nominated on the parameters tab are exceeded you will get a warning box allowing you to re-enter or continue.

**Quit**

*button*

Quit the resection and restore the previous station setup.
Details Tab
The details tab displays the overall details of the current setup.
The level of detail is different for 2 and 3+ shots where redundancies in the helmert calcs are available. For 3+ shot the estimation error can be displayed.

The fields and buttons used in this panel have the following functions.

Field Description Type Defaults Pop-Up
Hz-Dist PPM 12dF long box
Easting double box
Northing double box
Level double box
Pos error double box
Calc'd scale factor double box
Calc'd PPM
RL Diff

Shot count
MEAS INC ID DEC ID
Finish Help Quit
No reading

The scale factor to be applied to measured horizontal distances.
The calculated easting of the station setup.
The calculated northing of the station setup.
The calculated level of the station setup.
The estimated horizontal error in the station setup.
The scale factor applied to the measurements to get the best fit.
Calc'd PPM  

*double box*

*The scale factor in ppm applied to the measurements to get the best fit.*

RL Diff  

*double box*

*The height difference range between the readings.*

---

**Coords Tab**

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Station Name</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Apx Pos Err</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Use?</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Del?</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Station Name**

*The name of the station this reading refers to.*

**Apx Pos Err**

*The approximate horizontal position error of this reading calculated in conjunction with all other readings in use. A high error for this reading in comparison to others might indicate a problem with this reading.*

**Use?**  

*tick box*

*If ticked this reading will be used in the horizontal calculation. Ticking or unticking the box will trigger the recalculation of the horizontal position.*

**Del?**  

*tick box*

*If ticked a confirmation box will be displayed and the reading removed from the resection. Removal will trigger the recalculation of the horizontal position.*
Levels Tab

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station Name</td>
<td>The name of the station this reading refers to.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>The level of the station calculated by this reading. A large difference for this reading in comparison to others might indicate a problem with this reading.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use?</td>
<td>If ticked this reading will be used in the vertical calculation. Ticking or unticking the box will trigger the recalculation of the vertical position.</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smart On Default</td>
<td>tick box</td>
<td>Default</td>
<td></td>
</tr>
<tr>
<td>Smart Dist Tol</td>
<td>12dF double box</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Smart Hgt Tol</td>
<td>12dF double box</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Max Pos Error</td>
<td>12dF double box</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Max PPM</td>
<td>12dF double box</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Max Hgt Diff</td>
<td>12dF double box</td>
<td>0.002</td>
<td></td>
</tr>
</tbody>
</table>

The smart find feature is ticked on by default.
The distance tolerance for a point to be used in the smart find.
The level tolerance for a point to be used in the smart find.
The maximum position error allowed, a warning will be shown if exceeded.
The maximum ppm's allowed, a warning will be shown if exceeded.
The maximum height variation allowed, a warning will be shown if exceeded.

Continue to next section 18.2.1.8.12 Station Standard, or return to 18.2 12d Field.
18.2.1.8.12 Station Standard

The 12d Field - Instrument Setup panel is used to establish a station setup over a known point. Orientation is established by measuring/sighting a backsight station. It is not necessary to set an orientation on the instrument, 12dField handles the angle difference internally.

Selecting the Station Standard option brings up the 12d Field - Instrument Setup panel.

Station Tab

The point for use in the setup can either be picked from the screen or manually entered. If picked from the screen the Id and Model boxes will be filled automatically. If entered manually the Id must be unique in the point model.

Note in 12dField the Id always refers to the Vertex Id.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Station</td>
<td>string select box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station Id</td>
<td>12dF input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height Instrument</td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Select the control station you are setting up over.

The Id/name of the instrument setup.

The model containing the instrument station.

The height of the instrument above the setup point.
Buttons

**MEAS** button

*Start a full measurement, distance and angles.*

**ANGLE** button

*Start a horizontal/vertical angular measurement, no distance.*

**<-TAB** button

*Go to the previous tab in the dialog.*

**TAB->** button

*Go to the next tab in the dialog.*

**Backsight Tab**

The backsight for use in the setup can either be picked from the screen or manually entered. If picked from the screen the Id and Model boxes will be filled automatically. If entered manually the Id must be unique in the point model.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Backsight</td>
<td>string select box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backsight Id</td>
<td>12dF input box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Select the point to be used for the backsight.*

*The Id/name of the backsight point.*
**Backsight Hgt Target**  
12dF double box

*The height of the backsight target above the backsight point.*

---

### Meas Tab

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>BkSt Diff Horz Dist</td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured difference in horizontal distance to the backsight point.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BkSt Diff Meas East</td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured difference in easting to the backsight point.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BkSt Diff Meas North</td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured difference in northing to the backsight point.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BkSt Diff Meas Hgt</td>
<td>12dF double box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured difference in height to the backsight point.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bearing Swing</td>
<td>12dF angle box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A bearing swing applied to the instrument reading to get the correct grid bearing.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Diff Horz Dist</td>
<td>12dF double box</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>Difference in horizontal distance that brings up a warning message.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Diff Meas Hgt</td>
<td>12dF double box</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Difference in height that brings up a warning message.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
18.2.1.8.13 Check Shot

The 12d Field - Check Shot panel allows a measurement to a known point to check the validity of the current setup. The measurement can be a full measurement or angle only.

Check Shot Tab

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check Shot</td>
<td>string select box</td>
<td>select a point for the check shot measurement</td>
<td></td>
</tr>
<tr>
<td>Checkshot Id</td>
<td></td>
<td>vertex id of the selected point, this can be populated from the select or manually entered.</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>model box</td>
<td>model containing the checkshot point.</td>
<td></td>
</tr>
<tr>
<td>Checkshot Target Hgt</td>
<td></td>
<td>height of target for the checkshot.</td>
<td></td>
</tr>
<tr>
<td>Turn on select?</td>
<td>tick box</td>
<td>if ticked on selecting a checkshot point the instrument will rotate automatically to that point.</td>
<td></td>
</tr>
</tbody>
</table>
Once a measurement is completed the focus will change to the **Meas** tab.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChSt Diff Hd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChSt Diff East</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChSt Diff North</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChSt Diff Hgt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChSt Diff Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Buttons**

**Distance**

- **SNGL** button
  
  *Take a single distance measurement to the checkshot dependent on the current TPS measurement settings*

- **MULT** button
  
  *Take a multiface distance measurement to the checkshot dependent on the current TPS measurement settings*
Angle Only

SNGL button
Take a single angular measurement to the checkshot dependent on the current TPS measurement settings

MULT button
Take a multiface angular measurement to the checkshot dependent on the current TPS measurement settings

STORE button
Write the measurement to the checkshot to the current field file (.FLD), this does not store the reading to a model.

TURN button
Rotate the instrument to the selected checkshot point.

<-TAB button
Go to the previous tab in the dialog.

TAB-> button
Go to the next tab in the dialog.

Continue to next section 18.2.1.8.14 Position TPS, or return to 18.2 12d Field.

18.2.1.8.14 Position TPS
This section of documentation is a work in progress and will be updated in subsequent releases.
Continue to next section 18.2.1.8.15 Joystick TPS, or return to 18.2 12d Field.

18.2.1.8.15 Joystick TPS

This section of documentation is a work in progress and will be updated in subsequent releases.

Continue to next section 18.2.1.8.16 Status TPS, or return to 18.2 12d Field.
18.2.1.8.16 Status TPS

This section of documentation is a work in progress and will be updated in subsequent releases.

Continue to next section 18.2.1.8.17 Locate Prism TPS, or return to 18.2 12d Field.

18.2.1.8.17 Locate Prism TPS

The 12d Field - TPS Locate Prism panel is an aid to remotely position the TPS to the current prism location.

Common fields and buttons
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Guiding lights</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The guiding lights button group is available if the TPS in use has guide lights. The naming of the guiding lights group depends on the primary instrument.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Trimble SPSx30**

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track Lights</td>
<td></td>
<td>On</td>
<td>Off</td>
</tr>
</tbody>
</table>

**Topcon 9000**

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking Indicator</td>
<td></td>
<td>On</td>
<td>Off</td>
</tr>
</tbody>
</table>

**Leica 1200**

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic Guide Lights</td>
<td></td>
<td>On</td>
<td>Off</td>
</tr>
</tbody>
</table>

**General Tab**

**Turn**

**Last**

*The instrument will turn to the last position a measurement was taken at.*

**XY**

*A screen select will be activated and the instrument will turn horizontally only to the selected position.*

**XYZ**

*A screen select will be activated and the instrument will turn horizontally and vertically to the selected position.*

**Turn GPS**

*Note* these buttons are only available if a GPS instrument is selected as the secondary instrument.

**GPS xy**
The instrument will turn horizontally only to the current GPS position.

GPS xyz

The instrument will turn horizontally and vertically to the current GPS position.

Joystick Tab

LEFT

Rotate the instrument to the left as viewed from the prism back to the instrument, LEFT can be pressed twice more to increase the speed of rotation.

RIGHT

Rotate the instrument to the right as viewed from the prism back to the instrument, RIGHT can be pressed twice more to increase the speed of rotation.

UP

Rotate the Up, UP can be pressed twice more to increase the speed of rotation.

DOWN

Rotate the Down, DOWN can be pressed twice more to increase the speed of rotation.

STOP

Stop the instrument rotating.
Quick Pos Tab

The Quick Pos tab allows the user to manually rotate the instrument in the horizontal and vertical directions by preset amounts. This is sometimes easier to use to orientate the instrument correctly than the joystick controls. There are 4 user definable rotations in the horizontal directions and 3 in the vertical.

The buttons show the direction of rotation and the amount of rotation in degrees, the amount of the rotation is defined on the Quick Pos Params Tab.

When a rotation button is pressed the instrument will rotate by a specified amount and direction, all buttons are disabled until the rotation has completed.
### Quick Pos Params Tab

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quick Pos Hz 1</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Quick Pos Hz 2</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Quick Pos Hz 3</td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Quick Pos Hz 4</td>
<td></td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Quick Pos Vt 1</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Quick Pos Vt 2</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Quick Pos Vt 3</td>
<td></td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

The **Quick Pos Params** define the rotation available in the **Quick Pos Tab**.

- **Quick Pos Hz 1**
  - the amount of rotation in degrees for the top button in the horizontal groups for **Quick Pos**

- **Quick Pos Hz 2**
  - the amount of rotation in degrees for the outer middle button in the horizontal groups for **Quick Pos**

- **Quick Pos Hz 3**
  - the amount of rotation in degrees for the lower button in the horizontal groups for **Quick Pos**

- **Quick Pos Hz 4**
  - the amount of rotation in degrees for the inner middle button in the horizontal groups for **Quick Pos**

- **Quick Pos Vt 1**
  - the amount of rotation in degrees for the left button in the vertical groups for **Quick Pos**

- **Quick Pos Vt 2**
  - the amount of rotation in degrees for the middle button in the vertical groups for **Quick Pos**

- **Quick Pos Vt 3**
  - the amount of rotation in degrees for the right button in the vertical groups for **Quick Pos**
18.2.1.8.18 Simulator Settings
This section of documentation is a work in progress and will be updated in subsequent releases.

18.2.1.8.19 Settings
This section of documentation is a work in progress and will be updated in subsequent releases.
### 12d Field - Settings

<table>
<thead>
<tr>
<th>General</th>
<th>Storage</th>
<th>Survey</th>
<th>Nav Box</th>
<th>ENV settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Views 1</td>
<td>Views 2</td>
<td>TPS</td>
<td>TPS Hghts</td>
<td>Meas Avg</td>
</tr>
</tbody>
</table>

#### Plan view

- Auto pan Plan view?:
  - [ ]
- Auto pan to selected pt?:
  - [ ]
- Setup section view
  - [ ]
- Pickup section view
  - [ ]
- PU X-View Extend Left: 20
- PU X-View Extend Right: 20
- Reverse X-Sect on CH?:
  - [ ]

[Finish button]

[Diagram of a section view window]
TPS Target Hgt 1	0
TPS Target Hgt 2	0.2
TPS Target Hgt 3	0.3
TPS Target Hgt 4	0.6
TPS Target Hgt 5	1.3
TPS Target Hgt 6	2.15
### 12d Field - Settings

<table>
<thead>
<tr>
<th>Tab</th>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Avg Max Shots</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Avg Min Shots</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Avg Max XY StdDev</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>Avg Max Z StdDev</td>
<td>0.003</td>
</tr>
</tbody>
</table>

**Finish**
<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Font Size</td>
<td>20</td>
</tr>
<tr>
<td>On MEAS pressed action</td>
<td>Do Nothing</td>
</tr>
<tr>
<td>On STOP pressed action</td>
<td>Do Nothing</td>
</tr>
<tr>
<td>Prism Size</td>
<td>5</td>
</tr>
<tr>
<td>Plan Pole Size</td>
<td>15</td>
</tr>
<tr>
<td>Plan Pole Cross Size</td>
<td>5</td>
</tr>
<tr>
<td>Surface Linestyle</td>
<td>1</td>
</tr>
<tr>
<td>Linestyle Colour</td>
<td>off yellow</td>
</tr>
<tr>
<td>Str Name on Control Bar</td>
<td></td>
</tr>
</tbody>
</table>

Finish
What's New in 12d Model

### 12d Field - Settings

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall width (pixels)</td>
<td>200</td>
</tr>
<tr>
<td>Overall depth (pixels)</td>
<td>200</td>
</tr>
<tr>
<td>Text region width (pixels)</td>
<td>170</td>
</tr>
<tr>
<td>Text size</td>
<td>15</td>
</tr>
<tr>
<td>Number char's for text</td>
<td>18</td>
</tr>
<tr>
<td>Draw Bulls-eye?</td>
<td>On</td>
</tr>
<tr>
<td>TPS Orientation</td>
<td>To Station</td>
</tr>
</tbody>
</table>

[Finish button]
18.2.1.8.20 Reconnect

Selecting Reconnect will attempt to disconnect from the current instrument and then reconnect. This may be required when the instrument has been restarted.
18.2.2 GPS Localisation

**Position of option on menu:** Survey => Field 12d => GPS Localisation

The panel is used to create the localisation parameters used inside 12dField for reducing GPS observations into a local system.

Points collected with 12dField as raw WGS84 cartesian coordinates can be matched with local control points to calculate the parameters to convert GPS readings directly into the local system.

The 12dField localisation treats horizontal and vertical components separately. The horizontal transformation is a Helmert translation, translation, rotation and uniform scaling of the x and y axes.

The vertical translation can either be a simple z translation or be taken from a tin, the tin can be manually created outside of the panel, e.g. from AusGeoid98 or created by the panel via a plane of best fit.

The basic workflow for this panel is to observe known control points in the field with 12dField with just the ellipsoid set, e.g. MGA56.

Then use this panel to match the observed points with the control points to create the localisation.

Selecting GPS Localisation brings up the Helmert 2.5D Params panel

![Helmert 2.5D Params Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td></td>
<td></td>
<td></td>
<td>* .tdf_hel</td>
</tr>
</tbody>
</table>
The TDF_HEL file to be read in or written to. This is the file used by 12dField to localise GPS reading.

Read button
Read in the TDF_HEL file

Write button
Write out the TDF_HEL file

Geoid Tin
If selected the value of the tin at the local coordinate is added to the height of the raw GPS coordinate.

Create Local TIN tick box
If unticked and the Local Tin box is blank the points are adjusted by the straight mean z difference of the observations.
If unticked and the Local Tin box is not empty the points are adjusted by the value of the TIN at the xy location.
If ticked and the Local Tin box is not empty a plane of best fit is used to create the local TIN and the points are adjusted by the value of the TIN at the current xy location. The extent of the local TIN is 1000m outside the control used.

Local Tin
The Local Tin as described above.

Control model model box
the model containing the control points.

Obsrv’d model model box
the model containing the observed points.

Rotate (cw) measure box
At Point, Point to Point, String from Point, String to Point

The clockwise rotation parameter of the helmert transformation.

Scale measure box
At Point, Point to Point, String from Point, String to Point

The scaling parameter of the helmert transformation.

X translate measure box
At Point, Point to Point, String from Point, String to Point

The x translation of the helmert transformation.

Y translate measure box
At Point, Point to Point, String from Point, String to Point

The y translation of the helmert transformation.

Z translate measure box
At Point, Point to Point, String from Point, String to Point

The z translation of the helmert transformation, (note this is 0.0 if a local TIN is being used).

The grid
Please note changing the level of a control station to "null" means the station and corresponding observed point will not be used in the height calculations.

**Use pt**
- tick box
  - if ticked this point is used in the transformation calculations

**Use z**
- tick box
  - If unticked this point is not used to calculate the transformation height parameter.

**Control Stat Id**
- The Id of the control station, will normally match the observed Id.

**Control Easting/Northing/Level**
- the coordinate of the control station.

**Observed Easting/Northing/Level**
- the coordinate of the observed point.

**Residual Easting/Northing/Level**
- the delta of the observed point with the control point after the transformation has been applied.

**Buttons**

**Control**
- button
  - Start the selection of the control/observed point pairs. Note the environment variable PICK_ORDER_OBSERVED_FIRST_4D can be set to make the selection order 'observed' then 'control'. For ease of use 2 plan views should be used, one with the observed points and one with the control points.

**Calculate**
- button
  - Calculate the transformation and update the residuals in the grid control.

**Finish**
- button
  - Exit the panel, a warning message will appear if the transformation parameters have not yet been written to file.

Continue to next section 18.2.3 12dField Setout FLD File To Strings or return to 18.2 12d Field.
18.2.3 12dField Setout FLD File To Strings

**Position of option on menu:**  Survey => 12d Field => Setout FLD file to strings

A field file, (.FLD) created by **12dField Setout** is attributed in such a way it can be read directly into **12d Model** without going through a Survey Data Reduction function, the string data will be read in with the original name, model, colour, linestyle and weight. Field files created by **12dField Setout** from version **V9C1e** can be read in with this panel.

Selecting **Setout FLD file to strings** displays the **12dField Setout FLD File To Strings** panel.

![12dField Setout FLD file to strings](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLD file to convert</td>
<td>file</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the field file to be read in.</td>
<td></td>
</tr>
<tr>
<td>Pre*post for models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>For more information please go to the section <a href="#">4.19.2 Pre*Postfix in Panel Fields</a></td>
<td></td>
</tr>
<tr>
<td>Read</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the FLD file will be read in, if a point in the field file is not correctly attributed a message will be displayed in the output window and no point will be created.</td>
<td></td>
</tr>
</tbody>
</table>

Continue to next section [18.2.4 12d Pickup](#) or return to [18.2 12d Field](#).
18.2.4 12d Pickup

**Position of option on menu:** Survey => 12d Field => 12d Pickup

This section of documentation is a work in progress and will be updated in subsequent releases.

Selecting 12d Pickup brings up the 12d Field - Pickup panel

![Image of 12d Field - Pickup panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDR Function</td>
<td>function box</td>
<td>available functions</td>
<td></td>
</tr>
</tbody>
</table>

**Set** button

**New** button

![Image of 12d Field - Pickup: Create a function]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>function box</td>
<td>available functions</td>
<td></td>
</tr>
</tbody>
</table>
Attribute definition file file box
Field file file box
Report file file box
Survey model model box
Control model model box
Map file file box
Map file prefix input
Explode point strings tick box
Set button

Continue to next section 18.2.5 12d Pickup Codes, or return to 18.2 12d Field.
18.2.5 12d Pickup Codes

The 12d Pickup codes walk right menu is

For information on

12d Pickup Codes Editor go to 18.2.5.1 Pickup Editor
12d Pickup Favourites 18.2.5.2 Pickup Favourites
Mapfile to 12d Pickup Codes 18.2.5.3 Mapfile to 12d Pickup Codes
12d Pickup Codes to 4dm 18.2.5.5 12d Pickup Codes to Macro
Filter linestyles/symbols via mapfile 18.2.5.6 Filter Linestyles/Symbols via Mapfile
Save binary linestyles 18.2.5.7 Save Binary Linestyles
Save binary symbols 18.2.5.8 Save Binary Symbols
18.2.5.1 Pickup Editor

**Position of option on menu:** Survey => 12d Field => 12d Field Pickup Codes => 12d Pickup Codes Editor

The Pickup Editor panel allows you to define and edit feature codes to be used in **12d Field Pickup**.

Selecting 12d Pickup Codes Editor brings up the Pickup Editor panel.

![Pickup Editor Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>File</strong></td>
<td></td>
<td></td>
<td>the 12d Field pickup codes file to edit or create</td>
</tr>
<tr>
<td><strong>Read</strong></td>
<td></td>
<td></td>
<td>reads the pickup codes file</td>
</tr>
<tr>
<td><strong>Write</strong></td>
<td></td>
<td></td>
<td>writes the pickup codes file</td>
</tr>
</tbody>
</table>

- **File**: The 12d Field pickup codes file to edit or create.
- **Read**: Reads the pickup codes file.
- **Write**: Writes the pickup codes file.

**+ icon**: Add a new node at the current level of the highlighted node in the tree - a sibling node. You can’t add a sibling node to the top level Pickup node.
add a child to the current highlighted node in the tree.

delete the current highlighted node in the tree

moves the current highlighted node in the tree up

moves the current highlighted node down in the tree

copies to the cache the current highlighted node in the tree

pastes the cached node to the current node in the tree (if it is allowed).

Continue to next section 18.2.5.1.1 Defining Codes, or return to 18.2 12d Field.

18.2.5.1.1 Defining Codes

There are a number of different code types that can be added to your pickup codes file, depending on the structure of your tree. Each code has the following field Type, which can be used to define the type:

Type [Header]

Select Choice

Header
Footer
Features
Opcodes
Attributes
Include

For information on Header go to 18.2.5.1.1.1 Header
Footer 18.2.5.1.1.2 Footer
Features 18.2.5.1.1.4 Features
Opcodes 18.2.5.1.1.5 Opcodes
Attributes 18.2.5.1.1.6 Attributes
Include 18.2.5.1.1.3 Include
18.2.5.1.1 Header

A **Header** to be included in any macro code generation.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text field</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*the macro code to include in the header*

Continue to next section [18.2.5.1.2 Footer](#) or return to [18.2 12d Field](#).

18.2.5.1.2 Footer

A footer to be included in any macro code generation.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text field</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*the macro code to include in the footer*
18.2.5.1.1.3 Include

Defines another code file to be included.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Include file</td>
<td>file</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reload</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that include files can be edited inline, within one editor.

18.2.5.1.1.4 Features

This code type defines a group of features

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prompt</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The prompt name of the features group to appear in 12d Field pickup

Available Children Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature</td>
<td>18.2.5.1.1.4.1 Feature</td>
</tr>
<tr>
<td>Group</td>
<td>18.2.5.1.1.4.2 Group (Features)</td>
</tr>
<tr>
<td>Include</td>
<td>18.2.5.1.1.3 Include</td>
</tr>
</tbody>
</table>
18.2.5.1.1.4.1 Feature

This code defines a feature to be picked up in the field.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>
| Details Tab  | **Prompt**

The cosmetic name to be displayed during 12d field pickup

**Output**

The optional value to output to the pickup file - uses prompt if undefined

**Object**

The optional value to be used to define a set of attributes - uses output if undefined

**Message**

A message to display when picking up the code

**Default**

The default value

**Breakline**

The type of breakline
Programming Tab

See 18.2.5.1.1.7 Programming.

Children types

Select Choice X

- Group
- Choice group
- Opcode
- Feature
- Real
- Text
- Integer
- Measure
- Choice
- Include

For information on Group go to 18.2.5.1.1.4.2 Group (Features).

**Choice Group**
18.2.5.1.1.4.3 Choice Group Attribute

**Opcode**
18.2.5.1.1.4.6 Opcode Attribute

**Feature**
18.2.5.1.1.4.7 Feature Attribute

**Real**
18.2.5.1.1.4.8 Real Attribute

**Text**
18.2.5.1.1.4.9 Text Attribute

**Integer**
18.2.5.1.1.4.10 Integer Attribute

**Measure**
18.2.5.1.1.4.11 Measure Attribute

**Choice**
18.2.5.1.1.4.12 Choice Attribute

**Include**
18.2.5.1.1.3 Include
18.2.5.1.1.4.2 Group (Features)

Defines a group of other features or feature attributes

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prompt</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optional?</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundle?</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Prompt**

*the cosmetic name for the group*

**Optional?**

*if ticked, filling out the group is optional*

*if not ticked, at least one field in the group must be filled out*

**Bundle?**

*if ticked, this group is treated as a bundle*

*if not ticked, this group is treated as a normal group*

**Available Children Types**

For information on Group go to: 18.2.5.1.1.4.2 Group (Features)

Choice Group 18.2.5.1.1.4.3 Choice Group Attribute

Opcode 18.2.5.1.1.4.6 Opcode Attribute

Feature 18.2.5.1.1.4.7 Feature Attribute

Real 18.2.5.1.1.4.8 Real Attribute

Text 18.2.5.1.1.4.9 Text Attribute

Integer 18.2.5.1.1.4.10 Integer Attribute

Measure 18.2.5.1.1.4.11 Measure Attribute

Choice 18.2.5.1.1.4.12 Choice Attribute

Include 18.2.5.1.1.3 Include
18.2.5.1.1.4.3 Choice Group Attribute

This allows the definition of an attribute defined by a set of choices, defined into groups, to attach to a feature.

### Details Tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prompt</td>
<td>the cosmetic name to be displayed during 12d field pickup</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>the optional value to output to the pickup file - uses prompt if undefined</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Message</td>
<td>a message to display when displaying the choice group</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default</td>
<td>the default value</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data type</td>
<td>how the attribute should be attached</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Optional?**
  - if ticked, this attribute is treated as optional
  - if not ticked, this attribute must be filled out

- **Bundle?**
  - if ticked, this attribute is treated as a bundle
  - if not ticked, this attribute is treated as a normal attribute

### Available children types

- Group
- Choice data
- Include
For information on Group go to 18.2.5.1.1.4.4 Group (Choice)
Choice Data 18.2.5.1.1.4.5 Choice Data
Include 18.2.5.1.1.3 Include.

Programming Tab
See 18.2.5.1.1.7 Programming.

Continue to next section 18.2.5.1.1.4.4 Group (Choice) or return to 18.2 12d Field.
18.2.5.1.1.4.4 Group (Choice)

Allows a group of choice group attribute related data to be defined

<table>
<thead>
<tr>
<th>Type</th>
<th>Prompt</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td></td>
<td>the cosmetic name of the group to display</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Available children types

For information on Group go to 18.2.5.1.1.4.4 Group (Choice)
Choice Data 18.2.5.1.1.4.5 Choice Data
Include 18.2.5.1.1.3 Include

Continue to next section 18.2.5.1.1.4.5 Choice Data or return to 18.2 12d Field.
18.2.5.1.1.4.5 Choice Data

The choices to display for a choice attribute.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data Items</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Item</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the value for a choice</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to next section 18.2.5.1.4.6 Opcode Attribute or return to 18.2 12d Field.
18.2.5.1.1.4.6 Opcode Attribute

This defines an attribute attached to a feature, which requires the entry of an opcode.

<table>
<thead>
<tr>
<th>Type</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Details Prompt</td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td></td>
</tr>
<tr>
<td>Message</td>
<td></td>
</tr>
<tr>
<td>Pt desc</td>
<td>No Pt desc</td>
</tr>
<tr>
<td>Optional?</td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prompt</td>
<td>input</td>
<td></td>
<td>the cosmetic name for the opcode</td>
</tr>
<tr>
<td>Output</td>
<td>input</td>
<td></td>
<td>the optional output for the opcode - defaults to prompt if not defined</td>
</tr>
<tr>
<td>Message</td>
<td>input</td>
<td></td>
<td>an optional message to display when entering the opcode value</td>
</tr>
<tr>
<td>Pt desc</td>
<td>choice box</td>
<td>No pt desc, Pt desc, Null pt desc</td>
<td></td>
</tr>
<tr>
<td>Optional</td>
<td>tick box</td>
<td></td>
<td>if ticked, this opcode attribute is optional</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>if not ticked, this opcode attribute must be entered in the field</td>
</tr>
</tbody>
</table>

Continue to next section 18.2.5.1.4.7 Feature Attribute or return to 18.2 12d Field.
18.2.5.1.1.4.7 Feature Attribute

This defines an attribute attached to a feature, which requires the entry of another feature.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Details Tab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prompt</td>
<td>The cosmetic name to be displayed during 12d field pickup</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>The optional value to output to the pickup file - uses prompt if undefined</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Message</td>
<td>A message to display when picking up the code</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default</td>
<td>The default value</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data type</td>
<td>How the attribute should be attached</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optional?</td>
<td>If ticked, this attribute is treated as optional</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundle?</td>
<td>If ticked, this attribute is treated as a bundle</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Programming Tab

See 18.2.5.1.1.7 Programming.

Continue to next section 18.2.5.1.4.8 Real Attribute or return to 18.2 12d Field.
18.2.5.1.1.4.8 **Real Attribute**

This defines an attribute attached to a feature, which requires the entry of a real value.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prompt</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Message</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data type</td>
<td>choice box</td>
<td>Vertex, Next Segment, Prev Segment, String, Prompt, Prompt Segment</td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions.

### Details Tab

- **Prompt**: the cosmetic name to be displayed during 12d field pickup
- **Output**: the optional value to output to the pickup file - uses prompt if undefined
- **Message**: a message to display when picking up the code
- **Default**: the default value
- **Data type**: how the attribute should be attached

- **Optional?**: if ticked, this attribute is treated as optional
- **Bundle?**: if ticked, this attribute is treated as a normal attribute

### Programming Tab

See [18.2.5.1.1.7 Programming](#).

Continue to next section [18.2.5.1.1.4.9 Text Attribute](#), or return to [18.2.12d Field](#).
18.2.5.1.4.9 Text Attribute

This defines an attribute attached to a feature, which requires the entry of a text value.

<table>
<thead>
<tr>
<th>Type</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Details</td>
<td>Programming</td>
</tr>
<tr>
<td>Prompt</td>
<td>input</td>
</tr>
<tr>
<td>the cosmetic name to be displayed during 12d field pickup</td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>input</td>
</tr>
<tr>
<td>the optional value to output to the pickup file - uses prompt if undefined</td>
<td></td>
</tr>
<tr>
<td>Message</td>
<td>input</td>
</tr>
<tr>
<td>a message to display when picking up the code</td>
<td></td>
</tr>
<tr>
<td>Default</td>
<td>input</td>
</tr>
<tr>
<td>the default value</td>
<td></td>
</tr>
<tr>
<td>Data type</td>
<td>choice box</td>
</tr>
<tr>
<td>how the attribute should be attached</td>
<td></td>
</tr>
<tr>
<td>Optional?</td>
<td>tick box</td>
</tr>
<tr>
<td>if ticked, this attribute is treated as optional</td>
<td></td>
</tr>
<tr>
<td>if not ticked, this attribute must be filled out</td>
<td></td>
</tr>
<tr>
<td>Bundle?</td>
<td>tick box</td>
</tr>
<tr>
<td>if ticked, this attribute is treated as a bundle</td>
<td></td>
</tr>
<tr>
<td>if not ticked, this attribute is treated as a normal attribute</td>
<td></td>
</tr>
</tbody>
</table>

Programming Tab

See 18.2.5.1.7 Programming.

Continue to next section 18.2.5.1.4.10 Integer Attribute or return to 18.2 12d Field.
18.2.5.1.4.10 Integer Attribute

This defines an attribute attached to a feature, which requires the entry of an integer value.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Prompt</strong></td>
<td>the cosmetic name to be displayed during 12d field pickup</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Output</strong></td>
<td>the optional value to output to the pickup file - uses prompt if undefined</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Message</strong></td>
<td>a message to display when picking up the code</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Default</strong></td>
<td>the default value</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Data type</strong></td>
<td>how the attribute should be attached</td>
<td>choice box</td>
<td>Vertex, Next Segment, Prev Segment, String, Prompt, Prompt Segment</td>
<td></td>
</tr>
<tr>
<td><strong>Optional?</strong></td>
<td>if ticked, this attribute is treated as optional</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Bundle?</strong></td>
<td>if ticked, this attribute is treated as a bundle</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Programmng Tab

See [18.2.5.1.1.7 Programming](#).

Continue to next section [18.2.5.1.4.11 Measure Attribute](#), or return to [18.2 12d Field](#).
18.2.5.1.1.4.11 Measure Attribute

This defines an attribute attached to a feature, which requires a physical measurement.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prompt input</td>
<td></td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Output input</td>
<td></td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Message input</td>
<td></td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Default input</td>
<td></td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Horizontal angle</td>
<td>choice box</td>
<td>Off, On - Required, On - Optional</td>
<td></td>
</tr>
<tr>
<td>Vertical angle</td>
<td>choice box</td>
<td>Off, On - Required, On - Optional</td>
<td></td>
</tr>
<tr>
<td>Slope distance</td>
<td>choice box</td>
<td>Off, On - Required, On - Optional</td>
<td></td>
</tr>
<tr>
<td>Target height</td>
<td>choice box</td>
<td>Off, On - Required, On - Optional</td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions.

**Details Tab**

- **Prompt**
  - the cosmetic name to be displayed during 12d field pickup

- **Output**
  - the optional value to output to the pickup file - uses prompt if undefined

- **Message**
  - a message to display when picking up the code

- **Default**
  - the default value

- **Horizontal angle**
  - choice box
  - Off, On - Required, On - Optional
  - if the horizontal angle is to be captured

- **Vertical angle**
  - choice box
  - Off, On - Required, On - Optional
  - if the vertical angle is to be captured

- **Slope distance**
  - choice box
  - Off, On - Required, On - Optional
  - if the slope distance is to be captured

- **Target height**
  - choice box
  - Off, On - Required, On - Optional
  - if the target height is required
Data type choice box
            Vertex, Next Segment,
            Prev Segment, String,
            Prompt, Prompt Segment

how the attribute should be attached

Optional? tick box
            if ticked, this attribute is treated as optional
            if not ticked, this attribute must be filled out

Bundle? tick box
            if ticked, this attribute is treated as a bundle
            if not ticked, this attribute is treated as a normal attribute

Programming Tab
See 18.2.5.1.1.7 Programming.

Continue to next section 18.2.5.1.4.12 Choice Attribute, or return to 18.2 12d Field.
18.2.5.1.1.4.12 Choice Attribute

This defines an attribute attached to a feature, which requires a value to be selected from a list of choices.

The fields and buttons used in this panel have the following functions.

**Details Tab**

**Prompt**
- input: the cosmetic name to be displayed during 12d field pickup

**Output**
- input: the optional value to output to the pickup file - uses prompt if undefined

**Message**
- input: a message to display when picking up the code

**Default**
- input: the default value

**Data type**
- choice box: Vertex, Next Segment, Prev Segment, String, Prompt, Prompt Segment

**Optional?**
- tick box: if ticked, this attribute is treated as optional
  - if not ticked, this attribute must be filled out
18.2.5.1.1.5 Opcodes

This code type defines a group of opcodes.

<table>
<thead>
<tr>
<th>Type</th>
<th>Opcodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prompt</td>
<td>Opcodes</td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions.

Field Description       Type   Defaults   Pop-Up
Prompt                   input   the cosmetic name of the opcodes group

Available children types

For information on Group go to 18.2.5.1.1.5 Group (Opcodes)
OpCode                   18.2.5.1.1.5.2 OpCode
Include                  18.2.5.1.1.3 Include

Continue to next section 18.2.5.1.1.5 Group (Opcodes) or return to 18.2 12d Field.
18.2.5.1.1.5.1 Group (Opcodes)
This code defines a group of opcodes

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prompt</td>
<td>the cosmetic name of the group of opcodes</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Available children types**

For information on Group go to
- 18.2.5.1.1.5.1 Group (Opcodes)
- 18.2.5.1.1.5.2 OpCode
- 18.2.5.1.1.3 Include

Continue to next section 18.2.5.1.1.5.2 OpCode or return to 18.2 12d Field.
18.2.5.1.1.5.2 Opcode

This defines a custom opcode that can be attached to the running pickup function or a picked up feature.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prompt</td>
<td>the cosmetic name to be displayed during 12d field pickup</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>the optional value to output to the pickup file - uses prompt if undefined</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Message</td>
<td>a message to display when entering the opcode</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt desc</td>
<td>the point description</td>
<td>choice box</td>
<td>No pt desc, Pt desc, Null pt desc</td>
<td></td>
</tr>
<tr>
<td>Optional?</td>
<td></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If ticked, this opcode is treated as optional
If not ticked, it is required

Available children types

For information on Feature go to 18.2.5.1.1.5.3 Feature Attribute (OpCode)
Real 18.2.5.1.1.5.4 Real Attribute (OpCode)
Integer 18.2.5.1.1.5.5 Integer Attribute (OpCode)
Text 18.2.5.1.1.5.6 Text Attribute (OpCode)
Choice 18.2.5.1.1.5.7 Choice Attribute (OpCode)
Include 18.2.5.1.1.5.8 Include

Continue to next section 18.2.5.1.1.5.3 Feature Attribute (OpCode) or return to 18.2 12d Field.
18.2.5.1.1.5.3 Feature Attribute (OpCode)

This defines an attribute attached to an opcode, which requires the entry of a feature.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Prompt</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the cosmetic name to be displayed during 12d field pickup</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Message</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a message to display when entering the opcode attribute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Default</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the default value for the attribute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Optional?</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, this attribute is treated as optional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if not ticked, it is required</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to next section 18.2.5.1.5.4 Real Attribute (OpCode) or return to 18.2 12d Field.
18.2.5.1.1.5.4 Real Attribute (OpCode)

This defines an attribute attached to an opcode, which requires the entry of a real value.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prompt</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Message</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optional?</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Prompt**: the cosmetic name to be displayed during 12d field pickup
- **Message**: a message to display when entering the opcode attribute
- **Default**: the default value for the attribute
- **Optional?**: if ticked, this attribute is treated as optional; if not ticked, it is required

Continue to next section 18.2.5.1.5.5 Integer Attribute (OpCode) or return to 18.2 12d Field.
### 18.2.5.1.5.5 Integer Attribute (OpCode)

This defines an attribute attached to an opcode, which requires the entry of an integer value.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prompt</td>
<td>the cosmetic name to be displayed during 12d field pickup</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Message</td>
<td>a message to display when entering the opcode attribute</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default</td>
<td>the default value for the attribute</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optional?</td>
<td>if ticked, this attribute is treated as optional</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if not ticked, it is required</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions.

Continue to next section 18.2.5.1.5.6 Text Attribute (OpCode) or return to 18.2 12d Field.
18.2.5.1.1.5.6 Text Attribute (OpCode)

This defines an attribute attached to an opcode, which requires the entry of a text value.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prompt</td>
<td>the cosmetic name to be displayed during 12d field pickup</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Message</td>
<td>a message to display when entering the opcode attribute</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default</td>
<td>the default value for the attribute</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optional?</td>
<td>if ticked, this attribute is treated as optional</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if not ticked, it is required</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to next section 18.2.5.1.1.5.7 Choice Attribute (OpCode) or return to 18.2 12d Field.
18.2.5.1.1.5.7 Choice Attribute (OpCode)

This defines an attribute attached to an opcode, which requires the entry of a value selected from a choice.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prompt</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Message</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optional?</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

18.2.5.1.1.6 Attributes

This defines a top level group of attributes.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prompt</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Available children types
For information on Group go to 18.2.5.1.1.6.1 Group (Attributes).
Attribute
Include
Continue to next section 18.2.5.1.1.6.1 Group (Attributes), or return to 18.2 12d Field.
18.2.5.1.1.6.1 Group (Attributes)

This defines a group of attributes or other groups.

<table>
<thead>
<tr>
<th>Type</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prompt</td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions.

Field Description  Type  Defaults  Pop-Up

**Prompt**

*the cosmetic name for the group that will be displayed*

**Available children types**

- **Select Choice**
  - Group
  - Attribute
  - Include

For information on Group go to 18.2.5.1.1.6.1 Group (Attributes).

For information on Attribute go to 18.2.5.1.1.6.2 Attribute.

For information on Include go to 18.2.5.1.1.3 Include.

Continue to next section 18.2.5.1.1.6.2 Attribute or return to 18.2 12d Field.
Attribute

This defines an attribute that may be attached to a picked up point or string during pickup.

The fields and buttons used in this panel have the following functions.

### Details Tab

- **Prompt**
  - **Type**: input
  - **Description**: the cosmetic name to be displayed during 12d field pickup

- **Output**
  - **Type**: input
  - **Description**: the optional value to output to the pickup file - uses prompt if undefined

- **Object**
  - **Type**: input
  - **Description**: the optional value to be used to define a set of attributes - uses output if undefined

- **Message**
  - **Type**: input
  - **Description**: a message to display when picking up the code

- **Default**
  - **Type**: input
  - **Description**: the default value

### Programming Tab

See [18.2.5.1.1.7 Programming](#).

Available children types

For information on Feature go to [18.2.5.1.1.4.7 Feature Attribute](#).

- Real [18.2.5.1.1.4.8 Real Attribute](#)
- Text [18.2.5.1.1.4.9 Text Attribute](#)
- Integer [18.2.5.1.1.4.10 Integer Attribute](#)
18.2.5.1.1.7 Programming

It is possible to generate macro code for GIS post processing, for any feature or attribute. The **programming tab** is used to assist you in doing so.

See [18.2.5.5 12d Pickup Codes to Macro](#) for more information on how to generate a GIS post processing 4dm file.

To assist you, this is broken into sections: **Header Tab**, **Declaration Tab**, **Process Tab**, **Footer Tab**.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For use with attributes or opcodes, defines the variable that the data should be stored in for use later.

### Header Tab

The **Header tab** defines any header that should be output into the macro file for the current item.
The fields and buttons used in this panel have the following functions.

Field Description	Type	Defaults	Pop-Up
**Use header?** | tick box | | |

*if ticked, the header will output to the generated file*
*if not ticked, no header will be used*

**Text field**

*the macro code to output into the GIS post processing file*

**Declaration Tab**

The **Declaration tab** defines the 'declaration' to be output into the macro, which can be used for defining variables.
### The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use declaration?</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Use declaration?**
  - If ticked, a declaration will be output to the generated file
  - If not ticked, no declaration will be output

- **Text field**
  - The macro code to output into the GIS post processing file.

### Process Tab

The **Process tab** defines the main processing part of the macro code, which could be used to process a selected feature code and associated attributes, or other items such as opcodes.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use process?</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If ticked, the process data will be output into the generated file.
If not ticked, no process data will be output.

**Text field**

The macro code to output into the GIS post processing file

**Footer Tab**

The **Footer tab** is used to define any macro code that should be added to the footer.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Use footer?</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if ticked, the footer will output to the generated file</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if not ticked, no footer will be output</em></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Text field**

*The macro code to output into the GIS post processing file*

Continue to next section 18.2.5.2 Pickup Favourites, or return to 18.2 12d Field.
18.2.5.2 Pickup Favourites

**Position of option on menu:** Survey => 12d Field => 12d Field Pickup Codes => 12d Pickup Favourites

This panel is used to create and edit 12d field pickup favourites files. They contain a list of feature codes and associated information for use within 12d Field Pickup.

Selecting 12d Pickup Favourites brings up the Pickup Favourites panel.

![Image of Pickup Favourites panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favourites file</td>
<td>file</td>
<td>file</td>
<td>*.12dfieldfavourites</td>
</tr>
<tr>
<td>Read</td>
<td>button</td>
<td>reads the favourites file, if it exists</td>
<td></td>
</tr>
<tr>
<td>Pickup file</td>
<td>file</td>
<td>file</td>
<td>*.12dfieldcodes</td>
</tr>
<tr>
<td>Load</td>
<td>button</td>
<td>loads the optional 12d field pickup codes file for use</td>
<td></td>
</tr>
</tbody>
</table>
adds a new favourite

moves a favourite up

moves a favourite down

delete a favourite

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>String number</td>
<td>Display name</td>
<td>Display image</td>
</tr>
</tbody>
</table>

**Code**

- the name of the favourite.
- If a pickup codes file has been loaded, the list of codes in the pickup codes file will be available as a choice in the browse box.
- If no pickup codes file has been loaded, nothing will appear in the browse box.

**String number**

input
the optional string number for the favourite

**Display name**

the optional cosmetic name of the favourite to display
If not specified, the favourite will display using the code name

**Display image**

the optional cosmetic image of the favourite to display
If not specified, no image will be displayed.

**Write**

button
writes the Pickup favourites to the specified file.

Continue to next section [18.2.5.3 Mapfile to 12d Pickup Codes](#), or return to [18.2 12d Field](#).
18.2.5.3 Mapfile to 12d Pickup Codes

Position of option on menu: Survey => 12d Field => 12d Field Pickup Codes => Mapfile to 12d Pickup Codes

This option is used to create a 12d Field Pickup Coding file from an existing map file. Only the following information from the Basic section of the mapfile is used:
- Key
- Model
- Comment

Selecting Mapfile to 12d Pickup Codes brings up the Mapfile to 12d Pickup Codes panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapfile</td>
<td>file</td>
<td>*.mapfile</td>
<td>*.mf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the 12d mapfile to convert from.</td>
<td></td>
</tr>
<tr>
<td>Coding file</td>
<td>file</td>
<td>*.12dfieldcodes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the coding file to convert to.</td>
<td></td>
</tr>
<tr>
<td>Use mf comments prompts</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, the Comment field is used as the display prompt that the user sees when selecting the current feature code. If not ticked, the Key field is used as the display prompt.</td>
<td></td>
</tr>
<tr>
<td>Create</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>convert the file.</td>
<td></td>
</tr>
</tbody>
</table>

Continue to next section 18.2.5.4 ADAC XSD to 12d Pickup Codes or return to 18.2 12d Field.
18.2.5.4 ADAC XSD to 12d Pickup Codes

Position of option on menu: Survey => 12d Field => 12d Field Pickup Codes => ADAC XSD to 12d Pickup Codes

This section of documentation is a work in progress and will be updated in subsequent releases.

Selecting ADAC XSD to 12d Pickup Codes brings up the Create 12d Field Codes from ADAC XSD panel

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAC Version</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the version of ADAC being used</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12dField codes file</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Create button

Continue to next section 18.2.5.5 12d Pickup Codes to Macro or return to 18.2 12d Field.
18.2.5.5 12d Pickup Codes to Macro

**Position of option on menu:** Survey => 12d Field => 12d Field Pickup Codes => 12d Pickup Codes to 4dm

This panel generates a macro based on any programming defined in a 12d Field pickup codes file. It will create a new file of the same name as the 12d Field pickup codes file, with the extension 4dm.

Selecting 12d Pickup Codes to 4dm brings up the 12d Pickup Codes to Macro panel.

![12d Pickup Codes to Macro Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coding file</td>
<td>file</td>
<td>* .12dfieldcodes</td>
<td>the 12d Field Pickup codes file to read</td>
</tr>
<tr>
<td>Create 4d macro</td>
<td>tick box</td>
<td></td>
<td>if ticked, it creates the 4dm file from the 12d Field Pickup codes file programming.</td>
</tr>
<tr>
<td>Compile 4d macro</td>
<td>tick box</td>
<td></td>
<td>if ticked, the created 4dm file will be compiled into a 4do file, if not ticked, no compilation will take place</td>
</tr>
<tr>
<td>Allow old string calls</td>
<td>tick box</td>
<td></td>
<td>if ticked, old string calls will be allowed by the compiler, if not ticked, old string calls will not be allowed by the compiler.</td>
</tr>
<tr>
<td>Allow old id calls</td>
<td>tick box</td>
<td></td>
<td>if ticked, old id calls will be allowed by the compiler, if not ticked, old id calls will not be allowed by the compiler.</td>
</tr>
<tr>
<td>Compile</td>
<td>button</td>
<td></td>
<td>creates and/or compiles the 12d Field Pickup codes file into a macro</td>
</tr>
</tbody>
</table>

Continue to next section 18.2.5.6 Filter Linestyles/Symbols via Mapfile or return to 18.2 12d Field.
18.2.5.6 Filter Linestyles/Symbols via Mapfile

Position of option on menu: Survey => 12d Field => 12d Field Pickup Codes => Filter linestyles/symbols via mapfile

This section of documentation is a work in progress and will be updated in subsequent releases.

Selecting Filter linestyles/symbols via mapfile brings up the Filter Linestyles/Symbols by Mapfile panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map file</td>
<td>file box</td>
<td></td>
<td>available map files</td>
</tr>
<tr>
<td>Map file for 12d usage</td>
<td>file box</td>
<td></td>
<td>available map files</td>
</tr>
<tr>
<td>Linestyle file</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol file</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Save as binary files</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td>Filter</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to next section 18.2.5.7 Save Binary Linestyles or return to 18.2 12d Field.
18.2.5.7 Save Binary Linestyles

**Position of option on menu:** Survey => 12d Field => 12d Field Pickup Codes => Save binary linestyles

Selecting Save binary linestyles brings up the **Save all Linestyles to Binary File** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linestyle file</td>
<td>file box</td>
<td>available *.4d files</td>
<td>the name of the binary form of the linestyle file</td>
</tr>
<tr>
<td>Save</td>
<td>button</td>
<td></td>
<td>saves the linestyle data as a binary file.</td>
</tr>
</tbody>
</table>

Continue to next section 18.2.5.8 Save Binary Symbols, or return to 18.2 12d Field.
18.2.5.8 Save Binary Symbols

Position of option on menu: Survey => 12d Field => 12d Field Pickup Codes => Save binary symbols

This section of documentation is a work in progress and will be updated in subsequent releases.

Selecting Save binary symbols brings up the Save all Symbols to Binary File panel

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbols file</td>
<td>file box</td>
<td>available *.4d files</td>
<td></td>
</tr>
<tr>
<td>Save</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Return to 18.2 12d Field.
The **ePlan XML Schema** is a vendor independent XML format introduced by the State Governments in Australia for the submission of Cadastral plans.

So far it has been implemented by NSW, Qld and Victoria with the other States planning to implement it in the future.

Although there are similarities between the States, there are different enumeration files for each State in the ePlan XML Schema. Also each State has its own business rules, and own methods for submitting the ePlan.XML data.

Also although the various ePlan XML's are based on Land.XML, what is a valid Land.XML file may not be a valid ePlan.XML for a particular State.

See

19.1 ePlan.XML Overview
19.2 12d Approach to ePlan XML
19.3 12d ePlan Workflow
19.4 12d ePlan Menu
19.1 ePlan.XML Overview

See

19.1.1 ePlan XML Structure

19.1.1 ePlan XML Structure

The ePlan Schema is fully described by the ePlan XSD (XML Schema Definition), which formally defines the structure and all the elements inside an ePlan XML file. That means that any ePlan.XML can be validated against the ePlan Schema XSD to see that it conforms to the Schema.

Return to 19.1 ePlan.XML Overview or 19 ePlan.
19.2 12d Approach to ePlan XML

Creating an ePlan XML file could be approached as a spreadsheet type exercise where you type the values into a document, but this is little more than a manual data collection exercise.

Continue to the next section 19.3 12d ePlan Workflow, or return to 19 ePlan.
19.3 12d ePlan Workflow

In 12d Model, the source of the data to write out to an ePlan XML is usually from either

Continue to the next section 19.4 12d ePlan Menu, or return to 19 ePlan.
19.4 12d ePlan Menu

Position on menu: Survey => Network => ePlan

See

19.4.1 Create NSW ePlan Network
19.4.1 Create NSW ePlan Network

Position of option on menu:  Survey => Network => ePlan => NSW

To create an ePlan for NSW, an ePlan network needs to be created. The data to go out as an NSW ePlan.XML file are then added to the ePlan network. Selecting NSW brings up the Create NSW ePlan Network panel:

![Create NSW ePlan Network panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td></td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td>name box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td></td>
<td>text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coordinate system</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td></td>
<td>text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal datum</td>
<td>A jurisdictionally specific list of horizontal datums valid for that jurisdiction the common ones MGA, AMG, Local etc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical datum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ellipsoid name</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zone number</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General node

Model
- model box
- the model for the ePlan network.

Name
- name box
- the name for the ePlan network.

Description
- text box
- a description for the ePlan network.

Coordinate System node

Description
- text box
- a description for the coordinate system.
Vertical datum choice box AHD
the vertical datum.

Horizontal datum choice box
the horizontal datum.

Ellipsoid name choice box
name of the ellipsoid used (if any).

Zone number text box
zone number if MGA).

General node
Style Network Style box available network styles
the style used for displaying the ePlan network.

Buttons at bottom
Create button
create an ePlan Network for NSW.

After the Create button is pressed, a new NSW ePlan is created and the Edit ES toolbar appears. For information on the Edit ES toolbar, go to 19.4.2 Edit ES for NSW ePlan Network.

Continue to the next section or return to 19.4 12d ePlan Menu or 19 ePlan.
19.4.2 Edit ES for NSW ePlan Network

Position of option on menu: Survey => Network => ePlan => Create NSW ePlan Network

If the Strings Edit is used to select an ePlan network, or after the Create button is pressed on the Create NSW ePlan Network panel and a new NSW ePlan is created, the Edit ES toolbar appears to edit the EPlan object.

See

19.4.2.1 Points
19.4.2.2 Observations
19.4.2.3 Blocks
19.4.2.4 Boundaries
19.4.2.5 Parcels
19.4.2.6 Occupations
19.4.2.7 Properties
19.4.2.8 Network
19.4.2.9 Settings
19.4.2.10 Info
19.4.2.11 I/O
19.4.2.1 Points

See

19.4.2.1.1 Adding a Point
19.4.2.1.2 Importing Points
19.4.2.1.3 Editing Points
19.4.2.1.4 Editing CG Points
19.4.2.1.5 Editing Monuments

19.4.2.1.1 Adding a Point

The Add a Point option adds a user selected point to the ePlan network. Selecting Add a Point options writes the message to the screen message area

<Pick point or (n)ame, (d)escription> [picks][Menu]

and a point is selected and if it is outside the tolerance distance of all existing points in the Network, it is added to the network and given the next available Point id.
19.4.2.1.2 Importing Points

The Import Points option adds a Data Source of user selected points to the ePlan network.

Selecting Import points brings up the Import Points panel.

![Import Points panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source type</strong></td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data selection type - for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Data source</strong></td>
<td>data source for vertices to add to the Network.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Point Information**

- **Import**
  - choice box
  - yes, no
  - if yes, the selected data is processed for adding to the network.
  - If no.
- **State**
  - choice box
  - existing, proposed
  - whether the selected vertices are existing survey points or proposed points.
Pnt Surv choice box

the type of the selected vertices.

Old ID input
the Point Id that the CG point used to have. This can be modified.

Import button
when pressed the selected vertices will be processed. Each vertex is checked in turn and if the vertex is outside the tolerance distance of all the existing point in the Network, it is added to the network and given the next available Point id.
19.4.2.1.3 Editing Points

Selecting **Edit points** brings up the **Edit Points** panel which displays in tabular form all the existing points in the Network.

For each Point it displays the Point ID, Northing, Easting, Status, Name and Description. Clicking on a line in the grid will highlight and autopan to the point for that line on any plan views that has the Network on them.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt ID</td>
<td>display only unique Point id of the point in the Network. This can not be modified.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northing</td>
<td>real box the Northing of the point with the Point id. This can be edited.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Easting</td>
<td>choice box the Easting of the point with the Point id. This can be edited. fixed, free</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>the Status is used is a Least Squares Adjustment (LSA). If <strong>fixed</strong>, the coordinates of the point will be held constant in a LSA. If <strong>free</strong> then the coordinates of the point will be held modified in a LSA.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Name
the name of the point. This can be edited.

Description
the description of the point. This can be edited.

Save button
save the data in the panel to the Network object.
19.4.2.1.4 Editing CG Points

Selecting Edit cgPoints brings up the Edit CgPoints panel which displays in tabular form all the existing CG points in the Network.

For each CG point it displays the Point ID, State, PntSurv, Old ID and Description.

Clicking on a line in the grid will highlight and autopan to the CG point for that line on any plan views that has the Network on them.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt ID</td>
<td>display only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>unique Point ID of the CG point in the Network. This can be not be modified</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>choice box</td>
<td>existing, proposed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>whether the selected CG point are existing survey points or proposed points</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
the type of the selected CG point. This can be modified.

**Old ID**
the Point Id that the CG point used to have. This can be modified.

**Description**
the description of the CG point. This can be edited.

**Save**
save the data in the panel to the Network object.
19.4.2.1.5 Editing Monuments

Selecting **Edit monuments** brings up the **Monuments** panel which displays in tabular form all the existing Monument points in the Network.

For each Monument Point it displays its Point ID, Type, Condition, Old ID, Origin Survey and Description.

Clicking on a line in the grid will highlight and autopan to the Monument point for that line on any plan views that has the Network on them.

<table>
<thead>
<tr>
<th>Point ID</th>
<th>State</th>
<th>Type</th>
<th>Condition</th>
<th>Old ID</th>
<th>Origin survey</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Placed</td>
<td>D-HW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Found</td>
<td>D-W</td>
<td>Destroyed</td>
<td>DP1007593</td>
<td></td>
<td>106722 DESTROYED DURING CONSTRUCTION</td>
</tr>
<tr>
<td>4</td>
<td>Found</td>
<td>PM</td>
<td></td>
<td></td>
<td>DP1007593</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Placed</td>
<td>D-HW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Placed</td>
<td>D-HW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Found</td>
<td>GIP</td>
<td></td>
<td></td>
<td>DP1007593</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Placed</td>
<td>GIN</td>
<td></td>
<td></td>
<td>In Top Fce</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Placed</td>
<td>D-HW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Placed</td>
<td>D-HW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Placed</td>
<td>D-HW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Found</td>
<td>GIP</td>
<td>Destroyed</td>
<td>DP1038570</td>
<td></td>
<td>DESTROYED DURING CONSTRUCTION</td>
</tr>
<tr>
<td>52</td>
<td>Placed</td>
<td>D-HW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Placed</td>
<td>D-HW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Placed</td>
<td>D-HW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Placed</td>
<td>D-HW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Placed</td>
<td>D-HW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Found</td>
<td>D-HW</td>
<td></td>
<td></td>
<td>DP1130230</td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions.

- **Pt ID**: display only
  - *unique Point id of the Monument point in the Network. This can be not be modified.*
State choice box

the State of the selected Monument point. This can be modified.

Type choice box

the Type of the selected Monument point. This can be modified.
Condition

choice box

the Condition of the selected Monument point (which may be left blank). This can be modified.

Old ID

input

the Point Id that the Monument point used to have. This can be modified.

Origin Survey

the Origin Survey for the Monument point. This can be edited.

Description

the description of the Monument point. This can be edited.

Save

button

save the data in the panel to the Network object.
19.4.2.1.6 Editing Reduced Horizontal Positions

Selecting **Edit reduced horizontal positions** brings up the **Reduced Horizontal Positions** panel which displays in tabular form all the CG Points in the Network that have **PntSurv** equal to **Control** (the Control points).

For each Control Point it displays the Datum, Latitude (actually Northing) Longitude (actually Easting), Horizontal fix, Currency Date, Class and Order.

Clicking on a line in the grid will highlight and autopan to the Control Point for that line on any plan views that has the Network on them.

<table>
<thead>
<tr>
<th>Pt ID</th>
<th>Datum</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Horizontal fix</th>
<th>Currency date</th>
<th>Class</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>MGA</td>
<td>6390297.321000</td>
<td>741551.036000</td>
<td>FCGM</td>
<td>2005-12-20</td>
<td>A</td>
<td>00</td>
</tr>
<tr>
<td>70</td>
<td>MGA</td>
<td>6390325.360000</td>
<td>741487.269000</td>
<td>FCGM</td>
<td>2010-11-01</td>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>71</td>
<td>MGA</td>
<td>6390303.204000</td>
<td>741596.055000</td>
<td>SCIM</td>
<td>2010-11-01</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>72</td>
<td>MGA</td>
<td>6390219.576000</td>
<td>741762.667000</td>
<td>SCIM</td>
<td>2010-11-01</td>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>73</td>
<td>MGA</td>
<td>6390193.385000</td>
<td>7347122.983000</td>
<td>SCIM</td>
<td>2010-11-01</td>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>74</td>
<td>MGA</td>
<td>6390186.346000</td>
<td>741619.039000</td>
<td>SCIM</td>
<td>2010-11-01</td>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>75</td>
<td>MGA</td>
<td>6390246.327000</td>
<td>741587.345000</td>
<td>SCIM</td>
<td>2010-11-01</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>76</td>
<td>MGA</td>
<td>6390213.311000</td>
<td>741673.688000</td>
<td>SCIM</td>
<td>2010-11-01</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions.

**Field Description**  **Type**  **Defaults**  **Pop-Up**

**Pt ID**  display only

*unique Point id of the Monument point in the Network. This can be not be modified.*
Datum choice box

the horizontal datum that the coordinates for the Control Point is in.

Latitude
the Northing for the Control Point (in the XML file is is stored in the Latitude field).

Longitude
the Easting for the Control Point (in the XML file is is stored in the Longitude field).

Horizontal fix choice box

the horizontal fix for the Control Point.

Currency date
the date that the Control Point coordinates are current.

Class choice box

the class of the Control Point.

Order choice box

the order of the Control Point.
Save button

save the data in the panel to the Network object.
19.4.2.2 Observations

See

19.4.2.2.1 Adding an Observation
19.4.2.2.2 Importing Observations
19.4.2.2.3 Editing Observations

19.4.2.2.1 Adding an Observation

Type a Start ID to set the observation to add.

![Typed Input](image-url)
19.4.2.2 Importing Observations

Selecting Import observations brings up the Import Observations panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>data selection type - for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>data source for segments to add to the Network as observations.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Point Information**

- **Import** choice box yes, no
  - if yes, the selected data is processed for adding to the network.
  - If no.

- **State** choice box existing, proposed
  - whether the selected observations (segments) are existing survey observations or proposed observations.
Pnt Surv  

choice box

the type of the selected observations.

Old ID  

input

the Observation Id that the observation used to have.

Observation Information

Import  

choice box  yes, no

if yes, the selected data is processed for adding to the network.

If no.

Purpose  

choice box  Boundary, Connection, Road

Bearing type  

choice box

how the bearing was obtained.

Distance type  

choice box

how the distance was obtained.

Adopted bearing survey  

text box

Adopted distance survey  

text box

Distance adoption factor  

measure box
Import button
when pressed the selected segments will be processed. Each segment is checked in turn and if the vertex is outside the tolerance distance of all the existing point in the Network, it is added to the network and given the next available Point id.
19.4.2.2.3 Editing Observations

Selecting **Edit observations** brings up the **Edit Observations** panel.

Selecting **Edit points** brings up the **Edit Points** panel which displays in tabular form all the existing Lines and Arcs in the Network.

Clicking on the **Lines** node brings up the table of information for each observation of a line.

For each Line it displays the **From Point**, **To Point**, **Bearing**, **Distance** for the observation.

And also the **Bearing Type**, **Distance Type** and **Description** where
**Bearing type**  
choice box

*how the bearing was obtained.*

**Distance type**  
choice box

*how the distance was obtained.*

**Desc**  
choice box  
*the description of what the bearing represents.*

**Save**  
button  
*save the data in the panel to the Network object.*

---

*12d ePlan Menu*  
Page 3569
19.4.2.3 Blocks

See

19.4.2.3.1 Create Traverse from Points.
19.4.2.3.2 Create Radiation from Points.

19.4.2.3.1 Create Traverse from Points

Selecting Create traverse from points brings up the New Traverse Properties panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td></td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
19.4.2.3.2 Create Radiation from Points

Selecting Create radiation from points brings up the New Radiation Properties panel.

![New Radiation Properties](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td></td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
19.4.2.4 Boundaries

See

19.4.2.4.1 Importing Boundaries
19.4.2.4.2 Creating a Boundary
19.4.2.4.3 Creating Multiple Boundaries

19.4.2.4.1 Importing Boundaries

Selecting Import boundaries brings up the Import Boundaries panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Point Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Import</td>
<td>choice box</td>
<td>yes, no</td>
<td></td>
</tr>
</tbody>
</table>

*data selection type - for a full description go to 4.19.3 Data Source.*
<table>
<thead>
<tr>
<th><strong>State</strong></th>
<th>choice box</th>
<th>existing, proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Pnt Surv</strong></td>
<td>choice box</td>
<td></td>
</tr>
</tbody>
</table>

| **Old ID** | input | |

**Observation Information**

<table>
<thead>
<tr>
<th><strong>Import</strong></th>
<th>choice box</th>
<th>yes, no</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Purpose</strong></td>
<td>choice box</td>
<td>Boundary, Connection, Road</td>
</tr>
<tr>
<td><strong>Bearing type</strong></td>
<td>choice box</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Distance type</strong></th>
<th>choice box</th>
<th></th>
</tr>
</thead>
</table>

**Adopted bearing survey**	input	
**Adopted distance survey**	input	
**Distance adoption factor**	measure box	
Boundary Information

Import       choice box       yes, no
Class        choice box

Import button

Select Choice
boundary
easement
road
natural
feature
19.4.2.4.2 Creating a Boundary

Selecting Create boundary brings up the New Boundary Properties panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius</td>
<td>measure box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
19.4.2.4.3 Creating Multiple Boundaries

Selecting Create boundaries brings up the New Boundary Properties panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius</td>
<td>measure box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
19.4.2.5 Parcels

See
19.4.2.5.1 Importing Parcels
19.4.2.5.2 Creating a Parcel
19.4.2.5.3 Adding Parcels
19.4.2.5.4 Adding a String
19.4.2.5.5 Split Perpendicular

19.4.2.5.1 Importing Parcels

Selecting **Import parcels** brings up the **Import Parcels** panel.

![Import Parcels Panel](image)

The fields and buttons used in this panel have the following functions.
<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*data selection type - for a full description go to 4.19.3 Data Source.*

### Point Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Import</td>
<td>choice box</td>
<td></td>
<td>yes, no</td>
</tr>
<tr>
<td>State</td>
<td>choice box</td>
<td></td>
<td>existing, proposed</td>
</tr>
<tr>
<td>Pnt Surv</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Old ID

Input

### Observation Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Import</td>
<td>choice box</td>
<td></td>
<td>yes, no</td>
</tr>
</tbody>
</table>
Purpose choice box Boundary, Connection, Road
Bearing type choice box

Distance type choice box

Adopted bearing survey input
Adopted distance survey input
Distance adoption factor measure box

Boundary Information
Import choice box yes, no
Class choice box
### Parcel Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Import</td>
<td>choice box</td>
<td>yes, no</td>
</tr>
<tr>
<td>Plan</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>choice box</td>
<td>adjoining, existing, proposed</td>
</tr>
<tr>
<td>Class</td>
<td>choice box</td>
<td></td>
</tr>
</tbody>
</table>

![Select Choice Window](image)

**Use of parcel** choice box

**Format** choice box

**Import** button
19.4.2.5.2 Creating a Parcel

Selecting Create parcel brings up the New Parcel Properties panel.

![New Parcel Properties Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td>Input/Box Type</td>
<td>Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan</td>
<td>input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>measure box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>choice box</td>
<td>adjoining, existing, proposed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>choice box</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Select Choice](image)

- **Use of parcel**: choice box
- **Format**: choice box
  - Standard, Strata, Stratum
- **Set**: button
19.4.2.5.3 Adding Parcels

Selecting Add parcels brings up the Add CAD Parcels panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source type</strong></td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>data selection type</em></td>
<td>for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>State</strong></td>
<td>choice box</td>
<td>adjoining, existing, proposed</td>
<td></td>
</tr>
</tbody>
</table>
19.4.2.5.4 Adding a String
Select a string to add to the ePlan.

19.4.2.5.5 Split Perpendicular
Select a perpendicular to split.
19.4.2.6 Occupations

See

19.4.2.6.1 Importing Occupations

19.4.2.6.1 Importing Occupations

Selecting Import occupations brings up the Import Occupations panel.

![Import Occupations Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point Information</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Import</td>
<td>choice box</td>
<td>yes, no</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pnt Surv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oid ID</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Point Information

Import choice box yes, no
State
Pnt Surv
Old ID

Boundary Information
Import
Class

Occupation Information
Import

Import
19.4.2.7 Properties

See

19.4.2.7.1 Editing Properties
19.4.2.7.2 Matching Properties

19.4.2.7.1 Editing Properties

Selecting Edit properties brings up the Property Editor panel.

![Property Editor Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Observation
Block
Segment
Parcel
Multi Parcel

Set button
19.4.2.7.2 Matching Properties

Selecting **Match properties** brings up the **Property Match** panel.

![Property Match Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the Observation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parcel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi Parcel</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Set button
19.4.2.8 Network

See

19.4.2.8.1 Network Tree

19.4.2.8.1 Network Tree

Selecting Network tree brings up the Network Tree panel.

![Network Tree Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*the*
Observations
Blocks
Segments
Parcels
Multi Parcels

Set button

19.4.2.9 Settings

See
19.4.2.9.1 Display Settings
19.4.2.9.2 Survey Header Settings

19.4.2.9.1 Display Settings

Selecting Display brings up the Display Settings panel.
### Display Settings

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Network Style</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Style</td>
<td>choice box</td>
<td>NSW Standard, default</td>
<td></td>
</tr>
<tr>
<td><strong>Display Geometry Settings</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Points</td>
<td>choice box</td>
<td>yes, no</td>
<td></td>
</tr>
<tr>
<td>Segments</td>
<td>choice box</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>choice box</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Blocks</td>
<td>choice box</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Parcels</td>
<td>choice box</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Occupations</td>
<td>choice box</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td><strong>View Settings</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic pan</td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td><strong>Display Label Settings</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point IDs</td>
<td>choice box</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Point descriptions</td>
<td>choice box</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Bearings</td>
<td>choice box</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Distances</td>
<td>choice box</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Short segments</td>
<td>choice box</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Parcel names</td>
<td>choice box</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Parcel areas</td>
<td>choice box</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Plan references</td>
<td>choice box</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td>choice box</td>
<td>yes</td>
<td></td>
</tr>
</tbody>
</table>

### Network Style

- **Style**
  - Type: choice box
  - Defaults: NSW Standard, default

### Display Geometry Settings

- **Points**
  - Type: choice box
  - Pop-Up: yes, no
<table>
<thead>
<tr>
<th>Feature</th>
<th>Choice Box</th>
<th>Yes/No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segments</td>
<td>choice box</td>
<td>yes, no</td>
</tr>
<tr>
<td>Observations</td>
<td>choice box</td>
<td>yes, no</td>
</tr>
<tr>
<td>Blocks</td>
<td>choice box</td>
<td>yes, no</td>
</tr>
<tr>
<td>Parcels</td>
<td>choice box</td>
<td>yes, no</td>
</tr>
<tr>
<td>Occupations</td>
<td>choice box</td>
<td>yes, no</td>
</tr>
<tr>
<td>View Settings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic pan</td>
<td>choice box</td>
<td>yes, no</td>
</tr>
<tr>
<td>Display Label Settings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point IDs</td>
<td>choice box</td>
<td>yes, no</td>
</tr>
<tr>
<td>Point descriptions</td>
<td>choice box</td>
<td>yes, no</td>
</tr>
<tr>
<td>Bearings</td>
<td>choice box</td>
<td>yes, no</td>
</tr>
<tr>
<td>Distances</td>
<td>choice box</td>
<td>yes, no</td>
</tr>
<tr>
<td>Short segments</td>
<td>choice box</td>
<td>yes, no</td>
</tr>
<tr>
<td>Parcel names</td>
<td>choice box</td>
<td>yes, no</td>
</tr>
<tr>
<td>Parcel areas</td>
<td>choice box</td>
<td>yes, no</td>
</tr>
<tr>
<td>Plan references</td>
<td>choice box</td>
<td>yes, no</td>
</tr>
<tr>
<td>Notes</td>
<td>choice box</td>
<td>yes, no</td>
</tr>
</tbody>
</table>
19.4.2.9.2 Survey Header Settings

Selecting Survey header brings up the Survey Header panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>General node</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zone number</td>
<td>number box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surveyor firm</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surveyor reference</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey format</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td></td>
<td>compiled, computed, surveyed</td>
</tr>
</tbody>
</table>
Annotation node
   Type

   Name
   Description
   Parcel references

Purpose of survey node
   Subdivision

Administrative date node
   Type
   Date

Personnel node
   Name
   Role
   Registration type
   Registration number

Field note node
   Note

Administrative area node
   Type
   Name
   Code
   Parcel references

Save button
19.4.2.10 Info

See

19.4.2.10.1 Survey Network Info

19.4.2.10.1 Survey Network Info

Selecting Info brings up the Survey Network Info panel.

![Survey Network Info Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>the</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Observation
Block
Segment
Parcel
Multi Parcel
19.4.2.11 I/O

See

19.4.2.11.1 Validate Network
19.4.2.11.2 Export XML

19.4.2.11.1 Validate Network

Selecting Validate brings up the Validate Network panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validate button</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
19.4.2.11.2 Export XML

Selecting Export XML brings up the Write XML File panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>XML file</td>
<td>file box</td>
<td>available .xml files</td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*the name of the ePlan XML file*

*writes the XML file.*
20 Design

Position of menu: Design
The Design walk-right menu is

For a description of the definition of a template in 12d Model, please go to the section 20.1 Templates in 12d Model.

For the option:
Templates, go to 20.2 Templates
Apply 20.3 Apply Functions
MTF 20.4 MTF
Boxing 20.5 Boxing
Drainage-Sewer 22 Drainage and Sewer
Pipeline 22 Pipeline
Volumes 23 Volumes
Estate lots 20.6 Estate Lots
Pads 20.7 Pads
Rivers 21 Rivers
Roads 20.8 Roads
Sight lines 20.10 Sight Lines
Track 20.11 Track
Tunnel-Structures 20.12 Tunnels and Structures
<table>
<thead>
<tr>
<th>Section</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overlay</td>
<td>20.13 Overlay</td>
</tr>
<tr>
<td>X-Sections</td>
<td>20.14 X-Sections</td>
</tr>
<tr>
<td>Check/clash</td>
<td>28.9.9.1 Clash Detection</td>
</tr>
<tr>
<td>More</td>
<td>20.16 More Design</td>
</tr>
<tr>
<td>Ortho</td>
<td>20.17 Ortho 12d</td>
</tr>
</tbody>
</table>
20.1 Templates in 12d Model

In 12d Model, Templates provide a quick and easy method for defining design details along a string for use in conceptual designs and simple detailed designs, and visualisations.

For more complex urban design, intersections and roundabouts, Templates are impractical and not an efficient solution. For these cases 12d Model introduced the MTF modifiers to provide much finer control and provide all the power of string design without losing the ease of Template design in simpler cases.

Continue to the next section 20.1.1 Simple Templates.

20.1.1 Simple Templates

But in both the simple Template case, and the more powerful MTF Modifiers case, the standard civil technique to be able to examining what is happening in a 2D diagram is to look at cross sections.

Cross sections are 2D diagrams that display what a section cuts through.

The section is traditionally taken at right angles to a selected Reference string (usually an alignment string representing the centreline of a road) and the coordinates of a point in the cross section are (Offset, Height) where Offset is the plan distance along the section of a point in the section from a selected Hinge Point, and Height is the height of the point.

A 12d Model Template consists of a left hand side followed by a right hand side.

Each side is made up of a number of links with names and colours, and each link is defined by any two of the three

(a) width of the link
(b) change in z-value from the beginning of the link to the end of the link. that is, the z-value at the end of the link minus the z-value at the start of the link. This is referred to as the height of the link.
(c) xfall

and the links are connected sequentially to form a cross section.

Notice that the height is only a relative height and not a z-value.

On the left hand side, the links go from right to left. The vertex (point) at the end of the link is given the same name as the link. The far right of the left hand side is the Hinge Point. So on the left hand side, positive widths go to the left.

On the right hand side, the links go from left to right. The vertex (point) at the end of the link is given the same name as the link.
given the same name as the link. The far left of the right hand size is also the Hinge Point. So on the right hand side, positive widths go to the right.

So this definition of the Template is given in terms of **links** and each **link** is defined **relative** to the **previous link** and the left and right hand sides are positioned around a **Hinge Point**.

The **point** at the end of the link is given the **name** of the **link** and is called a **Link Point** or **Template Point**.

Hence on the left hand side of the Hinge Point, the Link Point is at the left hand end of the link. And on the right hand side of the Hinge Point, the Link point is at the right hand end of the link.

For example, a Template consisting of three links called lkerb, lshoulder and lverge on the left hand side, and three links called rkerb, rshoulder, rverge on the right hand side could look like:

![Cross Section View of a Template](image)

Continue to the next section **20.1.1.1 Design X Sections**.

**20.1.1.1 Design X Sections**

A Template is used to generate a cross section at a particular chainage on the Reference string and Hinge string by finding the point where at that chainage the section perpendicular to the **Reference string** **cuts the Hinge string** and the cut point is use as the **Hinge Point** for the Template at that chainage.

So for a simple Template with just the left kerb link on the left hand side and the right kerb link on the right hand side, applying the Template at a chainage **ch** will produce:

![Plan View of Applying the Template at Chainage ch](image)

This is termed "**applying**" the Template at the chainage **ch**. The created points in the cross section are given the same name as the Link points and joined together in the section in the same order as in the Template.
Applying the Template to the Reference and Hinge strings means that when the Template is applied at specified chainages down the Reference string.

The sections created by applying a Template are called design cross sections, or just design sections or design x sections.

In 12d Model, the design sections are stored as 4d super strings where the (x,y,z) vertices are the coordinates generated applying the Template with the vertex text being the name of the Link point.

Continue to the next section 20.1.1.2 Design Strings.

### 20.1.1.2 Design Strings

For a Link Point, for each chainage that the Template is applied there will be a point of the same name on the x section at that chainage.

These common points are joined together in chainage order (i.e. longitudinally) to form a string called the design string. The design string is given the name of the Link point that the string was created from (and hence the same name as the link). The default colour of the string is the link colour.

Polygons can also be created for each link by joining the strings created at either end of the link. The polygon is given the link colour.

So for the simple two link Template with two Template Links left kerb and right kerb:

will generate two strings left kerb and right kerb.
And for the case of the more complex six link Template

Continue to the next section 20.1.2 12d Model Templates.
20.1.2 12d Model Templates

12d Model supports Templates with

(a) an unlimited number of links that are always created (fixed links) followed by
(b) a decisions table that has special rules to decide when certain links are created
(c) an unlimited number of variable cut links and fill links
(d) a final cut/fill slope to be applied at the end of the last cut or fill template link.

Fixed Template Links

The fixed template links are applied to the selected Hinge string and are always used when applying the template regardless of whether the template points are in cut or fill. Each link is defined by two of the three variables, width, height and crossfall, and has a name and colour.

At the end of the fixed links, 12d Model checks to see if a Decisions table exists.

If a Decisions table exists, then it is used and the Decision commands processed.

If a Continue Cut/Fill command is reached in the decision command processing, then this stops the Decision command processing, and the processing moves onto the Cut, Fill and Final Cut/Fill tables.

If no Continue Cut/Fill command is reached in the decisions, then the processing stops after the decision commands are exhausted and the Cut, Fill and Final Cut/Fill tables ARE NOT USED.

If no Decisions table exists, then the Cut, Fill and Final Cut/Fill tables are used after the Fixed table.

Template Decisions

The decisions table is used for

- complicated cut and fill requirements including multiple strata, decisions based on depth below one or more strata or strings, multi-level decisions (i.e. depth decisions followed by fixed links, more depth decision etc.); and
- extended battering including repetitive battering, fixed width batters, and battering relative to a string or strata.

The decisions table is documented in the section 21.8 Full Definition of Template Decisions.

Cut and Fill Template Links and Final Cut/Fill

At the end of the fixed links, if there is no Decisions table, or if a Continue Cut Fill command is reached in the Decisions, the Cut and Fill tables are used.
(a) If the end of the last link of the fixed template/last decision is in cut, then the Cut links are used.
   There can be an unlimited number of cut links and they are used sequentially starting with the first link.

(b) If the end of the fixed template/last decision is in fill, the fill links are used.
   There can be an unlimited number of cut and fill links and they are used sequentially starting with the first link.

If the surface tin is intersected when using either the cut links or the fill links, the section is terminated at that intersection point. Otherwise, the entire link is included in the section, and next cut or fill link is then used. This is repeated until the surface is intersected or all the links in the cut or fill table have been used.

If there is still no intersection with the surface after using all of the cut or fill links, then the Final Cut/Fill table is used to try and intersect with the tin.

Note: The unlimited cut/fill links are called variable template links because at each cross section, a different number of them may be needed. Hence the number of links used varies from cross section to cross section depending on the tin above it.

**Final Cut/Fill**

If the tin has not been intersected at the end of using the Fixed links, Decisions, and Cut and Fill links, the Final Cut and Fill Slopes are used.

How to create a Template with a fixed link table, a cut and fill tables and the final cut/fill links is discussed further in the option [20.2.2 Create/Edit Templates](#). The definition of the Decision Table is given in the section [21.8 Full Definition of Template Decisions](#).

For discussion of the Template menu, continue to the next section [20.2 Templates](#) or return to [20.1 Templates in 12d Model](#).

**Note**

Around any curves, the Reference string is approximated by chords spaced at the string's chainage interval or, if it is different, the section separation interval, or extra points as determined by the horizontal and vertical chord-arc tolerances.

If the chord-to-arc distance is greater than the chord/arc tolerance given in the Apply options panels, then extra points are inserted around the curve so that the chord/arc tolerance is met.
20.2 Templates

**Position of menu:** Design => Templates

The templates walk-right menu has options to create and edit templates, copy, rename and other template utilities.

For a description of templates in 12d Model, see section 20.1 Templates in 12d Model.

The templates walk-right menu is

For the option:
- **Templates**, go to [20.2.1 Templates](#)
- **Template manager** 7.6.12.5 [Template Manager](#)
- **Create/edit** [20.2.2 Create/Edit Templates](#)
- **Copy** [20.2.3 Copy Template](#)
- **Rename** [20.2.4 Rename Template](#)
- **Utilities** [20.2.5 Template Utilities](#)
- **Delete** [20.2.6 Delete Templates](#)
20.2.1 Templates

Position of option on menu:  Design =>Templates =>Templates

The templates walk-right menu provides options to list all the templates added to the project templates) and all the templates in the project area but not in the project (removed templates).

The Templates walk-right menu is

For the options, see
Project templates 20.2.1.1 Project Templates
Removed templates 20.2.1.2 Removed Templates

20.2.1.1 Project Templates

The Project templates walk-right menu provides a list of all the templates in the project.

20.2.1.2 Removed Templates

The Removed templates walk-right menu provides a list of all the templates in the project area that have been removed from the project (using the removed from project option).

Go to the next section 20.2.2 Create/Edit Templates or return to 20.2 Templates.
20.2.2 Create/Edit Templates

Position of option on menu: Design => Templates => Create/edit

12d Model supports templates with an unlimited number of fixed links, followed by either

(a) a decisions table
and/or
(b) an unlimited number of cut and fill links and a final cut/fill slope to be applied at the end of the last template link.

To collect the different types of link information needed in the template, the Template Create/Edit panel was designed with five buttons fixed, decisions, cut, fill and final cut/fill used to bring up and display the panels for creating and editing the fixed, decisions, cut, fill and final cut/fill tables.

For a generate description of Templates in 12d Model, see 20.1 Templates in 12d Model.

Selecting Create/edit displays the Template Create/Edit panel.

The description of the fields and buttons used in the Template Create/Edit panel now follows.

The associated panels created by the buttons fixed, cut, fill, final cut/fill will be described in the next four sections and the Decisions panel will be described in the section 21.8 Full Definition of Template Decisions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template name</td>
<td>input</td>
<td>available templates</td>
<td>name of the template being created/edited. If the template already exists, then the associated panels will already contain the information for that template. The buttons fixed, decisions, cut, fill and final cut/fill can only be selected after the template name is given.</td>
</tr>
<tr>
<td>Fixed</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decisions</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cut or Fill</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Cut/Fill</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note - the buttons can only be selected after the template name has been given in the Template name panel field.
**How to Use the Panel**

(a) A new template is created, or an existing template modified, by first entering the template name into the template field (typed or picked from the pop-up).

(b) To define or edit the fixed sections of the template, select the **Fixed** button and the **Fixed Template** panel will appear.

(c) use the **Decisions** button to define or edit the decisions table

(d) use the **Cut**, **Fill** and **Final Cut/Fill** button to define or edit the variable cut, fill or final cut/fill sections of the template respectively.

The four panels controlled by the buttons **Fixed**, **Cut**, **Fill** and **Final Cut/Fill** from the Template Create/Edit panel will now be described in detail. The **Decisions** button is described in the section **21.8 Full Definition of Template Decisions**.

Go to the next section **20.2.2.1 Fixed Template**.
20.2.2.1 Fixed Template

If the template already exists, the current fixed template links will be displayed in the panel. If the template is new, the panel will be empty.

The Fixed Template panel is

![Fixed Template Panel Image]

An unlimited number of fixed links can be defined in the grid on the panel. For more information on creating and editing data in a grid, see 4.19.6 Grids in Panels.

For each link, any two of the three values of width, height and percent crossfall (xfall) can be used to defined the link. The colour and name are also defined for the link.

The name of the link is also given to point at the end of the link and also to the string created by the end of the link. The link colour is used as the string colour and when an Apply Template or Apply MTF is used, the colour of the polygon created by joining the two ends of the link. See 20.1 Templates in 12d Model.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>width of the link being defined</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the vertical distance between the end point and the start point of the link being defined.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For a fixed link, height is positive in the up direction. Hence for a fixed link, height is positive up and</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
negative down.

NOTE - if height and cross-fall are being used to go down, then define height to be negative and xfall to be negative.

X-fall % input
percent cross fall of the link being defined - units are percent grade. For xfall, positive is up and negative down.

NOTE - if height and xfall are being used to go down, then define height to be negative and xfall to be negative.

Colour colour box available colours
colour of the link being defined. If no colour is supplied, the default colour is used.

Name input
name of the link being defined - this is used as the name of the string created by the end point of the link.

OK/Apply button
OK stores the values in the fields and exits the panel. Apply stores the values but doesn’t exit the panel.

Warning - If the OK or Apply button is not selected, then no new information will be recorded.

Draw button
draws the fixed template at the bottom of the panel. Automatically does a fit.

NOTE - if height and xfall are being used to go down, then define height to be negative and xfall to be negative.

Go to the next section 20.2.2.2 Decisions Template or return to 20.2.2 Create/Edit Templates.
20.2.2.2 Decisions Template

If the template already exists, the current Decisions Template links will be displayed in the panel. If the template is new, the panel will be empty.

The Decisions Template panel is

The Decisions Template panel is documented in the section 21.8 Full Definition of Template Decisions.

Go to the next section 20.2.2.3 Variable Cut or Fill Template or return to 20.2.2 Create/Edit Templates.
20.2.2.3 Variable Cut or Fill Template

The definition of the cut or fill template links are similar to the fixed template links except the slope is given as a “one vertical in a user given horizontal value” rather than a percent crossfall. If the template already exists, the current cut (fill) template links will be displayed in the panel. If the template is new, the panel will be empty.

The Variable Cut Template panel and the Variable Fill Template panel are similar and look like

An unlimited number of links can be defined in the variable grid. For more information on creating and editing data in a grid, see 4.19.6 Grids in Panels.

For each link, any two of the three values of width, height and slope can be used to define the link. The colour and name are also defined for the link.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For cut link, height is positive in the up direction. That is, for a cut link, height is positive up and negative down.

For fill link, height is positive in the down direction. That is, for a fill link, height is positive down and negative up.

This definition for fill links of down being positive for heights may seem strange but it is to fit in with the definition of slope for fill links where a positive slope is down. This was done so that most of the entries in the Slope table did not need a negative sign in front of them.
Slope 1: input
slope of the cut link being defined. The units are “one vertical in the given horizontal value”.

Special note: the value 0 is used to designate a horizontal slope since a vertical slope is not allowed.

In the Variable Cut Template, for cut slopes, positive is up and negative down
In the Variable Fill Template, for fill slopes, positive is down and negative is up.

Important note:
This definition of slope for fill links of down being positive may seem strange but it was done so that most of the entries in the Slope table did not need a negative sign in front of them.

NOTE - in cut: if height and slope are being used to go down, then define height to be negative and slope to be negative.

In fill: if height and slope are being used to go up, then define height to be negative and slope to be negative.

Colour colour box available colours
colour of the link being defined. If no colour is supplied, the default colour is used.

Name input
name of the link being defined - this is used as the name of the string created by the end point of the link.

OK/Apply button
OK stores the values in the fields and exits the panel. Apply stores the values but doesn’t exit the panel.

Warning - If the OK or Apply button is not selected, then no new information will be recorded.

NOTE - in cut: if height and slope are being used to go down, then define height to be negative and slope to be negative.

In fill: if height and slope are being used to go up, then define height to be negative and slope to be negative.

Go to the next section 20.2.2.4 Final Cut/Fill Template or return to 20.2.2 Create/Edit Templates.
20.2.2.4 Final Cut/Fill Template

The Final Cut/Fill Template is used if the links in either the cut or fill templates are exhausted without an intersection with the tin being found.

If the Template already exists, the current final cut/fill values will be displayed in the panel. If the Template is new, the default values are displayed.

The Final Cut/Fill Template panel is

![Final Cut/Fill Template Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final cut slope 1 v in</td>
<td>input</td>
<td>0</td>
<td>no slope, 0,1,2,3,4,5,10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>the cut slope is used if the end of the last link in the template is in cut. That is, it is below the tin.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This value is the Cut slope for the interface calculation to be done at the end of the last link of the template. A cut slope of one vertical to the given value of horizontal units is used. The value 0 is used to designate a horizontal slope - vertical slopes are not allowed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For final cut slope, positive is up and negative down</td>
</tr>
<tr>
<td>Final fill slope 1 v in</td>
<td>input</td>
<td>0</td>
<td>no slope, 0,1,2,3,4,5,10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>the fill slope is used if the end of the last link in the template is in fill. That is, it is above the tin.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This value is the Fill slope for the interface calculation to be done at the end of the last link of the template. A fill slope of one vertical to the given value of horizontal units is used. The value 0 is used to designate a horizontal slope - vertical slopes are not allowed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For final fill slope, positive is down and negative is up.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This definition of fill slope being positive when going down is used so that the value in the Final fill slope 1 v in field is normally positive.</td>
</tr>
<tr>
<td>Maximum slope width</td>
<td>input</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>the maximum width for the final slope.</td>
</tr>
<tr>
<td>Final name</td>
<td>input</td>
<td>int</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>name for the string created by this link (normally this string lies on the tin - the interface string).</td>
</tr>
<tr>
<td>OK/Apply</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OK stores the values in the fields and exits the panel. Apply stores the values but doesn’t exit the panel.</td>
</tr>
</tbody>
</table>

Warning - If the OK or Apply button is not selected, then no new information will be recorded.

Go to the next section 20.2.3 Copy Template or return to 20.2.2 Create/Edit Templates or 20.2 Templates.
20.2.3 Copy Template

Position of option on menu: Design => Templates => Copy

A copy of an existing template can be made using the Copy option. This is often useful when a new template that is similar to an existing template is needed. The existing template can be copied and the copy then edited and modified.

On selecting the Copy option, the Copy Template panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old template</td>
<td>template box</td>
<td>available templates</td>
<td></td>
</tr>
<tr>
<td>New template</td>
<td>template box</td>
<td>available templates</td>
<td></td>
</tr>
<tr>
<td>Copy</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After selecting this button, the template given in the Old template field will be copied and the copy given the name in the New template field.

Go to the next section 20.2.4 Rename Template or return to 20.2 Templates.
20.2.4 Rename Template

Position of option on menu: Design => Templates => Rename

On selecting the Rename option, the Template Rename panel is displayed. This panel can be used to change the names of existing templates.

![Template Rename panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old template</td>
<td>name of the template to be renamed.</td>
<td>template box</td>
<td>available templates</td>
<td></td>
</tr>
<tr>
<td>New template</td>
<td>new name for the template</td>
<td>template box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rename</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Change the name of the template in the **old template** field to the name given in the **new template** field.

Go to the next section 20.2.5 Template Utilities or return to 20.2 Templates.
20.2.5 Template Utilities

Position of menu: Design =>Templates =>Utilities

The Utilities menu contains miscellaneous options involving templates.

The Utilities walk-right menu is

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>add templates to project</td>
</tr>
<tr>
<td>Input</td>
<td>read in template file</td>
</tr>
<tr>
<td>Output</td>
<td>write out templates</td>
</tr>
<tr>
<td>Remove</td>
<td>remove templates from project</td>
</tr>
<tr>
<td>Save</td>
<td>save templates to disk</td>
</tr>
</tbody>
</table>

Each option will now be described.

For the options see
- Add: 20.2.5.1 Add Templates
- Input: 20.2.5.2 Input Templates
- Output: 20.2.5.3 Output Templates
- Remove: 20.2.5.4 Remove Templates
- Save: 20.2.5.5 Save Templates

20.2.5.1 Add Templates

Position of menu: Design =>Templates =>Utilities =>Add

Removed templates can be added back into the project using the options in the Add walk-right menu. The Template Adds walk-right menu is

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add to project</td>
<td>add a Template to a project</td>
</tr>
<tr>
<td>Add all to project</td>
<td>add All Templates to a Project</td>
</tr>
</tbody>
</table>

For the option Add to project, go to 20.2.5.1.1 Add a Template to a project

Add all to project 20.2.5.1.2 Add All Templates to a Project

Go to the next section 20.2.5.1 Add Templates, or return to 20.2.5 Template Utilities or 20.2 Templates.
20.2.5.1.1 Add a Template to a project

Position of option on menu: Design => Templates => Utilities => Add => Add to project

Templates in the working project area but not yet in the project can be added to the project using this option.

On selecting the Add to project option, the Add Template to the Project panel is displayed.

![Add Template to the Project panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removed template</td>
<td>removed templates box</td>
<td>removed templates</td>
<td></td>
</tr>
<tr>
<td>name of the template to be added to the project.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>add the template given in the template field to the working project.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go to the next section 20.2.5.1.2 Add All Templates to a Project, or return to 20.2.5.1 Add Templates or 20.2.5 Template Utilities.

20.2.5.1.2 Add All Templates to a Project

Position of option on menu: Design => Templates => Utilities => Add => Add all to project

The Add all to project option is used to add all the removed templates back into the project.

On selecting the Add all to project option, the Add All Templates To Project panel is displayed.

![Add All Templates To Project panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>after selecting this button, all removed templates in the working project will be added to the project.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Return to 20.2.5.1 Add Templates or 20.2.5 Template Utilities.
20.2.5.2 Input Templates
This input option is used to read in templates from files in this special 12d Model format.
The option has already been described under File I/O=>Templates input (see 8.11.1 Templates Input).
Go to the next section 20.2.5.3 Output Templates, or return to 20.2.5 Template Utilities.

20.2.5.3 Output Templates
The output option writes out one or all templates in the 12d Model template format.
The option has already been described under File I/O=>Templates output (see 8.11.2 Templates Output).
Go to the next section 20.2.5.4 Remove Templates, or return to 20.2.5 Template Utilities.
20.2.5.4 Remove Templates

Position of menu: Design => Templates => Utilities => Remove

Templates can be removed from the project using the options in the remove walk-right menu. Removed templates are not deleted but remain in the project area and are no longer accessible in the project.

The Template Removes walk-right menu is

For the options see
- Remove from project: 20.2.5.4.1 Remove Template from Project
- Remove all from project: 20.2.5.4.2 Remove All Templates From Project

20.2.5.4.1 Remove Template from Project

Position of option on menu: Design => Templates => Utilities => Remove => Remove from project

Individual templates can be removed from the project using the Remove from project option and on selecting the option, the Remove Template From Project panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template</td>
<td>template box</td>
<td>available templates</td>
<td></td>
</tr>
<tr>
<td>Remove</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

name of the template to be removed from the working project.

after selecting this button, the template given in the template field will be removed from the working project.

Go to the next section 20.2.5.4.2 Remove All Templates From Project, or return to 20.2.5.4 Remove Templates or 20.2.5 Template Utilities.
20.2.5.4.2 Remove All Templates From Project

Position of option on menu: Design => Templates => Utilities => Remove => Remove all from project

All templates can be removed from the project using the Remove all option and on selecting the option, the Remove All Templates From Project panel is displayed.

![Remove All Templates From Project panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*after selecting this button, all templates in the working project will be removed.*

Return to [20.2.5.4 Remove Templates](#) or [20.2.5 Template Utilities](#).
20.2.5.5 Save Templates

Position of menu:  Design => Templates => Utilities => Save

Templates can be saved on disk. This is done automatically by the Save option on the 12d Model but this option allows just the templates to be saved.

The Template saves walk-right menu is

For the options see
- Save a template 20.2.5.5.1 Save a Template
- Save all templates 20.2.5.5.2 Save All Templates

20.2.5.5.1 Save a Template

Position of option on menu:  Design => Templates => Utilities => Save => Save a template

On selecting the Save a template option, the Save Template panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template</td>
<td>template box</td>
<td>available templates</td>
<td></td>
</tr>
</tbody>
</table>

- name of the template to be saved.

Save button
- after selecting this button, the template given in the template field will be saved to disk.

Go to the next section 20.2.5.5.2 Save All Templates, or return to 20.2.5.5 Save Templates or 20.2.5 Template Utilities.
20.2.5.5.2 Save All Templates

**Position of option on menu:** Design => Templates => Utilities => Save => Save all templates

On selecting the Save all templates option, the Save All Templates panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Save</strong> button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After selecting this button, all templates in the working project will be saved to disk. Unless an error occurs, the panel will be removed after the saving is completed.

Return to 20.2.5.5 Save Templates or 20.2.5 Template Utilities.
20.2.6 Delete Templates

Position of menu: Design => Templates => Delete

Using the Delete option, templates can be deleted from the project and moved to the Trash Bin, or permanently deleted from the computer disk so that they can no longer be accessed or take up disk space.

To help protect the user against disasters, when a template is selected for deletion, a Yes-No pop-up menu is used to confirm that the user did intend deleting the template.

The Template Deletes walk-right menu is

For the options see

Delete a template 20.2.6.1 Delete a Template
Delete all templates 20.2.6.2 Delete All Templates

20.2.6.1 Delete a Template

Position of option on menu: Design => Templates => Delete => Delete a template

The delete a template option is used to delete individual template from the project.

On selecting the Delete a template option, the Delete Template panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template</td>
<td>template box</td>
<td>project templates</td>
<td></td>
</tr>
<tr>
<td>name of the template to be deleted.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permanently delete?</td>
<td>tick box</td>
<td>if ticked, the deleted template will not go to the trash bin but will be permanently deleted from disk</td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td>button</td>
<td>after selecting this button, the template given in the template field will be deleted. A Yes-No pop-up is used to confirm that deletion is required.</td>
<td></td>
</tr>
</tbody>
</table>

Go to the next section 20.2.6.2 Delete All Templates, or return to 20.2.5.5 Save Templates or 20.2.5 Template Utilities.

20.2.6.2 Delete All Templates
Position of option on menu: Design => Templates => Delete => Delete all templates

The Delete all option will delete all templates in the working project. It does not delete templates that are in the working project area but not yet added to the project.

On selecting the Delete all option, the Delete All Templates panel is displayed.

![Delete All Templates Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permanently delete</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After selecting this button, a Yes-No pop-up is used to confirm that deletion is required. If it is, all templates in the project will be deleted from disk. Unless an error occurs, the panel will be removed.

If ticked, the deleted templates will not go to the trash bin but will be permanently deleted from disk.

Return to 20.2.5.5 Save Templates or 20.2.5 Template Utilities.
20.3 Apply Functions

**Position of menu:** Design => Apply

The **Apply** options are for producing design strings using **Templates** and **Modifiers** to create strings along a Reference or Reference and Hinge string - “Applying the Modifiers to a string”.

This method is used to quickly produce roads, canals, trenches, site batters etc.

When applying the modifiers and templates, design x-sections and strings are automatically produced, plus the cut and fill volumes for the design.

Creating a design in this way is the first job of the **Apply** options.

However, after applying modifiers and templates and examining the results, it is normally necessary to make changes to the Reference or Hinge strings, the modifiers and templates, or even the tin used for interfacing.

In all cases, the strings, sections and volumes created during the **Apply** are no longer valid and need to be replaced by new information.

Although this can be accomplished by deleting the incorrect models and replacing them with new ones by re-applying the template, this is time consuming if repeated over and over again.

Hence in **12d Model**, the concept of an **Apply function** and **Recalc** was introduced.

Basically, an **Apply Function** keeps track of all the information involved in applying Modifiers and Templates, and all the strings and models created during the **Apply Template/Apply MTF**.

If either the reference or Hinge strings, the Modifiers or Templates or the Tin are changed, the Apply Functions can be re-run and all the old information automatically deleted and replaced by the updated information.

**NOTES ABOUT THE STRING CHOSEN TO APPLY MODIFIERS AND TEMPLATES TO**

1. The **Apply** options create sections and strings using a **Reference** string to define the chainage and what is meant by perpendicular at each chainage, and a **Hinge** string from where the modifiers and templates links are defined. That is, the Hinge string defines the zero offset. The Modifiers and Templates define a point name and colour for each template link.

   Cross sections can be created with point names corresponding to the template links, and strings formed by joining the same named points from consecutive cross sections.

2. If vertical geometry does not exist for the entire length of the string that the templates are being applied to (either the Hinge string, or if there is no Hinge string then the Reference string), then the modifiers and templates are only applied to the section of the string where vertical geometry exists.

3. If the horizontal or vertical geometry has overlapping tangent points at any section of the string, then the option terminates without any calculations being made.

4. Any curves will be approximated by chords spaced at chainage interval given by the **section separation** value. If the chord-to-arc distance for the chords is greater than the chord/arc tolerance given in the **Apply template/Apply MTF** panel, then extra points are inserted around the curve so that the chord/arc tolerance is met.
The **Apply** walk-right menu is

![Design Functions Menu]

Each option in this menu will now be described.

For the options:

- **Apply template**: [20.3.1 Apply Template Function](#)
- **Apply MTF**: [20.3.2 Apply MTF Function](#)
- **Apply MTF manager**: [20.3.3 Apply MTF Manager - Create/Update](#)
- **Kerb return**: [20.3.5 Kerb Return Function](#)
- **String modifiers**: [20.3.6 String Modifiers Function](#)
- **Interface**: [20.3.7 Interface Function](#)
- **Alignment/Super alignment table**: [24.16.14 Alignment & Super Alignment Table](#)  
  [24 Drafting](#)
- **Amend VG**: [20.3.8 Amend VG](#)
- **Defaults**: [20.3.1 Apply Template Function](#)
20.3.1 Apply Template Function

Position of option on menu:   Design \(\Rightarrow\) Apply \(\Rightarrow\) Apply

Selecting Apply displays the Apply Template Function panel. This panel is used to collect the information for applying a new Apply function, or to change the information for an existing Apply function.

![Apply Template Function Panel]

The fields and buttons used in this panel have the following functions.

Field Description	Type	Defaults	Pop-Up
Function name | | | 
Tin | | | 
Left template | | | 
Right template | | | 
LHS prefix | | | 
RHS prefix | | | 
Reference | | | 
Hinge | | | 
Start chainage | | | 
End chainage | | | 
Section separation | | | 
Report file | | | 

**Buttons at bottom**

- **Views button**
  perspective views can be defined with respect to chainages on the string. This option is described in more detail in the section 20.3.1.1 Views

- **Apply button**
  apply the template information to the selected reference and hinge strings, between the start and end chainages.
  The cut, fill and balance volumes are also calculated and written to the message area.
For the information on each **Apply Template Function** tab, go to

- **Apply Main tab**
- **Apply Models tab**
- **Apply Misc tab**
- **Apply Tin tab**
- **Apply Filter tab**
- **Apply Plot tab**

### Apply Main tab

**Function name**

function box available template functions

name of the function to define the *apply* for. If the function already exists and is picked from a pop-up or an `<enter>` is given at the end of the name, the information from the existing function will be placed in the appropriate panel fields.

**Tin**

tin box available tins
if non-blank, the name of the tin to calculate the cut/fill interfaces against at the end of the fixed part of the templates given in the left and right template fields.
If blank, then only the fixed part of the templates are used unless a tin is specified in the decisions section of the templates.

Left/right template template box available templates
name of the template to be applied to the left/right of the string. If a template is used on the left/right, the template definitions go from the hinge string out to the left/right.

LHS/RHS prefix input
prefix/postfix (pre*post) to be applied to the left/right template string names. If pretext only, just give the text. If post text is required, precede it by a *.

Reference string-select
the selected string is used to defined the meaning of chainage and bearing for each point in the apply. Sections are defined at right angles to the reference string at the appropriate chainage points on the reference string.

Hinge string-select
the reference string defines chainage and bearing but the templates are actually applied to the hinge string. For a given chainage, a line is taken at right angles to the point of that chainage on the reference string and extended until it cuts the hinge string. The templates are applied at that point on the hinge string along the direction of the line.
If no hinge string is selected, the reference string is also the hinge string.

Start/End chainage input
the reference string start/end chainage for applying the template. If blank, the start/end chainage of the reference string is used.

Section separation input 10.0
sections are created at right angles to points on the reference string that are the section separation chainage distance apart.

Report file file box *.rpt
if not blank, the name of the file to contain the volume report for the template calculations. If the file already exists, the report will be appended to the file.
If blank, no report is produced.
Apply Models tab

![Apply Template Function](image)

**Model for strings**  
model box  
available models  
*if not blank, the name of the model to contain the template and interface strings. The string colour is the template link colour.*  
*If blank, the strings will not be stored.*

**Model for sections**  
model box  
available models  
*if not blank, the name of the model to contain the design sections generated by the templates.*  
*If blank, the sections will not be stored.*

**Section colour**  
colour box  
default colour  
available colours  
*the colour for the sections strings*

**Model for polygons**  
model box  
available models  
*if not blank, the name of the model to contain the polygons created for each link of the template. The polygon is given the colour of the template link.*  
*If blank, the polygons will not be stored.*

**Model for road boundary**  
model box  
available models  
*if not blank, the name of the model to contain the polygon created by joining the outside links of the road.*  
*If blank, the polygon will not be stored.*

**Difference model**  
model box  
available models  
*if not blank, the sections which are the difference between the tin sections and the template x-sections are retained and placed in the model given in this field. If blank, the sections are not kept.*
**Apply Misc tab**

![Apply Template Function](image)

- **Strip depth**
  - Input: 0
  - The stripping depth to be used on the tin before the apply is done.

- **Create arcs**
  - Choice box:
    - **Super arcs**
    - No arcs, alignment arcs, polyline arcs, super arcs

  - If no arcs, the strings are created as 3d strings with no arcs.
  - **Alignment arcs**, the strings are created as alignment strings with arcs.
  - **Polyline arcs**, the strings are created as polyline strings with arcs.
  - **Super arcs**, the strings are created as super strings with arcs.

- **Chord/arc tolerance**
  - Input: default chord/arc tolerance
  - The chord to arc tolerance to use on the reference string for determining how many sections are created around horizontal curves.

- **Volume correction for curves**
  - Tick box

  - If ticked, volume corrections are made when going around curves.

- **Sections as 4d**
  - Tick box: tick

  - If ticked, the section strings will be created as 4d super strings with the appropriate template string names as the vertex text at each vertex of the section. These are needed for boxing and some options on x-section plots.

- **Copy hinge**
  - Tick box: tick
if ticked, a string with points at the apply chainages is created on top of the hinge string.

Apply Tin tab

Create road tin  tick box
if ticked, the fields in this tab are used to create a road tin

Road tin  tin box available tins
name for the tin created from the design strings and sections

Colour for tin  colour box available colours
colour of the road tin

Model for tin  model box available models
model for the road tin

Create depth range polygons  tick box
if ticked, depth polygons are created

Depth range file  file box *.drf files
depth range file used when creating polygons

Model for polygons  model box available models
model for the depth polygons
Apply Filter tab

Filter cross-sections  tick box

if ticked, the fields in this tab are used to filter cross sections

Filter sections model  model box  available models

model for the filtered cross sections

Filtered sections colour  colour box  available colours

colour of the filtered cross sections

Regular filtering interval  input

regular interval to use for filtering the cross sections

Regular culling tolerance  input 0

tolerance to use when selecting a cross section

Include start sections  tick box

if ticked, a section at the start chainage is included even if the start chainage is not at a regular interval

Include end sections  tick box

if ticked, a section at the end chainage is included even if the end chainage is not at a regular interval

Include chainage equality sections  tick box

if ticked, include sections where there is a chainage equality

Include H/V tangent sections  tick box

if ticked, a sections at the horizontal/vertical tangent points are included even if they are not at a regular interval
**Include V crest/sag sections**  tick box

if ticked, a sections at the crest and sag points are included even if they are not at a regular interval

**Special chainage file**  file box  *.spc files

if non blank, a file of chainages to include sections at even if they are not a regular interval

---

**Apply Plot tab**

**Generate long section plot(s)  tick box**

if ticked, long section plots are created

**Long section PPF**  file box  *.lplotppf files

*binary ppf file to use for the long section plots*

**Plotter type**  plotter box  model  available plotters

*type of plotter to use for the long section plots*

**Plot stem**

the name to use for the plots - a number will be added when more than one page is produced

**Clean plot model(s) beforehand  tick box**

if ticked and the **plotter type is model**, the plot models are cleaned before the plots are created

**Generate cross section plot(s)  tick box**

if ticked, cross section plots are created

**Cross section PPF**  file box  *.lplotppf files
binary ppf file to use for the cross section plots

**Plotter type**
plotter box model available plotters
type of plotter to use for the cross section plots

**Plot stem**
the name to use for the plots - a number will be added when more than one page is produced

**Clean plot model(s) beforehand**
tick box
if ticked and the plotter type is model, the plot models are cleaned before the plots are created

### 20.3.1.1 Views

This option locks perspective views to the reference string of the Apply Template/Apply MTF function.

It defines the eye and target co-ordinates for the perspective views in terms of the chainage and height above an existing reference string (as in the perspective view-ops option, string-walk) rather than entering the (x,y,z) eye and target co-ordinates.

If the string is modified, then the perspective eye and target points will also change.

Selecting Views fires up the Template Views panel.

![Template Views Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td>available views</td>
<td></td>
</tr>
<tr>
<td>Eye chainage</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye height</td>
<td>input</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Target chainage</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target height</td>
<td>input</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

**Add View**
button
add the view to the template function and then redraw the view using the above eye and target
parameters.

**Remove View** button

remove the view from the Apply template/Apply MTF function.
20.3.2 Apply MTF Function

The Apply MTF option is used for more complex design work such as urban, intersection and roundabout design. It includes defining different templates over different chainage ranges, modifiers for advanced control of the strings created by the Apply MTF strings, sections and trimeshes, stripping depths and boxing, a road tin and depth polygons, sights lines, tadpoles, plus long section and cross section plots.

For Apply MTF, the modifiers and templates are supplied in a file called the Modifiers and Templates File or MTF file. The definition of the MTF will follow after the description of the Apply MTF option.

Selecting Apply MTF displays the Apply MTF Function panel.

This panel can be used to create the information for applying a new template function or to modify the information for an existing template function.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTF file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LHS prefix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHS prefix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hinge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start chainage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension ref</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End chainage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension ref</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section separation</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Buttons from bottom

Views button

Perspective views can be defined with respect to chainages on the string. This option is described in more detail in the section 20.3.1.1 Views.

Apply button

Apply the modifiers and template information to the selected reference and hinge strings, between the start and end chainages.

The cut, fill and balance volumes are also calculated and written to the message area and to the Output Window.

For the information on each Apply MTF Function tab, go to

- Apply MTF Main tab
- Apply MTF Models tab
- Apply MTF Misc tab
- Apply MTF Tin tab
- Apply MTF Sight tab
- Apply MTF Filter tab
- Apply MTF Plot tab
- Apply MTF Tadpoles tab
### Apply MTF Main tab

![Apply MTF Main tab](image)

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Function name</strong></td>
<td>function box available template functions name of the function to define the Apply MTF for. If the function already exists and is picked from a pop-up or an &lt;enter&gt; is given at the end of the name, the information from the existing function will be placed in the appropriate panel fields.</td>
</tr>
<tr>
<td><strong>Tin</strong></td>
<td>tin box available tins if non-blank, the name of the tin to calculate the cut/fill interfaces against at the end of the fixed part of the templates given in the template file. If blank, then only the fixed part of the templates are used unless a tin is specified in the decisions section of the templates.</td>
</tr>
<tr>
<td><strong>MTF file</strong></td>
<td>file box available mtf’s, edit mtf name of the file containing the definitions of where and how templates are applied and modified along the string, how boxing definitions are applied, stripping depths etc. For more information on the MTF file, go to the section 21.1 The Modifiers and Templates File - MTF.</td>
</tr>
<tr>
<td><strong>V6 compatible</strong></td>
<td>tick box</td>
</tr>
</tbody>
</table>
if ticked, the template is used as it was in 12d Model version 6

LHS/RHS prefix

prefix/postfix (pre*post) to be applied to the left/right template string names. If pretext only, just give
the text. If post text is required, precede it by a *

Reference

the selected string is used to defined the meaning of chainage and bearing for each point in the apply. Sections are defined at right angles to the reference string at the appropriate chainage points on the reference string.

Hinge

the Reference string defines chainage and bearing but the zero offset for the modifiers and templates is
at the Hinge string.
For a given chainage, a line is taken at right angles to the point of that chainage on the Reference string and extended until it cuts the Hinge string. For the modifiers and templates, this point represents the zero offset. Hence the modifiers and templates are applied at that point on the Hinge string along the direction of the line.
If no Hinge string is selected, the Reference string is also used as the Hinge string.

Start/End chainage

the Reference string start/end chainage for applying the MTF to. If blank, the Start/End chainage of
the Reference string is used.

Start/End chainage

Mode

Extension ref

the Start/End chainage, Mode and Extension ref are all used to define the start/end chainage on the Reference string for applying the MTF.
If blank, the Start/End chainage of the reference string is used
For more information on Start/End Chainage Modes, see 21.2.1 MTF Hinge Modifiers

Section separation

sections are created at right angles to points on the Reference string that are the Section separation
chainage distance apart.

Report file

if not blank, the name of the file to contain the volume report for the template calculations. If the file already exists, the report will be automatically over written.
If blank, no report is produced.
Also if boxing is included in the MTF file definition, the volumes in the report can include not only the volumes from the stripped natural surface tin to the design, but also the interboxing layer volumes and the volumes from the last boxing layer to the design and to the stripped natural surface.
Apply MTF Models tab

The Models tab consists of a grid for defining the model for the design strings forming the road surface and design cross section, up to eight layers of boxing and models for the difference sections between the design and the natural surface.

The last boxing layer is also referred to as the Subgrade layer.

Road Surface:

Strings
if not blank, the name of the model to contain the design and interface strings. The default string colours are the template link colours but that can be overridden by a Map file.
If blank, the strings will not be stored.

Sections
if not blank, the name of the model to contain the design sections generated by the apply.
If blank, no sections are stored.

Colour
the colour for the design cross sections.
Boxing Layer 1-8:
if not blank, boxing strings and sections will be created for that layer.
The Boxing Layers are used from Boxing Layer 1 down until the first blank row.
The last boxing layer is also referred to as the subgrade layer.
For more information on boxing, see 21.6 What is Boxing?.

<table>
<thead>
<tr>
<th>Strings</th>
<th>model box</th>
<th>available models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>if not blank, the name of the model to contain the boxing strings for this layer. If blank, the strings will not be stored.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sections</th>
<th>model box</th>
<th>available models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>if not blank, the name of the model to contain the boxing sections generated by the templates and boxing rules. If blank, the sections will not be stored.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Colour</th>
<th>colour box</th>
<th>available colours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>colour for the boxing sections for this layer</td>
<td></td>
</tr>
</tbody>
</table>

**Difference**

<table>
<thead>
<tr>
<th>Sections</th>
<th>model box</th>
<th>available models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>if not blank, the sections which are the difference between the tin sections and the template x-sections are retained and placed in the model given in this field. If blank, the sections are not kept.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Colour</th>
<th>colour box</th>
<th>available colours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>colour for the difference sections strings</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model for polygons</th>
<th>model box</th>
<th>available models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>if not blank, the name of the model to contain the polygons created for each link of the template. The polygon is given the colour of the template link. If blank, the polygons will not be stored.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model for road boundary</th>
<th>model box</th>
<th>available models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>if not blank, the name of the model to contain the polygon created by joining the outside links of the road. If blank, the polygon will not be stored.</td>
<td></td>
</tr>
</tbody>
</table>
Apply MTF Misc tab

Create arcs: choice box super arcs no arcs, alignment arcs, polyline arcs, super arcs

*if no arcs*, the strings are created as 3d strings with no arcs.
*alignment arcs*, the strings are created as alignment strings with arcs
*polyline arcs*, the strings are created as polyline strings with arcs
*super arcs*, the strings are created as super strings with arcs.

Chord/arc tolerance: input default chord/arc tolerance

*the chord to arc tolerance to use on the reference string for determining how many sections are created around horizontal curves.*

Volume correction for curves: tick box

*if ticked, volume corrections are made when going around curves.*

Partial interfaces: tick box tick

*if ticked, an interface string is not produced when no intersection is made with the tin. The interface may then be broken into a number of interface strings.*

Chord/arc tolerance input default chord/arc tolerance
If not ticked, a yellow segment is created in the interface string when no intersection is made with the tin. Only one interface string will then be produced.

**Copy hinge** tick box tick
if ticked, a string with points at the apply chainages is created on top of the hinge string.

**Use stripping** tick box tick
if ticked, the stripping depths in the mtf file are used.

**Show detailed stripping volumes** tick box
if ticked, end area stripping volumes are written to the report file

**Calculate natural surface to design volumes** tick box tick
if ticked, end area volumes between the natural surface and the design strings are written to the report file. If stripping is used, then the cut and fill areas and volumes are calculated from the design to the stripped natural surface.

**Calculate natural surface to subgrade volume** tick box tick
if ticked, end area volumes between the natural surface to the subgrade (the last boxing layer) are written to the report file. If stripping is used, then the cut and fill areas and volumes are calculated from the last layer of boxing, to the stripped natural surface.

**Calculate road to subgrade volumes** tick box tick
if ticked, end area volumes between the design strings and the subgrade (the last boxing layer) are written to the report file.

**Calculate inter-boxing layer volumes** tick box tick
if ticked, end area volumes between each of the boxing layers are written to the report file.

**Map file** file box *.mapfile files
if non blank, the given map file is applied to all the design strings created by the Apply MTF. The map file overrides any default colours from the templates. The map file can colour strings, apply linestyles, apply hatch patterns to polygons, apply extrudes to super strings etc. For more details on the map file, see 8.8.1 Create/Edit a Map File.
Apply MTF Tin tab

The Tin tab controls the creation of a design tin and depth polygons.

- **Create road tin** (tick box)
  - If ticked, the fields in this tab are used to create a road tin

- **Road tin** (tin box)
  - Name for the tin created from the design strings and sections

- **Colour for tin** (colour box)
  - Colour of the road tin

- **Model for tin** (model box)
  - Model for the road tin

- **Create depth range polygons** (tick box)
  - If ticked, depth polygons are created

- **Depth range file** (file box)
  - Depth range file used when creating polygons
  - *.drf files
<table>
<thead>
<tr>
<th>Model for polygons</th>
<th>model box</th>
<th>available models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>model for the depth polygons</td>
<td></td>
</tr>
</tbody>
</table>

**Extra Models grid**

extra models to be included in creating the road tin

**Extra Model**

model box in column | available models |

name of a model to include in the road tin
Apply MTF Sight tab

The Sight tab controls the reporting of sight distance lines between the reference line and a super tin formed from the natural surface tin and the design tin, and barrier lines on the reference line if it is a super alignment. For more information on sight distance calculations and for the option that will also create sight lines/no-lines and take bridge tins into consideration, go to the section 20.8.3 Stopping Distance.

Calculate sight distances tick box

If ticked, sight distance lines are created and barrier lines calculated and applied to the reference string if it is a super alignment.

Min sight distance input 100

Minimum chainage distance to use for placing the test target point.

Max sight distance input 3000

Maximum chainage distance to use for placing the test target point.

Eye height input 1.3

Height of the eye point above the picked string.
Eye offset input 1.3
offset of the eye point from the picked string.

Target height input 0.3
height of the test target point above the picked string.

Target offset input 1.3
offset of the target point from the picked string.

Calc interval input 20
chainage increment to move the eye point for the next sight distance calculation.

Trial interval input 10
chainage increment to move to test target point.

Report file file box *.rpt files
if non blank, a sight distance report is produced and written out to this file name.

Create separation/barrier lines tick box
if ticked, and the reference string is a super alignment, barrier and separation lines are created and defined in the super alignment.

Barrier distance input
Min barrier road length input
Max barrier road length input
Min between barriers input
Apply MTF Filter tab

the Filter tab controls the filtering of cross sections

Filter cross-sections    tick box
    if ticked, the fields in this tab are used to filter cross sections

Filter sections model    model box
    model for the filtered cross sections

Filtered sections colour    colour box
    available colours

Regular filtering interval    input
    regular interval to use for filtering the cross sections

Regular culling tolerance    input
    tolerance to use when selecting a cross section

Include start sections    tick box
if ticked, a section at the start chainage is included even if the start chainage is not at a regular interval

Include end sections  tick box
if ticked, a section at the end chainage is included even if the end chainage is not at a regular interval

Include H tangent sections  tick box
if ticked, a sections at the horizontal tangent points are included even if they are not at a regular interval

Include V create/sag sections tick box
if ticked, a sections at the crest and sag points are included even if they are not at a regular interval

Special chainage file  file box *.spc files
if non blank, a file of chainages to include sections at even if they are not at regular intervals
Apply MTF Plot tab

the Plot tab controls the generation of long section and cross section plots

Generate long section plot(s) tick box
if ticked, long section plots are created

Long section PPF file box *.lplotppf files
binary ppf file to use for the long section plots

Plotter type plotter box model available plotters
type of plotter to use for the long section plots

Plot stem
the name to use for the plots - a number will be added when more than one page is produced

Clean plot model(s) beforehand tick box
if ticked and the plotter type is model, the plot models are cleaned before the plots are created
Generate cross section plot(s)  tick box
if ticked, cross section plots are created

Cross section PPF  file box  *.lplotppf files
binary ppf file to use for the cross section plots

Plotter type  plotter box  model  available plotters
type of plotter to use for the cross section plots

Plot stem
the name to use for the plots - a number will be added when more than one page is produced

Clean plot model(s) beforehand  tick box
if ticked and the plotter type is model, the plot models are cleaned before the plots are created
Apply MTF Tadpoles tab

The Tadpole tab controls the generation of batters ticks and tadpoles (hachure notation). For more information see the section 24.5 Create Cut/Fill Symbols.

<table>
<thead>
<tr>
<th>Create tadpoles</th>
<th>tick box</th>
</tr>
</thead>
<tbody>
<tr>
<td>if ticked, cut/fill symbols are created between given strings</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tadpole model</th>
<th>model box</th>
<th>available models</th>
</tr>
</thead>
<tbody>
<tr>
<td>model for the created cut-fill symbols</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interval</th>
<th>input</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainage distance between the symbols</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Search width</th>
<th>input</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximum distance to search to cut the strings for creating symbols. This is important for cases such as a bend in a road where multiple sets of string may then exist even when only searching out on one side of the road</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Search side</th>
<th>choice box</th>
<th>both</th>
</tr>
</thead>
<tbody>
<tr>
<td>both, left side only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>right side only</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Apply Functions

side of the reference string to search for strings to apply symbols to.

**String 1**

`input`

*name of the point on the template to start symbol.*

**String 2**

`input`

*name of the point on the template to stop symbol.*

**Start Ch.**

`input`

*if blank, use the start chainage of the Apply MTF.*

*If non blank, the chainage to start applying this symbol to.*

**End Ch.**

`input`

*if blank, use the end chainage of the Apply MTF.*

*If non blank, the chainage to stop applying this symbol to.*

**Symbol 1**

`symbol data`

*definition of the symbol to create at the given interval, or at twice the given interval if Symbol 2 is defined*

**Symbol 1 %**

`input`

*if non-blank, percentage of the distance between String 1 and String 2 to apply the symbol.*

*If blank, the symbol is applied to the full distance between String 1 and String 2 (i.e. 100%)*

**Symbol 2**

`symbol data`

*definition of a second symbol to create at twice the given interval*

**Symbol 2 %**

`input`

*if non-blank, percentage of the distance between String 1 and String 2 to apply the symbol.*

*If blank, the symbol is applied to the full distance between String 1 and String 2 (i.e. 100%)*
20.3.3 Apply MTF Manager - Create/Update

Position of option on menu:  Design => Apply => Apply MTF manager

This option is part of a process to manage your Apply MTF Functions in conjunction with the Apply MTF Defaults.

The Manager is in part an extension of the model naming convention within the defaults.

All models, except ROAD SURFACE STRINGS and ROAD SURFACE SECTIONS, can be toggled on and off when creating an Apply MTF Function,

e.g.

BOXING STRINGS
BOXING SECTIONS
POLYGONS AND BOUNDARY POLYGONS
DESIGN TIN
DEPTH POLYGONS
FILTER SECTIONS
TADPOLES

The Manager also allows one project model for ROAD SURFACE STRINGS, ROAD SURFACE SECTIONS, POLYGONS AND BOUNDARY POLYGONS and TADPOLES by using a new syntax in the Apply MTF Defaults.

Selecting the Apply MTF manager option displays the Apply MTF Manager - Create / Update panel.

The fields and buttons used in this panel have the following functions.
### Chapter 20  Design

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data selection type - for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Misc Options

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply MTF Chain</td>
<td>file box</td>
<td>available *.chain files</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing AM Functions</td>
<td>function box</td>
<td>available functions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>View Display</td>
<td>view box</td>
<td>available views</td>
<td></td>
</tr>
</tbody>
</table>

If non-blank entry used as view onto which design strings and sections models will be automatically added, for ease of viewing...optional

| Defaults button        |               |          |        |
| If selected a separate panel will appear that allows you to set up defaults that relate to how the main panel appears. Selecting **Defaults** brings up the **Defaults for startup** panel. For more information on the **Defaults for startup** panel, go to 20.3.4 **Defaults For Startup** |

| Seed MTF File file box |               |          |        |
| If non-blank, entry used as a seed from which any default names for the application of future Superelevation/Widening will be set |

#### Delete empty Apply MTF models

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boxing</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polygon</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road Tin</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth Polys</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tadpoles</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filter Xsects</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
</tbody>
</table>

If ticked then any empty filter xsects models will be deleted when an existing AM is updated

<table>
<thead>
<tr>
<th>Grid</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
</tbody>
</table>

Set to ticked once a SA selection string is accepted

If ticked and the **<Create/Update>** is selected, then the Apply MTF will be created or an existing one recalced

If ticked and the **<Del AMM>** button is also selected, then the Apply MTF Manager reference to that alignment will be deleted
If not ticked and the <Create/Update> is selected, then the Apply MTF will NOT be created or an existing one recalced

**Note:** It is up to the user to delete the actual Apply MTF Function and all associated data including the mtf

**Recalc using exist mtf**  tick box

This tick box is an automatic indication of whether or not a Reference Super Alignment has an Apply MTF Function already linked to it

There is no need for the user to use this box when creating or updating an Apply MTF Function

It will be unticked if the reference has no Apply MTF Function attached

In this case templates are required for Left, Right or both

It will be ticked if the reference does have one or more Apply MTF Functions attached

In this case the existing AM will be updated using the existing MTF and reflect any changes in regards to models required

**Function & mtf Pre/Suff**  input  DES*

If non-blank, entry used as a prefix or suffix in conjunction with the Apply MTF Reference Super Alignment Name

Example:

Reference SA name: MC00
Pre/Suff: DES*
Apply MTF Function Name: DES MC00

Reference SA name: MC00
Pre/Suff: * DES
Apply MTF Function Name: MC00 DES

If blank, the Apply MTF Reference Super Alignment Name is used only

Apply MTF Function Name: MC00

**Super Align Name**  input

Automatically populated, after the SA reference is selected

The Super Alignment Name entry cannot be changed as it comprises part of the Apply MTF Function name...refer above

**Append Pre/Suff to models**  tick box  not ticked

If ticked then the prefix or suffix will be combined with the SA name (refer above) and passed down to any default extensions from the Apply MTF Defaults

Refer **Design=>Apply=>Apply MTF Defaults**

Model Format for Apply MTF Defaults:

Road Surface Strings e.g.

"DESIGN" * used in conjunction with a Pre/Suff of DES * and a SA name MC00, would result in a strings model called "DES DESIGN MC00"

"* DESIGN" used in conjunction with a Pre/Suff of DES * and a SA name MC00, would result in a strings model called "DES MC00 DESIGN"

There is a new addition to the format used by the Apply MTF Manager, that allows one design
strings model. That model can be used in all Apply MTF Functions
"DESIGN &" would result in a strings model called just "DESIGN"

Note: The above format can also be used for the following Apply MTF Models:
  - Model for Cross Sections "CROSS SECTIONS &"
  - Model for Polygons "VIS POLYGONS &"
  - Model for Road Boundary "ROAD BOUNDARIES &"
  - Model for Tadpoles "TADPOLES &"

**Template LHS**
- input
  - name of the template to be applied to the left side of the reference SA

**Template RHS**
- input
  - name of the template to be applied to the right side of the reference SA

**Tin interface**
- input
  - If non-blank, the name of the tin to calculate the cut/fill interfaces against at the end of the fixed part of
  - the templates given in the left and right template fields
  - If blank, then only the fixed part of the templates is used unless a tin is specified in the decisions section
  - of the templates

**Boxing**
- tick box not ticked
  - If ticked then all boxing models will be created

**Polys**
- tick box ticked
  - If ticked then both polygon models will be created

**Road Tin**
- tick box ticked
  - If ticked then road tin and model will be created

**Depth Polys**
- tick box not ticked
  - If ticked then depth polygon models will be created

**Tadpoles**
- tick box not ticked
  - If ticked then tadpole model will be created

**Filter Xsect**
- tick box not ticked
  - If ticked then filter xsection model will be created

**Buttons at Bottom**

**Create/Update**
- button
  - A validation on the panel is carried out along with a check if an Apply MTF Function being created,
  - exists or not
  - Appropriate warning messages in the output window will be displayed
  - The Apply MTF Function is created or an existing one is updated
  - If a new Apply MTF is being created, then the grid on the AMM panel is refreshed and the tick box
    <Recalc using exist mtf> is set to ticked

**Clear Grid**
- button
  - Clears the selection lines in the grid

**Sort Grid**
- button
  - Sorts the grid lines by placing lines where the <Recalc using exist mtf> box is ticked on, at the top of
the grid

Add AMM button

For clarity...clear the grid first and then select the Super Alignment you wish to add another Apply MTF Function to

Del AMM button

In order to delete (or remove) from the Apply MTF Manager any connection to a Super Alignment, then first clear the grid, select the Super alignment and UNTICK the <Apply> box

20.3.4 Defaults For Startup

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function &amp; mtf Pre/Suff</td>
<td>input</td>
<td>DES*</td>
<td></td>
</tr>
</tbody>
</table>

*If non-blank, entry used as a prefix or suffix in conjunction with the Apply MTF Reference Super Alignment Name*

Example:

Reference SA name: MC00
Pre/Suff: DES *
Apply MTF Function Name: DES MC00

Reference SA name: MC00
Pre/Suff: * DES
Apply MTF Function Name: MC00 DES

*If blank, the Apply MTF Reference Super Alignment Name is used only*
Apply MTF Function Name: MC00

Delete empty Apply MTF models

Boxing
tick box ticked
  If ticked then any empty boxing models will be deleted when an existing AM is updated

Polygon
tick box ticked
  If ticked then any empty polygon models will be deleted when an existing AM is updated

Road Tin
tick box ticked
  If ticked then any empty road tin models will be deleted when an existing AM is updated

Depth Polys
tick box ticked
  If ticked then any empty depth polys models will be deleted when an existing AM is updated

Tadpoles
tick box ticked
  If ticked then any empty tadpoles models will be deleted when an existing AM is updated

Filter Xsects
tick box ticked
  If ticked then any empty filter xsects models will be deleted when an existing AM is updated

Apply MTF Create Models

Boxing
tick box not ticked
  If ticked then all boxing models will be created

Polys
tick box ticked
  If ticked then both polygon models will be created

Road Tin
tick box ticked
  If ticked then road tin and model will be created

Depth Polys
tick box not ticked
  If ticked then depth polygon models will be created

Tadpoles
tick box not ticked
  If ticked then tadpole model will be created

Filter Xsect
tick box not ticked
  If ticked then filter xsection model will be created

Grid Width
  real 750
  If non-blank entry used as width of grid on main panel

Grid Height
  real 250
  If non-blank entry used as height of grid on main panel

Write
  button
  If selected, the defaults file (Create_Apply_Many_Manager_Panel.def) will be written out to the <.project> directory
20.3.5 Kerb Return Function

**Position of option on menu:** Design => Apply => Kerb return

The **kerb return** option is used to help create the vertical geometry for an alignment string being used as a kerb return.

The standard situation is that in the plan view, the kerb return joins two kerb lines which already have z-values.

It is then necessary to define vertical geometry for the kerb return, usually taking into consideration the z-values and incoming grades from selected strings (often the centre lines and kerb strings).

A standard first guess at the kerb return vertical geometry is known as the quarter point vertical geometry and it is defined by:

1. break the section along the kerb return into four equal pieces
2. project the incoming grade from a selected start grade string to intersect the first quarter point line
3. project back the outgoing grade from a selected end grade string to intersect the last quarter point line
4. join the two projected intersection points
5. define vertical intersection points (VIP’s) at the intersection points
6. create back to back vertical curves for the VIP’s

---

**Plan View of the Horizontal Geometry of the Kerb Return**

---

**Section View of the Quarter-Point Vertical Geometry for the Kerb Return**
The **kerb return** option creates a function which will automatically create the quarter-point vertical geometry for the kerb return and will recalculate it as required.

**Note:** the actual **direction** of the kerb is important - start grade and start height apply to the **start** of the kerb and end grade and end height apply to the **end of the kerb** where start and end are determined by the actual **direction** of the kerb (not the picking direction).

On selecting the **kerb return** option, the **apply kerb return function** panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function name</td>
<td>function box</td>
<td></td>
<td>available kerb functions</td>
</tr>
</tbody>
</table>

- **name of the function to define the apply for. If the function already exists and is picked from a pop-up or an <enter> is given at the end of the name, the information from the existing function will be placed in the appropriate panel fields.**

- **Start grade string**    string-select
  - select the string to be used for the in grade at the start of the kerb return.

- **End grade string**     string-select
  - select the string to be used for the out grade at the end of the kerb return.

- **Start height string** string-select
  - select the string to be used for the height at the start of the kerb return - this is used for the z-value at the start of the kerb return.

- **End height string**     string-select
  - select the string to be used for the height at the end of the kerb return - this is used for the z-value at the end of the kerb return.

- **Kerb return**    string-select
  - select the alignment string that is the kerb return.

- **Clear vertical geometry**    tick box
  - if ticked, the vertical geometry of the kerb return string is cleared as soon as the apply button is selected, or a recalc done.

- **Pick all**       button
if pick all is selected, the user is asked to sequentially select the four strings: the Start grade string, End grade string, Start height string and End height string. The strings are automatically assigned to the appropriate string-select panel fields.

HG button brings up the kerb return function create HG panel. This option is currently under development.

Apply button

if the kerb return has no vertical geometry (it will be automatically be deleted if the clear vertical geometry is set to tick) or the vertical geometry is the quarter-point geometry for the previous apply, then new quarter-point vertical geometry is created for the kerb return string.

Otherwise, nothing happens when the apply button is selected. That is, if the kerb return already has vertical geometry which is not the quarter-point geometry for the previous apply, and the clear vertical geometry is set to no tick, then nothing happens when the apply button is selected.

Note

The experimental Kerb Return Function Create HG panel is

![Kerb Return Function Create HG panel](image)
20.3.6 String Modifiers Function

Position of option on menu:  Design => Apply => String modifiers

The String Modifiers option is used to create vertical intersection points for an alignment string, or heights for a 2d, 3d, 4d, polyline or super string, using projection of heights from a selected string and user given cross-falls or cross-fall between two selected strings.

The String Modifier commands are actually part of an MTF file and are documented in 21 Advanced Design.

This option allows the user to run just the string_modifiers section of the mtf.

Selecting String Modifiers displays the String Modifiers Function panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function name</td>
<td>function box</td>
<td>available template functions</td>
<td>name of the function to define the apply for. If the function already exists and is picked from a pop-up or an &lt;enter&gt; is given at the end of the name, the information from the existing function will be placed in the appropriate panel fields.</td>
</tr>
<tr>
<td>MTF file</td>
<td>file box</td>
<td>available mtf files</td>
<td>the name of the MTF file to use the string_modifiers section from.</td>
</tr>
<tr>
<td>Apply</td>
<td>button</td>
<td></td>
<td>apply the string modifiers section of the MTF.</td>
</tr>
</tbody>
</table>
20.3.7 Interface Function

Position of option on menu: Design => Apply => Interface

An interface string is where the design meets the natural terrain - it shows the extent of the design. The method used for calculating the interface string for a given string, tin and cut and fill slopes, is as follows:

For a point on a string, an interface point is calculated by going off at right angles to the string along a line of fixed slope until either the tin is cut or a fixed (plan) distance is travelled. The slope of the line is either the cut or fill slope depending on whether the string point is below the tin (cut point) or above the tin (fill point).

The interface string for a string is constructed by calculating the interface points at regular intervals along the string and then joining the interface points together to form the interface string.

After calculating an interface string and examining the results, it is often necessary to make changes to either the original string, the cut and fill slopes used, or even the tin used for interfacing against. The interface string and slope strings created during the interface would no longer be valid and need to be replaced by new information.

Although this can be accomplished by deleting the incorrect models and replacing them by new ones by re-applying the interface, this is would be time consuming if repeated over and over again. The interface function has been introduced to help reduce the work involved when recalculating an interface string.

Basically, an interface function keeps track of all the information involved in creating an interface string and all the strings and models created during the interface. If either the original string, the cut and fill slope or the tin is subsequently modified, the interface functions can be re-run and all the old information automatically deleted and replaced by the updated information.

On selecting interface, the interface function panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>function box</td>
<td>available interface functions</td>
<td></td>
</tr>
</tbody>
</table>
name of the function to define the interface for. If the function already exists and is picked from a popup or and an <enter> is given at the end of the name, the information from the existing function will be placed in the appropriate panel fields.

**String interface**

string select box

select the string to calculate the interface from.

**Cut slope 1 v in**

input 1.0

the slope of the interface line if a point is in cut. A cut slope of one vertical to the given value of horizontal units is used. Positive is up for a cut slope. A value 0 is used to designate a horizontal line.

**Fill slope 1 v in**

input 1.0

the slope of the interface line if the point is in fill. A fill slope of one vertical to the given value of horizontal units is used. Positive is down for a fill slope. A value 0 is used for a horizontal line.

**Section separation**

input 10

the distance between the points on the selected string that interface points will be calculated from.

**Search distance**

input 100

the (plan) distance to search along the interface line to see if the tin has been intersected. If the tin has not been intersected then the z-value at the end of the interface line is taken as the interface point z-value.

**Left or right**

choice box left, right

the interface point is calculated by going out at right angles to the selected string. It is possible to go to either the left or the right depending on the value of this field.

**Use super strings**

tick box

if ticked, the interface and cut and fill slope lines are created as super strings.

**Tin**

tin box available tins

name of the tin that the interface points will be calculated against.

**Model for interface**

model box available models

name of the model to contain the calculated interface string.

**Model for slope lines**

model box available models

if not blank, name of the model to contain the lines connecting the string points with the interface points (the slope lines). If the field is blank, no slope lines are recorded. If blank, the slope lines are not created.

**Remove loops**

tick box

if tick, the strings and sections created by the Interface function are process to try an remove any loops from the strings, and create sections that don’t cross each other. That is, remove any places where a string crosses over itself, or sections cross each other.

Loops in the strings and crossing sections often occur on the inside of curves or the inside of adjacent lines.

**Interface**

button

An interface string is calculated using the selected string and the parameters defined in the panel. The interface string points are coloured red if the original string point was in cut and green if the original string point was in fill.

<esc> can be used to abort the interface option.
20.3.8 Amend VG

Position of option on menu:  Design =>Apply =>Amend VG

Amend VG is used to modify the vertical geometry of an alignment string using a variety of methods including linear interpolation cubic reverse and circular reverse interpolating or by extending crossfall between two given strings.

Selecting Amend VG, the Amend VG panel is displayed.

![Amend VG panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amend mode</td>
<td>choice box</td>
<td>linear, cubic reverse, circular reverse, VG linear, Extend Xfall</td>
<td></td>
</tr>
</tbody>
</table>

if linear, a panel to input the values for Start offset/height/crossfall %, End offset/height/crossfall % and Absolute height is displayed and filled in to define how to modifying the vertical geometry of the Amend string.

If cubic reverse, a panel to input the values for Start offset/height/crossfall %, End offset/height/crossfall % and Absolute height is displayed and filled in to define how to modifying the vertical geometry of the Amend string.

If circular reverse, no extra information is needed to define how to modifying the vertical geometry of the Amend string.

If VG linear, a panel to input the values for Start height/crossfall %, End height/crossfall % and Absolute height is displayed and filled in to define how to modifying the vertical geometry of the Amend string.

If Extend Xfall, a panel to select the two strings to extend the crossfall from is displayed and filled in to define how to modifying the vertical geometry of the Amend string.
Apply Functions

Start chainage input
chainage to start modifying the vertical geometry of a string

End chainage input
chainage to stop modifying the vertical geometry of a string

Chainage interval input 10
chainage interval to apply the vertical geometry modification

Reference string select box
select the reference string to define chainage and perpendicular. If there is no Hinge string, then z-values are only taken from the Reference string.
chainage interval to apply the vertical geometry modification

Amend string select box
select the reference string to define chainage and perpendicular. If there is no Hinge string, then z-values are only taken from the Reference string.

Hinge string select box
if selected, the string to take z-values from

Amend string select box
the string to have its vertical geometry amended
Amend button

amend the vertical geometry of the Amend string between the start and end chainages
20.3.9 Apply Defaults

The Defaults walk right menu contains options to set up defaults when first using the Apply Template Function and Apply MTF Function panels.

The two options Apply template defaults and Apply MTF defaults will now be described.

There are two files apply_defaults.4d and apply_many_defaults.4d which contain the pre or post text to be added to the name of the function to automatically create many entries in the panel fields for Apply template and Apply MTF plus default values for all the other panel fields.

After the name of a new function is typed in and <Enter> pressed, all the fields mentioned in the default files are automatically filled in using the function name and the defined pre-post text as supplied in the file, plus setting any other panel fields from default values supplied in the file. If the files are missing, no panel fields are automatically filled in.

The files can be created and edited using the Apply template defaults or Apply MTF defaults option which brings up the Apply Template Defaults or Apply Templates Defaults panels respectively.

Each of the fields in the Apply Template Defaults panel matches a field in the Apply panel and so for the documentation see 20.3.1 Apply Template Function.

Each of the fields in the Apply Templates Defaults panel matches a field in the Apply Templates Function panel and so for the documentation see 20.3.2 Apply MTF Function.
Each of the fields in the Apply Template Defaults panel matches a field in the Apply panel and so for the documentation see 20.3.1 Apply Template Function.
Each of the fields in the **Apply Templates Defaults** panel matches a field in the **Apply Templates Function** panel and so for the documentation see 20.3.2 **Apply MTF Function**.
20.4 MTF

Position of menu:  Design => MTF

In the Apply MTF option, a MTF file is used to control the application of templates, modifiers, boxing etc to the Hinge string.

The full definition for the MTF file is given in the section 21.1 The Modifiers and Templates File - MTF.

The MTF walk-right menu is

![MTF Walk-Right Menu]

Each option in this menu will now be described.

For the options, see:

- **Create**  [20.4.1 Create MTF]
- **Edit**  [20.4.2 Edit MTF]
- **Snippets**  [20.4.3 Snippets]
- **Rename**  [20.4.4 Rename MTF]
- **Apply MTF**  [20.3.2 Apply MTF Function]
- **Edit by string**  [20.4.6 Edit by String]
- **Copy MTF**  [20.4.7 Copy MTF]
- **Delete MTF**  [20.4.8 Delete MTF]
- **Create file**  [20.4.9 Create File]
- **Edit file**  [20.4.4 Rename MTF]
20.4.1 Create MTF

Position of option on menu:  Design => MTF => Create

The MTF=>Create option is used to create a new MTF file (*.mtf).
The created MTF file is written to disk and can be edited using the MTF=>Edit option.

Selecting Create displays the Create MTF File panel.

![Create MTF File Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTF file</td>
<td>name of the MTF file to create.</td>
<td>file box</td>
<td>*.mtf files</td>
<td></td>
</tr>
<tr>
<td>Seed MTF file</td>
<td>name of an MTF file to load into the new MTF file. This allows standard information to be automatically included in the new MTF file. The Seed MTF file is just a standard MTF file with the extension after the . changed to mtf_seed</td>
<td>file box</td>
<td>*.mtf_seed files</td>
<td></td>
</tr>
<tr>
<td>Centreline</td>
<td>if a centreline string is selected, it is used for selecting chainages in the MTF</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create</td>
<td>create an MTF file with name given by the MTF file panel fields.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If the file given in the MTF file field does not exist, then the MTF Edit menu is placed on the screen and is used to create and edit the MTF sections in the MTF file.
If the file already exists, then nothing will happen on selecting Create.
20.4.1.1 MTF Edit

When Create is selected from the Create MTF File panel, it brings up the MTF Edit menu which is used to create and edit the MTF sections to be saved in the MTF file.

The MTF Edit menu is described in the section 21.1 The Modifiers and Templates File - MTF.

Go to the next section 20.4.2 Edit MTF or return to 20.4 MTF.
20.4.2 Edit MTF

Position of option on menu: Design => MTF => Edit

The MTF=>Edit option is used to edit mtf files (*.mtf).

The MTF=>Edit option has two modes of operation - selecting the MTF=>Edit itself, or by activating the MTF=>Edit option's walk-right menu, folder *.mtf.

Selecting MTF=>Edit itself brings up the Edit MTF File panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTF file</td>
<td>file box</td>
<td>*.mtf files</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the MTF file to edit</td>
<td></td>
</tr>
<tr>
<td>Seed MTF file</td>
<td>file box</td>
<td>*.mtf_seed files</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>for a new MTF file, the name of an MTF file to load into the new MTF file. This allows standard information to be automatically included in the new MTF file. The Seed MTF file is just a standard MTF file with the extension after the . changed to mtf_seed</td>
<td></td>
</tr>
<tr>
<td>Centreline</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if a centreline string is selected, it is used for selecting chainages in the MTF</td>
<td></td>
</tr>
<tr>
<td>Edit</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>edit the file given by MTF file panel field.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the file given in the MTF file field exists, then the MTF Edit menu is brought up to create/edit the MTF sections.</td>
<td></td>
</tr>
</tbody>
</table>

Similarly the MTF=>Edit walk-right menu provides a list all the MTF files (files ending in .mtf) in the current folder. When a MTF file is selected from the list, the Edit MTF File panel is brought up
to create/edit the MTF sections.

The MTF Edit menu is described in the section 21.1 The Modifiers and Templates File - MTF.

Go to the next section 20.4.3 Snippets or return to 20.4 MTF.
20.4.3 Snippets

See

20.4.3.1 Edit Snippet
20.4.3.2 Create Trimesh Snippet
20.4.3.3 Edit Snippet File
20.4.3.4 Compile Snippet
20.4.3.5 12d Supplied Snippets

For information on Snippets, see 21.5 Defining and Using Snippets
20.4.3.1 Edit Snippet

**Position of option on menu:** Design => MTF => Snippets => Edit snippet

Selecting **Edit snippet** brings up the **Edit Snippet** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MTF Snippets</strong></td>
<td>Tree Box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*lists all of the MTF Snippets available in the following folders:

- **Working Folder:** MTF Snippets located in the current Working Folder
- **User_Lib Folder:** MTF Snippets located in the User Library (USER_LIB_4D)
12d Library Folder: MTF Snippets located in the 12d Model Library (LIB_4D)
(C:\Program Files (x86)\12d\12dmodel\11.00\Library, or
C:\Program Files\12d\12dmodel\11.00\library depending on your setup)

Expanding Working Folder, User_Lib Folder of 12d Library Folder will list all the snippets in that
folder. For information on the snippets in 12d Library Folder, see 20.4.3.5 12d Supplied Snippets.

Clicking on a snippet name in the list displays the following information about the selected snippet:

For more information on the inserting and use of snippets, see 21.5 Defining and Using Snippets.

Snippet Input box
displays the file path and name of the selected MTF Snippet.

Copy to Clipboard Button
copies the selected MTF Snippet file path to the clipboard
This may be pasted into the Modifiers->MTF Snippet panel, or useful for creating snippets that call
other snippets.

MTF Snippet Preview Draw box
displays a preview image of the selected MTF Snippet.

Users can create their own preview images using the following guidelines:
• A preview image must have the same name as its associated MTF Snippet. For example; a snippet
  named “My_Snippet.MTFSNIPPET”, will have a preview image named “My_Snippet.jpg”,
• The preview image should have the dimensions 400 pixels wide by 300 pixels high,
• The preview image must be in jpeg (*.jpg) image format,
• The preview image must be located in either your “$USER/images” folder (USER_4D) or your
  current Working Folder.

Refresh Button
updates the MTF Snippets tree box.

When clicked, the macro will find and display all MTF Snippets in the current project Working Folder,
User Library Folder, and 12d Library Folder.

Note: To fully refresh a list, the relevant tree must also be collapsed and then re-expanded.

Snippet Info Tab

Snippet Info Text Edit Box
displays information about the currently selected MTF Snippet.

Users can display their own custom information for a snippet by using the following guidelines:
• Open the MTF Snippet in a text editor, by select Edit Snippet,
• At the top of the file, prefix your information with: // INFO

For example; if your snippet file contains:
// INFO Snippet Type: INSERT
// INFO Description: Kerb & Gutter

The Snippet Info text box will display:

Snippet Type: INSERT
Description: Kerb & Gutter
**Snippet Variables Tab**

**Snippet Variables**  
*Grid Control box*

*lists the currently selected MTF Snippet variables.*

*Each row represents a variable.*

*Column 1 - represents the variable name,*

*Column 2 - represents the variable value,*

*Column 3 - represents the variable type.*

*MTF Snippet variable types include: Number, Text*

*Only variables that define a single value are displayed (i.e.; formulas are ignored).*

*For example:*

```plaintext
#define _A 1.23
@ def_tok A 1.23
@ def_tok STR1 KI
```

*Users can create new variables, edit existing variables and delete existing variables.*

*Note: Creating and/or deleting a variable in the Grid Control Box does not change how that variable is used elsewhere in the snippet.*

**Save Edits**  
*button*

*open the Unsaved Changes panel to write out the Snippet Variables (Grid Control Box) to the MTF Snippet file.*

*Note: 12d Model Library snippets and User Library snippets cannot be edited via the panel. Therefore this button is disabled when these snippets are selected.*
Snippet Parameters Tab

Snippet Parameters Grid Control box
lists the currently selected MTF Snippet parameters.
Each row represents a parameter.
Column 1 - represents the parameter name,
Column 2 - represents the parameter title,
Column 3 - represents the parameter type,
Column 4 - represents the parameter value.
Parameters to be displayed in the Edit Snippet panel must be defined in the snippet_params.4d file.
Only parameters of the following types may be displayed and edited: TEXT, REAL, INTEGER
Users can create new parameters, edit existing parameters and delete existing parameters.
Note: Creating and/or deleting a parameter in the Grid Control Box does not change how that parameter is used elsewhere in the snippet.

Save Edits button
opens the Unsaved Changes panel to write out the Snippet Parameters (Grid Control Box) to the MTF Snippet file.
Note: 12d Model Library snippets and User Library snippets cannot be edited via the panel. Therefore this button is disabled when these snippets are selected.

Copy Snippet button
opens the Copy Snippet To panel and allows the user to copy the selected snippet to the current Working Folder.

Edit Snippet button
open the selected snippet in a text editor.
The default text editor is Notepad, unless a text editor is defined in the users env.4d:EDITOR_4D
Note: The text editors Multiple Instance settings will control whether snippets open for editing in the same window or create a new window.
Selecting the **Copy Snippet** button brings up the **Copy Snippet To...** panel.

```
Copy Snippet To...
```

**Source File**
- **Type**: File Box
- **Defaults**: When the Copy Snippet To panel opens, this field is auto-populated with the currently selected MTF Snippet from the MTF Snippets tree.
- **Description**: file path and name of the MTF Snippet being copied.

**Target File**
- **Type**: File Box
- **Description**: enter a new file name and path for the MTF Snippet being copied.

**Copy**
- **Type**: Button
- **Description**: when clicked the **Source File** is copied with the **Target File** path and name.

Selecting the **Save Edits** button brings up the **Unsaved Changes** panel.

```
You have unsaved changes
```

**Overwrite**
- **Type**: Button
- **Description**: writes all variables in the MTF Variables Grid Control Box to the currently selected MTF Snippet file.
- **Options**: Existing variables of the same name will be overwritten.

**Save As**
- **Type**: Button
save all variables in the MTF Variables Grid Control Box to a new MTF Snippet file.

Selecting this button brings up the Copy Snippet To panel.

**Discard** Button

all edits made to the variables in the MTF Variables Grid Control Box are discarded and the currently selected MTF Snippet file is not edited.

**Cancel** Button

closes the Unsaved Changes panel.

---

**How snippet_params.4d Works**

snippet_params.4d is a file that allows users to control the visibility of MTF Snippet Parameters in the Snippet Parameters Grid_CtrlBox.

**File Format:**

- Plain Text
- Each line should contain one MTF Snippet Parameter name. For example: LANE1
- MTF Snippet Parameter names are case sensitive
- Comments are allowed in the file, and should begin with: //

**Where should snippet_params.4d be located?**

By default the file is located in:

C:\Program Files\12d\12dmodel\11.00\set_ups

or

C:\Program Files (x86)\12d\12dmodel\11.00\set_ups

Users can copy this file to their User directory (typically C:\12d\11.00\User) or their current 12d Model project directory. The macro will find and read this file in those directories. The macros search order is:

- Search the current 12d Model project directory for Snippet_Params.4d. If found; read.
- Search the User directory for Snippet_Params.4d. If found; read.
- Search the Set_Ups directory for Snippet_Params.4d. If found; read.

Go to the next section 20.4.3.2 Create Trimesh Snippet or return to 20.4.3 Snippets.

---

**20.4.3.2 Create Trimesh Snippet**

**Position of option on menu:** Design => MTF => Snippets => Create trimesh snippet

This section of documentation is a work in progress and will be updated in subsequent releases.

For more information on the inserting and use of snippets, see 21.5 Defining and Using Snippets.

Go to the next section 20.4.3.3 Edit Snippet File or return to 20.4.3 Snippets.
20.4.3.3 Edit Snippet File

Position of option on menu:  Design => MTF => Snippet => Edit snippet file

The Edit snippet file option is used to edit MTF Snippet files (*.mtfsnippet) with the text editor pointed to by the EDIT_4D environment variable.

The Edit snippet file option has two modes of operation - clicking on the option Edit snippet file itself, or by activating the MTF => Snippets => Edit snippet file option's walk-right menu, folder *.mtfsnippet.

Selecting Edit snippet file itself brings up the Edit MTF File *.mtfsnippet panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folder</td>
<td>name of the folder for the .mtf snippet file.</td>
<td>folder box</td>
<td>current folder</td>
<td></td>
</tr>
<tr>
<td>File to edit</td>
<td>name of the MTF Snippet file, in Folder, to edit.</td>
<td>file box</td>
<td>*.mtfsnippet files</td>
<td></td>
</tr>
<tr>
<td>Edit</td>
<td>edit the MTF Snippet file given by the Folder and File to edit panel fields by the text editor pointed to by the EDIT_4D environment variable. If the file given in the File to edit field does not exist, then a new file is created which already has each of the section headers set up.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Similarly the Edit snippet file walk-right menu provides a list all the MTF Snippet files (files ending in .mtfsnippet) in the current folder. When a file is selected from the list, it is automatically loaded into the text editor.

For more information on the inserting and use of snippets, see 21.5 Defining and Using Snippets.

Go to the next section 20.4.3.4 Compile Snippet or return to 20.4.3 Snippets.
20.4.3.4 Compile Snippet

Position of option on menu: Design => MTF => Snippet => Compile snippet

The Compile snippet option is used to create a compiled version of a Snippet file. This can be done to protect any intellectual property (IP) and minimise concerns people may have in developing and sharing snippets.

The compiled snippet file can not be read with a text editor. Compiling a snippet encrypts and encodes the snippet contents into a new file with an extension of mtfsnippetc (note the ‘c’ at the end, denoting a compiled snippet).

A compiled snippet can be run and used by anyone, but the snippet code itself cannot be viewed or edited. Temporary snippet files, if enabled, are not generated for compiled snippets.

Original Snippet

// INFO Example compiled snippet

Compiled Snippet
nyKgSBlhX6wGqQizY/fRFDrCf/7YReG2J34wsghywz6Ys+cfVn+Pl+crz+4c9XgNbYj+kmS14F
flh+l/bNu41RYYd4RtNvls9

Selecting Compile snippet itself brings up the Edit MTF File *.mtfsnippet panel.

The fields and buttons used in this panel have the following functions.

Field Description Type Defaults Pop-Up
Snippet file file box *.mtfsnippet files
name of the MTF Snippet file to compile.

Compiled file file box *.mtfsnippetc files
name of the compiled MTF Snippet file.

Compile button
compile the snippet given in the Snippet file field and write the compiled snippet out with the name given in the Compile file field.

For more information on the inserting and use of snippets, see 21.5 Defining and Using Snippets.

Return to 20.4.3 Snippets or 20.4 MTF.
20.4.3.5 12d Supplied Snippets

See

20.4.3.5.1 TRI_1PT_TRENCH_DES_LAY
20.4.3.5.2 TRI_1PT_TRENCH_EXT_STRS
20.4.3.5.3 TRI_2PT_PAV_DES_LAY
20.4.3.5.4 TRI_2PT_PAV_EXT_STRS
20.4.3.5.5 TRI_2PT_PAV_NAMED_GRADES
20.4.3.5.6 TRI_2PT_PAV_NAMED_GRADES_EXT_STRS
20.4.3.5.7 TRI_2PT_PAV_STOP_NAMED_GRADES
20.4.3.5.8 TRI_2PT_PAV_STOP_NAMED_GRADES_EXT_STRS
20.4.3.5.9 TRI_2PT_STRUCT_FILL
20.4.3.5.10 TRI_3PT_PAV_DES_LAY
20.4.3.5.11 TRI_3PT_PAV_EXT_STRS
20.4.3.5.12 TRI_KERB_PROFILE
20.4.3.5.1 TRI_1PT_TRENCH_DES_LAY

This Snippet is used to create a trench pavement, using <Design> or <Layer> strings created in your MTF.

It is linked to the Start Link at a specified location of left, centre or right.

A depth can be specified either to another link or a set value.

The top surface of the trench is defined by a Named Grade.

The Reference string name can be used as part of the model naming convention.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTF file</td>
<td>file box</td>
<td></td>
<td>*.mtf files</td>
</tr>
</tbody>
</table>
name of the MTF file to create.

**Snippet**

snippet box  *.mtfsnippet, *.mtfsnippetc files

snippet to run.

**Alias, Start Chainage, End Chainage, Interval**

defines the start and end chainages to apply a snippet.

For information on these panel fields, see 17.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

**Comment, Extra start, Extra End, Active, OK, Apply**

for information on these panel fields, see 17.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

**Trimesh Name**

input
tramesh name that is used in model names below

**String Mod Prefix**

input DESIGN MESH STRS

**Trimesh Mod Prefix**

input DESIGN MESH

**Trimesh Ref Name Suffix**

choice box Last 3 Chars All Chars

Last Char

Last 2 Chars

Last 3 Chars

Last 4 Chars

None

(Model syntax: String Mod Prefix Trimesh Name Trimesh Ref Name Suffix)

**Trimesh Colour**

colour box cyan various

**Link Location**

choice box Centre Centre

LHS

RHS

**Start Link**

name

**Start Link Layer Name**

choice box Design various

**Depth Link**

name

**Depth Link Layer Name**

choice box Design various

(Another link can be used to control the depth of the trench.

It is optional so if not set then the following Trench depth is used)

**Trench Depth**

real

(This is optional so if not set then the Depth Link above is used)

**Trench Width**

real 0.6

**Trench Strip**

real 0

(Allows a strip depth measured from the top of the trench)

**Trench Closed**

choice box true true / false

**Auto L/R**

choice box Yes / No
if set to <No> then the Start and End Links remain unchanged.

If set to <Yes> then the Start and End Links need the suffix for L/R removed.

e.g. Any <Design> string names like ESL would need the <L> removed

e.g. Any <Layer> string names like PVBALROI would need the <LRO1> removed

**Named Grade Top Surface**  choice box

(The top of the trench will follow this grade while the bottom of the trench is horizontal)

For more information on snippets, see 21.5 Defining and Using Snippets.

Continue to 20.4.3.5.2 TRI_1PT_TRENCH_EXT_STRS or return to 20.4.3.5 12d Supplied Snippets or 20.4.3 Snippets.
20.4.3.5.2 TRI_1PT_TRENCH_EXT_STRS

This Snippet is used to create a trench pavement, using External strings NOT created in your MTF.

It is linked to the Start Link at a specified location of left, centre or right.

A depth can be specified either to another link or a set value.

The top surface of the trench is defined by a Named Grade

The Reference string name can be used as part of the model naming convention.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snippet</td>
<td>snippet box</td>
<td>*.mtfsnippet, *.mtfsnippetc files</td>
<td></td>
</tr>
</tbody>
</table>
snippet to run.

**Alias, Start Chainage, End Chainage, Interval**

defines the start and end chainages to apply a snippet.

For information on these panel fields, see 17.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

**Comment, Extra start, Extra End, Active, OK, Apply**

For information on these panel fields, see 17.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

**Trimesh Name**

Trimesh name that is used in model names below

- **String Mod Prefix**
  - input
  - DESIGN MESH STRS

- **Trimesh Mod Prefix**
  - input
  - DESIGN MESH

- **Trimesh Ref Name Suffix**
  - choice box
  - Last 3 Chars
  - All Chars
  - Last Char
  - Last 2 Chars
  - Last 3 Chars
  - Last 4 Chars
  - None

(Model syntax: String Mod Prefix  Trimesh Name  Trimesh Ref Name Suffix)

- **Trimesh Colour**
  - colour box
  - cyan
  - various

- **String**
  - select

- **String Location**
  - choice box
  - Centre
  - LHS
  - RHS

- **Trench Depth**
  - real

- **Trench Width**
  - real
  - 0.6

- **Trench Strip**
  - real
  - 0

(Allows a strip depth measured from the top of the trench)

- **Trench Closed**
  - choice box
  - true / false

- **Named Grade Top Surface**
  - choice box

(The top of the trench will follow this grade while the bottom of the trench is horizontal)
For more information on snippets, see 21.5 Defining and Using Snippets.

Continue to 20.4.3.5.3 TRI_2PT_PAV_DES_LAY or return to 20.4.3.5 12d Supplied Snippets or 20.4.3 Snippets.
20.4.3.5.3 TRI_2PT_PAV_DES_LAY

This Snippet is used to create typical pavement, using <Design> or <Layer> strings created in your MTF.

It is linked to the Start and End Links at a depth specified.

Offsets from these links can be set and measured Horizontally or down the slope created from the two links.

The Reference string name can be used as part of the model naming convention.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snippet</td>
<td>snippet box</td>
<td>*.mtfsnippet, *.mtfsnippetc files</td>
<td>snippet to run.</td>
</tr>
</tbody>
</table>
Alias, Start Chainage, End Chainage, Interval

defines the start and end chainages to apply a snippet.

For information on these panel fields, see 17.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply

For information on these panel fields, see 17.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Trimesh Name

Trimesh name that is used in model names below

String Mod Prefix

input

 DESIGN MESH STRS

Trimesh Mod Prefix

input

 DESIGN MESH

Trimesh Ref Name Suffix

choice box

Last 3 Chars

All Chars

Last Char

Last 2 Chars

Last 3 Chars

Last 4 Chars

None

(Model syntax: String Mod Prefix  Trimesh Name  Trimesh Ref Name Suffix)

Trimesh Colour
colour box

cyancyanvarious

Attach to Layer Name

choice box

Design various

Use Ref String for Start Link?

choice box

No

Yes / No

Start Link (if not Ref)

name

(Optional if use ref string is set to Yes)

End Link

name

Depth Type

choice box

Vertical

Normal

Top Surface

Bottom Surface

Depth 1

real-0.2

Depth 2

real

(Optional...if not used Depth 1 is set throughout)

Offset Type

choice box

Horizontal

On Slope

Offset 1

real

0

Offset 2

real

0

Auto L/R

choice box

No

Yes / No

if set to <No> then the Start and End Links remain unchanged.

If set to <Yes> then the Start and End Links need the suffix for L/R removed.
e.g. Any <Design> string names like ESL would need the <L> removed.

e.g. Any <Layer> string names like PVBALRO1 would need the <LRO1> removed.

Create Named Grades choice box No Yes / No

if set to <Yes> then a Named Grade in the format <Start Link Name _ End Link Name> is created for use in the MTF by other modifiers.

For more information on snippets, see 21.5 Defining and Using Snippets.

Continue to 20.4.3.5.4 TRI_2PT_PAV_EXT_STRS or return to 20.4.3.5 12d Supplied Snippets or 20.4.3 Snippets.
20.4.3.5.4 TRI_2PT_PAV_EXT_STRS

This Snippet is used to create typical pavement, using external strings NOT created in your MTF.

It is linked to the String 1 and String 2 at a depth specified.

Offsets from these links can be set and measured Horizontally or down the slope created from the two links.

The Reference string name can be used as part of the model naming convention.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snippet</td>
<td>snippet box</td>
<td>*.mtfsnippet, *.mtfsnippetc files</td>
<td>snippet to run.</td>
</tr>
</tbody>
</table>

Alias, Start Chainage, End Chainage, Interval
MTF defines the start and end chainages to apply a snippet. For information on these panel fields, see 17.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

### Comment, Extra start, Extra End, Active, OK, Apply
For information on these panel fields, see 17.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

**Trimesh Name**  
Trimesh name that is used in model names below

**String Mod Prefix**  
DESIGN MESH STRS

**Trimesh Mod Prefix**  
DESIGN MESH

**Trimesh Ref Name Suffix**  
Last 3 Chars
- Last Char
- Last 2 Chars
- Last 3 Chars
- Last 4 Chars
- None

*Model syntax: String Mod Prefix  Trimesh Name  Trimesh Ref Name Suffix*

**Trimesh Colour**  
cyan

**Attach to Layer Name**  
Design

**Use Ref String for Start Link?**  
Yes / No

**String 1**  
select

**String 2**  
select

**Depth Type**  
Vertical
- Normal
- Top Surface
- Bottom Surface

**Depth 1**  
-0.2

**Depth 2**  

*(Optional...if not used Depth 1 is set throughout)*

**Offset Type**  
Horizontal
- On Slope

**Offset 1**  
real0

**Offset 2**  
real0

**Create Named Grades**  
Yes / No

*If set to <Yes> then a Named Grade in the format <String 1 _ String 2> is created for use in the MTF by other modifiers.*
For more information on snippets, see 21.5 Defining and Using Snippets.

Continue to 20.4.3.5.5 TRI_2PT_PAV_NAMED_GRADES or return to 20.4.3.5 12d Supplied Snippets or 20.4.3 Snippets.
20.4.3.5.5 TRI_2PT_PAV_NAMED_GRADES

This Snippet is used to create typical pavement, using <Design> or <Layer> strings created in your MTF.

It is linked to the Start and End Links at a depth specified.

Offsets from these links can be set and measured Horizontally or down the slope created from the two links.

The Reference string name can be used as part of the model naming convention.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snippet</td>
<td>snippet box</td>
<td>*.mtfsnippet, *.mtfsnippetc</td>
<td>snippet to run</td>
</tr>
</tbody>
</table>

 MTFTF  Page 3705
Alias, Start Chainage, End Chainage, Interval

defines the start and end chainages to apply a snippet.

For information on these panel fields, see 17.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply

For information on these panel fields, see 17.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Trimesh Name input

Trimesh name that is used in model names below

String Mod Prefix input DESIGN MESH STRS

Trimesh Mod Prefix input DESIGN MESH

Trimesh Ref Name Suffix choice box Last 3 Chars All Chars

Last Char

Last 2 Chars

Last 3 Chars

Last 4 Chars

None

(Model syntax: String Mod Prefix  Trimesh Name  Trimesh Ref Name Suffix)

Trimesh Colour colour box cyan various

Attach to Layer Name choice box Design various

Use Ref String for Start Link? choice box No Yes / No

Start Link (if not Ref) name

(Optional if use ref string is set to Yes)

End Link name

Start Link Layer Name choice box Design various

End Link Layer Name choice box Design various

Named Grade 1 choice box Design various

(To define the top surface)

Named Grade 2 choice box Design various

(To define the typical batter slope)

Named Grade 3 choice box Design various

(To define the bottom surface)

Trimesh Type choice box Pavement Pavement / Bottom Surface

Depth 1 real -0.2

Depth 2 real

(Optional...if used is measure Normal to Named Grade 2)

Offset 1 real 0

Offset 2 real 0
Auto L/R choice box No Yes / No

If set to <No> then the Start and End Links remain unchanged.

If set to <Yes> then the Start and End Links need the suffix for L/R removed.

e.g. Any <Design> string names like ESL would need the <L> removed

e.g. Any <Layer> string names like PVBA <LRO1 would need the <LRO1> removed

For more information on snippets, see 21.5 Defining and Using Snippets.

Continue to 20.4.3.5.6 TRI_2PT_PAV NAMED_GRADES_EXT_STRS or return to 20.4.3.5 12d Supplied Snippets or 20.4.3 Snippets.
20.4.3.5.6 TRI_2PT_PAV_NAMED_GRADES_EXT_STRS
This Snippet is used to create typical pavement, using External strings NOT created in your MTF.
It is linked to the String 1 and String 2 at a depth specified.
Offsets from these links can be set and measured Horizontally.
The Reference string name can be used as part of the model naming convention.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snippet</td>
<td>snippet box</td>
<td>*.mtfsnippet, *.mtfsnippet</td>
<td>files</td>
</tr>
</tbody>
</table>

Snippet to run.

Alias, Start Chainage, End Chainage, Interval
defines the start and end chainages to apply a snippet.
For information on these panel fields, see 17.2.2.1 Common Fields and Buttons on MTF Modifier Panels.

**Comment, Extra start, Extra End, Active, OK, Apply**

For information on these panel fields, see 17.2.2.1 Common Fields and Buttons on MTF Modifier Panels.

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Trimesh Name</strong></td>
<td>input</td>
</tr>
<tr>
<td><em>Trimesh name that is used in model names below</em></td>
<td></td>
</tr>
<tr>
<td><strong>String Mod Prefix</strong></td>
<td>input</td>
</tr>
<tr>
<td>DESIGN MESH STRS</td>
<td></td>
</tr>
<tr>
<td><strong>Trimesh Mod Prefix</strong></td>
<td>input</td>
</tr>
<tr>
<td>DESIGN MESH</td>
<td></td>
</tr>
<tr>
<td><strong>Trimesh Ref Name Suffix</strong></td>
<td>choice box</td>
</tr>
<tr>
<td>Last 3 Chars</td>
<td></td>
</tr>
<tr>
<td>All Chars</td>
<td></td>
</tr>
<tr>
<td>Last Char</td>
<td></td>
</tr>
<tr>
<td>Last 2 Chars</td>
<td></td>
</tr>
<tr>
<td>Last 3 Chars</td>
<td></td>
</tr>
<tr>
<td>Last 4 Chars</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

*(Model syntax: String Mod Prefix Trimesh Name Trimesh Ref Name Suffix)*

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Trimesh Colour</strong></td>
<td>colour box cyan various</td>
</tr>
<tr>
<td><strong>String 1</strong></td>
<td>select</td>
</tr>
<tr>
<td><strong>String 2</strong></td>
<td>select</td>
</tr>
<tr>
<td><strong>Named Grade 1</strong></td>
<td>choice box Design various</td>
</tr>
<tr>
<td><em>(To define the top surface)</em></td>
<td></td>
</tr>
<tr>
<td><strong>Named Grade 2</strong></td>
<td>choice box Design various</td>
</tr>
<tr>
<td><em>(To defined the typical batter slope)</em></td>
<td></td>
</tr>
<tr>
<td><strong>Named Grade 3</strong></td>
<td>choice box Design various</td>
</tr>
<tr>
<td><em>(To define the bottom surface)</em></td>
<td></td>
</tr>
<tr>
<td><strong>Trimesh Type</strong></td>
<td>choice box Pavement Pavement / Bottom Surface</td>
</tr>
<tr>
<td><strong>Depth 1</strong></td>
<td>real</td>
</tr>
<tr>
<td><strong>Depth 2</strong></td>
<td>real</td>
</tr>
<tr>
<td><em>(Optional...if used is measure Normal to Named Grade 2)</em></td>
<td></td>
</tr>
<tr>
<td><strong>Offset 1</strong></td>
<td>real</td>
</tr>
<tr>
<td><strong>Offset 2</strong></td>
<td>real</td>
</tr>
</tbody>
</table>


For more information on snippets, see 21.5 Defining and Using Snippets.

Continue to 20.4.3.5.7 TRI_2PT_PAV_STOP_NAMED_GRADES or return to 20.4.3.5 12d Supplied Snippets or 20.4.3 Snippets.
20.4.3.5.7 TRI_2PT_PAV_STOP_NAMED_GRADES

This Snippet is used to create typical pavement, using <Design> or <Layer> strings created in your MTF.

It is linked to the Start and End Links at a depth specified.

Offsets from these links can be set and measured Horizontally or down the slope created from the two links.

The Reference string name can be used as part of the model naming convention.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snippet</td>
<td>snippet box</td>
<td>*.mtfsnippet, *.mtfsnippetc files</td>
<td></td>
</tr>
</tbody>
</table>
snippet to run.

**Alias, Start Chainage, End Chainage, Interval**

defines the start and end chainages to apply a snippet.

For information on these panel fields, see 17.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

**Comment, Extra start, Extra End, Active, OK, Apply**

For information on these panel fields, see 17.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

**Trimesh Name**  
*input*

Trimesh name that is used in model names below

<table>
<thead>
<tr>
<th>String Mod Prefix</th>
<th>input</th>
<th>DESIGN MESH STRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimesh Mod Prefix</td>
<td>input</td>
<td>DESIGN MESH</td>
</tr>
<tr>
<td>Trimesh Ref Name Suffix</td>
<td>choice box</td>
<td>Last 3 Chars</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last Char</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last 2 Chars</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last 3 Chars</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last 4 Chars</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None</td>
</tr>
</tbody>
</table>

(Model syntax: String Mod Prefix  Trimesh Name  Trimesh Ref Name Suffix)

<table>
<thead>
<tr>
<th>Trimesh Colour</th>
<th>colour box</th>
<th>cyan</th>
<th>various</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attach to Layer Name</td>
<td>choice box</td>
<td>Design</td>
<td>various</td>
</tr>
<tr>
<td>Use Ref String for Start Link?</td>
<td>choice box</td>
<td>No</td>
<td>Yes / No</td>
</tr>
<tr>
<td>Start Link (if not Ref)</td>
<td>name</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Optional if use ref string is set to Yes)

<table>
<thead>
<tr>
<th>End Link</th>
<th>name</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Link Layer Name</td>
<td>choice box</td>
<td>Design</td>
<td>various</td>
</tr>
<tr>
<td>End Link Layer Name</td>
<td>choice box</td>
<td>Design</td>
<td>various</td>
</tr>
<tr>
<td>Named Grade 1</td>
<td>choice box</td>
<td>Design</td>
<td>various</td>
</tr>
</tbody>
</table>

(To define the top surface)

| Named Grade 2 | choice box | Design | various |

(To define the typical batter slope)

| Named Grade 3 | choice box | Design | various |

(To define the bottom surface)

<table>
<thead>
<tr>
<th>Trimesh Type</th>
<th>choice box</th>
<th>Pavement</th>
<th>Pavement / Bottom Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth 1</td>
<td>real</td>
<td>-0.2</td>
<td></td>
</tr>
<tr>
<td>Depth 2</td>
<td>real</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Optional...if used is measure Normal to Named Grade 2)

| Offset 1 | real | 0 |
Offset 2  
real  0

Auto L/R  
choice box  No  Yes / No

* If set to <No> then the Start and End Links remain unchanged.
* If set to <Yes> then the Start and End Links need the suffix for L/R removed.

* e.g. Any <Design> string names like ESL would need the <L> removed
* e.g. Any <Layer> string names like PVBALRO1 would need the <LRO1> removed

Stop at Layer  
choice box  Design  various

Stop Link  
name

(The stop layer and link are to be used to stop any pavement layer under a specific point such as a drain invert or interface point, rather than extending through at "Named Grade 2")

For more information on snippets, see 21.5 Defining and Using Snippets.

Continue to 20.4.3.5.8 TRI_2PT_PAV_STOP_NAMED_GRADES_EXT_STRS or return to 20.4.3.5 12d Supplied Snippets or 20.4.3 Snippets.
20.4.3.5.8 TRI_2PT_PAV_STOP_NAMED_GRADES_EXT_STRS

This Snippet is used to create typical pavement, using External strings NOT created in your MTF. It is linked to the String 1 and String 2 at a depth specified. Offsets from these links can be set and measured Horizontally. The Reference string name can be used as part of the model naming convention.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snippet</td>
<td>snippet box</td>
<td>*.mtfsnippet,</td>
<td>*.mtfsnippet files</td>
</tr>
</tbody>
</table>

snippet to run.
Alias, Start Chainage, End Chainage, Interval

defines the start and end chainages to apply a snippet.

For information on these panel fields, see 17.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply

For information on these panel fields, see 17.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Trimesh Name

Trimesh name that is used in model names below

String Mod Prefix
input

Trimesh Mod Prefix
input

Trimesh Ref Name Suffix
choice box

(Model syntax: String Mod Prefix Trimesh Name Trimesh Ref Name Suffix)

Trimesh Colour
colour box
cyancyan various

String 1
select

String 2
select

Named Grade 1
choice box
Design various

Named Grade 2
choice box
Design various

Named Grade 3
choice box
Design various

Trimesh Type
choice box
Pavement Pavement / Bottom Surface

Depth 1
real
-0.2

Depth 2
real

Offset 1
real
0

Offset 2
real
0

Stop at Layer
choice box
Design various

Stop Link
name

(The stop layer and link are to be used to stop any pavement layer under a specific point such as a drain invert or interface point, rather than extending through at "Named Grade 2")
For more information on snippets, see 21.5 Defining and Using Snippets.

Continue to 20.4.3.5.9 TRI_2PT_STRUCT_FILL or return to 20.4.3.5 12d Supplied Snippets or 20.4.3 Snippets.
20.4.3.5.9 TRI_2PT_STRUCT_FILL

This Snippet is used to create typical pavement, using <Design> or <Layer> strings created in your MTF.

It is linked to the Start and End Links at a slope specified.

Slopes are for fill, so no sign is required for either slope.

The Reference string name can be used as part of the model naming convention.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snippet</td>
<td>snippet box</td>
<td>*.mtfsnippet, *.mtfsnippetc files</td>
<td>snippet to run.</td>
</tr>
</tbody>
</table>
### Alias, Start Chainage, End Chainage, Interval

defines the start and end chainages to apply a snippet.

For information on these panel fields, see 17.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

### Comment, Extra start, Extra End, Active, OK, Apply

For information on these panel fields, see 17.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimesh Name</td>
<td>input</td>
<td>DESIGN MESH STRS</td>
</tr>
<tr>
<td>String Mod Prefix</td>
<td>input</td>
<td>DESIGN MESH</td>
</tr>
<tr>
<td>Trimesh Mod Prefix</td>
<td>input</td>
<td>DESIGN MESH</td>
</tr>
<tr>
<td>Trimesh Ref Name Suffix</td>
<td>choice box</td>
<td>Last 3 Chars</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last Char</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last 2 Chars</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last 3 Chars</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last 4 Chars</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None</td>
</tr>
</tbody>
</table>

(Model syntax: String Mod Prefix  Trimesh Name  Trimesh Ref Name Suffix)

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimesh Colour</td>
<td>colour box</td>
<td>cyan</td>
</tr>
<tr>
<td>Attach to Layer Name</td>
<td>choice box</td>
<td>Design</td>
</tr>
<tr>
<td>Start Link</td>
<td>name</td>
<td></td>
</tr>
<tr>
<td>End Link</td>
<td>name</td>
<td></td>
</tr>
<tr>
<td>Start Fill Slope</td>
<td>real</td>
<td>1</td>
</tr>
<tr>
<td>End Fill Slope</td>
<td>real</td>
<td>1</td>
</tr>
<tr>
<td>Tin Interface</td>
<td>tin</td>
<td></td>
</tr>
<tr>
<td>Auto L/R</td>
<td>choice box</td>
<td>No</td>
</tr>
</tbody>
</table>

if set to <No> then the Start and End Links remain unchanged.

If set to <Yes> then the Start and End Links need the suffix for L/R removed.

e.g. Any <Design> string names like ESL would need the <L> removed

e.g. Any <Layer> string names like PVBALRO1 would need the <LRO1> removed
For more information on snippets, see 21.5 Defining and Using Snippets.

Continue to 20.4.3.5.10 TRI_3PT_PAV_DES_LAY or return to 20.4.3.5 12d Supplied Snippets or 20.4.3 Snippets.
20.4.3.5.10 TRI_3PT_PAV_DES_LAY

This Snippet is used to create typical pavement, using <Design> or <Layer> strings created in your MTF.

It is linked to the First, Second and Third Links at depths specified.

Offsets from these links can be set and measured Horizontally or down the slope created from the links.

The Reference string name can be used as part of the model naming convention.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snippet</td>
<td>snippet box</td>
<td>*.mtfsnippet, *.mtfsnippetc files</td>
<td>snippet to run.</td>
</tr>
<tr>
<td>Alias</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start Chainage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End Chainage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimesh name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>String Mod Prefix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimesh Mod Prefix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimesh Ref Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimesh colour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attach to Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use Ref String for Start link?</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First link (if not Ref)</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second link</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third link</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auto L/R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create Named Grades</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Named Grades are parallel?</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
defines the start and end chainages to apply a snippet.

For information on these panel fields, see 17.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

**Comment, Extra start, Extra End, Active, OK, Apply**

For information on these panel fields, see 17.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

<table>
<thead>
<tr>
<th><strong>Trimesh Name</strong></th>
<th>input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimesh name that is used in model names below</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>String Mod Prefix</strong></th>
<th>input</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESIGN MESH STRS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Trimesh Mod Prefix</strong></th>
<th>input</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESIGN MESH</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Trimesh Ref Name Suffix</strong></th>
<th>choice box</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last 3 Chars</td>
<td></td>
</tr>
</tbody>
</table>

- All Char
- Last 2 Chars
- Last 3 Chars
- Last 4 Chars
- None

*(Model syntax: String Mod Prefix  Trimesh Name  Trimesh Ref Name Suffix)*

<table>
<thead>
<tr>
<th><strong>Trimesh Colour</strong></th>
<th>colour box</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyan</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Attach to Layer Name</strong></th>
<th>choice box</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Use Ref String for Start Link</strong>?</th>
<th>choice box</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

- Yes / No

<table>
<thead>
<tr>
<th><strong>First Link (if not Ref)</strong></th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Optional if use ref string is set to Yes)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Second Link</strong></th>
<th>name</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th><strong>Third Link</strong></th>
<th>name</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th><strong>Depth Type</strong></th>
<th>choice box</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical</td>
<td></td>
</tr>
</tbody>
</table>

- Normal
- Top Surface
- Bottom Surface

<table>
<thead>
<tr>
<th><strong>Depth 1</strong></th>
<th>real</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.2</td>
<td></td>
</tr>
</tbody>
</table>

*(Measured from First Link)*

<table>
<thead>
<tr>
<th><strong>Depth 3</strong></th>
<th>real</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.2</td>
<td></td>
</tr>
</tbody>
</table>

*(Measured from Third Link)*

<table>
<thead>
<tr>
<th><strong>Offset Type</strong></th>
<th>choice box</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Offset 1</strong></th>
<th>real</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

*(Measured from First Link)*

<table>
<thead>
<tr>
<th><strong>Offset 3</strong></th>
<th>real</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

*(Measured from Third Link)*
Auto L/R choice box No Yes / No
If set to <No> then the Start and End Links remain unchanged.
If set to <Yes> then the Start and End Links need the suffix for L/R removed.
e.g. Any <Design> string names like ESL would need the <L> removed
   e.g. Any <Layer> string names like PVBALRO1 would need the <LRO1> removed

Create Named Grades choice box No Yes / No
if set to <Yes> then a Named Grade in the format <Start Link Name _ End Link Name> is created for use in the MTF by other modifiers

Named Grades are Parallel? choice box No Yes / No
(This is a decision by the user in case the three links form one grade.
If No then the middle point is calculated as an intersection of two grades, using "Depth 1" & "Depth 3".
If Yes then the middle point is calculated from the Second Link at the "Depth 1")

For more information on snippets, see 21.5 Defining and Using Snippets.

Continue to 20.4.3.5.11 TRI_3PT_PAV_EXT_STRS or return to 20.4.3.5 12d Supplied Snippets or 20.4.3 Snippets.
20.4.3.5.11 TRI_3PT_PAV_EXT_STRS

This Snippet is used to create typical pavement, using External strings NOT created in your MTF. It is linked to the three strings at depths specified. Offsets from these links can be set and measured Horizontally or down the slope created from the links. The Reference string name can be used as part of the model naming convention.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snippet</td>
<td>snippet box</td>
<td>*.mtfsnippet, *.mtfsnippetc files</td>
<td>snippet to run.</td>
</tr>
</tbody>
</table>
Alias, Start Chainage, End Chainage, Interval
defines the start and end chainages to apply a snippet.

For information on these panel fields, see 17.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply
For information on these panel fields, see 17.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Trimesh Name input
Trimesh name that is used in model names below

String Mod Prefix input DESIGN MESH STRS
Trimesh Mod Prefix input DESIGN MESH
Trimesh Ref Name Suffix choice box
Last 3 Chars All Chars
Last Char Last 2 Chars
Last 3 Chars Last 4 Chars
None

(Model syntax: String Mod Prefix Trimesh Name Trimesh Ref Name Suffix)

Trimesh Colour colour box cyan various
Attach to Layer Name choice box Design various
Use Ref String for Start Link? choice box No Yes / No

String 1 select
String 2 select
String 3 select

Depth Type choice box Vertical
Normal
Top Surface
Bottom Surface

Depth 1 real -0.2
(Measured from First Link)

Depth 3 real -0.2
(Measured from Third Link)

Offset Type choice box Horizontal
Horizontal
On Slope

Offset 1 real 0
(Measured from First Link)

Offset 3 real 0
(Measured from Third Link)
Create Named Grades  choice box  No  Yes / No
if set to <Yes> then a Named Grade in the format <Start Link Name _ End Link Name> is created for use in the MTF by other modifiers

Named Grades are Parallel?  choice box  No  Yes / No
(This is a decision by the user in case the three links form one grade.
If No then the middle point is calculated as an intersection of two grades, using "Depth 1" & "Depth 3".
If Yes then the middle point is calculated from the Second Link at the "Depth 1")

For more information on snippets, see 21.5 Defining and Using Snippets.
Continue to 20.4.3.5.12 TRI_KERB_PROFILE or return to 20.4.3.5 12d Supplied Snippets or 20.4.3 Snippets.
20.4.3.5.12 TRI_KERB_PROFILE

This Snippet is used to create typical kerb profile, using <Design> or <Layer> strings created in your MTF.

It is defined by four Links at a depth specified by one of those links.

The Reference string name can be used as part of the model naming convention.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snippet</td>
<td>snippet box</td>
<td>*.mtfsnippet,</td>
<td>*.mtfsnippetc files</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*.mtfsnippet,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>*.mtfsnippetc</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>files</td>
<td></td>
</tr>
<tr>
<td>Alias</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start Chainage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chainage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension ref</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End Chainage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chainage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension ref</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimesh name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>String Mod Prefix</td>
<td>DESIGN MESH STRS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimesh Mod Prefix</td>
<td>DESIGN MESH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimesh Ref Name Suffix</td>
<td>Last 3 Chars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimesh Colour</td>
<td>cyan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attach to Layer Name</td>
<td>Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Link (Kerb Lip)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second Link (Kerb Invert)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third Link (Kerb Top)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourth Link (Kerb Beck)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth Control Link</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auto L/R</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Active

* valid

The fields and buttons used in this panel have the following functions.
defines the start and end chainages to apply a snippet.

For information on these panel fields, see 17.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply

For information on these panel fields, see 17.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Trimesh Name input

Trimesh name that is used in model names below

String Mod Prefix input DESIGN MESH STRS

Trimesh Mod Prefix input DESIGN MESH

Trimesh Ref Name Suffix choice box Last 3 Chars All Chars

Last Char

Last 2 Chars

Last 3 Chars

Last 4 Chars

None

(Model syntax: String Mod Prefix Trimesh Name Trimesh Ref Name Suffix)

Trimesh Colour colour box cyan various

Attach to Layer Name choice box Design various

First Link name

Second Link name

Third Link name

Fourth Link name

Depth real

Depth Control Link name

Auto L/R choice box No Yes / No

if set to <No> then the Start and End Links remain unchanged.

If set to <Yes> then the Start and End Links need the suffix for L/R removed.

e.g. Any <Design> string names like ESL would need the <L> removed

e.g. Any <Layer> string names like PVBALRO1 would need the <LRO1> removed
For more information on snippets, see 21.5 Defining and Using Snippets.

Return to 20.4.3.5 12d Supplied Snippets or 20.4.3 Snippets.
20.4.4 Rename MTF

Position of option on menu:  Design => MTF => Rename

Selecting Rename brings up the MTF Rename panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTF to rename</td>
<td>file box</td>
<td>*.mtf files</td>
<td></td>
</tr>
<tr>
<td>New name</td>
<td>file box</td>
<td>*.mtf files</td>
<td></td>
</tr>
<tr>
<td>Change MTF name in associated</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apply MTF functions</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If ticked, rename the MTF in all functions that include it.

Rename button
rename the MTF file to the new name.

Go to the next section 20.4.5 Apply MTF or return to 20.4 MTF.
20.4.5 Apply MTF

Position of option on menu: Design => MTF => Apply MTF

The Apply MTF option is used to apply a MTF file to a selected hinge string.
The option has already been described under Design=>Apply=>Apply MTF.

For the description of Apply MTF, please go to the section 20.3.2 Apply MTF Function.

Go to the next section 20.4.6 Edit by String or return to 20.4 MTF.
20.4.6 Edit by String

**Position of option on menu:**  Design => MTF => Edit by string

The **Edit by string** option is used to edit the **MTF** by selecting a string created by the **MTF** in an **Apply MTF**.

Selecting **Edit by string** brings up the **Edit MTF/Survey Function Data** panel:

![Edit MTF/Survey Function Data panel]

After selecting the **Pick Edit** button, a string created by MTF function is selected and the MTF editor is started for the MTF.

For information on the **MTF Editor**, go to the section **20.4.1.1 MTF Edit**.

Go to the next section **20.4.7 Copy MTF** or return to **20.4 MTF**.
20.4.7 Copy MTF

Position of option on menu: Design => MTF => Copy

Selecting Copy brings up the Copy an MTF panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTF to copy</td>
<td>file box</td>
<td>*.mtf files</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the MTF file to copy.</td>
<td></td>
</tr>
<tr>
<td>Target MTF</td>
<td>file box</td>
<td>*.mtf files</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>new name for the MTF file.</td>
<td></td>
</tr>
<tr>
<td>Copy all backups</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, copy all the backup files of the MTF as well.</td>
<td></td>
</tr>
<tr>
<td>Copy</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>copy the MTF file to the new name.</td>
<td></td>
</tr>
</tbody>
</table>

Go to the next section 20.4.8 Delete MTF or return to 20.4 MTF.
20.4.8 Delete MTF

Position of option on menu: Design => MTF => Delete

Selecting Delete brings up the Delete an MTF panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTF to delete</td>
<td>file box</td>
<td>* .mtf files</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the MTF file to delete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete all backups</td>
<td>tick box</td>
<td></td>
<td>if ticked, delete all the backup files of the MTF as well</td>
</tr>
<tr>
<td>Delete</td>
<td>button</td>
<td></td>
<td>delete the MTF file.</td>
</tr>
</tbody>
</table>

Go to the next section 20.4.9 Create File or return to 20.4 MTF.
20.4.9 Create File

Position of option on menu: Design => MTF => Create file

The MTF => Create file option is used to create a new Modifiers and Templates Files (*.mtf) with the text editor pointed to by the EDIT_4D environment variable.

The created file will already have all the section headers (key words and opening and closing brackets) in it.

Selecting Create file brings up the Create MTF File *.mtf panel.

![Create MTF File *.mtf panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folder</td>
<td>folder box</td>
<td>folder box</td>
<td>current folder</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the folder for the .mtf file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File to create</td>
<td>file box</td>
<td>file box</td>
<td>*.mtf files</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the file to create. The new MTF file already has each of the section headers set up.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create</td>
<td>button</td>
<td></td>
<td></td>
<td>create an MTF file given by the Folder and File to create panel fields. If the file given in the File to edit field already exists, then an error occurs.</td>
</tr>
</tbody>
</table>

The text format for the MTF file is described in the section 21.10.1 Text Format of the MTF File.

Go to the next section 20.4.10 Edit MTF File or return to 20.4 MTF.
20.4.10 Edit MTF File

Position of option on menu: Design => MTF => Edit file

The MTF=>Edit file option is used to edit MTF files (*.mtf) with the text editor pointed to by the EDIT_4D environment variable.

The MTF=>Edit file option has two modes of operation - selecting the MTF=>Edit file itself, or by activating the MTF=>Edit file option's walk-right menu, folder *.mtf. Selecting MTF=>Edit file itself brings up the Edit a MTF File *.mtf panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folder</td>
<td>name of the folder for the .mtf file.</td>
<td>folder box</td>
<td>current folder</td>
<td></td>
</tr>
<tr>
<td>File to edit</td>
<td>name of the MTF file, in Folder, to edit.</td>
<td>file box</td>
<td>*.mtf files</td>
<td></td>
</tr>
<tr>
<td>Edit</td>
<td>edit the MTF file given by the Folder and File to edit panel fields by the text editor pointed to by the EDIT_4D environment variable. If the file given in the File to edit field does not exist, then a new file is created which already has each of the section headers set up.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Similarly the MTF=>Edit file walk-right menu provides a list all the MTF files (files ending in .mtf) in the current folder. When a file is selected from the list, it is automatically loaded into the text editor.

The text format for the MTF file is described in the section 21.10.1 Text Format of the MTF File.

Return to 20.4 MTF.
20.5 Boxing

Position of menu:  Design => Boxing

The Boxing walk-right menu is

In the Apply MTF option, boxing can be applied to the generated design sections by special commands in the MTF.

However, it is also possible to apply boxing as a post process to a model of x-sections as long as the x-sections were generated in the 4d super string format (this is done by both the Apply and Apply MTF options and the Cuts options - see 28.9.13 Cuts).

For more information on boxing, see 21.6 What is Boxing? and for more information on the various scenarios for generating boxing, see 21.6.2 Applying Boxing.

The rules for calculating different types of boxing are known as Boxing Definitions and Boxing Definition are created and stored in a Boxing file.

The Boxing, and the different Boxing Definitions contained within the file, are created/edited using the options Create and Edit from the Template Boxing menu.

The options Boxing many function, Boxing many and Boxing use the Boxing Definitions to generate boxing.

For the options see:

- Create definitions 20.5.1 Create Boxing Definitions
- Edit definitions 20.5.2 Edit Boxing Definitions
- Rename 20.5.3 Rename Boxing File
- Boxing many function 20.5.4 Boxing Many Function
- Boxing 20.5.5 Apply Boxing
- Boxing many 20.5.6 Apply Boxing Many
- Copy boxing 20.5.7 Copy Boxing
- Delete boxing 20.5.8 Delete a Boxing File
- Create definitions file 20.5.9 Create Definitions Text File
- Edit definitions file 20.5.4 Boxing Many Function
20.5.1 Create Boxing Definitions

Position of option on menu:  Design =>Boxing =>Create definitions

The rules for calculating different types of boxing are known as Boxing Definitions and Boxing Definition are created and stored in a Boxing file.

The Boxing=>Create definitions option is used to create a new Boxing file (*.bf), and then the Edit Boxing Definitions panel is opened for the Boxing file to create and add new Boxing Definitions. The Edit Boxing Definitions panel is then used to write the Boxing file to disk.

and can be edited using the Boxing =>Edit definitions option, or by standard text editor.

Selecting Create definitions displays the Create Boxing File panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boxing file</td>
<td>file box</td>
<td>*.bf files</td>
<td>name of the boxing file to create.</td>
</tr>
</tbody>
</table>

Create button

create a boxing file with name given by the boxing file panel fields.
If the file given in the boxing file field does not exist, then the Edit Boxing Definitions panel is placed on the screen and is used to create and edit the boxing definitions for the boxing file.
If the file already exists, then nothing will happen on selecting Create.

When Create is selected from the Create Boxing File panel, it brings up the Edit Boxing Definitions panel which is used to create and edit the boxing definitions, and to saved the boxing definitions to disk in the boxing file.

For information on the Edit Boxing Definitions panel, go to 21.7.2 Edit Boxing File.

The Edit Boxing Definitions panel is described in the section 21.7.2 Edit Boxing File.

Go to the next section 20.5.2 Edit Boxing Definitions or return to 20.5 Boxing.
20.5.2 Edit Boxing Definitions

Position of option on menu: Design => Boxing => Edit definitions

The Boxing => Edit definitions option is used to edit Boxing files (*.bf).

The Boxing => Edit definitions option has two modes of operation - selecting the Boxing => Edit definitions itself, or by activating the Boxing => Edit definitions option's walk-right menu, folder *.bf. Clicking on Boxing=>Edit definitions itself brings up the edit boxing file panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boxing file</td>
<td>input</td>
<td>* .bf</td>
<td>files</td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the boxing file to edit.</td>
<td></td>
</tr>
<tr>
<td>Edit</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

edit the file given by boxing file panel field.
If the file given in the boxing file field exists, then the Edit Boxing Definitions panel is brought up to create/edit the boxing definitions in the boxing file.

Similarly, walking right on Boxing=>Edit provides a list all the boxing files (files ending in .bf) in the current folder and when a file is selected from the list, the Edit Boxing Definitions panel is brought up for the selected boxing file.

The Edit Boxing Definitions panel is described in the section 21.7.2 Edit Boxing File.

Go to the next section 20.5.3 Rename Boxing File or return to 20.5 Boxing.
20.5.3 Rename Boxing File

Position of option on menu:  Design =>Boxing =>Rename

On selecting Rename, the Boxing Rename panel is displayed.

This panel can be used to change the names of existing boxing files.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boxing to rename</td>
<td>boxing file</td>
<td>box</td>
<td>*.bf files</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>name of the boxing file to be renamed.</td>
</tr>
<tr>
<td>New name</td>
<td>boxing file</td>
<td>box</td>
<td>*.bf files</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>new name for the boxing file</td>
</tr>
<tr>
<td>Change Boxing name in associated Apply MTF functions</td>
<td>tick box</td>
<td></td>
<td>if ticked, rename the bf file in all the Apply MTF functions that include it.</td>
</tr>
<tr>
<td>Rename</td>
<td>button</td>
<td></td>
<td>Change the name of the boxing file in the Boxing to rename field to the name given in the New name field.</td>
</tr>
</tbody>
</table>

Go to the next section 20.5.4 Boxing Many Function or return to 20.5 Boxing.
20.5.4 Boxing Many Function

**Position of option on menu:** Design => Boxing => Boxing many function

This option is used to cut strings to create sections and then apply up to eight layers of boxing to the cut sections.

Selecting **Boxing many function** displays the **Boxing Many** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>function box</td>
<td></td>
<td>available boxing functions</td>
</tr>
<tr>
<td>Boxing file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centreline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create arcs</td>
<td>no arcs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sections mode</td>
<td>Cut sections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model to cut through</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section separation</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left cut width</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right cut width</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chord/arc tolerance</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start chainage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>Start (ref)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension ref</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End chainage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>End (ref)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension ref</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special chainages file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for sections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filter out single point strings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create tin for sections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin for sections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for tin</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Boxing Many Panel](image.png)
name of the Boxing function

**Boxing file**
- file box
- *.bf files

*the Boxing file that contains the Boxing Definition that are be applied to the cut sections*

**Centreline**
- string select

*string to use for chainage, and perpendicular, for cutting cross sections to apply the boxing to*

For the information on each **Boxing Many** tab, go to
- [Sections tab](#)
- [Layers tab](#)
- [Left/Right Boxing tabs](#)
- [Volumes tab](#)
Sections tab

**Function**

**Boxing file**

**Centreline**

**Sections tab**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create arcs</td>
<td>no arcs</td>
</tr>
<tr>
<td>Sections mode</td>
<td>Cut sections</td>
</tr>
<tr>
<td>Model to cut through</td>
<td>available models</td>
</tr>
<tr>
<td>Section separation</td>
<td>10</td>
</tr>
<tr>
<td>Left cut width</td>
<td>50</td>
</tr>
<tr>
<td>Right cut width</td>
<td>50</td>
</tr>
<tr>
<td>Chord/arc tolerance</td>
<td>0.1</td>
</tr>
</tbody>
</table>

**Start chainage**

- **Mode**: Start (ref)
- **Extension ref**

**End chainage**

- **Mode**: End (ref)
- **Extension ref**

**Special chainages file**

**Model for sections**

**Colour**

**Filter out single point strings**

- **Create tin for sections**
- **Tin for sections**
- **Model for tin**

**Sections mode**

-choice box

Cut sections, Use existing sections

if Cut section, sections are cut through the strings in the *Model to cut through* and placed in *Model for sections*.

If User existing sections, no sections are cut and the existing sections in *Model for sections* are used to apply the boxing to.

**Model to cut through**

-model box

model of strings to cut sections through

**Section separation**

-input 10

the distance along the selected centre line to generate plan section lines to be used to cut through the...
model or view.

**Left/Right cut width**  input  50

the left/right distance to go out from the centre line for creating a section to cut through the strings.

**Chord/arc tolerance**  input  default chord/arc tolerance

the chord to arc tolerance to use on the selected string for determining how many plan sections are created around horizontal curves.

**Start/End chainage**  choice box  Start (ref)/End (ref)

**Mode**  choice box  Smart Chainage modes

**Extension ref**  real box

the **Start/End chainage**, **Mode** and **Extension ref** are all used to define the start/end chainage on the selected centreline string.

The sections for the cuts are restricted to between these start and end chainage.

If blank, the **Start/End chainage** of the reference string is used

For more information on **Start/End Chainage Modes**, see [21.2.1 MTF Hinge Modifiers](#).

**Special chainages file**  file box  *.spf files

a file containing chainages, one per line, that are also used as extra chainages to create cross sections at.

**Model for sections**  model box  available models

model for the cut cross sections.

**Colour**  colour box  available colours

colour for the cut cross sections.

**Filter out single point strings**  tick box

if ticked, don’t save any sections that only have a single point in them

**Create tin for sections**  tick box

if ticked, a tin of the cross sections in **Model for sections** is created.

**Tin for sections**  tin box  available tins

name of the tin of cross sections

**Model for tin**  model box  available models

model for the cross sections tin.
Layers tab

The layers tab consists of a grid for defining up to eight layers of boxing strings and sections. The last boxing layer is also referred to as the subgrade layer.

Boxing Layer 1-8:

If the model names are non-blank, boxing strings and sections will be created for that layer.

For more information on boxing, see 21.6 What is Boxing?

Strings input

If non-blank, pre*post text to use with the function name to create the name of the model for the boxing strings for this layer.
If blank, the boxing strings will not be stored for this layer.

**Sections**

input available models

*if non-blank, pre*post text to use with the function name to create the name of the model for the boxing sections for this layer.

*If blank, the boxing sections will not be stored for this layer.*

**Colour**

colour box available colours

colour for the boxing sections for this layer

**Create subgrade tin**

tick box

*if ticked, then a tin of the subgrade strings and sections is created. Note - the subgrade is the last boxing layer.*

**Subgrade tin**

tin box available tins

*name for the subgrade tin*

**Subgrade tin model**

model box available models

*model for the subgrade tin*
Left/Right Boxing tabs

Tab for applying left boxing - gives the chainage range and boxing definitions to use for each of the eight layers of boxing

For more information on boxing, see 21.6 What is Boxing?

Layer choice box

Layer 1, Layer 2 ... Layer 8

As each layer is selected, a grid for defining the chainages and boxing definition that applies to that chainage are given in the grid. The boxing definition goes from the chainage on the row specifying the boxing file until the chainage on the next row.

Layer grid:

For each selected layer:

Chainage smart chainage box

For the selected boxing layer, the chainage to apply the boxing definition to. The boxing file starts at this chainage and goes until the chainage on the next row.

If you right click in the Chainage column in the Left/Right Boxing tabs, or select Browse (if the Browse menu comes up) then a Chainage panel comes up which has the most of the standard MTF choices for Smart Chainages.

The Chainage Mode will determine what other fields are also on the panel (for example Extension ref for Mode Typed). For more information on Chainage Modes, see 21.2.1 MTF Hinge Modifiers

Boxing boxing definition box

The boxing definition to use with the given chainage range. The pop-up lists all the boxing definitions in the Boxing file

Comment

Record a comment
Volumes tab

**Calculate volumes**
- tick box
  - if ticked, then end area volumes are created

**Tin**
- tin box
  - available tins
  - name of the natural surface tin - required if volumes to the natural surface are calculated

**Model for tin sections**
- model box
  - available models
  - if non blank, model to put the natural surface sections into
Report file        file box        *.rpt
if non-blank, the name of the file to contain the volume report. If the file already exists, the report will be appended to the file.
If blank, no report is produced.

Report mode        choice box        Summary, Full
if Summary, the report only contains the final volumes.
If Full, the report contains sections by section areas and volumes as well as the summary of volumes.

Calculate natural surface to design volumes    tick box    tick
if ticked, end area volumes between the natural surface and the design strings are written to the report file

Calculate natural surface to subgrade volume    tick box    tick
if ticked, end area volumes between the natural surface to the subgrade (the last boxing layer) are written to the report file

Calculate design to subgrade volumes    tick box    tick
if ticked, end area volumes between the design strings and the subgrade (the last boxing layer) are written to the report file.

Calculate inter-boxing layer volumes    tick box    tick
if ticked, end area volumes between each of the boxing layers are written to the report file.

Run button
run the option

For more information on boxing, see 21.6 What is Boxing? and for more information on the various scenarios for generating boxing, see 21.6.2 Applying Boxing.

Go to the next section 20.5.5 Apply Boxing or return to 20.5 Boxing.
20.5.5 Apply Boxing

**Position of option on menu:**  Design => Boxing => Boxing

Selecting boxing displays the apply boxing pane.

This panel is used to create boxing sections by applying the first Boxing Definition in a Boxing file, to a selected 4d super string or model of sections created as 4d super strings. Only the one Boxing Definition is used for all of the sections.

The Apply Boxing panel is

![Apply Boxing panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model to box</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>model of sections (in 4d string format) to apply the boxing definition to.</td>
<td></td>
</tr>
<tr>
<td>Boxing file</td>
<td>file box</td>
<td>* .bf files</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the file containing the boxing definition to be applied to the sections in the model to box.</td>
<td></td>
</tr>
<tr>
<td>Start/End chainage</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the start/end string chainage for applying boxing. If blank, then the start/end chainage is taken to be the chainage at the beginning/end of the picked string.</td>
<td></td>
</tr>
<tr>
<td>Model for boxing</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>model for the created boxing x-sections</td>
<td></td>
</tr>
<tr>
<td>Colour for boxing</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>colour for the boxing x-sections</td>
<td></td>
</tr>
<tr>
<td>Pick</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>after picking the Pick button, any selected strings will have the boxing applied to them.</td>
<td></td>
</tr>
<tr>
<td>Box</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>apply the first Boxing Definition given in the Boxing file to the sections in the model to box that are between the given Start chainage and End chainage.</td>
<td></td>
</tr>
</tbody>
</table>

For more information on boxing, see 21.6 What is Boxing? and for more information on the various scenarios for generating boxing, see 21.6.2 Applying Boxing.

Go to the next section 20.5.6 Apply Boxing Many or return to 20.5 Boxing.
20.5.6 Apply Boxing Many

Position of option on menu:  Design => Boxing => Boxing many

This panel can be used to create boxing sections by applying the Boxing Definitions as specified in an MTF file, to a selected 4d super string or to a model of sections.

If an individual 4d super string is picked, the option uses the Boxing defined for the chainage where the section 4d string was created.

Selecting Boxing Many displays the Apply Many Boxing panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model to box</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>model of sections (in 4d string format) to apply the boxing definition to.</td>
</tr>
<tr>
<td>MTF file</td>
<td>file box</td>
<td>*.mtf files</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>name of the MTF file which contains the application of the Boxing Definitions to the sections given in the Model to box panel field.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If Boxing file is blank, use the Boxing file given in the MTF file.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If Boxing file is non-blank, then all the Boxing Definitions referred to in the MTF file are taken from the Boxing file.</td>
</tr>
<tr>
<td>Boxing file</td>
<td>file box</td>
<td>*.bf files</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If non-blank, then all the Boxing Definitions referred to in the MTF file are taken from the Boxing file. That is, the Boxing file given in the MTF file is NOT used for the Boxing Definitions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If blank, use the Boxing file given in the MTF file.</td>
</tr>
<tr>
<td>Model for boxing</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>model for the created boxing x-sections</td>
</tr>
<tr>
<td>Colour for boxing</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>colour for the generated boxing x-sections</td>
</tr>
<tr>
<td>Pick</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>after picking the Pick button, any selected strings will have the boxing applied to them.</td>
</tr>
<tr>
<td>Box</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>apply the boxing as given by the MTF file, using the boxing definitions is the Boxing file, to the 4d sections in the Model for boxing field. The new boxing sections are added to the Model for boxing.</td>
</tr>
</tbody>
</table>
For more information on boxing, see 21.6 What is Boxing? and for more information on the various scenarios for generating boxing, see 21.6.2 Applying Boxing.

Go to the next section 20.5.7 Copy Boxing or return to 20.5 Boxing.
20.5.7 Copy Boxing

**Position of option on menu:** Design => Boxing => Copy

A copy of an existing boxing file can be made using the Copy option. This is often useful when a new boxing file that is similar to an existing boxing file is needed. The existing boxing file can be copied, and the copy then edited and modified.

On selecting Copy the Copy a Boxing File panel is displayed.

![Copy a Boxing File panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boxing file to copy</td>
<td>boxing file box</td>
<td>*.bf files</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the boxing file to be copied.</td>
<td></td>
</tr>
<tr>
<td>New name for file</td>
<td>boxing file box</td>
<td>*.bf files</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the new boxing file.</td>
<td></td>
</tr>
<tr>
<td>Copy all backups</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, copy all the backup files of the boxing file as well.</td>
<td></td>
</tr>
<tr>
<td>Copy</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>after selecting this button, the boxing file given in the Boxing file to copy field will be copied and the copy given the name in the New name for file field.</td>
<td></td>
</tr>
</tbody>
</table>

Go to the next section 20.5.8 Delete a Boxing File or return to 20.5 Boxing.
20.5.8 Delete a Boxing File

Position of option on menu: Design => Boxing => Delete

The Delete a template deletes boxing files from the project.
Selecting Delete a, displays the Delete Template panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boxing file to delete</td>
<td>name of the boxing file to delete.</td>
<td>boxing file box</td>
<td>* .bf files</td>
<td></td>
</tr>
<tr>
<td>Delete all backups</td>
<td>if ticked, the boxing file and all its backups files will be deleted.</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td>after selecting this button, the boxing file given in the Boxing file to delete field will be deleted.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go to the next section 20.5.9 Create Definitions Text File or return to 20.5 Boxing.
20.5.9 Create Definitions Text File

**Position of option on menu:**  Design =>Boxing =>Create definitions file

The Boxing=>Create definition file option is used to create a new **Boxing** file (*.bf) with the text editor pointed to by the EDIT_4D environment variable.

The created text file will already have a section header set up for a boxing called “1”(key word and opening and closing brackets).

Selecting Create definitions file brings up the create boxing file *.bf panel.

![Create Boxing File *.bf](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folder</td>
<td>name of the folder for the .bf file.</td>
<td>folder box</td>
<td>current folder</td>
<td></td>
</tr>
<tr>
<td>File to create</td>
<td>name of the file to create.</td>
<td>file box</td>
<td>*.bf files</td>
<td></td>
</tr>
<tr>
<td>Create button</td>
<td>create a Boxing file given by the folder and file to create panel fields. If the file given in the file to edit field does not exist, then a new file is created which already has a section header set up.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For more information on boxing, see 21.6 **What is Boxing?** and for more information on the various scenarios for generating boxing, see 21.6.2 **Applying Boxing**.

The text format for the Boxing file is described in the section 21.10.2 **Text Format of the Boxing File**.

Go to the next section 20.5.10 **Edit Definitions Text File** or return to 20.5 **Boxing**.
20.5.10 Edit Definitions Text File

Position of option on menu: Design => Boxing => Edit definitions file

The Boxing=>Edit definitions file option is used to edit boxing files (*.bf) with the text editor pointed to by the EDIT_4D environment variable.

The Boxing=>Edit definitions file option has two modes of operation - selecting the Boxing=>Edit definitions file itself, or by activating the Boxing=>Edit definitions file option's walk-right menu, folder *.bf.

Selecting Boxing=>Edit definitions file itself brings up the edit boxing file *.bf panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folder</td>
<td>name of the folder for the .bf file.</td>
<td>input</td>
<td>current folder</td>
<td></td>
</tr>
<tr>
<td>File to edit</td>
<td>name of the file, in folder to edit.</td>
<td>input</td>
<td></td>
<td>*.bf files</td>
</tr>
<tr>
<td>Edit button</td>
<td>edit the file given by the folder and file to edit panel fields. If the file given in the file to edit field does not exist, then a new file is created which already has a section header set up.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Boxing=>Edit definitions file walk-right menu provides a list all the boxing files (files ending in .bf) in the current folder. When a file is selected from the list, it is automatically loaded into the text editor.

The format for the boxing file is described in the 21.10.2 Text Format of the Boxing File section.

Return to 20.5 Boxing.
20.6 Estate Lots

Position of menu:  Design => Estate/Lots

This module is currently under development.

The Estate Lots module is for creating house lots for an Estate (Subdivision).

There are options to create and edit lots by a variety of methods. Once the lots are created they can be numbered, given a lot type (see 20.6.1 Lot types) and labelled.

The labelling includes labelling the side of lots with bearing and distances, lots with areas and lot numbers.

Reports of lot areas and types can be created and lots coloured according to areas.

Finally options exist to create point numbers and reports for setting out the lots.

The Estate/Lots walk-right menu is:

![Estate/Lots Walk-right Menu]

For the options see

- **Create lots**  
  [20.6.2 Create Lots]

- **Edit lots**  
  [20.6.3 Edit Lots]

- **Filter lots**  
  [20.6.4 Filter Lots]

- **Number lots**  
  [20.6.5 Number Lots]

- **Label lots**  
  [20.6.6 Label Lots]

- **Delete lot attributes/text**  
  [20.6.7 Delete Lot Attributes and Text]

- **Setout lots**  
  [20.6.8 Setout Lots]

- **Report lots**  
  [20.6.9 Report Lots]

- **Lot utilities**  
  [20.6.10 Lot Utilities]
20.6.1 Lot types

Lots can have a type which is used in reports. The lot types are defined in a text file called lottypes.4d which is searched for in the standard library areas (see 39.3 Library, User Library, Customer Library).

For example of lottypes.4d is

- park
- road
- other
- surround
- McDonalds

20.6.2 Create Lots

Position of menu:  Design => Estate/Lots => Create lots

For the options see

- Create lots 20.6.2.1 Create Lot
- Create lots by picking point inside 20.6.2.2 Create Lot from Picking
- Create lots - polygon discovery 28.10.8 Polygon Discovery
- Create lots by picking segments 20.6.2.3 Create Lot from Picking Segments
- Create lots from polygons 20.6.2.4 Create Lot from Polygon
- Read geocomp lots file 20.6.2.5 Read Geocomp Lots File
20.6.2.1 Create Lot

Position of option on menu: Design => Estate/Lots => Create lots => Create lot

This option creates lots of a user given area using the front and back strings for a number of lots and an initial straight line edge of a lot. The final edge of the lot then needs to be determined.

The methods of creating the final edge of lot are:

(a) parallel the existing side - parallel edge. See Parallel Edge
(b) having the same bearing as a selected line - parallel pick. See Parallel Pick
(c) having a given bearing - parallel bear. See Parallel Bearing
(d) perpendicular to either the front string or the back string - perpendicular. See Perpendicular and Perpendicular Pick
(e) perpendicular to either the front string or the back string but starting from a user selected point - perpen start pt. See Perpendicular and Perpendicular Pick
(f) pivoting about a selected point - pivot pick. See Pivot Pick and Pivot Frontage
(g) pivoting about the point at minimum frontage - pivot frontage. See Pivot Pick and Pivot Frontage
(h) closing a selected string - close string. See Close String
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model for lot</td>
<td>model box</td>
<td>available models</td>
<td>model for the created lot.</td>
</tr>
<tr>
<td>View for lot</td>
<td>view box</td>
<td>available views</td>
<td>view to add model of created lot to.</td>
</tr>
<tr>
<td>Lot colour</td>
<td>colour box</td>
<td>available colours</td>
<td>colour for the created lot.</td>
</tr>
<tr>
<td>Min area</td>
<td>double box</td>
<td></td>
<td>required area of the created lot.</td>
</tr>
<tr>
<td>Min frontage</td>
<td>input box</td>
<td></td>
<td>required minimum frontage of the created lot.</td>
</tr>
<tr>
<td>Area tolerance</td>
<td>double box</td>
<td></td>
<td>lot to be created can be within this tolerance of the minimum area.required area of the created lot.</td>
</tr>
<tr>
<td>Pick front</td>
<td>string select</td>
<td></td>
<td>pick the string to form the front of the created lot.</td>
</tr>
<tr>
<td>Pick back</td>
<td>string select</td>
<td></td>
<td>pick the string to form the back of the created lot.</td>
</tr>
</tbody>
</table>
Pick edge  string select
    pick the straight line to form the edge of the created lot.

The front, back and edge form three sides of the lot to be created.

Method  choice box  parallel edge  parallel edge, parallel pick
    parallel bear, perpendicular, perpen start pt, pivot pick,
    pivot frontage, close string

pick the string to form the back of the created lot.

Process  button
    use the selected front, back and edged and then create the final side of the lot by the selected method.

Continue to the next section 20.6.2.1.1 Creating Lots from a Front and Back String and an Edge for a full description of each method of creating the lots.
20.6.2.1.1 Creating Lots from a Front and Back String and an Edge

Parallel Edge
This method creates a lot of a user specified area using user selected front and back strings and a user selected initial edge. The final edge then needs to be determined to define the lot.

The front and back strings must be selected with direction to indicate which direction to move along them to form the lot. The front and back strings can not be closed strings and must be different strings. The front and back strings can have more than one segment and can have straight or arc segments.

The initial edge must cut or be very close to cutting the front and back strings. The initial edge must be one straight line segment. It can not be an arc.

For Parallel Edge, the final edge is created parallel to the initial edge and is positioned along the front and back strings in their selected direction so that the lot has the user given area (to within the area tolerance).

The lot is only created if the new edge is at least the minimum frontage distance along the front string.

When the lot is created, the final edge is automatically set as the initial edge for the calculation of the next lot.

Parallel Bearing
This method creates a lot of a user specified area using user selected front and back strings and a user selected initial edge. The final edge then needs to be determined to define the lot.

The front and back strings must be selected with direction to indicate which direction to move along them to form the lot. The front and back strings can not be closed strings and must be different strings. The front and back strings can have more than one segment and can have straight or arc segments.

The initial edge must cut or be very close to cutting the front and back strings. The initial edge must be one straight line segment. It can not be an arc.

For Parallel Bear, the final edge is created with a user specified bearing and is positioned along the front and back strings in their selected direction so that the lot has the user given area (to within the area tolerance).

The lot is only created if the new edge is at least the minimum frontage distance along the front string.

When the lot is created, the final edge is automatically set as the initial edge for the calculation of
the next lot.

Parallel Pick
This method creates a lot of a user specified area using user selected front and back strings and a user selected initial edge. The final edge then needs to be determined to define the lot.

The front and back strings must be selected with direction to indicate which direction to move along them to form the lot. The front and back strings cannot be closed strings and must be different strings. The front and back strings can have more than one segment and can have straight or arc segments.

The initial edge must cut or be very close to cutting the front and back strings. The initial edge must be one straight line segment. It cannot be an arc.

For Parallel Pick, the final edge is created with the bearing of a user selected segment and is positioned along the front and back strings in their selected direction so that the lot has the user given area (to within the area tolerance).

The lot is only created if the new edge is at least the minimum frontage distance along the front string.

When the lot is created, the final edge is automatically set as the initial edge for the calculation of the next lot.
**Perpendicular and Perpendicular Pick**

This method creates a lot of a user specified area using user selected front and back strings and a user selected initial edge. The final edge then needs to be determined to define the lot.

The front and back strings **must** be selected **with direction** to indicate which direction to move along them to form the lot. The front and back strings can not be closed strings and must be different strings. The front and back strings can have more than one segment and can have straight or arc segments.

The initial edge must cut or be very close to cutting the front and back strings. The **initial edge** must be **one straight line segment**. It can not be an arc.

For **Perpendicular**, the **final edge** is constrained to be perpendicular to either the front or the back string and is positioned along the front and back strings in their selected direction so that the lot has the user given area (to within the area tolerance).

For **Perpendicular Pick**, a start point is selected on the front/back string and the **final edge** is created past the start point. This option only needs to be used when **Perpendicular** has problems finding a solution due to sharp changes of bearing along the front/back string.

The lot is only created if the new edge is at least the minimum frontage distance along the front string.

When the lot is created, the final edge is automatically set as the initial edge for the calculation of the next lot.

---

**Pivot Pick and Pivot Frontage**

This method creates a lot of a user specified area using user selected front and back strings and a user selected initial edge. The final edge then needs to be determined to define the lot.

The front and back strings **must** be selected **with direction** to indicate which direction to move along them to form the lot. The front and back strings can not be closed strings and must be different strings. The front and back strings can have more than one segment and can have straight or arc segments.

The initial edge must cut or be very close to cutting the front and back strings. The **initial edge** must be **one straight line segment**. It can not be an arc.

For **Pivot Pick**, a position is selected on either the front or back string to be one point of the **final edge**. The other point of the final edge is determined so that the lot has the required given area (to within the area tolerance).

For **Pivot Frontage**, the pivot point is taken to be the position on the front string that is the minimum frontage distance along the front string from the initial edge.
The lot is only created if the new edge is at least the minimum frontage distance along the front string.

When the lot is created, the final edge is automatically set as the initial edge for the calculation of the next lot.

**Close String**

This method simply closes the string that is selected by the user.
20.6.2.2 Create Lot from Picking

**Position of option on menu:** Design => Estate/Lots => Create lots => Create lots by picking point inside

This option creates a lot by a picking inside a collection of strings and the lot is created from the closest strings to the picked position. The picked position must be selected so that all sides of the lot can be "seen" from the picked position. That is, a straight line can be drawn from the picked position to the lot side without cutting any other segment.

On selecting the Create lot by picking point inside option, the Create Lot - Pick Point Inside panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>view box</td>
<td>available views</td>
<td></td>
</tr>
<tr>
<td>Model for lot</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Lot colour</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
</tbody>
</table>

Select a position that is inside the lot to be created

Creating a Lot by Picking Inside the Lot

On selecting the Create lot by picking point inside option, the Create Lot - Pick Point Inside panel is displayed.
colour for the created lot.

**Search distance**

**double box** 20

maximum distance to search from the selected point for sides of the lot

**Pick**

**string select**

pick the position to try and form a lot around.
20.6.2.3 Create Lot from Picking Segments

Position of option on menu: Design => Estate/Lots => Create lots => by picking segments

This option creates a lot by picking each segment in its order (and with direction) around the lot. Segments will be automatically extended or clipped to form the lot.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model for lot</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Lot colour</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td>Join first and last segment</td>
<td>tick box</td>
<td>if ticked, join the end of the last selected segment to the start of the first selected segment to form the lot.</td>
<td></td>
</tr>
</tbody>
</table>
final side of the lot.

**Pick sides** string select

pick, with direction, the segments to be joined together to form the sides of the lot.

**Process** button

create the lot from the selected segments.
20.6.2.4 Create Lot from Polygon

Position of option on menu: Design => Estate/Lots => Create lots => Lots from polygons

This option converts strings to a lot. The strings can be open.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source type</strong></td>
<td>data source type.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Data source</strong></td>
<td>data source for strings to convert to lots.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Model for lot</strong></td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td><strong>Lot model</strong></td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td><strong>Lot colour</strong></td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td><strong>Include open string(s)</strong></td>
<td>tick box</td>
<td>if ticked, open strings are used to form lots by making them closed. If not ticked, open strings are ignored.</td>
<td></td>
</tr>
<tr>
<td><strong>Process</strong></td>
<td>button</td>
<td>create lots from the selected strings.</td>
<td></td>
</tr>
</tbody>
</table>
20.6.2.5 Read Geocomp Lots File

Position of option on menu:  Design => Estate/Lots => Create lots => Read geocomp lots file

This option reads a Geocomp lots file and creates 12d Model lots.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points file</td>
<td>*.pts files</td>
<td>name of the Geocomp points file.</td>
<td></td>
</tr>
<tr>
<td>Lots file</td>
<td>*.pts files</td>
<td>name of the Geocomp lots file - is uses points from the given Geocomp points file.</td>
<td></td>
</tr>
<tr>
<td>Model for lot</td>
<td>model box</td>
<td>available models</td>
<td>model for the created lot.</td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td>read in the given Geocomp points and lots file and created 12d Model lots.</td>
<td></td>
</tr>
</tbody>
</table>
20.6.3 Edit Lots

**Position of menu:** Design => Estate/Lots => Edit lots

For the option *Adjust area*, go to

- 20.6.3.1 Adjust Area
- 20.6.3.2 Subdivide Area

20.6.3.1 Adjust Area

**Position of menu:** Design => Estate/Lots => Edit lots => Adjust area

For the options see

- *Pivot* 20.6.3.1.1 Adjust Lot by Pivot
- *Parallel edge* 20.6.3.1.2 Adjust Lot by Parallel Edge
- *Parallel bearing* 20.6.3.1.3 Adjust Lot by Parallel Bearing
- *Perpendicular* 20.6.3.1.4 Adjust Lot by Perpendicular
20.6.3.1.1 Adjust Lot by Pivot

Position of option on menu: Design => Estate/Lots => Edit lots => Adjust area => Pivot

This option adjusts the size of a lot by pivoting one side about one of its end points until the lot area has a new given area.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick lot edge</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pick the lot to adjust by picking a side of the lot with direction. The start of the selected side will be the pivot point.</td>
<td></td>
</tr>
<tr>
<td>Lot area</td>
<td>output box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>area of the selected lot.</td>
<td></td>
</tr>
<tr>
<td>New area</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>required area of the adjusted lot. The area can be larger or smaller than the existing lot area.</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
adjust the lot by pivoting the side.
20.6.3.1.2 Adjust Lot by Parallel Edge

Position of option on menu: Design => Estate/Lots => Edit lots => Adjust area => Parallel edge

This option adjusts the size of a lot by moving a side parallel to itself until the lot area has a new given area.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick lot edge</td>
<td>string select</td>
<td></td>
<td>pick the lot to adjust by picking the edge of the lot that is to be paralleled.</td>
</tr>
<tr>
<td>Lot area</td>
<td>output box</td>
<td></td>
<td>area of the selected lot.</td>
</tr>
<tr>
<td>New area</td>
<td>input box</td>
<td></td>
<td>required area of the adjusted lot. The area can be larger or smaller than the existing lot area.</td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td>adjust the lot by paralleling the selected edge.</td>
</tr>
</tbody>
</table>
20.6.3.1.3 Adjust Lot by Parallel Bearing

Position of option on menu: Design => Estate/Lots => Edit lots => Adjust area => Parallel bearing

This option adjusts the size of a lot by moving a side parallel to a given bearing until the lot area has a new given area.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick lot corner</td>
<td>string select</td>
<td>pick the lot to adjust by picking the corner of the lot that the side goes through and has the given bearing.</td>
<td></td>
</tr>
<tr>
<td>Lot area</td>
<td>output box</td>
<td>area of the selected lot.</td>
<td></td>
</tr>
<tr>
<td>New area</td>
<td>input box</td>
<td>required area of the adjusted lot. The area can be larger or smaller than the existing lot area.</td>
<td></td>
</tr>
<tr>
<td>Bearing</td>
<td>bearing box</td>
<td>the bearing used for the selected edge.</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td>adjust the lot by paralleling the selected edge with the given bearing.</td>
<td></td>
</tr>
</tbody>
</table>
20.6.3.1.4 Adjust Lot by Perpendicular

Position of option on menu: Design => Estate/Lots => Edit lots => Adjust area => Perpendicular

This option adjusts the size of a lot by creating a new side perpendicular to a selected side and then moving the new side until the created lot area has a given area.

Note - the new area must be less than the original area.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick lot edge</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lot area</td>
<td>output box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New area</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

pick the side of the lot that a new side will created perpendicular to

area of the selected lot.
required area of the adjusted lot. The area must be smaller than the existing lot area.

**Process**
button

*adjust the lot by moving the side whilst keeping it perpendicular to another side.*
20.6.3.2 Subdivide Area

Position of menu: Design => Estate/Lots => Edit lots => Subdivide area

For the options see
- **Pivot**: 20.6.3.2.1 Subdivide Lot by Pivot
- **Parallel edge**: 20.6.3.2.2 Subdivide Lot by Parallel Edge
- **Parallel bearing**: 20.6.3.2.3 Subdivide Lot by Parallel Bearing
- **Perpendicular**: 20.6.3.2.4 Subdivide Lot by Perpendicular

### 20.6.3.2.1 Subdivide Lot by Pivot

**Position of option on menu:** Design => Estate/Lots => Edit lots => Subdivide area => Pivot

This option reduces the size of a lot by pivoting one side about one of its end points until the lot area has a new smaller area. A second lot is created from the remainder of the original lot.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick lot</td>
<td><em>pick the lot to adjust by picking a side of the lot with direction. The start of the selected side will be the pivot point.</em></td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lot area</td>
<td><em>area of the selected lot.</em></td>
<td>output box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New area</td>
<td><em>required area of the adjusted lot. The area must be smaller than the existing lot area.</em></td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td><em>adjust the lot by pivoting the side. A second lot is created from the remainder of the original lot.</em></td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### 20.6.3.2.2 Subdivide Lot by Parallel Edge

**Position of option on menu:** Design => Estate/Lots => Edit lots => Subdivide area => Parallel edge

This option adjusts the size of a lot by moving a side parallel to itself until the lot area has a new, smaller area. A second lot is created from the remainder of the original lot.

#### Diagram:
- Select the side to be paralleled.
- New lots: 800, 500, 300

#### Fields and Buttons:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Pick lot edge</strong></td>
<td>string select</td>
<td></td>
<td>pick the lot to adjust by picking the edge of the lot that is to be paralleled.</td>
</tr>
<tr>
<td><strong>Lot area</strong></td>
<td>output box</td>
<td>area of the selected lot.</td>
<td></td>
</tr>
<tr>
<td><strong>New area</strong></td>
<td>input box</td>
<td>required area of the adjusted lot. The area must be than the existing lot area.</td>
<td></td>
</tr>
<tr>
<td><strong>Process</strong></td>
<td>button</td>
<td>adjust the lot by paralleling the selected edge. A second lot is created from the remainder of the original lot.</td>
<td></td>
</tr>
</tbody>
</table>
20.6.3.2.3 Subdivide Lot by Parallel Bearing

**Position of option on menu:** Design => Estate/Lots => Edit lots => Subdivide area => Parallel bearing

This option adjusts the size of a lot by moving a side parallel to a given bearing until the lot area has a new smaller area. A second lot is created from the remainder of the original lot.

![Diagram of lot subdivision by parallel bearing]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick lot corner</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pick the lot to adjust by picking the edge of the lot that is to be paralleled.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lot area</td>
<td>output box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>area of the selected lot.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New area</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>required area of the adjusted lot. The area must be smaller than the existing lot area.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bearing</td>
<td>bearing box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the bearing used for the selected edge.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>adjust the lot by paralleling the selected edge with the given bearing. A second lot is created from the remainder of the original lot.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
20.6.3.2.4 Subdivide Lot by Perpendicular

**Position of option on menu:** Design => Estate/Lots => Edit lots => Subdivide area => Perpendicular

This option adjusts the size of a lot by creating a new side perpendicular to a selected side and then moving the new side until the created lot area has a given smaller area. A second lot is created from the remainder of the original lot.

**Note** - the new area must be less than the original area.

**Field Description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick lot edge</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lot area</td>
<td>output box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New area</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions.
required area of the adjusted lot. The area must be smaller than the existing lot area.

Process button

adjust the lot by moving a side whilst keeping it perpendicular to another side. A second lot is created from the remainder of the original lot.
20.6.4 Filter Lots

Position of option on menu:  Design ⇒ Estate/Lots ⇒ Filter lots

This option is used to remove adjacent duplicate points from lots.

![Image of Filter Lots panel](Image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source type</strong></td>
<td>data source type.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Data source</strong></td>
<td>data source for strings to convert to lots.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Model for filtered lots</strong></td>
<td>model box for the filtered lots.</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td><strong>Colour</strong></td>
<td>colour box</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td><strong>Process</strong></td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- If non-blank, the filtered lots are given this colour.
  
  Otherwise a filtered lot has the same colour as the non-filtered lot.

Filter the selected lots.
20.6.5 Number Lots

Position of menu: Design => Estate/Lots => Number lots

After lots are created, they are then numbered. The lot numbers are stored with the lot.

For the option Create lot numbers, go to 20.6.5.1 Create Lot Numbers.

For the option Change lot numbers, go to 20.6.5.2 Change Lot Numbers.
20.6.5.1 Create Lot Numbers

**Position of option on menu:** Design ➝ Estate/Lots ➝ Number lots ➝ Create lot numbers

This option creates lot numbers.

![Create Lot Number](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source</strong></td>
<td>data source for lots that have been numbered. A new lot number cannot be the same as an existing one in the data source.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Next lot no.</strong></td>
<td>the number to give the next lot that is numbered.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Lot type</strong></td>
<td>choice box</td>
<td>user defined</td>
<td>user defined</td>
</tr>
<tr>
<td></td>
<td>type of the lot. The choices are defined by the user in the file. See 20.6.1 Lot types</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>New lot colour</strong></td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td></td>
<td>colour to create the numbered lot. This is done so that numbered and non-numbered lots can be easily distinguished.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Auto increment</strong></td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, the Next lot no. is incremented after the lot is numbered.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Lot increment</strong></td>
<td>integer box</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>amount to increment the Next lot no if the Auto increment flag is tick.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Display lot numbers</strong></td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, the lot number is temporarily displayed. Permanent lot numbers are created using the Label Lots options.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Pick</strong></td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pick the lot to be numbered. After accepting the lot, it is given the Next lot no.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20.6.5.2 Change Lot Numbers
Position of option on menu:  Design => Estate/Lots => Number lots => Change lot numbers

This option changes the lot numbers stored with the lot.

![Change Lot Number dialog box]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot number</td>
<td>text box</td>
<td>number of selected lot</td>
<td></td>
</tr>
<tr>
<td>Lot type</td>
<td>choice box</td>
<td>type of selected lot</td>
<td></td>
</tr>
<tr>
<td>Display lot numbers</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>View to display</td>
<td>view box</td>
<td>available views</td>
<td></td>
</tr>
<tr>
<td>Pick lot</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

when a lot is selected, its lot number is displayed in this field. This can be changed and the selected lot will get the new Lot number when the Set button is selected.

when a lot is selected, its lot type is displayed in this field. This can be changed and the selected lot will get the new Lot type when the Set button is selected. See 20.6.1 Lot types.

if ticked, the lot numbers are displayed for the selected lots.

view to temporarily display the lot numbers.

select the lot to change either the lot number or the lot type.

set the lot number and the lot type of the selected lot to the values given in the Lot number and Lot type fields.
20.6.6 Label Lots

Position of menu:  Design => Estate/Lots => Label lots

After lots are numbered, text for the lot numbers and areas can be displayed.

For the option Lot labelling, go to 20.6.6.1 Create Lot Annotation.

String b/d labelling  20.6.6.2 String Bearing Distance Labelling

20.6.6.1 Create Lot Annotation

Position of option on menu:  Design => Estate/Lots => Number lots => Lot labelling

This option creates annotation of the lot numbers, lot areas, bearings of the sides and lengths of the sides.

The fields and buttons used in this panel have the following functions.
Input/Output parameters

Lot annotation file  
file of defaults for labelling the lots.

Read  
read in a given lot annotation file.

Save  
write out the current parameters to the given lot annotation file.

Save as  
write out the current parameters to a different lot annotation file.

Text parameters

Area parameters  
parameters for labelling the area of a lot.

Create area text  
if ticked, annotation for the areas is created using the Area parameters.

Lot number parameters  
parameters for labelling the lot numbers.

Create lot no. text  
if ticked, annotation for the lot numbers is created using the Lot number parameters.

Bearing parameters  
parameters for labelling the bearings of the sides of the lots.

Create bearing text  
if ticked, annotation for the lot bearings is created using the Bearing parameters.

Distance parameters  
parameters for labelling the lengths of the sides of the lots.

Create distance text  
if ticked, annotation for the lengths of the sides is created using the Distance parameters.

Short segment parameters  
parameters for specifying what is a "short Segment" and the parameters for labelling sides of the lots that are short segments.

Create short segment text  
if ticked, annotation for short segments is created using the Short segment parameters.

Data

Data source type  
data source type.

Data source  
data source for lots to be annotated.

Lot type  
user defined
of the lots selected by the data source, only lots of this type are labelled. See 20.6.1 Lot types.
**Process** button

*select all the lots given by the Data source and Lot type and create annotations according the Text parameters.*

### 20.6.6.2 String Bearing Distance Labelling

**Position of option on menu:** Design =>Estate/Lots => Label lots =>String b/d labelling

Option to label the bearing and lengths of segments of strings.

This option is described in the section [24.1 Bearing/Distance Labelling](#).
20.6.7 Delete Lot Attributes and Text

Position of option on menu: Design => Estate/Lots => Delete lot attributes/text

This option is used to remove the attributes for a lot which store the lot number, area etc. It can also delete the annotation text that has been created for the lot.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete</td>
<td>choice box</td>
<td>lot text</td>
<td>lot text, lot attributes</td>
</tr>
<tr>
<td>Data source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for lot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Display lot number</td>
<td></td>
<td>View to display</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finish</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

when a lot is selected, its lot type is displayed in this field. This can be changed and the selected lot will get the new Lot type when the Set button is selected.

Data source

data source for lot to delete either the lot text or lot attributes.

Display lot numbers
tick box
if ticked, the lot numbers are displayed for the selected lots.

View to display
view box
available views
view to temporarily display the lot numbers.

Process
button
delete the selected attributes from the selected lots.
20.6.8 Setout Lots

Position of option on menu:  Design => Estate/Lots => Setout lots

Options to create unique point numbers for the vertices at the ends of each segment of the lots, and to create z-values from a given tin for the vertices of the lots.

For the option Create lot point numbers, go to 20.6.8.1 Create Lot Point Numbers

Drape points 20.6.8.2 Drape Points

20.6.8.1 Create Lot Point Numbers

Position of option on menu:  Design => Estate/Lots => Setout lots => Create lot point numbers

This option creates unique point numbers for the vertices at the ends of each segment of the lots. Duplicate vertices are only given one point number.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot type</td>
<td>choice box</td>
<td>user defined</td>
<td>user defined</td>
</tr>
<tr>
<td></td>
<td></td>
<td>of the lots selected by the data source, only lots of this type have point numbers created. See 20.6.1 Lot types</td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>for the set out points.</td>
<td></td>
</tr>
<tr>
<td>Model of lots</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Model for setout points</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Text colour</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td>Text units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text size</td>
<td></td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>Add points to lot views</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filter redundant points</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions.

Field Description       Type Defaults Pop-Up
Lot type                choice box user defined user defined
                         of the lots selected by the data source, only lots of this type have point numbers created. See 20.6.1 Lot types
Data source             model box available models
                         data source for lots to have point numbers created.
Model for setout points  model box available models
                         model for the set out points.
Text colour             colour box available colours
colour of the point numbers.

**Text units**
- choice box world screen, paper, world

Units for text size.

**Text size**
- double box

Size of the text for the point numbers.

**Add points to lot views**
- tick box tick

If ticked, add the model of point numbers to the views that the lots are displayed on.

**Create short segment text**
- tick box tick

If ticked, annotation for short segments is created using the Short segment parameters.

**Filter redundant points**
- tick box tick

If ticked, then if two adjacent line have the same bearing then the two segments are replaced by one segment. And if two adjacent arc segments could be the one arc, then they are replaced by one arc.

**Process**
- button

Select all the lots given by the Data source and Lot type and create annotations according the Text parameters.

### 20.6.8.2 Drape Points

**Position of option on menu:** Design => Estate/Lots => Setout lots => Drape points

Option for setting the z-value of points to the z-value from a specified tin.

![Update Z-values from Tin](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source</strong></td>
<td>choice box</td>
<td>model, view, string</td>
<td></td>
</tr>
<tr>
<td><strong>Model of strings / View of strings / Pick a String</strong></td>
<td>source of the data</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Tin for z values</strong></td>
<td>tin box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>End points tolerance</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The tin to take the z values for the vertices from.
Convert 2d to 3d tick box

if ticked, 2d strings will be converted to 3d strings which have a different z value from the tin for each vertex.
if not ticked the 2d string takes its z value from the tin at the first vertex
### 20.6.9 Report Lots

**Position of option on menu:**  Design => Estate/Lots => Report lots

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>data source for lots to be reported.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Include point numbers</strong></td>
<td>tick box</td>
<td>if ticked, include the point number for each vertex around the lot.</td>
<td></td>
</tr>
<tr>
<td><strong>Model of point numbers</strong></td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>model of the point numbers for the vertices of the lots.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Report type</strong></td>
<td>choice box</td>
<td>sort by type, sort by number</td>
<td></td>
</tr>
<tr>
<td>type of report for the selected lots.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Boundary</strong></td>
<td>string select</td>
<td>optional</td>
<td></td>
</tr>
<tr>
<td>if selected, the boundary string for the lots. If selected then the area of the boundary string is calculated and the total area of the lots compared to the area of the boundary string.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>No. decimals</strong></td>
<td>integer box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of decimal places for co-ordinates and lengths in the report.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>No. dec for bearings</strong></td>
<td>integer box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of decimal places for bearings in the report.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Report file</strong></td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of the file for the report.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Process</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create the report.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
20.6.10 Lot Utilities

Various lot options.

Position of menu: Design => Estate/Lots => Lot utilities

![Lot Utilities Menu]

For the option Colour lots by range file, go to

- 20.6.10.1 Colour Lots by Range File
- 20.6.10.2 Remove Lot Colour
- 20.6.10.3 Reverse Bearing
- 20.6.10.4 Short Line/Arc Table
- 20.6.10.5 Short Line/Arc Report
- 20.6.10.6 Short Segment Utilities

20.6.10.1 Colour Lots by Range File

Position of option on menu: Design => Estate/Lots => Lot utilities => Colour lots by range file

The option colours lots by area using a lot range file (.lrf) to define the colour for each minimum and maximum area. It also creates a table of the statistics for the area ranges.

![Lot Colour By Range File]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range file</td>
<td>file box</td>
<td>*.lrf</td>
<td>range file for colouring lots.</td>
</tr>
<tr>
<td>Data source</td>
<td>model</td>
<td></td>
<td>data source for lots to be coloured.</td>
</tr>
</tbody>
</table>
Table location position select box

position of the table.

Model for table model box available models

model for the table of statistics on the lot areas.

Text colour colour box available colours

colour of the text.

Text size (w) double box

size of the text for the table.

Process button

select all the lots given by the Data source and Lot type and colour them according to the lot range file.

20.6.10.2 Remove Lot Colour

Position of option on menu: Design => Estate/Lots => Lot utilities => Remove lot colour

The option removes the colour of all the selected lots.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

data source for lots to have their colour removed.

Process button

select all the lots given by the Data source and remove the lot colour.

20.6.10.3 Reverse Bearing

Position of option on menu: Design => Estate/Lots => Lot utilities => Reverse bearing

Option to change the value of the bearing text created by the lot labelling option by adding 180 degrees to the bearing. This is then the bearing of a line in the reversed direction to that represented by the original bearing text. The rounding for the reversed bearing is done according to the lot parameters.
The fields and buttons used in this panel have the following functions.

### Field Description

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero padding</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
</tbody>
</table>

- **Zero padding**: if ticked, if the minutes and/or seconds are zero then two zeros are written out. If not ticked, if the minutes and/or seconds are zero then they are left out.

- **Pick**: button  

  pick the bearing text that is to be modified.

---

### 20.6.10.4 Short Line/Arc Table

- **Position of option on menu**: Design => Estate/Lots => Lot utilities => Short line/arc table
- **Position of option on menu**: Drafting => Text and Tables => Short segment table

Option to create a table of all the short segments and/or short arcs.

This option is described in the section [24.16.11 Short Segments Table](#).

### 20.6.10.5 Short Line/Arc Report

- **Position of option on menu**: Design => Estate/Lots => Lot utilities => Short line/arc report
- **Position of option on menu**: Drafting => Text and Tables => Short segment report

Option to create a report of all the short segments and/or short arcs.

This option is described in the section [24.16.12 Short Segment Report](#).

### 20.6.10.6 Short Segment Utilities

- **Position of option on menu**: Design => Estate/Lots => Lot utilities => Table utilities
- **Position of option on menu**: Drafting => Text and Tables => Short segment table utilities

This panel is used to modify an existing short segments table.

This option is described in the section [24.16.13 Short Segments Table Utilities](#).
20.7 Pads

Position of menu: Design => Pads

The Pads walk-right menu is

![Pads menu screenshot]

For the options see

- Balance a pad  
  \[20.7.1\] Balance a Pad
- Dynamic pad  
  \[20.7.2\] Dynamic Pad Interface
- Create/grade pad  
  \[20.7.3\] Allotment Pad Create
- Edit/grade pad  
  \[20.7.4\] Allotment Pad Edit
- Dynamic Pad Pond Create  
  \[20.7.5\] Dynamic Pad/Pond Interface
20.7.1 Balance a Pad

**Position of option on menu:** Design => Pads => Balance a pad

This option takes a pad formed by a string and user given slopes and batters from the pad to a given tin. The pad is moved up or down until a balance is found.

![Balance a Pad](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select polygon</td>
<td>string select</td>
<td>The string defining the pad</td>
<td></td>
</tr>
<tr>
<td>Select tin</td>
<td>tin select</td>
<td>The tin to interface the pad to</td>
<td></td>
</tr>
<tr>
<td>Fill slope</td>
<td>measures box</td>
<td>At Point, Point to Point, String from Point, String to Point</td>
<td></td>
</tr>
<tr>
<td>Cut slope</td>
<td>measures box</td>
<td>At Point, Point to Point, String from Point, String to Point</td>
<td></td>
</tr>
<tr>
<td>Translate</td>
<td>measures box</td>
<td>0.1</td>
<td>At Point, Point to Point, String from Point, String to Point</td>
</tr>
<tr>
<td>Separation</td>
<td>measures box</td>
<td>At Point, Point to Point, String from Point, String to Point</td>
<td></td>
</tr>
</tbody>
</table>
The interval along the pad string for the volume calculations.

**Search distance** measures box

At Point, Point to Point, String from Point, String to Point

The maximum search distance for intersecting the cut/fill slopes with the pad.

**Which side** choice box

left, right

Which side of the string is the outside of the pad.

**Model** model box

available models

The model for the final strings and tadpoles.

**View** view box

select view

View to add temporary strings to.

**Tolerance**

The tolerance for balancing the cut/fill for the pad.

**Balance** button

Balance the pad to within tolerance value.

**Up** button

Move pad up by translation value.

**Down** button

Move pad down by translation value.

**Finish** button

Add strings to permanent model and finish.
### 20.7.2 Dynamic Pad Interface

**Position of option on menu:** Design => Pads => Dynamic pad

This option is to create a pad by interfacing from a selected string and calculated the volume for the pad. The pad can be moved up or down and the new volumes are calculated.

The pad can also be moved in plan and the new interface and volumes are dynamically calculated.

![Dynamic Pad Interface](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>View name</strong></td>
<td>view box</td>
<td>name of the view to display the pad interface strings.</td>
<td></td>
</tr>
<tr>
<td><strong>Cut slope 1v in</strong></td>
<td>1</td>
<td>cut slope for interfacing.</td>
<td></td>
</tr>
<tr>
<td><strong>Fill slope 1v in</strong></td>
<td>2</td>
<td>fill slope for interfacing.</td>
<td></td>
</tr>
<tr>
<td><strong>Section separation</strong></td>
<td>10</td>
<td>interval to calculate cut and fill batters.</td>
<td></td>
</tr>
<tr>
<td><strong>Search distance</strong></td>
<td>100</td>
<td>distance for the batter to search to find intersection with the triangles.</td>
<td></td>
</tr>
<tr>
<td><strong>Left or right</strong></td>
<td>choice box</td>
<td>left, right</td>
<td>batter to the left or right of the selected string.</td>
</tr>
<tr>
<td><strong>Tin to interface</strong></td>
<td>tin box</td>
<td>tin to batter to.</td>
<td></td>
</tr>
<tr>
<td><strong>Height increment</strong></td>
<td>0</td>
<td>when process is selected, the pad height is adjusted by the value in this panel field and the new</td>
<td></td>
</tr>
</tbody>
</table>
interface and volumes are calculated.

Select

string select
select string to batter from

Process

button
adjust the height of the pad by the Height increment and recalculate the new interface and volumes.

Translate

when selected the pad will move to the cursor position and dynamically calculate the interface and volumes.

Reset

button
reset the pad height to its original value.
20.7.3 Allotment Pad Create

Position of option on menu:  Design => Pads => Create/grade pad

This option and the next Design => Pads => Edit/grade pad are used to create a pad from surrounding lines, grade the created pad and edit pads already created with this option.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>General tab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>colour box</td>
<td>default colour</td>
<td>available colours</td>
</tr>
<tr>
<td>Pad texture</td>
<td>choice box</td>
<td>None</td>
<td>None, some textures</td>
</tr>
<tr>
<td>Use solid fill</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*data selection type - for a full description go to 4.19.3 Data Source*
Display button

brings up the Display Text Defaults panel

Offsets tab

Global offset input

if other offsets are not given, the distance to offset the sides of the pad from the strings used to create the pad

Offsets model model box

model for the offset lines

Offsets type choice box Segment Segment, Point to Point

if Segment, define the offset line by picking a segment.
If Point to Point, define the offset line by picking two points.

Select button

select an offset line

Creation tab

Pad level type choice box Typed input, Use tin level Use bdy/ht, Use bdy/slope

if typed input, all vertices of the pad are given the height in the Lot level field.
If use tin level, the height of each vertex of the pad is taken from the tin given in the Tin field.

If typed input:

Pad level input

the height to use for all the vertices of the pad.

If Use tin level:

Tin tin box available tins

the tin used to give heights to the vertices of the pad.

If Bdy/ht:

Height

the height to be above the selected boundary string

Reference boundary

the selected boundary string for the pad to be a given height above/below

If Use/slope:

Slope 1 in

the slope to be above the selected boundary string

Reference boundary

the selected boundary string for the pad to be a given slope above/below

Single/ Along a string radio buttons single

if single, a single pad is created from the strings surrounded the selected point.
If along a string, pads are created surrounding each vertex of selected string.

Centroid/search distance string select

if single, a point is selected and then a circle is rubber banded until a second point is selected. The pad is created from segments within the circle.

Search dist input
if along a string, then for each vertex, all segments within the distance are processed to create the pad.

Select

string select

if along a string, select the string to use. Pads are created surrounding each vertex of this string.

Process

button

run the option
20.7.4 Allotment Pad Edit

**Position of option on menu:** Design => Pads => Edit/grade pad

This option is used to grade a pad created with the previous option, Design => Pads => Create/grade pad.

Selecting Edit/grade pad brings up the Allotment Pad Edit panel.

![Allotment Pad Edit panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Display tab</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level dec places</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the number of decimal places used to display the height (level) of the pad vertices.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade dec places</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the number of decimal places used to display the grade of the pad sides.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade arrow size</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>size of the grade arrows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level textstyle data</td>
<td>textstyle data box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the textstyle data used for the displaying the level (height).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade textstyle data</td>
<td>textstyle data box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the textstyle data used for the displaying the grade.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pad texture</td>
<td>choice box</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the colour of the new pad.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Show solid fill</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
if ticked, solid fill the pad

**Show levels and grades** tick box

if ticked, turn on the level and grades

**Pick** button

select the pad to edit

**Offset tab**

**Maintain level/Maintain level on Grade** radio buttons

if *Maintain level*, keep the level when a new offset/boundary is selected

If *Maintain level on grade*, keep the level on grade when a new offset/boundary is selected

**Select new offset** string select

select a new offset string

**Select new boundary** string select

select a new boundary string

**Grading tab**

**Level and/or grade** button

**Level entire pad** button

**Level by str/ht** button

**Level by str/slope** button

**Level by seg/ht** button

**Level by seg/slope** button

**Batter slope** button

**Surface grading** button

**Ht**

heights to increment the selected pad by

**Up** button

move the pad up by the given height

**Down** button

move the pad down by the given height

**Pick (ht)** string select

select a pad

**Batter slope model** model box available models

model for the batter slopes

**Global tab**

**Data source type** Model

data selection type - for a full description go to 4.19.3 Data Source

**Data source** input

source of data is used to create a pad.
20.7.5 Dynamic Pad/Pond Interface

Position of option on menu: Design => Pads => Dynamic Pad Pond Create

This option is used to interface from a string to a tin plus it can have an included pond model.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function name</td>
<td>function box</td>
<td>available functions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cut slope 1 v in</td>
<td>input</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fill slope 1 v in</td>
<td>input</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section separation</td>
<td>input</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing Tin Surface</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pad / Pond Internal Model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for Interface Strs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name for Pad / Pond Tin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height increment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use Overflow Water Level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>View display</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report file name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintain height increment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calc storage to Existing Tin Surface only</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field Description: name of the pad/pond function. If the function already exists and is picked from a popup or and an <enter> is given at the end of the name, the information from the existing function will be placed in the appropriate panel fields.

Cut slope 1 v in: the slope of the interface line if a point is in cut. A cut slope of one vertical to the given value of horizontal units is used. Positive is up for a cut slope. A value 0 is used to designate a horizontal line.

Fill slope 1 v in: the slope of the interface line if the point is in fill. A fill slope of one vertical to the given value of horizontal units is used. Positive is down for a fill slope. A value 0 is used for a horizontal line.

Section separation: the distance between the points on the selected string that interface points will be calculated from.

Existing tin surface: available tins
name of the tin to interface to.

**Pad /Pond internal model**  model box  available model
if non blank, name of the model to include as part of the interface model

**Model for interface strs**  model box  available models
name of the model to contain the calculated interface string.

**Name for pad/pond tin**  tin box  available tins
name of the tin to create from the reference string, the interface string and the pad/pond internal model

**Height increment**  input
value to vertically translate the reference string by (cleared after each process unless **Maintain height increment during processing** is ticked)

**Water level**  input
if non blank, the height of the water level

**Use overflow water level from cut interface**  tick box
if ticked, the water level to the lowest point on the cut interface is determined and used as the water level height

**View display**  view box  available views
if non blank, the view to display the results on

**Report file name**  file box  *.rpt files
if non blank, the view to display the results on

**Maintain height increment during processing**  tick box
if ticked, the reference string will be raised by the **Height increment** each time the function is processed, but only while the panel is open

**Calculate storage to existing tin surface only**  tick box
if ticked, this will calculate the storage to the **Existing tin surface from the Water level only**

**Reference string**  string select
select the string to interface from.

**Process**  button
run the function
20.8 Roads

Position of menu:  Design => Roads

The road options include road network creation options and a number of other options for creating road details.

Some of the options are currently under development.

The roads walk-right menu is

- generate components
- setup and create road network
- stopping distance calculations
- input/output to TRARR
- run TMR VPATH
- editor for creating/running TMR ARNDT
- generate data for mass haul on long section
- create traffic islands
- create guide posts to AUSTROAD standard
- lots of generating strings by Xfalls
- more roads macros

For the options see

- Components 20.9 Components
- Create roads 20.8.1 Create Roads
- Design checker 20.8.2 Design Checker
- Stopping distance 20.8.3 Stopping Distance
- Trarr 20.8.4 Trarr
- Vehicle path 20.8.5 Vehicle Path
- ARNDT editor 20.8.6 ARNDT Editor
- Mass haul 20.8.7 Mass Haul
- Traffic islands 20.8.8 Traffic Islands
- Guide post creator 20.8.10 Guide Post Placement
- String by xfall and grade 20.8.11 String by Xfall and Grade
- More 20.8.12 More Roads
20.8.1 Create Roads

Position of menu:  Design =>Roads =>Create roads

The Create roads functions allow the user to start with a model of road centrelines with vertical geometry, and unique string name.

The centrelines can then be tagged with the width of the roads, left and right turn radii for any intersections and the definitions of any culdesacs at the end of a centreline.

The Create option will then create the left and right edges of the roads, create kerb returns and any intersections and the appropriate culdesacs.

For example

Initial Network of Centrelines
Road Network After Running the Roads Option

Blow Up of an Intersection
The Create Roads walk-right menu is

Create Roads
Create roads
V10 Create roads

Create Roads
V10 Create Roads - superseded

See

Create Roads 20.8.1.1 Create Roads - Enhanced
V10 Create roads 20.8.1.2 V10 Create Roads
20.8.1.1 Create Roads - Enhanced

Position on menu: Design => Roads => Create => Create Roads - Enhanced

The Create Roads - Enhanced panel is a total rewrite of Create Roads with many new features including:

(a) Either templates or snippets can be used to define the roads, intersections and kerbs.
(b) Wherever possible computators have been used to define kerb returns and culdesacs, and Smart Start and End modes in the Apply MTFs rather than chainage values.
(c) There is now a separate template for the left and right side of the road but unlike Create Roads, there is no separate Carriageway template.
(d) There are default values for culdesacs.
(e) A kerb can be frozen without freezing the roads.
(f) Snippets can use the boxing defined in the Boxing tab or snippets can do their own boxing. But if you do both then you are on your own.
(g) Left and Right prefix to use when creating the Apply MTFs.

Selecting Create Roads - Enhanced brings up the Create Roads - Enhanced panel
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>function box</td>
<td>available create roads</td>
<td>enhancement functions</td>
</tr>
</tbody>
</table>

**Available tabs**

- Go to Design tab
- Go to Outputs tab
- Go to Boxing tab
- Go to Tins tab
- Go to Visualisation tab
- Go to Defaults tab
- Go to Buttons at bottom

**Design tab**

**Centrelines**

- model box
- available models

The model of the centreline lines that are to be processed to create roads, intersections and culdesac. Each centreline must have a unique name and vertical geometry.

After the Centreline model is selected either from the pop-up or by entering a model name and pushing the <Enter> key, the centrelines are analysed to see if left and right kerbs are possible (centreline ending on another serenely), if a culdesac is possible (end of a centreline) etc and then all the centrelines are listed in a Property Sheet on the bottom of the panel.

The entry for each centreline is where you enter values to override the defaults for road width, kerb radius, culdesac parameters etc. This information is then stored in the function rather than as attributes on the centreline strings.

**Road grid** - list of all the centrelines

**Road**

- centreline name

**Frozen**

- tick box
if ticked, the centreline is frozen out of the automatic Create Roads process.

For a frozen centreline, when the Create Roads function is run, the Apply MTF for that centreline is deleted and re-created. However any existing Apply MTF for that centreline will be run. Kerb returns are still calculated using the lip line create by running the existing Apply MTF for the frozen centreline. Hence the mtf for a frozen centreline can be modified and the changes will not be deleted when the Create Roads function is recalced.

Natural surface tin

<table>
<thead>
<tr>
<th>tin box</th>
<th>available tins</th>
</tr>
</thead>
<tbody>
<tr>
<td>if not blank, the tin to use as the natural surface for battering in the Applies.</td>
<td></td>
</tr>
<tr>
<td>If blank, no battering is done.</td>
<td></td>
</tr>
</tbody>
</table>

On changed data

<table>
<thead>
<tr>
<th>choice box</th>
<th>Prompt before freezing</th>
</tr>
</thead>
<tbody>
<tr>
<td>if Prompt before freezing,</td>
<td></td>
</tr>
<tr>
<td>If Always freeze,</td>
<td></td>
</tr>
<tr>
<td>If Always ignore,</td>
<td></td>
</tr>
</tbody>
</table>

Mode

<table>
<thead>
<tr>
<th>choice box</th>
<th>Templates, Snippets</th>
</tr>
</thead>
<tbody>
<tr>
<td>if Templates, templates are used to define the road.</td>
<td></td>
</tr>
<tr>
<td>If Snippets, snippets are used to define the road.</td>
<td></td>
</tr>
</tbody>
</table>

For information on the choice Template, go to If Mode is Templates: For information on the choice Snippets, go to If Mode is Snippets: For the next tab, go to Outputs tab

If Mode is Templates:

Templates

Road - left

<table>
<thead>
<tr>
<th>template box</th>
<th>available templates</th>
</tr>
</thead>
<tbody>
<tr>
<td>the template to use on the left hand side of the centreline. The width to the lip of kerb name is modified to match the given Road width. Through intersection, only the template links out the Lip of kerb name are used so no battering occurs through an intersection.</td>
<td></td>
</tr>
</tbody>
</table>

Road - right

<table>
<thead>
<tr>
<th>template box</th>
<th>available templates</th>
</tr>
</thead>
<tbody>
<tr>
<td>the template to use on the right hand side of the centreline. The width to the lip of kerb name is modified to match the given Road width. Through intersection, only the template links out the Lip of kerb name are used so no battering occurs through an intersection.</td>
<td></td>
</tr>
</tbody>
</table>

Kerb only

<table>
<thead>
<tr>
<th>template box</th>
<th>available templates</th>
</tr>
</thead>
<tbody>
<tr>
<td>a template with no carriageway part. It is applied to the generated kerb returns</td>
<td></td>
</tr>
</tbody>
</table>

Lip of kerb name

<table>
<thead>
<tr>
<th>text box</th>
</tr>
</thead>
<tbody>
<tr>
<td>name of the lip of kerb link that must exist in the left and the right templates. Modifiers are applied to make the width to the lip of kerb to be the Road width. The kerb returns are created from the lip of kerb on each road, and the start height and grades are taken from the lip of kerb.</td>
</tr>
</tbody>
</table>

Left/Right prefix

<table>
<thead>
<tr>
<th>text box</th>
</tr>
</thead>
<tbody>
<tr>
<td>prefix/postfix (pre*post) to be used as the LHS/RHS prefix in the created Apply MTFs. These are then applied to the left/right template string names. If pretext only, just give the text. If post text is required, precede it by a *</td>
</tr>
</tbody>
</table>

Return to Mode choice box Templates, Snippets or go to the next tab Outputs tab
If Mode is Snippets:

Snippets tab

Road - left snippet box available snippets the snippet to use on the left hand side of the centreline. The width to the lip of kerb name is modified to match the given Road width. The snippet is stopped at intersections.

Road - right snippet box available snippet the template to use on the right hand side of the centreline. The width to the lip of kerb name is modified to match the given Road width. The snippet is stopped at intersections.

Intersection - left snippet box available snippets the snippet to use on the left hand side going through intersections. The width to the lip of kerb name is modified to match the given Road width.

Intersection - right snippet box available snippets the snippet to use on the right hand side going through intersections. The width to the lip of kerb name is modified to match the given Road width.

Kerb - left snippet box available snippets the snippet that is applied to the generated left hand kerbs.

Kerb - right snippet box available snippets the snippet that is applied to the generated right hand kerbs.

Lip of kerb name text box name of the lip of kerb link that must exist in the left and the right snippets. Modifiers are applied to make the width to the lip of kerb to be the Road width. The kerb returns are created from the lip of kerb on each road, and the start height and grades are taken from the lip of kerb.

Natural surface tin tin box available tins if non blank, the tin to use as the natural surface for battering in the Applies. If blank, no battering is done.

For more information on snippets, see 21.5 Defining and Using Snippets.

Return to Mode choice box Templates, Snippets or go to the next tab Outputs tab

Outputs tab

Apply MTF functions - Roads

Apply MTF function stem text box APPLY * pre*post text to use around the centreline name to create the Apply MTF function names for the roads along each centreline. The function names will be unique because the centrelines names must be unique within the centrelines model.

Road strings stem text box * STRS pre*post text to use with the function name in the created Applies for the design string models for each centreline

Road sections stem text box * XSECS pre*post text to use with the function name and the created Applies for the design cross section models for each centreline

Road polygons mode choice box Model per centreline Model per centreline
Chapter 20 Design

One model
No Polygons

If Model for Centreline, different models are created for the polygons in each Apply MTF.
If One model, all the polygons created by the Applies are placed in one model.
If No Polygons, no polygons are created by the Applies.

If Road polygons mode is Model per centreline:
Road polygons text box * POLYS
pre*post text to use with the function name in the created Applies for polygon models for each centreline

If Road polygons mode is One model:
Road polygon model model box available models
when One model, the model for all the polygons created by the Applies.

Kerb Returns
Apply MTF function stem text box KRET APPLY *
pre*post text to use around the kerb return names to create the Apply MTF function names for the kerb returns. The function names will be unique because the kerb return names are uniquely derived from the centreline names.

Naming choice box
Follow Road Names - LHS driving
Follow Road Names - RHS driving
Use Numbers
Use Letters

method of naming the kerb returns

Kerb returns model model box available models
model for all the kerb returns

Kerb returns Apply MTF strings model model box available models
model for all the strings produced by the kerb return Applies

Kerb returns Apply MTF sections model model box available models
model for all the x-sections produced by the kerb return Applies

Apply MTF map file map file box available map files
if not blank, the name of the map file to use in the created Apply MTFs

Output chain chain box available chain files
if not blank, a chain is created of all the Apply MTFs that are run by the Create Roads - Advanced panel in the order that they need to be run.

Go to the next tab Boxing tab or return to Available tabs

Boxing tab
boxing can be created for all the road and kerb return strings. The boxing definitions must have a common centreline name in them which will be replaced by the name of each of the road/kerb return centrelines.
Create boxing  tick box
if ticked, boxing is applied for all the road and kerb returns. The boxing definitions must have a
common centreline name in them which will be replaced by the name of each of the road centrelines or
kerb returns.

Default boxing file  file box
*.blf files

Default boxing CL delimiter  text box
common name in each boxing definition which will be replaced by the name of each road/kerb return
centreline

Model stem for boxing strings  text box
pre*post text to use with the road/kerb return function name for boxing string models

Boxing sections  text box
pre*post text to use with the road/kerb return function name for boxing section models

Boxing kerb return sections and strings in one model  tick box
if ticked, the strings for all the kerb return Applies are place in one model rather than one model for
each kerb return. Similarly, the sections for all the kerb return Applies are placed in the one model.
If not ticked, the model names are created in the same way as for the road centrelines. That is, the
Model stem for boxing strings and sections are used with the kerb return function name and the layer
stems to produce the kerb return boxing strings and sections models.

Model name for boxing kerb strings  model box
available models
when only one model (per layer) for the box kerb strings is used - the base name for the model of kerb
strings created for each boxing layer. The pre*post text in the Layer Stem is applied to this name.

Model name for boxing kerb sections  model box
available models
when only one model (per layer) for the box kerb sections is used - the base name for the model of kerb
sections created for each boxing layer. The pre*post text in the Layer Stem is applied to this name.

Boxing Layer 1-8 in the grid:
if non blank, boxing strings and sections will be created for that layer.
The last boxing layer is also referred to as the subgrade layer.

Layer stem  text box
for this boxing layer, the pre*post text used when naming models for boxing sections and strings.

Road - LHS  text box
for this boxing layer, the boxing definition to use on the left hand side of road centrelines

Road - RHS  text box
for this boxing layer, the boxing definition to use on the right hand side of road centrelines

Kerb return  text box
for this boxing layer, the boxing definition to use on the kerb returns
**Intersection - LHS**
Text box

For this boxing layer, the boxing definition to use on the left hand side of the road though an intersection. The strings and sections are place in the models for the road centreline going through the intersection.

**Intersection - RHS**
Text box

For this boxing layer, the boxing definition to use on the right hand side of the road though an intersection. The strings and sections are place in the models for the road centreline going through the intersection.

Go to the next tab **Tins tab** or return to **Available tabs**

**Tins tab**

**Create tin**
Tick box

If ticked, create a tin for all the roads, kerb returns and culdesacs

**Road tin**
Text box
Available tins

Name for the tin created from the all the strings and sections

**Road tin model**
Model box
Available models

Model for the Road tin

**Road tin colour**
Colour box
Available colours

Colour of the road tin

**Subgrade tin**
Text box
Available tins

If non blank, a subgrade tin of this name is created

**Subgrade tin model**
Model box
Available models

Model for the Subgrade tin

**Subgrade tin colour**
Colour box
Available colours

Colour of the subgrade tin

**Nulling angle**
Real box
Measures pop up

Angle for nulling the triangles

**Nulling length**
Real box
Measures pop up

Length for nulling the triangles

**Nulling Seed points**

Seed points are used for nulling triangles in the tins

**Seed X/Y**
Two column rid

XY coordinate of a nulling seed points.

**Add**
Button

After clicking on **Add**, a seed point is selected from a view and the (X,Y) coordinates are written to the Seed X/Y grid.
Remove button
clicking on Remove will delete the highlighted row from the Seed X/Y point grid.

Go to the next tab Visualisation tab or return to Available tabs

Visualisation tab

Create visualisation tick box
if ticked, the road tin is processed for visualisation

Apply texture map to tin tick box
if ticked, the texture map is applied to the road tin

Draw road tin as solid on view tick box
if ticked, draw the triangles of a tin as solid colour on the view

Tin colour to use for cut polygons colour box available colours
colour to use for all the cut polygons

Tin colour to use for fill polygons colour box available colours
colour to use for all the fill polygons

Tin colour to use for transition polygons colour box available colours
colour to use for all the polygons in neither cut nor fill

Go to the next tab Defaults tab or return to Available tabs

Defaults tab

Roads

Road width real box 3.5 measures pop up
width to be used for the left and right side of the road if one hasn’t been defined for any centrelines

Section separation real box 5 measures pop up
chainage distance to use for the Applies created for the roads along the centrelines

Chord/Arc tolerance real box 0.01 measures pop up
chord to arc tolerance to use in the Applies for the centrelines.

Kerb returns

Kerb radius real box 5 measures pop up
radius to use for filleting between any centrelines that don’t have a left or right radius defined

Section separation real box 1 measures pop up
chainage distance to use to use for the Applies that are created for the kerb returns

Chord/Arc tolerance real box 0.001 measures pop up
chord to arc tolerance to use for the Applies that are created for the kerb returns

Culdesacs
**Bulb radius**  
real box 9 measures pop up  
radius of the bulb of the culdesac

**Bulb offset**  
real box measures pop up  
offset of the centre of the culdesac bulb from the centreline.

**Left width**  
real box 3.5 measures pop up  
width of the left hand side of the throat of the culdesac

**Right width**  
real box 3.5 measures pop up  
width of the right hand side of the throat of the culdesac

**Left radius**  
real box 15 measures pop up  
fillet radius of the curve on the left hand side going from the beginning of the culdesac to either the bulb of the culdesac, or onto the tangent between this curve and the bulb of the culdesac.

**Right radius**  
real box 15 measures pop up  
fillet radius of the curve on the right hand side going from the beginning of the culdesac to either the bulb of the culdesac, or onto the tangent between this curve and the bulb of the culdesac.

**Left tangent**  
real box measures pop up  
if non zero, there is a straight line of this length that is the tangent between the fillet curve on the left hand side at the beginning of the culdesac and the bulb of the culdesac. This can not be a negative value.

**Right tangent**  
real box measures pop up  
if non zero, there is a straight line of this length that is the tangent between the fillet curve on the right hand side at the beginning of the culdesac and the bulb of the culdesac. This can not be a negative value.

**Projection**  
real box measures pop up  
if non zero, the end of the centreline with the culdesac on it is extended by this distance. The centre of the culdesac bulb is then placed at the perpendicular distance of **Bulb offset** from the extended point.

Go to the next tab  **Buttons at bottom** or return to  **Available tabs**

**Buttons at bottom**

**Create** button  
run the option and create the road network.

Return to  **20.8.1 Create Roads**
20.8.1.2 V10 Create Roads

The Create Roads walk-right menu is

construct the roads network
setups for road network
convert kerb returns

For the options see

Create Roads - Manager, go to
Create Roads - Setup
Create Roads - Kret convert

20.8.1.2.1 Create Roads - Manager
20.8.1.2.2 Create Roads - Setup
20.8.1.2.3 Create Roads - Kreturns Convert
### 20.8.1.2.1 Create Roads - Manager

**Position of option on menu:** Design => Roads => Create => Create Roads - Manager

This option takes all the centrelines in a model and uses road widths and left and right turn radii to form roads on each centreline.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Function</strong></td>
<td>function box</td>
<td>available roads functions</td>
<td>name of the create roads function</td>
</tr>
<tr>
<td><strong>Input tab</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model of centrelines</td>
<td>model box</td>
<td>available models</td>
<td>model of the centreline lines that are to processed to create roads, intersections and culdesac. Each centreline must have a unique name and vertical geometry</td>
</tr>
<tr>
<td><strong>Templates</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full width</td>
<td>template box</td>
<td>available templates</td>
<td>template with one fixed link and then cut and fill definitions to use for creating the roads. If a centreline has a road width defined, then the template is modified to use those values. The cut/fill section of the template are used to batter as normal.</td>
</tr>
</tbody>
</table>
Carriageway template box available templates

A template with only a fixed part to the end of the carriageway which is applied across any intersections - going from the chainage of the start of the kerb return on one side of the intersection to the chainage at the end of kerb return on the other side of the intersection.

Kerb only template box available templates

A template with no carriageway part. It is applied to any kerb returns.

Lip line name

Name of the lip line that must exist in each of the full width template and the road template. The kerb returns are created from the lip line on each road and the start height and grades are taken from the lip lines.

Road Defaults

Width

Width of the road to be used if one hasn’t been defined for any centrelines.

Turn radius

Radius to use for filleting between any centrelines that don’t have a left or right radius defined.

Design separation

Chainage distance to use in the Applies for creating the roads along the centrelines.

Default chord/arc

Chord to arc tolerance to use on curves.

Natural surface tin tin box available tins

If non blank, the tin to use as the natural surface for battering in the Applies. If blank, no battering is done.

Output tab

Model stems

Road strings input

Pre*post text to use with the function name in the created Applies for the design string models for each centreline.

Road sections input

Pre*post text to use with the function name and the created Applies for the design cross section models for each centreline.

Polygons choice box One model One model, No Polygons

If One model, all the polygons created by the applies are placed in one model.
If Model for Centreline, different models are created for the polygons in each apply.
If No Polygons, no polygons are created by the applies.

Model model box available models

When One model, model for all the polygons created by the Applies.

Road polygons input

Pre*post text to use with the function name in the created Applies for polygon models for each centreline.

Kerb Returns

Turn separation
chord/arc tolerance for use in the kerb return Applies

Turn chord/arc
cord to arc tolerance to use on kerb return

Model for kerb returns model box available models

model for all the kerb returns

Naming choice box

Follow Road Names - LHS driving
Follow Road Names - RHS driving
Use Numbers
Use Letters

method of naming the kerb returns

Just create kerb returns tick box

if ticked, only create the kerb returns. Usually only run at the beginning to see if the kerbs look correct.

Just create kerb returns tick box

if ticked, only create the kerb returns. Usually only run at the beginning to see if the kerbs look correct.

Kerb return strings and sections in one model tick box

if ticked, then all the kerb return strings and sections are place in the one model. The model names are given in the next two fields.

Model for kerb return strings model box available models

model for all the kerb return strings

Model for kerb return sections model box available models

model for all the kerb return sections

Delete frozen Apply MTF functions tick box

if ticked, the Apply MTF functions are deleted for all the frozen roads. Normally not used

View for models view box available views

if non blank, view to add all the created models onto.

Error report file box *.rpt files

file for error messages

Boxing tab

boxing can be created for all the road and kerb return strings. The boxing definitions must have a common centreline name in them which will be replaced by the name of each of the road/kerb return centrelines.

Create boxing tick box

if ticked, boxing is applied for all the road and kerb returns. The boxing definitions must have a common centreline name in them which will be replaced by the name of each of the road centrelines or kerb returns.

Default boxing file file box *.blf files

file of boxing file definitions

Default boxing CL delimiter input

common name in each boxing definition which will be replaced by the name of each road/kerb return centreline

Model stem for boxing strings input

pre*post text to use with the road/kerb return function name for boxing string models
Boxing sections  
input  
pre*post text to use with the road/kerb return function name for boxing section models

Boxing kerb return sections and strings in one model  
tick box  
if ticked, the strings for all the kerb return Applies are place in one model rather than one model for each kerb return. Similarly, the sections for all the kerb return Applies are placed in the one model. If not ticked, the model names are created in the same way as for the road centrelines. That is, the Model stem for boxing strings and sections are used with the kerb return function name and the layer stems to produce the kerb return boxing strings and sections models.

Model name for boxing kerb strings  
input  
when only one model (per layer) for the box kerb strings is used - the base name for the model of kerb strings created for each boxing layer. The pre*post text in the Layer Stem is applied to this name.

Model name for boxing kerb sections  
input  
when only one model (per layer) for the box kerb sections is used - the base name for the model of kerb sections created for each boxing layer. The pre*post text in the Layer Stem is applied to this name.

Boxing Layer 1-8 in the grid:  
if non blank, boxing strings and sections will be created for that layer. The last boxing layer is also referred to as the subgrade layer.

Layer stem  
input  
for this boxing layer, the pre*post text used when naming models for boxing sections and strings.

Road - LHS  
input  
for this boxing layer, the boxing definition to use on the left hand side of road centrelines

Road - RHS  
input  
for this boxing layer, the boxing definition to use on the right hand side of road centrelines

Kerb return  
input  
for this boxing layer, the boxing definition to use on the kerb returns

Intersection - LHS  
input  
for this boxing layer, the boxing definition to use on the left hand side of the road though an intersection. The strings and sections are place in the models for the road centreline going through the intersection.

Intersection - RHS  
input  
for this boxing layer, the boxing definition to use on the right hand side of the road though an intersection. The strings and sections are place in the models for the road centreline going through the intersection.

Tins tab

Create tin  
tick box  
if ticked, create a tin for all the roads, kerb returns and culdesacs

Road tin  
tin box  
available tins  
name for the tin created from the all the strings and sections

Road tin colour  
colour box  
available colours  
colour of the road tin

Subgrade tin  
tin box  
available tins
if non blank, a subgrade tin of this name is created

**Subgrade tin colour**
- colour box
- colour of the subgrade tin

**Nulling angle**
- input
- angle for nulling the triangles

**Nulling length**
- input
- length for nulling the triangles

**Null Seed points:**

**Seed X/Y**
- input
- X/Y coordinate of a nulling seed point

**Seed Point**
- button
- select a seed point for nulling the tins. The X and Y coordinates are written to the Seed X/Y grid

**Visualisation tab**

**Create visualisation**
- tick box
- if ticked, the road tin is processed for visualisation

**Apply texture map to tin**
- tick box
- if ticked, the texture map is applied to the road tin

**Draw road tin as solid on view**
- tick box

**Tin colour to use for cut polygons**
- colour box
- colour to use for all the cut polygons

**Tin colour to use for fill polygons**
- colour box
- colour to use for all the fill polygons

**Tin colour to use for transition polygons**
- colour box
- colour to use for all the polygons in neither cut nor fill

**Freezing tab**

**Colour for the frozen sections**
- colour box
- colour to use for the sections of frozen strings. In any view, this gives a quick way of identifying frozen roads.

**Road grid**
- list of all the centrelines

**Element**
- centreline name
- available colours

**Frozen**
- tick box
- if ticked, the centreline is frozen out of the automatic Create Roads process.

For a frozen centreline, when the **Create Roads** function is run, the Apply MTF for that centreline is deleted and re-created. However any existing Apply MTF for that centreline will be run. Kerb returns are still calculated using the lip line create by running the existing Apply MTF for the frozen centreline. Hence the mtf for a frozen centreline can be modified and the changes will not be deleted when the Create Roads function is recalced.
Note - if the two roads used to define a kerb return are both frozen, then the kerb return is automatically frozen and the kerb return is not deleted and recreated when the Create Roads function is recalced. However the existing Apply MTF for the frozen kerb return is run on each recalc.

Buttons at bottom

Create button

run the option and create the road network.

Continue to 20.8.1.2.2 Create Roads - Setup or return to 20.8.1.2 V10 Create Roads.
20.8.1.2.2 Create Roads - Setup

**Position of option on menu:**  Design => Roads => Create => Create Roads - Setup

In the **Create Roads - Setup** panel there are default values for the road width and road crossfall and turn radius.

If a different road width or crossfall, or a different left turn radius or right hand radius is required, the **Create Roads - Setup** option is used to define the different information for any centreline. **Create Roads - Setup** is also used to define culdesacs.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Road Setup tab</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centreline</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

used to set the left and right turn radii, and the width of the road. This option is used twice to set the different radii for each end of a road by picking the centreline close to the end that is to have the left and right turn radii defined. The left and right turn radii can be different for each end of an alignment.

Road width
width of one side of the road for the selected centreline.

**LHS turn radius**

radius to use for filleting between any centrelines on the left.

**RHS turn radius**

radius to use for filleting between any centrelines on the right.

**Set button**

store the given values in the panel with the selected centreline.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Culdesac Setup tab</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left fillet</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>radius of the fillet between the road and the bulb on the left hand side</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulb radius</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>radius of the culdesac bulb</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bulb offset input
offset of the culdesac bulb

Right fillet input
radius of the fillet between the bulb and the right hand side of the road

Left straight input
distance between the left fillet and the bulb

Right straight input
distance between the right fillet and the bulb

Set button
store the panel values the selected centreline.

Continue to 20.8.1.2.3 Create Roads - Kreturns Convert or return to 20.8.1.2 V10 Create Roads.
20.8.1.2.3 Create Roads - Kreturns Convert

Position of option on menu: Design => Roads => Create => Kret Convert

This macro is to be used in conjunction with the Create Roads.

Once Create Roads has been run, this macro will convert all the SA kerb returns to Element method (in both horizontal and vertical).

The horizontal parts are referenced to the appropriate road centreline, using segment computators and a free arc radius.

The vertical is a combination of a fixed grade at the start and end, with a compound parabola.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create Roads Function</td>
<td>function</td>
<td>select function</td>
<td>select function</td>
</tr>
<tr>
<td></td>
<td>select function from list</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>Button</td>
<td></td>
<td>runs the option</td>
</tr>
</tbody>
</table>

Return to 20.8.1.2 V10 Create Roads.
20.8.2 Design Checker

Position of option on menu:  Design => Roads => Design checker
This option is still under development.
Selecting Design checker displays the Design Checker panel.
20.8.3 Stopping Distance

Position of option on menu: Design => Roads => Stopping distance

This section of documentation is a work in progress and will be updated in subsequent releases.

![Stopping Distance Calculator](image-url)
20.8.4 Trarr

Position of menu: Design => Roads => Trarr

The option under Trarr read and write Design TRARR files.

The Trarr walk-right menu is

For Trarr output, go to 20.8.4.1 Trarr Output
Trarr input 20.8.4.2 Trarr input

20.8.4.1 Trarr Output

Position of option on menu: Design => Roads => Trarr => Trarr output

Options to create a file for use with TRARR.

Please contact 12d Solutions Pty Ltd if you wish to use this option.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road tin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terrain tin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Start chainage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End chainage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum sight distance</td>
<td></td>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>Trial interval</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Barrier distance</td>
<td></td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>85% site speed</td>
<td></td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Eye height</td>
<td></td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Target height</td>
<td></td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Model for sight lines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td></td>
<td>cyan</td>
<td></td>
</tr>
<tr>
<td>Trarr file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centreline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polygon</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field Description Type Defaults Pop-Up
Road tin  tin box  available tins
  tin of the road design

Terrain tin  tin box  available tins
  tin of the terrain

Interval  input
  interval to calculate sight lines

Start chainage
  if non blank, start chainage for producing the Trarr file.
  if blank, start at the beginning of the centreline string.

End chainage
  if non blank, end chainage for producing the Trarr file.
  if blank, go to the end of the centreline string.

Maximum sight distance  input
  maximum distance to try and calculate sight lines

Trial interval  input
  interval to move ahead to test sight distance to

Barrier distance  input
  if sight distance is less than this value then a barrier line is required

85%le speed  input
  85 percentile speed (to write to the Trarr file)

Eye height  input  1.3
  height of the eye point above the picked string

Target height  input  0.3
  height of the target point above the picked string

Model for sight lines  model box  available models
  if non blank, the sight lines are kept and placed in this model

Colour  colour box  available colours
  colour of the sight lines

Trarr file  file box  *.rpt files
  if non blank, a Trarr file of this name is produced

Centreline  string-select
  string to be used for placing the eye and target points and calculating sight distance, is selected from a view.

Polygon  string-select
  boundary polygon for the road tin

Sight  button
  calculate sight lines and write out a Trarr file
20.8.4.2 Trarr input

Position of option on menu: Design => Roads => Trarr => Trarr input

Option to read a TRARR file.

Please contact 12d Solutions Pty Ltd if you wish to use this option.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trarr file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centreline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td></td>
<td>cyan</td>
<td></td>
</tr>
<tr>
<td>Perspective view</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start time (sec)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final time (sec)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timeline file</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Image of Read Trarr data panel]
20.8.5 Vehicle Path

Position of menu:  Design =>Roads =>Vehicle Path

The vehicle path option is used to interface with the vehicle path program Vpath, written by the Queensland Department of Transport and Main Roads. Vpath can be obtained from the Queensland Department of Transport and Main Roads.

The Vpath program is fully described in its own Manual available from Queensland Department of Transport and Main Roads.

To run Vpath from within 12d Model the environment variable WINDOWS_VEHICLE_PATH_4D is set to point to the folder where the Windows Vpath executable is located.

This can be set manually or done through the Edit Environment Variables panel.

WINDOWS_VEHICLE_PATH_4D   folder-path

On selecting the Vehicle Path option, the Vehicle Path panel is displayed. If the environment variable is not set the Edit Environment Variables panel will be displayed on the screen.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Main Tab</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>function box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>name of the Steering Path function.</em> If the function already exists and is picked from a pop-up or an <code>&lt;enter&gt;</code> is given at the end of the name, the information from the existing function will be placed in the appropriate panel fields.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle type</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>the vehicle type used for generating the swept path. This is populated from first the vehicles.std and then the vehicles.cus files located in the defined vehicle path directory.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friction coefficient</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>the coefficient of friction to be used for the vehicle.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle Path Output</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Steering path, Turning Template</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Steering path: the swept path of the vehicle is generated along the selected super alignment/alignment string.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Turning Template: the swept path of the vehicle is generated through 180° at a nominated radius</em></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The fields and buttons used in this panel have the following functions.

### Steering path options

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle on side</td>
<td>choice box</td>
<td>Left, Right</td>
<td></td>
</tr>
<tr>
<td>Draw interval (0=None)</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if non-zero, the position of the vehicle on the steering path is, draw the position at this interval</td>
<td></td>
</tr>
<tr>
<td>Vehicle Path</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>select the string for generating the swept path.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The string must be a super alignment or alignment string, consecutive straights and transitions curves are not allowed and there can be no more than 20 arcs in the string.</td>
<td></td>
</tr>
</tbody>
</table>

### Turning Template Options

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>enter the radius of the turning template, positive defines a clockwise turn, negative is anti-clockwise.</td>
<td></td>
</tr>
<tr>
<td>Start point</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>select the coordinates of the start point of the turning template.</td>
<td></td>
</tr>
<tr>
<td>Bearing</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>enter the bearing of the start point of the turning template.</td>
<td></td>
</tr>
</tbody>
</table>

**Common options**

- **Keep temporary files**
  - tick box
  - if ticked the input file for \texttt{Vpath} and the \texttt{dxf} file produced by \texttt{Vpath} are kept in the \texttt{Vpath} directory.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Output Tab</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Swept Path</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the model for the swept path generated by the extremities of the vehicle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Vehicle Position</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if non-blank, the strings tracing out the vehicle position at the nominated interval are placed in this model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Steering Path</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if non-blank, the steering path including the marking of the tangent points and centres of each circular curve are created and placed in this model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>All other data</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if non blank all other data produced by Vpath including a table of parameters used is placed in this model</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If the **More** tick box is ticked the following fields are displayed.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

With the More enabled the Name, Model, Colour, Linestyle and Weight can be entered for each option.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hatching Tab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swept path hatching</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The swept path of the vehicle can be hatched, the swept path strings generated by Vpath are collated into a single boundary string to produce the hatching.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Warning</strong>, this operation can take some time on longer alignments.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>name of the swept path hatching.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>model for the swept path hatching.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spacing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>spacing of the swept path hatching.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>colour of the swept path hatching.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Boundary to swept path model?</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>if ticked the collated boundary string is copied to the swept path model.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle position hatching</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
the strings tracing out the vehicle position can be hatched.

**Name**

name of the vehicle position hatching.

**Model**

model for the vehicle position hatching.

**Spacing**

spacing of the vehicle position hatching.

**Colour**

colour of the vehicle position hatching.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vis Tab</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The *Vis* tab is used to create a visualisation from the generated strings.

**Drape tin**

*the tin to drape the generated string onto to create the visualisation*

**Swept extrude**

*the extrusion to use for the swept path strings*
Steer extrude

the extrusion to use for the steering path strings

Veh pos extrude

the extrusion to use for the vehicle position strings

Run Vehicle Path button

run the Vpath program and load the results back into the models given in the panel fields.

Vehicle Path supports up to 20 IPs. A warning message will be displayed if this is exceeded and no data will be produced.

Vehicle Path only supports tangential straight/curve and curve/curve geometry. A warning message will be displayed if this criteria is not met and no data will be produced.
20.8.6 ARNDT Editor

Position of menu: Design => Roads => ARNDT Editor

This editor allows you to create or edit files for ARNDT (A Roundabout Numerical Design Tool) files. It can also interface directly with ARNDT to create geometry and generate reports.

Selecting ARNDT Editor brings up the ARNDT panel.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARNDT file</td>
<td>file</td>
<td>the ARNDT file to read or write</td>
<td></td>
</tr>
<tr>
<td>Read</td>
<td>button</td>
<td>reads the ARNDT file</td>
<td></td>
</tr>
<tr>
<td>New leg</td>
<td>button</td>
<td>creates a new leg for the roundabout</td>
<td></td>
</tr>
<tr>
<td>Delete leg</td>
<td>button</td>
<td>deletes the currently selected leg</td>
<td></td>
</tr>
<tr>
<td>Add curve</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
adds a new entry curve to the selected leg

**Delete curve** button

deletes the selected entry curve

**Write** button

writes the *ARNDT* file

**Load geometry** button

options for loading geometry via *ARNDT* and generating report files

**Central Island**

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Central island radius</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the radius of the central island</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Circulating width</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the offset from the radius of the circulating string</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong># of circulating lanes</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the number of lanes circulating the roundabout</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**Edge type**

_the edge type for the central island (Kerbing or Edge Line)_

**Legs Node**

The **Leg node**, for each leg of the roundabout, allows you to modify parameters for that leg.

---

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach carriageway?</td>
<td>choice box</td>
<td>yes, no</td>
<td></td>
</tr>
<tr>
<td>Departure carriageway?</td>
<td>choice box</td>
<td>yes, no</td>
<td></td>
</tr>
</tbody>
</table>

 whether or not there is an approach carriageway (yes or no)  
 whether or not there is a departure carriageway (yes or no)  

**Bearing**

_the bearing of the leg_

**Offset**

_the offset of the leg from the centre of the roundabout_
This defines the properties for the approach carriage of the leg, if there is an approach.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Approach details</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>the width of the approach carriageway</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># of lanes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>the number of lanes in the approach carriageway</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset to median edge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>the offset of the approach from the median</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Curve details - right edge</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>the radius of the right edge of the approach</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edge type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>the type of edging for the right edge of the approach</em></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Curve details - left edge

Radius
the radius of the left edge of the approach

Edge type
the type of edging for the left edge of the approach

Leg Departure Node
This defines the properties for the departure carriageway of the leg, if there is a departure.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Departure details</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># of lanes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset to median edge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curve details - right edge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edge type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curve details - left edge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edge type</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The width of the departure carriageway

the number of lanes in the departure carriageway
Offset to median edge
   the offset of the departure from the median

Curve details - right edge
  Radius
   the radius of the right edge of the departure
  Edge type
   the type of edging for the right edge of the departure

Curve details - left edge
  Radius
   the radius of the left edge of the departure
  Edge type
   the type of edging for the left edge of the departure

Approach Curves Node
This node defines the setting for each approach curve. New approach curves can be added to a leg by clicking the Add curve button. There are two methods for defining a curve - either by arc details or start tangent.

Approach curves are only defined by their right hand edge.
The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

**Right Edge Details**

**Defined by**
choice box

*how the curve is defined*

**Curve type**
the type of curve (Reverse or Compound)

**Radius**
the radius of the right edge - only available when defined by Arc details

**Length**
the length of the right edge - only available when defined by Arc details
Tangent bearing
the bearing of the tangent to the curve - only available when defined by Start tangent details

Tangent offset
the offset of the tangent to the roundabout - only available when defined by Start tangent details

Edge type
the type of edging for the right edge (Kerbing or Edge Line)

Left Edge Details

Curve type
the type of curve. This field is read only.

Radius
the radius of the curve, if using Arc details. This field is read only.

Length
the length of the curve, if using Arc details. This field is read only.

Tangent bearing
the bearing of the tangent to the curve, if using Start tangent details. This field is read only.

Tangent offset
the offset of the tangent, if using Start tangent details. This field is read only.

Edge type
the type of edging for the right edge (Kerbing or Edge Line)

Leg Speed & Traffic Node
This node defines the speed and traffic details for each leg of the roundabout.
The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed environment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual average daily traffic flow</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The speed environment of the carriageway

Annual average daily traffic flow

To leg 1

the average daily traffic flow (vehicles per day) leaving leg 1 and returning to leg 1

To leg 2

the average daily traffic flow (vehicles per day) leaving leg 1 and exiting via leg 2

This is repeated for each leg of the roundabout

Accident Parameters

This defines various parameters used by ARNDT for calculating risks and costs for the roundabout. These parameters are requested by the ARNDT program. Please see the ARNDT documentation for more details on these parameters.
Load Geometry / Export to ARNDT

Selecting **Load Geometry** brings up the **Export to ARNDT** panel.

This panel allows you to load geometry from **ARNDT**, based on the file you are editing, as well as optionally generating reports.

The fields and buttons used in this panel have the following functions:
<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Position</strong></td>
<td></td>
<td>the x and y co-ordinate for the roundabout</td>
<td></td>
</tr>
<tr>
<td><strong>Pre*Post</strong></td>
<td></td>
<td>an optional pre*post applied to any strings read back from ARNDT</td>
<td></td>
</tr>
<tr>
<td><strong>ARNDT report</strong></td>
<td></td>
<td>an optional report file of details generated by ARNDT</td>
<td></td>
</tr>
<tr>
<td><strong>Export</strong></td>
<td></td>
<td>Exports the current roundabout details to ARNDT, imports the results generated by ARNDT. Results will include geometry at the nominated position, and a report if specified.</td>
<td></td>
</tr>
</tbody>
</table>
20.8.7 Mass Haul

Position of menu:   Design => Roads => Mass haul

The option under Mass haul reads a volumes report and creates Mass Haul information.

The Mass haul walk-right menu is

```
Mass Haul
Mass haul analyser
Mass haul
```

mass haul analysis from volumes report
create mass haul string and report from volumes report

For Mass haul analyser, go to 20.8.7.1 Mass Haul Analyser 20.8.8.3 Mass Haul String and Report

20.8.7.1 Mass Haul Analyser

Position of option on menu:   Design => Roads => Mass haul => Mass haul analyser

The Mass Haul Analyser option calculates the mass haul along an alignment using the volume report files from various 12d functions.

To operate the option a volume report file is selected and the report file type set to match the report type. The Calculate tabulation button will then calculate the bulking factors and add the special chainage items to the tabulation. After this the Calculate Mass Haul option will push excess fill material forwards along the alignment to a matching cut item with the same accumulated balance and push excess cut material backwards along the alignment to a matching fill item.

Where the cost of Haul cost is greater than the Borrow Plus Spoil cost the option will skip that material.

The option performs this operation several times passing back over the alignment until no more haul material can be found. It then borrows and spoils the remaining material.

The macro is intended to provide an analysis methodology to the designer to enable them to quickly review where material is available in an alignment in order to optimise the alignment with respect to potential cost savings. It is also a useful tool for training in the techniques of mass haul. The final mass haul graph should be exported for detailed analysis using the Design=>Roads=>Mass haul => Mass Haul option.

Selecting the Mass haul analyser option brings up the Mass Haul Analyser panel.
Configuration Tab
This tab is used to set up the parameters to be used by the macro.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter File</td>
<td>file</td>
<td>*.mhp files</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the file containing the previously used settings for the fields in the panel.</td>
<td></td>
</tr>
<tr>
<td>Read Button</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>read the parameter file in</td>
<td></td>
</tr>
<tr>
<td>Write button</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>write the setting in the panel out to a parameter file.</td>
<td></td>
</tr>
<tr>
<td>Volume File</td>
<td>file</td>
<td>*.rpt files</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>input file generated from another 12d option</td>
<td></td>
</tr>
<tr>
<td>Report File Type</td>
<td>choice box</td>
<td>NATURAL SURFACE TO DESIGN VOLUMES</td>
<td>see 20.8.8.1 Selecting The Right Report</td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------</td>
<td>-------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>File Type</td>
<td></td>
<td></td>
<td>the report file type to be used as an input to the macro.</td>
</tr>
<tr>
<td>Excavation bulking factor</td>
<td>real box</td>
<td>1.5</td>
<td>bulking factor ratio between loose excavated material and insitu compacted material. number greater than one indicates loose material is bulkier than insitu material. defaults are arbitrary and must be selected by the user</td>
</tr>
<tr>
<td>Fill compaction factor</td>
<td>real box</td>
<td>1.25</td>
<td>compaction factor ratio between loose excavated material and insitu compacted material. number greater than one indicates loose material is bulkier than insitu material. defaults are arbitrary and must be selected by the user</td>
</tr>
<tr>
<td>Fill Cost</td>
<td>real box</td>
<td>5.6</td>
<td>cost per cubic metre to place and compact material. defaults are arbitrary and must be selected by the user</td>
</tr>
<tr>
<td>Spoil cost</td>
<td>real box</td>
<td>1.02</td>
<td>cost per cubic metre to dispose of excess material (including haul costs) defaults are arbitrary and must be selected by the user</td>
</tr>
<tr>
<td>Cut cost</td>
<td>real box</td>
<td>4</td>
<td>cost per cubic metre to excavate material. defaults are arbitrary and must be selected by the user</td>
</tr>
<tr>
<td>Borrow cost</td>
<td>real box</td>
<td>1.26</td>
<td>cost per cubic metre to import additional material (including delivery costs) defaults are arbitrary and must be selected by the user</td>
</tr>
<tr>
<td>Haul cost</td>
<td>real box</td>
<td>1.4</td>
<td>cost per cubic metre to haul material one kilometre. defaults are arbitrary and must be selected by the user</td>
</tr>
</tbody>
</table>
Special Chainages Tab

This tab is used to add additional items to the tabulation.

The fields and buttons used in this panel have the following functions:

Field Description	Type	Defaults	Pop-Up
Chainage | chainage box | the chainage that the special item is to be applied
Type | choice box | borrow, spoil, break | the type of special item to be applied
Loose Volume | | the volume of loose material in the special item
Retrieve | button | retrieve special chainages into the grid control
Store Chainages | button | save special chainages from the grid control
### Tabulation Tab

This tab displays the processed cut and fill volumes after bulking factors have been applied.
Haul Costs Tab

This tab displays the processed haul volumes after mass haul has been applied.
Borrow Items Tab

This tab displays the remaining borrow volumes after mass haul has been applied.
Spoil Items Tab

This tab displays the remaining spoil volumes after mass haul has been applied.
Mass Haul Diagram Tab

This tab displays a graph of the resulting mass haul diagram. For information on several features of the graph please go to 20.8.8.2 Graph Box Operation.
Summary Tab

This tab displays a summary of the costs calculated. These costs can be used to compare trends in the efficiency of the mass haul between different designs. The costs given are not intended to be the final cost of the mass haul as further analysis will be required however they do give an indication as to the efficiency of a design with regard to mass haul.

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fill</td>
<td>82285.100m³</td>
<td>460852.56</td>
</tr>
<tr>
<td>Cut</td>
<td>38285.802m³</td>
<td>153145.21</td>
</tr>
<tr>
<td>Borrow</td>
<td>45444.674m³</td>
<td>57260.29</td>
</tr>
<tr>
<td>Spoil</td>
<td>4.503m³</td>
<td>4.59</td>
</tr>
<tr>
<td>Haul</td>
<td>10160.727m³</td>
<td>14225.02</td>
</tr>
</tbody>
</table>

**TOTAL:** 71495.90

Note: All haul quantities and costs shown in these tables are indicative of relative trends between various designs for the purpose of evaluating one design against another and are not to be used as actual costs for valuing a particular design.
Outputs Tab

This tab can be used to export data from the option

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Horiz. Alignment</td>
<td>select string</td>
<td></td>
<td>select the seed alignment that will be used for the horizontal alignment of the mass haul string</td>
</tr>
<tr>
<td>Name for mass haul alignment</td>
<td>name box</td>
<td></td>
<td>sets the name of the plotted mass haul string</td>
</tr>
<tr>
<td>Model for mass haul alignment</td>
<td>model box</td>
<td></td>
<td>sets the model of the plotted mass haul string</td>
</tr>
<tr>
<td>Colour for mass haul alignment</td>
<td>colour box</td>
<td>red</td>
<td>sets the colour of the plotted mass haul string</td>
</tr>
<tr>
<td>Plot Mass Haul Alignment</td>
<td>button</td>
<td></td>
<td>duplicates the seed alignment and stores the mass haul accumulated volume balances as chainage</td>
</tr>
</tbody>
</table>
height points in that alignment

**Write log file** tick box

*choose this option to export a log file*

**Log file** file box

*the calculations generated by the mass haul option are stored in this log file*
20.8.8 Common Buttons

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculate Tabulation</td>
<td>button</td>
<td></td>
<td>recalculate tabulation</td>
</tr>
<tr>
<td>Calculate Mass Haul</td>
<td>button</td>
<td></td>
<td>recalculate mass haul</td>
</tr>
<tr>
<td>Recalculate all</td>
<td>button</td>
<td></td>
<td>recalculate both tabulation and mass haul</td>
</tr>
<tr>
<td>Finish</td>
<td>button</td>
<td></td>
<td>closes the panel</td>
</tr>
<tr>
<td>Help</td>
<td>button</td>
<td></td>
<td>displays this help</td>
</tr>
</tbody>
</table>

20.8.8.1 Selecting The Right Report File Type

The report file type option allows the user to use various report file types generated by 12d.

Go to

- NATURAL SURFACE TO DESIGN VOLUMES
- NATURAL SURFACE TO SUBGRADE VOLUME
- TIN-TIN VOLUME REPORT
- STRING TIN-TIN VOLUME REPORT
- TIN TO HEIGHT VOLUME REPORT
- STRING TIN TO HEIGHT VOLUME REPORT
- SECTIONS TO HEIGHT VOLUME REPORT
- SECTIONS TO SECTIONS VOLUME REPORT

Each type is selected to cause the option to look for certain key phrases in the report file at the top of each cut/fill/balance tabulation.

NATURAL SURFACE TO DESIGN VOLUMES

This choice is selected to use the natural surface to design volumes table generated by the "Apply MTF" function. This function must be run first from the Design=>Apply=>Apply MTF menu.
item.

**NATURAL SURFACE TO SUBGRADE VOLUME**

This choice is selected to use the natural surface to subgrade volumes table generated by the "Apply MTF" function. This function must be run first from the Design=>Apply=>Apply MTF menu item. In order to use this option boxing must be calculated in the Apply MTF function.

**TIN-TIN VOLUME REPORT**

This choice is selected to use the tin to tin volumes table generated by the Apply MTF function. This function must be run first from the Design=>Volumes=>End Area=>Tin to tin menu item.

**STRING TIN-TIN VOLUME REPORT**

This choice is selected to use the string tin to tin volumes table generated by the "Apply MTF" function. This function must be run first from the Design=>Volumes=>End Area=>String tin to tin menu item.

**TIN TO HEIGHT VOLUME REPORT**

This choice is selected to use the tin to height volumes table generated by the "Apply MTF" function. This function must be run first from the Design=>Volumes=>End Area=>Tin to height menu item.

**STRING TIN TO HEIGHT VOLUME REPORT**

This choice is selected to use the string tin to height volumes table generated by the "Apply MTF" function. This function must be run first from the Design=>Volumes=>End Area=>String tin to height menu item.

**SECTIONS TO HEIGHT VOLUME REPORT**

This choice is selected to use the sections to height volumes table generated by the "Apply MTF" function. This function must be run first from the Design=>Volumes=>End Area=>Sections to height menu item.

**SECTIONS TO SECTIONS VOLUME REPORT**

This choice is selected to use the sections to sections volumes table generated by the "Apply MTF" function. This function must be run first from the Design=>Volumes=>End Area=>Sections to sections menu item.

**20.8.8.2 Graph Box Operation**

Each graph box has a number of graph options available as buttons (graph buttons) at the top of the graph. To select one of the graph buttons, click LB whilst the cursor is over the button.
The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This option sets the graph box to pick mode. When in this mode the graph box will show various information as the mouse hovers over a chainage in the graph.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The loose material tabulation item number, the available cut and fill within that chainage interval are shown in the message area at the bottom of the panel and the borrow, spoil and haul amounts are graphically shown in the graph highlighting the source chainage and destination chainage.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fit button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This option sets the graph box to fit mode. This option will calculate the extents of the items plotted in the graph box and zoom out to show them. After the fit is complete the graph will return to pick mode.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pan button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This option sets the graph box to panning mode. Click once to commence panning, then move the mouse and click a second time to stop panning.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zoom button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This option sets the graph box to zoom mode. Click once to commence zooming, then move the mouse and click a second time to stop zooming. Moving the mouse left and right will reduce and increase the X scale factor and moving the mouse down and up will reduce or increase the Y scale factor.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Window button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This option sets the graph box to window mode. Click once to select the first corner of a window and click a second time to select the second corner. After the window is complete the graph will return to pick mode.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plot button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This option enables the contents of the graph box to be plotted to a 12d Model. Click on the button and the Plot Graph panel is displayed.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot to Model model box</td>
<td>model box</td>
<td>PLOT GRAPH</td>
<td>all available models</td>
</tr>
<tr>
<td>the name of the model to be created/used</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean model beforehand check box</td>
<td>off</td>
<td>deletes any existing data from the plot model</td>
<td></td>
</tr>
<tr>
<td>Horizontal Scale real box</td>
<td>1000</td>
<td></td>
<td>set the horizontal scale to be used to plot the data</td>
</tr>
</tbody>
</table>
20.8.8.3 Mass Haul String and Report

Position of option on menu: Design => Roads => Mass haul => Mass haul

This panel is used to read in a volumes report and optionally a cut/fill compaction parameter file and creates a mass haul string and a new volumes report with the compaction volumes.

The compaction parameter file simply contains the compaction factor for given chainage ranges. Either the cut volumes are multiplied by the compaction factor or the fill volumes are divided by the compaction factor, to give the compacted volumes in the new volumes report.

If the existing volume report contains an alignment string and that string can be found in the project then a new alignment string is created with the same horizontal geometry but with the accumulated volumes as the z-values.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing volume report file</td>
<td>file box</td>
<td>*.rpt files</td>
<td></td>
</tr>
<tr>
<td>Compaction parameter file</td>
<td>input</td>
<td>* .mhf files</td>
<td></td>
</tr>
<tr>
<td>Cut/fill compaction factor</td>
<td>input</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Vertical Scale real box 10

set the vertical scale to be used to plot the data

Plot button

plot the data

Finish button

closes the panel
cut/fill compaction factor for any chainages not in the compaction parameter file or if there is no file.

Apply compaction factor to choice box cut, fill

if cut, the cut volumes are multiplied by the compaction factors.
if fill, the fill volumes are divided by the compaction factors.

Model for mass haul string model box available models

model for the created mass haul string.

Colour for mass haul string colour box available colours

colour of the created mass haul string.

Report file input box

if non-blank, a mass haul volumes file is created.

Process button

run the option.

20.8.8.4 Format of the Compaction Parameter File

Format of the
// Sample cut/fill compaction parameter file - the file ending
is .mhf
// All lines starting with // are comments and blank lines are
ignored
//
// A range is specified by a start and end chainage and a compaction
factor.
// A compaction factor of 1.0 means there is no compaction.
// A compaction factor of 0.9 means that 1.0 cubic metres of cut is
equivalent
// to 0.9 cubic metres of fill due to compaction.

// format is
// Start_ch End_ch Compaction_factor
0 100 0.9
100 500 1.0
500 2000 1.1
20.8.9 Traffic Islands

**Position of menu:** File I/O => Roads => Traffic islands

The options under Traffic islands create a traffic island from three travel lines, offsets and nose radii, and also can apply a kerb profile around the island.

The Traffic islands walk-right menu is

- create a traffic island
- run a kerb profile around a traffic island

For

- Traffic island  **20.8.9.1 Create Traffic Island**
- Traffic island profile/tin  **20.8.9.2 Traffic Island Profile/Tin**
20.8.9.1 Create Traffic Island

**Position of option on menu:** Design => Roads => Traffic islands => Traffic Island

Create an alignment string for a traffic island between user selected strings and with user defined offsets from the strings and nose radii. Drape the island onto a tin to give z-values and then apply a kerb profile to complete the island.

On selecting the traffic island option, the Island Create Splitter/Centre panel is displayed.

The position of the panel fields indicate what the values are for. Tool tips appear when the cursor is passed over the panel fields.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td></td>
<td>cyan</td>
<td></td>
</tr>
<tr>
<td>Create as Super Alignment</td>
<td></td>
<td>✔️</td>
<td></td>
</tr>
</tbody>
</table>

**Buttons at bottom**
Select strings select
select in order and with direction, the three strings to use in creating the traffic island. Terminate by clicking RB and selecting cancel from the pick ops menu.

Preview string select
draw the traffic island with the given parameters in the panel draw box.

Process button
create the alignment string

Island Create tab

Offset from travel lines input box
offset distance from the selected travel lines.

Radius at nose input box
radius of the corner of the traffic island between the selected travel lines.

Name name box available names
name of the created alignment string.

Model model box available models
model for the created alignment string.

Colour colour box available colours
colour of the created alignment string.

Create as super alignment tick box
if ticked, create the string as a super alignment.
If not ticked, create the string as an alignment.

Quick Island tab
the quick island tab produces a traffic island of fixed sides but with the given nose radii. The traffic island can be created as a super alignment that can then be easily moved around and modified.

Radius at nose input box
radius of the corner of the traffic island.

Name name box available names
name of the created alignment string.

Model model box available models
model for the created alignment string.

Colour colour box available colours
colour of the created alignment string.

Create as super alignment tick box
if ticked, create the string as a super alignment.
If not ticked, create the string as an alignment.

Position xyz select box
pick two points to indicate the direction that the island will be created.

Then click on Process to create the Traffic Island.

Kerb Profile tab
Use island alignment levels instead of Tin  

- if ticked, use the alignments own z-value instead of draping the alignment onto the tin.
- If not ticked, drape the alignment onto the tin to get z-values.

Offset kerb face/top/back  

- input box
- offset for kerb face/top/back for the selected kerb type.

Height kerb face/top/back  

- input box
- height for kerb face/top/back.

Tin  

- tin box
- triangulation to drape the traffic island strings onto.

Kerb type  

- input box
- type of kerb to apply to the reference string of the traffic island. If type User is selected from the pop-up list, a file which defines the kerb profile can be selected and used.

File  

- file box
- file to read/write the user defined kerb type to.

Read  

- button
- read the given File to define a kerb type.

Save  

- button
- save the kerb parameters to the given File.
20.8.9.2 Traffic Island Profile/Tin

Position of option on menu: Design => Roads => Traffic islands => Traffic island profile/tin

This option applies a kerb profile, either from the 12d library or from a user defined file.

The template profile is applied to a Super Alignment, creating strings, and a triangulation.

The option is saved as a function within 12d and as a function can be re-run at any time if changes occur with the Super Alignment.

Some default kerb profiles are available under Kerb on the panel.

User defined kerbs are created by entering offset, height and string names in the fields in the draw box at the top of the panel, and then saved as a User Kerb Type file (*.ukt)

User Kerb Type files can then be written out, or read in as required.

On selecting the Traffic Island profile/tin, the New Island Create Function panel is displayed.

The fields and buttons used in this panel have the following functions.
<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Function name</strong></td>
<td>function</td>
<td></td>
<td>available functions</td>
</tr>
<tr>
<td>name of the Island Create function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Model Island Strings</strong></td>
<td>model box</td>
<td></td>
<td>available models</td>
</tr>
<tr>
<td>model for the created island strings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Model Island Tin</strong></td>
<td>model box</td>
<td></td>
<td>model for the tin of the created island</td>
</tr>
<tr>
<td>name of the Island Tin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Colour Island Paving</strong></td>
<td>input</td>
<td>paving</td>
<td>available colours</td>
</tr>
<tr>
<td>if non-blank, then the colour is used to colour the island triangulation within innermost kerb string (D)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Colour Island Tin</strong></td>
<td>input</td>
<td>concrete</td>
<td>available colours</td>
</tr>
<tr>
<td>if non-blank, then the colour is used to colour the island triangulation between the strings defined by A and D.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the drawing area:

**A**

A string is created which is a copy of the reference string and given this name. It is added to the **Model Island Strings** model.

**B**

Name, offset and height from the reference string, of the first string of the island. It is added to the **Model Island Strings** model. If offset and height are both zero, then the string is not created.

**C**

Name, offset and height from the reference string, of the second string of the island. It is added to the **Model Island Strings** model. If offset and height are both zero, then the string is not created.

**D**

Name, offset and height from the reference string, of the third string of the island. It is added to the **Model Island Strings** model. If offset and height are both zero, then the string is not created.
Design Details

Kerb | choice box | Barrier Type A | Barrier Type A, Barrier Type B, Mountable, Semi-Mountable, User

selected kerb type is displayed in draw box above

If Kerb is User then the File field and the Read and Save buttons are made active, and are used to read in an existing user defined Kerb type, or to create a new one.

File | file box | files ending in .ukt
name of the user kerb type file (ukt) to read in or create

Read | button
Reads in the user defined kerb definition from the ukt file given in the File field and displays the profile and Offsets and Height in the draw box at the top of the Panel

Save | button
Writes out the kerb profile information (O and H values, and string names) as a user defined kerb, into the file given in the File field.

Reference | select pick
Select the reference alignment which will have the kerb profile applied to it to create the island. “pick with direction” in a clockwise manner as the kerb profile is always on the RHS.

Process | button
runs the option which created the island string and the coloured island tin

Note:
The New Island Create Function reads in the standard kerb profiles as templates and if required, creates a template from the ukt files. The function needs these templates because an apply is used (internally) to create the Island.
20.8.10 Guide Post Placement

Position of option on menu:  Design => Roads => Guide post creator

This section of documentation is a work in progress and will be updated in subsequent releases.

Selecting Guide post creator brings up the Guide Post Placement panel.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function name</td>
<td>function box</td>
<td>available functions</td>
<td></td>
</tr>
<tr>
<td>Model for posts</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Road Surface Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Shoulder Offset</td>
<td></td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Spacing (Straights &gt;R2000)</td>
<td></td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Spacing TP Tolerance</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Left Shoulder</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right Shoulder</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Special Locations tab</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Bridges, Culverts, Grids etc.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select Points</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Special Chainage File Options</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location Chng File</td>
<td>file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>View List</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undo Last</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear List</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
20.8.11 String by Xfall and Grade

Position of option on menu:  Design =>Roads =>String by xfall and grade

This panel is used to create strings by a variety of methods using xfall from one string, or xfalls from two strings, either using a reference string to define where the xfall is measured, or perpendicular to selected strings. Some of the methods grade the created string.

Selecting String by xfall and grade brings up the Create by Xfall and Grade panel.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xfall type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference string</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hinge string</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary string</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xfall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension ref</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension ref</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New String</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Help</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Xfall type choice box

methods for creating the new string. For the definition of each choice, go to 20.8.11.1 Xfall Types

Reference string
Hinge string
Secondary string
Offset, Xfall, Grade etc

which of these fields are present, and what they are for depends on the Xfall type.

Start/End mode choice box Start (ref)/End (ref)
defines the start/end chainages for creating the string.
The Start/End modes are the same as for the MTF modifiers. For more information on Start/End mode, see 21.2.1 MTF Hinge Modifiers.

Interval type choice box

At vertices on the Hinge string -
Interval on Hinge/ref string -

String name name box names.4d list
the name to use for the created string.

Model for string model box available models
the created string is placed in this mode
String colour  
colour box  
green  
available colours  

the colour of the created string

Process  
button  

run the option.

Continue to the next section 20.8.11.1 Xfall Types.

20.8.11.1 Xfall Types

for the definitions of the calculations for each choice

1 Str, offset and xfall  
go to 20.8.11.1.1 1 String, Offset and Xfall
1 Str, offset and height  
20.8.11.1.2 1 String, Offset and Height
1 Str, height and xfall  
20.8.11.1.3 1 String, Height and Xfall
2 Str, xfall, normal hinge  
Hinge String  
20.8.11.1.4 2 Strings, Xfall and Normal to Reference String or Hinge String
2 Str, xfall, normal both  
20.8.11.1.5 2 Strings, Xfall and Normal to Both
2 Str, 2 xfall, normal hinge  
Hinge String  
20.8.11.1.6 2 Strings, 2 Xfalls and Normal to Reference String or Hinge String
2 Str, 2 xfall, normal both  
20.8.11.1.7 2 Strings, 2 Xfalls and Normal to Both
1 Str, RL fwd, maintain offset  
20.8.11.1.8 1 String, Start RL and Grade, Fixed Offset
1 Str, RL fwd, maintain xfall  
20.8.11.1.9 1 String, Start RL and Grade, Fixed Xfall
1 Str, RL back maintain offset  
20.8.11.1.10 1 String, End RL and Grade, Fixed Offset
1 Str, RL back, maintain xfall  
20.8.11.1.11 1 String, End RL and Grade, Fixed Xfall
2 Str, RL fwd, equal width, normal hinge  
Normal to Reference or Hinge String  
20.8.11.1.12 2 Strings, Start RL & Grade, Equal Width, Normal to Reference or Hinge String
2 Str, RL fwd, equal width, normal both  
20.8.11.1.13 2 Strings, Start RL & Grade, Equal Width
and Normal to Both
2 Str, RL back, equal width, normal hinge
Normal to Reference or Hinge String
2 Str, RL back, equal width, normal both
and Normal to Both
2 Str, RL fwd, equal xfall, normal hinge
Normal to Reference or Hinge String
2 Str, RL fwd, equal xfall, normal both
and Normal to Both
2 Str, RL back, equal, normal hinge
Normal to Reference or Hinge String
2 Str, RL back, equal, normal both
Normal to Both
2 Str, RL fwd, xfall from cut sec
2 Str, RL back, xfall from cut sec
2 Str, RL->RL, xfall from cut sec
20.8.11.1.1 1 String, Offset and Xfall

For information about the sign convention for offset and xfalls, go to 20.8.11.2 Sign Convention for Heights, Offsets and Xfalls in Create by Xfall and Grade.

20.8.11.1.1 1 String, Offset and Xfall

This option requires a Hinge string, an Offset and Xfall, and an optional Reference string.

Reference String Selected

If a Reference string is selected then the Start mode and End Mode refer to Reference string and at each chainage ch between the Start mode and the End mode, a section is taken normal (perpendicular) to the Reference string and cutting the Hinge string.

A vertex of a new string is created by going out from the Hinge string along the section at the given Offset and Xfall.

Positive Offset is defined as going to the right of the Hinge string when travelling in the direction of increasing chainage on the Reference string. Offset can be positive or negative.

Positive Xfall is in the upward direction. Xfall can be positive or negative.

For information about the sign convention for offset and xfalls, go to 20.8.11.2 Sign Convention for Heights, Offsets and Xfalls in Create by Xfall and Grade.
Reference String NOT Selected

If a Reference string is NOT selected then the Start mode and End Mode refer to the Hinge string and at each chainage ch, a vertex of the new string is created by going out normal (perpendicular) to the Hinge string for the given Offset and Xfall.

Positive Offset is defined as going to the right of the Hinge string when travelling in the direction of increasing chainage on the Hinge string. Offset can be positive or negative.

Positive Xfall is in the upward direction. Xfall can be positive or negative.

For information about the sign convention for offset and xfalls, go to 20.8.11.2 Sign Convention for Heights, Offsets and Xfalls in Create by Xfall and Grade.
20.8.11.1.2 1 String, Offset and Height

This option requires a **Hinge string**, an **Offset** and **Height**, and an **optional Reference string**.

**Reference String Selected**

If a **Reference** string is selected then the **Start mode** and **End Mode** refer to **Reference** string and at each chainage ch between the Start mode and the End mode, a section is taken normal (perpendicular) to the **Reference string** and cutting the **Hinge string**.

A vertex of a new string is created by going out from the Hinge string along the section at the given **Offset** and **Height**.

Continue to the next choice [20.8.11.1.2 1 String, Offset and Height](#) or return to [20.8.11 Xfall Types](#) or [20.8.11 String by Xfall and Grade](#).
Positive Offset is defined as going to the right of the **Hinge** string when travelling in the direction of increasing chainage on the **Reference** string. Offset can be positive or negative.

**Height** is added to the height on the Hinge string. Height can be positive or negative.

For information about the sign convention for offset and xfalls, go to [20.8.11.2 Sign Convention for Heights, Offsets and Xfalls in Create by Xfall and Grade](#).

---

**Reference String NOT Selected**

If a **Reference** string is NOT selected then the **Start mode** and **End Mode** refer to the **Hinge** string and at each chainage ch, a vertex of a new string is created by going out **normal** (perpendicular) to the **Hinge string** for the given **Offset** and **Height**.

Positive Offset is defined as going to the right of the Hinge string when travelling in the direction of increasing chainage on the Hinge string. Offset can be positive or negative.

**Height** is added to the height on the Hinge string. Height can be positive or negative.

For information about the sign convention for offset and xfalls, go to [20.8.11.2 Sign Convention for Heights, Offsets and Xfalls in Create by Xfall and Grade](#).
20.8.11.1.3 1 String, Height and Xfall

This option requires a Hinge string, a Height and Xfall, and an optional Reference string.

Reference String Selected

If a Reference string is selected then the Start mode and End Mode refer to Reference string and at each chainage ch between the Start mode and the End mode, a section is taken normal (perpendicular) to the Reference string and cutting the Hinge string.

A vertex of a new string is created by going out from the Hinge string along the section at the given Height and Xfall.
**Height** is added to the height on the Hinge string. Height can be positive or negative. Positive Xfall is in the upward direction. Xfall can be positive or negative.

For information about the sign convention for offset and xfalls, go to 20.8.11.2 Sign Convention for Heights, Offsets and Xfalls in Create by Xfall and Grade.

---

**Reference String NOT Selected**

If a Reference string is NOT selected then the Start mode and End Mode refer to the Hinge string and at each chainage ch, a vertex of a new string is created by going out normal (perpendicular) to the Hinge string for the given Height and Xfall.

Height is added to the height at that chainage on the Hinge string. Height can be positive or negative.

Positive Xfall is in the upward direction. Xfall can be positive or negative.

For information about the sign convention for offset and xfalls, go to 20.8.11.2 Sign Convention for Heights, Offsets and Xfalls in Create by Xfall and Grade.
20.8.11.4 2 Strings, Xfall and Normal to Reference String or Hinge String

This option requires a Hinge and a Secondary string, a Xfall, and an option Reference string.

Reference String Selected

If a Reference string is selected then the Start mode and End Mode refer to Reference string and at each chainage (ch) between the Start mode and the End mode, a section is taken normal (perpendicular) to the Reference string and cutting the Hinge string and the Secondary strings.

On this section, the Xfall is taken from the Hinge and Secondary strings and a vertex of a new string created where the Xfalls intersect.
Reference String NOT Selected

If a Reference string is NOT selected then the Start mode and End Mode refer to Hinge string and at each chainage (ch), a section is taken normal (perpendicular) to the Hinge string and cutting the Secondary strings.

On this section, the Xfall is taken from the Hinge and Secondary strings and a vertex of a new string created where the Xfalls intersect.

For information about the sign convention for offset and xfalls, go to 20.8.11.2 Sign Convention for Heights, Offsets and Xfalls in Create by Xfall and Grade.
Continue to the next choice 20.8.11.5 2 Strings, Xfall and Normal to Both or return to 20.8.11 Xfall Types or 20.8.11 String by Xfall and Grade.

20.8.11.5 2 Strings, Xfall and Normal to Both

This option requires a Hinge and a Secondary string, a Xfall, and an option Reference string.

Reference String Selected

If a Reference string is selected then the Start mode and End Mode refer to Reference string and at each chainage ch between the Start mode and the End mode, a section is taken normal (perpendicular) to the Reference string and cutting the Hinge string, and the Xfall is taken from the cut with the Hinge string and along the section.

This is then intersected with a section normal to the Secondary string and with the given Xfall.

The new string is formed from the intersection points.

Note - it may not be possible to find such an intersection point.
Reference String NOT Selected

If a Reference string is NOT selected then the Start mode and End Mode refer to the Hinge string.

At each chainage ch between the Start mode and the End mode, a section is taken normal (perpendicular) to the Hinge string and the Xfall is taken along this section.

This is then intersected with a section normal to the Secondary string and with the given Xfall.

The new string is formed from the intersection points.

Note - it may not be possible to find such an intersection point.

No Reference String

Positive Xfall is in the upward direction. Xfall can be positive or negative.
Continue to the next choice 20.8.11.1.6 2 Strings, 2 Xfalls and Normal to Reference String or Hinge String or return to 20.8.11.1 Xfall Types or 20.8.11 String by Xfall and Grade.

20.8.11.1.6 2 Strings, 2 Xfalls and Normal to Reference String or Hinge String

This option requires a Hinge and a Secondary string, two Xfalls, and an option Reference string.

**Reference String Selected**

If a Reference string is selected then the Start mode and End Mode refer to the Reference string and at each chainage (ch) between the Start mode and the End mode, a section is taken normal (perpendicular) to the Reference string and cutting the Hinge string and the Secondary strings.

On this section, the xfall Pri xfall is taken from the Hinge string, and xfall Sec xfall from the Secondary string, and a vertex of a new string created where the two xfalls intersect.

For information about the sign convention for offset and xfalls, go to 20.8.11.2 Sign Convention for Heights, Offsets and Xfalls in Create by Xfall and Grade.
Reference String NOT Selected

If a Reference string is NOT selected then the Start mode and End Mode refer to Hinge string and at each chainage (ch), a section is taken normal (perpendicular) to the Hinge string and cutting the Secondary strings.

On this section, the xfall Pri xfall is taken from the Hinge string, and xfall Sec xfall from the Secondary string, and a vertex of a new string created where the two xfalls intersect.

For information about the sign convention for offset and xfalls, go to 20.8.11.2 Sign Convention for Heights, Offsets and Xfalls in Create by Xfall and Grade.

No Reference String

Positive Xfall is in the upward direction. Xfall can be positive or negative.

Continue to the next choice 20.8.11.1.7 2 Strings, 2 Xfalls and Normal to Both or return to 20.8.11.1 Xfall Types or 20.8.11 String by Xfall and Grade.

20.8.11.1.7 2 Strings, 2 Xfalls and Normal to Both

This option requires a Hinge and a Secondary string, two Xfalls, and an option Reference.
string.

**Reference String Selected**

If a **Reference** string is selected then the **Start mode** and **End Mode** refer to **Reference** string and at each chainage ch between the Start mode and the End mode, a section is taken **normal** (perpendicular) to the **Reference string** and cutting the **Hinge** string, and the xfall **Pri xfall** is taken from the cut with the Hinge string and along the section.

This is then intersected with a section **normal** to the **Secondary** string and with the xfall **Sec xfall**.

The new string is formed from the intersection points.

**Note** - it may not be possible to find such an intersection point.

For information about the sign convention for offset and xfalls, go to **20.8.11.2 Sign Convention for Heights, Offsets and Xfalls in Create by Xfall and Grade**.

---

**Reference String NOT Selected**

If a **Reference** string is NOT selected then the **Start mode** and **End Mode** refer to the **Hinge** string.

At each chainage ch between the Start mode and the End mode, a section is taken **normal** (perpendicular) to the **Hinge string** and the xfall **Pri xfall** is taken along this section.

This is then intersected with a section **normal** to the **Secondary** string and with the xfall **Sec xfall**.

The new string is formed from the intersection points.

**Note** - it may not be possible to find such an intersection point.

For information about the sign convention for offset and xfalls, go to **20.8.11.2 Sign Convention for Heights, Offsets and Xfalls in Create by Xfall and Grade**.
Positive Xfall is in the upward direction. Xfall can be positive or negative.

Continue to the next choice 20.8.11.1.8 1 String, Start RL and Grade, Fixed Offset or return to 20.8.11 Xfall Types or 20.8.11 String by Xfall and Grade.

20.8.11.1.8 1 String, Start RL and Grade, Fixed Offset

This option requires a Hinge string, a Start RL and forward Grade, an Offset, and an optional Reference string.

Reference String Selected

If a Reference string is selected then the Start mode and End Mode refer to the Reference string, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the Reference string and cutting the Hinge string. The vertices of the created string lie on these normals.

The plan position of the created vertices are given by going out from the Hinge string along the normal section for the given Offset.

The first vertex of the created string is on the normal to the Reference string at chainage Start mode, with an offset from the Hinge string of Offset and with a height of Start RL.
The heights of the subsequent vertices of the created string are defined in (created string chainage, height) space, and lie on the line with grade $\text{Grade->}$ and going through the first vertex.
For information about the sign convention for offset and xfalls, go to 20.8.11.2 Sign Convention for Heights, Offsets and Xfalls in Create by Xfall and Grade.

Reference String NOT Selected
If a Reference string is NOT selected then the Start mode and End Mode refer to the Hinge string, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the Hinge string. The vertices of the created string lie on these normals.

The plan position of the created vertices are given by going out from the Hinge string along the normal section for the given Offset.

The first vertex of the created string is on the normal to the Hinge string at chainage Start mode, with an offset from the Hinge string of Offset, and with a height of Start RL.
The heights of the subsequent vertices of the created string are defined in (created string chainage, height) space, and lie on the line with grade \textit{Grade->} and going through the first vertex.
Chapter 20  Design

20.8.11.1.9 1 String, Start RL and Grade, Fixed Xfall

For information about the sign convention for offset and xfalls, go to 20.8.11.2 Sign Convention for Heights, Offsets and Xfalls in Create by Xfall and Grade.

Continue to the next choice 20.8.11.1.9 1 String, Start RL and Grade, Fixed Xfall or return to 20.8.11.1 Xfall Types or 20.8.11 String by Xfall and Grade.

This option requires a Hinge string, a Start RL and forward Grade, a Xfall, and an optional Reference string.

Reference String Selected

If a Reference string is selected then the Start mode and End Mode refer to the Reference string, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the Reference string and cutting the Hinge string. The vertices of the created string lie on these normals.

The first vertex of the created string is on the normal to the Reference string and has a height.
Start RL. The offset for the first vertex is calculated and is such that the given Xfall from Hinge string will give the vertex the height Start RL.

The heights of the subsequent vertices of the created string are defined in (created string chainage, height) space, and lie on the line with grade Grade-> and going through the first vertex.

The offsets for the vertices are calculated and are such that the given Xfall from Hinge string will give the vertex the correct height for that chainage.
Roads

For information about the sign convention for offset and xfalls, go to 20.8.11.2 Sign Convention for Heights, Offsets and Xfalls in Create by Xfall and Grade.

Reference String NOT Selected

If a Reference string is NOT selected then the Start mode and End Mode refer to the Hinge string, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the Hinge string. The vertices of the created string lie on these normals.

The first vertex of the created string is on the normal to the Hinge string and has a height Start RL. The offset for the first vertex is calculated and is such that the given Xfall from Hinge string will give the vertex the height Start RL.
The heights of the subsequent vertices of the created string are defined in (created string chainage, height) space, and lie on the line with grade \( \text{Grade}-> \) and going through the first vertex.

The offsets for the vertices are calculated and are such that the given \( X\text{fall} \) from Hinge string will give the vertex the correct height for that chainage.
For information about the sign convention for offset and xfalls, go to 20.8.11.2 Sign Convention for Heights, Offsets and Xfalls in Create by Xfall and Grade.

Continue to the next choice 20.8.11.10 1 String, End RL and Grade, Fixed Offset or return to 20.8.11.1 Xfall Types or 20.8.11 String by Xfall and Grade.

20.8.11.10 1 String, End RL and Grade, Fixed Offset

This option requires a Hinge string, an End RL and backward Grade, an Offset, and an optional Reference string.

Reference String Selected

If a Reference string is selected then the Start mode and End Mode refer to the Reference string, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the Reference string and cutting the Hinge string. The vertices of the created string lie on these normals.

The plan position of the created vertices are given by going out from the Hinge string along the
normal section for the given Offset.

The last vertex of the created string is on the normal to the Reference string at chainage End mode, with an offset from the Hinge string of Offset and with a height of End RL.

### Last Vertex of Created String

- **Reference string**
- **Hinge string**
- **Plan View**
- **Section View along a Normal to the Reference String at Chainage End Mode**

The heights of the previous vertices of the created string are defined in (created string chainage, height) space, and lie on the line with grade negative \(<\text{Grade}\) and going through the last vertex.

### Chainage-Height Diagram for the Created String

- Chainage of created string on normal at Start mode
- Chainage of created string on normal at Reference chainage ch
- Chainage of created string on normal at End mode
- Height on the created string at the chainage on the created string which corresponds to the normal at chainage ch on the Reference string
- Line with grade negative \(<\text{Grade}\)
For information about the sign convention for offset and xfalls, go to 20.8.11.2 Sign Convention for Heights, Offsets and Xfalls in Create by Xfall and Grade.

Reference String NOT Selected

If a Reference string is NOT selected then the Start mode and End Mode refer to the Hinge string, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the Hinge string. The vertices of the created string lie on these normals.

The plan position of the created vertices are given by going out from the Hinge string along the normal section for the given Offset.

The last vertex of the created string is on the normal to the Hinge string at chainage End mode, with an offset from the Hinge string of Offset and with a height of End RL.
The heights of the previous vertices of the created string are defined in (created string chainage, height) space, and lie on the line with grade negative \(<\text{Grade}\) and going through the last vertex.
For information about the sign convention for offset and xfalls, go to 20.8.11.2 Sign Convention for Heights, Offsets and Xfalls in Create by Xfall and Grade.

Continue to the next choice 20.8.11.1.11 1 String, End RL and Grade, Fixed Xfall or return to 20.8.11.1 Xfall Types or 20.8.11 String by Xfall and Grade.

20.8.11.1.11 1 String, End RL and Grade, Fixed Xfall

This option requires a Hinge string, an End RL and backward Grade, a Xfall, and an optional Reference string.

Reference String Selected

If a Reference string is selected then the Start mode and End Mode refer to the Reference string, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the Reference string and cutting the Hinge string. The vertices of the created string lie on these normals.

The last vertex of the created string is on the normal to the Reference string and has a height...
**End RL.** The offset for the last vertex is calculated and is such that the given Xfall from Hinge string will give the vertex the height End RL.

The heights of the previous vertices of the created string are defined in (created string chainage, height) space, and lie on the line with grade negative $<-\text{Grade}$ and going through the last vertex.
For information about the sign convention for offset and xfalls, go to 20.8.11.2 Sign Convention for Heights, Offsets and Xfalls in Create by Xfall and Grade.

**Reference String NOT Selected**

If a Reference string is NOT selected then the Start mode and End Mode refer to the Hinge string, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the Hinge string. The vertices of the created string lie on these normals.

The last vertex of the created string is on the normal to the Hinge string and has a height End RL. The offset for the last vertex is calculated and is such that the given Xfall from Hinge string will give the vertex the height End RL.
The heights of the previous vertices of the created string are defined in (created string chainage, height) space, and lie on the line with grade negative $<-\text{Grade}$ and going through the last vertex.
For information about the sign convention for offset and xfalls, go to 20.8.11.2 Sign Convention for Heights, Offsets and Xfalls in Create by Xfall and Grade.

Continue to the next choice 20.8.11.12 2 Strings, Start RL & Grade, Equal Width, Normal to Reference or Hinge String or return to 20.8.11.1 Xfall Types or 20.8.11 String by Xfall and Grade.

### 20.8.11.12 2 Strings, Start RL & Grade, Equal Width, Normal to Reference or Hinge String

This option requires a Hinge and a Secondary string, a Start RL and forward Grade, and an optional Reference string.

#### Reference String Selected

If a Reference string is selected then the Start mode and End Mode refer to the Reference string, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the Reference string and cutting the Hinge and the Secondary strings. The vertices of the created string lie on these normals.
On this section, the plan position of the vertex of the new string is created so that it is halfway between the Hinge string and the Secondary string.

The height of the vertex on the section at chainage ch, is defined in (created string chainage, height) space, and is on the line with grade Grade-> and going through the point (normal to Start mode, Start RL).

Reference String NOT Selected
If a Reference string is NOT selected then the Start mode and End Mode refer to the Hinge string, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the Hinge string. The vertices of the created string lie on these normals.

On this section, the plan position of the vertex of the new string is created so that it is halfway between the Hinge string and the Secondary string.
The height of the vertex on the section at chainage ch, is defined in (created string chainage, height) space, and is on the line with grade \textit{Grade->} and going through the point (normal to Start mode, Start RL).

Continue to the next choice 20.8.11.13 2 Strings, Start RL & Grade, Equal Width and Normal to Both or return to 20.8.11 Xfall Types or 20.8.11 String by Xfall and Grade.

20.8.11.13 2 Strings, Start RL & Grade, Equal Width and Normal to Both
This option requires a **Hinge** and a **Secondary** string, a **Start RL** and forward **Grade**, and an **optional Reference** string.

**Reference String Selected**

If a **Reference** string is selected then the **Start mode** and **End Mode** refer to the **Reference** string, and at the given chainage interval between the Start mode and the End mode, sections are taken **normal** (perpendicular) to the **Reference string** and cutting the **Hinge** string. The vertices of the created string lie on these normals.

On this section, the plan position of the vertex of the new string is created so that it is halfway between the Hinge string and a normal to the Secondary string.

That is, a normal to the **Secondary** string is created that intersects in plan with the section from the Reference string so that the distance from the Hinge string is the same as the distance from the Secondary string. This gives the plan position of the new vertex of the new string.

**Note** - it may not be possible to find such an intersection point.

The **height** of the vertex on the section at chainage ch, is defined in (created string chainage, height) space, and is on the line with grade **Grade->** and going through the point (normal to Start mode, Start RL).

**Reference String NOT Selected**
If a Reference string is NOT selected then the Start mode and End Mode refer to the Hinge string, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the Hinge string. The vertices of the created string lie on these normals.

On this section, the plan position of the vertex of the new string is created so that it is halfway between the Hinge string and a normal to the Secondary string.

That is, a normal to the Secondary string is created that intersects in plan with the section from the Hinge string so that the distance from the Hinge string is the same as the distance from the Secondary string. This gives the plan position of the new vertex of the new string.

**Note** - it may not be possible to find such an intersection point.

---

**No Reference string**

![Diagram of No Reference string](image)

The height of the vertex on the section at chainage ch, is defined in (created string chainage, height) space, and is on the line with grade \( \text{Grade}\rightarrow \) and going through the point (normal to Start mode, Start RL).

---

**Chainage-Height Diagram for the Created String**

![Diagram of Chainage-Height Diagram](image)

Continue to the next choice 20.8.11.14 2 Strings, End RL & Grade, Equal Width, Normal to Reference or Hinge String or return to 20.8.11.1 Xfall Types or 20.8.11 String by Xfall and Grade.

**20.8.11.14 2 Strings, End RL & Grade, Equal Width, Normal to Reference or Hinge String**
This option requires a Hinge and a Secondary string, a End RL and backward Grade, and an optional Reference string.

**Reference String Selected**

If a Reference string is selected then the Start mode and End Mode refer to the Reference string, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the Reference string and cutting the Hinge and the Secondary strings. The vertices of the created string lie on these normals.

On this section, the plan position of the vertex of the new string is created so that it is halfway between the Hinge string and the Secondary string.

The height of the vertex on the section at chainage ch, is defined in (created string chainage, height) space, and is on the line with grade negative <-Grade and going through the point (normal to End mode, End RL).
Reference String NOT Selected

If a Reference string is NOT selected then the Start mode and End Mode refer to the Hinge string, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the Hinge string and cutting the Secondary string. The vertices of the created string lie on these normals.

On this section, the plan position of the vertex of the new string is created so that it is halfway between the Hinge string and the Secondary string.

The height of the vertex on the section at chainage ch, is defined in (created string chainage, height) space, and is on the line with grade negative $<-\text{Grade}$ and going through the point (normal to End mode, End RL).
20.8.11.15 2 Strings, End RL & Grade, Equal Width and Normal to Both

This option requires a Hinge and a Secondary string, an End RL and backward Grade, and an optional Reference string.

Reference String Selected

If a Reference string is selected then the Start mode and End Mode refer to the Reference string, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the Reference string and cutting the Hinge string. The vertices of the created string lie on these normals.

On this section, the plan position of the vertex of the new string is created so that it is halfway between the Hinge string and a normal to the Secondary string.

That is, a normal to the Secondary string is created that intersects in plan with the section from the Reference string so that the distance from the Hinge string is the same as the distance from the Secondary string. This gives the plan position of the new vertex of the new string.

Note - it may not be possible to find such an intersection point.
The height of the vertex on the section at chainage ch, is defined in (created string chainage, height) space, and is on the line with grade negative \(-\text{Grade}\) and going through the point (normal to End mode, End RL).

Reference String NOT Selected

If a Reference string is NOT selected then the Start mode and End Mode refer to the Hinge string, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the Hinge string. The vertices of the created string lie on these normals.

On this section, the plan position of the vertex of the new string is created so that it is halfway between the Hinge string and a normal to the Secondary string.

That is, a normal to the Secondary string is created that intersects in plan with the section from the Hinge string so that the distance from the Hinge string is the same as the distance from the Secondary string. This gives the plan position of the new vertex of the new string.

Note - it may not be possible to find such an intersection point.
The height of the vertex on the section at chainage ch, is defined in (created string chainage, height) space, and is on the line with grade negative \(-\text{Grade}\) and going through the point (normal to End mode, End RL).

Continue to the next choice 20.8.11.1.16 2 Strings, Start RL & Grade, Equal Xfall, Normal to Reference or Hinge String or return to 20.8.11.1 Xfall Types or 20.8.11 String by Xfall and Grade.

20.8.11.1.16 2 Strings, Start RL & Grade, Equal Xfall, Normal to Reference or Hinge String
This option requires a Hinge and a Secondary string, a Start RL and forward Grade, and an optional Reference string.

**Reference String Selected**

If a Reference string is selected then the Start mode and End Mode refer to the Reference string, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the Reference string and cutting the Hinge and the Secondary strings. The vertices of the created string lie on these normals.

The height of the vertex of the created string on the section at chainage ch, is defined in (created string chainage, height) space, and is on the line with grade \( \text{Grade->} \) and going through the point (normal at Start mode, Start RL).

![Chainage-Height Diagram for the Created String](image)

On the section normal to the Reference string at chainage ch, the plan position of the vertex (with the calculated height) is such that the absolute value of the xfall from the Hinge string to the vertex, and the vertex to the Secondary string, is the same. This gives the plan position of the new vertex of the new string.
Reference String NOT Selected

If a Reference string is NOT selected then the Start mode and End Mode refer to the Hinge string, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the Hinge string and cutting the Secondary string. The vertices of the created string lie on these normals.

The height of the vertex of the created string on the section at chainage ch, is defined in (created string chainage, height) space, and is on the line with grade Grade-> and going through the point (normal at Start mode, Start RL).

On the section normal to the Hinge string at chainage ch, the plan position of the vertex (with the calculated height) is such that the absolute value of the xfall from the Hinge string to the vertex, and the vertex to the Secondary string, is the same. This gives the plan position of the new vertex of the new string.
Chapter 20 Design

20.8.11.1.17 2 Strings, Start RL & Grade, Equal Xfall and Normal to Both

This option requires a Hinge and a Secondary string, a Start RL and forward Grade, and an optional Reference string.

Reference String Selected

If a Reference string is selected then the Start mode and End Mode refer to the Reference string, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the Reference string and cutting the Hinge string. The vertices of the created string lie on these normals.

The height of the vertex of the created string on the section at chainage ch, is defined in (created string chainage, height) space, and is on the line with grade Grade-> and going through the point (normal at Start mode, Start RL).

Continue to the next choice 20.8.11.1.17 2 Strings, Start RL & Grade, Equal Xfall and Normal to Both or return to 20.8.11 Xfall Types or 20.8.11 String by Xfall and Grade.
On the section at Reference chainage ch, the position of the vertex (with the calculated height) is such that the absolute value of the xfall from the vertex to the Hinge string, and the absolute xfall from the vertex to the normal to the Secondary string, is the same.

That is, a normal to the Secondary string is created that intersects in plan with the section from the Reference string so that the absolute value of the xfall from the Hinge string to the vertex (with the calculated height), is the same as the absolute grade from the vertex to the Secondary string. This gives the plan position of the vertex of the created string.

**Note** - it may not be possible to find such an intersection point.

**Reference String NOT Selected**

If a Reference string is NOT selected then the Start mode and End Mode refer to the Hinge string, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the Hinge string. The vertices of the created string lie on these normals.

The height of the vertex of the created string on the section at chainage ch, is defined in (created string chainage, height) space, and is on the line with grade Grade-> and going through the point (normal at Start mode, Start RL).
On the section at Hinge chainage ch, the position of the vertex (with the calculated height) is such that the absolute value of the xfall from the vertex to the Hinge string, and the absolute xfall from the vertex to the normal to the Secondary string, is the same.

That is, a normal to the Secondary string is created that intersects in plan with the section from the Hinge string so that the absolute value of the xfall from the Hinge string to the vertex (with the calculated height), is the same as the absolute grade from the vertex to the Secondary string. This gives the plan position of the vertex of the created string.

Note - it may not be possible to find such an intersection point.

Continue to the next choice 20.8.11.18 2 Strings, End RL & Grade, Equal Xfall, Normal to Reference or Hinge String or return to 20.8.11 Xfall Types or 20.8.11 String by Xfall and Grade.

20.8.11.18 2 Strings, End RL & Grade, Equal Xfall, Normal to Reference or Hinge String
This option requires a **Hinge** and a **Secondary** string, a **End RL** and backward **Grade**, and an **optional Reference** string.

The height of the vertex (of the new string) on the section at chainage \( ch \), is in (Reference string chainage, height) space, on the line with grade of negative \(<-\text{Grade}\) and going through the point (End mode, End RL).

That is,

\[
\text{"height at } ch\text{" } = \text{End RL } - \text{<Grade } * (\text{End mode } - \text{ch})/(\text{End mode } - \text{Start mode})/100
\]

On the section normal to the Reference string at chainage \( ch \), the position of the vertex with the calculated height is such that the absolute value of the xfall from the Hinge string to the vertex, and the absolute value of the xfall from the vertex to the Secondary string, are the same.
Reference String NOT Selected

If a Reference string is NOT selected then the Start mode and End Mode refer to Hinge string and at each chainage (ch), a section is taken normal (perpendicular) to the Hinge string and cutting the Secondary strings.

The height of the vertex (of the new string) on the section at chainage ch, is in (Hinge string chainage, height) space, on the line with grade of negative $<\text{Grade}$ and going through the point (End mode, End RL).

That is,

the "height at ch" = End RL - $<\text{Grade}$ * (End mode - ch)/(End mode - Start mode)/100

On the section normal to the Hinge string at chainage ch, the position of the vertex with the calculated height is such that the absolute value of the xfall from the Hinge string to the vertex, and the absolute value of the xfall from the vertex to the Secondary string, are the same.
Continue to the next choice 20.8.11.1.19 2 Strings, End RL & Grade, Equal Xfall and Normal to Both or return to 20.8.11 Xfall Types or 20.8.11 String by Xfall and Grade.

20.8.11.1.19 2 Strings, End RL & Grade, Equal Xfall and Normal to Both

This option requires a **Hinge** and a **Secondary** string, an **End RL** and backward **Grade**, and an **optional Reference** string.

Reference String Selected

If a Reference string is selected then the **Start mode** and **End Mode** refer to the Reference string, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the Reference string and cutting the Hinge string. The vertices of the created string lie on these normals.

The height of the vertex on the section at chainage ch, is defined in (created string chainage, height) space, and is on the line with grade negative **<Grade** and going through the point (normal to End mode, End RL).
On the section at Reference chainage ch, the position of the vertex (with the calculated height) is such that the absolute value of the xfall from the vertex to the Hinge string, and the absolute xfall from the vertex to the normal to the Secondary string, is the same.

That is, a normal to the Secondary string is created that intersects in plan with the section from the Reference string so that the absolute value of the xfall from the Hinge string to the vertex (with the calculated height), is the same as the absolute grade from the vertex to the Secondary string. This gives the plan position of the vertex of the created string.

**Note** - it may not be possible to find such an intersection point.

Reference String NOT Selected

If a Reference string is NOT selected then the **Start mode** and **End Mode** refer to the **Hinge string**, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the **Hinge string**. The vertices of the created string lie on these normals.

The **height** of the vertex on the section at chainage ch, is defined in (created string chainage, height) space, and is on the line with grade negative **<-Grade** and going through the point (normal to End mode, End RL).
On the section at Hinge chainage ch, the position of the vertex (with the calculated height) is such that the absolute value of the xfall from the vertex to the Hinge string, and the absolute xfall from the vertex to the normal to the Secondary string, is the same.

That is, a normal to the Secondary string is created that intersects in plan with the section from the Hinge string so that the absolute value of the xfall from the Hinge string to the vertex (with the calculated height), is the same as the absolute grade from the vertex to the Secondary string. This gives the plan position of the vertex of the created string.

**Note** - it may not be possible to find such an intersection point.

Continue to the next choice 20.8.11.1.20 2 Strings, Start Delta Height & Grade, Xfall from Secondary String, Normal to Reference or Hinge String or return to 20.8.11.1 Xfall Types or 20.8.11 String by Xfall and Grade.

20.8.11.1.20 2 Strings, Start Delta Height & Grade, Xfall from Secondary String, Normal to Reference or Hinge String
This option requires a Hinge and a Secondary string, a Start delta height and forward Grade, and an optional Reference string.

**Reference String Selected**

If a Reference string is selected then the Start mode and End Mode refer to the Reference string, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the Reference string and cutting the Hinge and the Secondary strings. The vertices of the created string lie on these normals.

The first vertex of the created string is on the normal to the Reference string at chainage Start mode, and its height is the height of the Hinge string on the Start mode normal, plus Start delta height.

\[
\text{height of first vertex} = \text{height of Hinge string on Start mode normal} + \text{Start delta height}
\]

The plan position of the first vertex is on the Start mode normal, and with an offset from the Hinge string such that the Xfall is equal to the xfall between the Hinge and Secondary strings, and the change of height from the Hinge string is Start delta height.

The heights of the subsequent vertices of the created string are defined in (created string...
chainage, height) space, and lie on the line with grade \textit{Grade->} and going through the first vertex.

The plan position of the vertex of the created string on the normal at Reference chainage \textit{ch} is such that it is on the line through the Hinge string with \textit{xfall} equal to the \textit{xfall between the Hinge and Secondary strings}, and having the calculated height.

Reference String NOT Selected

If a Reference string is NOT selected then the Start mode and End Mode refer to the Hinge string, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the Hinge string and cutting the Secondary string. The vertices of the created string lie on these normals.

The first vertex of the created string is on the normal to the Hinge string at chainage Start mode, and its height is the height of the Hinge string on the Start mode normal, plus Start delta...
height.

height of first vertex = height of Hinge string on Start mode normal + Start delta height

The plan position of the first vertex is on the Start mode normal, and with an offset from the Hinge string such that the Xfall is equal to the xfall between the Hinge and Secondary strings, and the change of height from the Hinge string is Start delta height.

The heights of the subsequent vertices of the created string are defined in (created string chainage, height) space, and lie on the line with grade Grade-> and going through the first vertex.

The plan position of the vertex of the created string on the normal at Hinge chainage is such that it is on the line through the Hinge string with xfall equal to the xfall between the Hinge and Secondary strings, and having the calculated height.
20.8.11.1.21 2 Strings, End Delta Height & Grade, Xfall from Secondary String, Normal to Reference or Hinge String

This option requires a Hinge and a Secondary string, an End delta height and backward Grade, and an optional Reference string.

Reference String Selected

If a Reference string is selected then the Start mode and End Mode refer to the Reference string, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the Reference string and cutting the Hinge and the Secondary strings. The vertices of the created string lie on these normals.

The last vertex of the created string is on the normal to the Reference string at chainage End.
mode, and its height is the height of the Hinge string on the End mode normal, plus End delta height.

height of last vertex = height of Hinge string on End mode normal + End delta height

The plan position of the last vertex is on the End mode normal, and with an offset from the Hinge string such that the Xfall is equal to the \texttt{xfall between the Hinge and Secondary strings}, and the change of height from the Hinge string is \texttt{End delta height}.

The heights of the previous vertices of the created string are defined in (created string chainage, height) space, and lie on the line with grade negative \texttt{<Grade} and going through the last vertex.

The plan position of the vertex of the created string on the normal at Reference chainage \texttt{ch} is such that it is on the line through the Hinge string with xfall equal to the \texttt{xfall between the Hinge and Secondary strings}, and having the calculated height.
Reference String NOT Selected

If a Reference string is NOT selected then the Start mode and End Mode refer to the Hinge string, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the Hinge string and cutting the Secondary string. The vertices of the created string lie on these normals.

The last vertex of the created string is on the normal to the Hinge string at chainage End mode, and its height is the height of the Hinge string on the End mode normal, plus End delta height.

height of last vertex = height of Hinge string on End mode normal + End delta height

The plan position of the last vertex is on the End mode normal, and with an offset from the Hinge string such that the Xfall is equal to the xfall between the Hinge and Secondary strings, and the change of height from the Hinge string is End delta height.
The heights of the previous vertices of the created string are defined in (created string chainage, height) space, and lie on the line with grade negative \(-\text{Grade}\) and going through the last vertex.

The plan position of the vertex of the created string on the normal at Hinge chainage is such that it is on the line through the Hinge string with xfall equal to the xfall between the Hinge and Secondary strings, and having the calculated height.
**20.8.11.1.22 1 String, Start RL and End RL, Fixed Xfall**

This option requires a **Hinge** string, a **Start RL** and **End RL**, a **Xfall**, and an optional **Reference** string.

**Reference String Selected**

If a **Reference** string is selected then the **Start mode** and **End Mode** refer to the **Reference** string, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the **Reference string** and cutting the **Hinge** string. The vertices of the created string lie on these normals.

The **first vertex** of the created string is on the normal to the Reference string and has a **height**
**Start RL.** The offset for the first vertex is calculated and is such that the given Xfall from Hinge string will give the vertex the height **Start RL.**

**First Vertex of Created String**

- Reference string
- Hinge string
- Plan View
- calculated offset
- first vertex of the created string
- normals to Reference string
- chainage position for Start mode
- chainage position for End mode
- chainage direction of Reference string
- Reference string
- calculated offset
- given Xfall
- Start RL

**Section View along a Normal to the Reference String at Chainage Start Mode**

The heights of the subsequent vertices of the created string are defined in (created string chainage, height) space, and lie on the line with **Start RL**, and ending with **End RL** on the normal at End mode.

**Chainage-Height Diagram for the Created String**

The plan position of the vertex of the created string on the normal at Reference chainage ch is constructed by going out from the hinge string with xfall equal to the Xfall, and for an offset so that the height is equal to the required height at chainage ch.
For information about the sign convention for offset and xfalls, go to 20.8.11.2 Sign Convention for Heights, Offsets and Xfalls in Create by Xfall and Grade.

Reference String NOT Selected
If a Reference string is NOT selected then the Start mode and End Mode refer to the Hinge string, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the Hinge string. The vertices of the created string lie on these normals.

The first vertex of the created string is on the normal to the Hinge string and has a height Start RL. The offset for the first vertex is calculated and is such that the given Xfall from Hinge string will give the vertex the height Start RL.
The heights of the subsequent vertices of the created string are defined in (created string chainage, height) space, and lie on the line with Start RL, and ending with End RL on the normal at End mode.

The plan position of the vertex of the created string on the normal at Hinge chainage ch is constructed by going out from the hinge string with xfall equal to the Xfall and for an offset so that the height is equal to the required height at chainage ch.
For information about the sign convention for offset and xfalls, go to 20.8.11.2 Sign Convention for Heights, Offsets and Xfalls in Create by Xfall and Grade.

Continue to the next choice 20.8.11.1.23 2 Strings, Start RL and End RL, Xfall from Secondary String, Normal to Reference or Hinge String or return to 20.8.11 Xfall Types or 20.8.11 String by Xfall and Grade.

20.8.11.1.23 2 Strings, Start RL and End RL, Xfall from Secondary String, Normal to Reference or Hinge String

This option requires a **Hinge** and a **Secondary** string, a **Start RL** and **End RL**, and an **optional Reference** string.

**Reference String Selected**

If a **Reference** string is selected then the **Start mode** and **End Mode** refer to the **Reference** string, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the **Reference string** and cutting the **Hinge** and the **Secondary** strings. The vertices of the created string lie on these normals.
The **first vertex** of the created string is on the normal to the Reference string at chainage **Start mode**, with height **Start RL**. The plan position of the first vertex is constructed by going out from the hinge string with xfall equal to the **xfall between the Hinge and Secondary strings**, and for the required offset so that the height is **Start RL**.

The **heights** of the subsequent vertices of the created string are defined in (created string chainage, height) space, and lie on the line with **Start RL**, and ending with **End RL** on the normal at **End mode**.

The **plan position** of the vertex of the created string on the normal at Reference chainage **ch** is constructed by going out from the hinge string with xfall equal to the **xfall between the Hinge and Secondary strings** at chainage **ch**, and for an offset so that the height is equal to the required height at chainage **ch**.
Reference String NOT Selected

If a Reference string is NOT selected then the Start mode and End Mode refer to the Hinge string, and at the given chainage interval between the Start mode and the End mode, sections are taken normal (perpendicular) to the Hinge string and cutting the Secondary string. The vertices of the created string lie on these normals.

The first vertex of the created string is on the normal to the Hinge string at chainage Start mode, with height Start RL. The plan position of the first vertex is constructed by going out from the hinge string with xfall equal to the xfall between the Hinge and Secondary strings, and for the required offset so that the height is Start RL.
The heights of the subsequent vertices of the created string are defined in (created string chainage, height) space, and lie on the line with Start RL, and ending with End RL on the normal at End mode.

The plan position of the vertex of the created string on the normal at Hinge chainage $ch$ is constructed by going out from the hinge string with xfall equal to the xfall between the Hinge and Secondary strings at chainage $ch$, and for an offset so that the height is equal to the required height at chainage $ch$. 
No Reference string

Hinge string

Secondary string

Created string

Plan View

Xfall equal to the xfall between the Hinge and Secondary string on the normal at Hinge string chainage ch

vertex of the created string on the normal at Hinge chainage ch

Hinge string

chainage position for Start mode

normals to Hinge string

chainage position for End mode

chainage direction of Hinge string

Secondary string

Height of vertex of created string

calculated offset

Section View along a Normal to the Hinge String at Chainage ch

Continue to the next section 20.8.12 More Roads or return to 20.8.11.1 Xfall Types or 20.8.11 String by Xfall and Grade.
20.8.11.2 Sign Convention for Heights, Offsets and Xfalls in Create by Xfall and Grade

Because of the number of different ways Create by Xfall and Grade can be used, there is a strict sign convention followed for heights, offsets and xfalls. In all cases, a positive height or delta height is up and a negative height or delta height is down.

For any string, there is a definition for the left and right of a string (see Left and Right Side of a String), and there is a definition of Offset and Xfall for just that string (see Offset and Offset Distance for a String.)

However, Create by Xfall and Grade involves not just one string, but often two or three strings, so needs a standard sign convention of Offset and Xfall.

In Create by Xfall and Grade, if a Reference string is selected, then the direction of the Reference string is paramount and the sign convention for Offset and Xfall for a Hinge and Secondary string refers back to the Reference string. See Offset and Xfall - When Controlled by a Reference String.

In Create by Xfall and Grade, if a Reference string is NOT selected, then the direction of the Hinge string is paramount and the sign convention for Offset and Xfall for the Hinge and Secondary string refer back to the Hinge string. See Offset and Xfall - No Reference String and Controlled by Hinge String.

See Height
See Left and Right Side of a String.
See Offset and Offset Distance for a String
See Xfall for a String
See Offset and Xfall - When Controlled by a Reference String
See Offset and Xfall - No Reference String and Controlled by Hinge String

Height
For any string a positive height or delta height is up and a negative height or delta height is down.

Left and Right Side of a String
For any string:
the right side of the string is defined to be to the right of the string when travelling down the string in the direction of the increasing chainage.
the left side of the string is defined to be to the left of the string when travelling down the string in the direction of the increasing chainage.

Offset and Offset Distance for a String
Offset at chainage ch on a particular string is plan distance measured normal (perpendicular) to the string, starting at zero on the string and positive when going out to the right of the string, and negative when going out to the left of the string. Offset is only a (x,y) plane distance. It does not involve z values.

The offset distance of a point (x,y,z) from a particular string is the plan distance from the point (x,y) to the position on the string calculated by dropping the point (x,y) perpendicularly in the (x,y) plane onto the string. The offset distance is positive if the point (x,y,z) is on the right of the string, and negative is the point (x,y,z) is on the left of the string.

Xfall for a String
For Xfall:
a xfall is positive when it is going up when measured in the direction of increasing positive offset. That is, it is going up when going to the right of the string.
a **xfall** is **negative** when it is going down when measured in the direction of increasing positive offset. That is, it is going down when going to the **right** of the string.

a **xfall** is **negative** when it is going up in the direction of increasing negative offset (decreasing positive offset). That is, it is going up when going to the **left** of the string.

a **xfall** is **positive** when it is going down in the direction of increasing negative offset (decreasing positive offset). That is, it is going down when going to the **left** of the string.

---

**Offset and Xfall - When Controlled by a Reference String**

**Offset**

When a Reference string is selected, the **Reference** string is used to determine the sign convention for Offset and Xfall for the Hinge and Secondary strings. Hence the direction of the Hinge and Secondary strings are not used.

When a Reference string is selected:

an **offset** is **positive** when it is going in the direction of increasing positive offset with respect to the Reference string. That is, it is moving in the direction of going to the **right** of the Reference string.
an offset is negative when it is going in the direction of increasing negative offset (decreasing positive offset) with respect to the Reference string. That is, it is moving in the direction of going to the left of the Reference string.

Xfall
When a Reference string is selected:

- a xfall is positive when it is going up when measured in the direction of increasing positive offset with respect to the Reference string. That is, it is going up when moving in the direction of going to the right of the Reference string.

- a xfall is negative when it is going down when measured in the direction of increasing positive offset with respect to the Reference string. That is, it is going down when moving in the direction of going to the left of the Reference string.

- a xfall is negative when it is going up when measured in the direction of increasing negative offset (decreasing positive offset) with respect to the Reference string. That is, it is going up when moving in the direction of going to the left of the Reference string.

- a xfall is positive when it is going down in the direction of increasing negative offset (decreasing positive offset) with respect to the Reference string. That is, it is going down when moving in the direction of going to the left of the Reference string.
Offset and Xfall - No Reference String and Controlled by Hinge String

When no Reference string is selected, then the Hinge string is used to determine the sign convention for Offset and Xfall for the Hinge and Secondary strings. Hence the direction of the Secondary strings is not used.

**Offset**

When no Reference string is selected then the Hinge string is used and:

- an **offset** is **positive** when it is going in the direction of increasing positive offset with respect to the Hinge string. That is, it is moving in the direction of going to the **right** of the Hinge string.

- an **offset** is **negative** when it is going in the direction of increasing negative offset (decreasing positive offset) with respect to the Hinge string. That is, it is moving in the direction of going to the **left** of the Hinge string.

**Xfall**

When no Reference string is selected then the Hinge string is used and:

- a **xfall** is **positive** when it is going up when measured in the direction of increasing positive offset with respect to the Hinge string. That is, it is going up when moving in the direction of going to the **right** of the Hinge string.

- a **xfall** is **negative** when it is going down when measured in the direction of increasing positive offset with respect to the Hinge string. That is, it is going down when moving in the direction of going to the **right** of the Hinge string.
a $xfall$ is negative when it is going up when measured in the direction of increasing negative offset (decreasing positive offset) with respect to the Hinge string. That is, it is going up when moving in the direction of going to the left of the Hinge string.

a $xfall$ is positive when it is going down when measured in the direction of increasing negative offset (decreasing positive offset) with respect to the Hinge string. That is, it is going down when moving in the direction of going to the left of the Hinge string.
No Reference String on Left of Hinge String

Plan View

Section View along a Normal to the Hinge String
20.8.12 More Roads

Position of menu:  Design => Roads => More

The more roads menu contains miscellaneous options to drape alignments, create line marking etc.

The more roads walk-right menu is

```
Drape alignment string 16.10.3 Drape Alignment (Macro)
Line marking 24.2 Line Marking
Road polygons 20.14.5 Polygons from Sections
Road widening 20.8.12.4 Road Widening with Minimum and Maximum Crossfall
Roundabout 20.8.12.5 Create Roundabout
Kerbs special chainage file 20.8.12.6 Kerb Special Chainage File
Special chainage file 20.8.12.7 Special Chainage File
Table drain 20.8.12.8 Table Drain - Intersection of Slopes from Two Strings
Intersection MTF Update 20.8.12.9 Intersection MTF Update
Kret convert to computators 20.8.12.10 Kret Convert to Computators
Subgrade intersect function 20.8.12.11 Subgrade Intersect Function
X Segment function 20.8.12.12 X Segment function
```

20.8.12.1 Drape Alignment

Position of option on menu:  Design => Roads => More => Drape alignment string

This option has already been documented in Tins => Drape=> Drape align.

For the option *Drape align*, please continue to the section 16.10.3 Drape Alignment (Macro).

20.8.12.2 Line Marking

Position of option on menu:  Design => Roads => More => Line marking

This option creates an alignment string for a traffic island and has already been documented as Drafting => Line marking

For more information on the option *Line marking*, please continue to the section 24.2 Line Marking.
20.8.12.3 Road Polygons

Position of option on menu: Design => Roads => More => Road polygons

This option takes a model of cross-sections and creates polygons between specified points on the cross-sections. This option is already documented under Design => X-Sections => Polygons from sections.

For more information on the option Polygons from sections, please go to the section 20.14.5 Polygons from Sections in this chapter.

20.8.12.4 Road Widening with Minimum and Maximum Crossfall

Position of option on menu: Design => Roads => More => Road widening

This option creates cross sections using the minimum and maximum cross-fall when going out from a selected reference string (usually and alignment string).

Adding these cross sections to a section view when designing the vertical geometry gives an envelope of maximum and minimum crossfall points.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model Name min xfall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model Name max xfall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model Name exist xfall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin max</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin exist</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use</td>
<td>TIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>as Prefix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or Suffix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min xfall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max xfall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max width</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section separation</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Side to widen</td>
<td>Left side</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use Reference SA super elevation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extend exist xfall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute min max xfalls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start chainage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End chainage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hinge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crown</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Start: Function name & select Reference: Calc, Process, Colours, Finish, Help
Model name min/max xfall  model box
  model for minimum/maximum cross fall cross sections.

Min xfall  input box  -2
  minimum cross-fall (in %)

Max xfall  input box  -5
  maximum cross-fall (in %)

Max width  input box  10
  maximum width to go out at the minimum and maximum cross falls.

Chg interval  input box  20
  chainage interval for calculating the minimum and maximum cross fall cross sections.

View to add  view box
  view to add the created cross sections to.

Reference  string select
  pick the reference string with direction for the x-sections to go out from. The cross sections are created to the right of the reference string as defined by the direction that the Reference string is picked. To get the sections on the other side, pick the reference string in the opposite direction.

Process  button
  create the minimum and maximum cross fall cross sections.

20.8.12.5 Create Roundabout

Position of option on menu:  Design => Roads => More => Roundabout

This option creates a roundabout between two alignment strings. The road widths for the two roads (the distance from the road centre line to the edge of the road) plus the roundabout radius (the distance from the centre of the roundabout to the centreline of the roundabout road), the roundabout width (added and subtracted from the roundabout width to give the inner and outer edges of the roundabout roadway - the inner and outer roundabout radii) and the fillet radius for the turning lanes.
The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select 1st road</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>first alignment string for the roundabout.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select 2nd road</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>second alignment string for the roundabout.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st road width</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>distance from the first alignment string to the edge of the road.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd road width</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>distance from the second alignment string to the edge of the road.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roundabout radius</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>distance from the centre of the roundabout to the centreline of the roundabout road.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roundabout width</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>distance to add and subtract from the roundabout width to give the inner and outer edges of the roundabout roadway (the roundabout radii).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fillet radius</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fillet radius of the turning lanes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create roundabout centreline</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, an alignment string is created for the centreline of the roundabout.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for roundabout</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>model for the created roundabout.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>run the option.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20.8.12.6 Kerb Special Chainage File

Position of option on menu: Design => Roads => More => Kerb special chainage file

This option is used to create a special chainage file for an alignment string. The method of creating the chainages is defined differently for each segment of the alignment string.
The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>By number</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td>By distance</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special chg file</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **By number**: if ticked, break the selected segment of the selected string into the number of pieces given by the **Value** field.

- **By distance**: if ticked, break the selected segment of the selected string into pieces of length given by the **Value** field.

- **Value**: the number of pieces or the chainage length to break the selected segment into.

- **Special chg file**: file to write chainages to
pick the alignment string to create chainages for. The alignment string is then drawn in the panel draw box. Each segment of the alignment string is selected by clicking MB over it in the panel draw box. The special chainages are then defined for that segment.

Add button
add the chainages given by number of length to the special chainages list

View button
view the special chainages list. The special chainages list can be edited

Write button
write the special chainages list to the special chainages file

20.8.12.7 Special Chainage File

Position of option on menu: Design => Roads => More => Special chainage file

This option is used to create a special chainage file for an alignment string.

The chainages are created for a selected reference string but can then be defined by dropping strings and/or individual points onto the reference string.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source</td>
<td>choice box</td>
<td>Special chainages</td>
<td>Special chainages</td>
</tr>
<tr>
<td></td>
<td></td>
<td>String</td>
<td>Points</td>
</tr>
</tbody>
</table>

Regular
Special
String string select
Reference string select
  select the string to create special chainages for.
View list button
  view the special chainage list.
Undo last button
  undo the last set of created chainages.
Clear list button
  clear the chainages list.
Special chng file file box
  file to read chainages from or write chainages to
read button
  read in a file of special chainages.
Write button
  write the chainages list to the special chainages file.
20.8.12.8 Table Drain - Intersection of Slopes from Two Strings

Position of option on menu:  Design => Roads => More => Table drain

This option is used to create a string which is the intersection of slopes from a left and right string.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select the left string</td>
<td>string select</td>
<td></td>
<td>select the left hand side string</td>
</tr>
<tr>
<td>Select the right string</td>
<td>string select</td>
<td></td>
<td>select the right hand side string</td>
</tr>
<tr>
<td>Cross fall (1 in...) from left/right string</td>
<td>input box</td>
<td>3</td>
<td>batter slope to go from left/right string</td>
</tr>
<tr>
<td>Separation distance</td>
<td>input box</td>
<td>10</td>
<td>distance to create batter lines and find intersection</td>
</tr>
<tr>
<td>Intersection search distance</td>
<td>input box</td>
<td>100</td>
<td>distance to search to find an intersection of the batter slopes</td>
</tr>
<tr>
<td>Name for intersection strings</td>
<td>input box</td>
<td></td>
<td>name for the strings created by the intersection of the batters</td>
</tr>
<tr>
<td>Model/Colour for intersection strings</td>
<td>intersection</td>
<td>available models/colours</td>
<td>model/colour for the intersection strings</td>
</tr>
<tr>
<td>Create</td>
<td>button</td>
<td></td>
<td>Create the intersection strings by battering of the left and right strings</td>
</tr>
</tbody>
</table>
20.8.12.9 Intersection MTF Update

Position of option on menu: Design => Roads => More => Intersection MTF updates

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function name</td>
<td>function box</td>
<td>available functions</td>
<td></td>
</tr>
<tr>
<td>Ref MTF</td>
<td>file box</td>
<td></td>
<td>*.mtf files</td>
</tr>
<tr>
<td>Reference</td>
<td>string select</td>
<td></td>
<td>select the reference string</td>
</tr>
<tr>
<td>Left kerb</td>
<td>string select</td>
<td></td>
<td>select the left kerb string</td>
</tr>
<tr>
<td>Right kerb</td>
<td>string select</td>
<td></td>
<td>select the right kerb string</td>
</tr>
<tr>
<td>Left template chainage</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right template chainage</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Update</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20.8.12.10 Kret Convert to Computators

Position of option on menu: Design => Roads => More => Kret convert to computators

This section of documentation is a work in progress and will be updated in subsequent releases.
Selecting Kret convert to computators, displays the **Computator Kreturn & Culdesac Create** panel on the screen.
20.8.12.11 Subgrade Intersect Function

Position of option on menu: Design => Roads => More => Subgrade Intersect Function

Typical Application

1. Widening job where the intersection of the design xfall from the existing road edge and the design batter is required.

2. Design strings are ESL (shoulder edge) and CEL (carriageway edge)

This panel is used to create a string that could be used in the subgrade surface of a road design, in particular road widening.

The crossfall between these strings is calculated, and applied from the hinge string, offset by the subgrade depth, to intersect with the design tin specified.

The intersecting string created is placed on the selected model.

Selecting Subgrade Intersect Function, displays the Subgrade Batter Intersection Create panel.
The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function name</td>
<td>function box</td>
<td></td>
<td>select function</td>
</tr>
<tr>
<td></td>
<td>name for use in recalc or chains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>name box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Name for string created</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>model name for string created</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>input</td>
<td></td>
<td>available colours</td>
</tr>
<tr>
<td></td>
<td>Colour for string created</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Tin</td>
<td>input</td>
<td></td>
<td>select tin</td>
</tr>
<tr>
<td></td>
<td>Design surface above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start Chainage</td>
<td>measures box</td>
<td></td>
<td>At Point, Point to Point, String from Point, String to Point</td>
</tr>
<tr>
<td></td>
<td>Enter start chainage</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**End Chainage**

Enter end chainage

**Section separation**

Distance along the reference to create points on the string created

**Side to search**

Side to search in relation to reference string

**Special chainages**

A file containing chainages, one per line, that are also used as chainages to create points on the string created

**Subgrade Depth**

Depth below the design tin (in metres)

**Copy Hinge**

If ticked, makes a copy of the hinge in the model specified.

**Copy Strs 1 2**

If ticked, makes a copy at subgrade depth of strings 1 & 2 in the model specified.

**Reference**

Selection must be Super alignment, used to calculate chainages

**Hinge string**

Selected as a start point for the subgrade (Existing bitumen or cutback strings e.g.)

**String 1**

String in the design surface, used in xfall calculations

**String 2**

String in the design surface, used in xfall calculations

**Process**

Runs the option
20.8.12.12 X Segment function

Position of option on menu: Design => Roads => More => X Segment function

This option is used for the removal of segments on design and boxing cross sections. Typically it is used where road widening has been applied to both sides of a roadway. Design sections in this case would be created using "Cuts through strings", where the two widenings are now joined.

The design may also have a small overlay on the existing roadway and boxing definitions have been defined for each side of the widening.

In each case again, the sections, especially the boxing subgrade, are joined.

The sections are converted to super strings and segments that need to be removed are defined at vertex points by name.

A point name is entered as the "First Point" and segments are defined as either left or right of that point or a second point along the section can be specified.

A "Design" section model can be entered along with multiple boxing models...Layer1, Layer2, Layer3 etc.

Selecting X Segment function, displays the Section Segment Removal panel on the screen.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function Name</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in the panel have the following functions.
name for use in recalc or chains

1st point name input
Point name on design section

Removal Mode choice box Left & or Right Left & or Right, 2nd Point
Removal type left or right of first point or to a second point

Left Side tick box
Right Side tick box

Start Chainage real
if blank, then all the sections are used

End Chainage real
if blank, then all the sections are used

Model Design input
existing model name of design sections

Model Layer (n) input
existing model name of boxing sections

Process button
runs the option
20.9 Components

**Position of menu:** Design => Roads => Components

**Components** are parametric road objects that can be placed on existing design strings to generate complex geometry. This includes geometry for:

- Intersections
- Roundabouts
- Exit Ramps
- Entry Ramps
- Bus Bays
- Parking Bays
- CHR Intersections
- Culdesacs
- Hammerheads

Each component has a number of parameters that may be modified before and after they are placed to meet your requirements.

Components are stored in a library. Every time you place a component, you will reference the library definition. Once it is placed, if you wish to customise only that placed instance of the component, you may detach it from the library so that changes to the component will not affect the library component and vice versa.

The Components walk-right menu is

![Components Menu](image)

For the options see
- Component library 20.9.1 Component Library
- Place component 20.9.32 Place a Component
- Edit component 20.9.34 Edit a Placed Component
- Quick place 20.9.35 Component Quick Place

For information on
- Editing Components 20.9.32.1 Editing Components
- Specific Component Types 20.9.2 Component Types
20.9.1 Component Library

Position of option on menu: Design => Roads => Components => Component library

This panel is used to define the components in your current project. Components are initially based off predefined 'base' components (see Base component). Once you add a base or template component to your library, you may customise it as you require.

Selecting Component library brings up the Component library panel.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Library file</td>
<td>file box</td>
<td></td>
<td>the current component library you are editing</td>
<td>*.12dcomponentslib files</td>
</tr>
</tbody>
</table>

Insert a new component (See 20.9.1.4 New Component)

Folder icon
creates a new folder or subfolder under the Components node.
This is to allowing grouping of similar components.

Delete icon
deletes the highlighted component or folder.

Copy icon

copies the highlighted component or folder.

Paste icon

pastes the selected component or folder at the current highlighted level.

Write button

writes the components out to the given component library file.

Read button

reads in the given component library file.

20.9.1.1 Settings Node

This node defines library wide settings. Whenever you use a component from this library, these settings will apply.

![Component library](image)

20.9.1.1.1 Naming of Strings in a Component

Each string generated as part of the component can be named. They can either be set to something static or they can be dynamically generated using a number of variables as part of the name field.

The variables generally concern which side of the road the string is being created for, whether it was the approach or departure or the 'source' or 'destination'.

For example, in a left turn, the 'source' is the string a driver is leaving from and the 'destination' is the string entering.

$source_name - the name of the source string after the source string name mask is applied (see 20.9.1.1.2 Source String Name Mask)

$destination_name - the name of the destination string after the source string name mask is applied (see 20.9.1.1.2 Source String Name Mask)

$full_source_name - the full name of the source string

$full_destination_name - the full name of the destination string

$source_approach_or_departure - ‘approach’ if we are generating strings for the approach of the source string, otherwise ‘departure’
$destination_approach_or_departure - ‘approach’ if we are generating strings for the approach of the destination string, otherwise 'departure'

$source_side - the side of the road we are currently generating strings for on the source string

$destination_side - the side of the road we are currently generating strings for on the destination string

$count[1-9] - allows up to 9 counters, of the form %count1, $count2 ... $count9

Each time this counter variable is seen, it's value is incremented by 1.

20.9.1.1.2 Source String Name Mask

The source string name mask is defined in the Component Library. It allows you to extract part of a centreline string name. This is quite useful to maintain your own naming conventions.

For example, if you have a centreline named MC01 and you wish to name your left turn MK01, the part of the name that is common is 01.

If you set the source string name mask to MC*, the name used when you use the $source_name or $destination_name variables will be everything represented by the '*'. In this case, 01.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source string name mask</td>
<td>an optional field used to assist in naming individual strings created as part of a component. See 20.9.1.1.2 Source String Name Mask for more information.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driving side</td>
<td>choice box</td>
<td>Left side</td>
<td>Left side, Right side</td>
</tr>
</tbody>
</table>

whether or not the component should be created for left or right hand side driving.

20.9.1.2 Folder Nodes

Folders can be created to group components. You can create a folder and give it whatever name you wish.
The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Name</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*the name of the folder*

**20.9.1.3 Components Node**

Each component node displays the name and type of the component, as well as what it will look like on a theoretical set of centreline strings. The generated geometry will change when you place it depending on the selected strings but this view gives you an idea of what it may look like.
The fields and buttons used in this panel have the following functions:

Field Description	Type	Defaults	Pop-Up
**Name**
*the name of the component*

**Type**
*the type of the component - read only*
edits the component. For more information please see 20.9.32.1.1 Editing in the Component library - Component Editor

20.9.1.4 New Component

This panel allows you to create a new component from a base component. A base component may be from either one of your own library components, or a component shipped with 12d Model.

Selecting brings up the New component panel.

The fields and buttons used in this panel have the following functions:

Field Description        Type    Defaults    Pop-Up

**Base component**

*the component you wish your component to be based on*

This may be either a **Base Component**, as shipped by 12d, or one from your **Library**.

For information on **Component Types** please go to the section 20.9.2 Component Types

**Name**

*the name of your component, which must be unique*
Create button

creates the component and adds it to the library
20.9.2 Component Types

For

<table>
<thead>
<tr>
<th>Minor Intersection</th>
<th>20.9.2.1 Minor Intersection</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHR Inters</td>
<td>20.9.27.2 CHR Intersection</td>
</tr>
<tr>
<td>Left Turn</td>
<td>20.9.13.2 Left Turn</td>
</tr>
<tr>
<td>Minor Roundabout</td>
<td>20.9.7.2 Roundabout</td>
</tr>
<tr>
<td>Median Island</td>
<td>20.9.15.2 Median Island</td>
</tr>
<tr>
<td>Culdesac</td>
<td>20.9.11.9 Culdesac</td>
</tr>
<tr>
<td>Bus Bay</td>
<td>20.9.11.8 Bus Bay</td>
</tr>
<tr>
<td>Parking bays</td>
<td>20.9.11.11 Parking Bays</td>
</tr>
<tr>
<td>Exit ramp</td>
<td>20.9.22.3 Exit Ramp</td>
</tr>
<tr>
<td>Entry ramp</td>
<td>20.9.17.2 Entry Ramp</td>
</tr>
</tbody>
</table>

20.9.2.1 Minor Intersection

An intersection component can be edited via the 20.9.1 Component Library or by editing the definition of a placed component. While an intersection is defined as a crossroad, the intersection will automatically close off any leg of the intersection that does not have valid strings.

For information on Defining an Intersection see 20.9.2.1.1 Defining an Intersection

Placing Intersections 20.9.7.1.4 Placing Intersections
20.9.2.1.1 Defining an Intersection

An intersection is broken into two roads - the **Major road** and the **Minor road**. Each road, major or minor, may have an approach (the section of the road leading in to the intersection) and the departure (the section of the road leading away from the intersection). The approach and departure for both the Major and Minor Road are defined by the same set of parameters.

For information on:
- Placement Parameters Node see [20.9.3 Placement Parameters](#)
- Carriageway Node [20.9.4 Carriageway Node](#)
- Approach / Departure => Left turn Node [20.9.5 Left Turn - Approach / Departure](#)
- Approach / Departure => Left Turn =>Kerb Return Node [20.9.6 Approach / Departure =>Left](#)
20.9.3 Placement Parameters

This node is only available when editing a placed component. For more information on the fields displayed here, see the section on 20.9.7.1.4 Placing Intersections.

20.9.4 Carriageway Node

This node defines the carriageway of the road, in terms of the number of lanes and the type of lanes.

There are two modes for defining the carriageway: **Automatic Mode** and **Manual Mode**.

**Note that regardless of the mode, you can only define a median on one side of the carriageway.**

If you place your intersection using dual carriageways, the width will be ignored.

**Automatic Mode**

**Automatic** mode does not allow you to define names for each lane of your carriageway and only allows a basic layout. It is the simplest and quickest way to define a carriageway.
The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Left Side</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name Stem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the name to apply to each created lane on the left side of the carriageway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># of lanes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the number of lanes to create on the left side of the carriageway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane width</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the lane width for each lane on the left side of the carriageway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median width</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the width for an optional median on the left side of the carriageway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bike lane width</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the width for an optional bike lane on the left side of the median</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| **Right Side**    |      |          |        |
| Name Stem         |      |          |        |
| the name to apply to each created lane on the right side of the carriageway |
| # of lanes        |      |          |        |
| the number of lanes to create on the right side of the carriageway |
| Lane width        |      |          |        |
| the lane width for each lane on the right side of the carriageway |
**Median width**

*the width for an optional median on the right side of the carriageway.*

**Bike lane width**

*the width for an optional bike lane on the right side of the median*

**Manual Mode**

**Manual** mode allows you to define the carriageway in more detail, by specifying each lane individually, along with its width and type.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Left Lanes Grid</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Right Lanes Grid</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Width

the width of the lane

Type

the type of lane (Normal, Bike or Median)
20.9.5 Left Turn - Approach / Departure

This node defines the Left turn of an intersection. If you are in Right Side driving mode, this will be called Right Turn.

There are three types of turns currently available:
1. Stand up - for more information go to Stand Up Turn
2. Free - for more information go to Free Turn
3. High entry - for more information go to High Entry Turn

Both Stand up and Free turns allow you to define the type of kerb return being used.

Stand Up Turn

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn name</td>
<td>the name to use for created geometry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn type</td>
<td>the type of turn (in this case, Stand up)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Free Turn

A **Free turn** supports an optional diverging lane, a traffic island and an optional merging island.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn name</td>
<td><strong>Turn details</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diverging lane</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Created</td>
<td></td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane width</td>
<td></td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taper length</td>
<td></td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taper approach radius</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taper departure radius</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallel lane length</td>
<td></td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dedicated turn lane?</td>
<td></td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Island</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Island name</td>
<td></td>
<td>MT$source_name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset 1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset 2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset 3</td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset 4</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset 5</td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset 6</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td></td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius 1</td>
<td></td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius 2</td>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius 3</td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merging lane</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Created</td>
<td></td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane width</td>
<td></td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taper length</td>
<td></td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taper approach radius</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taper departure radius</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallel lane length</td>
<td></td>
<td>80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions:

**Turn Details**

**Turn name**
the name to use for created geometry

Turn type
the type of turn (in this case, Free)

Diverging Lane
Create?
whether or not to create a diverging lane

Name
an optional name to use for the diverging lane

Lane width
the width of the diverging lane

Taper length
the length of the leading taper on the diverging lane

Taper approach radius
the approach radius of the taper

Taper Departure radius
the departure radius of the taper

Parallel lane length
the length of the parallel lane of the diverging lane

Dedicated turn lane?
whether or not to create a dedicated turn lane - only available if not creating a diverging lane

Island
Island name
the name of the island string

Offset 1
the first offset of the painted island from the internal island

Offset 2
the second offset of the painted island from the internal island

Offset 3
the third offset of the painted island from the internal island

Offset 4
the fourth offset of the painted island from the internal island

Offset 5
the fifth offset of the painted island from the internal island

Offset 6
the sixth offset of the painted island from the internal island

Width
the width of the island from the kerb return
Radius 1
the first radius of the internal island

Radius 2
the second radius of the internal island

Radius 3
the third radius of the internal island

Merging Lane
Create?
whether or not to create a merging lane

Name
an optional name to use for the merging lane

Lane width
the width of the merging lane

Taper length
the length of the leading taper on the merging lane

Taper approach radius
the approach radius of the taper

Taper Departure radius
the departure radius of the taper

Parallel lane length
the length of the parallel lane of the merging lane
High Entry Turn

A High Entry Turn supports an island and optional diverging lane, as well as an optional dedicated turning lane when no diverging lane is used.

The fields and buttons used in this panel have the following functions:
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn Details</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn name</td>
<td>the name to use for created geometry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn type</td>
<td>the type of turn (in this case, High entry)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kerb radius 1</td>
<td>the approach radius of the high entry kerb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kerb radius 2</td>
<td>the departing radius of the high entry kerb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width 1</td>
<td>the distance between the kerb return and the painted island</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width 2</td>
<td>the width of the painted island</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Island</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Island name</td>
<td>the name of the island string</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset 1</td>
<td>the first offset of the painted island from the internal island</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset 2</td>
<td>the second offset of the painted island from the internal island</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset 3</td>
<td>the third offset of the painted island from the internal island</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset 4</td>
<td>the fourth offset of the painted island from the internal island</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset 5</td>
<td>the fifth offset of the painted island from the internal island</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset 6</td>
<td>the sixth offset of the painted island from the internal island</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius 1</td>
<td>the first radius of the internal island</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius 2</td>
<td>the second radius of the internal island</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius 3</td>
<td>the third radius of the internal island</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
20.9.6 Approach / Departure =>Left Turn =>Kerb Return Node

The stand up and free left turn types allow you to define the kerb return to be used. These options include 20.9.6.1 Fillet Kerb Return, 20.9.6.2 Two Centred Kerb Return and 20.9.6.3 Three Centred Kerb Return

20.9.6.1 Fillet Kerb Return

![Diagram showing Fillet Kerb Return panel]

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius</td>
<td>Radius</td>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>

20.9.6.2 Two Centred Kerb Return

![Diagram showing Two Centred Kerb Return panel]

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach radius</td>
<td>Approach radius</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Departure radius</td>
<td>Departure radius</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Approach tangent</td>
<td>Approach tangent</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
the approach tangent for the two centred curve

20.9.6.3 Three Centred Kerb Return

The fields and buttons used in this panel have the following functions:

Field Description	Type	Defaults	Pop-Up
Type | the type of kerb to create (in this case, *Three Centred*) | | |
Approach radius | the approach radius of the three centred curve | | |
Intermediate radius | the intermediate radius of the three centred curve | | |
Departure radius | the departure radius of the three centred curve | | |
20.9.7 Approach / Departure =>Median / Right Turn Node

This node is used to define the median and an optional right turn for an intersection road approach or departure.

**Note that if you are using Right Side driving, then this will say Median / Left Turn.**

This node is only used if a median has been defined as part of the carriageway.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Nose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create?</td>
<td></td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallel length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taper approach radius</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taper departure radius</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane width</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The type of nose to create for the median (see 20.9.7.1 Nose Types)

The length of the parallel lane

The length of the leading taper

The approach radius of the leading taper

The departure radius of the leading taper

The storage length of the turn lane

The width of the turn lane - must be less than the median width
Number of lanes
the number of turn lanes to create

20.9.7.1 Nose Types
For more information on Single Curve Nose see 20.9.7.1.1 Single Curve Nose
Two Curve Nose 20.9.7.1.2 Two Curve Nose
Three Curve Nose 20.9.7.1.3 Three Curve Nose

20.9.7.1.1 Single Curve Nose
a median nose created from a single fillet curve

20.9.7.1.2 Two Curve Nose
A median nose created from two curves

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nose type</td>
<td></td>
<td>Two curve nose</td>
<td></td>
</tr>
<tr>
<td>Radius one</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Radius two</td>
<td></td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td>MK3source_name</td>
<td></td>
</tr>
<tr>
<td>Parallel length</td>
<td></td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Create?</td>
<td></td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Median / Right Turn</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Radius one
the radius of the first curve

Radius two
the radius of the second curve

20.9.7.1.3 Three Curve Nose
A median nose created from three curves and an optional offset

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius one</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius two</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius three</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20.9.7.1.4 Placing Intersections
When placing an intersection, there are several placement specific settings. This means they are separate from the definition but help define how the intersection is placed. These are defined when placing the component, and may be edited from the 20.9.34.1 Placed
Component Editor: Some of these are also available from the 20.9.34.2 Edit a Placed Component Definition panel.

These parameters are shown below, as they are displayed when placing the component.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance - major approach</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clearance - minor approach</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clearance - major departure</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clearance - minor departure</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length - major approach</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length - major departure</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length - minor approach</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length - minor departure</td>
<td>150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions:

**Major left**
- the left most major road

**Minor left**
- the left most minor road

**Major right**
- the right most major road (optional)

**Minor right**
- the right most minor road (optional)

**Major right and minor right can be set when there is a dual carriageway.**

**Edit definition button**
- Selecting this button displays the Edit a Placed Component Definition panel. For more information please see 20.9.34.2 Edit a Placed Component Definition

**Clearance - major approach**
- the clearance of geometry on the approach of the major road, from the intersection

**Clearance - minor approach**
- the clearance of geometry on the approach of the minor road, from the intersection

**Clearance - major departure**
- the clearance of geometry on the departure of the major road, from the intersection

**Clearance - minor departure**
- the clearance of geometry on the departure of the minor road, from the intersection

**Length - major approach**
- the length of the geometry created for the approach of the major road
Length - minor approach
the length of the geometry created for the approach of the minor road

Length - major departure
the length of the geometry created for the departure of the major road

Length - minor departure
the length of the geometry created for the departure of the minor road

20.9.7.2 Roundabout

A Roundabout component can be edited via the 20.9.1 Component Library or by editing the definition of a placed component.
For information on Defining a Roundabout see 20.9.7.2.1 Defining a Roundabout
Placing Roundabouts 20.9.11.7.1 Placing Roundabouts

20.9.7.2.1 Defining a Roundabout

A Roundabout is defined around two intersecting roads - the Major road and the Minor road. Each road, major or minor, may have an approach (the section of the road leading in to the roundabout) and the departure (the section of the road leading away from the roundabout).

The approach and departure for both the Major and Minor road are defined by the same
set of parameters.

For information on:

Placement Parameters Node see 20.9.8 Placement Parameters
Centre Node 20.9.9 Centre Node
Approach/ Departure Node 20.9.10 Approach / Departure Node
Approach/ Departure => Kerb Node 20.9.11 Approach / Departure => Kerb Node
20.9.8 Placement Parameters

This node is only available when editing a placed component. For more information on the fields displayed here, see the section on 20.9.11.7.1 Placing Roundabouts.
20.9.9 Centre Node

This node defines parameters for the centre of the roundabout.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre radius</td>
<td>the radius of the centre island of the roundabout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circulating width</td>
<td>the width around the centre island</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra circulating offset</td>
<td>an additional offset to apply to throat and kerb return strings from the circulating width</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
20.9.10 Approach / Departure Node

This node defines parameters for the approach or departure of a specific Roundabout road. This node is made up of two sub parts - the **Entry** into the roundabout and the **Exit** from the roundabout. They can be configured independently.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Entry</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entry name</td>
<td>the name to apply to the entry string</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carriageway width</td>
<td>the width of the carriageway at the entry to the roundabout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius</td>
<td>the radius of the entry into the roundabout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>the width of the entry throat into the roundabout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td>an offset of the entry string from the centre of the roundabout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL offset</td>
<td>an offset of the entry from the centreline, for medians</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse curve?</td>
<td>whether or not to create a reverse curve (yes or no)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach radius</td>
<td>the approach radius for the reverse curve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Departure radius</td>
<td>the departure radius of the reverse curve</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Distance from rbout
the distance of the start of the reverse curve from the roundabout

RC Offset
the offset of the reverse curve from the centreline

Exit

Exit name
the name to apply to the exit string

Carriageway width
the width of the carriageway at the exit to the roundabout

Radius
the radius of the exit from the roundabout

Width
the width of the exit throat from the roundabout

CL Offset
an offset of the exit string from the centre of the roundabout
20.9.11 Approach / Departure => Kerb Node

This defines the kerb return between the entry at the approach / departure and the adjacent exit. There are several types of kerb returns available.

- Arc / Three Tangents / Arc see 20.9.11.2 Arc / Three Tangents / Arc
- Three Tangents / Locked Arc / Three Tangents see 20.9.11.3 Three Tangents / Locked Arc / Three Tangents
- Three Tangents / Arc / Three Tangents see 20.9.11.4 Three Tangents / Arc / Three Tangents
- Fillet see 20.9.11.5 Fillet
- Two Centre Curve see 20.9.11.6 Two Centre Curve
- Three Centre Curve see 20.9.11.7 Three Centre Curve

Getting the geometry right for your roundabout can be complex. The geometry is not guaranteed to solve and you may need to try another kerb return type if the current one does not suit your needs.

20.9.11.1 Common Fields

Name
the name of the kerb return

Type
the type of kerb return

20.9.11.2 Arc / Three Tangents / Arc

This creates a kerb return with an approaching arc, an arc with three tangents (to the edge of the entry throat, the circulating width and the edge of the exit throat) and a departing arc.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach radius</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Departure radius</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternate solution on approach</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternate solution on departure</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
whether or not to attempt a different solution on the approach arc

**Alternate solution on departure**
whether or not to attempt a different solution on the departure arc

### 20.9.11.3 Three Tangents / Locked Arc / Three Tangents

This creates a kerb return with the following components:

- an arc tangential to the entry carriageway, the edge of the entry throat and the circulating width of the roundabout
- an arc with a radius locked to the radius of the circulating width
- an arc tangential to the circulating width of the roundabout, the edge of the exit throat and the exit carriageway

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternate solution on approach</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternate solution on departure</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 20.9.11.4 Three Tangents / Arc / Three Tangents

This creates a kerb return with the following components:

- an arc tangential to the entry carriageway, the edge of the entry throat and the circulating width of the roundabout
- an arc with a user defined radius
- an arc tangential to the circulating width of the roundabout, the edge of the exit throat and the exit carriageway

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*a user defined radius for the internal arc*
Alternate solution on approach

whether or not to attempt a different solution on the approach arc

Alternate solution on departure

whether or not to attempt a different solution on the departure arc

20.9.11.5 Fillet

This creates a kerb return as a simple fillet between the approach / departure and the adjacent carriageway.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*the radius to use for the fillet*

20.9.11.6 Two Centre Curve

This creates a kerb return as a two centre curve.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach radius</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Departure radius</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach tangent</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*the radius for the approach of the curve*

*the radius for the departure of the curve*

*the approach tangent to the curve*

20.9.11.7 Three Centre Curve

This creates a kerb return as a three centre curve.
The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Intermediate radius</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>the radius of the intermediate part of the curve</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Approach radius</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>the radius of the approach part of the curve</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Departure radius</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>the radius of the departure part of the curve</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Approach offset</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Departure offset</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 20.9.11.7.1 Placing Roundabouts

A roundabout is placed at the intersection of two roads - the Major and Minor road. When placing a roundabout, there are several placement specific settings. This means they are separate from the definition but help define how the roundabout is placed.

These are defined when placing the component, and may be edited from the [20.9.34.1 Placed Component Editor](#). Some of these are also available from the [20.9.34.2 Edit a Placed Component Definition](#) panel.

These parameters are shown below, as they are displayed when placing the component.
the major road of the roundabout

Minor road

the minor road of the roundabout

Component parameters

Length - major approach
the length strings to generate along the major approach

Length - major departure
the length strings to generate along the major departure

Length - minor approach
the length strings to generate along the minor approach

Length - minor departure
the length strings to generate along the minor departure

Note that setting a length to 0 will effectively close that leg of the roundabout.
20.9.11.8 Bus Bay

A Bus Bay component can be edited via the [20.9.1 Component Library](#) or by editing the definition of a placed component.

For information on Defining a Bus Bay see [20.9.11.8.1 Defining a Bus Bay](#) and Placing Bus Bays [20.9.11.8.2 Placing Bus Bays](#)

20.9.11.8.1 Defining a Bus Bay

A Bus Bay is defined as being created from a known chainage on one centreline string.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td>$source_name Bus Bay</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td></td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td></td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Leading taper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td></td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Approach Radius</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Departure Radius</td>
<td></td>
<td>-30</td>
<td></td>
</tr>
<tr>
<td>Trailing taper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td></td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Approach Radius</td>
<td></td>
<td>-250</td>
<td></td>
</tr>
<tr>
<td>Departure Radius</td>
<td></td>
<td>250</td>
<td></td>
</tr>
</tbody>
</table>

- **Name**: the name of the Bus Bay string
- **Length**: the length of the Bus Bay
- **Width**: the width of the widest part of the Bus Bay
- **Leading Taper**: the length of the leading taper into the Bus Bay
- **Approach radius**
Components

the approach radius of the leading taper into the Bus Bay

Departure radius
the departing radius of the leading taper into the Bus Bay

Trailing Taper
Length
the length of the trailing taper from the Bus Bay

Approach radius
the approach radius of the trailing taper from the Bus Bay

Departure radius
the departing radius of the trailing taper from the Bus Bay

20.9.11.8.2 Placing Bus Bays

A Bus Bay is placed at a known chainage along one centreline string. When placing a Bus Bay, there are several placement specific settings. This means they are separate from the definition but help define how the Bus Bay is placed.

These are defined when placing the component, and may be edited from the 20.9.34.1 Placed Component Editor some of these are also available from the 20.9.34.2 Edit a Placed Component Definition panel.

These parameters are shown below, as they are displayed when placing the component.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centreline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chainage</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carriageway width</td>
<td></td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Side</td>
<td></td>
<td>Left</td>
<td></td>
</tr>
</tbody>
</table>

The centreline string on which the Bus Bay is created

the chainage of the Bus Bay on the nominated centreline string

the width of the carriageway

Side
the side of the road on which the Bus Bay is created (Left or Right). This will influence the direction of the Bus Bay, depending on your drive side settings in your library.
20.9.11.9 Culdesac

A **Culdesac** component can be edited via the 20.9.1 Component Library or by editing the definition of a placed component.

For information on *Defining a Culdesac* see 20.9.11.9.1 Defining a Culdesac Placing Culdesac 20.9.11.9.2 Placing Culdesacs

20.9.11.9.1 Defining a Culdesac

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Name</strong></td>
<td><em>the name of the culdesac string</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Bulb radius</strong></td>
<td><em>the radius of the bulb of the culdesac</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Bulb offset</strong></td>
<td><em>an optional offset of the bulb from the centreline</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Left fillet radius</strong></td>
<td><em>an optional offset of the bulb from the centreline</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Right fillet radius</strong></td>
<td><em>an optional offset of the bulb from the centreline</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Approach width</strong></td>
<td><em>an optional offset of the bulb from the centreline</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Left tangent length</strong></td>
<td><em>an optional offset of the bulb from the centreline</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Right tangent length</strong></td>
<td><em>an optional offset of the bulb from the centreline</em></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions:
the radius of the left fillet of the culdesac

**Right fillet radius**
the radius of the right fillet of the culdesac

**Approach width**
the width of the carriageway approaching the culdesac

**Left tangent length**
an optional length of a tangent between the left fillet and the bulb

**Right tangent length**
an optional length of a tangent between the right fillet and the bulb

### 20.9.11.9.2 Placing Culdesacs

A **Culdesac** is placed either at the start or end of a road. When placing a culdesac, there are several placement specific settings. This means they are separate from the definition but help define how the culdesac is placed.

These are defined when placing the component, and may be edited from the [20.9.34.1 Placed Component Editor](#). Some of these are also available from the [20.9.34.2 Edit a Placed Component Definition](#) panel.

These parameters are shown below, as they are displayed when placing the component.

```
<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centreline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chainage extension</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Anchor</td>
<td></td>
<td>Start</td>
<td></td>
</tr>
</tbody>
</table>
```

The fields and buttons used in this panel have the following functions:

- **Centreline**
  the centreline the culdesac is created for

- **Chainage extension**
  an extension from the anchor

- **Anchor**
  where the culdesac is anchored (Start or End)
20.9.11.10 HAMMERHEAD

The HAMMERHEAD has parameters to cover most situations. For example, by modifying the parameters, the Hammerhead covers both of the cases:

Selecting

Design =>Roads =>Components =>Place component

brings up the Place a Component panel.
Clicking on the Component choice icon and selecting HAMMERHEAD puts information specific to a HAMMERHEAD on the panel.
If you select a Centreline, the Function and Model boxes are automatically filled out using a combination of the string name, the word HAMMERHEAD and a unique number amongst the HAMMERHEAD functions already in the project.

Anchor says whether the HAMMERHEAD is to go at the Start or End of the Centreline.

Click Place to create the Hammerhead component.
Clicking **Edit** definitions will first bring up a panel to let you know that editing the definition will modify the Hammerhead from the one that was in the library.

Clicking **Yes** opens the **Edit a Placed Component Definition** panel.

Clicking on the tab **Placement parameters** will show the field **Anchor** (which was set before) but can be changed to either **Start** and **End**.

Clicking on **Hammer Head** displays the general tab of parameters.
The values in the fields can be modified and the Hammerhead will dynamically change. Clicking on the spinners will increase/decrease the value by a certain amount.

All arc radius values can be zero which means that there is no arc.

A radius is negative if it is going to the left and positive if it is going to the right, when travelling on the left hand side of the road.

Clicking on **Set** stores the current values of the parameters in the function.

Clicking on **Save to library** writes the component to the library with its current values. It is then available in the library to use in the future.

The definitions of all the parameters in the panel are:
and the parameters that produced this diagram are:

- Centre leg left fillet radius
- Centre leg right fillet radius (0 in this case)
- Centre leg - length
- Centre leg - left width
- Centre leg - right width
- Left leg left fillet radius
- Left leg right fillet radius
- Left leg - left width
- Left leg - right width
- Left leg angle
- Right leg left fillet radius
- Right leg right fillet radius
- Right leg - left width
- Right leg - right width
- Right leg angle
- Right length
- Left length
- Transition radius
- Left offset
- Right offset

All arcs can have 0 radius which means no arc. A radius is negative if going to the left and positive if going to the right when travelling on the left hand side of the road parallel to the Centreline (which doesn't have to be just a straight).
Note that the Centreline does not have to be a straight. It could involve straights, arcs and transitions.

In the next example, the Hammerhead is coming off a Centreline and the Hammerhead Centre leg width value means that the Centre leg of the Hammerhead includes a straight, a curve and another straight from the Centreline.

<table>
<thead>
<tr>
<th>Center leg</th>
<th>MKSsource_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Left fillet radius</td>
<td>-5</td>
</tr>
<tr>
<td>Right fillet radius</td>
<td>0</td>
</tr>
<tr>
<td>Left width</td>
<td>3</td>
</tr>
<tr>
<td>Right width</td>
<td>2</td>
</tr>
<tr>
<td>Length</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Left leg</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Left fillet radius</td>
<td>1.5</td>
</tr>
<tr>
<td>Right fillet radius</td>
<td>1</td>
</tr>
<tr>
<td>Left width</td>
<td>3.5</td>
</tr>
<tr>
<td>Right width</td>
<td>2.5</td>
</tr>
<tr>
<td>Angle</td>
<td>58</td>
</tr>
<tr>
<td>Length</td>
<td>12</td>
</tr>
<tr>
<td>Offset</td>
<td>-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transition</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Transition radius</td>
<td>-28.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Right leg</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Left fillet radius</td>
<td>1</td>
</tr>
<tr>
<td>Right fillet radius</td>
<td>1</td>
</tr>
<tr>
<td>Left width</td>
<td>2.5</td>
</tr>
<tr>
<td>Right width</td>
<td>3</td>
</tr>
<tr>
<td>Angle</td>
<td>270</td>
</tr>
<tr>
<td>Length</td>
<td>17</td>
</tr>
<tr>
<td>Offset</td>
<td>1</td>
</tr>
</tbody>
</table>
Also note that simply changing the Left leg angle to 0 gives
20.9.11.11 Parking Bays

Parking Bays can be edited via the Component Library or by editing the definition of a placed component.

For information on Defining a Parking Bay Placing Parking Bay

20.9.11.11.1 Defining Parking Bays

Parking Bays are created along a nominated centreline string. A Parking Bays component consists of a user defined number of 'sets of bays' on the left and right side.

A set of bays can consist of one or more actual parking bays. It is defined by a number of parameters for width, length, offset and rotation, as well as several cosmetic settings.

A set of bays can either be a Standard Bay or a Separation.

Bays on the left and right side are defined in the same manner.

To add a set of bays to the left or right side, simply select either Left Bays or Right Bays and click the button

The fields and buttons used in this panel have the following functions:

Field Description | Type | Defaults | Pop-Up
adds a bay set to the selected side

deletes the selected bay set

moves the selected bay definition up

moves the selected bay definition down

Bay Parameters

Type

the type of bay - Standard or Separation. For more information please see 20.9.12 Standard Bay and 20.9.13 Separation
20.9.12 Standard Bay

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Bay Parameters</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>the name of the bay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td>an optional offset of each bay from the centreline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>the width of each bay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perpendicular length</td>
<td>the perpendicular length of each bay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotation</td>
<td>the rotation of each bay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># of bays</td>
<td>the number of bays to create for this set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternate strings?</td>
<td>whether or not to create every other string</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Bay fill</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fill?</td>
<td>whether or not to fill each bay with a colour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fill Colour</td>
<td>the colour to use when filling</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Blending

*an optional blend to apply, for transparency*

Bay symbol

Create symbol?

*whether or not to create a symbol in the centre (yes or no)*

Symbol

*the symbol to place*

Rotation

*the additional rotation of the symbol. All symbols will be rotated to match the rotation of the parking bay.*

Size

*the size / scale of the symbol*

Colour

*the colour of the symbol*
20.9.13 Separation

A separation represents a space between parking bays.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>width</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotation</td>
<td>rotation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20.9.13.1 Placing Parking Bays

Parking Bays are placed either at the start or end of a road. When placing a Parking Bay component, there are several placement specific settings. This means they are separate from the definition but help define how the Parking Bay is placed.

These are defined when placing the component, and may be edited from the 20.9.34.1 Placed Component Editor. Some of these are also available from the 20.9.34.2 Edit a Placed Component Definition panel.

These parameters are shown below, as they are displayed when placing the component.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centreline</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chainage</td>
<td>chainage</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
20.9.13.2 Left Turn

A Left Turn is a subset of an intersection, compromising of just a Left Turn. A Left Turn can be edited via the 20.9.1 Component Library or by editing the definition of a placed component.

For information on Defining a Left Turn
   20.9.13.2.1 Defining a Left Turn

   Placing Left Turns
   20.9.15.1.1 Placing Left Turns

20.9.13.2.1 Defining a Left Turn

A Left Turn is only defined by the parameters involving the Left Turn - the type of turn and the kerb return.

For information on Placement Parameters see
   20.9.14 Placement Parameters
   20.9.15 Left Turn
   20.9.15.1 Left Turn => Kerb Return
20.9.14 Placement Parameters

This node is only available when editing a placed component. For more information on the fields displayed here, see the section on 20.9.15.1.1 Placing Left Turns.
20.9.15 Left Turn

A Left Turn is defined in the same way as the Intersection Left Turn. For more information, please see the section on the 20.9.5 Left Turn - Approach / Departure.

20.9.15.1 Left Turn => Kerb Return

A Left Turn Kerb Return is defined in the same was as the Intersection kerb return. For more information, please see the section on the 20.9.6 Approach / Departure =>Left Turn =>Kerb Return Node.

20.9.15.1.1 Placing Left Turns

Left Turns are placed at the intersection of two roads - a Major and a Minor, with an approach or departure. Like an intersection, they can also support dual carriageways. When placing a Left Turn component, there are several placement specific settings. This means they are separate from the definition but help define how the Left Turn is placed.

These are defined when placing the component, and may be edited from the 20.9.34.1 Placed Component Editor. Some of these are also available from the 20.9.34.2 Edit a Placed Component Definition panel.

These parameters are shown below, as they are displayed when placing the component.

![Alignment Parameters](AlignmentParameters.png)

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Alignments</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major left</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor left</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major right</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor right</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Alignment Parameters**

- **Major left**: the left most major road
- **Minor left**: the left most minor road
- **Major right**: the right most major road (optional)
Minor right
the right most minor road (optional)

Major right and Minor right can be set when there is a dual carriageway.

Component parameters

Width - major
the width of the carriageway of the major road

Width - minor
the width of the carriageway of the minor road

Clearance - major
the clearance of geometry on major road

Clearance - minor
the clearance of geometry on minor road

Length - major
the length of the geometry created for major road

Length - minor
the length of the geometry created minor road

From
whether or not to create the left turn leading from the approach or the departure

20.9.15.2 Median Island

A Median Island is a subset of an intersection, compromising of just a median and an optional right hand turn. A Median Island can be edited via the 20.9.1 Component Library or by editing the definition of a placed component.
20.9.15.2.1 Defining a Median Island

A median is only defined by the parameters involving the Median Island and the right hand turn.
20.9.16 Median Island Piece

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Median island</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the name of the median string to create</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median width</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the width of the median</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the type of nose to create for the median (see 20.9.16.1 Nose Types)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Right Turn</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>whether or not to create a right turn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the name to apply to the turn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallel length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the length of the parallel lane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taper length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the length of the leading taper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taper approach radius</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the approach radius of the leading taper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taper departure radius</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the departure radius of the leading taper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage length</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
the storage length of the turn lane

Lane width
the width of the turn lane - must be less than the median width

Number of lanes
the number of turn lanes to create

20.9.16.1 Nose Types
For more information on Single Curve Nose see 20.9.16.1.1
Two Curve Nose 20.9.16.1.2
Three Curve Nose 20.9.16.1.3

20.9.16.1.1 Single Curve Nose
a median nose created from a single fillet curve

20.9.16.1.2 Two Curve Nose
a median nose created from two curves

The fields and buttons used in this panel have the following functions:
Components

### 20.9.16.1.3 Three Curve Nose

A median nose created from three curves and an optional offset.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius one</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(the radius of the first curve)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius two</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(the radius of the second curve)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius three</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(the radius of the third curve)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(the offset of the nose from the centreline)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
20.9.17 Placement Parameters

This node is only available when editing a placed component. For more information on the fields displayed here, see the section on 20.9.17.1 Placing Median Islands.

20.9.17.1 Placing Median Islands

Median Islands are placed at the intersection of two roads - a Major and a Minor, with an approach or departure. Like an intersection, they can also support dual carriageways. When placing a Median Island, there are several placement specific settings. This means they are separate from the definition but help define how the Median Island, is placed.

These are defined when placing the component, and may be edited from the 20.9.34.1 Placed Component Editor Some of these are also available from the 20.9.34.2 Edit a Placed Component Definition panel.

These parameters are shown below, as they are displayed when placing the component.

![](image)

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Alignments</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major left</td>
<td></td>
<td>CLs-&gt;MC01</td>
<td></td>
</tr>
<tr>
<td>Minor left</td>
<td></td>
<td>CLs-&gt;MC02</td>
<td></td>
</tr>
<tr>
<td>Major right</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor right</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Component parameters</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td></td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>From</td>
<td></td>
<td>Approach</td>
<td></td>
</tr>
<tr>
<td>Side</td>
<td></td>
<td>Left</td>
<td></td>
</tr>
</tbody>
</table>

Alignments

- **Major left**
  - the left most major road

- **Minor left**
  - the left most minor road

- **Major right**
  - the right most major road (optional)

- **Minor right**
  - the right most minor road (optional)

Component parameters

- **Clearance**
  - the distance from the intersection at which to start creating the median island

- **Length**
  - the length of the geometry to create
From

whether or not the median should be created on the approach or departure side of the major string

Side

the side on which the median should be bound
20.9.17.2 Entry Ramp

An Entry Ramp component creates an Entry Ramp from an overpass or other adjoining road to a freeway or other major road. It can be edited via the 20.9.1 Component Library or by editing the definition of a placed component.

For information on Defining an Entry Ramp
Placing Entry Ramps

20.9.17.2.1 Defining a Entry Ramp

An Entry Ramp is defined by the ramp itself, a shoulder, a merging lane and an optional connection.

For information on Entry Ramp node see
Placement Parameters
Shoulder node
Merging lane node
Connection node

20.9.18 Entry Ramp Node
20.9.19 Placement Parameters
20.9.20 Shoulder Node
20.9.21 Merging Lane Node
20.9.22 Connection
20.9.18 Entry Ramp Node

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name</td>
<td>source_entry_ramp</td>
<td></td>
</tr>
<tr>
<td>Radius 1</td>
<td>Radius</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Radius 2</td>
<td>Radius</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Nose to taper length</td>
<td>Nose</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Internal radius</td>
<td>Internal</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Taper length</td>
<td>Taper</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Taper rotation 1 in</td>
<td>Taper rotation</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Curved taper?</td>
<td>Curved taper?</td>
<td>no</td>
<td></td>
</tr>
</tbody>
</table>

- **Name**: the name of the entry ramp string
- **Radius 1**: the first radius of the entry reverse curve
- **Radius 2**: the second radius of the entry reverse curve
- **Nose to taper length**: The distance between the nose of the shoulder and the taper
- **Internal radius**: the radius of the final, internal arc
- **Taper length**: the length of the trailing taper
- **Taper rotation 1 in**: the rotation of the trailing taper
- **Curved taper?**: whether or not to use a curved taper (may be more suitable for curving centrelines)
20.9.19 Placement Parameters

This node is only available when editing a placed component. For more information on the fields displayed here, see the section on 20.9.22.2.1 Placing Entry Ramps.
20.9.20 Shoulder Node

This node defines properties for the shoulder of the Entry Ramp.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the name of the shoulder string</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose offset from shoulder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the offset of the island nose from the shoulder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose offset from ramp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the offset of the island nose from the ramp itself</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose width</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the width of the nose</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
20.9.21 Merging Lane Node

This node defines the parameters for the Merging lane.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>$source_name merging lane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane width</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Radius</td>
<td></td>
<td>394</td>
<td></td>
</tr>
<tr>
<td>Curve 1 radius</td>
<td></td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Parallel lane length</td>
<td></td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Curve 2 radius</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Curve 2 length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taper length</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Name: the name of the merging lane string
- Lane width: the width of the merging lane
- Radius: the radius used to construct the merging lane
- Curve 1 radius: the radius of the first optional curve, before the parallel lane length
- Parallel lane length: the length of the parallel lane
- Curve 2 radius: the radius of the second optional curve, after the parallel lane
- Curve 2 length: the length of the second optional curve, after the parallel lane
- Taper length: the length of the taper at the end of the merging lane
20.9.22 Connection

This node defines the properties for an optional connection from the overpass / minor road. At the moment, this supports either no connection strings or a roundabout.

Mode

the mode of the connection (either 20.9.22.1 Roundabout Mode or 20.9.22.2 No Strings Mode)

20.9.22.1 Roundabout Mode

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the offset from the intersection, along the minor road, that the connection should be created</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roundabout radius</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the radius of the roundabout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circulating width</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the circulating width of the roundabout</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20.9.22.2 No Strings Mode

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the offset from the intersection, along the minor road, that the connection should be created</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>how far away from the minor road the entry ramp should start</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20.9.22.2.1 Placing Entry Ramps
Entry Ramps are placed at the intersection of two roads - a major freeway and a minor adjoining or overpass road. When placing an Entry Ramp, there are several placement specific settings. This means they are separate from the definition but help define how the Entry Ramp is placed. These are defined when placing the component, and may be edited from the 20.9.34.1 Placed Component Editor. Some of these are also available from the 20.9.34.2 Edit a Placed Component Definition panel.

These parameters are shown below, as they are displayed when placing the component:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major road</td>
<td></td>
<td>EXAMPLE 7-&gt;MCCI</td>
<td></td>
</tr>
<tr>
<td>Entry road</td>
<td></td>
<td>EXAMPLE 7-&gt;MCA1</td>
<td></td>
</tr>
<tr>
<td>Carriageway width</td>
<td></td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Distance from interchange</td>
<td></td>
<td>580</td>
<td></td>
</tr>
<tr>
<td>Approach/Departure</td>
<td></td>
<td>Approach</td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions:

Field Description	Type	Defaults	Pop-Up
Major road | | EXAMPLE 7->MCCI | |
Entry road | | EXAMPLE 7->MCA1 | |
Carriageway width | | 3.5 | |
Distance from interchange | | 580 | |
Approach/Departure | | Approach | |

Edit definition button

Selecting this button displays the Edit a Placed Component Definition panel. For more information please see 20.9.34.2 Edit a Placed Component Definition

Carriageway width

the width of the freeway carriageway

Distance from interchange

the distance of the end of the entry ramp from the interchange

Approach/Departure

whether the entry ramp is bound to the approach or departure of the freeway / major road

20.9.22.3 Exit Ramp

An Exit Ramp component creates an Exit Ramp from a freeway or other major road to an overpass or other adjoining road. It can be edited via the 20.9.1 Component Library or by editing the definition of a placed component.

For more information on Defining an Exit Ramp see 20.9.22.3.1 Defining an Exit Ramp Placing an Exit Ramp 20.9.27.1.1 Placing Exit Ramps
20.9.22.3.1 Defining an Exit Ramp

An **Exit Ramp** is defined by the ramp itself, a shoulder, a diverging lane and an optional connection.

For information on the Exit Ramp Node see
- 20.9.23 Exit Ramp Node
- 20.9.24 Placement Parameters
- 20.9.25 Shoulder Node
- 20.9.26 Diverging Lane Node
- 20.9.27 Connection Node
20.9.23 Exit Ramp Node

This node defines the ramp itself.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal String</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>the name of the string to create</td>
<td>Internal</td>
<td>String</td>
<td></td>
</tr>
<tr>
<td>Taper length</td>
<td>the length of the ramp taper</td>
<td></td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Radius 1</td>
<td>the first radius of a reverse curve</td>
<td></td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Length 1</td>
<td>the first length of a reverse curve</td>
<td></td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Radius 2</td>
<td>the second radius of a reverse curve</td>
<td></td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Length 2</td>
<td>the second length of a reverse curve</td>
<td></td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Dual lane ramp</td>
<td></td>
<td></td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Taper length</td>
<td>the taper length on the dual lane exit ramp</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Internal String

Name
the name of the string to create

Taper length
the length of the ramp taper

Radius 1
the first radius of a reverse curve

Length 1
the first length of a reverse curve

Radius 2
the second radius of a reverse curve

Length 2
the second length of a reverse curve

Dual Lane Ramp

Dual lane
whether or not this is a dual lane exit ramp

Taper length
the taper length on the dual lane exit ramp
20.9.24 Placement Parameters

This node is only available when editing a placed component. For more information on the fields displayed here, see the section on 20.9.27.1.1 Placing Exit Ramps.
20.9.25 Shoulder Node

This node defines the shoulder part of the exit ramp.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the name of the created shoulder string</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoulder length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the length of the shoulder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose radius</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the radius of the nose of the exit ramp island</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose offset from shoulder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the offset of the island nose from the shoulder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose offset from ramp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the offset of the island nose from the ramp</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
20.9.26 Diverging Lane Node

This node defines the details for the diverging lane of the exit ramp.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>the name of the created string of the diverging lane</td>
</tr>
<tr>
<td>App. taper length</td>
<td>the length of approaching taper</td>
</tr>
<tr>
<td>Lane width</td>
<td>the width of the diverging lane</td>
</tr>
<tr>
<td>Lane length</td>
<td>the length of the diverging lane</td>
</tr>
<tr>
<td>Radius</td>
<td>the radius for the diverging lane</td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>App. taper length</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Lane width</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Lane length</td>
<td></td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>Radius</td>
<td></td>
<td>1500</td>
<td></td>
</tr>
</tbody>
</table>
20.9.27 Connection Node

The connection node defines how the Exit Ramp connects to the adjoining road or overpass. There are two types of connection currently; either no visible connection or a Roundabout (see 20.9.27.1 Roundabout Connection).

20.9.27.1 Roundabout Connection

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset</td>
<td>the offset of the roundabout from the major road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roundabout radius</td>
<td>the radius of the centre of the roundabout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circulating width</td>
<td>the circulating width around the roundabout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connecting radius</td>
<td>the radius of an arc connecting the exit ramp to the roundabout</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20.9.27.1.1 Placing Exit Ramps

Exit Ramps are placed at the intersection of two roads - a major freeway and a minor adjoining or overpass road. When placing an Exit Ramp, there are several placement specific settings. This means they are separate from the definition but help define how the Exit Ramp is placed.

These are defined when placing the component, and may be edited from the 20.9.34.1 Placed Component Editor. Some of these are also available from the 20.9.34.2 Edit a Placed Component Definition panel.

These parameters are shown below, as they are displayed when placing the component.
The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major road</td>
<td>the freeway or major road to exit from</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exit road</td>
<td>the road the ramp leads to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carriageway width</td>
<td>the width of the major road</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance from interchange</td>
<td>the distance from the interchange that the exit ramp should start</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach / Departure</td>
<td>whether the exit ramp is bound to the approach or departure of the major road</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 20.9.27.2 CHR Intersection

A **CHR** or **Channelised Rural Intersection** creates an intersection between two roads, typically in a T-Junction configuration. It can be edited via the [20.9.1 Component Library](#) or by editing the definition of a placed component.

For information on Predefined Values Node see [20.9.28 Predefined Values Node](#), [20.9.29 Major Road Node](#), [20.9.30 Major Road => Kerb Return Node](#), [20.9.31 Minor Road Node](#), [20.9.31.3.1 Placing CHR Intersections](#).
20.9.28 Predefined Values Node

The Predefined Values node is used to populate the details of the CHR based on one of a set of predefined speeds and a supplied lane width.
20.9.29 Major Road Node

This defines the details for the major road.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kerb name</td>
<td>the name of the kerb string to create</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane width</td>
<td>the width of the carriageway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short CHR?</td>
<td>whether or not to create a short CHR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn name</td>
<td>the name of the right turn string</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage length</td>
<td>the storage length of the right turn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deceleration length</td>
<td>the deceleration length of the right turn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane width</td>
<td>the width of the right turn lane</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Leading Taper

Approach radius
the approach radius of the leading taper

Departure radius
the departure radius of the leading taper

Taper length
the length of the leading taper

Trailing Taper

Approach radius
the approach radius of the trailing taper

Departure radius
the departure radius of the trailing taper

Taper length
the length of the trailing taper

Islands

Approach radius
the approach radius of the islands

Departure radius
the departure radius of the islands

Taper length
the taper length for the islands

Leading island name
the name of the leading island of the CHR

Trailing island name
the name of the trailing island of the CHR
20.9.30 Major Road => Kerb Return Node

There are several different kerb return types available:

- Fillet 20.9.30.1 Fillet Kerb Return
- Two Centred 20.9.30.2 Two Centred Kerb Return
- Three Centred 20.9.30.3 Three Centred Kerb Return

20.9.30.1 Fillet Kerb Return

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Type</strong></td>
<td><strong>Fillet</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Radius</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20.9.30.2 Two Centred Kerb Return

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Type</strong></td>
<td><strong>Two Centred</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Approach radius</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Departure radius</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Approach tangent</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
20.9.30.3 Three Centred Kerb Return

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the type of kerb to create (in this case, Three Centred)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach radius</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the approach radius of the three centred curve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate radius</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the intermediate radius of the three centred curve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Departure radius</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the departure radius of the three centred curve</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
20.9.31 Minor Road Node

This node defines the details for the Minor road.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane width</td>
<td>Type</td>
<td>Defaults</td>
<td>Pop-Up</td>
</tr>
</tbody>
</table>

*the width of the carriageway of the minor road*

Kerb Return

There are several different kerb return types available:

- Fillet: [20.9.31.1 Fillet Kerb Return](#)
- Two Centred: [20.9.31.2 Two Centred Kerb Return](#)
- Three Centred: [20.9.31.3 Three Centred Kerb Return](#)

20.9.31.1 Fillet Kerb Return

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Fillet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*the type of kerb return to create (in this case, Fillet)*

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*the radius for the fillet kerb return*

20.9.31.2 Two Centred Kerb Return
20.9.31.3 Three Centred Kerb Return

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Type</strong></td>
<td><em>Three Centred</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Approach radius</strong></td>
<td><em>the approach radius of the three centred curve</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Intermediate radius</strong></td>
<td><em>the intermediate radius of the three centred curve</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Departure radius</strong></td>
<td><em>the departure radius of the three centred curve</em></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
20.9.31.3.1 Placing CHR Intersections

CHR Intersections are placed at the intersection of two roads - a major road and a minor road. Each road can be optionally defined with a second carriageway. When placing a CHR intersection, there are several placement specific settings. This means they are separate from the definition but help define how the CHR is placed.

These are defined when placing the component, and may be edited from the 20.9.34.1 Placed Component Editor. Some of these are also available from the 20.9.34.2 Edit a Placed Component Definition panel.

These parameters are shown below, as they are displayed when placing the component.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major left</td>
<td>the left most major road</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor left</td>
<td>the left most minor road</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major right</td>
<td>the right most major road (optional)</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor right</td>
<td>the right most minor road (optional)</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major right and Minor right</td>
<td>can be set when there is a dual carriageway.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions:

- **Lateral offset**
  
  *an offset of the CHR intersection from the major left control line. This is useful when the control line is not the centreline.*
20.9.32 Place a Component

Position of option on menu: Design => Roads => Components => Place component

The Place a component panel allows you to place a component from your library.

The placement specific parameters required will depend on which component you are attempting to place.

Each component is created as a function, which means you can easily recalc after you change the strings to which it is attached or make it part of a chain.

Please note that there are two types of parameters involved in defining a component:

1. Component Specific – meaning how the geometry is generated. These are edited via the library or by editing the definition of a placed component.

2. Placement Specific – how the component is placed. These are edited when placing a component on the Place a component panel or on Editing a Placed Component.

Selecting Place component brings up the Place a component panel.

The fields and buttons used in this panel have the following functions:

Field Description	Type	Defaults	Pop-Up
Common Fields
Function function
    the function to create

Library file file
    the library file to read components from

Component choice box
    the component to place

Pre*Post an optional pre*post to apply to generated strings

Model model box
    the model to create the component strings in

Place button
    places the components

For more information on the placement specific parameters required for each component, see the section on the specific component type (see 20.9.2 Component Types).
20.9.32.1 Editing Components

Components may be edited either in the library or directly from a placed component.

For information on Editing in the Component library go to 20.9.32.1.1 Editing in the Component library - Component Editor

For information on Editing a Placed Component go to 20.9.33.1 Editing a Placed Component

20.9.32.1.1 Editing in the Component library - Component Editor

Design => Roads => Components => Component library => Component Node => Edit button

To edit in the Component Library, select your component and then select the edit button, this brings up the Component Editor panel.

The Component Editor panel changes depending on the component, so for specific information on parameters, please see the section on that component type (see 20.9.2 Component Types). The following example shows editing an intersection component.
The fields and buttons used in this panel have the following functions:

Field Description	Type	Defaults	Pop-Up
Component name | | the name of the component | |
Preview button | | shows a preview of the component with theoretical centreline strings. For more information please go to 20.9.33 Component Viewer | |
Set button | | sets the component in the library | |
20.9.33 Component Viewer

The Component viewer, which is updated as you make changes to your library component, gives you an idea of what your component may look like when it is placed. The following example shows a standard intersection.

Selecting the Preview button on the Component Editor panel displays the Component viewer panel.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>choice box</td>
<td>Crossroads, T Junction</td>
<td></td>
</tr>
</tbody>
</table>

this field allows you to change what strings are generated to show you how the component will change based on different centrelines.

Options include: Crossroads and T-Junction

Note that this does not affect the component in anyway – this is only for previewing purposes.

20.9.33.1 Editing a Placed Component

You may edit a placed component, either by changing the placement specific parameters or by changing the definition itself.

A placed component may be edited by using the Functions => Editor (Utilities => Functions => Editor) or by using the Edit Component option on the Components menu (Design => Roads => Components => Edit Component).

As when placing the component, the placement specific parameters will vary based on the type
of component.
For more information on Edit a Placed Component please see 20.9.34 Edit a Placed Component.
20.9.34 Edit a Placed Component

**Position of menu:**  Design => Roads => Components => Edit Component

The Edit a Placed Component panel, edits an existing component by its function.

![Edit a Placed Component panel](image)

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Function</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>the component function</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Edit</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>edits the placed component (see 20.9.34.1 Placed Component Editor)</em></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**20.9.34.1 Placed Component Editor**

This panel is only accessible by using the 20.9.34 Edit a Placed Component (Design => Roads => Components => Edit Component) or by editing the function directly from the Utilities => Functions => Editor.
### Components

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Function</strong></td>
<td>function</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>the function you wish to edit</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Placed Component</strong></td>
<td>file</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>the library your component is read from</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Component</strong></td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>the component that is being placed</em></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please note that Library and Component will be read only if you have opted to detach the component from the library.

**Edit Definition** button

*allows you to edit the definition of the placed component, which will detach it from the library. After you do this, any changes to the library component will not affect your component. For more information please see 20.9.34.2 Edit a Placed Component Definition*

For information on the placement specific parameters, please see the section for that component.
(see 20.9.2 Component Types).

**Output Model**

model box

*the model the geometry will be generated into*

**Pre*Post**

an optional pre*post

**Set**

button

Sets the details

### 20.9.34.2 Edit a Placed Component Definition

To edit the definition of a placed component, you must edit the function (Utilities => Functions =>Editor or Design =>Roads =>Components => Edit Component) and then select 'Edit Definition' on the 20.9.34.1 Placed Component Editor panel.

The following example shows the intersection editor. For details on the component specific parameters, see the section on that component type (see 20.9.2 Component Types).

As you edit the component, your changes will be reflected on the component strings.

If you do not wish to keep the changes, simply press 'Finish' without pressing 'Set'.

---

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>
Component name

the name of the component

Set button

sets the component specific parameters

Save to library button

allows you to save your component definition back into your library. This is useful after you have made changes which you wish to reuse in other components. For more information please see 20.9.34.3

20.9.34.3 Save to Library

This panel allows you to save an edited definition back in to your library.

The fields and buttons used in this panel have the following functions:

Field Description Type Defaults Pop-Up

Library file

the library file to save to

Component

the name of the component you are saving

The panel displays a list of all the folders in your library. Select which folder you wish to save it into.

Save button

saves the component into your library
20.9.35 Component Quick Place

Position of option on menu:  Design =>Roads =>Components => Quick place

The Component quick place toolbar is an easy way to quickly drop components on to existing strings.

Simply start the toolbar, pick your component and hover your mouse over where you would like the component created. If the placement point is correct, a preview of the component will be drawn on your view.

Once you have picked the position correctly, hitting C on your keyboard will create the component.

You can then press E to edit the component.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>First field</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the list of components from your local library (searched for in the working directory, or in your library)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Second field</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the length on the major approach (does not apply to all components)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Third field</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the length on the major departure (does not apply to all components)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Fourth field</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the length on the minor approach (does not apply to all components)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Fifth field</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the length on the minor departure (does not apply to all components)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Last button</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>close the toolbar</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
20.10 Sight Lines

Position of menu: Design => Sight lines
Utilities => H-Z => Sight lines

A Sight Line is a lines of sight emanate from an eye point and continuing until it is stopped by an object.

In 12d Model Sight lines are stopped by the items:

(i) A Tin (tin or super tin)
(ii) Bridge tins
(iii) Super stings that are round pipes or rectangular pipes
(iv) Drainage strings
(v) Billboards
(vi) Extrusions down a super string
(vii) Trimeshes
(viii) Meshes

The sight line calculations are used in various forms in all the options on the Sight Lines menu.

See

20.10.2 Sight Distance Enhanced
20.10.3 Viewshed All
20.10.4 Shadow Analysis
20.10.5 Sun in Driver Eyes
20.10.6 Sun Exposure
20.10.7 Sight Distance - Tin Only
20.10.8 Viewshed - Tin Only
20.10.9 Dynamic Viewshed - Tin Only
20.10.1 Sight Lines

Position of option on menu:  
Design => Sight lines => Sight distance enhanced  
Utilities => H-Z => Sight lines => Sight distance enhanced  

An **eye point** can see a **target point** if a straight line can be drawn from the eye point to the target point and the line is not stopped by any obstruction along the way.

If the target point can be seen from the eye point then it is **visible** to the eye point. If not, then it is **invisible** to the eye point.

Note that this is a reciprocal relationship - if **you** can see the **target point** then the **target point** can see **you**.

In **12d Model** the items that can stop an eye from seeing a target point are:

(a) A Tin (tin or super tin)  
   This is the ground surface. If in a plan view, the eye is on the tin then in z-value it must be above the tin.  
   For some options the eye can be off the Tin.  
   In some options, the tin can contain null regions.

(b) Bridge tins  
   A Bridge Tin is a tin where the underside of the tin is used in the visibility calculations.  
   These tins can be used to model some obstructions.

(c) Obstructions.  
   These are Objects in models that can stop a ray emanating from the eye point. Valid obstructions are  
   (i) Super stings that are round pipes or rectangular pipes  
   (ii) Drainage strings  
   (iii) Billboards  
   (iv) Extrusions  
   (v) Trimeshes  
   (vi) Meshes

A **Sight Line** is a line emanating from an eye point and continuing until it is stopped by one of the above items.

In **12d Model**, visibility/invisibility/sight line calculations are used in various forms in all the options on the **Sight Line** menu.

![Sight Lines menu]

**Sight distance options** - determining for each chainage down a road, how far ahead you can see.
Viewshed options - determining all the points that can be seen from a given eye position.

Shadow analysis - determining what shadows are created by objects.

Sun in drivers eyes - determining when the sun is in a drivers eyes.

Sun exposure - determining when the sun comes in a given window.
20.10.2 Sight Distance Enhanced

Position of option on menu:  
**Design =>Sight lines =>Sight distance enhanced**  
**Utilities =>H-Z =>Sight lines =>Sight distance enhanced**  

For a string (Super Alignment etc), the *sight distance enhanced* option calculates the maximum distance that can be seen from an eye point on the tin to a target point further along the string.  

A string and (optionally) an eye point offset and height, and a target offset and height define the direction of the sight lines.  

Tins, Bridge Tins and Obstructions are supplied for the sight line calculations.  

To calculate the sight distances, *12d Model* positions the *eye point* at the given *start chainage* on the selected string, and then goes out perpendicularly for the *distance eye offset*. That position is dropped onto the tin, and finally raises it by the given *eye height*.  

From the *eye point*, a target point is placed at a chainage distance equal to the given *minimum sight distance* along the string. The target point is offset by the given *target offset*, then dropped onto the tin and finally raised by the given *target height*.  

The *target point* is then tested for visibility from the eye point, against the given tin. That is, a test is made to see if the *target point can be seen from the eye point*, against the surface given by the tin.  

If the target point is visible, it is moved a given chainage distance *trial interval* further along the string and the visibility test redone.  

The process is repeated until either the target point is invisible, or the target point is the given *maximum sight distance* (in chainage) away from the eye point.  

A line joining the eye and *final target point position* is created and placed in the *model for sight lines*. The *chainage* distance between the eye and the final target point is placed as a text string in the *model for sight text*, positioned at the eye point.  

The eye point is then moved the given chainage distance *interval* along the string, and the process repeated until the eye point is past the given *end chainage*.  

The eye point is then placed at the *end chainage* and the negative of the *trial interval* and *interval* values used to calculate sight distance for the reverse direction along the string.  

It is also possible to use a speed, reaction time and deceleration coefficient to calculate a minimum distance.  

Selecting *Sight distance enhanced* brings up the *Advanced Sight Distance* panel.
The fields and buttons used in this panel have the following functions.

**Field Description**  
**Type**  
**Defaults**  
**Pop-Up**

**Tin**  
tin box  
available tins  
*name of the tin to use as the surface for testing visibility.*

**Report type**  
choice box  
type of report file to be produced (only if **Report file** has a file name in it)

**Report file**  
file box  
depends on Report type  
*if not blank, a report of the type selected in **Report type** is produced and written out to this file name.*

**Centreline tab**

**Centreline**  
string-select  
the string to be used for calculating the chainage position for the eye and target points, is selected from a view.

**Interval**  
real box  
100  
measures pop-up  
*once the sight distance is calculated for the eye at a chainage, the eye chainage is incremented by this amount the sight distance calculation repeated.*

**Start/end chainage**  
real box  
the sight distance is calculated for points on the selected string covering the chainage range given by the start and end chainage fields. If the **start/end chainage** is blank, the start/end chainage of the selected string is used.
Trial interval  real box  10  measures pop-up

If the target point is visible, it is then moved along by this chainage increment and the sight test repeated.

There are also values under the Safe Limit tab that can be used in the sight distance calculations instead of the fixed Minimum sight distance.

If Calculate min distance is ticked, then the values on the Safe Limit tab can be entered and are used to calculate a minimum sight distance.

Calculate min distance  tick box

If ticked then the minimum sight distance is calculated from the values in the Safe Limit tab which allows for a Speed, Reaction time and a Deceleration coefficient.

If not ticked then the constant Minimum sight distance is used.

Minimum sight distance  real box  100  measures pop-up

If Calculate min distance is not ticked, then this is the minimum chainage distance from the eye point to place the test target point. The first test of a target is made at this minimum chainage distance from the eye chainage.

Maximum sight distance  real box  3000  measures pop-up

Maximum chainage distance to use for placing the test target point. The testing stops if the test target position goes over this chainage distance. In this case, the sight distance will be the maximum sight distance.

Safe Limit tab

Speed (km/hr)  real box  60  measures pop-up

speed that the vehicle is travelling.

Reaction time (s)  real box  2  measures pop-up

time in seconds for the driver to react.

Deceleration coefficient (m/s²)  real box  0.36  measures pop-up

the Deceleration coefficient in metres per second per second.

Eye tab

the eye position is determined by finding the chainage along the selected string, going out perpendicularly for the given eye offset (negative to the left, positive to the right), dropping that position onto the given tin, and then adding the eye height to the height on the tin. Hence the eye point is always the eye height above the tin.

Height  real box  1.3

height of the eye point above the given tin.

Offset  real box  -0.5

offset of the eye point from the picked string.

Target tab

the target position is determined by finding the chainage along the selected string, going out perpendicularly for the given target offset (negative to the left, positive to the right), dropping that position onto the given tin, and then adding the target height to the height on the tin. Hence the target point is always the target height above the tin.
Height real box 0.3

height of the target point above the given tin

Offset real box -0.5

offset of the target point from the picked string.

Bridge Tins tab

A Bridge Tin is a tin where the underside of the tin is used in the visibility calculations.

Tins grid of tins available tins

the underside of these tins are used in the visibility calculations. These tins can be used to model some obstructions.

Forward tab

Do calcs tick box

if ticked, do the calculations for the forward direction. That is, from the start of the string and in increasing string chainage.

Sight lines model box available models

if not blank, the name of the model to contain the sight lines.
If blank, the sight lines are not created.

Clean models first tick box not ticked

if ticked, the models of results are cleaned out before the option runs.

Good colour colour box default colour available colours

when the minimum sight distance is achieved, sight lines are created in the good colour

Bad colour colour box default colour available colours

when the minimum sight distance is not achieved, sight lines are created in the Bad colour

Sight text model box available models

if non-blank, the name of the model to contain the sight distance text.
If blank, the sight distance text is not created.

Sight text info text info

drawing information for the sight text.

Reverse tab

Do calcs tick box

if ticked, do the calcs for the reverse direction. That is, from the end of the sting and going in reverse string chainage direction.

Sight lines model box available models

if not blank, the name of the model to contain the sight lines when going down the string in the reverse direction. Note that the eye and target offsets are then applied in the reverse direction of the string.
If blank, the sight lines are not created.

Clean models first tick box not ticked
if ticked, the models of results are cleaned out before the option runs.

**Good colour**
- colour box
- default colour
- available colours
  
  when the minimum sight distance is achieved, sight lines are created in the good colour

**Bad colour**
- colour box
- default colour
- available colours
  
  when the minimum sight distance is not achieved, sight lines are created in the Bad colour

**Sight text**
- model box
- available models
  
  if non-blank, the name of the model to contain the sight distance text.
  
  If blank, the sight distance text is not created.

**Sight text info**
- text info
  
  definition of the sight text.

**Obstructions tab**

all the 3d objects in the data source that can be used as obstructions, are used. For a list of valid obstructions, see **20.10.1 Sight Lines**.

**Data source type**
- Model
  
  data selection type - XX

**Data source for obstructions**

source of data to look through for elements to use as obstructions.

**Sight button**
- button
  
  clicking this button runs the operation.

In the report, the definition for safe distance is

\[
reaction\_distance = reaction\_time \times speed\_value / 3.6
\]
\[
safe\_distance = reaction\_distance + speed\_value \times speed\_value / (254 \times (deceleration\_coefficient + grade \times change\_deceleration\_per\_grade))
\]

where

**reaction\_time** is in seconds

**speed\_value** is the Operating speed in km/h

**deceleration\_coefficient** is the coefficient of deceleration (longitudinal friction factor)

**grade** is longitudinal grade (a percentage), with sign + for upgrades and - for downgrades.

**change\_deceleration\_per\_grade** is

**Note:** 3.6 is the conversion from km/h to m/s
20.10.3 Viewshed All

Position of option on menu: Design => Sight lines => Viewshed all
Utilities => H-Z => Sight lines => Viewshed all

This panel is used to calculate the points, on or above a tin, that are visible and invisible from a user selected eye position. That is, it is calculating the sight lines from an eye point.

This is equivalent to calculating the points that can, or can not, see a selected eye point.

Bridge Tins and Obstructions are used in the sight line calculations. For a list of valid obstructions, see 20.10.1 Sight Lines

The calculations are made along rays emanating from the eye point from a minimum plan distance to a maximum plan distance from the eye point. The rays are created at regular angular steps from a start angle to an end angle.

The eye point can be off the tin and there can be null triangles in the tin.

Selecting Viewshed all displays the Advanced Viewshed panel.

```
<table>
<thead>
<tr>
<th>Settings tab</th>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height of target above tin</td>
<td>real box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start angle</td>
<td>angle box</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End angle</td>
<td></td>
<td>390°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step angle</td>
<td></td>
<td>5°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum distance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum distance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean result models first</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

The fields and buttons used in this panel have the following functions.

- **Tin**: name of the tin to be used for the viewshed analysis.
- **Height of target above tin**: the distance that the target is above the tin. This can be positive or negative.
- **Start angle**: the angle to begin taking sight rays emanating from the eye point. Measured in a counter clockwise direction from the positive x-axis.
End angle angle box 359.30
the angle to stop taking sight rays emanating from the eye point. Measured in a counter clockwise
direction from the positive x-axis.

Step angle angle box 5
the angle between successive sight rays emanating from the eye point.

Minimum distance real box
if not blank, the minimum distance from the eye point along the sight ray to begin recording visible/
invisible points.
If blank, the minimum distance is zero.

Maximum distance real box
the maximum distance from the eye point along the sight ray to record visible/invisible points.
If blank, the entire tin is considered.

Clean models first tick box
if ticked, the models of results are cleaned out before the option runs.

Eye tab
Eye XYZ input/output xyz ops menu
X/Y/Z coordinate
the XYZ co-ordinates of the eye point.
Each co-ordinate can be individual entered or the point pick icon used to select an existing point.

Note - the z-value must be above the surface of the tin at the (x,y) eye position minus the target height.
So the eye can not be below the tin by more than the target height, or even the target height below the
tin.

Results tab
More tick box
if ticked, ask for name, model, linestyle, weight.
If not ticked, only ask for model.

Name name box names in names.4d
the name for the visible/invisible sight strings.

Model model box available models
the model for the visible/invisible sight strings.

Linestyle linestyle box available linestyles
the linestyle for the visible/invisible sight strings.

Weight weight box
thickness of the string when plotted

Colour of visible bits colour box default line colour
if not blank, the colour for the visible parts of the rays.
If blank, the visible parts are not created.

Colour of invisible bits colour box default point colour
if not blank, the colour for the invisible parts of the rays.
If blank, the invisible parts are not created.

Separate strings tick box

If ticked, the visible and invisible sections are separate strings.

If not ticked, the visible and invisible sections are combined into one super string.

Rays tab

Visible Rays

The visible rays are the lines from the eye point to the point on the tin where the target goes from being visible to invisible.

If Colour of visible bits is not blank then this is the colour used for these rays.

If Colour of visible bits is blank then the colour is the default line colour.

The ray will be coloured where it is over invisible targets with the colour for the invisible bits (this can happen in undulating country).

More tick box

If ticked, ask for name, model, linestyle, weight.

If not ticked, only ask for model.

Name name box names in names.4d

the name for the visible ray strings.

Model model box available models

If not blank, the model for the visible ray strings.

If blank, don’t create the visible ray strings

Linestyle linestyle box available linestyles

the linestyle for the visible ray strings.

Weight weight box

thickness of the visible ray strings when plotted

Invisible Rays

The invisible rays are the lines from the eye point to the point on the tin where the target goes from being invisible to visible.

If Colour of invisible bits is not blank then this is the colour used for these rays.

If Colour of invisible bits is blank then the colour is the default point colour.

The ray comes from the eye and is coloured with the Colour of visible bits to the change over from visible to invisible and then coloured with the Colour of invisible bits to where the ray ends (the change over visible to invisible).

More tick box

If ticked, ask for name, model, linestyle, weight.

If not ticked, only ask for model.

Name name box names in names.4d

the name for the invisible ray strings.

Model model box available models
if **not blank**, the model for the invisible ray strings.
If **blank**, don’t create the invisible ray strings

**Linestyle**
linestyle box
available linestyles

the linestyle for the invisible ray strings.

**Weight**
weight box

thickness of the invisible ray strings when plotted

---

**Bridge Tins tab**

*A Bridge Tin* is a tin where the underside of the tin is used in the visibility calculations.

**Tins**
grid of tins
available tins

the underside of these tins are used in the visibility calculations. These tins can be used to model some obstructions.

---

**Obstructions tab**

the following elements can also obstruct the view line.

(i) super strings with round or rectangular sections.
(ii) bill boards
(iii) extrusions along a string

**Data source type**
Model

data selection type - XX

**Data source for obstructions**

source of data to look through for elements to use as obstructions.

**Viewshed**
button

On selecting this button, the lines of sight emanating from the eye XYZ point are calculated.
20.10.4 Shadow Analysis

Position of option on menu: Design => Sight lines => Shadow analysis
Utilities => H-Z => Sight lines => Shadow analysis

This option is under development.

The Shadow Analysis option is similar to the Viewshed option except that the sun is used as the eye position. This means that the visible areas are those in sunlight and the invisible areas are those in the shade (in shadows).

Selecting Shadow analysis displays the Shadow Analysis panel.

![Shadow Analysis Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Settings tab</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Height of target above tin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance between sun lines (m)</td>
<td>real box</td>
<td>20</td>
<td>measures pop up</td>
</tr>
<tr>
<td>Clean result models first</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*name of the tin to be used for the shadow analysis.*

*the perpendicular distance between the result lines.*

Selecting Shadow analysis displays the Shadow Analysis panel.
Clean models first    tick box    not ticked

if ticked, the models of results are cleaned out before the option runs.

Sun Angle tab

Use Angle XY and Angle Z    tick box    not ticked

this controls whether Angle XY and Angle Z are typed in and used to specify the position of the sun, or if the sun position (and hence Angle XY and Angle Z) are calculated by giving the date and time of day, and either the (Easting, Northing) or the longitude and latitude of a point in the middle of the data.

If ticked, the user specifies the position of the sun with respect to the data by giving Angle XY and Angle Z (see below for their definitions). This method if used when the data is in an arbitrary coordinate system so there is no way to calculate the position of the sun from the data.

If not ticked, then the data needs to be in a Projection and the angle to the sun is calculated by giving the date and time, and either the (x,y) coordinate, or the longitude and latitude and of a point in the data.

So if Use Angle XY and Angle Z for sun position is not ticked:

Date

the sun position is calculated for this date and time.
Time zone  
choice box

used to define the time zone for the time and date.

**Projection the data is in**  
projection box

the data to do Shadow Analysis on must be in this projection.

**Use Easting (X) Northing (Y) coordinates**  
tick box  
not ticked

if **ticked**, the \((x,y)\) coordinates of a point in the middle of the data is given. Using the Projection, the longitude and latitude can be calculated for this point. **Note** - because the data is in a projection, then the \((x,y)\) coordinates are often referred to as Eastings and Northings.

If **not ticked**, the latitude and longitude of a point in the middle of the data is given. Using the Projection, the \((x,y)\) position of the point can be calculated.

If **Use Easting (X) Northing (Y) coordinates** is **ticked**:

**X/Y/Z coordinate**  
real box  
measure box

the \(x,y\) and \(z\) coordinates for a typical point in the data can be typed in or a point can be selected using the Point select and the values for \(x, y,\) an \(dz\) will be written to these fields.

The \(z\) coordinate will also be written to the **Height** field.

If **Use Easting (X) Northing (Y) coordinates** is **not ticked**:

**Longitude/Latitude**  
angle box  
measure box

the longitude and latitude for a typical point in the data is typed in.

**Height**  
measure box

the height of a typical point on the ground.

If **Use Easting (X) Northing (Y) coordinates** is **ticked**:

**Angle XY**  
angle box  
0

the angle of the sun in the \(XY\) plane measured in a counter clockwise direction from the positive \(x\) axis. It is dms in HP notation.

**Angle Z**  
angle box  
15

the angle of the sun in the vertical plane, measured from the horizontal plane with positive angle going up (Elevation angle?). It is dms in HP notation.

**Results tab**

**More**  
tick box

if ticked, ask for name, model, linestyle, weight.

If not ticked, only ask for model.

**Name**  
nname box  
names in names.4d

the name for the sunshine (visible)/shade (invisible) sight strings.

**Model**  
model box  
available models

the model for the sunshine (visible)/shade (invisible) sight strings.

**Linestyle**  
linestyle box  
available linestyles

the linestyle for the sunshine (visible)/shade (invisible) sight strings.

**Weight**  
weight box

thickness of the sunshine (visible)/shade (invisible) sight strings when plotted
Colour of bits in sunshine  colour box  default line colour
if not blank, the colour for the parts in sunshine. These are the visible parts of the view lines.
If blank, the sunshine parts are not created.

Colour of bits in shade bits  colour box  default point colour
if not blank, the colour for the parts in the shade (in shadows). These are the invisible parts of the view lines.
If blank, the shade parts are not created.

Separate strings  tick box
if ticked, the sunshine (visible) and shade (invisible) sections are separate strings.
If not ticked, the sunshine (visible) and shade (invisible) sections are combined into one multicoloured string.

Bridge Tins tab
A Bridge Tin is a tin where the underside of the tin is used in the visibility calculations.
Tins  grid of tins  available tins
the underside of these tins are used in the visibility calculations. These tins can be used to model some obstructions.

Obstructions tab
the following elements can also obstruct the line from the sun.
(i) super strings with round or rectangular sections.
(ii) bill boards
(iii) extrusions along a string

Data source type  Model
data selection type - XX

Data source for obstructions
source of data to look through for elements to use as obstructions.

Process  button
On selecting this button, the lines of sight emanating from the sun are calculated.

<Esc> can be used to terminate the option during the processing.
20.10.5 Sun in Driver Eyes

Position of option on menu:  Design => Sight lines => Sun in driver eyes
Utilities => H-Z => Sight lines => Sun in driver eyes

This option is under development.

Selecting Sun in driver eyes displays the Sun in the Driver Eyes panel.

The fields and buttons used in this panel have the following functions.

Field Description	Type	Defaults	Pop-Up
Tin | tin box | available tins | name of the tin to be used for the analysis.
20.10.6 Sun Exposure

Position of option on menu:  
Design => Sight lines => Sun exposure  
Utilities => H-Z => Sight lines => Sun exposure

This option is under development.

Selecting Sun exposure displays the Sun Exposure panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point position</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X coordinate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y coordinate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z coordinate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bearing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accept angle from left</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accept angle from right</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accept angle from above</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accept angle from bellow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projection the data is in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time zone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time interval (min)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Main tab

Point position
20.10.7 Sight Distance - Tin Only

Position of option on menu:
- Design => Sight lines => Sight distance - tin only
- Utilities => H-Z => Sight lines => Sight distance - tin only

For a string (Super Alignment etc), the sight distance option calculates the maximum distance along the road that can be seen from an eye point.

The calculations are done in the same manner as for the Advanced Sight Distance except that there is only a Tin and Bridge Tins. There are no Obstructions (see 20.10.2 Sight Distance Enhanced).

Selecting Sight distance - tin only brings up the Sight Distance panel.

![Sight Distance Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>input available tins</td>
<td>available tins</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the tin to use as the surface for testing visibility.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td>file box</td>
<td>*.rpt files</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if non blank, a report is produced and written out to this file name.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Centreline tab**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centreline</td>
<td>string-select</td>
<td>string-select</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the string to be used for calculating the chainage position for the eye and target points, is selected from a view.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval</td>
<td>input</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>once the sight distance is calculated for the eye at a chainage, the eye chainage is incremented by this amount the sight distance calculation repeated.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start/end chainage</td>
<td>input</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
the sight distance is calculated for points on the selected string covering the chainage range given by the start and end chainage fields. If the start/end chainage is blank, the start/end chainage of the selected string is used.

Trial interval  
input 10
if the target point is visible, it is then moved along by this chainage increment and the sight test repeated.

Minimum sight distance  
input 100
minimum chainage distance from the eye point to place the test target point. The first test of a target is made at this minimum chainage distance from the eye chainage.

Maximum sight distance  
input 3000
maximum chainage distance to use for placing the test target point. The testing stops if the test target position goes over this chainage distance. In this case, the sight distance will be the maximum sight distance.

Eye tab
the eye position is determined by finding the chainage along the selected string, going out perpendicularly for the given eye offset (negative to the left, positive to the right), dropping that position onto the given tin, and then adding the eye height to the height on the tin. Hence the eye point is always the eye height above the tin.

Height  
input 1.3
height of the eye point above the given tin.

Offset  
input -0.5
offset of the eye point from the picked string.
Target tab

the target position is determined by finding the chainage along the selected string, going out perpendicularly for the given target offset (negative to the left, positive to the right), dropping that position onto the given tin, and then adding the target height to the height on the tin. Hence the target point is always the target height above the tin.

Height input 0.3
height of the target point above the given tin

Offset input -0.5
offset of the target point from the picked string.
Bridge Tins tab

Tin  grid  available tins

name of the tins to use as vertical obstructions when testing visibility.

Forward Direction tab

Do calcs  tick box
if ticked, do the calcs for the forward direction

**Sight lines**
- model box
- available models

If non-blank, the name of the model to contain the sight lines.
If blank, the sight lines are not created.

**Good colour**
- colour box
- default colour
- available colours

when the minimum sight distance is achieved, sight lines are created in the good colour

**Bad colour**
- colour box
- default colour
- available colours

when the minimum sight distance is not achieved, sight lines are created in the Bad colour

**Sight text**
- model box
- available models

If non-blank, the name of the model to contain the sight distance text.
If blank, the sight distance text is not created.

**Sight text info**
- text info

definition of the sight text.

---

**Reverse Direction tab**

**Do calcs**
- tick box

if ticked, do the calcs for the reverse direction

**Sight lines**
- model box
- available models

if non-blank, the name of the model to contain the sight lines when going down the string in the reverse direction
Note that the eye and target offsets are then applied in the reverse direction of the string.
If blank, the sight lines are not created.

**Good colour**
- colour box
- default colour
- available colours

when the minimum sight distance is achieved, sight lines are created in the good colour

**Bad colour**
- colour box
- default colour
- available colours
when the minimum sight distance is not achieved, sight lines are created in the Bad colour

Sight text

model box available models

if non-blank, the name of the model to contain the sight distance text. If blank, the sight distance text is not created.

Sight text info

text info

definition of the sight text.

Sight button

sight lines and text will be calculated for the given string and tin, and placed in the sight line and text models.
20.10.8 Viewshed - Tin Only

Position of option on menu:  
**Design** => **Sight lines** => **Viewshed - tin only**  
**Utilities** => **H-Z** => **Sight lines** => **Viewshed - tin only**

This panel is used to calculate the points that are visible and invisible from a user selected eye position. This is equivalent to calculating the points that can or cannot see a selected point.

The calculations are made along rays emanating from the eye point from a minimum to a maximum distance from the eye point. The rays are created at regular angular steps from a start angle to an end angle.

The calculations are done in the same manner as for the Advanced Viewshed except that there is only a Tin. There are no Bridge Tins or Obstructions (see [20.10.3 Viewshed All](#)).

Selecting Viewshed displays the Tin Viewshed panel.

![Tin Viewshed Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting tab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Tin</strong></td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td><strong>Start angle</strong></td>
<td>angle box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td><strong>End angle</strong></td>
<td>angle box</td>
<td>359.30</td>
<td></td>
</tr>
<tr>
<td><strong>Step angle</strong></td>
<td>angle box</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td><strong>Minimum distance</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if not blank, the minimum distance from the eye point along the sight ray to begin recording visible/invisible points. If blank, the minimum distance is zero.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Maximum distance</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*name of the tin to be used for the viewshed analysis.*

*the angle to begin taking sight rays emanating from the eye point.*

*the angle to stop taking sight rays emanating from the eye point.*

*the angle between successive sight rays emanating from the eye point.*
the maximum distance from the eye point along the sight ray to record visible/invisible points. If blank, the entire tin is considered.

Clean model first  tick box
if ticked, the models of results are cleaned out before the option runs.

Eye tab

Eye XYZ  input/output  xz op menu

X/Y/Z coordinate
the XYZ co-ordinates of the eye point.
Each co-ordinate can be individual entered or the point pick icon used to select an existing point.

Note - the z-value is normally above the surface of the tin and should not be on the tin.

Results tab

More  tick box
if ticked, ask for name, model, linestyle, weight.
if not ticked, only ask for model.

Name  input
name for the created strings

Model  model box  available models
the model for the visible/invisible sight strings.

Linestyle  linestyle box  linestyle for the created strings

Weight  weight box  weight for the created strings

Colour of visible bits  colour box  default line colour
if not blank, the colour for the visible parts of the rays.
If blank, the visible parts are not created.

Colour of invisible bits  colour box  default point colour
if not blank, the colour for the invisible parts of the rays.
If blank, the invisible parts are not created.

Separate strings  tick box
if ticked, the visible and invisible sections are separate strings.
If not ticked, the visible and invisible sections are combined into one super string.

Rays tab

Visible Rays
the visible rays are the lines from the eye point to the point on the tin where the terrain goes from being visible to invisible.

If Colour of visible bits is not blank then this is the colour used for these rays.
If Colour of visible bits is blank then the colour is the default line colour.
The ray will be coloured where it is over invisible terrain with the colour for the invisible bits (this happens in undulating country. That is where there are valleys).

More

tick box
if ticked, ask for name, model, linestyle, weight.
if not ticked, only ask for model.

Name

input
name for the created strings

Model

model box
available models
if not blank, the model for the visible ray strings.
If blank, don’t create the visible ray strings

Linestyle

linestyle box
linestyle for the created strings

Weight

weight box
weight for the created strings

Invisible Rays
the invisible rays are the lines from the eye point to the point on the tin where the terrain goes from being invisible to visible.

If Colour of invisible bits is not blank then this is the colour used for these rays.
If Colour of invisible bits is blank then the colour is the default point colour.

The ray comes from the eye and is coloured with the Colour of visible bits to the change over from visible to invisible and then coloured with the Colour of invisible bits to where the ray ends (the change over visible to invisible).

More

tick box
if ticked, ask for name, model, linestyle, weight.
if not ticked, only ask for model.

Name

input
name for the created strings

Model

model box
available models
if not blank, the model for the invisible ray strings.
If blank, don’t create the invisible ray strings

Linestyle

linestyle box
linestyle for the created strings

Weight

weight box
weight for the created strings

Viewshed

button
On selecting this button, the lines of sight emanating from the eye XYZ point are calculated.
20.10.9 Dynamic Viewshed - Tin Only

Position of option on menu: Design => Sight lines => Viewshed dynamic - tin only
Utilities => H-Z => Sight lines => Viewshed dynamic - tin only

Dynamic viewshed is used to calculate and display on a section view, the points that are visible and invisible from a user selected eye position to a user selected target position.

The target point can be dynamically moved and the sight line is automatically recalculated and displayed on the section view.

The calculations are done in the same manner as for the Advanced Viewshed except that there is only a Tin. There are no Bridge Tins or Obstructions (see 20.10.3 Viewshed All).

Selecting Viewshed dynamic displays the Viewshed Dynamic panel.

![Viewshed Dynamic Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field/Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section view</td>
<td>view box</td>
<td>available section view</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>section view to display the sight lines on</td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Colour of visible bits</td>
<td>colour box</td>
<td>default line colour</td>
<td></td>
</tr>
<tr>
<td>Colour of invisible bits</td>
<td>colour box</td>
<td>default point colour</td>
<td></td>
</tr>
<tr>
<td>Start XYZ</td>
<td>input/output</td>
<td>xyz ops menu</td>
<td></td>
</tr>
</tbody>
</table>
X/Y/Z coordinate
the XYZ co-ordinates of the start of the line to determine viewshed for.
Each co-ordinate can be individual entered or the point pick icon used to select an existing point.

End XY input/output xyz ops menu
X/Y coordinate
the XY co-ordinates of the end of the line to determine viewshed for.
Each co-ordinate can be individual entered or the point pick icon used to select an existing point.
No Z is required.

Dynamic tick box
if ticked and the Start/End points button is used, once the Start point is selected, the viewshed analysis is carried out from the start point to the cursor position which represents the end point. The results are displayed in the section view.

Start/End points button
if picked, an start point is selected and then the height displayed in an enter height input box. If required, a new height can be typed into the enter height box. After typing an <enter> into the input box, the box is removed from the screen and the x, y and height is piped into the Start XYZ panel field.
The cursor is then used to select the End point.
If Dynamic is ticked, as the Cursor position is moved, the viewshed is carried out to the new cursor position and the results displayed in the section view.

Profile button
Selecting this button calculates the line of sight from the start to the end position.
20.11 Track

Position of menu:  Design => Track

The Track options are for working on rail design.

The Track walk-right menu is

![Track menu]

The Track options have their own Help system which is brought up by clicking on Help on the Track menu, or clicking Help on each of the Track panels.

For the option Calc CL, go to 20.11.1 Calc CL Panel

Turnouts 20.11.2 Track Turnouts

Copy VC 20.11.3 Copy VC

Slew Diagram 20.11.4 Rail Slew Calculator

Calculate Cant 20.11.5 Calculate Cant

Light rail stop distance 20.11.6 Light Rail Stopping Distance

Plot 20.11.7 Track Plot

Label 20.11.8 Track Label

Help 20.11.9 Help
20.11.1 Calc CL Panel

**Position of menu:** Design => Track => Calc CL

The *Track* options have their own Help system which is brought up by either clicking the *Help* button on the panel or by selecting the *Help* option on the Track menu.
20.11.2 Track Turnouts

Position of menu:  Design => Track => Turnouts

The Track Turnouts walk-right menu is

For the option Place, go to
- 20.11.2.1 Turnout Place
- 20.11.2.2 Turnouts Create/ Edit
- 20.11.2.3 Read Turnouts
- 20.11.2.4 Write Turnouts File

20.11.2.1 Turnout Place

Position of option on menu:  Design => Track => Turnouts => Place

The Track options have their own Help system which is brought up by either clicking the Help button on the panel or by selecting the Help option on the Track menu.
20.11.2.2 Turnouts Create/ Edit

**Position of option on menu:** Design => Track => Turnouts => Create/Edit

The **Track** options have their own Help system which is brought up by either clicking the **Help** button on the panel or by selecting the **Help** option on the **Track** menu.
20.11.2.3 Read Turnouts

Position of option on menu:  Design => Track => Turnouts => Read

The Track options have their own Help system which is brought up by either clicking the Help button on the panel or by selecting the Help option on the Track menu.

20.11.2.4 Write Turnouts File

Position of option on menu:  Design => Track => Turnouts => Write
The Track options have their own Help system which is brought up by either clicking the Help button on the panel or by selecting the Help option on the Track menu.
20.11.3 Copy VC

**Position of menu:** Design => Track => Copy VC

The *Track* options have their own Help system which is brought up by either clicking the Help button on the panel or by selecting the Help option on the Track menu.
20.11.4 Rail Slew Calculator

Position of menu:  Design => Track => Slew Diagram

The Track options have their own Help system which is brought up by either clicking the Help button on the panel or by selecting the Help option on the Track menu.
20.11.5 Calculate Cant

Position of menu:  Design => Track => Calculate Cant

The Track options have their own Help system which is brought up by either clicking the Help button on the panel or by selecting the Help option on the Track menu.
20.11.6 Light Rail Stopping Distance

Position of menu:  Design => Track => Light rail stop distance

This section of documentation is a work in progress and will be updated in subsequent releases.
20.11.7 Track Plot

**Position of menu:** Design => Track => Plot

The Track Plot walk-right menu is

![Track Plot menu]

For the option *Plot Rails*, go to

- 20.11.7.1 Plot Rails Panel
- 20.11.7.2 Rail Profiles Create/Edit
- 20.11.7.3 Structure Gauge Panel

### 20.11.7.1 Plot Rails Panel

**Position of option on menu:** Design => Track => Plot => Plot Rails

The *Track* options have their own Help system which is brought up by either clicking the Help button on the panel or by selecting the Help option on the Track menu.
20.11.7.2 Rail Create Profile Panel

**Position of option on menu:**  Design =>Track =>Plot =>Rail Profiles Create/Edit

The *Track* options have their own Help system which is brought up by either clicking the *Help* button on the panel or by selecting the *Help* option on the *Track* menu.
20.11.7.3 Structure Gauge Panel

**Position of option on menu:** Design => Track => Plot => Plot Structure Gauge

The *Track* options have their own Help system which is brought up by either clicking the *Help* button on the panel or by selecting the *Help* option on the Track menu.
20.11.8 Track Label

Position of menu:  Design => Track => Label

The Track Label walk-right menu is

```
Track Label

Label Alignment
Label Alignment Defaults
```

For the option Label Alignment go to

Label Alignment Defaults

Create/Edit

20.11.8.1 Super Alignment Labels

Position of option on menu:  Design => Track => Label => Label Alignment

The Track options have their own Help system which is brought up by either clicking the Help button on the panel or by selecting the Help option on the Track menu.

![Super Alignment Labels](image)

20.11.8.2 Super Alignment Style Extras Create/Edit

Position of option on menu:  Design => Track => Label => Label Alignment Defaults

The Track options have their own Help system which is brought up by either clicking the Help button on the panel or by selecting the Help option on the Track menu.
20.11.9 Help

Position of menu: Design => Track => Help

The Track options have their own Help system which is brought up by clicking on Help on the Track menu, or clicking Help on each of the Track panels.
20.12 Tunnels and Structures

Position of menu: Design => Tunnel-Structures

In Version 11.0, the creation of tunnel profiles and the generation of a tunnel or structure has been enhanced from Version 10.0 to make the process easier.

Tunnels and structures are defined by a number of profiles, each of which must have the same number of named vertices, and these profiles are applied along a centreline (alignment). New profiles are generated at user given chainages along the tunnel/structure centreline, and any profile generated between two defined profiles is the linear interpolation by chainage of the two defined profiles.

The defined tunnel profiles and how they are applied down a string are specified in the Create/Edit Tunnel File panel, and this information is stored in a Tunnel Definition File (ending in .12d_Tunnel).

The Tunnel Definition File is used in other options such as Create Tunnel which generates the profile and longitudinal strings, and trimesh, for the tunnel, Conform Tunnel for tunnel conformance, and in 12d Field for setting out tunnels.

Note: a Trimesh can be generated for a tunnel by the Create Tunnel panel.

The Tunnel menu is:

See

20.12.1 Creating/Editing a Tunnel Definition File
20.12.2 Create Tunnel

20.12.4 Conform Tunnel
20.12.5 Conform Plot Tunnel
20.12.6 Plot Settings
20.12.7 Trimesh from Tunnel Points
20.12.1 Creating/Editing a Tunnel Definition File

Position of option on menu: Design => Tunnel-Structures => Create/edit tunnel file

The Create/Edit Tunnel File panel is used to define the tunnel definition file which records:

(a) the profiles used to define the tunnel
(b) the tunnel centreline (the tunnel reference string) that the tunnel profiles are applied to
(c) whether the tunnel profiles are applied perpendicular (i.e. normal) or vertically to the tunnel centreline
(d) whether 2d or 3d chainages are used in the tunnel definitions.
(e) the chainages where the profiles are applied, and optional height, grade and rotation changes when the profiles are applied along the tunnel centreline.

Note: Tunnel profiles and longitudinal strings can be generated perpendicular (i.e. normal) to the defined centreline resulting in a true 3d representation of the tunnel.

One restriction is that a tunnel cannot be completely vertical - there must be some chainage difference in the vertical alignment. But given that a chainage difference as small as 0.01mm can be used then this restriction is rarely a problem.

Selecting Create/edit tunnel file brings up the Create/Edit Tunnel File panel.
Top Section

**Tunnel definition**

- tunnel file box
- available 12d_tunnel files

The tunnel file to contain all the definitions for the tunnel. That is, the tunnel centreline, the tunnel profiles and which profiles and how often they are applied along the centreline of the tunnel.

**Read**

- read in the file given in the **Tunnel definition** field.

**Write**

- write out all the values in the panel to the file giving in the **Tunnel definition** field.

**Export (PRO/PRA)**

- button

Write out the appropriate values in the panel as a PRO and PRA file.

*Note: PRO and PRA are files use in TP Setout and TP Stakeout. See 20.12.10 Definition of the PRO and PRA definition files.*
General tab

Tunnel centreline

the centreline that the tunnel definitions are applied to. The centreline must have valid vertical geometry for all the chainage ranges used in the Assignments, Offsets Heights and Rotations tabs.

Profile type

choice box perpendicular, vertical

if perpendicular, the tunnel profiles are applied perpendicularly (i.e. normal) to the vertical alignment of the centreline. That is, perpendicular to the tangent vector to the centreline at that chainage. This results in a true 3d model.

If vertical, the tunnel is calculated vertical to the vertical alignment of the centreline. This may mean an effective loss of clearance on steeper grades.

Chainage type

choice box 2d, 3d

if 2d, the chainages in the tunnel definitions are taken as plan chainages.

if 3d, are interpreted as 3d. That is, it is the plan/2d chainage of the 1st point where the horizontal and vertical geometry coincide, plus the 3d length along the centreline from there.

Manage Profiles tab

A tunnel can contain any number of defined profiles that are used to linearly extrapolate between. The Manage Profile tab lets you create a new profile:

(a) using an existing profile as a seed profile and the new profile is given a copy of the seed profile’s geometry. The profile geometry is then edited using the Profiles tab.

or

(b) create a new profile that has no geometry and the geometry is entered using the Profiles tab.

Seed profile

profiles box available profiles in this tunnel definitions file

if not blank, it must be a profile in this tunnel definitions file and it is used as a Seed profile for the new profile being created.

New name

text box

name for the new profile being created. The new name must be unique amongst the profiles in this tunnel definitions file.

Create

button

create a new profile with the geometry being a copy of the geometry of the Seed profile.

Delete profile

profiles box available profiles in this tunnel definitions file

the profile in this tunnel definitions file to delete.

Delete

button

delete the profile given in the Delete profile field.

Profile to rename

profiles box available profiles in this tunnel definitions file

the profile in this tunnel definitions file to be renamed.

New name

text box
new name for the profile. The new name must be unique amongst the profiles in this tunnel definitions file.

**Rename** button
rename the profile given in the **Profile to rename** field to the name given in the **New name** field.

**Import profile** profiles box available profiles in this tunnel definitions file
the profile in this tunnel definitions file to delete.

**Delete** button
delete the profile given in the **Delete profile** field.

**Profiles tab**
A tunnel can contain any number of defined profiles that are used to linearly extrapolate between. The **Profile** tab lets you create new profiles, pick existing profiles to edit and graphically display the shape of the profile for you.

**Current Profile** choice box list of profiles in the current tunnel
Select the profile you wish to create or edit. If the selected profile already has vertices defined, they will be displayed in the grid, and the shape drawn in the area under the grid.

**Set** button
Records the contents of the current grid as the profile given in the **Current profile** field. **Set** must be pressed before moving to another profile or the contents of the current grid will be lost.

**Profile grid**

**Name** text box
the name of the vertex of the profile. It must be unique to this profile.

**Offset** real box
the offset of the vertex from the centreline. Positive offset is to the right of the centreline, negative offset is to the left of the centreline.

**Height** real box
the height difference of the vertex from the centreline. Positive height is above the centreline, negative height is below the centreline.

**Radius** real box
the radius of the segment from this named vertex to the next named vertex. A positive radius is a right handed or clockwise curve with respect to the order of the vertices in the grid. Zero (0) means that there is no radius and there is a straight line between this vertex and the next named vertex. There must always be a value for the radius.
Assignments tab

This grid is used to define where the defined profiles are assigned on the centreline. For a row in the grid, the named profile starts at the chainage in that row. For any chainage between this chainage and the chainage on the next row of the grid, a profile is generated by interpolating by chainage between the named profile on this row and the named profile on the next row.

The same profile can be used any number of times in the Assignment grid. The chainages in the Assignments grid must be in ascending order.

Set button

Records the contents of the Assignments grid. Set must be pressed before moving to another tab or the contents of the current grid will be lost.

Assignments grid

Chainage real cell

The chainage where the named profile begins. For any chainage between this chainage and the one on the next row, a profile is generated by interpolated by chainage between this profile and the one on the next row of the grid.

Name profiles cell available profiles

The name of the profile to start at this chainage.

Offsets/Heights/Rotations tab

A profile can be adjusted by applying an offset, a (delta) height and a rotation. The Offsets/Heights/Rotations grid is used to define the offset/height/grade or angle applied to a profile.
The offset/height/grade or angle on a row of the grid starts at the chainage in that row. For any chainage between the chainage of this row and the chainage of the next row, an offset/height/grade or angle for the profile at the chainage is calculated by interpolating between the offset/height/grade or angle of the profile in this row and the offset/height/grade or angle on the following row of the grid. The chainages in the Offsets/Heights/Rotations grid must be in ascending order.

Notes:
1. the height is a delta height. That is, it is added to the height of the profile.
2. the rotation in a row can be given as either a Percent Grade (positive is up) or an Angle (dms in hp notation and is measure in counterclockwise from the offset axis). The percent grade or angle will be referred to as the rotation.

Set button
Records the contents of the Offsets/Heights/Rotations grid. Set must be pressed before moving to another tab or the contents of the current grid will be lost.

Offsets/Heights/Rotations grid

Chainage real cell
The chainage to start applying the offset/height/rotation.
For any chainage between this chainage and the one on the next row of the grid, an offset/height/rotation is generated by interpolated by chainage between this offset/height/rotation and the one in the next row of the grid.

Offset/Height/Grade or Angle real cell
the offset/height/grade or angle to start at this chainage.
For any chainage between this chainage and the one on the next row, an offset/height/rotation is calculated by interpolated by chainage between this offset/height/rotation and the one on the next row of the grid.

Type choice cell
None, Linear, Cubic, Rev C, Biquadratic
the type of interpolation used for the offset/height/rotation at chainage between the chainage of this row and the chainage on the next row.
None: no interpolation is done and the offset/height/rotation at this chainage is used. If there is a different offset/height/rotation on the next row then there will be a problem and you need to insert another row after this row with a chainage slightly less than the chainage on the next row. The offset/height/rotation of the inserted row needs to be the same as this row and the Type should be Linear.
Linear: offset/height/rotation is linearly interpolated by chainage between the offset/height/rotation on this row and the offset/height/rotation on the next row.
Cubic: offset/height/rotation is interpolated as a cubic by chainage between the offset/height/rotation on this row and the offset/height/rotation on the next row.
Rev C: offset/height/rotation is interpolated as a reverse cubic by chainage between the offset/height/rotation on this row and the offset/height/rotation on the next row.
Biquadratic: offset/height/rotation is interpolated as a back to back quadratics by chainage between the offset/height/rotation on this row and the offset/height/rotation on the next row.
20.12.2 Create Tunnel

Position of option on menu: Design => Tunnel-Structures => Create tunnel

The Create Tunnel panel is used to generate the strings defining the shape of the tunnel - the profile and longitudinal strings, and the trimesh, for the tunnel.

The tunnel is defined in a Tunnel File that has been created in the Create/Edit Tunnel File panel.

Selecting Create Tunnel brings up the Create Tunnel panel.

![Create Tunnel panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel file</td>
<td>tunnel file box</td>
<td>available 12d_tunnel files</td>
<td></td>
</tr>
<tr>
<td>Model for profile strings</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for longitudinal strings</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour of strings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour of trimesh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesh, form end caps?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour of endcap</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean models?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start 2d control chainage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End 2d control chainage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chainage Inc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profile Straight Inc %</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Profile Arc Inc %</td>
<td></td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

The tunnel file containing all the definitions for the tunnel. That is, the tunnel centreline, the tunnel profiles and which profiles and how often they are applied along the centreline of the tunnel.

*if not blank*, a string of the tunnel profile is created at each chainage point along the tunnel centreline and stored in this model.

*If blank*, no strings of the tunnel profiles are created.

*if not blank*, strings are created by joining common vertices of the profiles along the tunnel centreline and stored in this model.

*If blank*, no longitudinal strings are created.
Colour of strings

- colour box
- available colours

colour of the profiles and longitudinal strings.

Model for trimesh

- model box

If not blank, a trimesh is created for the tunnel and placed in this model.
If blank, no trimesh is created.

Colour of trimesh

- colour box
- available colours

colour of the trimesh.

Mesh, form end caps?

- tick box

If ticked, the trimesh includes a mesh over each end of the tunnel. This creates a closed trimesh. A volume is calculated and reported in a String inquire on a closed trimesh.
If not ticked, the trimesh ends are left open. A volume is NOT reported in a String inquire on an open trimesh.

Colour of endcap

- colour box
- available colours

colour of the endcap.

Clean models?

- tick box

If ticked, the profile and longitudinal strings, and trimesh models are cleaned before the new strings and trimesh are created.

Start/End 2d control chainage

- real box

the Start/End 2d chainage on the centreline to create the trimesh, longitudinal strings and profile strings for.

Chainage Inc

- real box

the chainage increment to create the sections and vertices of the strings at. Whether the chainage is 2d or 3d is defined in the Tunnel Definition File.

Profile Straight/Arc Inc%

- real box

this defines how often vertices are generated around the tunnel profiles between the vertices of the tunnel profile, and hence how may vertices are created in the sections, how many longitudinal strings and the density of triangles in the trimesh.
The value is a percentage to the length of the tunnel profile and for each tunnel section, vertices are generated at each of the defining vertices of the tunnel profile, and then at the Profile Straight/Arc Inc% distance between adjacent defining vertices of the tunnel profile.
Hence the Profile Straight/Arc Inc% options control the accuracy of the shapes generated for the tunnel - straights and arcs are detected, and defined values assigned accordingly.

Note - the values Profile Straight/Arc Inc% give a good approximation to the number of vertices are created on each section but there may be a few more because all the defining vertices of the profile as in the sections. So if Profile Straight/Arc Inc% is 5 then there will be approximately 20 vertices on each section.

Create

- button

create the tunnel profile strings, longitudinal strings, and trimesh.
20.12.3 Create Combined Tunnel

Position of option on menu: Design => Tunnel-Structures => Create combined tunnel

CURRENTLY A WORK IN PROGRESS

The Create Combined Tunnel panel is used to

The tunnel is defined in a Tunnel File that has been created in the Create/Edit Tunnel File panel.

Selecting Create combined tunnel brings up the Create Combined Tunnel panel

![Create Combined Tunnel panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner Tunnel</td>
<td>tunnel file box</td>
<td>available 12d_tunnel files</td>
<td></td>
</tr>
<tr>
<td>Inner range (name % name %)</td>
<td>name box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer Tunnel</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer range (name % name %)</td>
<td>name box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for profile strings</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for longitudinal strings</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour of strings</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for trimesh</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour of trimesh</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesh, form end caps?</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour of endcap</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean models?</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start 2d control chainage</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End 2d control chainage</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chainage Inc</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profile Straight Inc %</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profile Arc Inc %</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
if not blank, a string of the tunnel profile is created at each chainage point along the tunnel centreline and stored in this model.
If blank, no strings of the tunnel profiles are created.

Model for longitudinal strings model box
if not blank, strings are created by joining common vertices of the profiles along the tunnel centreline and stored in this model.
If blank, no longitudinal strings are created.

Colour of strings colour box available colours
colour of the profiles and longitudinal strings.

Model for trimesh model box
if not blank, a trimesh is created for the tunnel and placed in this model.
If blank, no trimesh is created.

Colour of trimesh colour box available colours
colour of the trimesh.

Mesh, form end caps? tick box
if ticked, the trimesh includes a mesh over each end of the tunnel. This creates a closed trimesh. A volume is calculated and reported in a String inquire on a closed trimesh.
If not ticked, the trimesh ends are left open. A volume is NOT reported in a String inquire on an open trimesh.

Colour of endcap colour box available colours
colour of the endcap.

Clean models? tick box
if ticked the profile and longitudinal strings, and trimesh models are cleaned before the new strings and trimesh are created.

Start/End 2d control chainage real box
the Start/End 2d chainage on the centreline to create the trimesh, longitudinal strings and profile strings for.

Chainage Inc real box
the chainage increment to create the sections and vertices of the strings at. Whether the chainage is 2d or 3d is defined in the Tunnel Definition File.

Profile Straight/Arc Inc% real box
this defines how often vertices are generated around the tunnel profiles between the vertices of the tunnel profile, and hence how many vertices are created in the sections, how many longitudinal strings and the density of triangles in the trimesh.
The value is a percentage to the length of the tunnel profile and for each tunnel section, vertices are generated at each of the defining vertices of the tunnel profile, and then at the Profile Straight/Arc Inc% distance between adjacent defining vertices of the tunnel profile.
Hence the Profile Straight/Arc Inc% options control the accuracy of the shapes generated for the tunnel - straights and arcs are detected, and defined values assigned accordingly.
Note - the values Profile Straight/Arc Inc% give a good approximation to the number of vertices are
created on each section but there may be a few more because all the defining vertices of the profile as in the sections. So if **Profile Straight/Arc Inc**% is 5 then there will be approximately 20 vertices on each section.

Create button

create the tunnel profile strings, longitudinal strings, and trimesh.
20.12.4 Conform Tunnel

Position of option on menu: Design => Tunnel-Structures => Conform Tunnel

CURRENTLY A WORK IN PROGRESS

The Conform Tunnel panel creates a conformance report between points and a tunnel.

The tunnel is defined in a Tunnel definition file that has been created in the Create/Edit Tunnel File panel.

Selecting Conform Tunnel brings up the Conform Tunnel panel

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel definition</td>
<td>the tunnel file containing all the definitions for the tunnel. That is, the tunnel centreline, the tunnel profiles and which profiles and how often they are applied along the centreline of the tunnel.</td>
<td>tunnel file box</td>
<td>available 12d_tunnel files</td>
<td></td>
</tr>
<tr>
<td>Conform type</td>
<td></td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td></td>
<td>measure box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point model</td>
<td></td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower offset tol</td>
<td></td>
<td>measure box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper offset tol</td>
<td></td>
<td>measure box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum depth</td>
<td></td>
<td>measure box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum depth</td>
<td></td>
<td>measure box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Report type choice box
Report file file box
Write button

create the tunnel conformance report.
20.12.5 Conform Plot Tunnel

Position of option on menu:  Design => Tunnel-Structures => Conform plot tunnel

CURRENTLY A WORK IN PROGRESS

The Conform Model Plot Tunnel panel creates a conformance plot for a tunnel.

The tunnel is defined in a Tunnel definition file that has been created in the Create/Edit Tunnel File panel.

Selecting Conform plot tunnel brings up the Conform Model Plot Tunnel panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel definition</td>
<td>tunnel file box</td>
<td>available 12d_tunnel files</td>
<td></td>
</tr>
<tr>
<td>the tunnel definition file containing all the definitions for the tunnel. That is, the tunnel centreline, the tunnel profiles and which profiles and how often they are applied along the centreline of the tunnel.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Write button create the tunnel conformance plot.
20.12.6 Plot Settings

Position of menu:  Design =>Tunnel-Structures =>Plot settings

CURRENTLY A WORK IN PROGRESS

The Plot Settings options define the look of the tunnel conformance plot.

The Plot Settings menu is:

See

20.12.6.1 Tunnel Plot Settings
20.12.6.2 Tunnel Plot Name Mappings
20.12.6.3 Tunnel Table Styles
20.12.6.1 Tunnel Plot Settings

Position of option on menu:  Design => Tunnel-Structures => Plot settings => Tunnel plot settings

CURRENTLY A WORK IN PROGRESS

Selecting Tunnel plot settings brings up the Tunnel Plot Settings panel
20.12.6.2 Tunnel Plot Name Mappings

Position of option on menu:

Design => Tunnel-Structures => Plot settings => Tunnel plot name mappings

CURRENTLY A WORK IN PROGRESS

Selecting Tunnel plot name mappings brings up the Tunnel Plot Name Mappings panel
20.12.6.3 Tunnel Table Styles

Position of option on menu:
Design => Tunnel-Structures => Plot settings => Tunnel table styles

CURRENTLY A WORK IN PROGRESS

Selecting Tunnel table styles brings up the Edit tables_styles.xml panel
20.12.7 Trimesh from Tunnel Points

Position of option on menu: Design => Tunnel-Structures => Trimesh from tunnel points

**Trimesh from tunnel points** takes points that are approximately on the tunnel surface (usually survey shots of the surface of the tunnel), and creates a trimesh from them.

The tunnel itself is defined in a **Tunnel File** that has been created in the Create/Edit Tunnel File panel. See 20.12.1 Creating/Editing a Tunnel Definition File.

Selecting **Trimesh from tunnel points** brings up the **Trimesh from Tunnel Points** panel

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tunnel file</strong></td>
<td>tunnel file box</td>
<td>available 12d_tunnel files</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>the tunnel file containing all the definitions for the tunnel. That is, the tunnel centreline, the tunnel profiles and which profiles and how often they are applied along the centreline of the tunnel.</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Model of points</strong></td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>the model of points that are approximately on the tunnel surface.</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Model for trimesh</strong></td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>model for the created trimesh.</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Null chainage diff</strong></td>
<td>real box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>a triangle in a trimesh has an outside edge if that edge of the triangle has no adjacent triangle in the trimesh. A triangle in the trimesh with an outside edge is called an outside triangle.</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Any triangle in the created trimesh that has an outside edge whose difference in the chainages of the two ends of the edge dropped onto the tunnel alignment, is greater than Null chainage diff, will be nulled.</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>This is used for cleaning up triangles on the edge of the trimesh going along the length of the tunnel.</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Null angle param</strong></td>
<td>real box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Trimesh from Tunnel Points panel](image)
a triangle in a trimesh has an **outside edge** if that edge of the triangle has no adjacent triangle in the trimesh. A triangle in the trimesh with an outside edge is called an **outside triangle**.

Any outside triangle in the created trimesh whose angle of its normal is greater than the angle of the normal to the tunnel (at the first vertex of the triangle), is greater than **Null angle param** will be nulled. This is useful for cleaning up the end caps, and edge triangles that deviate too much from the direction along the length of the tunnel.

**Null profile length**

real box

a triangle in a trimesh has an **outside edge** if that edge of the triangle has no adjacent triangle in the trimesh. A triangle in the trimesh with an outside edge is called an **outside triangle**.

Any outside triangle in the created trimesh whose difference in the profile distance of the two ends of the edge dropped onto the profile around the tunnel, is greater than **Null profile length**, will be nulled. This should not be needed too often because **Null chainage diff** and **Null angle param** would generally do the job. Also if there is a radical change in profile across this mesh face then this nulling may not work as intended.

**Colour for trimesh**

colour box

available colours

colour of the trimesh.

**Clean trimesh model?**

tick box

if ticked the model for the trimesh is cleaned before the new trimesh is created.

**Create**

button

create the trimesh from the points.
20.12.8 Tunnel Filter Data

Position of option on menu:  Design => Tunnel-Structures => Tunnel filter data

CURRENTLY A WORK IN PROGRESS

Tunnel Filter Data takes
The tunnel itself is defined in a Tunnel File that has been created in the Create/Edit Tunnel File panel. See 20.12.1 Creating/Editing a Tunnel Definition File.

Selecting Tunnel filter data brings up the Tunnel Filter Data panel

![Tunnel Filter Data panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tunnel tab</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To filter model</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Tunnel definition</td>
<td>file box</td>
<td>available 12d Tunnel files</td>
<td></td>
</tr>
<tr>
<td>Start/End 2d control chainage</td>
<td>measure boxes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chainage interval</td>
<td>measure box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chainage band width</td>
<td>measure box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filtered model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean filtered model</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Range tab</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Filters tab

Filtering type choice box

Button at bottom
Filter button
20.12.9 Tunnel Offset Points

Position of option on menu:  
Design => Tunnel-Structures => Tunnel offset points

**Tunnel offset points** takes points

The tunnel itself is defined in a **Tunnel File** that has been created in the Create/Edit Tunnel File panel. See 20.12.1 Creating/Editing a Tunnel Definition File.

Selecting Tunnel offset points brings up the Tunnel Offset Points panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel definition</td>
<td>tunnel file box</td>
<td>available 12d_tunnel files</td>
<td></td>
</tr>
<tr>
<td>Points model</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>2d start/end chainage</td>
<td>measure boxes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td>measure box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for offset points</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Colour for offset points</td>
<td>colour box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean output model?</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
20.12.10 Definition of the PRO and PRA definition files

Profiles (.PRO)

// Sample tunnel profile
//
// Lines starting with // are interpreted as comments and ignored
//
// Format
//
// <profile name> 8 characters or less
// <element name> <offset> <level diff> <radius> for the radius
// negative is left and 0=straight
//.
//.
// <element name> <offset> <level diff> <radius>
// <element name> <offset> <level diff> terminates when there is no /
// radius
//
// Each profile MUST have the same number of elements
// and the name of the elements must match.
//
// Generally speaking profiles are created anti-clockwise
//
// This profile is circular with dummy elements E2 and E5
// They transition into a straight element in the next profile
//
PROF_1
E1 0 1 -1
E2 1 2 0
E3 1 2 -1
E4 0 3 -1
E5 -1 2 0
E6 -1 2 -1
E7 0 1
// This profile has 4 metre vertical sides so transforms
// PROF_1 into an oval shape
//
PROF_2
E1 0 1 -1
E2 1 2 0
E3 1 6 -1
E4 0 7 -1
E5 -1 6 0
E6 -1 2 -1
E7 0 1

Profile Assignment File (.PRA)

// Sample tunnel profile assignment
//
// Lines starting with // are interpreted as comments and ignored
//
// Format
//
// <chainage> <profile name>
// <chainage> <profile name>
// .
// .
// <chainage> <profile name>
// 1000 PROF_1
// 1100 PROF_2
// 1400 PROF_2
// 1432.728 PROF_1
20.13 Overlay

Position of menu:   Design => Overlay

The overlay options are for the design and optimisation of pavement overlay design. The Overlay options is available to all users with the Detailed Alignment Design and Volumes modules.

The Optimal Overlay is under development and has not been released.

The Overlay walk-right menu is

For the option Overlay, please continue to the section 20.13.1 Overlay Design
20.13.1 Overlay Design

Position of option on menu:  Design => Overlay => Overlay design

Selecting Overlay brings up the Overlay Design panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data file</td>
<td>file box</td>
<td>*.ovd files</td>
<td></td>
</tr>
</tbody>
</table>

*Data file* file with all the settings used in the Overlay panel. Used for storing information between runs.

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>button</td>
</tr>
</tbody>
</table>
read in a data file of settings for the panel

**Write** button
write out a data file of the settings in the panel

**Buttons at bottom of panel**

**Overlay** button
run the overlay.

**Setup**

**Radio buttons**
radio buttons to define how cross sections for existing road are produced

**From Tin** radio button
if selected, the road x-sections are created by taking sections though a tin. The following fields are displayed

**Tin** tin box available tins
sections are created through this tin to represent the existing road

**Separation** input
chainage distance between cross sections

**Left/Right extension** input
Left/Right distance to define the limits of the cross sections

**Model for tin x-sections** model box available models
model for the created cross sections

**From Cuts** radio button
if selected, the road x-sections are created by taking cuts through strings. The following fields are displayed

**Strings model** model box available models
sections are created by taking cuts through the strings in this model

**Separation** input
chainage distance between cross sections

**Model for cuts** model box available models
model for the created cross sections

**From X-sections** radio button
if selected, the road x-sections already exist. The following fields are displayed

**X-sections model** model box available models
existing model of x-sections to use for the road

**Overlay mode** choice box Normal Normal, Use Crossfalls Only
Use Reference Z Values and Crossfalls only

if Normal, at each section the left/right z-value is calculated so that the left/right crossfall and minimum overlay is obeyed. The z-value for the section is the maximum of the calculated z-values for the left and right.

If User Crossfalls only, the crossfalls from the Left and Right Setups tabs are used and no minimum
overlay applied.

If Reference Z values and Crossfalls only, no overlay calculations are performed and the crossfalls in the Left and Rights Setups tabs are applied to the actual z-values on the reference string.

Reference string  string select box
select the string for the centreline of the road

Ignore reference z values in calculations  tick box
if not ticked, when the z-value is calculated at each section obeying just the minimum overlay criteria then use the maximum of the and the calculated z-value and the reference z-value at that section.

If ticked, use the calculated z-value at each section.

Start chainage  input
chainage to start the overlay calculations

End chainage  input
chainage to end the overlay calculations

Special chainages  file box
special chainage file to define additional cross sections for overlay processing

Left/Right Setup tab
setup for the left/right side sections

Radio buttons
radio buttons to define how cross sections for existing road are produced

By offset  radio button
if selected, the width of the left/right cross sections is given in the Offset field

Offset  input
left/right offset distance to define the edge of the left/right section

By String  radio button
if selected, the width of the left/right cross section is defined by a selected Edge string minus the Cut Back/Extension value. The following fields are displayed

Edge string  string select
select the left/right edge string

Cut Back/Extension  input
value to subtract from the distance to the edge string to define the left/right section

When By String is selected, the Chainage-Minimum X-Fall grid can also be automatically filled in by using the crossfall between the Road Crown and the Edge String.

Road crown  string select
select the road crown the use for calculating the cross fall to the Edge string

Only critical points  tick box
if ticked, the crossfall between the Road crown and the Edge string is only calculated at the tangent points of the Reference string.

If not ticked, the crossfall between the Road crown and the Edge string is calculated at the regular
interval given by Xfall Load Interval and also at the tangent points of the Reference string.

**Xfall load interval**  
input  
regular interval to calculate crossfall

**Load Xfalls from Strings**  
button  
when selected, the Chainage-Minimum X-Fall grid is automatically filled in by using the crossfall between the Road Crown and the Edge String

**By name**  
radio button  
if selected, the width of the left/right cross section is defined by the name of a given string minus the Cut Back/Extension value. The following fields are displayed

**Name**  
name of the string to select as the left/right edge string

**Cut Back/Extension**  
input  
value to subtract from the distance to the edge string to define the left/right section

**Default Xfall**  
input  
if non blank, the default crossfall to use for the left/right cross section.

If blank, the Chainage-Minimum X-fall grid is used.

**Chainage- Minimum Xfall grid**  
this grid is only used if the Default Xfall is blank

**Chainage**  
input  
chainage to use the Min xfall

**Min X-fall**  
input  
minimum X-fall to use at that chainage

**Min. Depth tab**  
there can be one minimum depth value for the entire job or the minimum depth can vary between chainages

**Default depth**  
input  
if non blank, the default minimum depth to use for the left and right cross section.

If blank, the Chainage-Minimum Depth grid is used.

**Chainage- Minimum Depth grid**  
this grid is only used if the Default depth is blank

**Chainage**  
input  
chainage to start the minimum depth

**Min Depth**  
input  
minimum depth to start at this chainage and either go to the next chainage or if there is a Min Depth 2, interpolate to Min Depth 2 from this chainage to the next chainage

**Min Depth 2**  
input  
minimum depth to end with at the next chainage

**Results tab**
Transfer Z-values to reference string  tick box

if ticked, the calculated z-values are used to update the z-values on the reference string

Clean models before overlay  tick box

if ticked, the models of results are cleaned before the overlay option is run

Model for overlay x-sections  model box

model for the created overlay x-sections

Model for overlay strings  model box

model for the created overlay strings

Colour  colour box

colour for the created overlay strings

Model for xfall strings  model box

if non blank, left and right strings with z-value equal to the left/right crossfall are created and placed in this model

Model for min/max points  model box

if non blank, points for the minimum and the maximum of the calculated z-values for the left and right sections are created and placed in this model

X-sections depth range file  file box

available depth range files

a depth range file used for colouring x-sections by the depth between the overlay and the road tin

Overlay report  file box

*.rpt files

report on the overlay

Volumes report  file box

*.rpt files

volumes of overlay report

Write volumes as CSV  tick box

if ticked, the volume report is written as a CSV file (for Excel)

Overlay Tin tab

the Overlay Tin tab controls the creation of an overlay tin and depth polygons

Create overlay tin  tick box

if ticked, the fields in this tab are used to create an overlay tin

Tin name  tin box

available tins

name for the tin created from the overlay strings and sections

Tin colour  colour box

available colours

colour of the overlay tin

Model for tin  model box

model for the overlay tin

Create depth polygons  tick box

if ticked, depth polygons are created between the road tin and the overlay tin

Depth range file  file box

*.drf files

depth range file used when creating polygons

Model for depth polygons  model box

available models

Overlay
model for the depth polygons

**Scarification tab**

The *Scarification* tab controls any scarification to be applied to the road sections before calculating overlays.

**Perform scarification** tick box
- If ticked, scarification is performed on the road sections before overlay is calculated.

**Model for scarified x-sections** model box available models
- If *non blank*, road x-sections after scarification are created and placed in this model.

**Colour** colour box available colours
- Colour of the scarified sections.

**Clean scarification x-sections model** tick box
- If ticked, clean the model of scarified sections before running calculations.

**Default scarification depth** input
- If *non blank*, the default scarification depth to use for road cross section.
- If *blank*, the *Overlay-Depth* grid is used.

**Chainage- Minimum Depth grid**
- This grid is only used if the *Default scarification depth* is *blank*.

  **Chainage** input
  - Chainage to start the scarification depth.

  **Depth** input
  - Scarification depth to start at this chainage and either go to the next chainage or if there is a *Depth 2*, interpolate to Min Depth 2 from this chainage to the next chainage.

  **Depth 2** input
  - Scarification depth to end with at the next chainage.

**Plots tab**

**Generate long section plots** tick box
- If ticked, long section plots are created.

**Long section PPF** file box *.lplotppf files
- Binary ppf file to use for the long section plots.

**Plot type** plotter box model available plotters
- Type of plotter to use for the long section plots.

**Plot stem**
- The name to use for the plots - a number will be added when more than one page is produced.

**Clean plot model beforehand** tick box
- If ticked and the *plot type* is *model*, the plot models are cleaned before the plots are created.

**Generate cross section plots** tick box
- If ticked, cross section plots are created.
Cross section PPF  file box  *.lplotppf files

binary pff file to use for the cross section plots

Plotter type  plotter box  model  available plotters

type of plotter to use for the cross section plots

Plot stem

the name to use for the plots - a number will be added when more than one page is produced

Clean plot model beforehand  tick box

if ticked and the plotter type is model, the plot models are cleaned before the plots are created
20.14 X-Sections

Position of menu: Design => X-Sections

Cross sections can be created in a variety of ways including:

(a) sections through triangulations created with the options in the menu Tins => Sections.
(b) sections generated by cutting through strings with the options Utilities => A-G => Cuts.
(c) design sections generated from options on the menu Design = Apply
(d) sections generated by the end area volumes options Design => Volumes => End area

The x-sections menu contains options to read cross-sections in from a file and for working with cross sections in a variety of way.

Walking right on X-Sections bring up the X-Sections menu:

For Colour X-Sections by XFall range go to
- Colour Sections by XFall range
- Construction tables
- Cut/fill polygons from sections
- Name cross sections by chainage

Chainage:
- Polygons from sections
- Read x-section file
- Sort cross-section mode
- Strings from sections
- X-section filter

Chainages:
- X-sections along a string
- X-sections from cuts thru strings
- X-sections from points

Report X-section CivilCAD/Moss/QLD MR format

Page 4156
20.14.1 Colour Sections by XFall Range

Position of option on menu: Design => X-Sections => Colour X-Sections by Xfall range
Utilities => A-G => Colour X-Sections by Xfall range

This panel will colour the segments of a set of x-sections, based on their x-fall.

Selecting Colour X-Sections by Xfall range displays the Colour Sections by XFall Range panel.

![Colour Sections by XFall Range Panel]

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data to colour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the set of x-sections to colour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type - for a full description go to 4.19.3 Data Source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source of data to be processed - for a full description go to 4.19.3 Data Source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range type</td>
<td>choice box</td>
<td>Percent, 1v in, Degrees</td>
<td></td>
</tr>
<tr>
<td>the type of range file to use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range file</td>
<td>file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the range file to use for colouring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Only process super strings</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>whether or not to ignore non super strings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the target for the colour x-sections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>colours the x-sections</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
20.14.2 Construction Tables

Position of option on menu:  Design => X-Sections => Construction tables

This option is used to create construction tables from design cross section model.

Output can be in Ht, Slope or xfall, Offset or X,Y,Z.

A volume report file from the Apply MTF road function can be used if Earthworks is required. Selecting Construction tables brings up the 12D Construction Tables panel:

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Model of Sections</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Start Chainage</strong></td>
<td>real</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>End Chainage</strong></td>
<td>real</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Output Format</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ht Slope Offset</td>
<td>tick</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>XYZ Coords</td>
<td>tick</td>
<td>false</td>
<td></td>
</tr>
<tr>
<td>Earthworks File</td>
<td>file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chainage interval</td>
<td>real</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mapping File</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output File</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Model of Sections**: input
  - model name for existing sections
- **Start Chainage**: real
  - if blank, means optional and the extents of the sections are used instead
- **End chainage**: real
  - if blank, means optional and the extents of the sections are used instead

**Output Format**

- **Height Slope Offset**: tick
  - true
- **XYZ Coords**: tick
  - false
- **Earthworks File**: file
  - if non-blank, file from **Apply MTF** is used
- **Chainage Interval**: real
  - if non-blank, value must be a multiple of chainages reported in the earthworks file
- **Map File**: file
Please refer to the extra help file for details

**Output File**  
file

Please refer to the extra help file for details

**Process**  
button

runs the option
20.14.3 Cut/Fill Polygons from Sections

Position of option on menu:  Design => X-Sections => Cut/fill polygons from sections

This option takes cross sections and by using the user-supplied names of points on the cross section, cut and fill polygons for the strings joining the named points in successive cross sections.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model of x-sections</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Model containing the cross sections used to define the cut and fill polygons.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of last fixed for LHS polygons</td>
<td>input</td>
<td>verge</td>
<td></td>
</tr>
<tr>
<td>Name of the cross section point to be the inner point of the left hand side polygons.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of last fixed for RHS polygons</td>
<td>input</td>
<td>verge</td>
<td></td>
</tr>
<tr>
<td>Name of the cross section point to be the inner point of the right hand side polygons.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of interface point for LHS polygons</td>
<td>input</td>
<td>int</td>
<td></td>
</tr>
<tr>
<td>Name of the cross section point to be the outer point of the left hand side polygons.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of interface point for RHS polygons</td>
<td>input</td>
<td>int</td>
<td></td>
</tr>
<tr>
<td>Name of the cross section point to be the outer point of the right hand side polygons.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour for cut polygons</td>
<td>input</td>
<td>red</td>
<td>available colours</td>
</tr>
<tr>
<td>Colour for the cut polygons.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour for fill polygons</td>
<td>input</td>
<td>green</td>
<td>available colours</td>
</tr>
<tr>
<td>Colour for the fill polygons.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Colour for other polygons  
input blue  
available colours

colour for the polygons that are neither cut or fill – they are either flat or change from cut to fill.

Model for cut polygons  
input cut  
available models

model for the cut polygons.

Model for fill polygons  
input fill  
available models

model for the fill polygons.

Model for other polygons  
input other  
available models

model for the polygons that are neither cut or fill – they are either flat or change from cut to fill.

View to add polygons  
input available views

if non-blank, the models of polygons are added to the view.

Create all  
button

run the option and create left and right polygons.

Create left  
button

run the option and only create the left polygons.

Create right  
button

run the option and only create the right polygons.

Undo  
button

undo the last set of polygons created whilst the panel has been up.

Finish  
button

end the option and remove the panel. The undo capability for the polygons is terminated.
20.14.4 Name Cross Sections by Chainage

Position of option on menu: Design => X-Sections => Name cross sections by chainage

This option names cross-sections with the chainage from a selected string.

Note that the chainage from the string that the cross section comes from is in the name of the cross section so this option effectively gives the chainage to the cross section.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross sections source</td>
<td>choice box</td>
<td>model</td>
<td>string, model, view</td>
</tr>
<tr>
<td>Model/String/View of x-sections</td>
<td>source box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of decimals</td>
<td>input box</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Scale factor</td>
<td>input box</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Prefix</td>
<td>choice box</td>
<td>sect</td>
<td>sect, design, none</td>
</tr>
<tr>
<td>Pick centreline string</td>
<td>output box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field Description: type of data source.

Model/String/View of x-sections: source of the cross section data.

Number of decimals: number of decimal places to use in the chainage label.

Scale factor: factor to multiply the chainage by before creating the label.

Prefix: prefix for the chainage value - for cross-section options to work, this should be sect or design.

Pick centreline string: select the string that is used to find a chainage for the cross sections.

Process: run the option.
20.14.5 Polygons from Sections

Position of option on menu: Design => X-Sections => Polygons from sections

Option to take a model of cross-sections and create polygons between specified points on the cross-sections.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model that contains the cross sections</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of first/last point for LHS polygons</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of first/last point for RHS polygons</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model/colour for polygons</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Create button
create polygons between the first and last points on the left and right side of the cross-sections.

Undo button
undo the last set of polygons created whilst the panel was up.
### 20.14.6 Read X-Section Data

**Position of option on menu:** Design => X-Sections => Read x-section file

This option is used to read in cross section data from a file and convert it to x-section strings (4d strings).

The data in the file is only centre-line chainage values, offset, heights and text (Code) so an alignment string needs to be selected to give an (x,y) position for the centre-line chainage and a direction (at right angles to the alignment string at the chainage) to convert the (offset, height) values into (x,y,z) points on a string.

**NOTE** - after reading in the x-section data and hence creating 4d strings, the Design => X-Sections => Strings from sections option can be run to create 3d strings by joining points with the same Code from adjacent x-sections. The created 3d strings are given the string name of the Code that they joined.

Selecting Read x-section file brings up the **Read X-Section Data** panel:

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>File format</td>
<td>Format of the x-section data in the file.</td>
<td>input box</td>
<td><strong>12d Model</strong></td>
<td>12d Model, Alg, Moss, Chainage/Offset/Height/Text</td>
</tr>
</tbody>
</table>

#### 12d Model Format

The 12d Model format is a simple text file format with the text CH followed by one or more spaces and then the alignment chainage (centre line chainage) of the x-section, and then on the following lines, the Offset value followed by one or more spaces, the height at that offset followed by one or more spaces, and then the text (Code) for that point on the x-section. The x-section continues until the next Ch line. For example, the following defines two x-sections at chainage 10 and 20 respectively.

```
ch 10
 -3 5 A
0 6 "Second label"
 4 7 C
ch 20
 -3.5 5.5 A
```
Note that if the Code includes a space, then it must be enclosed in quotes. For example "Second label". Also the Code is not optional - if there is no code, put "".

Chainage/Offset/Height/Text Format

The Chainage/Offset/Height/Text format is a very simple text file format with each line containing the alignment chainage (centre line chainage) for the x-section followed by one or more spaces and then on the same line the Offset value followed by one or more spaces, the height at that offset followed by one or more spaces, and then optionally, the text (Code) for that point on the x-section. The x-section continues until the alignment chainage changes. For example, the following defines two x-sections at chainage 10 and 20 respectively.

10  -3  5  A
10   0  6  "Second label"
10   4  7  C
20  -3.5  5.5  A
20   0  6  D
20   4.5  7.5  E

Note that if the Code includes a space, then it must be enclosed in quotes. For example "Second label". Also the Code is optional (whereas it was compulsory for the 12d Model format).

Moss (MX) Format

Please refer to Moss (MX) documentation or ask the group who supplied the data.

Alg Format

Not documented.

X-section file input box
file of x-section data.

String names on line 4 tick box
ONLY used for the ALG format which is not documented

Select al string string select
select the string that is used to define the (x,y) position of the zero offset of the x-section and also the bearing for the x-section.

Model for x-secs model box available models
model for the created x-sections

Process button
read the file and create the x-sections

Undo button
undo the last set of x-sections created since the panel has been active
20.14.7 Sort X-Sections in a Model

Position of option on menu: Design => X-Sections => Sort cross section model

This option is used to sort cross sections in a model so that they are in the order of the chainages embedded in the cross section name.

Selecting Sort cross section model brings up the Sort X-Sections in a Model panel:

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model of x-sections</td>
<td>model box</td>
<td>available models</td>
<td>model containing the cross sections to be sorted into chainage order.</td>
</tr>
<tr>
<td>Sort</td>
<td>button</td>
<td>run the option.</td>
<td></td>
</tr>
</tbody>
</table>
20.14.8 Strings from Sections

Position of option on menu:  Design => X-Sections => Strings from sections

The strings from sections option creates strings by joining the common named points on successive 4d strings (usually generated as sections).

Selecting strings from sections fires up the strings from sections panel.

Selecting strings from sections fires up the strings from sections panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model of sections</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>model of the 4d strings (sections) to try and join common points from to form strings.</td>
<td></td>
</tr>
<tr>
<td>Model for string</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>model for the created strings to go to.</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>try and join points with the same name from successive sections to form strings.</td>
<td></td>
</tr>
</tbody>
</table>
20.14.9 Sections from Points

Position of option on menu: Design => X-Sections => X-sections from points

The X-sections from points option creates a cross section by first defining a section line and then dropping all selected points in a user-defined offset distance from the section line, onto the section line.

(a) The z-value for the dropped point is the same as for the original point.
(b) The Point number (Vertex id) of the dropped point is the Point number (Vertex id) of the original point.
(c) The Vertex text of the dropped is the code (string name) of the original point.

The user specifies the start chainage for the created section and the value for the "centreline chainage" of the section.

Selecting Sections from points fires up the Sections from points panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source type</strong></td>
<td>data source type.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Data source</strong></td>
<td>data source for points to create sections from.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Point mode</strong></td>
<td>choice box</td>
<td>2 points</td>
<td></td>
<td>2 points, 1 point and bearing point on centreline</td>
</tr>
</tbody>
</table>

If **2 points**, then the Start point and End point are selected. The section goes through the two points.

If **1 point and bearing**, then the Start point is selected and a **Bearing** given. The section goes through the start point with the given bearing.

If **point on centreline**, then a **Centreline** is selected and a **point on the centreline** selected. The section goes through the selected point on the centreline and is perpendicular to the selected centreline at the selected point.
If Point mode is **2 points**:

- **Start point** string select
- **End point** string select

If Point mode is **1 point and bearing**:

- **Start point** string select
- **Bearing** angle box

If Point mode is **point on centreline**

- **Centreline** string select

  *depends on Point mode.*

- **Point on cl** string select

  *depends on Point mode.*

- **Cl chainage** input

  *the chainage to give to the created section*

- **Start chainage** input

  *the start chainage to give to the created section.*

- **Offset distance** input

  *distance to search either side of the section for points to project onto the section*

- **Include contrl points (s)** tick box

  *if ticked, the selected start and end points are included as part of the section.*

- **Create super string** tick box

  *if ticked, then the created section is a super string.*

- **Model** model box

  *model for created sections.*

- **Colour** colour box

  *available colours*

- **Linestyle** linestyle box

  *available linestyles*

- **Report file** file box

  *a report.*

- **Process** button

  *create a cross section from the selected points.*
20.14.10 X Section Filter (Sections at Even Chainages)

**Position of option on menu:** Design => X-Sections => X-section filter

This panel selects user specified cross-sections from a model of cross-sections and copies them into another model. The cross sections must already exist - no new cross-sections are created. It is a function so can be recalced when the cross-section model is changed.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Function name</strong></td>
<td>string</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>name of the function.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Model of sections</strong></td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>model of existing cross sections to select some cross sections from.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Filter model name</strong></td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>model for the selected cross sections</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Filter section colour</strong></td>
<td>colour box</td>
<td>cyan</td>
<td></td>
</tr>
<tr>
<td><em>colour for the filtered cross sections</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Filter chainage interval</strong></td>
<td>input</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td><em>chainage interval to select cross sections. Sections are selected which are multiples of the filter chainage interval.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Design/Existing sections</strong></td>
<td>radio button</td>
<td>design sections</td>
<td></td>
</tr>
</tbody>
</table>
cross sections are 3d strings with the name

    Design and the chainage of the cross-section (usually created by an Apply),

or    Sect and the chainage of the cross-section (usually created by Tins =>Section =>X section)

If Design sections is selected, then sections starting with the name Design are selected.
If Existing sections is selected, then sections starting with the name Sect are selected.

Include TC_CT sections    tick box
    if ticked, include cross sections at tangent points from the reference string.

Include start/end section    tick box
    include a cross section at the start/end chainage of the reference string

TC_CT tolerance +/-    input box
    if non-zero, then regular cross sections (i.e. those selected by the filter chainage interval) are not
    included if they are closer than the given tolerance distance to a tangent point.

Special chainage file    input box
    include cross sections with chainages given in the given special chainage file.

Reference    output box
    select reference string to use for the filter options requiring tangent points and start/end chainages.

Process    button
    copy the specified cross-sections to the Filtered Model.

20.14.10.1 X-Sections Along a String
    Position of option on menu:    Design =>X-Sections =>X-Sections along a string
    This option has already been documented in    Tins => Sections=> X-Sections
    For the option X-Sections along a string, please continue to the section 16.15.4 X-Sections.

20.14.10.2 X-Sections from Cuts Through Strings
    Position of option on menu:    Design =>X-Sections =>X-Sections from cuts thru strings
    This option has already been documented in Utilities =>A-G =>Cuts =>by centreline
    For more information please go to the section 28.9.13.2 Cuts by Centreline.
20.15 Check/Clash

Position of menu:

- Design => Check/clash
- Utilities => A-G => Check/clash

See 28.9.9 Check/Clash in 28 Utilities.
20.16 More Design

Position of menu:  Design => More

The More Design menu contains extra design options.
The More Design walk-right menu is

For the option Culverts from file, go to 20.16.1 Culverts from File.
Settlement 20.16.2 Settlement
20.16.1 Culverts from File

Position of option on menu: Design => More => Culverts from file
This option is currently under development.
20.16.2 Settlement

Position of option on menu:  Design => More => Settlement

This option uses a tin of settlement values to adjust the z-values of strings.

The idea behind the option is that a number of string may have been surveyed as well as a number of control points. At a later date, the z-value at the control points is again measured and there is a major difference in the two z-value at each control point due to say settlement (subsidence) of the ground.

A tin of the difference of the z-values at each control point is called the settlement tin. The tin is not normally a constant value because differential settlement usually occurs. That is, the settlement is different at each point over the surface.

The Settlement option can adjust all the z-values of the selected data by the amount in the settlement tin.

It can be applied to just to the vertices of the strings (mode relative points), or to the vertices and the segments of the strings (mode relative string). In relative string mode, where ever a segment crosses a triangle of the settlement tin, a new vertex is inserted into the string (with initial z-value interpolated from the adjacent string vertices) and the settlement tin value applied to the new vertex.

The settlement tin values can be added to, or subtracted from, the string values.

One interesting use of the Settlement option is when the settlement tin is constructed from the depths from the surface to a rock or soil strata (as given from bore hole logs).

The surface of the rock could be constructed by simply calculating the height of the rock at each bore hole and triangulating the heights. The original surface would have no affect on such a rock surface.

However by applying the Settlement option to the ground data, using the depths as the settlement tin, and then triangulating the resultant strings to give the rock surface, undulations in the ground data will also be reflected in the rock surface. This is what usually happens when the earth is folded and both surfaces fold in a similar manner.

The Settlement option can also be used without creating a tin of the difference of the z-values at each control point. A tin can simply be created from the new z-values of the control points.

In absolute points mode, each vertex of the strings are given the z-value from the tin. This is the same as draping just the vertices of strings onto a tin (see 16.10.1 Drape).

In absolute string mode, not only do the string vertices take their z-values from the tin, but where ever a segment crosses a triangle of the tin, a new vertex is inserted into the string and the z-value for the new vertex is taken from the tin. This is the same as a draping the strings onto the tin (see 16.10.1 Drape).
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data to settle</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Settlement tin</td>
<td>available tins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Settlement on</td>
<td>choice box</td>
<td>relative points</td>
<td>relative points</td>
</tr>
<tr>
<td></td>
<td></td>
<td>absolute points</td>
<td>absolute points</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>absolute strings</td>
</tr>
</tbody>
</table>

*Data selection type* - for a full description go to 4.19.3 Data Source.

**Data source**

source of data to be processed.

**Settlement tin**

tin of values (settlement values) to be used to reduce/increase the z-values of strings by.

**Settlement on**

if Settlement on is:

- **relative points** then for each point of a string, the value of the settlement string at that (x,y) position is added/subtracted from the z value at the point.

- **relative string** then for each point of a string, the value of the settlement string at that (x,y) position is added/subtracted from the z value at the point plus for each visible segment joining points of the strings then if the segment crosses any edges of triangles from the settlement tin, a new point is inserted into the string which then has the settlement value applied to it (the initial z-value for the inserted point is interpolated from its adjacent points in the string).

- **absolute points** then for each point of a string, the value of the settlement string at that (x,y) position is taken to be the z value at the point.

- **absolute string** then for each point of a string, the value of the settlement string at that (x,y) position is taken to be the z value at the point plus for each visible segment joining points of the strings then if the segment crosses any edges of triangles from the settlement tin, a new point is inserted into the string which is given the settlement value at that point.

**Apply tin values by**

if "add tin values", then the tin values are added to the string values.
If "subtract tin values", then the tin values are subtracted from the string values.

**Prefix for models**
- prefix to apply to the name of each model in the data source to create new models for the processed data.

**Process button**
- adjust the heights of the selected data.
20.17 Ortho 12d

Position of menu: Design => Ortho 12d

The Ortho 12d menu contains the option to write out tins in a format suitable for the Ortho 32 rectification software.

The Ortho 12d walk-right menu is

Continue to the next section 20.17.1 Create Triangles
20.17.1 Create Triangles

Position of option on menu:  Design => Ortho 12d => Create triangles

This option writes out a 12d Model tin in a format suitable for the software Ortho12d software from Digital Mapping Systems (www.digmapsys.com).

Ortho12d is an image rectification package which can be used for ortho-rectifying photographs. For more information on Ortho12d, please contact Ian Hall from Digital Mapping Systems on ian.hall@digmapsys.com

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Tin polygon selection</td>
<td>Polygon select box</td>
<td>if used, only triangles whose centroid is inside the polygon are written out.</td>
<td></td>
</tr>
<tr>
<td>Ortho12d output file</td>
<td>file box</td>
<td>*.T12 files</td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td>write the tin out in the Ortho12d format</td>
<td></td>
</tr>
</tbody>
</table>
20.17.2 Moved/Reused Documentation

20.17.2.1 New Island Create (Function)

Position of option on menu:  Design => Roads => More => New Island Create (Function)

This option applies a kerb profile, either from the 12d library or from a user defined file.

The template profile is applied to a Super Alignment, creating strings, and a triangulation.

The option is saved as a function within 12d and as a function can be re-run at any time if changes occur with the Super Alignment.

Some default kerb profiles are available under Kerb on the panel.

User defined kerbs are created by entering offset, height and string names in the fields in the draw box at the top of the panel, and then saved as a User Kerb Type file (*.ukt)

User Kerb Type files can then be written out, or read in as required.

On selecting the New Island Create (Function) option, the New Island Create (Function) panel is displayed.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Function name</strong></td>
<td>function</td>
<td></td>
<td>available functions</td>
</tr>
<tr>
<td><strong>name of the Island Create function</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Model Island Strings</strong></td>
<td>model box</td>
<td></td>
<td>available models</td>
</tr>
<tr>
<td><strong>Model Island Tin</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Colour Island Paving</strong></td>
<td>paving</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Colour Island Tin</strong></td>
<td>concrete</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Design Details**

- **Kerb**: Barrier Type B
- **Reference**:

The fields and buttons used in this panel have the following functions.
**Model Island Tin**  
model box

model for the tin of the created island

**Colour Island Paving**  
input paving available colours

if non-blank, then the colour is used to colour the island triangulation within innermost kerb string (D)

**Colour Island Tin**  
input concrete available colours

if non-blank, then the colour is used to colour the island triangulation between the strings defined by A and D.

---

In the drawing area:

A

a string is created which is a copy of the reference string and given this name. It is added to the **Model Island Strings** model.

B

name, offset and height from the reference string, of the first string of the island. It is added to the **Model Island Strings** model. If offset and height are both zero, then the string is not created.

C

name, offset and height from the reference string, of the second string of the island. It is added to the **Model Island Strings** model. If offset and height are both zero, then the string is not created.

D

name, offset and height from the reference string, of the third string of the island. It is added to the **Model Island Strings** model. If offset and height are both zero, then the string is not created.

---

**Design Details**

**Kerb**  
choice box

**Barrier Type A**  
Barrier Type A, Barrier Type B, Mountable, Semi-Mountable, User

selected kerb type is displayed in draw box above
If Kerb is User then the File field and the Read and Save buttons are made active, and are used to read in an existing user defined Kerb type, or to create a new one.

**File**

file box

files ending in .ukt

Name of the user kerb type file (ukt) to read in or create

**Read**

button

Reads in the user defined kerb definition from the ukt file given in the File field and displays the profile and Offsets and Height in the draw box at the top of the Panel

**Save**

button

Writes out the kerb profile information (O and H values, and string names) as a user defined kerb, into the file given in the File field.

**Reference**

select pick

Select the reference alignment which will have the kerb profile applied to it to create the island. “pick with direction” in a clockwise manner as the kerb profile is always on the RHS.

**Process**

button

Runs the option which created the island string and the coloured island tin

**Note:**

The New Island Create Function reads in the standard kerb profiles as templates and if required, creates a template from the ukt files. The function needs these templates because an apply is used (internally) to create the Island.

### 20.17.2.2 Traffic Island Profile and Triangulation Creation

**Position of option on menu:** Design => Roads => More => Island profile/tin

This option creates strings by offsetting from a selected string using a kerb profile. The resultant strings are draped onto a given tin and then triangulated to form a traffic island.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset kerb face/top/back</td>
<td>input box</td>
<td></td>
<td>offset for kerb face/top/back for the selected kerb type.</td>
</tr>
<tr>
<td>Height kerb face/top/back</td>
<td>input box</td>
<td></td>
<td>height for kerb face/top/back.</td>
</tr>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td>triangulation to drape the traffic island strings onto.</td>
</tr>
<tr>
<td>Kerb type</td>
<td>input box</td>
<td></td>
<td>type of kerb to apply to the reference string of the traffic island. If type User is selected from the pop-up list, a file which defines the kerb profile can be selected and used.</td>
</tr>
<tr>
<td>File</td>
<td>file box</td>
<td>*.ukt files</td>
<td>file to read/write the user defined kerb type to.</td>
</tr>
</tbody>
</table>
Read button
read the given File to define a kerb type.

Save button
save the kerb parameters to the given File.

Select button
select the string representing the traffic island.

Process button
create the traffic island strings and tin.

Undo button
undo the last traffic island created whilst the option was running.
20.17.2.3 Create Mass Haul String and Report

**Position of option on menu:** Design => Roads => More => Mass haul

This option has been replaced by 20.8.8.3 Mass Haul String and Report.

This panel is used to read in a volumes report and optionally a cut/fill compaction parameter file and creates a mass haul string and a new volumes report with the compaction volumes.

The compaction parameter file simply contains the compaction factor for given chainage ranges. Either the cut volumes are multiplied by the compaction factor or the fill volumes are divided by the compaction factor, to give the compacted volumes in the new volumes report.

If the existing volume report contains an alignment string and that string can be found in the project then a new alignment string is created with the same horizontal geometry but with the accumulated volumes as the z-values.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Existing volume report file</strong></td>
<td>file box</td>
<td>* .rpt files</td>
<td></td>
</tr>
<tr>
<td><strong>Compaction parameter file</strong></td>
<td>input</td>
<td>* .mhf files</td>
<td></td>
</tr>
<tr>
<td><strong>Cut/fill compaction factor</strong></td>
<td>input</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td><strong>Apply compaction factor to cut</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Apply compaction factor to fill</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Model for mass haul string</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Colour for mass haul string</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Mass haul report file</strong></td>
<td>input box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* if cut, the cut volumes are multiplied by the compaction factors.  
* If fill, the fill volumes are divided by the compaction factors.
Process button

un the option.

// Sample cut/fill compaction parameter file - the file ending
is .mhf
// All lines starting with // are comments and blank lines are
ignored
//
// A range is specified by a start and end chainage and a compaction
factor.
// A compaction factor of 1.0 means there is no compaction.
// A compaction factor of 0.9 means that 1.0 cubic metres of cut is
equivalent
// to 0.9 cubic metres of fill due to compaction.

// format is
// Start_ch End_ch Compaction_factor

<table>
<thead>
<tr>
<th>Start_ch</th>
<th>End_ch</th>
<th>Compaction_factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>0.9</td>
</tr>
<tr>
<td>100</td>
<td>500</td>
<td>1.0</td>
</tr>
<tr>
<td>500</td>
<td>2000</td>
<td>1.1</td>
</tr>
</tbody>
</table>
21 Advanced Design

See

21.1 The Modifiers and Templates File - MTF
21.2 MTF Edit
21.4 Smart Chainages
21.5 Defining and Using Snippets
21.6 What is Boxing?
21.7 Full Definition of Boxing
21.8 Full Definition of Template Decisions
21.9 Placing Parts for Super Alignments
21.10 Text Format of Files
21.11 Superseded MTF Commands

For some special definitions and information required for Modifiers and Templates, see

21.1.1.1 MTF Links, Points and Strings
21.1.1.2 MTF Links and Layers
21.1.1.3 MTF Shapes and Trimeshes
21.1.2.1 Calculating Width, Height, Xfall or Slope from Original Definitions
21.1.2.2 Modify X, Hold Y in MTF Modifiers
21.1.2.3 New Value Usage
21.1 The Modifiers and Templates File - MTF

_12d Model_ uses templates as a quick and easy method for defining design details along a string, and in the _Apply MTF_ option, modifiers are introduced to handle the most complex design details such as sophisticated urban design including intersections and roundabouts.

_12d Model_ uses templates as a quick and easy method for defining design details along a string. So for simple work, the Design=>Apply=>Apply option cuts a left and right template into a surface to produce a design. For information on how Templates are defined in _12d Model_, see 20.1 Templates in _12d Model_.

For more sophisticated design such as highways and complex urban design, intersections and roundabouts, templates are impractical and not an efficient solution. For these cases _12d Model_ uses _MTF modifiers_ to provide much finer control and provide all the power of string design without losing the ease of template design for simpler cases.

The Design =>Apply =>Apply MTF option uses a _Modifiers and Templates File_ or _MTF_ file applied to a Reference and Hinge string to tackle complex tasks and:

(a) run Hinge modifiers to adjust the Hinge string

(b) Insert Templates

(c) run Modifiers to adjust any links in the inserted templates, or create new links without needing a Template, and then make adjustments to these links.

(d) generate Sections, Boxing and Strings

(a) defined shapes and produce _trimeshes_ to give a solid representation of the road components.

For more definitions of these items used in MTF’s, see 21.1.1 MTF Links, Points, Sections, Strings and Trimeshes.

**Note** - the _Alignment_ module is required to use the _Apply MTF_ option.

The _MTF_ file used in an _Apply MTF_ is created and edited _interactively_ from within _12d Model_. An _MTF_ can be created using the Create MTF panel (Design =>MTF =>Create) and edited using the MTF Edit menu.
Alternatively an MTF can be created and edited from within the Apply MTF option itself by:

once the Apply MTF option has been selected and the Apply MTF Function panel is on the screen, simply enter the name of the mtf file into the MTF file field and click on the Folder icon to bring up the pop-up menu and select Open from the pop-up.

If the MTF does not exist, then the Create MTF panel (with the MTF file name already filled in) is placed on the screen and the user simply selects the Create button. If the MTF file does exist, then it is loaded into the MTF Edit menu.

For full documentation on the MTF Edit menu, see 21.2 MTF Edit.

Note - although the MTF file can be edited with a text editor that supports unicode, it is easy to get the syntax wrong and create an invalid MTF file. So it is always best to use the interactive editor, MTF Edit.

For some special definitions and information required for Modifiers and Templates, see

21.1.1.1 MTF Links, Points and Strings
21.1.1.2 MTF Links and Layers
21.1.1.3 MTF Shapes and Trimeshes
21.1.2.1 Calculating Width, Height, Xfall or Slope from Original Definitions
21.1.2.2 Modify X, Hold Y in MTF Modifiers
21.1.2.3 New Value Usage
21.1.1 MTF Links, Points, Sections, Strings and Trimeshes

See

- 21.1.1.1 MTF Links, Points and Strings
- 21.1.1.2 MTF Links and Layers
- 21.1.1.3 MTF Shapes and Trimeshes
21.1.1.1 MTF Links, Points and Strings

A Modifiers and Template File (MTF), like a Template, is defined in terms of the links which go together to make up an MTF section.

As for a 12d Template, an MTF Section consists of a left hand side ending at the Hinge Point, followed by a right hand side.

Each side if made up of a number of MTF links and each link is defined by any two of the three
(a) width of the link
(b) change in z-value from the beginning of the link to the end of the link. that is, the z-value at the end of the link minus the z-value at the start of the link. This is referred to as the height of the link.
(c) xfall or slope
and the links are connected sequentially to form a cross section.

Notice that the height is only a relative height and not a z-value.

On the left hand side, the MTF links go from right to left. The vertex (point) at the end of the link is given the same name as the link. The far right of the left hand side is the Hinge Point. So on the left hand side, positive widths go to the left.

On the right hand side, the MTF links go from left to right. The vertex (point) at the end of the link is given the same name as the link. The far left of the right hand size is also the Hinge Point. So on the right hand side, positive widths go to the right.

Note that this definition of the MTF Section is given in terms of MTF links and each MTF Link is defined by a relative width and relative height to the previous link, and the left and right hand sides are positioned around a Hinge Point.

A width from the Hinge point and a height above the Hinge point can be calculated for each MTF Link point by accumulating the widths and heights of all the links from the Hinge point to the this link, and including this link. These values of the width and height for the Link Point are referred to as the width relative to the Hinge Point and height relative to the Hinge Point. Or sometimes absolute width (or absolute offset) and absolute height for short.

Note that this use of the word absolute must not to be confused with the absolute value of a number (which is always positive).

Similarly for the Left Hand Side of a MTF Section except that the diagram goes to the left of the Hinge Point and positive widths are measure as going to the left.

Also if the \((x,y,z)\) coordinates are known for the Hinge point and the plan angle that the

Cross Section View of the Right Hand Side of a MTF Section

Start of rkerb
link called rkerb
end of rkerb - rkerb point
height of rkerb
width of rkerb
height of rshoulder (-ve in this case)
width of rshoulder
height of rshoulder relative to the Hinge Point (-ve in this case)
Hinge Point
section makes through the Hinge point, then the \((x,y,z)\) coordinates for each Link point can be calculated by accumulating all the relative widths and heights and applying them along the section line.

Each MTF link has a name and colour and it is best for all the links in an MTF section to have unique names.

The point at the end of the MTF link is given the name of the link and is called a MTF Link Point, or an Link Point or MTF Point for short.

So on the left hand side of the Hinge Point, the MTF Link Point is at the left hand end of the link and on the right hand side of the Hinge Point, the MTF Link Point is at the right hand end of the link.

When the MTF is Applied to a Reference and a Hinge String, MTF links and points are created at each chainage, and it is also known, whether or not, the same MTF link and point exists at the next chainage.

So applying the MTF defines not only each MTF link and but also how each link point is connected longitudinally along the Reference and Hinge strings to form a string, or more than one string if there are some chainages where the link point does not exist.

The longitudinal strings (MTF strings) created by a link point are given the same name and colour as the link point.

As an example, the MTF with one link called left kerb and one link on the right called right kerb applied down the a Reference and Hinge String with produce two strings called left kerb and right kerb:
For brevity, when there is no confusion, the longitudinal MTF strings created by the MTF are often just called e **strings**.

Unlike the simpler Apply Template, the **Apply MTF** option does not automatically create strings for all the **MTF points** but allows the user to specify which strings are created. See [21.2.2.5.2 Create Strings](#).

Continue to the next section [21.1.1.2 MTF Links and Layers](#) or return to [21.1.1 MTF Links, Points, Sections, Strings and Trimeshes](#).
21.1.1.2 MTF Links and Layers

As well as having a name, each MTF Link also has a unique Layer. The default Layer is Design.

Layers are simply a way of grouping certain links together so that they can be referred to as one thing. For example, the default Layer Design is usually where all the links go that make up the Design.

When a MTF Link is created, the Layer is given at the same time as the link name and colour and most MTF commands work for any Layer.

A MTF Link of name link_name in the layer layer_name is denoted by:

layer_name << link_name when link_name is a left side link.

layer_name >> link_name when link_name is a a right side link.

layer_name => link_name when the side for link_name has not yet been evaluated (this can happen in general Snippet code that can work when inserted in the Left or Right Modifiers panel.)

In the Apply MTF Function, strings or sections are only automatically created for the layer Design.

For other Layers, strings are created using the MTF command Create Strings. See 21.2.2.5.2 Create Strings.

Continue to the next section 21.1.1.3 MTF Shapes and Trimeshes or return to 21.1.1 MTF Links, Points, Sections, Strings and Trimeshes
21.1.1.3 MTF Shapes and Trimeshes

A **Shape** is made up of a group of **MTF link points** that in profile are joined together in a specific order. Each **MTF link point** can come from any **Layer**.

A Shape can be open or closed.

So shapes are similar to cross sections except a shape can go back under or over itself, and can be closed.

When and **MTF** is Applied to a Defence and Hinge string (**Apply MTF Function**), the Shape will be defined at chainages along the Reference string and Hinge string, and the MTF Link Points of the Shape can generate MTF strings for the Shape.

A **Trimesh** can be constructed from the MTF sections and MTF strings generated by applying the Shape along the Reference and Hinge string. See 4.5.5 **Trimeshes**.

So the **Trimesh of a Shape** can be thought of as a profile swept (extruded) along the Reference and Hinge string. But remember that at any chainage, the **MTF** can change the positions of each MTF point so the profile of the Shape can change from chainage to chainage.

There is a **MTF** option to creates a Trimesh of a **Shape** and its **trimesh**. See 21.2.2.5.1 Create **Shapes**

Continue to the section 21.1.2 Calculating Link Values or return to 21.1.1 MTF Links, Points, Sections, Strings and Trimeshes.
21.1.2 Calculating Link Values

See

21.1.2.1 Calculating Width, Height, Xfall or Slope from Original Definitions
21.1.2.2 Modify X, Hold Y in MTF Modifiers
21.1.2.3 New Value Usage

21.1.2.1 Calculating Width, Height, Xfall or Slope from Original Definitions

For most of the MTF Modifier commands and the MTF Absolute command, the command modifies the current value of the link of one for one of Width, Height, Xfall or Slope, and uses (holds) the current value of the link of another one of Width, Height, Xfall or Slope.

Together, the modified value and the held value defines the new values for the link.

It doesn't matter which two of width, height and xfall or slope were originally used to define the link, the option will internally convert the definition to what is required to be modified and held.

For example the link may be originally defined by xfall and height but the link Modifier type could be Modify Width, Hold Xfall or Modify Xfall, Hold Width.

Even though the existing link is not defined by width, for each required chainage, the xfall and height values of the existing link uniquely define a width at that chainage. And it is this calculated width that is then modified by Modify Width, Hold Xfall or used (held) by a Modify Xfall, Hold Width.

So no matter how the link is originally defined, any one of width, height or xfall/slope can be calculated and modified or held by the option.

Continue to the section 21.1.2.2 Modify X, Hold Y in MTF Modifiers or return to 21.1.2 Calculating Link Values.
21.1.2.2 Modify X, Hold Y in MTF Modifiers

A link in an MTF is initially defined by two out of three of width, height and xfall/slope because **only two** are needed to uniquely define the link. Any values not used in the link definition can be calculated from the defining values so any of the values width, height, xfall and slope for the link are always known. See 21.1.2.1 Calculating Width, Height, Xfall or Slope from Original Definitions.

In an Apply MTF, there are MTF Modifiers such as the Modify link command that act on the link and **modifier** one or some times two of the values defining the link.

One of the most common methods to modify the definition of a link is that one of the link values **is not modified** and keeps the same value (it is **held**) and another value is **modified** until a given condition is satisfied.

That is, for the link:

(a) **one** of Width, Height or Xfall **keeps its existing value** (i.e. **holds** its existing value).

and

(b) a **different one** of Width, Height or Xfall **is modified** and takes the value needed to satisfy a given condition.

This is summarised as

Hold X, Modify Y

or

Modify Y, Hold X

For example, for the To String modifier

Modify Width, Hold Height.

(a) the **Height keeps its existing value** for the link (i.e. **holds** its existing value).

and

(b) the **Width is modified** to be the value that puts the end of the link directly under a given string.

(see 21.2.2.2.10 Fixed Link - To String)

With the To String modifier, if the string is moved, the **Width** will also change to keep the end of the link under the string.
21.1.2.3 New Value Usage

New value usage has the choices:

(a) Add to the current value of the link

If Add to the current value of the link, the value of the parameter width/height/xfall/slope at each chainage is added to the current value for the parameter. For compactness, in a grid, this will be displayed in an Absolute column with Absolute not ticked or no.

and

(b) Replace the current value of the link.

If Replace the current value of the link, the value of the parameter width/height/xfall/slope at each chainage replaces the current value for the parameter. For compactness, In a grid, this will be shown in an Absolute column with Absolute ticked or yes.

The different is best understood by running a Modifier command on a simple one Link job and then modifying the Width with the two values of New value usage.

First insert a link called la with a width of 3.8.

Then add a Modify a Modify Link command to Modify the Width with a constant width of 2, and New value usage with the value Add to the current value of the link (also denoted as Absolute off).

The Width is then 5.8.
Now change the value of **New value usage** to *Replace the current value of the link* (i.e. *Absolute on*).

The **Width** is then 2.

So a **New value usage** of *Add to the current value of the link* (i.e. *Absolute off*) adds to the current value of the link and you may not even know what the final width of the link is until the MTF is run.

Whereas a **New value usage** of *Replace the current value of the link* (i.e. *Absolute on*) resets the value to a given value. So at that point in the MTF, you know exactly what the value of Width is.

Note that there may be more **Width** commands further down in the MTF command list that may change the value of **Width** again so the final **Width** will only be definitely be known when the entire MTF is processed.

Continue to the section 21.2 MTF Edit or return to 21.1.2 Calculating Link Values.
21.2 MTF Edit

For general information about the MTF (Modifiers and Template File) see 21.1 The Modifiers and Templates File - MTF.

The MTF Edit menu is

```
MTF Edit
Road1.mtf
Hinge
Modify left
Modify right
Boxing
Recalc
Auto recalc
More
Settings
Save
```

For documentation on the options see:

- **Hinge** [21.2.1 MTF Hinge Modifiers]
- **Modify left** [21.2.2 Left and Right MTF Modifiers]
- **Modify right** [21.2.2 Left and Right MTF Modifiers]
- **Boxing** [21.2.3 MTF Boxing]
- **Recalc** [21.2.4 MTF Recalc]
- **Auto recalc** [21.2.5 MTF Auto Recalc]
- **More** [21.2.6 MTF More]
- **Settings** [21.2.7 MTF Settings]
- **Save** [21.2.8 MTF Save]

Please continue to the next section [21.2.1 MTF Hinge Modifiers] or return to [21.2 MTF Edit].
21.2.1 MTF Hinge Modifiers

The hinge string is selected using the Hinge panel field in the Apply MTF Function panel. Hinge modifiers are used to modify the position of the point on the hinge string (the Hinge point) that is considered the zero offset and Height point when applying the Templates and Modifier commands. See 20.1 Templates in 12d Model.

Selecting Hinge from the MTF Edit menu brings up the Hinge Modifiers panel.

The Hinge Modifiers panel consists of a grid with of rows (or lines) with commands in them, and an OK or Apply button to record the results.

Hinge Modifier Grid

For information on the general operation of a grid including the icons on the right hand side, see 4.19.6 Grids in Panels.

The commands in the Hinge Modifier grid are processed sequentially from the top to the bottom of the grid.

When the Grid Row is Empty

If the row of the grid is empty, clicking LB in the empty row will bring up the Create menu which contains all the available hinge commands. Note this may involve two clicks - one to highlight a column in a row and the second click to bring up the Create menu.
Selecting a menu item will bring up an associated panel which displays the information required for the hinge command. When the panel is filled in and OK or Apply selected, the panel information is written out to the row of the grid and is known as a hinge command. For information on each of the Hinge Commands, see 21.2.1.1 Create Hinge Commands.

When the Grid Row is Not Empty

If the row of the grid is not empty (and hence filled with a hinge command) then clicking LB in the cell:

(a) **Type** will bring up the associated panel for the hinge command.
   
   For information on each of the Hinge Commands, see 21.2.1.1 Create Hinge Commands.

(b) **Start chainage** cell brings up the Smart Start Chainage panel

   The Start Chainage Mode will determine what other fields are also on the panel (for example Extension ref for Mode Start of reference string. For more information on Chainage Modes, see 21.2.1 MTF Hinge Modifiers

(c) **End Chainage** cell brings up the Smart End Chainage panel
The End Chainage Mode will determine what other fields are also on the panel (for example Extension ref for Mode End of reference string. For more information on Chainage Modes, see 21.2.1 MTF Hinge Modifiers.

(d) Interval will allow a real value to be typed into the cell

Note that the Interval column will not appear in the grid if Show interval column? is not ticked in the MTF Settings. See 21.2.7.8 MTF Setting Show Interval Column.

(e) Extra Start, Extra End or Active will toggle the tick/not ticked

Note that the Extra start and Extra end columns will not appear in the grid if Show extra start/end column? is not ticked in the MTF Settings. See 21.2.7.6 MTF Setting Show Extra Start/End column.

(f) Comment will allow text to be typed into the cell

Note that clicking in the Type, Start chainage, End chainage, Interval, Extra Start, Extra End, Active and Comment cells may involve two clicks - one to highlight the cell in a row and the second click to edit or bring up the panel for the cell.

Buttons at Bottom

OK button

OK stores the values in the fields and removes the panel BUT no recalc is done.

Apply button

Apply stores the values in the grid and leaves the panel on the screen.

If Auto recalc is ticked in the MTF, then whenever the Apply button is clicked, a recalc of the associated Apply Many for the MTF is done.

Autopan on/off button

when clicked to say Autopan is on then if the chainage range is not in the view that the Reference string is on then the view will be panned so that it is on the view.

Highlight button

clicking the Highlight button brings up the Highlight Modifiers panel.
Continue to the next section 21.2.1.1 Create Hinge Commands.
21.2.1.1 Create Hinge Commands

The commands in the Hinge Modifiers grid are processed sequentially from top to bottom. The Hinge Modifier commands are selected from the Create menu that is displayed when clicking in a cell in the Type column of the Hinge Modifiers panel.

For a description of the options, see

- **Offset** [21.2.1.2 Offset]
- **Height** [21.2.1.3 Height]
- **Offset to string** [21.2.1.4 Offset to String]
- **Height to string** [21.2.1.5 Height to String]
- **Coord to string** [21.2.1.6 Coord to String]
- **Height to tin** [21.2.1.7 Height to Tin]
- **No hinge** [21.2.1.8 No Hinge]
- **Comment** [21.2.1.9 Comment]
- **Region** [21.2.1.10 Region]
21.2.1.2 Offset

The offset hinge modifier will move the hinge point a given offset distance (perpendicular to the reference string) from its current plan position. A positive offset is to the right of the hinge string and a negative offset to the left.

![Plan View](image)

Selecting Offset brings up the Hinge Offset panel

![Hinge Offset Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start chainage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End chainage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start offset</td>
<td>input</td>
<td></td>
<td>measures menu</td>
</tr>
<tr>
<td>End offset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Start chainage, End chainage, Interval
defines the start/end chainages for modifying the offset of the hinge string.

for information on these panel fields, see 21.2.1.11 Common Fields and Buttons on Hinge Modifier Panels.

Start/End offset  
start/end offset.
Absolute  tick box  tick
if ticked, the offset is set to the values given in the **start** and **end value** fields.
if not ticked, the values given in the **start** and **end value** fields are added to the existing offsets.

Cubic  tick box
if ticked, the offset is varied as a reverse cubic between the start and end chainages.
if not ticked, the offset is varied linearly between the start and end chainages.

Active, Comment, Extra start, Extra end, OK, Apply
for information on these panel fields, see 21.2.1.11 Common Fields and Buttons on Hinge Modifier Panels.

Go to the next section 21.2.1.3 Height or return to 21.2.1 MTF Hinge Modifiers
21.2.1.3 Height

The **Height** modifier linearly varies the height of the hinge point between the given chainages.

Selecting **Height** brings up the **Hinge Height** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start chainage, End chainage, Interval</td>
<td>real box</td>
<td>measures menu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td>Extra start/end</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td>Absolute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td>Cubic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active, Comment, Extra start, Extra end, OK, Apply</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Start chainage, End chainage, Interval*

defines the start/end chainages for modifying the height of the hinge string.

for information on these panel fields, see [21.2.1.11 Common Fields and Buttons on Hinge Modifier Panels](#).

*Start/End height*

start/end height.

*Extra start/end*

if **ticked**, add an extra x-section 0.1 mm **before** the start/end chainage.

*Absolute*

if **ticked**, the height is set to the values given in the **start** and **end value** fields.

if **not ticked**, the values given in the **start** and **end value** fields are added to the existing heights.

*Cubic*

if **ticked**, the height is varied as a reverse cubic between the start and end chainages.

if **not ticked**, the height is varied linearly between the start and end chainages.

*Active, Comment, Extra start, Extra end, OK, Apply*

for information on these panel fields, see [21.2.1.11 Common Fields and Buttons on Hinge Modifier Panels](#).
Modifier Panels.

Go to the next section 21.2.1.4 Offset to String or return to 21.2.1 MTF Hinge Modifiers.
21.2.1.4 Offset to String

The **Offset to string** hinge modifier makes the offset of the hinge point the same as the offset of a selected string.

Selecting **Offset to string** brings up the **Hinge Offset to String** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start chainage, End chainage, Interval</td>
<td>defines the start/end chainages for modifying the offset of the hinge string.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For information on these panel fields, see <a href="#">21.2.1.11 Common Fields and Buttons on Hinge Modifier Panels</a>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>When the <strong>Start mode</strong> is <strong>Start (ref)</strong>, or <strong>Typed</strong> and the chainage is <strong>blank</strong>, the modification begins at the low dropped chainage of the selected string.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>When the <strong>End mode</strong> is <strong>End (ref)</strong>, or <strong>Typed</strong> and the chainage is <strong>blank</strong>, the modification ends at the high dropped chainage of the selected string.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>String</td>
<td>string-select</td>
<td>select string to use for defining offset from hinge.</td>
<td></td>
</tr>
<tr>
<td>Active, Comment, Extra start, Extra end, OK, Apply</td>
<td>for information on these panel fields, see <a href="#">21.2.1.11 Common Fields and Buttons on Hinge Modifier Panels</a>.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go to the next section [21.2.1.5 Height to String](#) or return to [21.2.1 MTF Hinge Modifiers](#).
21.2.1.5 Height to String

The **Height to string** hinge modifier makes the height of the hinge point the same as the height of a selected string.

Selecting **Height to string** brings up the **Hinge Height to String** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Start chainage, End chainage, Interval</strong></td>
<td>defines the start/end chainages for modifying the height of the hinge string.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>String</strong></td>
<td>select string to use for defining height of hinge.</td>
<td>string-select</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Active, Comment, Extra start, Extra end, OK, Apply</strong></td>
<td>for information on these panel fields, see 21.2.1.11 Common Fields and Buttons on Hinge Modifier Panels.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go to the next section 21.2.1.6 **Coord to String** or return to 21.2.1 **MTF Hinge Modifiers**
21.2.1.6 Coord to String

The **Coord** hinge modifier is used to replace the x, y and z position of the hinge point by the x, y and z position of another 12d Model string.

Hence **Coord** replaces the hinge string by another string between the given chainages.

Selecting **Coord to String** brings up the **Hinge Coord to String** panel.

![Hinge Coord to String panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start chainage, End chainage, Interval</td>
<td>defines the start/end chainages for modifying the coordinates of the hinge string</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>String</td>
<td>select string to use for defining the coordinates of the hinge string</td>
<td>string-select</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For information on these panel fields, see 21.2.1.11 Common Fields and Buttons on Hinge Modifier Panels.

When the **Start mode** is **Start (ref)**, or **Typed** and the chainage is **blank**, the modification begins at the low dropped chainage of the selected string.

When the **End mode** is **End (ref)**, or **Typed** and the chainage is **blank**, the modification ends at the high dropped chainage of the selected string.

Go to the next section 21.2.1.7 Height to Tin or return to 21.2.1 MTF Hinge Modifiers.
21.2.1.7 Height to Tin

The **Height to tin** hinge modifier makes the height of the hinge point the same as the height of a tin at the same (x,y) location as the hinge point.

Selecting **Height to tin** brings up the **Hinge Height to Tin** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start chainage, End chainage, Interval</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>defines the start/end chainages for modifying the height of the hinge string</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for information on these panel fields, see 21.2.1.11 Common Fields and Buttons on Hinge Modifier Panels.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tin box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tin to use for z-values. At each vertex of the hinge string in he chainage range, set the z-value to be the tin z-value at the same (x,y) position as the vertex.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active, Comment, Extra start, Extra end, OK, Apply</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for information on these panel fields, see 21.2.1.11 Common Fields and Buttons on Hinge Modifier Panels.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go to the next section 21.2.8 No Hinge or return to 21.2.1 MTF Hinge Modifiers.
21.2.1.8 No Hinge

The **No hinge** modifier is used to **stop** the hinge string (and hence the apply) between given chainages. This will leave a gap in the strings created by the apply between the given chainages.

Selecting **No hinge** brings up the **No Hinge** panel

![](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Start chainage, End chainage, Interval</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>defines the start/end chainages for stopping the hinge string</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for information on these panel fields, see <a href="#">21.2.1.11 Common Fields and Buttons on Hinge Modifier Panels</a></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Active, Comment, Extra start, Extra end, OK, Apply</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for information on these panel fields, see <a href="#">21.2.1.11 Common Fields and Buttons on Hinge Modifier Panels</a></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go to the next section [21.2.9 Comment](#) or return to [21.2.1 MTF Hinge Modifiers](#).
21.2.1.9 Comment

The **Comment** option inserts a comment into the row. Selecting **Comment** brings up the **Hinge Comment** panel.

![Hinge Comment panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment, OK, Apply</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For information on these panel fields, see [21.2.1.11 Common Fields and Buttons on Hinge Modifier Panels](#).

Go to the next section [21.2.1.10 Region](#) or return to [21.2.1 MTF Hinge Modifiers](#).

21.2.1.10 Region

The **Region** option inserts a **Region command** into the grid. Selecting **Region** brings up the **Hinge Region** panel.

![Hinge Region panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region description</td>
<td>text box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Name for the Region.*

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bookmark name</td>
<td>text box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*If not blank, this is a secondary name, often a shorter name, that is used in the Region pop up rather than using the Region description.*

*If blank, then when the grid is saved, the Bookmark name is set to be the same as the Region description.*

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collapse</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*If ticked, all the commands in the grid until the next Region command are collapsed into this Region command.*

*If not ticked, the commands in the grid until the next Region command are not collapsed.*
OK, Apply

for information on these panel fields, see 21.2.1.11 Common Fields and Buttons on Hinge Modifier Panels.

There are Regions, Previous Region and Next Region icons at the right hand side of the Hinge Modifiers panel that use this created Region. For information on using these icons and information on Regions in a grid, see 4.19.6 Grids in Panels.

Go to the next section 21.2.1.11 Common Fields and Buttons on Hinge Modifier Panels or return to 21.2.1 MTF Hinge Modifiers.
21.2.1.11 Common Fields and Buttons on Hinge Modifier Panels

Most of the Hinge Modifier panels have the following common panels fields and buttons.

**Start/End chainage**  smart chainage box  Start (ref)/End (ref)

defines the start/end chainages for use in the Modifier.
For more information on Start/End Chainages and Modes, see 21.4 Smart Chainages.

**Interval**  real box

*if not blank*, the interval to use to create cross sections and strings over the given chainage range.
*If blank*, the interval given by any MTF Edit => Interval commands, and/or the Section separation value from the Apply MTF panel, is used.

**Extra start**  tick box  tick

*if ticked*, add an extra x-section a distance Extra start/value millimetres before the start chainage. See 21.2.7.4 MTF Setting Show Extra Start/End and 21.2.7.5 MTF Setting Extra Start/End value.

**Extra end**  tick box  tick

*if ticked*, add an extra x-section a distance Extra start/value millimetres before the end chainage. See 21.2.7.4 MTF Setting Show Extra Start/End and 21.2.7.5 MTF Setting Extra Start/End value.

**Comment**  text box

comment to add to the Comment column for the row of the grid.

**Active**  yes/no choice box

*if yes*, use this modifier.
*If no*, don’t use this modifier.

**OK**  button

**OK** stores the values in the fields and removes the panel BUT no recalc is done.

**Apply**  button
Apply stores the values and leaves the panel on the screen.

Go to the next section 21.2.2 Left and Right MTF Modifiers or return to 21.2.1 MTF Hinge Modifiers.
21.2.2 Left and Right MTF Modifiers

In its simplest form, the MTF (Modifiers and Templates File) defines what templates are used on either side of the hinge string, where the templates stop and start with linear interpolation between two templates over a chainage range.

For more complex work, MTF Modifiers are used to modify the strings defined by the templates, and even totally replace the use of templates and insert links and modify the inserted links and generate sections, strings and trimeshes.

Just as templates are defined on the left and the right side, there are left and right MTF Modifiers for working on the links on the left or right side of the Hinge string.

Most of the MTF Modifiers have a common methodology:

(a) an existing link from a template (referenced by its name from the template definition), or a new link that is created by an MTF Insert, can be removed or modified between given start and end chainages on the reference string.

(b) values defining a link are modified over a given start and end chainage. How the values are modified depends on the particular modifier command.

Note: regardless of how the link is originally defined (for example by width and xfall), any of the values width, height, xfall and slope then exist and can be modified. See 21.1.2.1 Calculating Width, Height, Xfall or Slope from Original Definitions.

(c) more than one MTF modifier may exist for a link at a given chainage hence the order of the MTF modifiers is important.

Modify left option brings up the Left MTF Modifiers panel which is used to create and edit modifiers to use on the left hand side of the Hinge string.

Similarly the Modify right option brings up the Right MTF Modifiers panel which is used to create and edit modifiers on the right hand side of the Hinge string.
The Left/Right MTF Modifiers panel consists of a grid with rows (or lines) with Commands in them, and an OK or Apply button to record the results.

**Left/Right MTF Modifier Grid**

For information on the general operation of a grid including the icons on the right hand side, see 4.19.6 Grids in Panels.

The commands in the Hinge Modifier grid are processed sequentially from the top to the bottom of the grid.

**When the Grid Row is Empty**

If the row of the grid is empty, clicking LB in the empty row will bring up the Create menu which contains all the available MTF Modifier commands. Note this may involve two clicks - one to highlight a column in a row and the second click to bring up the Create menu.

Selecting a menu item will bring up an associated panel which displays the information required for the MTF Modifier command. When the panel is filled in and OK or Apply selected, the panel information is written out to the row of the grid and is known as a MTF modifier command or modifier command for short. For information on each of the Hinge Commands, see 21.2.2.1 Create MTF Commands.

**When the Grid Row is Not Empty**

If the row of the grid is not empty (and hence filled with a modifier command) then clicking LB in the cell:

(a) Type will bring up the associated panel for the modifier command.

For information on each of the Hinge Commands, see 21.2.2.1 Create MTF Commands.

(b) Start chainage cell brings up the Smart Start Chainage panel
The Start Chainage Mode will determine what other fields are also on the panel (for example Extension ref for Mode Start of reference string). For more information on Chainage Modes, see 21.2.1 MTF Hinge Modifiers

(c) End Chainage cell brings up the Smart End Chainage panel

The End Chainage Mode will determine what other fields are also on the panel (for example Extension ref for Mode End of reference string). For more information on Chainage Modes, see 21.2.1 MTF Hinge Modifiers

(d) Interval will allow a real value to be typed into the cell

Note that the Interval column will not appear in the grid if Show interval column? is not ticked in the MTF Settings. See 21.2.7.8 MTF Setting Show Interval Column

(e) Extra Start, Extra End or Active will toggle the tick/not ticked

Note that the Extra start and Extra end columns will not appear in the grid if Show extra start/end column? is not ticked in the MTF Settings. See 21.2.7.6 MTF Setting Show Extra Start/End column.

(f) Comment will allow text to be typed into the cell
Note that clicking in the Type, Start chainage, End chainage, Interval, Extra Start, Extra End, Active and Comment cells may involve two clicks - one to highlight the cell in a row and the second click to edit or bring up the panel for the cell.

Buttons at Bottom

OK button

OK stores the values in the fields and removes the panel BUT no recalc is done.

Apply button

Apply stores the values in the grid and leaves the panel on the screen.

If Auto recalc is ticked in the MTF, then whenever the Apply button is clicked, a recalc of the associated Apply Many for the MTF is done.

Autopan on/off button

when clicked to say Autopan is on then if the chainage range is not in the view that the Reference string is on then the view will be panned so that it is on the view. See 21.2.2.2 Fixed Link Modifiers.

Highlight button

clicking the Highlight button brings up the Highlight Modifiers panel.

See 21.2.2.1.6 Highlight Button

Each of the Create commands will be described in the following sections.

The Create commands for the left side modifiers and the right side modifiers work in the same way so the modifiers will only be described the once.

Continue to the next section 21.2.2.1 Create MTF Commands.
21.2.2.1 Create MTF Commands

![Create MTF Commands]

modify fixed section
modify the cut, fill, final cut/fill of a template
define interval values, aliases etc
create shapes, strings, tins and trimeshes
insert snippets
turn on debugging
pause the MTF
add a comment row
define a region in the grid

When brought up from **Modifiers left**, the **Create** options work on the **links** are on the **left hand side** of the **Hinge string**. And on the left, the links are placed from right to left so the **start of a left side link** is at the **right hand end of the link**. See 21.1.1.1 MTF Links, Points and Strings.

When brought up from **Modifiers right**, the **Create** options work on the **links** are on the **right hand side** of the **Hinge string**. And on the right, the links are placed from left to right so the **start of a right side link** is at the **left hand end of the link**. See 21.1.1.1 MTF Links, Points and Strings.

For the options see

- **Fixed** 21.2.2.2 Fixed Link Modifiers
- **Template** 21.2.2.3 Template Modifiers
- **Interval** 21.2.2.4 Interval
- **Create** 21.2.2.5 MTF Create
- **Snippet** 21.2.2.6 Snippet
- **Debug** 21.2.2.7 Debug
- **Pause** 21.2.2.8 Pause
- **Comment** 21.2.2.9 Comment
- **Region** 21.2.2.10 Region

For general information about the MTF Commands, see

21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels
21.2.2.1.2 Link or Link(s)
21.2.2.1.3 Width, Height and Xfall Fields on MTF Modifier Panels
21.2.2.1.4 Alias for MTF Modifiers
21.2.2.1.5 Autopan Button
21.2.2.1.6 Highlight Button
21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels

Most of the Modifier panels have the following common panels fields.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias</td>
<td>text box</td>
<td>if not blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>a text name that can be used to refer to for this row in the grid.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Alias is a reference to this command in the Left/Right MTF Modifiers grid that can be referred to by Smart Chainages used in the Left/Right MTF Modifiers commands in the grid.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>See 21.2.2.1.4 Alias for MTF Modifiers.</td>
<td></td>
</tr>
<tr>
<td>Start/End chainage</td>
<td>smart chainage box</td>
<td>Start (ref)/End (ref)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>defines the start/end chainages for use in the Modifier.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>For more information on Start/End Chainages and Modes, see 21.4 Smart Chainages.</td>
<td></td>
</tr>
<tr>
<td>Interval</td>
<td>real box</td>
<td>if not blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the interval to use to create cross sections and strings over the given chainage range.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If blank, the interval given by any MTF Edit =&gt; Interval commands, and/or the Section separation value from the Apply MTF panel, is used.</td>
<td></td>
</tr>
<tr>
<td>Extra start</td>
<td>tick box</td>
<td>if ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>add an extra x-section a distance Extra start/value millimetres before the start chainage. See 21.2.7.4 MTF Setting Show Extra Start/End and 21.2.7.5 MTF Setting Extra Start/End value.</td>
<td></td>
</tr>
<tr>
<td>Extra end</td>
<td>tick box</td>
<td>if ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>add an extra x-section a distance Extra start/value millimetres before the end chainage. See 21.2.7.4 MTF Setting Show Extra Start/End and 21.2.7.5 MTF Setting Extra Start/End value.</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>comment to add to the Comment column for the row of the grid.</td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>tick box</td>
<td>if ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>use this modifier.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If not ticked, don't use this modifier.</td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OK stores the values in the fields and removes the panel BUT no recalc is done.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apply</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Apply stores the values and leaves the panel on the screen.

If the MTF is being used in an Apply MTF and Auto recalc is ticked in the MTF, then whenever the Apply button is clicked, a recalc of the associated Apply MTF for the MTF is done.

Go to the next section 21.2.2.1.2 Link or Link(s) or return to 21.2.2.1 Create MTF Commands.
21.2.2.1.2 Link or Link(s)

Some **Modifier** panels allow more than one link name to be specified.

If only one Link is allowed, then the panel field will be **Link**.

If more than one Link is allowed, then the panel field will be **Link(s)**.

When multiple Links are allowed, each Link name is separated by one or more spaces. If the Link name contains a space then it must be surrounded by double quotes. For example "name with a space".

When an MTF panel that allows multiple Link names is edited, all the Link names will be displayed surrounded by double quotes. This applies even if there is only one Link name in the field.

Go to the next section **21.2.2.1.3 Width, Height and Xfall Fields on MTF Modifier Panels** or return to **21.2.2.1 Create MTF Commands**
21.2.2.1.3 Width, Height and Xfall Fields on MTF Modifier Panels

When creating a link, the Modifier panels have the following common panels fields. The fields and buttons have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>width of the link.</td>
<td>real box</td>
<td>measure menu</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>the z-value of the end of the link minus the z-value of the start of the link. That is, the delta z for the link.</td>
<td>real box</td>
<td>measure menu</td>
<td></td>
</tr>
<tr>
<td>xfall</td>
<td>the crossfall of the link.</td>
<td>real box</td>
<td>measure menu</td>
<td></td>
</tr>
</tbody>
</table>

The diagram illustrates the Cross Section View of a Template, showing the xfall on left and right.

Go to the next section 21.2.2.1.4 Alias for MTF Modifiers or return to 21.2.1 Create MTF Commands.
21.2.2.1.4 Alias for MTF Modifiers

For each Left/Right Modifiers Command, there is an optional text field called **Alias**.

An **Alias** can be used to uniquely refer to a particular command in the Left or Right MTF Modifiers grid independently of its row number.

Most MTF Commands have an **Alias** field and if it is filled in then the value will be the **Alias** for that row.

There is also a special command **Chainage Alias** that defines an **Alias** for that row and those Start and End Chainages. See 21.2.2.4.1 **Chainage Alias**.

Apart from defining an **Alias** and associated **Start** and **End** Chainages for that row, **Chainage Alias** has no other effect.

Once an **Alias** exists, it can be used in the two Smart Chainage modes, **Relative to Alias Start** and **Relative to Alias End**. See 21.4.19 **Relative to Alias Start** and 21.4.20 **Relative to Alias End**.

If an **Alias** is given for a command in the Left MTF Modifiers panel then it must be unique amongst all the Aliases for the Left MTF Modifiers commands.

Similarly if an **Alias** is given for a command in the Right MTF Modifiers panel then it must be unique amongst all the Aliases for the Right MTF Modifiers commands.

Go to the next section 21.2.2.1.5 **Autopan Button** or return to 21.2.2.1 **Create MTF Commands**
21.2.2.1.5 Autopan Button

The Autopan button is at the button of the Left/Right MTF Modifiers panels and clicking on the button will toggle between the on/off states.

The Autopan button is used in conjunction with clicking LB in the Type, Start chainage and End Chainage columns.

For all plan views that the Reference string for the MTF is on, and all section views where the Reference string is profiled, clicking in the grid on the Left/Right MTF Modifiers panels will have the following effect:

(a) If LB is clicked on the number in the grid of a command then the entire line in the grid highlights, and highlight arrows are placed at the Start and End chainage of the command.

(b) If LB is clicked in the Start chainage column of a command, then that cell of the grid highlights, and

   If Autopan is on then the plan and/or section views will pan so that the Start chainage highlight arrow shows on the views.

Important Note: the scale and the centre point of the views are not changed so if the Start/End chainage is not visible on the view, then the highlight arrow for the Start/End will not appear.
If **Autopan is off** then the Start chainage highlight arrow occurs but the view does not change. So the Start chainage highlight arrow will only show if the Start chainage is already visible on the plan and/or section views.

(c) If LB is clicked in the **End chainage** column of a command, then that cell of the grid highlights, and

If **Autopan is on** then the plan and/or section views will pan so that the End chainage highlight arrow shows on the views.

If **Autopan is off** then the End chainage highlight arrow occurs but the view does not change. So the End chainage highlight arrow will only show if the End chainage is already visible on the plan and/or section views.
(d) if LB is clicked in the **Type** column of a command, then that cell of the grid highlights, and

If **Autopan is on** then the plan and/or section views will do a fit about the Start chainage and End chainage so that both the Start chainage highlight arrow and the End chainage highlight arrow are visible in the plan and/or section views.

If **Autopan is off** then the plan and/or section views do not change. The Start chainage highlight arrow and the End chainage highlight arrow are turned on but they will only be visible if the Start chainage and/or End chainage are already visible on the views.
reference string If **Autopan is on** is showing AND the **Reference string** for the MTF is on a plan view:

(a) whenever you click on **Type** column in the grid for a command that does not involve the entire string, the scale and centre of the view is modified so that the **Start** and **End** chainage extents of the command are displayed in the plan view (with the addition of an extra percentage that is set in env.4d)

(b) whenever you click on **Start chainage** column of a command that does not involve the entire string, the scale and centre of the view is modified so that the **Start** and **End** chainage extents of the command are displayed in the plan view (with the addition of an extra percentage that is set in env.4d)

Go to the next section [21.2.2.1.6 Highlight Button](#) or return to [21.2.2.1 Create MTF Commands](#)
21.2.2.1.6 Highlight Button

Highlight button

clicking the Highlight button brings up the Highlight Modifiers panel.

Return to 21.2 MTF Edit.
21.2.2.2 Fixed Link Modifiers

The Fixed walk-right brings up the Fixed menu with options to insert and modify the fixed links.

For

- Insert: 21.2.2.2.1 Fixed Link - Insert
- Remove: 21.2.2.2.2 Fixed Link - Remove
- Trim: 21.2.2.2.3 Fixed - Trim
- Modify link: 21.2.2.2.4 Fixed - Modify Link
- Rename: 21.2.2.2.5 Fixed Link - Rename Link
- Absolute: 21.2.2.2.6 Fixed Link - Absolute to a Base Link
- Parallel: 21.2.2.2.7 Fixed Link - Parallel
- Decisions: 21.2.2.2.8 Fixed Link - Decisions
- from link: 21.2.2.2.9 Fixed Link - From link
- to string: 21.2.2.2.10 Fixed Link - To String
- to tin: 21.2.2.2.11 Fixed Link - To Tin
- to RL: 21.2.2.2.12 Fixed - To RL
- to 2 heights: 21.2.2.2.13 Fixed - to 2 Heights
- to 2 strings: 21.2.2.2.14 Fixed - by 2 strings
- Interface to tin: 21.2.2.2.15 Fixed - Interface to Tin
- Boxing: 21.2.2.2.16 Fixed - Boxing
21.2.2.2.1 Fixed Link - Insert

The Fixed Insert walk-right brings up the Fixed Insert menu with options to insert fixed links, insert a fixed part of a template, and insert a full template.

For

- **Insert**  
  - 21.2.2.2.1.1 Insert a Fixed Link
- **Insert absolute**  
  - 21.2.2.2.1.2 Insert a Fixed Link Absolute
- **Insert at string**  
  - 21.2.2.2.1.3 Insert a Fixed Link at a String
- **Insert fixed template**  
  - 21.2.2.2.1.4 Insert Fixed Links from a Template
- **Insert full template**  
  - 21.2.2.2.1.5 Insert Full Template
- **Insert xfall intersect**  
  - 21.2.2.2.1.6 Fixed Link - Insert Xfall Intersect
21.2.2.1.1 Insert a Fixed Link

Fixed links can be inserted by specifying either width and height, width and xfall, or height and xfall, where width/height/xfall are measured from the last fixed link before this link.

**Note** - height is not a z-value (RL) but the difference in z-values between the start and the end of the link.

It doesn’t matter which of the two is used to define the link, the third (plus slope) can be calculated. See 21.2 MTF Edit.

So the link can be modified by varying the width, xfall, height or slope.

Selecting **Insert** brings up the **Fixed - Insert** panel

![Fixed - Insert panel](image.png)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>layer box</td>
<td>available Layers</td>
<td>Layer for the new link. For information on Layers, see 21.1.1.2 MTF Links and Layers.</td>
</tr>
<tr>
<td>Link</td>
<td>text box</td>
<td></td>
<td>name for the new link.</td>
</tr>
<tr>
<td>Colour</td>
<td>colour box</td>
<td>available colours</td>
<td>colour of the link being created.</td>
</tr>
<tr>
<td>Width /Height/Xfall</td>
<td>real box</td>
<td>measures menu</td>
<td>width/height/crossfall of the link being created - only use two of the three.</td>
</tr>
</tbody>
</table>

For more information on these panel fields, see 21.2.2.1.3 Width, Height and Xfall Fields on MTF Modifier Panels.
**Before** choice box select name menu

*if not blank*, the name of the link to insert the new link before.

*If blank and After is blank*, the link is appended to the end of the fixed part of the template.

**After** choice box select name menu

*if Before is not blank, After is ignored.*

*If not blank and Before is blank, the name of the link to insert the new link after.*

*If blank and Before is blank, Before is used.*

**Note:** One of Before or After must be *blank*. If they are both blank then Before takes precedence over After.

**Alias, Start Chainage, End Chainage, Interval**

defines the start/end chainages for inserting the new link

*For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.*

**Comment, Extra start, Extra End, Active, OK, Apply**

*For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.*

Go to the next section 21.2.2.1.2 Insert a Fixed Link Absolute or return to 21.2.2.1 Fixed Link - Insert.
21.2.2.1.2 Insert a Fixed Link Absolute

Fixed links can be inserted by specifying either width and height, width and xfall, or height and xfall, where the width/height/xfall are measured from a Base link, or a combination of a Base link and a Grade link.

The new inserted link must end up outside any previous links.

Note - height is not a z-value (RL) but a delta height.

Selecting Insert absolute brings up the Fixed - Insert Absolute panel

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>layer box</td>
<td>available Layers</td>
<td></td>
</tr>
<tr>
<td>Link name</td>
<td>names box</td>
<td>select name menu</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td>Width /height/xfall</td>
<td>input</td>
<td>measures menu</td>
<td></td>
</tr>
</tbody>
</table>

Layer for the new link. For information on Layers, see 21.1.1.2 MTF Links and Layers.

Note: the new inserted link must end up outside any previous links.

If a Grade link is given, only the combinations width and crossfall, or width and height, are allowed.
If there is no Grade link, any two of the three can be used.

**Base link, Grade link**

If Grade link is blank:

any combination of two of width, height and xfall can be used to define the new link.

if Base link is non blank, then it is the name of the link to take the width/height/xfall from.

If Base link is blank, then the option acts as a normal Insert and the width/height/xfall are taken from the last fixed link before this insert.

If Grade link is not blank:

only the combinations width and crossfall, or width and height, are allowed.

**Width:**

if Base link is non blank, then it is the name of the link to take the width from.

If Base link is blank, then the width is from the last fixed link before this insert.

**Xfall or Height**

If xfall is given, then the xfall is applied from the Grade link.

If height is given, then the height is added to the height of the Grade link.

**Note:** the new inserted link must end up outside any previous links.

**Alias, Start Chainage, End Chainage, Interval**

defines the start/end chainages for inserting the new link

For information on these panel fields, see [21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels](#).

**Comment, Extra start, Extra End, Active, OK, Apply**

For information on these panel fields, see [21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels](#).

Go to the next section [21.2.2.1.3 Insert a Fixed Link at a String](#) or return to [21.2.2.1 Fixed Link - Insert](#).
21.2.2.2.1.3 Insert a Fixed Link at a String

The **Insert at string** modifier copies an existing string between the two given chainages and inserts it as a link of the template.

The **Insert at string** copies an existing string between the two given chainages and inserts it as a link of the template. The created link can also be given an offset and depth from the string.

Hence the end of the new link is constructed so that it is a given plan distance **Stop short** from the **string**, and stops at the depth **Strip below the string**.

---

**Section View**

![Diagram showing the Insert at String link defined by the String, Stop short and Strip (depth).](image)

**Fixed - At String link defined by the String, Stop short and Strip (depth).**

Selecting **Insert at string** brings up the **Fixed - Modify Insert at String** panel.

---

The new fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Link name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select string</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Side to search</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strip</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stop short</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start chainage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End chainage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
New link type choice box Width and Xfall, Width and Height, Height and Xfall states how the link is to be defined.

Layer layer box available Layers Layer for the new link. For information on Layers, see 21.1.1.2 MTF Links and Layers.

Link name names box select name menu name for the new link.

Colour colour box available colours colour for the new link

Strip real box measures menu the new link is constructed so that its end is Strip below the selected string.
Strip is a depth and is positive in the downward direction It can be positive or negative.

Stop short real box measures menu the new link is constructed so that its end is the plan distance Stop short of the selected string.
When the command is a Left Modifier, positive plan distance is measured from the Hinge string as zero and then going out to the left.
When the command is a Right Modifier, positive plan distance is measured from the Hinge string as zero and then going out to the right.
Stop short can be positive or negative.

Alias, Start Chainage, End Chainage, Interval defines the start/end chainages for inserting the new link
For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Select string string select box select the string to copy as a link

Side to search choice box Left side, Right side, Both sides side to search to find the string.

Comment, Extra start, Extra End, Active For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Go to the next section 21.2.2.1.4 Insert Fixed Links from a Template or return to 21.2.2.2.1 Fixed Link - Insert.
21.2.2.1.4 Insert Fixed Links from a Template

The **Insert fixed template** modifier inserts all the fixed links from an existing Template. Selecting **Insert fixed template** brings up the **Insert Fixed Template** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template</td>
<td>template box</td>
<td>select template menu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>the name of the Template to take the fixed links from.</td>
</tr>
<tr>
<td>Layer</td>
<td>layer box</td>
<td>available Layers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Layer for the new links. For information on Layers, see <a href="#">21.1.1.2 MTF Links and Layers</a>.</td>
</tr>
<tr>
<td>Before</td>
<td>choice box</td>
<td>select name menu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><em>if not blank</em>, the fixed links from the selected template are inserted before the given link.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><em>If blank and After is blank</em>, the fixed links from the selected template are appended to the end of the existing fixed links.</td>
</tr>
<tr>
<td>After</td>
<td>choice box</td>
<td>select name menu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><em>if Before is not blank, After is ignored.</em></td>
</tr>
<tr>
<td>Alias, Start Chainage, End Chainage, Interval</td>
<td>defines the start/end chainages for inserting the new fixed links</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For information on these panel fields, see 21.2.2.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply
For information on these panel fields, see 21.2.2.1 Common Fields and Buttons on MTF Modifier Panels.

Go to the next section 21.2.2.1.5 Insert Full Template or return to 21.2.2.1 Fixed Link - Insert.
21.2.2.2.1.5 Insert Full Template

The Insert Full Template *inserts* all the fixed links from a selected template after the existing fixed links *AND also replaces* the decision, cut, fill and final cut/fill links of the existing template with those from the selected template.

So the option *leaves* the existing fixed links from the template but *removes the existing* decision, cut, fill and final cut/fill links in the template.

Selecting Insert Full Template brings up the Fixed - Insert Full Template panel

![Fixed - Insert Full Template Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template</td>
<td>template box</td>
<td>select template menu</td>
<td>the name of the template to take the fixed, decision, cut, fill and final cut/fill links from.</td>
</tr>
<tr>
<td>Layer</td>
<td>layer box</td>
<td>available Layers</td>
<td>Layer for the new links. For information on Layers, see 21.1.1.2 MTF Links and Layers.</td>
</tr>
<tr>
<td>Alias, Start Chainage, End Chainage, Interval</td>
<td>layer</td>
<td>available Layers</td>
<td>defines the start/end chainages for inserting the new fixed links. For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.</td>
</tr>
<tr>
<td>Comment, Extra start, Extra End, Active, OK, Apply</td>
<td></td>
<td></td>
<td>For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.</td>
</tr>
</tbody>
</table>
Go to the next section 21.2.2.1.6 Fixed Link - Insert Xfall Intersect or return to 21.2.2.1 Fixed Link - Insert.
21.2.2.2.1.6 Fixed Link - Insert Xfall Intersect

The Xfall insert modifier inserts a new link.

And the new link is created by coming off the last link of the fixed template before the **Insert Xfall Intersect** command, and going out from that last fixed link in a variety of ways and meeting a selected string.

For example, over the chainage range, a given xfall is taken from the last link and the selected string, and the new link is the intersection of the two xfalls.

The different methods for creating the new link are:

- **Same xfall, normal ref**
- **Same xfall, normal both**
- **Diff xfalls, normal ref**
- **Diff xfalls, normal both**

and for the definitions go to [21.2.2.1.6.1 Fixed - Calculating the New Link for each Type](#).

Selecting **Insert xfall intersect** brings up the **Fixed - Xfall Intersect** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Layer</strong></td>
<td>layer box</td>
<td>layer box</td>
<td>available Layers</td>
<td></td>
</tr>
<tr>
<td><strong>Link name</strong></td>
<td>name box</td>
<td>name box</td>
<td>available names</td>
<td></td>
</tr>
</tbody>
</table>

Layer for the new link. For information on Layers, see [21.1.1.2 MTF Links and Layers](#).
name of the new link.

**New link colour**  
co... selective.

**Other String**  
**string select**  
select the secondary string to use in the methods for creating the new link.

**Alias, Start Chainage, End Chainage, Interval**  
defines the start/end chainages for inserting the new fixed links.

For information on these panel fields, see [21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels](#).

**Type**  
**choice box**

For the types of ways to create the new link, go to [21.2.2.1.6.1 Fixed - Calculating the New Link for each Type](#).

**Xfall, Xfall hinge, Xfall sec etc**

which of these fields are present, and what they are for, depends on **Type**.

**Comment, Extra start, Extra End, Active, OK, Apply**

For information on these panel fields, see [21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels](#).

Return to [21.2.2.1 Fixed Link - Insert](#).

### 21.2.2.1.6.1 Fixed - Calculating the New Link for each Type

for the definitions of the calculations for each choice go to [Same Xfall and Normal to Reference String](#), [Same Xfall and Normal to Reference String and to Other String](#), [Two Xfalls and Normal to Reference String](#), [Two Xfalls and Normal to Reference String and to Other String](#)

**Same Xfall and Normal to Reference String**
This option requires a Xfall.

The **Start mode** and **End Mode** refer to **Reference** string and at each chainage (ch) between the Start mode and the End mode, a section is taken **normal** (perpendicular) to the **Reference string** and cutting the **last fixed link before the Table Drain command**, and the **Other string**.

On this section, the given xfall **Xfall** is taken from the last fixed link, and the xfall of **negative Xfall** from **Other string**, and a vertex of the new link created where the xfalls intersect.

For information about the sign convention for offset and xfalls, go to [20.8.11.2 Sign Convention for Heights, Offsets and Xfalls in Create by Xfall and Grade](#).

---

### Same Xfall and Normal to Reference String and to Other String

This option requires a Xfall.

The **Start mode** and **End Mode** refer to **Reference** string and at each chainage ch between the Start mode and the End mode, a section is taken **normal** (perpendicular) to the **Reference string**.
string and cutting the last fixed link before the Table Drain command, and the xfall Xfall is taken from the cut with the last fixed link and along the section.

This is then intersected with a section normal to the Other string and with the xfall negative Xfall.

The new link is formed from the intersection points.

Note - it may not be possible to find such an intersection point.

For information about the sign convention for offset and xfalls, go to 20.8.11.2 Sign Convention for Heights, Offsets and Xfalls in Create by Xfall and Grade.

Two Xfalls and Normal to Reference String

This option requires to xfalls: Xfall fixed link and Xfall other.

The Start mode and End Mode refer to Reference string and at each chainage (ch) between the Start mode and the End mode, a section is taken normal (perpendicular) to the Reference string and cutting the last fixed link before the Table Drain command, and the Other string.

On this section, the given xfall Xfall fixed link is taken from the last fixed link, and the xfall of Xfall other from Other string, and a vertex of the new link created where the xfalls intersect.

For information about the sign convention for offset and xfalls, go to 20.8.11.2 Sign Convention for Heights, Offsets and Xfalls in Create by Xfall and Grade.
Two Xfalls and Normal to Reference String and to Other String

This option requires to xfalls: Xfall fixed link and Xfall other.

The Start mode and End Mode refer to Reference string and at each chainage ch between the Start mode and the End mode, a section is taken normal (perpendicular) to the Reference string and cutting the last fixed link before the Table Drain command, and the xfall Xfall fixed link is taken from the cut with the last fixed link and along the section.

This is then intersected with a section normal to the Other string and with the xfall Xfall other. The new link is formed from the intersection points.

Note - it may not be possible to find such an intersection point.

For information about the sign convention for offset and xfalls, go to 20.8.11.2 Sign Convention for Heights, Offsets and Xfalls in Create by Xfall and Grade.
Continue to the next section 21.2.2.2 Fixed Link - Remove or return to 21.2.2.2 Fixed Link Modifiers or 21.2.2 Left and Right MTF Modifiers.
21.2.2.2.2 Fixed Link - Remove

The fixed Remove walk-right brings up the fixed Remove menu with options to remove links.

![Fixed Remove menu]

To go straight to the documentation on each of the options on the Fixed modifier menu:

See

- **Remove**  
  - [21.2.2.2.1 Remove a Fixed link](#)
- **Remove absolute**  
  - [21.2.2.2.2 Remove a Fixed link - Absolute](#)
- **Leave fixed/remove number**  
  - [21.2.2.2.3 Fixed Link - Remove All But Fixed & Remove a Number of Fixed Links](#)
- **Leave fixed/remove named**  
  - [21.2.2.2.4 Fixed Link - Remove All But Fixed & Remove Named Fixed Links](#)
- **Leave fixed/remove from name**  
  - [21.2.2.2.5 Fixed Link - Remove All But Fixed & Remove Fixed Links from a Named Link](#)
- **Remove layers**  
  - [21.2.2.2.6 Fixed Link - Remove Layer](#)
21.2.2.2.1 Remove a Fixed link

The **Remove** option deletes fixed links between given chainages.

Because the link is no longer there, any following links will then be relative to the link before the deleted link.

Note that there is also a **Remove Absolute** option that deletes a link but leave the absolute position of the other links undisturbed. See **21.2.2.2.2 Remove a Fixed link - Absolute**.

Selecting **Remove** brings up the **Fixed - Remove** panel
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>layer box</td>
<td>available Layers</td>
<td></td>
</tr>
<tr>
<td>Link(s)</td>
<td>name box</td>
<td>select name menu</td>
<td></td>
</tr>
</tbody>
</table>

Layer to remove the link. For information on Layers, see 21.1.1.2 MTF Links and Layers.

name of the links to remove. See 21.2.2.1.2 Link or Link(s).

Alias, Start Chainage, End Chainage, Interval

defines the start/end chainages for removing the given fixed links.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Go to the next section 21.2.2.2.2 Remove a Fixed link - Absolute or return to 21.2.2.2 Fixed Link - Remove.
21.2.2.2.2 Remove a Fixed link - Absolute

The **Remove Absolute** option deletes fixed links between given chainages whilst leaving the absolute position of the other links undisturbed.

Selecting **Remove absolute** brings up the **Fixed - Remove Absolute** panel.

The fields and buttons used in this panel have the following functions.
<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>layer box</td>
<td>available Layers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><em>Layer to remove the link. For information on Layers, see 21.1.1.2 MTF Links and Layers.</em></td>
</tr>
<tr>
<td>Link(s)</td>
<td>name box</td>
<td>select name menu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><em>name of the links to remove. See 21.2.2.1.2 Link or Link(s).</em></td>
</tr>
</tbody>
</table>

**Alias, Start Chainage, End Chainage, Interval**

defines the start/end chainages for removing the given fixed links.

*For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.*

**Comment, Extra start, Extra End, Active, OK, Apply**

*For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.*

Go to the next section 21.2.2.2.2.3 Fixed Link - Remove All But Fixed & Remove a Number of Fixed Links or return to 21.2.2.2 Fixed Link - Remove.
21.2.2.2.3 Fixed Link - Remove All But Fixed & Remove a Number of Fixed Links

The **Only Fixed** option removes any of the variable cut and fill, final cut/fill links and decisions that have been defined up to this point in the modifiers grid.

Also starting from the outermost fixed link, it can also removed one or more of the remaining fixed links.

Selecting **Only Fixed** brings up the **Only Fixed** panel.

![Only Fixed Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias, Start Chainage, End Chainage, Interval</td>
<td>defines the start/end chainages to remove the cut, fill and final cut/fill links, and some fixed links.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.*

<table>
<thead>
<tr>
<th>Layer</th>
<th>layer box</th>
<th>available Layers</th>
<th>Layer to remove the links from. For information on Layers, see 21.1.1.2 MTF Links and Layers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. links to remove</td>
<td>integer box</td>
<td>0</td>
<td>if <strong>greater than zero</strong>, then starting from the outside link of the fixed links, this number of fixed links are removed. If the number is larger than the number of fixed links, then it removes all the fixed links. So a large number will remove all the links - fixed, cut, fill and final cut/fill. If <strong>zero</strong> then no fixed links are removed. If <strong>less than zero</strong>, then starting from the first link of the fixed links, this number of fixed links are kept and the outer fixed links are removed. If the number is larger than the number of fixed links, then it</td>
</tr>
</tbody>
</table>
removes all the fixed links. So a large number will remove all the links - fixed, cut, fill and final cut/fill.

**Comment, Extra start, Extra End, Active, OK, Apply**

For information on these panel fields, see [21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels](#).

Go to the next section [21.2.2.2.3 Fixed Link - Remove All But Fixed & Remove a Number of Fixed Links](#) or return to [21.2.2.2 Fixed Link - Remove](#).
21.2.2.2.4 Fixed Link - Remove All But Fixed & Remove Named Fixed Links

The **Only Fixed Named** option removes any of the variable cut and fill, final cut/fill links and decisions that have been defined up to this point in the modifiers grid.

It also removes a list of fixed links from the remaining fixed links.

Selecting **Only Fixed Named** brings up the **Only Fixed Named** panel.

![Only Fixed Named Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>layer box</td>
<td>available Layers</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Layer to remove the links from. For information on Layers, see 21.1.1.2 MTF Links and Layers.</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Link(s)</td>
<td>name box</td>
<td>names.4d list</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if <strong>not blank</strong>, one or more link names can be entered separated by spaces. If the link name contains spaces then the link name must be surrounded by the quotes &quot;.&quot; For example &quot; EB 1&quot;. See 21.2.2.1.2 Link or Link(s).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>All the links listed in the Link(s) field are removed from the fixed links.</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If <strong>blank</strong>, all but the fixed links are removed (same as Only Fixed with 0 links).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alias, Start Chainage, End Chainage, Interval</td>
<td>defines the start/end chainages to remove the cut, fill and final cut/fill links, and some fixed links. For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment, Extra start, Extra End, Active, OK, Apply</td>
<td>For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modifier Panels.

Go to the next section 21.2.2.2.5 Fixed Link - Remove All But Fixed & Remove Fixed Links from a Named Link or return to 21.2.2.2 Fixed Link - Remove.
21.2.2.2.5 Fixed Link - Remove All But Fixed & Remove Fixed Links from a Named Link

The **Leave fixed/remove from name** option removes any of the variable cut and fill, final cut/fill links and decisions that have been defined up to this point in the modifiers grid.

It also removes all the links from a named link to the last fixed link, or from a named link to the beginning of the fixed links.

Selecting **Leave fixed/remove from name** brings up the **Only Fixed from Name** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>layer box</td>
<td>available Layers</td>
<td>Layer to remove the links from. For information on Layers, see <a href="#">21.1.1.2 MTF Links and Layers</a>.</td>
</tr>
<tr>
<td>Link name</td>
<td>name box</td>
<td>names.4d list</td>
<td>name of the fixed link in the layer to start removing links from/to.</td>
</tr>
<tr>
<td>To outside</td>
<td>choice box</td>
<td>yes, no</td>
<td>if <strong>yes</strong>, all the links from Link name out are removed. Link name is not removed. If <strong>no</strong>, all the links from the beginning of the Fixed zone until Link name are removed. Link name is not removed.</td>
</tr>
</tbody>
</table>

**Alias, Start Chainage, End Chainage, Interval**

defines the start/end chainages to remove the cut, fill and final cut/fill links, and some fixed links.

For information on these panel fields, see [21.2.2.1 Common Fields and Buttons on MTF Modifier Panels](#).
Comment, Extra start, Extra End, Active, OK, Apply

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Go to the next section 21.2.2.2.6 Fixed Link - Remove Layer or return to 21.2.2.2 Fixed Link - Remove.
21.2.2.2.2.6 Fixed Link - Remove Layer

The **Remove layers** option removes any links in the Layers that have been defined up to this point in the modifiers grid.

Selecting **Remove layers** brings up the **Only Fixed from Name** panel.

![Fixed - Remove Layer panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Layer Grid</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Layer</strong></td>
<td>layer box</td>
<td>available Layers</td>
<td></td>
</tr>
<tr>
<td><strong>Wild card</strong></td>
<td>text box</td>
<td>text including wild cards (*) and wild characters () that the link names are matched against.</td>
<td></td>
</tr>
<tr>
<td><strong>Link name</strong></td>
<td>name box</td>
<td>names.4d list</td>
<td>name of the fixed link in the layer to start removing links from/to.</td>
</tr>
</tbody>
</table>

*link names that match **Wildcard** are removed from the layers listed in the grid. For information on Layers, see 21.1.1.2 MTF Links and Layers.*
Alias, Start Chainage, End Chainage, Interval

defines the start/end chainages to remove the links from layers.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Return to 21.2.2.2 Fixed Link - Remove.
21.2.2.2.3 Fixed - Trim

The Trim walk-right brings up the Trim menu with options to perform various trimming operations.

See

- **Intersect tin** [21.2.2.2.3.1 Intersect Tin]
- **Trim links to tin** [21.2.2.2.3.2 Trim Links to Tin]
- **Trim sections to string** [21.2.2.2.3.3 Trim Sections to String]
- **Trim links to string** [21.2.2.2.3.4 Trim Links to String]
- **Trim overlapping sections** [21.2.2.2.3.5 Trim Overlapping Sections]
21.2.2.2.3.1 Intersect Tin

This option finds the intersection points of the link Link within the given vertical tolerance Intersect z tol of the stripped Tin and creates extra section at nominated chainage distances from the intersection chainages.

Extra sections are then created at the reference chainages

Reference chainage of intersection of link with (tin - Strip) + Section 1 dist
Reference chainage of intersection of link with (tin - Strip) + Section 2 dist
Reference chainage of intersection of link with (tin - Strip) + Section 3 dist
Reference chainage of intersection of link with (tin - Strip) + Section 4 dist

Selecting Intersect tin brings up the Fixed - Link Intersect Tin panel
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>Layer of the link to cut with the stripped tin. For information on Layers, see 21.1.1.2 MTF Links and Layers.</td>
<td>layer box</td>
<td>available Layers</td>
<td></td>
</tr>
<tr>
<td>Link</td>
<td>name of the link to cut with the stripped tin. See 21.2.2.1.2 Link or Link(s).</td>
<td>name box</td>
<td>select name menu</td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>name of the tin to use as the stepped tin to find the intersections with the link Link.</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Strip</td>
<td>the depth to vertically drop the tin before calculating intersections. This is then referred to as the stripped tin.</td>
<td>real box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Section 1, 2, 3, 4 dist</td>
<td>real box</td>
<td>if not blank, this value is added to the reference chainages of the intersection of the link with the stripped tin, and new sections are created at this new chainage. The value can be positive, negative and zero.</td>
<td>real box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. There may be more than one reference string chainage where the link intersects the stripped tin.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. A section is only produced at the intersections of the link with the stripped tin if one of Section i dist is zero.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Intersect z tol real box 0.0001

the intersection of the link with the stripped tin can occur within this vertical distance of the striped tin.

Alias, Start Chainage, End Chainage, Interval

defines the start/end chainages for trimming the given fixed link against the tin.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Go to the next section 21.2.2.2.3.2 Trim Links to Tin or return to 21.2.2.2.3 Fixed - Trim.
21.2.2.2.3.2 Trim Links to Tin

Selecting Trim links to tin brings up the Fixed - Trim Links to Tin panel

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>layer box</td>
<td>available Layers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer of strings to trim. For information on Layers, see 21.1.1.2 MTF Links and Layers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Link</td>
<td>name box</td>
<td>select name menu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the link to trim against the tin. See 21.2.2.1.2 Link or Link(s).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alias, Start Chainage, End Chainage, Interval</td>
<td>defines the start/end chainages for trimming the given fixed link against the tin. For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment, Extra start, Extra End, Active, OK, Apply</td>
<td>For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go to the next section 21.2.2.2.3.3 Trim Sections to String or return to 21.2.2.2.3 Fixed - Trim.
21.2.2.3.3 Trim Sections to String

Selecting Trim sections to string brings up the Fixed - Trim Sections to String panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>layer box</td>
<td>available Layers</td>
<td>Layer of strings to trim. For information on Layers, see 21.1.1.2 MTF Links and Layers.</td>
</tr>
<tr>
<td>Link(s)</td>
<td>name box</td>
<td>select name menu</td>
<td>name of the link to trim against the tin. See 21.2.2.1.2 Link or Link(s).</td>
</tr>
</tbody>
</table>

Alias, Start Chainage, End Chainage, Interval

 defines the start/end chainages for trimming the given fixed link against the tin. For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Go to the next section 21.2.2.3.4 Trim Links to String or return to 21.2.2.3 Fixed - Trim.
21.2.2.3.4 Trim Links to String

This option trims links before a selected string, or after a selected string, or between two selected strings.

**Important Note:**

This option only trims the strings that are created from the links. It does NOT trim the sections. So it is a process that is performed after the sections and strings are first generated and it is only performed on the strings.

Selecting Trim links to string brings up the Fixed - Trim Links to String panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>layer box</td>
<td>available Layers</td>
<td></td>
</tr>
<tr>
<td><strong>Layer of link to trim.</strong> For information on Layers, see <a href="#">21.1.1.2 MTF Links and Layers</a>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Link(s)</td>
<td>name box</td>
<td>select name menu</td>
<td></td>
</tr>
<tr>
<td><strong>name of the links to trim against a string.</strong> See <a href="#">21.2.2.1.2 Link or Link(s)</a>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trim type</td>
<td>choice box</td>
<td>forward, between, backward</td>
<td></td>
</tr>
<tr>
<td><strong>type of the trim for the links</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if <strong>forward</strong>, there is a <strong>String</strong> select field and a string is user selected. All the links are trimmed so that they stop after the selected string.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If <strong>between</strong>, there is a <strong>Start string</strong> and <strong>End string</strong> select field and both strings are user selected. All the links are trimmed so that they stop between <strong>Start string</strong> and <strong>End string</strong>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If <strong>backward</strong>, there is a <strong>String</strong> select field and a string is user selected. All the links are trimmed so that they only start at the selected string.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Alias, Start Chainage, End Chainage, Interval</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>defines the start/end chainages for trimming the given fixed link against the tin.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>For information on these panel fields, see <a href="#">21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels</a>.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Comment, Extra start, Extra End, Active, OK, Apply</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>For information on these panel fields, see <a href="#">21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels</a>.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Go to the next section 21.2.2.3.5 Trim Overlapping Sections or return to 21.2.2.3 Fixed - Trim.
21.2.2.3.5 Trim Overlapping Sections

The Trim Overlapping Sections option takes a Layer and modifies the internally calculated sections so that the sections do not overlay each other.

Any strings that are generated for that Layer will come from those modified internal sections and so will also not cross over themselves.

So any triangulation using those strings should not need any further cleanups to produce a fairly accurate tin. Certainly the tin should be accurate enough for any earthworks.

For the Design Layer, both sections and strings can be created and using the Trim Overlapping Sections option will produce results such as the example below.

Selecting Trim overlapping sections brings up the Fixed - Trim Overlapping Sections panel
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>layer box</td>
<td>available Layers</td>
<td></td>
</tr>
</tbody>
</table>

name of the Layer to modify the internally calculated sections so that the sections do not overlay each other. Any strings that are generated for that Layer after this process will come from the modified internal sections and so will also not cross over themselves.

For information on Layers, see 21.1.1.2 MTF Links and Layers.

**Alias, Start Chainage, End Chainage, Interval**

defines the start/end chainages for trimming the given fixed link against the tin.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

**Comment, Extra start, Extra End, Active, OK, Apply**

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Return to 21.2.2.2.3 Fixed - Trim.
21.2.2.2.4 Fixed - Modify Link

The **Fixed => Link** option can modify the width, height, xfall or slope of any Fixed link.

At a given chainage, it doesn't matter which of the two values from width, height or xfall were used to defined a Fixed link, all of the values width, height, xfall and slope can be then calculated. See 21.1.2.1 Calculating Width, Height, Xfall or Slope from Original Definitions

So for a Fixed Link, the **Link** option allows to user to chose which one of width, height, xfall or slope to modify and how to modify it, and which of width, height, xfall or slope is held to be the current value for the Fixed link.

Notes

1. The combination Modify xfall and Hold slope makes no sense because xfall and slope measure exactly the same thing.
2. There is an important difference between Modify Xfall and Modify Slope.
   - **Modify Xfall** linearly interpolates the xfall between the Start Chainage and the End Chainage where xfall is the percentage of the proportion of metres vertically to metres horizontally.
   - **Modify Slope** linearly interpolates the slope between the Start Chainage and the End Chainage where slope is the ratio between one unit vertically to a number of units horizontally (1 in).

Selecting **Link** brings up the **Fixed - Modify Link** panel.

![Fixed - Modify Link panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Layer</strong></td>
<td>layer box</td>
<td>Design available Layers</td>
<td>name of the layer that the link to be modified is in. For information on Layers, see 21.1.1.2 MTF</td>
</tr>
</tbody>
</table>
Links and Layers

Link(s) name box names.4d pop-up

the name of the links in Layer to modify the width/height/xfall/slope using the method given in Modifier type, between the chainages given by Start chainage and End chainage. See 21.2.2.1.2 Link or Link(s).

When describing how the Link option works, this link is referred to as the Current link and the values of width, height, xfall and slope for the Current Link as the Current or Existing Values.

Modifier type choice box

modify Width and take Height from current link
modify Width and take Xfall from current link
modify Height and take Width from current link
modify Height and take Xfall from current link
modify Xfall and take Width from current link
modify Xfall and take Height from current link
modify Slope and take Width from current link
modify Slope and take Height from current link

A fixed link can be modified in any of the Modify type ways regardless of how the link was originally defined in terms of width, height, xfall or slope. See 21.1.2.1 Calculating Width, Height, Xfall or Slope from Original Definitions.

The Modify width/height/xfall/slope is the part of the current link that is modified from its current value by the method given by Modifier type.

How the width/height/xfall/slope is modified depends on the choice made in the Type field described below.

The Hold width/height/xfall is the part of the current link that is held at its current value for the link.

New value usage choice box

Add to the current value of the link, Replace the current value of the link

if Add to the current value of the link, the value of the parameter width/height/xfall/slope at each chainage is added to the current value for the parameter. For compactness, in a grid, this will be displayed in an Absolute column with Absolute not ticked or no.

if Replace the current value of the link, the value of the parameter width/height/xfall/slope at each chainage replaces the current value for the parameter. For compactness, In a grid, this will be shown in an Absolute column with Absolute ticked or yes.

See 21.1.2.3 New Value Usage.

Type choice box

the choices for Type depends on the choice selected for Modifier type.
When **Modify type** is **Modify Width** the choices for **Type** are

<table>
<thead>
<tr>
<th>Select Choice</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td></td>
</tr>
<tr>
<td>Width -&gt; Width</td>
<td></td>
</tr>
<tr>
<td>Pos -&gt; Width</td>
<td></td>
</tr>
<tr>
<td>Width -&gt; Pos</td>
<td></td>
</tr>
<tr>
<td>Pos -&gt;</td>
<td></td>
</tr>
<tr>
<td>Pos -&gt; Pos</td>
<td></td>
</tr>
<tr>
<td>Parabola -&gt;</td>
<td></td>
</tr>
<tr>
<td>Parabola</td>
<td></td>
</tr>
<tr>
<td>Cubic</td>
<td></td>
</tr>
<tr>
<td>Compound Parabolas</td>
<td></td>
</tr>
<tr>
<td>Reverse Curves</td>
<td></td>
</tr>
<tr>
<td>Sinusoidal</td>
<td></td>
</tr>
<tr>
<td>Pos -&gt; Pos : Straight line</td>
<td></td>
</tr>
</tbody>
</table>

When **Modify type** is **Modify Height** the choices for **Type** are

<table>
<thead>
<tr>
<th>Select Choice</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td></td>
</tr>
<tr>
<td>Height -&gt; Height</td>
<td></td>
</tr>
<tr>
<td>Pos -&gt; Height</td>
<td></td>
</tr>
<tr>
<td>Height -&gt; Pos</td>
<td></td>
</tr>
<tr>
<td>Pos -&gt;</td>
<td></td>
</tr>
<tr>
<td>Pos -&gt; Pos</td>
<td></td>
</tr>
<tr>
<td>Parabola -&gt;</td>
<td></td>
</tr>
<tr>
<td>Parabola</td>
<td></td>
</tr>
<tr>
<td>Cubic</td>
<td></td>
</tr>
<tr>
<td>Compound Parabolas</td>
<td></td>
</tr>
<tr>
<td>Reverse Curves</td>
<td></td>
</tr>
<tr>
<td>Sinusoidal</td>
<td></td>
</tr>
</tbody>
</table>

When **Modify type** is **Modify Xfall** the choices for **Type** are

<table>
<thead>
<tr>
<th>Select Choice</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Xfall</td>
<td></td>
</tr>
<tr>
<td>Xfall -&gt; Xfall</td>
<td></td>
</tr>
<tr>
<td>Pos -&gt; Xfall</td>
<td></td>
</tr>
<tr>
<td>Xfall -&gt; Pos</td>
<td></td>
</tr>
<tr>
<td>Pos -&gt;</td>
<td></td>
</tr>
<tr>
<td>Pos -&gt; Pos</td>
<td></td>
</tr>
<tr>
<td>Parabola -&gt;</td>
<td></td>
</tr>
<tr>
<td>Parabola</td>
<td></td>
</tr>
<tr>
<td>Cubic</td>
<td></td>
</tr>
<tr>
<td>Compound Parabolas</td>
<td></td>
</tr>
<tr>
<td>Reverse Curves</td>
<td></td>
</tr>
<tr>
<td>Sinusoidal</td>
<td></td>
</tr>
<tr>
<td>Xfall CRC</td>
<td></td>
</tr>
</tbody>
</table>

When **Modify type** is **Modify Slope** the choices for **Type** are

<table>
<thead>
<tr>
<th>Select Choice</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope</td>
<td></td>
</tr>
<tr>
<td>Slope -&gt; Slope</td>
<td></td>
</tr>
<tr>
<td>Parabola -&gt;</td>
<td></td>
</tr>
<tr>
<td>Parabola</td>
<td></td>
</tr>
<tr>
<td>Cubic</td>
<td></td>
</tr>
<tr>
<td>Compound Parabolas</td>
<td></td>
</tr>
<tr>
<td>Reverse Curves</td>
<td></td>
</tr>
<tr>
<td>Sinusoidal</td>
<td></td>
</tr>
<tr>
<td>Rotate Slope as Grade</td>
<td></td>
</tr>
<tr>
<td>Rotate Slope as Angle</td>
<td></td>
</tr>
</tbody>
</table>

For a description of the choices of **Type** when **Modifier type** is **Modify Width**, see 21.2.2.4.1 Type for Modifier Types "Modify Width, Hold Height/Xfall"

For a description of the choices of **Type** when **Modifier type** is **Modify Height**, see 21.2.2.4.2 Type for Modifier Types "Modify Height, Hold Width/Xfall"

For a description of the choices of **Type** when **Modifier type** is **Modify Xfall**, see 21.2.2.4.3 Type for Modifier Types "Modify Xfall, Hold Width/Height"

For a description of the choices of **Type** when **Modifier type** is **Modify Slope**, see 21.2.2.4.4 Type for Modifier Types "Modify Slope, Hold Width/Height"

Alias, Start Chainage, End Chainage, Interval

defines the start/end chainages for modifying the new link

For information on these panel fields, see 21.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply

For information on these panel fields, see 21.2.1.1 Common Fields and Buttons on MTF Modifier Panels.
21.2.2.4.1 Type for Modifier Types "Modify Width, Hold Height/Xfall"

The choices for **Type** when **Modify type** is:

(a) **Modify Width, Hold Height**

or

(b) **Modify Width, Hold Xfall**

are

- use a given width for the chainage range
- interpolate between a given start width and a given end width
- interpolate between the current start width and a given end width
- interpolate between a given start width and the current end width
- use the current start width for the chainage range
- use the current start width for the chainage range
- interpolate between the current start width and the current end width
- use a parabola from the current start width
- use a parabola that goes through the current end width
- use an arc from the current start width
- use an arc that goes through the current end width
- use a cubic between the current start and end widths
- use a compound parabola between the current start and end widths
- use reverse curves between the current start and end widths
- use a sinusoidal curve between the current start and end widths
- use a straight line between the current start and end widths

For the description of each **Type** see

- 21.2.2.2.4.1.1 Width
- 21.2.2.2.4.1.2 Width -> Width
- 21.2.2.2.4.1.3 Pos -> Width
- 21.2.2.2.4.1.4 Width -> Pos
- 21.2.2.2.4.1.5 Pos ->
- 21.2.2.2.4.1.6 <- Pos
- 21.2.2.2.4.1.7 Pos-> Pos;
- 21.2.2.2.4.1.8 Parabola ->
- 21.2.2.2.4.1.9 <- Parabola
- 21.2.2.2.4.1.10 Circular->
- 21.2.2.2.4.1.11 < Circular
- 21.2.2.2.4.1.12 Cubic
- 21.2.2.2.4.1.13 Pos-> Pos: Straight line
21.2.2.2.4.1.1 Width
Use a Given Width from the Start Chainage to the End Chainage

At each chainage ch between the Start chainage and End chainage, the width is that given in the Width panel field. That is, the width has the constant value of Width.

Go to the next section 21.2.2.2.4.1.2 Width -> Width or return to 21.2.2.2.4.1 Type for Modifier Types "Modify Width, Hold Height/Xfall" or 21.2.2.2.4 Fixed - Modify Link

21.2.2.2.4.1.2 Width -> Width
Interpolate Between a Given Start Width and a Given End Width

At each chainage ch between the Start chainage and End chainage, the width is linearly interpolated by chainage between the given Start width and the End width.

Go to the next section 21.2.2.2.4.1.3 Pos -> Width or return to 21.2.2.2.4.1 Type for Modifier Types "Modify Width, Hold Height/Xfall" or 21.2.2.2.4 Fixed - Modify Link

21.2.2.2.4.1.3 Pos -> Width
Interpolate Between the Existing Start Width & a Given End width

At each chainage ch between the Start chainage and End chainage, the width is linearly interpolated by chainage between the width at the Start chainage and the given width Width at the End chainage.

This allows you to use the width at the End chainage without knowing what the actual value of the width is.

Go to the next section 21.2.2.2.4.1.4 Width -> Pos or return to 21.2.2.2.4.1 Type for Modifier Types "Modify Width, Hold Height/Xfall" or 21.2.2.2.4 Fixed - Modify Link
21.2.2.4.1.4 Width -> Pos
Interpolate Between a Given Start Width & the Existing End Width

At each chainage ch between the Start chainage and End chainage, the width is linearly interpolated by chainage between the given width Width at the Start chainage and the width at the End chainage.

This allows you to use the width at the Start chainage without knowing what the actual value of the width is.

Go to the next section 21.2.2.4.1.5 or return to 21.2.2.4.1 Type for Modifier Types "Modify Width, Hold Height/Xfall" or 21.2.2.4 Fixed - Modify Link

21.2.2.4.1.5 Pos ->
Use the Current Start Width for the Entire Chainage Range

At each chainage ch between the Start chainage and End chainage, the width is that at the Start chainage. That is, the width has the constant value of what it is at the Start chainage.

This allows you to use the width at the Start chainage without knowing what the actual value of the width is.

Go to the next section 21.2.2.4.1.6 or return to 21.2.2.4.1 Type for Modifier Types "Modify Width, Hold Height/Xfall" or 21.2.2.4 Fixed - Modify Link

21.2.2.4.1.6 <- Pos
Use the Current End Width for the Entire Chainage Range

At each chainage ch between the Start chainage and End chainage, the width is that at the End chainage. That is, the width has the constant value of what it is at the End chainage.

This allows you to use the width at the End chainage without knowing what the actual value of the width is.

Go to the next section 21.2.2.4.1.7 or return to 21.2.2.4.1 Type for Modifier Types "Modify Width, Hold Height/Xfall" or 21.2.2.4 Fixed - Modify Link

21.2.2.4.1.7 Pos-> Pos:
Interpolate Between the Existing Start Width and the Existing End Widths

At each chainage ch between the Start chainage and End chainage, the width is linearly interpolated by chainage between the width at the Start chainage and the width at the End chainage.

This allows you to use the widths at the Start chainage and the End chainage without knowing what the actual value of the widths are.

Go to the next section 21.2.2.4.1.8 Parabola -> or return to 21.2.2.4.1 Type for Modifier Types "Modify Width, Hold Height/Xfall" or 21.2.2.4 Fixed - Modify Link

21.2.2.4.1.8 Parabola ->
Calculation of Width for Type Parabola ->

This option is still under development

In the chainage-width diagram, the **Start width** is the width at chainage **Start mode plus S Ext**, and **End width** is the width at chainage **End mode plus E Ext**.

Between the start position (**Start mode + S Ext, Start width**), and the end position (**End mode + E Ext, End width**), the width varies as a parabola **a*X*X** with its origin at (**Start mode + S Ext, Start width**) and going through (**End mode + E Ext, End width**).

---

![Chainage-Width Diagram for Type Parabola](image)

Go to the next section [21.2.2.4.1.9 <- Parabola](#) or return to [21.2.2.4.1 Type for Modifier](#) Types "Modify Width, Hold Height/Xfall" or [21.2.2.4 Fixed - Modify Link](#)

---

21.2.2.4.1.9 <- Parabola

Calculation of Width for Type <- Parabola

This option is still under development

In the chainage-width diagram, the **Start width** is the width at chainage **Start mode plus S Ext**, and **End width** is the width at chainage **End mode plus E Ext**.

Between the start position (**Start mode + S Ext, Start width**), and the end position (**End mode + E Ext, End width**), the width varies as a parabola **a*X*X** with its origin at (**End mode + E Ext, End width**) and going through (**Start mode + S Ext, Start width**).
21.2.2.4.1.10 Circular->

**Calculation of Width for Type Circular->**

*This option is still under development*

In the chainage-width diagram, the **Start width** is the width at chainage **Start mode plus S Ext**, and **End width** is the width at chainage **End mode plus E Ext**.

Between the start position (**Start mode + S Ext, Start width**), and the end position (**End mode + E Ext, End width**), the width varies as a circle with its horizontal turning point at (**Start mode + S Ext, Start width**) and going through (**End mode + E Ext, End width**).
21.2.2.2.4.1.11 <-Circular

Calculation of Width for Type <-Circular

This option is still under development

In the chainage-width diagram, the **Start width** is the width at chainage **Start mode** plus **S Ext**, and the **End width** is the width at chainage **End mode** plus **E Ext**.

Between the start position (**Start mode** + **S Ext**, **Start width**), and the end position (**End mode** + **E Ext**, **End width**), the width varies as a **circle** with its horizontal turning point at (**End mode** + **E Ext**, **End width**) and going through (**Start mode** + **S Ext**, **Start width**).
21.2.2.4.1.12 Cubic

Calculation of Width for Type Cubic

This option is still under development

In the chainage-width diagram, the **Start width** is the width at chainage **Start mode** plus **S Ext**, and **End width** is the width at chainage **End mode** plus **E Ext**.

Between the start position (**Start mode** + **S Ext**, **Start width**), and the end position (**End mode** + **E Ext**, **End width**), the width varies as a cubic going through (**Start mode** + **S Ext**, **Start width**) and (**End mode** + **E Ext**, **End width**).

21.2.2.4.1.13 Pos-> Pos: Straight line

Use a Straight Line Between the Existing Start & End Widths

At each chainage ch between the **Start chainage** and **End chainage**, the width is calculated so that it is on a straight line in plan between the width at the **Start chainage** and the width at the **End chainage**.

This allows you to join the widths at the **Start chainage** and the **End chainage** by a plan straight line without knowing what the actual value of the widths are.
21.2.2.2.4.2 Type for Modifier Types "Modify Height, Hold Width/Xfall"

The choices for Type when Modify type is:

(a) Modify Height, Hold Width

or

(b) Modify Height, Hold Xfall

are

- use a given height for chainage range
- interpolate between a given start height and a given end height
- interpolate between the current start height and a given end height
- interpolate between a given start height and the current end height
- keep the current start height for the chainage range
- use the current end height for the chainage range
- interpolate between the current start height and the current end height
- use a parabola from the current start height
- use a parabola that goes through the current end height
- use an arc from the current start height
- use an arc that goes through the current end height
- use a cubic that goes through the current start and end heights
- use reverse curves between the current start and end heights
- use a sinusoidal curve between the current start and end heights

For the description of each Type see

- 21.2.2.2.4.2.1 Height
- 21.2.2.2.4.2.2 Height -> Height
- 21.2.2.2.4.2.3 Pos -> Height
- 21.2.2.2.4.2.4 Height -> Pos
- 21.2.2.2.4.2.5 Pos ->
- 21.2.2.2.4.2.6 <- Pos
- 21.2.2.2.4.2.7 Pos -> Pos;
- 21.2.2.2.4.2.8 Parabola ->
- 21.2.2.2.4.2.9 <- Parabola
- 21.2.2.2.4.2.10 Circular->
- 21.2.2.2.4.2.11 <-Circular
- 21.2.2.2.4.2.12 Cubic
21.2.2.4.2.1 Height
Use a Given Height from the Start Chainage to the End Chainage

At each chainage ch between the Start chainage and End chainage, the width is that given in the Height panel field. That is, the height has the constant value of Height.

Go to the next section 21.2.2.4.2.2 Height -> Height or return to 21.2.2.4.2 Type for Modifier Types "Modify Height, Hold Width/Xfall" or 21.2.2.4.2 Fixed - Modify Link

21.2.2.4.2.2 Height -> Height
Interpolate Between a Given Start Height and a Given End Height

At each chainage ch between the Start chainage and End chainage, the height is linearly interpolated by chainage between the given Start height and the End height.

Go to the next section 21.2.2.4.2.3 Pos -> Height or return to 21.2.2.4.2 Type for Modifier Types "Modify Height, Hold Width/Xfall" or 21.2.2.4.2 Fixed - Modify Link

21.2.2.4.2.3 Pos -> Height
Interpolate Between the Existing Start Height & a Given End Height

At each chainage ch between the Start chainage and End chainage, the height is linearly interpolated by chainage between the height at the Start chainage and the given height Height at the End chainage.

This allows you to use the height at the End chainage without knowing what the actual value of the height is.

Go to the next section 21.2.2.4.2.4 Height -> Pos or return to 21.2.2.4.2 Type for Modifier Types "Modify Height, Hold Width/Xfall" or 21.2.2.4.2 Fixed - Modify Link
21.2.2.4.2.4 Height -> Pos
Interpolate Between a Given Start Height & the Existing End Height

At each chainage ch between the Start chainage and End chainage, the height is linearly interpolated by chainage between the given height Height at the Start chainage and the height at the End chainage.
This allows you to use the height at the Start chainage without knowing what the actual value of the height is.

Go to the next section 21.2.2.4.2.5 Pos -> or return to 21.2.2.4.2 Type for Modifier Types "Modify Height, Hold Width/Xfall" or 21.2.2.4 Fixed - Modify Link

21.2.2.4.2.5 Pos ->
Use the Current Start Height for the Entire Chainage Range
At each chainage ch between the Start chainage and End chainage, the height is that at the Start chainage. That is, the height has the constant value of what it is at the Start chainage.
This allows you to use the height at the Start chainage without knowing what the actual value of the height is.

Go to the next section 21.2.2.4.2.6 <- Pos or return to 21.2.2.4.2 Type for Modifier Types "Modify Height, Hold Width/Xfall" or 21.2.2.4 Fixed - Modify Link

21.2.2.4.2.6 <- Pos
Use the Current End Height for the Entire Chainage Range
At each chainage ch between the Start chainage and End chainage, the height is that at the End chainage. That is, the height has the constant value of what it is at the End chainage.
This allows you to use the height at the End chainage without knowing what the actual value of the height is.

Go to the next section 21.2.2.4.2.7 Pos-> Pos: or return to 21.2.2.4.2 Type for Modifier Types "Modify Height, Hold Width/Xfall" or 21.2.2.4 Fixed - Modify Link

21.2.2.4.2.7 Pos-> Pos:
Interpolate Between the Existing Start and End Heights
At each chainage ch between the Start chainage and End chainage, the height is linearly interpolated by chainage between the height at the Start chainage and the height at the End chainage.
This allows you to use the heights at the Start chainage and the End chainage without knowing what the actual value of the heights are.

Go to the next section 21.2.2.4.2.8 Parabola -> or return to 21.2.2.4.2 Type for Modifier Types "Modify Height, Hold Width/Xfall" or 21.2.2.4 Fixed - Modify Link

21.2.2.4.2.8 Parabola ->
Calculation of Height for Type Parabola ->

The calculations are the same as the case for Width except Height is substituted for Width in all the formulae and diagrams. See 21.2.2.2.4.1.8 Parabola ->.

Go to the next section 21.2.2.2.4.2.9 <- Parabola or return to 21.2.2.2.4.2 Type for Modifier Types "Modify Height, Hold Width/Xfall" or 21.2.2.2.4 Fixed - Modify Link

21.2.2.2.4.2.9 <- Parabola

Calculation of Height for Type <- Parabola

The calculations are the same as the case for Width except Height is substituted for Width in all the formulae and diagrams. See 21.2.2.2.4.1.9 <- Parabola.

Go to the next section 21.2.2.2.4.2.10 Circular-> or return to 21.2.2.2.4.2 Type for Modifier Types "Modify Height, Hold Width/Xfall" or 21.2.2.2.4 Fixed - Modify Link

21.2.2.2.4.2.10 Circular->

Calculation of Height for Type Circular->

The calculations are the same as the case for Width except Height is substituted for Width in all the formulae and diagrams. See 21.2.2.2.4.1.10 Circular->.

Go to the next section 21.2.2.2.4.2.11 <-Circular or return to 21.2.2.2.4.2 Type for Modifier Types "Modify Height, Hold Width/Xfall" or 21.2.2.2.4 Fixed - Modify Link

21.2.2.2.4.2.11 <-Circular

Calculation of Height for Type <-Circular

The calculations are the same as the case for Width except Height is substituted for Width in all the formulae and diagrams. See 21.2.2.2.4.1.11 <-Circular.

Go to the next section 21.2.2.2.4.2.12 Cubic or return to 21.2.2.2.4.2 Type for Modifier Types "Modify Height, Hold Width/Xfall" or 21.2.2.2.4 Fixed - Modify Link

21.2.2.2.4.2.12 Cubic

Calculation of Height for Type Cubic

The calculations are the same as the case for Width except Height is substituted for Width in all the formulae and diagrams. See 21.2.2.2.4.1.12 Cubic.

Return to 21.2.2.2.4.2 Type for Modifier Types "Modify Height, Hold Width/Xfall" or 21.2.2.2.4 Fixed - Modify Link
21.2.2.2.4.3 Type for Modifier Types "Modify Xfall, Hold Width/Height"

The choices for Type when Modify type is:

(a) Modify Xfall, Hold Width

or

(b) Modify Xfall, Hold Height

are

- use a given xfall for chainage range
- interpolate between a given start xfall and a given end xfall
- interpolate between the current start xfall and a given end xfall
- interpolate between a given start xfall and the current end xfall
- keep the current start xfall for the chainage range
- use the current end xfall for the chainage range
- interpolate between the current start xfall and the current end xfall
- use a parabola from the current start xfall
- use a parabola that goes through the current end xfall
- use an arc from the current start xfall
- use an arc that goes through the current end xfall
- use a cubic between the current start and end xfalls
- use a compound parabola between the current start and end xfalls
- use reverse curves between the current start and end xfalls
- use a sinusoidal curve between the current start and end xfalls

For the description of each Type see

21.2.2.2.4.3.1 Xfall
21.2.2.2.4.3.2 Xfall -> Xfall
21.2.2.2.4.3.3 Pos -> Xfall
21.2.2.2.4.3.4 Xfall -> Pos
21.2.2.2.4.3.5 Pos ->
21.2.2.2.4.3.6 <- Pos
21.2.2.2.4.3.7 Pos -> Pos:
21.2.2.2.4.3.8 Parabola ->
21.2.2.2.4.3.9 <- Parabola
21.2.2.2.4.3.10 Circular->
21.2.2.2.4.3.11 <-Circular
21.2.2.2.4.3.12 Cubic
21.2.2.4.3.1 Xfall

Keep a Given Xfall

At each chainage ch between the Start chainage and End chainage, the width is that given in the Xfall panel field. That is, the Xfall has the constant value of Xfall.

Go to the next section 21.2.2.2.4.3.2 Xfall -> Xfall or return to 21.2.2.2.4.3 Type for Modifier Types "Modify Xfall, Hold Width/Height" or 21.2.2.2.4 Fixed - Modify Link

21.2.2.4.3.2 Xfall -> Xfall

Interpolate Between a Given Start and End Xfall

At each chainage ch between the Start chainage and End chainage, the Xfall is linearly interpolated by chainage between the given Start Xfall and the End Xfall.

Go to the next section 21.2.2.2.4.3.3 Pos -> Xfall or return to 21.2.2.2.4.3 Type for Modifier Types "Modify Xfall, Hold Width/Height" or 21.2.2.2.4 Fixed - Modify Link

21.2.2.4.3.3 Pos -> Xfall

Interpolate Between Existing Start Xfall & Given End Xfall

At each chainage ch between the Start chainage and End chainage, the Xfall is linearly interpolated by chainage between the Xfall at the Start chainage and the given Xfall Xfall at the End chainage. This allows you to use the Xfall at the End chainage without knowing what the actual value of the Xfall is.

Go to the next section 21.2.2.2.4.3.4 Xfall -> Pos or return to 21.2.2.2.4.3 Type for Modifier Types "Modify Xfall, Hold Width/Height" or 21.2.2.2.4 Fixed - Modify Link
21.2.2.2.4.3.4 Xfall -> Pos
Interpolate Between a Given Start Xfall & an Existing End Xfall

At each chainage ch between the **Start chainage** and **End chainage**, the Xfall is linearly interpolated by chainage between the given Xfall Xfall at the **Start chainage** and the Xfall at the **End chainage**.

This allows you to use the Xfall at the **Start chainage** without knowing what the actual value of the Xfall is.

Go to the next section 21.2.2.2.4.5 Pos -> or return to 21.2.2.2.4.3 Type for Modifier Types "Modify Xfall, Hold Width/Height" or 21.2.2.2.4 Fixed - Modify Link

21.2.2.2.4.3.5 Pos ->
Keep the Same Xfall as at the Start Chainage

At each chainage ch between the **Start chainage** and **End chainage**, the Xfall is that at the **Start chainage**. That is, the Xfall has the constant value of what it is at the **Start chainage**.

This allows you to use the Xfall at the **Start chainage** without knowing what the actual value of the Xfall is.

Go to the next section 21.2.2.2.4.6 <- Pos or return to 21.2.2.2.4.3 Type for Modifier Types "Modify Xfall, Hold Width/Height" or 21.2.2.2.4 Fixed - Modify Link

21.2.2.2.4.3.6 <- Pos
Keep the Same Xfall as at the End chainage

At each chainage ch between the **Start chainage** and **End chainage**, the Xfall is that at the **End chainage**. That is, the Xfall has the constant value of what it is at the **End chainage**.

This allows you to use the Xfall at the **End chainage** without knowing what the actual value of the Xfall is.

Go to the next section 21.2.2.2.4.7 Pos-> Pos: or return to 21.2.2.2.4.3 Type for Modifier Types "Modify Xfall, Hold Width/Height" or 21.2.2.2.4 Fixed - Modify Link

21.2.2.2.4.3.7 Pos-> Pos:
Interpolate Between Existing Xfalls at Start & End Chainages

At each chainage ch between the **Start chainage** and **End chainage**, the Xfall is linearly interpolated by chainage between the Xfall at the **Start chainage** and the Xfall at the **End chainage**.

This allows you to use the Xfalls at the **Start chainage** and the **End chainage** without knowing what the actual value of the heights are.

Go to the next section 21.2.2.2.4.8 Parabola -> or return to 21.2.2.2.4.3 Type for Modifier Types "Modify Xfall, Hold Width/Height" or 21.2.2.2.4 Fixed - Modify Link
21.2.2.4.3.8 Parabola

Calculation of Xfall for Type Parabola

The calculations are the same as the case for Width except Xfall is substituted for Width in all the formulae and diagrams. See 21.2.2.4.1.8 Parabola.

Go to the next section 21.2.2.4.3.9 <- Parabola or return to 21.2.2.4.3 Type for Modifier Types "Modify Xfall, Hold Width/Height" or 21.2.2.4 Fixed - Modify Link.

21.2.2.4.3.9 <- Parabola

Calculation of Xfall for Type <- Parabola

The calculations are the same as the case for Width except Xfall is substituted for Width in all the formulae and diagrams. See 21.2.2.4.1.9 <- Parabola.

Go to the next section 21.2.2.4.3.10 Circular or return to 21.2.2.4.3 Type for Modifier Types "Modify Xfall, Hold Width/Height" or 21.2.2.4 Fixed - Modify Link.

21.2.2.4.3.10 Circular->

Calculation of Xfall for Type Circular->

The calculations are the same as the case for Width except Xfall is substituted for Width in all the formulae and diagrams. See 21.2.2.4.1.10 Circular->.

Go to the next section 21.2.2.4.3.11 <-Circular or return to 21.2.2.4.3 Type for Modifier Types "Modify Xfall, Hold Width/Height" or 21.2.2.4 Fixed - Modify Link.

21.2.2.4.3.11 <-Circular

Calculation of Xfall for Type <-Circular

The calculations are the same as the case for Width except Xfall is substituted for Width in all the formulae and diagrams. See 21.2.2.4.1.11 <-Circular.

Go to the next section 21.2.2.4.3.12 Cubic or return to 21.2.2.4.3 Type for Modifier Types "Modify Xfall, Hold Width/Height" or 21.2.2.4 Fixed - Modify Link.

21.2.2.4.3.12 Cubic

Calculation of Xfall for Type Cubic

The calculations are the same as the case for Width except Xfall is substituted for Width in all the formulae and diagrams. See 21.2.2.4.1.12 Cubic.

Return to 21.2.2.4.3 Type for Modifier Types "Modify Xfall, Hold Width/Height" or 21.2.2.4 Fixed - Modify Link.
21.2.2.2.4.4 Type for Modifier Types "Modify Slope, Hold Width/Height"

The choices for Type when Modify type is:

(a) **Modify Slope, Hold Width**

or

(b) **Modify Slope, Hold Height**

are

- use a given slope for chainage range
- interpolate between a given start slope and a given end slope
- use a parabola from the current start slope
- use a parabola that goes through the current end slope
- use an arc from the current start slope
- use an arc that goes through the current end slope
- use a cubic between the current start and end slope
- use a compound parabola between the current start and end slope
- use reverse curves between the current start and end slopes
- use a sinusoidal curve between the current start and end slopes

For the description of each Type see

- 21.2.2.4.1 Slope
- 21.2.2.4.2 Slope -> Slope
- 21.2.2.4.3 Parabola ->
- 21.2.2.4.4 <- Parabola
- 21.2.2.4.5 Circular->
- 21.2.2.4.6 <-Circular
- 21.2.2.4.7 Cubic
21.2.2.4.1 Slope

Use a Given Slope from the Start Chainage to the End Chainage

At each chainage \( ch \) between the **Start chainage** and **End chainage**, the width is that given in the **Slope** panel field. That is, the slope has the constant value of **Slope**.

Go to the next section 21.2.2.4.2 Slope -> Slope or return to 21.2.2.4.4 Type for Modifier Types "Modify Slope, Hold Width/Height" or 21.2.2.4 Fixed - Modify Link.

21.2.2.4.2 Slope -> Slope

Interpolate Between a Given Start Slope and Given End Slope

At each chainage \( ch \) between the **Start chainage** and **End chainage**, the slope is linearly interpolated by chainage between the given **Start slope** and the **End slope**.

Go to the next section 21.2.2.4.3 Parabola -> or return to 21.2.2.4.4 Type for Modifier Types "Modify Slope, Hold Width/Height" or 21.2.2.4 Fixed - Modify Link.

21.2.2.4.3 Parabola ->

**Calculation of Slope for Type Parabola ->**

*The calculations are the same as the case for Width except Slope is substituted for Width in all the formulae and diagrams. See 21.2.2.4.8 Parabola ->.*

Go to the next section 21.2.2.4.3 Parabola -> or return to 21.2.2.4.4 Type for Modifier Types "Modify Slope, Hold Width/Height" or 21.2.2.4 Fixed - Modify Link.
21.2.2.2.4.4 <- Parabola

Calculation of Slope for Type <- Parabola

The calculations are the same as the case for Width except Slope is substituted for Width in all the formulae and diagrams. See 21.2.2.2.4.1.9 <- Parabola.

Go to the next section 21.2.2.2.4.4 <- Parabola or return to 21.2.2.2.4 Type for Modifier Types "Modify Slope, Hold Width/Height" or 21.2.2.2.4 Fixed - Modify Link

21.2.2.2.4.5 Circular->

Calculation of Slope for Type Circular->

The calculations are the same as the case for Width except Slope is substituted for Width in all the formulae and diagrams. See 21.2.2.2.4.1.10 Circular->.

Go to the next section 21.2.2.2.4.5 Circular-> or return to 21.2.2.2.4 Type for Modifier Types "Modify Slope, Hold Width/Height" or 21.2.2.2.4 Fixed - Modify Link

21.2.2.2.4.6 <-Circular

Calculation of Slope for Type <-Circular

The calculations are the same as the case for Width except Slope is substituted for Width in all the formulae and diagrams. See 21.2.2.2.4.1.11 <-Circular.

Go to the next section 21.2.2.2.4.6 <-Circular or return to 21.2.2.2.4 Type for Modifier Types "Modify Slope, Hold Width/Height" or 21.2.2.2.4 Fixed - Modify Link

21.2.2.2.4.7 Cubic

Calculation of Slope for Type Cubic

The calculations are the same as the case for Width except Slope is substituted for Width in all the formulae and diagrams. See 21.2.2.2.4.1.12 Cubic.

Go to the next section 21.2.2.2.4.7 Cubic or return to 21.2.2.2.4 Type for Modifier Types "Modify Slope, Hold Width/Height" or 21.2.2.2.4 Fixed - Modify Link
21.2.2.2.5 Fixed Link - Rename Link

The **Rename Link** option renames a link to a new name.

If strings are created in the **Apply MTF** then the original string stops and a string with the new name and colour is created between the two chainages. The original string starts again after the end chainage.

Selecting **Rename Link** brings up the **Fixed - Rename Link** panel.

![Fixed - Rename Link](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>layer box</td>
<td>Design</td>
<td>available Layers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>name of the layer that the link to rename is in. For information on Layers, see 21.1.1.2 MTF Links and Layers.</td>
</tr>
<tr>
<td>Old link name</td>
<td>name box</td>
<td>names.4d pop-up</td>
<td>the name of the link to rename between the chainages given by <strong>Start mode</strong> and <strong>End mode</strong></td>
</tr>
</tbody>
</table>
| New link name     | name box  | names.4d pop-up | the new name of the link between the chainages given by **Start mode** and **End mode**.  
If strings are created in the **Apply MTF** then the old string will be stopped between the chainages, and a new string with the new name is created between the chainages. |
| Colour            | available colours |          |               |

*If non blank, the colour for the new link.*

*If blank, the new has the colour of the old link.*
Alias, Start Chainage, End Chainage, Interval

defines the start/end chainages to rename the link.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Continue to the next section 21.2.2.6 Fixed Link - Absolute to a Base Link or return to 21.2.2.2 Fixed Link Modifiers or 21.2.2 Left and Right MTF Modifiers.
21.2.2.6 Fixed Link - Absolute to a Base Link

For an existing link, the **Absolute** option has most of the methods available in **Modify link** for defining either the width, height or xfall of the link, but the values are then measured from a given **Base link** rather than from the previous link.

For example, over the chainage range, the **width from the Base link** can be set to a constant, be interpolated linearly between two widths, or have the width follow a parabolic, circular curve or cubic shape.

So **Absolute** is almost identical to **Modify Link** but values are measured from a given **Base Link** rather than the previous link (see 21.2.2.2.4 **Fixed - Modify Link**). But there is some additional parameters for controlling the values.

Selecting the **Absolute** brings up the **Fixed - Modify Absolute** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>layer box</td>
<td>Design</td>
<td>available Layers</td>
<td></td>
</tr>
<tr>
<td>Link name</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base link</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modifier type</td>
<td>Width (Height held)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions.
Layers.

Link name name box names.4d pop-up
the name of the link to modify the width/height/xfall (by the method given in Type) and the values are then measured from the Base link rather than the previous link.

Base layer layer box Design available Layers
name of the layer for the Base link. For information on Layers, see 21.1.2 MTF Links and Layers.

Base link name box names.4d pop-up
the values of width/height/xfall calculated for Link name are measured from the link given by Base link.

Modifier type choice box
modify Width and take Height from current link
modify Width and take Xfall from current link
modify Height and take Width from current link
modify Height and take Xfall from current link
modify Xfall and take Width from current link
modify Xfall and take Height from selected link

A fixed link can be modified in any of the Modifier type ways regardless of how the link was originally defined in terms of width, height, xfall or slope. See 21.1.2.1 Calculating Width, Height, Xfall or Slope from Original Definitions.

The Modify width/height/xfall/slope is the part of the current link that is modified from its current value by the method given by Modifier type.

How the width/height/xfall/slope is modified depends on the choice made in the Type field described below.

The Hold width/height/xfall is the part of the current link that is held at its current value for the link.

Type choice box
the choices for Type depend on the choice selected for Modifier type

When Modify type is Modify Width the choices for Type are

When Modify type is Modify Height the choices for Type are

When Modify type is Modify Xfall the choices for Type are

For a description of the choices of Type when the Modifier type is Modify Width, see 21.2.2.6.1 For Modifier Types Modify Width, Hold Height or Xfall

For a description of the choices of Type when the Modifier type is Modify Height, see 21.2.2.6.2 For Modifier Types “Modify Height Maintain Width/Xfall”

For a description of the choices of Type when the Modifier type is Modify Xfall, see 21.2.2.6.3 For
Modifier Types "Modify Xfall Maintain Width/Height"

**Alias, Start Chainage, End Change, Interval**

defines the start/end chainages for modifying the link.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

**Comment, Extra start, Extra End, Active, OK, Apply**

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Continue to the next section 21.2.2.2.7 Fixed Link- Parallel or return to 21.2.2.2 Fixed Link Modifiers or 21.2.2 Left and Right MTF Modifiers.
21.2.2.2.6.1 For Modifier Types Modify Width, Hold Height or Xfall

Go to Applying the Calculated Widths
Go to Calculating the Widths for each Type

Applying the Calculated Widths

When

For Modifier Types Modify Width, Hold Height or Xfall

Start width input measures menu

width at (Start mode + S Ext)

Start width can be positive or negative. See diagram after Offset

S Ext and E Ext have no effect for Type Width.

End width input measures menu

width at (End mode + E Ext)

End width can be positive or negative. See diagram after Offset

End width does not exist for Type Width.

S Ext/E Ext input measures menu

Start/End extension to add to the Start/end mode chainage. S Ext/E Ext can be positive or negative.

See diagram after Offset

Offset input measures menu

Final offset to be added to the width calculated at each point. Offset can be positive or negative.

For a chainage ch between the Start mode and the End mode, a width is calculated at chainage ch and that width goes out from the Base Link perpendicular to the Centreline.

The definition for calculating the width is best described in a Chainage-Width diagram. That is, in a plot with Centreline chainage as the x-axis, and Width at that chainage as the y-axis. This is similar to a long section plot where centreline chainage is the x-axis and height is the y-axis.

Then for a point A at chainage ch on the centreline, the Width calculated at chainage ch in the Chainage-Width diagram is used for the Width measured from the Base link corresponding to the section Modify Width Maintain Height, to the Centreline at chainage ch.

For the Modify Width commands, the method defining the widths may not be exactly at the Start/End mode chainages but at points a S Ext/E Ext chainage distance from the Start/End mode chainages.

Finally after the widths are calculated, a width Offset can be applied to all the widths.

Although the definition for calculating the widths in the chainage-width diagram may involve points outside the Start mode/End mode chainage range, the calculated widths are only applied
to the centreline between the **Start mode** chainage and the End mode chainage. Please examine the diagrams below to help understand the process.

**Relationship Between Chainage-Width Diagram and Centreline**

The link is modified between Start and End Chainage. The **S Ext** and **E Ext** are only used in the way the width is defined sections are perpendicular to the centreline.

**Calculating the Widths for each Type**

For **Type Width, Width->Width**, go to [Calculation of Width for Types Width, Width -> Width](#)

For **Type Parabola->**, go to [Calculation of Width for Type Parabola ->](#)

For **Type Circular->**, go to [Calculation of Width for Type Circular->](#)
For **Type** <-Parabola, go to  [Calculation of Width for Type <- Parabola](#)
For **Type** <-Circular, go to  [Calculation of Width for Type <-Circular](#)
For **Type** Cubic, go to  [Calculation of Width for Type Cubic](#)

### Calculation of Width for Types Width, Width -> Width

In the chainage-width diagram, the **Start width** is the width at chainage **Start mode** plus S Ext, and **End width** is the width at chainage **End mode** plus E Ext.

The width is *linearly* interpolated between the **Start width** and the **End width**, plus the given **Offset** in the chainage-width diagram.

That is, the rate change of width per unit chainage is

\[
\text{rate of width change} = \frac{\text{End Width} - \text{Start Width}}{\text{End mode} + \text{E Ext} - \text{Start mode} - \text{S Ext}}
\]

and the width at chainage \( ch \) is

\[
(\text{Start Width} + \text{Offset}) + (ch - \text{Start Mode chainage} - \text{S Ext}) \times \text{rate of width change}
\]

These widths and the **Offset** are then used for the link being modified as the width that the link is *from the Base Link* when measured along the section perpendicular to the centreline. See _._

The Height/Xfall is maintained as that originally defined in the selected link.

### Calculation of Width for Type Parabola ->

In the chainage-width diagram, the **Start width** is the width at chainage **Start mode** plus S Ext, and **End width** is the width at chainage **End mode** plus E Ext.

Between the start position (**Start mode** + S Ext, **Start width**), and the end position (**End mode** + E Ext, **End width**), the width varies as a parabola \( a \times X^2 \times X \) with its origin at (**Start mode** + S Ext, **Start width**) and going through (**End mode** + E Ext, **End width**).
These widths and the Offset are then used for the link being modified as the width that the link is from the Base Link when measured along the section perpendicular to the centreline. See .

The Height/Xfall is maintained as that originally defined in the selected link.

**Calculation of Width for Type Circular->**

In the chainage-width diagram, the *Start width* is the width at chainage *Start mode plus S Ext*, and *End width* is the width at chainage *End mode plus E Ext*.

Between the start position (*Start mode + S Ext, Start width*), and the end position (*End mode + E Ext, End width*), the width varies as a circle with its horizontal turning point at (*Start mode + S Ext, Start width*) and going through (*End mode + E Ext, End width*).
These widths and the offset are then used for the link being modified as the width that the link is from the Base Link when measured along the section perpendicular to the centreline. See _

The Height/Xfall is maintained as that originally defined in the selected link.

Calculation of Width for Type <- Parabola

In the chainage-width diagram, the Start width is the width at chainage Start mode plus S Ext, and End width is the width at chainage End mode plus E Ext.

Between the start position (Start mode + S Ext, Start width), and the end position (End mode + E Ext, End width), the width varies as a parabola a\*X\*X with its origin at (End mode + E Ext, End width) and going through (Start mode + S Ext, Start width).

Calculation of Width for Type <- Circular

In the chainage-width diagram, the Start width is the width at chainage Start mode plus S Ext, and End width is the width at chainage End mode plus E Ext.

Between the start position (Start mode + S Ext, Start width), and the end position (End mode + E Ext, End width), the width varies as a circle with its horizontal turning point at (End mode + E Ext, End width) and going through (Start mode + S Ext, Start width).
These widths and the Offset are then used for the link being modified as the width that the link is from the Base Link when measured along the section perpendicular to the centreline. See .

The Height/Xfall is maintained as that originally defined in the selected link.

Calculation of Width for Type Cubic

In the chainage-width diagram, the Start width is the width at chainage Start mode plus S Ext, and End width is the width at chainage End mode plus E Ext.

Between the start position (Start mode + S Ext, Start width), and the end position (End mode + E Ext, End width), the width varies as a cubic going through (Start mode + S Ext, Start width) and (End mode + E Ext, End width).
These widths and the **Offset** are then used for the link being modified as the width that the link is **from the Base Link** when measured along the section perpendicular to the centreline. See _

*The Height/Xfall is maintained as that originally defined in the selected link._
21.2.2.2.6.2 For Modifier Types "Modify Height Maintain Width/Xfall"

Go to Applying the Calculated Heights

Go to Calculating the Heights for each Type

Applying the Calculated Heights

Start height input measures menu

height at (Start mode + S Ext)

Start height can be positive or negative. See diagram after Height Offset

S Ext and E Ext have no effect for Type Height.

End width input measures menu

height at (End mode + E Ext)

End height can be positive or negative. See diagram after Height Offset

End height does not exist for Type Height.

S Ext/E Ext input measures menu

Start/End extension to add to the Start/end mode chainage. S Ext/E Ext can be positive or negative.

See diagram after Offset

Height offset input measures menu

Final height to be added to the height calculated at each point. Height offset can be positive or negative.

For a chainage \( ch \) between the Start mode and the End mode, a height is calculated for at \( ch \) chainage and that height is used for the link that goes out from the Base Link perpendicular to the Centreline.

The definition for calculating the height is best described in a Chainage-Height diagram. That is, in a plot with Centreline chainage as the \( x \)-axis, and Height at that chainage as the \( y \)-axis. This is similar to a long section plot.

Then for a point \( A \) at a chainage \( ch \) on the centreline, the Height calculated at chainage \( ch \) in the Chainage-Height diagram is used for the Height measured from the Base link corresponding at the Centreline at chainage \( ch \).

For the Modify Height commands, the method defining the heights may not be exactly at the Start/End mode chainages but at points a S Ext/E Ext chainage distance from the Start/End mode chainages.

Finally after the heights are calculated, Height offset is added to all the heights.
Although the definition for calculating the heights in the chainage-height diagram may involve points outside the Start mode/End mode chainage range, the calculated heights are **only applied** to the centreline **between** the **Start mode** chainage and the End mode chainage.

### Calculating the Heights for each Type

For **Type Height, Height->Height**, go to [Calculation of Height for Types Height, Height -> Height](#).

For **Type Parabola->**, go to [Calculations for Type Parabola ->](#).

For **Type Circular->**, go to [Calculations for Type Circular->](#).

For **Type <-Parabola**, go to [Calculations for Type <- Parabola](#).

For **Type <-Circular**, go to [Calculations for Type <-Circular](#).

For **Type Cubic**, go to [Calculations for Type Cubic](#).

### Calculation of Height for Types Height, Height -> Height

In the chainage-height diagram, the **Start height** is the height at chainage **Start mode plus S Ext.**, and the **End height** is the height at chainage **End mode plus E Ext.**

The height is linearly interpolated between the **Start height** and the **End height**, plus the given **Height offset** in the chainage-width diagram.

That is, the rate change of height per unit chainage is

\[
\text{rate of height change} = \frac{(\text{End height} - \text{Start height})}{(\text{End mode} + \text{E Ext} - \text{Start mode} - \text{S Ext})}
\]

and the height at chainage **ch** is

\[
\text{Height} = \text{Start height} + \text{rate of height change} \times (\text{ch} - \text{Start mode})
\]
These heights and the Height offset are then used for the link being modified as the height that the link is from the Base Link when measured along the section perpendicular to the centreline.

The Width/Xfall is maintained as that originally defined in the selected link.

Calculations for Type Parabola ->

In the chainage-height diagram, the Start height is the height at chainage Start mode plus S Ext, and End height is the height at chainage End mode plus E Ext.

Between the start position (Start mode + S Ext, Start height), and the end position (End mode + E Ext, End height), the height varies as a parabola \(a \times X^2\) with its origin at (Start mode + S Ext, Start height) and going through (End mode + E Ext, End height).

These heights and the Height offset are then used for the link being modified as the height that the link is from the Base Link when measured along the section perpendicular to the centreline.

The Width/Xfall is maintained as that originally defined in the selected link.
Calculations for Type Circular->

In the chainage-height diagram, the Start height is the height at chainage Start mode plus S Ext, and End height is the height at chainage End mode plus E Ext.

Between the start position (Start mode + S Ext, Start height), and the end position (End mode + E Ext, End height), the height varies as a circle with its horizontal turning point at (Start mode + S Ext, Start height) and going through (End mode + E Ext, End height).

These heights and the Height offset are then used for the link being modified as the width that the link is from the Base Link when measured along the section perpendicular to the centreline.

The Width/Xfall is maintained as that originally defined in the selected link.

Calculations for Type <- Parabola

In the chainage-height diagram, the Start height is the height at chainage Start mode plus S Ext, and End height is the height at chainage End mode plus E Ext.

Between the start position (Start mode + S Ext, Start height), and the end position (End mode + E Ext, End height), the height varies as a parabola a*X*X with its origin at (End mode + E Ext, End height) and going through (Start mode + S Ext, Start height).
These heights and the Height offset are then used for the link being modified as the width that the link is from the Base Link when measured along the section perpendicular to the centreline.

The Width/Xfall is maintained as that originally defined in the selected link.

Calculations for Type <-Circular

In the chainage-height diagram, the Start height is the height at chainage Start mode plus S Ext, and End height is the height at chainage End mode plus E Ext.

Between the start position (Start mode + S Ext, Start height), and the end position (End mode + E Ext, End height), the height varies as a circle with its horizontal turning point at (End mode + E Ext, End height) and going through (Start mode + S Ext, Start height).
These heights and the **Height offset** are then used for the link being modified as the height that the link is from the **Base Link** when measured along the section perpendicular to the centreline.

The **Width/Xfall** is maintained as that originally defined in the selected link.

**Calculations for Type Cubic**

In the chainage-height diagram, the **Start height** is the height at chainage **Start mode plus S Ext.** and the **End height** is the height at chainage **End mode plus E Ext.**

Between the start position (**Start mode + S Ext, Start height**), and the end position (**End mode + E Ext, End height**), the height varies as a cubic going through (**Start mode + S Ext, Start height**) and (**End mode + E Ext, End height**).
These heights and the Height offset are then used for the link being modified as the height that the link is from the Base Link when measured along the section perpendicular to the centreline.

The Width/Xfall is maintained as that originally defined in the selected link.
21.2.2.2.6.3 For Modifier Types "Modify Xfall Maintain Width/Height"

Go to Applying the Calculated Xfall
Go to Calculating the Xfall for each Type

Applying the Calculated Xfall

For Type Xfall

<table>
<thead>
<tr>
<th>XFall</th>
<th>Start XFall</th>
<th>End XFall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S Ext</th>
<th>S Ext</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E Ext</th>
<th>E Ext</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Height offset</th>
<th>Height offset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For other Types

Start xfall input measures menu
xfall at (Start mode + S Ext)

Start xfall can be positive or negative. See diagram after Height offset

S Ext and E Ext have no effect for Type Xfall.

End xfall input measures menu
xfall at (End mode + E Ext)

End xfall can be positive or negative. See diagram after Offset

End xfall does not exist for Type Xfall.

S Ext/E Ext input measures menu
Start/End extension to add to the Start/end mode chainage. S Ext/E Ext can be positive or negative.

See diagram after Offset

Height offset input measures menu
Final height offset to be added to the height calculated at each point. Height offset can be positive or negative.

For a chainage ch between the Start mode and the End mode, a xfall is calculated at ch chainage and that xfall is used for the link that goes out from the Base Link perpendicular to the Centreline.

The definition for calculating the xfalls is best described in a Chainage-Xfall diagram. That is, in a plot with Centreline chainage as the x-axis, and Xfall at that chainage as the y-axis. This is similar to a super elevation diagram where chainage is the x-axis and xfall is the y-axis.

Then for a point A at a chainage ch on the centreline, the Xfall calculated at chainage ch in the Chainage-Xfall diagram is used for the Xfall measured from the Base link corresponding at chainage ch.

For the Modify Xfall commands, the method defining the xfalls may not be exactly at the Start/End mode chainages but at points a S Ext/E Ext chainage distance from the Start/End mode chainages.

Finally after the xfalls and height/widths are applied to the link, a Height offset is added to all the heights.

Although the definition for calculating the xfalls in the chainage-xfall diagram may involve points
outside the Start mode/End mode chainage range, the calculated xfalls are only applied to the centreline between the Start mode chainage and the End mode chainage.

Calculating the Xfall for each Type

For Type Xfall, Xfall->Xfall, go to Calculations of Xfalls for Types Xfall, Xfall -> Xfall
For Type Parabola->, go to Calculations for Type Parabola ->
For Type Circular->, go to Calculations for Type Circular->
For Type <-Parabola, go to Calculations for Type <- Parabola
For Type <-Circular, go to Calculations for Type <-Circular
For Type Cubic, go to Calculations for Type Cubic

Calculations of Xfalls for Types Xfall, Xfall -> Xfall

In the chainage-xfall diagram, the Start xfall is the xfall at chainage Start mode plus S Ext, and End xfall is the xfall at chainage End mode plus E Ext.

The xfall is linearly interpolated between the Start xfall and the End xfall, plus the given Xfall offset in the chainage-width diagram.

That is, the rate change of xfall per unit chainage is

rate of xfall change = (End xfall - Start xfall)/(End mode + E Ext - Start mode - S Ext)

and the xfall at chainage ch is

(Start xfall + Xfall offset) + (ch - Start Mode chainage - S Ex) * rate of xfall change
These xfalls and the Height offset are then used for the link being modified as the xfall that the link is from the Base Link when measured along the section perpendicular to the centreline.

The Width/Height is maintained as that originally defined in the selected link.

Calculations for Type Parabola ->

In the chainage-xfall diagram, the Start xfall is the xfall at chainage Start mode plus S Ext, and End xfall is the xfall at chainage End mode plus E Ext.

Between the start position (Start mode + S Ext, Start xfall), and the end position (End mode + E Ext, End xfall), the xfall varies as a parabola \( a \times X \times X \) with its origin at (Start mode + S Ext, Start xfall) and going through (End mode + E Ext, End xfall).

These xfalls and the Height offset are then used for the link being modified as the xfall that the link is from the Base Link when measured along the section perpendicular to the centreline.

The Width/Height is maintained as that originally defined in the selected link.

Calculations for Type Circular->
In the chainage-xfall diagram, the **Start xfall** is the xfall at chainage **Start mode plus S Ext**, and **End xfall** is the xfall at chainage **End mode plus E Ext**.

Between the start position (**Start mode + S Ext, Start xfall**), and the end position (**End mode + E Ext, End xfall**), the xfall varies as a **circle** with its horizontal turning point at (**Start mode + S Ext, Start xfall**) and going through (**End mode + E Ext, End xfall**).

![Diagram](image)

These xfalls and the **Height offset** are then used for the link being modified as the xfall that the link is **from the Base Link** when measured along the section perpendicular to the centreline.

**Calculations for Type <- Parabola**

In the chainage-xfall diagram, the **Start xfall** is the xfall at chainage **Start mode plus S Ext**, and **End xfall** is the xfall at chainage **End mode plus E Ext**.

Between the start position (**Start mode + S Ext, Start xfall**), and the end position (**End mode + E Ext, End xfall**), the xfall varies as a **parabola** $a \cdot X \cdot X$ with its origin at (**End mode + E Ext, End xfall**) and going through (**Start mode + S Ext, Start xfall**).
These xfalls and the Height offset are then used for the link being modified as the xfall that the link is from the Base Link when measured along the section perpendicular to the centreline.

The Width/Height is maintained as that originally defined in the selected link.

**Calculations for Type <-Circular**

In the chainage-xfall diagram, the Start xfall is the xfall at chainage Start mode plus S Ext, and End xfall is the xfall at chainage End mode plus E Ext.

Between the start position (Start mode + S Ext, Start xfall), and the end position (End mode + E Ext, End xfall), the xfall varies as a circle with its horizontal turning point at (End mode + E Ext, End xfall) and going through (Start mode + S Ext, Start xfall).
These xfalls and the **Height offset** are then used for the link being modified as the xfall that the link is from the *Base Link* when measured along the section perpendicular to the centreline.

The Width/Height is maintained as that originally defined in the selected link.

**Calculations for Type Cubic**

In the chainage-xfall diagram, the **Start xfall** is the xfall at chainage *Start mode plus S Ext*, and **End xfall** is the xfall at chainage *End mode plus E Ext*.

Between the start position (*Start mode + S Ext, Start xfall*), and the end position (*End mode + E Ext, End xfall*), the xfall varies as a **cubic** going through (*Start mode + S Ext, Start xfall*) and (*End mode + E Ext, End xfall*).
These xfalls and the **Height offset** are then used for the link being modified as the xfall that the link is **from the Base Link** when measured along the section perpendicular to the centreline.

The Width/Height is maintained as that originally defined in the selected link.

Continue to the next section [21.2.2.7 Fixed Link- Parallel](#) or return to [21.2.2 Fixed Link Modifiers](#) or [21.2.2 Left and Right MTF Modifiers](#).
21.2.2.2.7 Fixed Link- Parallel

The Parallel walk-right brings up the fixed Parallel menu with options to adjust all the links between specified fixed links and make them parallel offsets of a given link, of a selected string.

To go straight to the documentation on each of the options on the Fixed modifier menu:

See

- **Parallel string**  
  21.2.2.2.7.1 Fixed Link - Parallel Links to String
- **Parallel link**  
  21.2.2.2.7.2 Fixed Link - Parallel Links to Link
21.2.2.7.1 Fixed Link - Parallel Links to String

The **Parallel string** option takes all the fixed links between two nominated link names (inclusive) and adjusts them so that the specified widths, cross falls and heights of the links are used **perpendicular** to a **selected string** rather than measured perpendicular to the reference string.

If sections and strings are created in the **Apply MTF**, then vertices are still created on the section and on the strings **perpendicular** to the reference string.

Selecting *Parallel* brings up the **Fixed - Parallel to String** panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>layer box</td>
<td>Design</td>
<td>available Layers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start link</td>
<td>name box</td>
<td>names.4d pop-up</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End link</td>
<td>name box</td>
<td>names.4d pop-up</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select string</td>
<td>string-select</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

name of the layer that the links to parallel are in. For information on Layers, see 21.1.1.2 MTF Links and Layers.

the name of the link to start making the widths distances measure parallel to the selected string.

the name of the last link to make the widths distances measure parallel to the selected string.

select the string to measure perpendicular to. The width, cross fall and height that a link is from the previous link are still used but they are measured along a perpendicular to the selected string rather than the reference string.

Alias, Start Chainage, End Chainage, Interval

defines the start/end chainages to parallel the links.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Continue to the next section 21.2.2.2.7.2 Fixed Link - Parallel Links to Link or return to 21.2.2.2 Fixed Link Modifiers or 21.2.2 Left and Right MTF Modifiers.
21.2.2.7.2 Fixed Link - Parallel Links to Link

The **Parallel link** option takes all the fixed links between two nominated link names (inclusive) and adjusts them so that the specified widths, cross falls and heights between the links are calculated perpendicular to a selected link **Base link** rather than measured perpendicular to the reference string.

If sections and strings are created in the **Apply MTF**, then vertices are still created on the section and on the strings **perpendicular** to the reference string.

Selecting **Parallel link** brings up the **Fixed - Parallel to Link** panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>layer box</td>
<td>Design</td>
<td>available Layers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>name of the layer that the links to parallel are in. For information on Layers, see 21.1.1.2 MTF Links and Layers.</td>
</tr>
<tr>
<td>Start Link</td>
<td>name box</td>
<td>names.4d pop-up</td>
<td>the name of the link to start making the widths distances measure parallel to the Base link.</td>
</tr>
<tr>
<td>End link</td>
<td>name box</td>
<td>names.4d pop-up</td>
<td>the name of the last link to make the widths distances measure parallel to the selected link.</td>
</tr>
<tr>
<td>Base Layer</td>
<td>layer box</td>
<td>Design</td>
<td>available Layers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>name of the layer for the Base link. For information on Layers, see 21.1.1.2 MTF Links and Layers.</td>
</tr>
<tr>
<td>Base link</td>
<td>name box</td>
<td></td>
<td>select the link to use to measure perpendicular to. The width, cross fall and height that a link is from the previous link are still used but they are measured along a perpendicular to the Base link rather than the reference string.</td>
</tr>
</tbody>
</table>

**Alias, Start Chainage, End Chainage, Interval**

defines the start/end chainages to parallel the links.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

**Comment, Extra start, Extra End, Active, OK, Apply**

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.
Continue to the next section 21.2.2.8 Fixed Link - Decisions or return to 21.2.2 Fixed Link Modifiers or 21.2 Left and Right MTF Modifiers.
21.2.2.2.8 Fixed Link - Decisions

The Decisions walk-right brings up the Fixed Decisions menu with options to make decisions on tests such as being able to batter into a tin, or how deep you are under a tin. There are labels and gotos to build complex tests.

See

Switch side 21.2.2.2.8.1 Fixed Decisions - Switch Sides
Goto 21.2.2.2.8.2 Fixed Decisions - Goto
Label 21.2.2.2.8.3 Fixed Decisions - Label
Then 21.2.2.2.8.4 Fixed Decisions - Then
End then 21.2.2.2.8.5 Fixed Decisions - End Then
Batter 21.2.2.2.8.6 Fixed Decisions - Batter
Batter test 21.2.2.2.8.7 Fixed Decisions - Batter Test
String exists 21.2.2.2.8.8 Fixed Decisions - String Exists
Above string height 21.2.2.2.8.9 Fixed Decisions - Above String Height
Link exists 21.2.2.2.8.10 Fixed Decisions - Link Exists
Above link height 21.2.2.2.8.11 Fixed Decisions - Above Link Height
Tin 21.2.2.2.8.12 Fixed Decisions - Tin
Polygon 21.2.2.2.8.13 Fixed Decisions - Polygon
21.2.2.2.8.1 Fixed Decisions - Switch Sides

The **Switch Sides** command transfers processing to the other side of the **Modifiers**.

That is, if a **Switch Sides** command is processed in a **Left MTF Modifiers** grid, then processing stops at that point in the **Left MTF Modifiers** grid, and processing is transferred to the **Right MTF Modifiers** grid. In the **Right MTF Modifiers** grid it from the row where the last **Switch Sides** command was executed in the **Right MTF Modifiers** grid, or if that hasn’t occurred before, processing starts at the top row of the **Right MTF Modifiers** grid.

And similarly if a **Switch Sides** command is processed in a **Right MTF Modifiers** grid

So processing can switch a number of times between the two sides.

Selecting **Switch sides** brings up the **Switch Sides** panel.

![Switch Sides Panel](image)

**Alias, Start Chainage, End Chainage, Interval**

defines the start/end chainages where the **Switch Sides** command is.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

**Comment, Extra start, Extra End, Active, OK, Apply**

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Go to the next section 21.2.2.8.2 Fixed Decisions - Goto or return to 21.2.2.8 Fixed Link - Decisions.
21.2.2.8.2 Fixed Decisions - Goto

**Goto** will transfer control to the row of the Left/Right MTF Modifiers grid with the label **Goto label**. Selecting **Goto** brings up the panel **Modify Decision Goto**.

**Goto label**
- Text box
- Transfer processing to the row of the Left/Right MTF Modifiers grid with this label.

**Alias, Start Chainage, End Chainage, Interval**
- Defines the start/end chainages where the GOTO command exists.
- For information on these panel fields, see [21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels](#).

**Comment, Extra start, Extra End, Active, OK, Apply**
- For information on these panel fields, see [21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels](#).

Go to the next section [21.2.2.8.3 Fixed Decisions - Label](#) or return to [21.2.2.8 Fixed Link - Decisions](#).
21.2.2.8.3 Fixed Decisions - Label

The **Label** option creates a row in the **Left/Right MTF Modifiers** grid with the label **Label**. Selecting **Label** brings up the panel **Modify Decision Label**

![Modify Decision Label panel](image)

- **Label** text box: *name of the label that goes with this row of the Left/Right MTF Modifiers grid.*
- **Alias, Start Chainage, End Chainage, Interval**: *the Label exists when the chainage is between the Start and End chainages.*
  
  *For information on these panel fields, see [21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels](#).*

- **Comment, Extra start, Extra End, Active, OK, Apply**: *For information on these panel fields, see [21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels](#).*

Go to the next section [21.2.2.8.4 Fixed Decisions - Then](#) or return to [21.2.2.8 Fixed Link - Decisions](#).
21.2.2.8.4 Fixed Decisions - Then

The **Then** Command works in conjunction with an **End Then** command, and they both work with any one of the **Decision** commands that has a **test** and a **Goto Label** that is executed when the test succeeds (e.g. Batter Decision, String Exist, Tin).

The **Then** and the **End Then** must have the value for the **Label** field to be the same as the **GoTo Label** in a Test command.

If such an **Then-End Then** block exists for a Test command, then whenever the **GoTo Label** is executed for the Test command then processing is transferred to the **Then** command and continues from there.

However if processing reaches a **Then** command by any mean other than from a Test command, then all the commands are ignored until the **End Then** command is reached.

So a **Then-End Then** block is ignored except by a Test command with a matching **GoTo Label**.

**Notes**

1. More than one Test command can use the same **Then-End Then** block.
2. Jumping into the middle of a **Then-End Then** block should not be done and will have unpredictable consequences.

Selecting Then brings up the **Modify Decision Then** panel

---

**Label** text box

name of the label that is the same as its matching **End Then** command, and matches the **Goto Label** of any Test command that wants to use the **Then-End Then** block.

**Alias, Start Chainage, End Chainage, Interval**

the Then exists when the chainage is between the Start and End chainages.
For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Go to the next section 21.2.2.8.5 Fixed Decisions - End Then or return to 21.2.2.8 Fixed Link - Decisions.
21.2.2.8.5 Fixed Decisions - End Then

MTF_Edit_Modify_Decision_End_Then

The End Then goes with a matching Then command. For a description of how the Then-End Then commands are used, see 21.2.2.8.4 Fixed Decisions - Then.

Selecting End then brings up the panel Modify Decision End Then

Label

text box

name of the label that is the same as its matching Then command, and matches the Goto Label of any Test command that wants to use the Then-End Then block.

Alias, Start Chainage, End Chainage, Interval

the End Then exists when the chainage is between the Start and End chainages.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Go to the next section 21.2.2.8.6 Fixed Decisions - Batter or return to 21.2.2.8 Fixed Link - Decisions.
21.2.2.8.6 Fixed Decisions - Batter

The Batter option is used to construct a new link which stops if it comes within
(a) a Strip depth of a Tin
(b) an Offset distance from a Tin.
(c) a Strip depth of a Tin calculated at a given Offset from the link.

If the link does stop, control is transferred via a Goto label, otherwise control continues onto the next row in the Left/Right MTF Modifiers grid.

The maximum length of the batter link is defined by specifying values for two of the three fields Width, Height and Slope. The Width, Height and Slope values of the created link may be different if the link stops because of one of the conditions (a), (b) or (c).

Notes
1. cases (a) and (b) are just special cases of (c)
2. strip and offset can be used to stop the link to allow for a fixed structure (such as a drain) to be inserted so that it ends up on the tin.
The batter link ends if the tin is cut at the strip depth calculated at the offset distance from the link. The end of the link is created at the cut point. The test is true.

Case (c)

The batter link is defined by any two of width, height and slope and stops if it meets the tin at the strip depth calculated at the given offset distance from the link.

Failure of the batter

The batter link does not cut at the strip depth below the tin, calculated at the offset distance from the link. The end of the link is defined by the width, height and slope. The test is false.

The batter link defined by any two of width, height and slope and fails to meet the tin at the strip depth calculated at the given offset distance from the link.

Selecting Batter brings up the Modify Decision Batter panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box available tins</td>
<td>tin box</td>
<td></td>
<td>available tins</td>
</tr>
<tr>
<td>Strip</td>
<td>distance below the tin to stop at.</td>
<td>real box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td>offset distance from the link to check strip depth</td>
<td>real box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>the width for the link. Any two of Width, Height and Slope can be used.</td>
<td>real box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>the height for the link. Any two of Width, Height and Slope can be used.</td>
<td>real box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>the slope, in 1v in, of the link. Positive is up and negative down. Any two of Width, Height and Slope can be used.</td>
<td>real box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td>name of the layer that the new link is to go in. For information on Layers, see 21.1.2 MTF Links and Layers.</td>
<td>layer box</td>
<td>Design</td>
<td>available layers</td>
</tr>
<tr>
<td>Name</td>
<td>the name to be used for the created link.</td>
<td>name box</td>
<td></td>
<td>available names</td>
</tr>
<tr>
<td>Colour</td>
<td>colour box available colours</td>
<td>colour box</td>
<td>cyan</td>
<td>available colours</td>
</tr>
</tbody>
</table>
the colour to be used for the created link

When test is	choice box	false	true, false

if When test is has the value true, and the test is true (i.e. the batter link comes within the depth Strip and offset Offset of the tin) then go to the label Goto label. Otherwise proceed to the next row.

If When test is has the value false, and the test is false then go to the label Goto label. Otherwise proceed to the next row.

Goto label	text box

used with When test is.

Note that there may be a Then-End Then block that matches the GoTo Label. For a description of a Then-End Then block and how it works, see 21.2.2.8.4 Fixed Decisions - Then.

Alias, Start Chainage, End Chainage, Interval

the batter is performed when the chainage is between the Start and End chainages.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Go to the next section 21.2.2.8.7 Fixed Decisions - Batter Test or return to 21.2.2.8 Fixed Link - Decisions.
21.2.2.8.7 Fixed Decisions - Batter Test

The Batter test option tests if a user defined link comes within

(a) a Strip depth of a Tin
(b) an Offset distance from a Tin.
(c) a Strip depth of a Tin calculated at a given Offset from the link.

The test link is defined by specifying values for two of the three fields Width, Height and Slope.

Notes

1. The tests are the same as in 21.2.2.8.6 Fixed Decisions - Batter but no link is created.
   That is, The batter test is used to test if a batter will stop/not stop without creating a batter link.

2. Cases (a) and (b) are just special cases of (c)

For diagrams describing the tests, see 21.2.2.8.6 Fixed Decisions - Batter.

Selecting Batter test brings up the Modify Decision Batter Test panel

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td></td>
<td>available tins</td>
</tr>
<tr>
<td>Strip</td>
<td>real box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td>real box</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions.

- Tin: tin to test battering to.
- Strip: distance below the tin to stop at.
- Offset: offset distance from the link to check strip depth.
Width
real box
the width for the link. Any two of Width, Height and Slope can be used.

Height
real box
the height for the link. Any two of Width, Height and Slope can be used.

Slope
real box
the slope, in 1v in, of the link. Positive is up and negative down. Any two of Width, Height and Slope can be used.

Layer
layer box Design available layers
name of the layer that the test link is appended to. For information on Layers, see 21.1.1.2 MTF Links and Layers.

When test is
choice box false true, false
if When test is has the value true, and the test is true (i.e. the test link comes within the depth Strip and offset Offset of the tin) then go to the label Goto label. Otherwise proceed to the next row.

If When test is has the value false, and the test is false then go to the label Goto label. Otherwise proceed to the next row.

Goto label
text box
used with When test is.
Note that there may be a Then-End Then block that matches the GoTo Label. For a description of a Then-End Then block and how it works, see 21.2.2.8.4 Fixed Decisions - Then.

Alias, Start Chainage, End Chainage, Interval
the batter is tested when the chainage is between the Start and End chainages. For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply
For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Go to the next section 21.2.2.8.8 Fixed Decisions - String Exists or return to 21.2.2.8 Fixed Link - Decisions.
21.2.2.8.8 Fixed Decisions - String Exists

This option tests to see if a string is on the left and/or right of the reference string.
Selecting **String** brings up the panel **Modify Decision String Exists**

![Modify Decision String Exists panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>String</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the string to test.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>String side</td>
<td>choice box</td>
<td>both</td>
<td>left, right, both</td>
</tr>
<tr>
<td></td>
<td>if <strong>left</strong>, only the left side of the reference string is searched for the given string.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If <strong>right</strong>, only the right side of the reference string is searched for the given string.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If <strong>both</strong>, the left and the right side of the reference string is searched for the given string.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>When test is</td>
<td>choice box</td>
<td>false</td>
<td>true, false</td>
</tr>
<tr>
<td></td>
<td>if <strong>When test is</strong> has the value <strong>true</strong>, and the test is <strong>true</strong> (i.e. the given string is found) then go to the label <strong>Goto label</strong>. Otherwise proceed to the next row.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If <strong>When test is</strong> has the value <strong>false</strong>, and the test is <strong>false</strong> (i.e. the given string is not found) then go to the label <strong>Goto label</strong>. Otherwise proceed to the next row.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goto label</td>
<td>text box</td>
<td></td>
<td>used with <strong>When test is</strong>.</td>
</tr>
</tbody>
</table>

Note that there may be a **Then-End Then** block that matches the **GoTo Label**. For a description of a **Then-End Then** block and how it words, see 21.2.2.8.4 Fixed Decisions - Then.
Alias, Start Chainage, End Chainage, Interval
   the test is performed when the chainage is between the Start and End chainages.  
   For information on these panel fields, see 21.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply  
   For information on these panel fields, see 21.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Go to the next section 21.2.2.8.9 Fixed Decisions - Above String Height or return to 21.2.2.8 Fixed Link - Decisions.
21.2.2.2.8.9 Fixed Decisions - Above String Height

The option tests if a line of a given grade (grade line) defined from the end of a Base link passes a given height difference above a selected string.

The grade line passes through the grade point which is a given Base link offset and Base link height difference from the end of the given link.

The height is tested at a given string offset from the selected string.

The line of grade Base link grade must pass above this point for Base > String to be true.

So this case is true

The line of grade Base link grade must pass above this point for Base > String to be true.

So both these cases are false

Selecting Above string height brings up the Modify Decision Above String Height panel
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base layer</td>
<td>layer box</td>
<td>Design available layers</td>
<td></td>
</tr>
<tr>
<td>name of the layer that the link to test for is in. For information on Layers, see 21.1.1.2 MTF Links and Layers.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base link</td>
<td>link box</td>
<td>name of the link in Base layer to test if the line of grade going from the link is a delta height above a selected string.</td>
<td></td>
</tr>
<tr>
<td>Base link offset</td>
<td>real box</td>
<td>option &quot;sided&quot; offset distance from the end of the link Base link that the line of grade Base link grade goes through (the grade point).</td>
<td></td>
</tr>
<tr>
<td>Base link height diff</td>
<td>real box</td>
<td>the value to add to the height of the end of the link Base link that the line of grade Base link grade goes through (the grade point).</td>
<td></td>
</tr>
<tr>
<td>Base link grade</td>
<td>real box</td>
<td>percentage grade of a line through the grade point that is tested to see if it passed within a given offset and height difference of the selected string.</td>
<td></td>
</tr>
<tr>
<td>String</td>
<td>string select</td>
<td>the string to test.</td>
<td></td>
</tr>
<tr>
<td>String side</td>
<td>choice box</td>
<td>both left, right, both</td>
<td></td>
</tr>
<tr>
<td>if left, only the left side of the reference string is searched for the selected string.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If right, only the right side of the reference string is searched for the selected string.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If both, the left and the right side of the reference string is searched for the selected string.

**String offset**

real box

optional "absolute" offset distance from the string of the point that is tested for the grade link going above.

**String height diff**

real box

optional height difference added to the height of the string. This total height is used at the String offset point to give the point that is tested for the grade link going above.

**When Base > String is**

choice box false true false

if When Base > String has the value true, and the test is true then go to the label Goto label. Otherwise proceed to the next row.

If When Base > String has the value false, and the test is false then go to the label Goto label. Otherwise proceed to the next row.

**Goto label**

text box

used with When Base > String is.

Note that there may be a Then-End Then block that matches the GoTo Label. For a description of a Then-End Then block and how it words, see 21.2.2.2.8.4 Fixed Decisions - Then.

**Alias, Start Chainage, End Chainage, Interval**

the test is performed when the chainage is between the Start and End chainages.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

**Comment, Extra start, Extra End, Active, OK, Apply**

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Go to the next section 21.2.2.8.10 Fixed Decisions - Link Exists or return to 21.2.2.8 Fixed Link - Decisions.
21.2.2.8.10 Fixed Decisions - Link Exists

This option tests to see if a given link exists.

**Note** that a link is only looked for on the side that the Link Exists command being processed is in.

Selecting **Link** brings up the panel **Modify Decision Link Exists**

![Modify Decision Link Exists Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>layer box</td>
<td>Design available layers</td>
<td></td>
</tr>
</tbody>
</table>

*name of the layer that the link to test for is in. For information on Layers, see 21.1.1.2 MTF Links and Layers.*

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link(s)</td>
<td>name box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*name of the links in **Layer** to test to see if any of them exist. See 21.2.2.1.2 Link or Link(s).*

*The test only looks at the side that the Link Exists command being processed is in (Left or Right side).*

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>When test is</td>
<td>choice box</td>
<td>false</td>
<td>true, false</td>
</tr>
</tbody>
</table>

*if **When test is** has the value true, and the test is true (i.e. the given link is found) then go to the label **Goto label**. Otherwise proceed to the next row.*

*If **When test is** has the value false, and the test is false (i.e. the given link is not found) then go to the label **Goto label**. Otherwise proceed to the next row.*

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goto label</td>
<td>text box</td>
</tr>
</tbody>
</table>

*used with **When test is**.*

*Note that there may be a Then-End Then block that matches the GoTo Label. For a description of a Then-End Then block and how it works, see 21.2.2.2.8.4 Fixed Decisions - Then.*
Alias, Start Chainage, End Chainage, Interval

the test is performed when the chainage is between the Start and End chainages.
For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Go to the next section 21.2.2.8.12 Fixed Decisions - Tin or return to 21.2.2.8 Fixed Link - Decisions.
21.2.2.8.11 Fixed Decisions - Above Link Height

The option tests if a line of a given grade (grade line) defined from the end of a Base link passes a given height difference above a selected Link.

The grade line passes through the grade point which is a given Base link offset and Base link height difference from the end of the given link.

The height is tested at a given Link offset from the selected Link.

The line of grade Base link grade must pass above this point for Base >Link to be true.

So this case is true

The line of grade Base link grade must pass above this point for Base >Link to be true.

So both these cases are false

Selecting Above link height brings up the Modify Decision Above Link Height panel
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Base layer</strong></td>
<td>layer box</td>
<td>Design</td>
<td>available layers</td>
</tr>
<tr>
<td><strong>Base link</strong></td>
<td>link box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Base link offset</strong></td>
<td>real box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Base link height diff</strong></td>
<td>real box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Base link grade</strong></td>
<td>real box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Link layer</strong></td>
<td>layer box</td>
<td>Design</td>
<td>available layers</td>
</tr>
<tr>
<td><strong>Link</strong></td>
<td>link box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Name of the layer that the base link to test for is in. For information on Layers, see 21.1.1.2 MTF Links and Layers.*

*Name of the base link in Base layer to test if the line of grade going from the base link is a delta height above a selected Link.*

*Option “sided” offset distance from the end of the link Base link that the line of grade Base link grade goes through (the grade point).*

*The value to add to the height of the end of the link Base link that the line of grade Base link grade goes through (the grade point).*

*Percentage grade of a line through the grade point that is tested to see if it passed above a given offset and height difference of a selected Link.*

*Name of the layer that the link to test that the grade line is above, is in. For information on Layers, see 21.1.1.2 MTF Links and Layers.*

*Name of the link in Layer to test if the line of grade going from the base link is a delta height above it.*
Link offset real box
optional "absolute" offset distance from the end of Link of the point that is tested for the grade link going above.

Link height diff real box
optional height difference added to the height of the end of Link. This total height is used at the Link offset point to give the point that is tested for the grade link going above.

When Base >String is choice box false true, false
if When Base >Link has the value true, and the test is true then go to the label Goto label. Otherwise proceed to the next row.

If When Base > Link has the value false, and the test is false then go to the label Goto label. Otherwise proceed to the next row.

Goto label text box
used with When Base > Link is.
Note that there may be a Then-End Then block that matches the GoTo Label. For a description of a Then-End Then block and how it works, see 21.2.2.8.4 Fixed Decisions - Then.

Alias, Start Chainage, End Chainage, Interval
the test is performed when the chainage is between the Start and End chainages.
For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply
For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Go to the next section 21.2.2.8.12 Fixed Decisions - Tin or return to 21.2.2.8 Fixed Link - Decisions.
21.2.2.8.12 Fixed Decisions - Tin

Selecting Tin brings up the Modify Decision Tin panel which tests to see if the depth from the end of the given Link in a given Layer, offset by the amount given in the Offset field, is between the two values given in the Minimum depth and Maximum depth fields where the depths are taken from the stripped Tin (that is, the Tin dropped by the Strip value).

If the depth is between the values, then control is transferred to the row of the Modifiers grid with the label given by the Goto label field. Otherwise, control passes to the next row of the Modifiers grid.

Offset, Minimum depth and Maximum depth can be positive or negative.

This is a test and does not create a link.

Selecting Tin brings up the panel Modify Decision Tin.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>Tin box available tins</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Strip</td>
<td>Real box 0</td>
<td>real box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td>Layer box Design available layers</td>
<td>layer box</td>
<td>Design</td>
<td></td>
</tr>
<tr>
<td>Link name</td>
<td>Name of link in Layer to test against the tin.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td>Real box 0</td>
<td>real box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Minimum depth</td>
<td>Real box 0</td>
<td>real box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Maximum depth</td>
<td>Real box 1000</td>
<td>real box</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>When test is</td>
<td>Choice box false, true, false</td>
<td>choice box</td>
<td>false</td>
<td>true, false</td>
</tr>
</tbody>
</table>

The tin to calculate the depth to.

The depth to drop the tin before testing.

Name of the layer that the link to test is in. For information on Layers, see 21.1.1.2 MTF Links and Layers.

Name of link in Layer to test against the tin.

The depth is calculated at an offset distance of offset from the end of the previous link.

If the depth is between the Minimum depth and the Maximum depth, then the test is true, otherwise the test is false.

See the description of the Minimum depth field.

If When test is has the value true, and the test is true (i.e. the depth is between the minimum and maximum depths) then go to the label Goto label. Otherwise proceed to the next row.
If When test is has the value `false`, and the test is `false` (i.e. the depth is not between the minimum and maximum depths) then go to the label `Goto label`. Otherwise proceed to the next row.

**Goto label**

*used with When test is.*

Note that there may be a `Then-End Then` block that matches the `GoTo Label`. For a description of a `Then-End Then` block and how it words, see 21.2.2.8.4 Fixed Decisions - Then.

**Alias, Start Chainage, End Chainage, Interval**

the test is performed when the chainage is between the Start and End chainages.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

**Comment, Extra start, Extra End, Active, OK, Apply**

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Go to the next section 21.2.2.8.13 Fixed Decisions - Polygon or return to 21.2.2.8 Fixed Link - Decisions.
21.2.2.8.13 Fixed Decisions - Polygon

This options tests to see if the (x,y) coordinates of a link is inside a user selected polygon. Selecting Polygon brings up the panel Modify Decision Polygon.

![Modify Decision Polygon Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>layer box</td>
<td>Design</td>
<td>available layers</td>
</tr>
<tr>
<td>Link name</td>
<td>input</td>
<td></td>
<td>name of link in Layer to test against the polygon.</td>
</tr>
<tr>
<td>Polygon</td>
<td>string sect</td>
<td></td>
<td>the polygon to use for testing if the link is inside or outside of it.</td>
</tr>
<tr>
<td>Polygon mode</td>
<td>choice box</td>
<td>Inside</td>
<td>Inside, Outside</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>if Inside, the test is true if the (x,y) coordinates of the link is inside the polygon.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If Outside, the test is true if the (x,y) coordinates of the link is outside the polygon</td>
</tr>
<tr>
<td>When test is</td>
<td>choice box</td>
<td>false</td>
<td>true, false</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>if When test is has the value true, and the test is true (i.e. the end of the given link is inside the polygon) then go to the label Goto label. Otherwise proceed to the next row.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If When test is has the value false, and the test is false (i.e. the end of the given link is not inside the polygon) then go to the label Goto label. Otherwise proceed to the next row.</td>
</tr>
</tbody>
</table>
Goto label text box

used with When test is.

Note that there may be a Then-End Then block that matches the GoTo Label. For a description of a Then-End Then block and how it works, see 21.2.2.8.4 Fixed Decisions - Then.

Alias, Start Chainage, End Chainage, Interval

the test is performed when the chainage is between the Start and End chainages.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Return to 21.2.2.8 Fixed Link - Decisions.
21.2.2.2.9 Fixed Link - From link

For a given link (the current link), the from Link option takes one of Width, Height or Xfall from a selected link whilst holding one to be what it is defined as by the current link. That is, for the current link:
(a) one of its existing Width, Height or Xfall is modified by taking its value from a selected link and
(b) a different one of Width, Height or Xfall keeps its existing value (i.e. holds its existing value).

Selecting the From link brings up the Fixed - Modify from Link panel.

![Fixed - Modify from Link panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>layer box</td>
<td>Design</td>
<td>available layers</td>
</tr>
<tr>
<td></td>
<td>name of the layer that the link to be modified is in. For information on Layers, see 21.1.1.2 MTF Links and Layers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Link(s)</td>
<td>name box</td>
<td>names.4d pop-up</td>
<td>the name of the links in the Layer to modify the width/height/xfall/slope using the method given in Modifier type, between the chainages given by Start mode and End mode. See 21.2.2.1.2 Link or Link(s).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each of the links is processed as the current link.
A link can be modified in any way regardless of how the link was defined in terms of width, height and xfall or slope. See 21.1.2.1 Calculating Width, Height, Xfall or Slope from Original Definitions

The Modify Width/Height/Xfall is the part of the current link that is modified and the new values are taken from a selected link.

The Hold Width/Height/Xfall is the part of the current link that is kept (held) at its current value.

So for Modifier type:

**Modify Width, Hold Height** - the Width is taken from the link From link name that is in the layer From layer and zone From zone, and the Height is kept as it is.

**Modify Width, Hold Xfall** - the Width is taken from the link From link name that is in the layer From layer and zone From zone, and the Xfall is kept as it is.

**Modify Height, Hold Width** - the Height is taken from the link From link name that is in the layer From layer and zone From zone, and the Width is kept as it is.

**Modify Height, Hold Xfall** - the Height is taken from the link From link name that is in the layer From layer and zone From zone, and the Xfall is kept as it is.

**Modify Xfall, Hold Width** - the Xfall is taken from the link From link name that is in the layer From layer and zone From zone, and the Width is kept as it is.

**Modify Xfall, Hold Height** - the Xfall is taken from the link From link name that is in the layer From layer and zone From zone, and the Height is kept as it is.

**From layer** layer box
name of the layer of the link to take values from.

**From Link name** name box
the name of the link in the From Layer and From Zone to get the Width, Height or Xfall from.

**From zone** choice box
the fixed, cut or fill zone that the From link name link is in.

**Alias, Start Chainage, End Chainage, Interval**
defines the start/end chainages for the link to be modified.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

**Comment, Extra start, Extra End, Active, OK, Apply**

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Continue to the next section 21.2.2.2.10 Fixed Link - To String or return to 21.2.2.2 Fixed Link Modifiers or 21.2 Left and Right MTF Modifiers.
21.2.2.2.10 Fixed Link - To String

For a given link, (the current link), the to string option takes one of Width, Height or Xfall as the value you get by going from the start point of the current link to another selected string.

That is, for the current link:

(a) one of its existing Width, Height or Xfall is modified by taking its value the vector going from the start of the current link to another selected string.

and

(b) a different one of Width, Height or Xfall keeps its existing value (i.e. holds its existing value).

Selecting the To string brings up the Fixed - Modify All to String panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>layer box</td>
<td>Design</td>
<td>available layers</td>
</tr>
</tbody>
</table>

name of the layer that the link to be modified is in (the current link).
For information on Layers, see 21.1.1.2 MTF Links and Layers.

<table>
<thead>
<tr>
<th>Link name</th>
<th>name box</th>
<th>names.4d pop-up</th>
<th></th>
</tr>
</thead>
</table>

the name of the link in the Layer to modify the width/height/xfall/slope using the method given in Modifier type, between the chainages given by Start mode and End mode.
This is the current link.

<table>
<thead>
<tr>
<th>Select string</th>
<th>string-select</th>
<th></th>
</tr>
</thead>
</table>

select string to use for defining width/height/xfall for the link.
Side to search choice box
left side
left side, right side, both sides
side of the hinge string to start searching to find the string to define width/height/xfall.

Modifier type choice box

modify Width, hold Height to be its current value
modify Width, hold Xfall to be its current value
modify Height, hold Width to be its current value
modify Height, hold Xfall to be its current value
modify Xfall, hold Width to be its current value
modify Xfall, hold Height to be its current value
modify Width, Height and Xfall to get onto the selected string

A link can be modified in any way regardless of how the link was defined in terms of width, height and xfall or slope. See 21.1.2.1 Calculating Width, Height, Xfall or Slope from Original Definitions.

The **Modify Width/Height/Xfall** is the part of the current link that is modified and the new values are taken from a selected link.

The **Hold Width/Height/Xfall** is the part of the current link that is kept (held) at its current value.

So for **Modifier type**:

**Modify Width, Hold Height** see 21.2.2.10.1 Fixed - to String: Modifier Types Modify Width, Hold Height/Xfall

**Modify Width, Hold Xfall** see 21.2.2.10.1 Fixed - to String: Modifier Types Modify Width, Hold Height/Xfall

For **Modify Height, Hold Width** see 21.2.2.10.2 Fixed - to String: Modifier Types Modify Height, Hold Width/Xfall

For **Modify Height, Hold Xfall** see 21.2.2.10.2 Fixed - to String: Modifier Types Modify Height, Hold Width/Xfall

For **Modify Xfall, Hold Width** see 21.2.2.10.3 Fixed - to String: Modifier Types Modify Xfall, Hold Width/Height

For **Modify Xfall, Hold Height** see 21.2.2.10.3 Fixed - to String: Modifier Types Modify Xfall, Hold Width/Height

**For Modify Width, Height and Xfall**, see 21.2.2.10.4 Fixed - to String: Modifier Type Modify Width, Height and Xfall

**Alias, Start Chainage, End Change, Interval**
defines the start/end chainages for the link to be modified.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

**Comment, Extra start, Extra End, Active, OK, Apply**

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Continue to the next section 21.2.2.11 Fixed Link - To Tin or return to 21.2.2.2 Fixed Link Modifiers or 21.2.2 Left and Right MTF Modifiers.
21.2.2.10.1 Fixed - to String: Modifier Types Modify Width, Hold Height/Xfall

For a fixed link Modify Width calculates the width of the link as the width from the start point of the link, to the selected string.

For Modify Width, Hold Height the height is taken from the current link.

For Modify Width, Hold Xfall the xfall is taken from the current link.
21.2.2.10.2 Fixed - to String: Modifier Types Modify Height, Hold Width/Xfall

For a fixed link Modify Height calculates the height of the link as the difference in the height at the start point of the link, and the height at the selected string.

For Modify Height, Hold Width the width is taken from the current link.

For Modify Height, Hold Xfall the xfall is taken from the current link.
21.2.2.10.3 Fixed - to String: Modifier Types Modify Xfall, Hold Width/Height

For a fixed link **Modify Xfall** calculates the **xfall** of the link as the **xfall** from the start point of the link to the **selected string**.

For **Modify Xfall, Hold Width** the **width** is taken from the current link.

For **Modify Xfall, Hold Height** the **height** is taken from the link.
21.2.2.2.10.4 Fixed - to String: Modifier Type Modify Width, Height and Xfall

For a fixed link Modify Width, Height and Xfall calculates the required width, height and/or xfall that the link needs to get from the start point of the link to the selected string.

To use the option you must first have a link defined but there is a command Fixed => Insert => Insert at string which creates a link and also places it on a selected string. See 21.2.2.2.1.3 Insert a Fixed Link at a String.
21.2.2.2.11 Fixed Link - To Tin

For a given link, (the current link), the to tin option takes one of Width, Height or Xfall as the value you need so that the end of the link is at the point that is a given number of intersection with a given tin.

That is, for the current link:

(a) one of Width, Height or Xfall keeps its existing value (i.e. holds its existing value).

and

(b) a different one of Width, Height or Xfall is modified so that the end of the link is at the point that is a given number of intersection with the given tin.

Note that the tin does not have to be the same tin as used in the Apply MTF function that is using the MTF.

Selecting the To tin brings up the Fixed - Link to Tin panel.

![Fixed - Link to Tin Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>name of the layer that the link to be modified is in.</td>
<td>layer box</td>
<td>Design</td>
<td>available layers</td>
</tr>
<tr>
<td>Link(s)</td>
<td>name box</td>
<td>names.4d</td>
<td>pop-up</td>
<td></td>
</tr>
<tr>
<td>Modifier type</td>
<td>the name of the links in the Layer to modify the width/height/xfall/slope using the method given in Modifier type, between the chainages given by Start mode and End mode.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For information on Layers, see 21.1.1.2 MTF Links and Layers.
Tin

The tin to use for defining the width/height/xfall/slope by getting a point of intersection with the tin.

To intersect no.

An integer box to specify how many times the current link intersects the tin. If not blank, the number of intersections with the tin is used. If the number is 1, the first intersection is used. If the number is 2, the second intersection is used. If the number is greater than 2, the last intersection is used.

Modifier type

A choice box to select the type of modification. Possible options include:
- Modify Width and take Height from current link
- Modify Width and take Xfall from current link
- Modify Height and take Width from current link
- Modify Height and take Xfall from current link
- Modify Xfall and take Width from current link
- Modify Xfall and take Height from current link
- Modify Slope and take Width from current link
- Modify Slope and take Height from current link

A link can be modified in any way regardless of how the link was defined in terms of width, height and xfall or slope. See 21.1.2.1 Calculating Width, Height, Xfall or Slope from Original Definitions.

The Modify Width/Height/Xfall is the part of the current link that is modified and the new values are obtained by getting an intersection with the tin.

The Hold Width/Height/Xfall is the part of the current link that is kept (held) at its current value.

So for Modifier type:

Modify Width, Hold Height see 21.2.2.11.1 Fixed - to Tin: Modifier Types Modify Width, Hold Height/Xfall

Modify Width, Hold Xfall see 21.2.2.11.1 Fixed - to Tin: Modifier Types Modify Width, Hold Height/Xfall

For Modify Height, Hold Width see 21.2.2.11.2 Fixed - to Tin: Modifier Types Modify Height, Hold Width/Xfall

For Modify Height, Hold Xfall see 21.2.2.11.2 Fixed - to Tin: Modifier Types Modify Height, Hold Width/Xfall

For Modify Xfall, Hold Width see 21.2.2.11.3 Fixed - to Tin: Modifier Types Modify Xfall, Hold Width/Height

For Modify Xfall, Hold Height see 21.2.2.11.3 Fixed - to Tin: Modifier Types Modify Xfall, Hold Width/Height

For Modify Slope, Hold Width see 21.2.2.11.4 Fixed - to Tin: Modifier Types Modify Slope, Hold Width/Height

For Modify Slope, Hold Height see 21.2.2.11.4 Fixed - to Tin: Modifier Types Modify Slope, Hold Width/Height

Alias, Start Chainage, End Chainage, Interval

 Defines the start and end chainages that the link is modified between.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.
Comment, Extra start, Extra End, Active, OK, Apply

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Continue to the next section 21.2.2.12 Fixed - To RL or return to 21.2.2 Fixed Link Modifiers or 21.2.2 Left and Right MTF Modifiers.
21.2.2.11.1 Fixed - to Tin: Modifier Types Modify Width, Hold Height/Xfall

For a fixed link **Modify Width** calculates the **width** of the link so that it intersects the tin at the number of intersects equal to **To intersect no**.

For **Modify Width, Hold Height** the **height** is taken from the current link.

---

### Section View

**Given link height**

- given tin
- end of fixed link is on the tin
- start of fixed link
- calculate width

**Modify Width to Intersect the tin and Hold Height**

- Given the height (delta) of the link, the width is calculated so that the link ends on the given number of intersects with the tin.

---

For **Modify Width, Hold Xfall** the **xfall** is taken from the current link.

### Section View

**Given link xfall/slope**

- given tin
- end of fixed link is on the tin
- start of fixed link
- calculate width

**Modify Width to Intersect the tin and Hold Xfall**

- Given the xfall of the link, the width is calculated so that the link ends on the given number of intersects with the tin.
21.2.2.11.2 Fixed - to Tin: Modifier Types Modify Height, Hold Width/Xfall

For a fixed link **Modify Height** calculates the **height** of the link so that it intersects the tin at the number of intersects equal to **To intersect no.**

For **Modify Height, Hold Width** the **width** is taken from the current link.

![Diagram](image-url)

For **Modify Height, Hold Xfall** the **xfall** is taken from the current link.
21.2.2.2.11.3 Fixed - to Tin: Modifier Types Modify Xfall, Hold Width/Height

For a fixed link Modify Xfall calculates the xfall of the link so that it intersects the tin at the number of intersects equal to To intersect no.

For Modify Xfall, Hold Width the width is taken from the current link.

For Modify Xfall, Hold Height the height is taken from current the link.
21.2.2.11.4 Fixed - to Tin: Modifier Types Modify Slope, Hold Width/Height

For a fixed link Modify Slope calculates the slope of the link so that it intersects the tin at the number of intersects equal to To intersect no.

For Modify Slope, Hold Width the width is taken from the current link.

For Modify Slope, Hold Height the height is taken from the current link.
21.2.2.2.12 Fixed - To RL

For a given link (the current link), the **to RL** option **takes** (holds) **one** of Width, Height or Xfall as it currently is, and then modifies a different one of Width, Height or Xfall to get to a given RL.

That is, for the current link:

(a) one of Width, Height or Xfall **keeps its existing value** (i.e. **holds its existing value**).

and

(b) a different one of Width, Height or Xfall **is modified** to the value that is needed to get to a given RL (elevation).

Selecting the **To RL** brings up the **Fixed - Link to RL** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>Layer box</td>
<td>Design</td>
<td>available layers</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>name of the layer that the link to be modified is in.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For information on Layers, see 21.1.1.2 MTF Links and Layers.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Link(s)</td>
<td>name box</td>
<td>names.4d pop-up</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>the name of the links in the Layer to modify the width/height/xfall/slope using the method given in Modifier type, between the chainages given by Start mode and End mode. See 21.2.2.1.2 Link or Link(s).</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Each of the links is processed as the current link.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RL</td>
<td>real box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>the RL (Elevation) to be reached at the end of the link.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Side to search choice box left side left side, right side, both sides
side of the hinge string to start searching to find the string to define width/height/xfall.
Modifier type choice box

modify Width and take Xfall from current link
modify Height and take Width from current link
modify Height and take Xfall from current link
modify Xfall and take Width from current link

A link can be modified in any way regardless of how the link was defined in terms of width, height and xfall or slope. See 21.1.2.1 Calculating Width, Height, Xfall or Slope from Original Definitions.

The Hold Width/Height/Xfall is the part of the current link that is kept (held) at its current value.

The Modify Width/Height/Xfall is the part of the current link that is then modified and the new values are obtained by getting to a given RL.

So for Modifier type:
Modify Width, Hold Xfall see 21.2.2.12.1 Fixed - to RL: Modifier Type Modify Width, Hold Xfall
For Modify Height, Hold Width see 21.2.2.12.2 Fixed - to RL: Modifier Types Modify Height, Hold Width/Xfall
For Modify Height, Hold Xfall see 21.2.2.12.2 Fixed - to RL: Modifier Types Modify Height, Hold Width/Xfall
For Modify Xfall, Hold Width see 21.2.2.12.3 Fixed - to RL: Modifier Type Modify Xfall, Hold Width

Alias, Start Chainage, End Chainage, Interval
defines the start and end chainages that the link is modified between.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Continue to the next section 21.2.2.13 Fixed - to 2 Heights or return to 21.2.2.2 Fixed Link Modifiers or 21.2.2 Left and Right MTF Modifiers.
21.2.2.2.12.1 Fixed - to RL: Modifier Type Modify Width, Hold Xfall

For a fixed link Modify Width calculates the width of the link required for link to end at the given RL.

For Modify Width, Hold Xfall the xfall is taken from the current link.
21.2.2.12.2 Fixed - to RL: Modifier Types Modify Height, Hold Width/Xfall

For a fixed link, Modify Height calculates the height of the link as the difference in the height at the start point of the link, and the given RL.

For Modify Height, Hold Width the width is taken from the current link.

For Modify Height, Hold Xfall the xfall is taken from the current link.
21.2.2.12.3 Fixed - to RL: Modifier Type Modify Xfall, Hold Width

For a fixed link Modify Xfall calculates the xfall of the link as the xfall from the start point of the link to the **given RL**.

For **Modify Xfall, Hold Width** the *width* is taken from the current link.

![Section View Diagram]

- **Given RL**
  - Start of fixed link
  - Calculate link xfall
  - Given link width
  - Modify Xfall to get to RL and Hold Width

- **End of fixed link**
  - End of fixed link is at the given RL (level)
  - Given the width of the link, the xfall is calculated so that the link ends at the elevation RL.
21.2.2.13 Fixed - to 2 Heights

MTF_Edit_Modify_Fixed__to_2_Heights: For an existing link, the to 2 heights option has a number of methods for defining the height and interpolation occurs over the length of the modified string and not over the length of the reference string (the chainage range).

To options also includes coming back from an RL at the end chainage and using that to define the RL at the start chainage.

For example, over the chainage range, the height can be interpolated between two given RL's.

The modifier to RL (21.2.2.12 Fixed - To RL mod has a constant RL whereas for to 2 heights, the RL at each chainage is calculated by a formula.

Selecting to 2 heights brings up the Fixed - to 2 Heights panel
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>layer box</td>
<td>Design</td>
<td>available layers</td>
</tr>
<tr>
<td>name of the layer that the link to be modified is in.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For information on Layers, see 21.1.1.2 MTF Links and Layers.

<table>
<thead>
<tr>
<th>Link(s)</th>
<th>input</th>
<th>select name menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>name of the links to modify. See 21.2.2.1.2 Link or Link(s).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modifier type</th>
<th>choice box</th>
</tr>
</thead>
</table>

The option to 2 heights defines the Height of the selected string so to completely define the link, only the Width or the Xfall is needed.

For the choice Modify Height, Hold Width, the Width is kept for the link (hold) and the Height is calculated by the method given by Type.

For the choice Modify Height, Hold Xfall, the Xfall is kept for the link (hold) and the Height is calculated by the method given by Type.
Type choice box

The Height for the current link is calculated by the method given by Type.

For the calculation of Height for each type, go to 21.2.2.13.1 Fixed - Calculating the Heights for each Type.

Alias, Start Chainage, End Chainage, Interval
defines the start and end chainages that the link is modified between.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply
For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Continue to the next section 21.2.2.14 Fixed - by 2 strings or return to 21.2.2.2 Fixed Link Modifiers or 21.2.2 Left and Right MTF Modifiers.
21.2.2.13.1 Fixed - Calculating the Heights for each Type

for the definitions of the calculations for each choice go to

21.2.2.13.1.1 RL: stay at a given RL
21.2.2.13.1.2 RL -> RL: interpolate between two given RL's
21.2.2.13.1.6 RL -> Pos: interpolate between a given start RL & the calculated end height
21.2.2.13.1.7 Pos -> RL: interpolate between the calculated start height and a given RL at the end
21.2.2.13.1.3 Pos ->: all points have the same height as the start point
21.2.2.13.1.4 <- Pos: all points have the same height as the end point
21.2.2.13.1.5 Pos-> Pos: interpolate between the calculated start and end heights

21.2.2.13.1.8 RL Grade ->: start with a given Start RL and continue on the line at grade
Grade->
21.2.2.13.1.9 <- RL Grade: all points are on a line with given grade and going through End RL
21.2.2.13.1.10 Pos Grade ->: start with the calculated height and continue at a given grade
21.2.2.13.1.11 <- Pos Grade: all points are on a line of given grade and going through the end point
21.2.2.13.1.12 Pos-> Pos: Tangential Compound Parabolas
21.2.2.13.1.13 Pos-> Pos: Tangential Cubic
21.2.2.13.1.1 RL: stay at a given RL

At the vertex of the link on the normal at each chainage \( ch \) between the Start mode and End Mode, the height at \( ch \) is that given in the RL panel field.

Hence the height is the same for all modified vertices between the Start mode and the End mode.

The modifiers with Type RL work the same as the modifier to RL with the RL being the given RL (see 21.2.2.12 Fixed - To RL).

21.2.2.13.1.2 RL -> RL: interpolate between two given RL’s

At each chainage \( ch \) between the Start mode and End Mode, the vertex of the modified string is on the perpendicular to the Reference string at chainage \( ch \).

The height at of the vertex on the perpendicular to Reference chainage \( ch \), is the linear interpolation of height with respect to the string being modified, between the given Start RL and the End RL.

![Chainage-Height Diagram for Type RL->RL](image)
21.2.2.2.13.1.3 Pos ->: all points have the same height as the start point

Let \textit{Start RL} be the actual height calculated at the vertex of the string at the perpendicular to \textit{Start mode} when all the modifiers before this modifier are applied.

Then for all vertices on the perpendiculars between \textit{Start mode} and \textit{End Mode}, the height of the vertex equal to \textit{Start RL}.

21.2.2.2.13.1.4 <- Pos: all points have the same height as the end point

Let \textit{End RL} be the actual height calculated at the vertex of the string at the perpendicular (normal) to \textit{End mode} when all the modifiers before this modifier are applied.

Then for all vertices on the normals between the \textit{Start mode} and \textit{End Mode}, the height of the vertex is equal to \textit{End RL}.

21.2.2.2.13.1.5 Pos-> Pos: interpolate between the calculated start and end heights
First let Start RL be the actual height calculated at the vertex of the string at the normal to Start mode when all the modifiers before this modifier are applied.

Let End RL be the actual height calculated at the vertex of the string at the normal to End mode when all the modifiers before this modifier are applied.

Then for each vertex on the normals between Start mode and End Mode, the height of the vertex is the linear interpolation with respect to modified string chainage between the Start RL and the End RL.
21.2.2.13.1.6 RL -> Pos: interpolate between a given start RL & the calculated end height

The height at the vertex on the normal at **Start mode** is the given **Start RL**.

And **End RL** is the actual height calculated at the vertex on the modified string at the normal at **End mode** when all the modifiers before this modifier are applied.

Then at each vertex on the normals between **Start mode** and **End Mode**, the height of the vertex is the linear interpolation *with respect to modified string chainage* between the **Start RL** and the **End RL**.

Hence for the modifiers of **Type RL -> Pos**, the calculations at chainage ch are the same as the modifiers **Width/Height/Xfall to RL** with the RL being the interpolated RL at chainage ch (see **Fixed Link - Modify Width, Height or Xfall to Get to an RL**).
21.2.2.13.1.7 Pos -> RL: interpolate between the calculated start height and a given RL at the end

**Start RL** is the actual height calculated at the vertex on the normal at **Start mode** when all the modifiers before this modifier are applied. The height at the vertex on the normal at **End mode** is the given **End RL**. Then at each vertex on the normals between **Start mode** and **End Mode**, the height of the vertex is the linear interpolation **with respect to modified string chainage** between the **Start RL** and the **End RL**.
21.2.2.13.1.8 RL Grade ->: start with a given Start RL and continue on the line at grade Grade->

The height at the vertex on the normal at Start mode is the Start RL.
For each normal between the Start mode and the End Mode, the height of the vertex is on the line with grade Grade-> with respect to the modified string, and going through the point (normal at Start mode, Start RL).

**Important Note:** Grade is calculated using increasing Reference chainages.
21.2.2.13.1.9 <- RL Grade: all points are on a line with given grade and going through End RL.

The height on the vertex at **End mode** is **End RL**.

For each normal between the **Start mode** and the **End Mode**, the height of the vertex is on the line with grade of negative **<-Grade** with respect to the modified string chainage, and going through the point (normal at End mode, End RL).

**Important Note**: **<-Grade** is calculated using decreasing **Alignment chainages**. So in a diagram with increasing chainage, the grade is negative **<-Grade**.
21.2.2.2.13.1.10 Pos Grade ->: start with the calculated height and continue at a given grade

Let **Start RL** be the actual height calculated at the vertex on the normal at **Start mode** when all the modifiers before this modifier are applied.

Then the height of each vertex on each normal between the **Start mode** and the **End Mode** is on the line with grade **Grade->** with respect to the modified string chainage, and going through the point (normal at Start mode, Start RL).

**Important Note:** **Grade->** is calculated using **increasing Alignment chainages.**
21.2.2.13.1.11 <- Pos Grade: all points are on a line of given grade and going through the end point

Let End RL be the actual height on the vertex on the normal at End mode when all the modifiers before this modifier are applied.

Then the height of each vertex on the normals between the Start mode and the End Mode is on the line with grade of negative <-Grade with respect to the modified string chainage, and going through the point (normal at End mode, End RL).

Important Note: <-Grade is calculated using decreasing Alignment chainages and the heights at the points along the string being modified. So in a diagram with increasing chainage, the grade is negative <-Grade.

21.2.2.13.1.12 Pos-> Pos: Tangential Compound Parabolas

Let Start RL be the actual height calculated at the vertex of the string at the perpendicular to Start mode when all the modifiers before this modifier are applied.

Let End RL be the actual height calculated at the vertex of the string at the perpendicular to End mode when all the modifiers before this modifier are applied.

Then for each vertex on the perpendiculars between Start mode and End Mode, the height of the vertex is on the curve of tangential compound parabolas (in chainage-height space) between the Start RL and the End RL.

21.2.2.13.1.13 Pos-> Pos: Tangential Cubic

Let Start RL be the actual height calculated at the vertex of the string at the perpendicular to Start mode when all the modifiers before this modifier are applied.

Let End RL be the actual height calculated at the vertex of the string at the perpendicular to End mode when all the modifiers before this modifier are applied.

Then for each vertex on the perpendiculars between Start mode and End Mode, the height of the vertex is on the curve of tangential cubic (in chainage-height space) between the Start RL and the End RL.
21.2.2.2.14 Fixed - by 2 strings

The by 2 strings option calculates one of the width, height and xfall or slope from two given strings. That is, for the current link:

(a) one of Width, Height or Xfall keeps its existing value (i.e. holds its existing value).

and

(b) a different one of Width, Height or Xfall is modified and its value is taken form the differences of two selected strings.

Selecting the by 2 strings brings up the Fixed - Modify by 2 Strings panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>layer box</td>
<td>Design</td>
<td>available layers</td>
</tr>
<tr>
<td>Link name</td>
<td>name box</td>
<td>names.4d pop-up</td>
<td></td>
</tr>
<tr>
<td>Chainages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>String 1</td>
<td>string-select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>String 2</td>
<td>string-select</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
select the second string to use for defining width/height/xfall for the link.

**Side 1 to search**
- choice box
- left side
- left side, right side, both sides

side of the hinge string to start searching to find string 1 to use in defining width/height/xfall.

**Side 2 to search**
- choice box
- left side
- left side, right side, both sides

side of the hinge string to start searching to find string 2 to use in defining width/height/xfall.

**Modifier type**
- choice box

modify Width and take Height from current link
modify Width and take Xfall from current link
modify Height and take Width from current link
modify Height and take Xfall from current link
modify Xfall and take With from current link
modify Xfall and take Height from current link

A link can be modified in any way regardless of how the link was defined in terms of width, height and xfall or slope. See [21.1.2.1 Calculating Width, Height, Xfall or Slope from Original Definitions](#).

The **Modify** width/height/xfall is the part of the current link that is modified from its current value by the method given by **Modifier type**.

The **Hold** width/height/xfall is the part of the current link that keeps its current value.

For **Modify Width**, see [21.2.2.2.14.1 Fixed - by 2 Strings: Modifier Types Modify Width, Hold Height/Xfall](#)
For **Modify Height**, see [21.2.2.2.14.2 Fixed - by 2 Strings: Modifier Types Modify Height, Hold Width/Xfall](#)
For **Modify Xfall**, see [21.2.2.2.14.3 Fixed - by 2 Strings: Modifier Types Modify Xfall, Hold Width/Height](#)

**Alias, Start Chainage, End Chainage, Interval**

defines the start/end chainages to calculate the values between the two strings.

For information on these panel fields, see [21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels](#).

**Comment, Extra start, Extra End, Active, OK, Apply**

For information on these panel fields, see [21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels](#).

Continue to the next section [21.2.2.15 Fixed - Interface to Tin](#) or return to [21.2.2 Fixed Link Modifiers](#) or [21.2.2 Left and Right MTF Modifiers](#).
21.2.2.2.14.1 Fixed - by 2 Strings: Modifier Types Modify Width, Hold Height/ Xfall

For a fixed link **Modify Width** sets the width of the link to be the width between the two selected strings.

For **Modify Width, Hold Height** the height from the current link is kept.

For **Modify Width, Hold Xfall**, the xfall from the current link is kept.
21.2.2.14.2 Fixed - by 2 Strings: Modifier Types Modify Height, Hold Width/ Xfall

For a fixed link **Modify Height** sets the **height** of the link to be the height between the two selected strings.

For **Modify Height, Hold Width** the **width** from the current link is kept.

For **Modify Height, Hold Xfall** the **xfall** from the current link is kept.
21.2.2.2.14.3 Fixed - by 2 Strings: Modifier Types Modify Xfall, Hold Width/Height

For a fixed link **Modify Xfall** sets the xfall of the link to be the xfall between the two selected strings.

For **Modify Xfall, Hold Width** the width from the current link is kept.

For **Modify Xfall, Hold Height** the height from the current link is kept.
21.2.2.2.15 Fixed - Interface to Tin

The Fixed $\Rightarrow$ Interface to string option interfaces from the given link to a given tin dropped by a strip depth.

Selecting the Interface to tin brings up the Fixed - Interface to tin panel.

![Fixed - Interface to Tin panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>layer box</td>
<td>Design</td>
<td>available layers</td>
</tr>
<tr>
<td>Base name</td>
<td>name box</td>
<td>names.4d pop-up</td>
<td></td>
</tr>
</tbody>
</table>

Name of the layer that the link to interface off is in.

For information on Layers, see 21.1.1.2 MTF Links and Layers.

The name of the link in the layer Layer to interface (batter) off.
That is, a line is taken from the end of the Base Link with either Final cut slope or Final fill slope, and extended until it cuts the stripped tin.

Final cut slope 1 v in real box 0 no slope, 0,1,2,3,4,5,10
The cut slope is used if the Base link is in cut. That is, it is below the tin.

The cut slope is the slope for the interface calculation to be done when the Base link is in cut. The batter continues at the cut slope until it hits the Tin dropped by the Strip depth, or until it reaches the Maximum slope width.

A cut slope of one vertical to the given value of horizontal units is used. The value 0 is used to designate a horizontal slope - vertical slopes are not allowed.

For final cut slope, positive is up and negative down
Final fill slope 1 v in real box 0 no slope, 0,1,2,3,4,5,10

the fill slope is used if the Base link is in cut. That is, it is above the tin.

The fill slope is the slope to be used in the interface calculation when the Base link is in fill. The batter continues at the fill slope until it hits the Tin dropped by the Strip depth, or until it reaches the Maximum slope width.

A fill slope of one vertical to the given value of horizontal units is used. The value 0 is used to designate a horizontal slope - vertical slopes are not allowed.

For final fill slope, positive is down and negative is up.

This definition of fill slope being positive when going down is used so that the value in the Final fill slope 1 v in field is normally positive.

Maximum slope width real box 100

the maximum width for the final slope. It hasn’t reached the tin by this distance then it stops.

Strip real box 0

the depth to vertically drop the tin before interfacing.

Tin tin box available tins

name of the tin to interface to.

Layer layer box Design available layers

name of the layer that the created link is added to.

Interface name name box

name for the link created by this link by battering.

Hence the end of string lies on the stripped tin. The string formed from the end of this link is called the interface string.

Alias, Start Chainage, End Chainage, Interval
defines the start/end chainages to calculate interface

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Go to the next section 21.2.2.2.16 Fixed - Boxing or return to 21.2.2.2 Fixed Link Modifiers or 21.2.2 Left and Right MTF Modifiers.
21.2.2.16 Fixed - Boxing

The Fixed =>Boxing bring the power of the Boxing from Templates to the Left/Right Modifiers.

See

21.2.2.16.1 Boxing - Analyse Subgrade
21.2.2.16.2 Boxing - Named Grade
21.2.2.16.3 Boxing - Named Grade Triple
21.2.2.16.4 Boxing - Insert Intersect
21.2.2.16.5 Boxing - Insert Xfall Pt
21.2.2.16.6 Boxing - Copy Layer
21.2.2.2.16.1 Boxing - Analyse Subgrade

Selecting Analyse subgrade brings up the panel Fixed - Analyse Subgrade

![Fixed - Analyse Subgrade Panel]

**Alias, Start Chainage, End Chainage, Interval**

defines the start and end chainages to analyse subgrade for.

For information on these panel fields, see [21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels](#).

**Comment, Extra start, Extra End, Active, OK, Apply**

For information on these panel fields, see [21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels](#).

Go to the next section [21.2.2.16.2 Boxing - Named Grade](#) or return to [21.2.2.16 Fixed - Boxing](#) or [21.2.2 Fixed Link Modifiers](#).
21.2.2.16.2 Boxing - Named Grade

Selecting Named grade brings up the panel Fixed - Modify Named Grade

Alias, Start Chainage, End Chainage, Interval
defines the start and end chainages that the modifier exists between.
For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply
For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Go to the next section 21.2.2.16.3 Boxing - Named Grade Triple or return to 21.2.2.16 Fixed - Boxing or 21.2.2.2 Fixed Link Modifiers.
21.2.2.2.16.3 Boxing - Named Grade Triple

Selecting Named grade triple brings up the panel Fixed - Modify Named Grade Triple

![Fixed - Modify Named Grade Triple panel](image)

**Alias, Start Chainage, End Chainage, Interval**

defines the start and end chainages that the modifier exists between.

For information on these panel fields, see 21.2.2.1 Common Fields and Buttons on MTF Modifier Panels.

**Comment, Extra start, Extra End, Active, OK, Apply**

For information on these panel fields, see 21.2.2.1 Common Fields and Buttons on MTF Modifier Panels.

Go to the next section 21.2.2.16.4 Boxing - Insert Intersect or return to 21.2.2.16 Fixed - Boxing or 21.2.2.16 Fixed Link Modifiers.
21.2.2.16.4 Boxing - Insert Intersect

Selecting Insert intersect brings up the panel Fixed - Insert Intersect

![Fixed - Insert Intersect Panel](image)

**Alias, Start Chainage, End Chainage, Interval**

defines the start and end chainages that the modifier exists between.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

**Comment, Extra start, Extra End, Active, OK, Apply**

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Go to the next section 21.2.2.16.5 Boxing - Insert Xfall Pt or return to 21.2.2.16 Fixed - Boxing or 21.2.2.2 Fixed Link Modifiers.
21.2.2.2.16.5 Boxing - Insert Xfall Pt

Selecting **Insert xfall pt** brings up the panel **Fixed - Insert Xfall Point**

![Fixed - Insert Xfall Point panel](image)

**Alias, Start Chainage, End Chainage, Interval**

defines the start and end chainages that the modifier exists between.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

**Comment, Extra start, Extra End, Active, OK, Apply**

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Go to the next section 21.2.2.16.6 Boxing - Copy Layer or return to 21.2.2.16 Fixed - Boxing or 21.2.2 Fixed Link Modifiers.
21.2.2.16.6 Boxing - Copy Layer

The Copy layer command copies the Link Points from part of one layer to another layer, with an optional value Height diff added to the copied points.

That is, the Copy layer command copies vertices from part of a selected Layer (from the vertex at the end of a Start link to the vertex at the end of an End link) and copies the vertices to a given Layer, with an optional value Height diff added to the copied vertices.

The option works by

(a) Calculating for each of the vertices from the vertex at the end of the Start link to the vertex at the end of the End link, the offset and height from the Hinge Point (the beginning of the layer).

That is, calculate an offset and delta height from the Hinge Point rather than just relative to the previous link.

(b) Adding the value Height diff to each of the height of each vertex.

(c) Inserting the vertices into the To Layer using the calculated offsets and heights from the Hinge Point for each vertex.

Hence if no links already exist in the To Layer for the calculated offset range of the copied vertices, then the cross sectional shape of the copied links is maintained.

However if links already exist in the To Layer for the calculated offset range of the copied vertices, then the existing and copied vertices are merged together. The merging occurs by simply ordering the vertices by increasing offset and then joining adjacent vertices together. The cross sectional shape of the copied links may not be maintained.

Note that the start vertex of the Start link is not copied. This is normally not a problem unless you are trying to copy the first vertex of the first Link. To do this with the Copy layer command, you would need to add a new link with a width and height of zero at the beginning of the string. This new link would then be used as the Start link.

Selecting Copy layer brings up the panel Fixed - Copy Layer
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>From layer</td>
<td>layer box</td>
<td>Design</td>
<td>available layers</td>
</tr>
<tr>
<td></td>
<td><em>name of the layer to copy links from.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>For information on Layers, see 21.1.2 MTF Links and Layers.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start link</td>
<td>link box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>name of the link in From layer to start copying from.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End link</td>
<td>link box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>name of the link in From layer to stop copying from.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td>layer box</td>
<td>Design</td>
<td>available layers</td>
</tr>
<tr>
<td></td>
<td><em>name of the layer to copy links from.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>For information on Layers, see 21.1.2 MTF Links and Layers.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height diff</td>
<td>real box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>the value to add to the height of the vertices of the links from the Start link to the End link.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre*post</td>
<td>text input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>each copied vertex is given a new name by apply the Pre</em>pos text to the original name of the vertex.*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>That is, the text before the * is prepended to the vertex name, and the text after the * is postpended to the vertex name.</em></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Alias, Start Chainage, End Chainage, Interval**

defines the start and end chainages to copy layer points.

*For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF*
Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Return to 21.2.2.2.16 Fixed - Boxing or 21.2.2.2 Fixed Link Modifiers.
21.2.2.3 Template Modifiers

Each 12d Template is made up of the sections Fixed, Decisions, Cut, Fill and Final Cut/Fill. See 20.1 Templates in 12d Model.

The options in the MTF Template menu are for working with the Decisions, Cut, Fill and Final Cut/Fill sections of inserted Templates.

The Template walk-right brings up the Template menu.

For

- Change decision: 21.2.2.3.1 Change Decision
- Cut: 21.2.2.3.2 Cut Link Modifiers
- Cut: 21.2.2.3.3 Fill Link Modifiers
- Final: 21.2.2.3.4 Final Modifiers
21.2.2.3.1 Change Decision

If a 12d Template has a **Decisions** section then the **Decisions** section is used before the **Cut**, **Fill** and **Final Cut/Fill** sections.

For an **Apply MTF**, a Template specified for a chainage range in the **Templates** section of the MTF (see [21.2.6.1 MTF Templates]) is called the **original** template for that chainage range.

Using the **Change Decision** modifier, for a given chainage range it is possible to **override** the **Decisions** section from the original Template and:

(a) use the **Decisions** section **from another** Template instead of the **Decisions** section of the original Template.

or

(b) use the cut, fill and final cut/fill sections of the original template **instead** of the **Decisions** section of the original template.

So the **Change Decision** option can be used to substitute a **Decisions** section from a different Template, or just **turn off** the **Decisions** section of the original Template.

In either case, the **Fixed** section of the **original** Template is **still used**.

Selecting **Change decision** brings up the **Decision - Change** panel

![Decision - Change panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision template</td>
<td>input</td>
<td>available templates</td>
<td></td>
</tr>
</tbody>
</table>

*If non-blank, this is the Template whose Decisions section is used over the given chainage range.*

*If blank, the Cut, Fill and Final Cut/Fill sections of the original Template are used over the chainage range instead of the Decision section of the original Template.*
Note that if the new Template has no decisions, then the Cut and Fill section of the original Template is used instead of the Decisions section of the original Template. That is, it is equivalent to leaving the Decisions Template field blank.

Alias, Start Chainage, End Chainage, Interval

defines the start/end chainages to changes/stop the Template Decisions.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Return to 21.2.2.3 Template Modifiers.
21.2.2.3.2 Cut Link Modifiers

The Cut walk-right brings up the Cut menu with options to modify the cut links of the template.

See

- Insert 21.2.2.3.2.1 Cut Link - Insert
- Insert cut template 21.3.0.1 Insert Cut Links from a Template
- Remove 21.3.0.2 Cut Link - Remove
- Width/Height 21.3.0.3 Cut Link - Modifier Width or Height
- Slope 21.3.0.4 Cut Link - Modify Slope
- from link 21.3.0.5 Cut Link - from Link
- to string 21.3.0.6 Cut Link - to String
- to tin 21.3.0.7 Cut Link - to Tin
- to 2 heights 21.3.0.8 Cut Link - to Two Heights
- by 2 strings 21.3.0.9 Cut Link - to 2 Strings21.3.0.9 Cut Link - to 2 Strings
21.2.3.2.1 Cut Link - Insert

Cut links can be created by the `cut Insert` command by specifying either the *width and height*, *width and slope* or *height and slope* for the link.

Selecting `Insert` brings up the `Cut - Insert` panel.

![Cut - Insert panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>Layer for the new link to go into.</td>
<td>choice box</td>
<td>available Layers</td>
<td></td>
</tr>
<tr>
<td>Link name</td>
<td>name of the cut link to create in the Layer.</td>
<td>input</td>
<td>select name menu</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>colour of the link being created.</td>
<td>input</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td>Width /height/slope</td>
<td>width/ height/slope of the link being created - only use two of the three.</td>
<td>input</td>
<td>measures menu</td>
<td></td>
</tr>
<tr>
<td>Before</td>
<td>if not blank, the name of the link in the Layer to insert the new link before.</td>
<td>choice box</td>
<td>select name menu</td>
<td></td>
</tr>
<tr>
<td>After</td>
<td>if Before is not blank, After is ignored.</td>
<td>choice box</td>
<td>select name menu</td>
<td></td>
</tr>
</tbody>
</table>

For information on Layers, see 21.1.1.2 MTF Links and Layers.
If not blank and Before is blank, the name of the link in the layer to insert the new link after.
If blank and Before is blank, Before is used.

Note: Only one of Before or After can not be blank. If they are both blank then Before takes precedence over After.

**Alias, Start Chainage, End Chainage, Interval**

defines the start/end chainages to changes/stop the Template Decisions.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

**Comment, Extra start, Extra End, Active, OK, Apply**

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.
21.2.2.3.3 Fill Link Modifiers

The Fill walk-right brings up the Fill menu with options to modify the fill links of the template.

![Fill menu](image)

**See**

- **Insert**
  - [21.2.2.3.1 Fill Link - Insert](#)
- **Insert fill template**
  - [21.3.0.10 Insert Fill Links from a Template](#)
- **Remove**
  - [21.3.0.11 Fill Link - Remove](#)
- **Width/Height**
  - [21.3.0.12 Fill Link - Modify Width or Height](#)
- **Slope**
  - [21.3.0.13 Fill Link - Modify Slope](#)
- **from link**
  - [21.3.0.14 Fill Link - from Link](#)
- **to string**
  - [21.3.0.15 Fill Link - to String](#)
- **to tin**
  - [21.3.0.16 Fill Link - to Tin](#)
- **to 2 heights**
  - [21.3.0.17 Fill Link - to Two Heights](#)
- **by 2 strings**
  - [21.3.0.18 Fill Link - to Two Strings](#)
21.2.2.3.3.1 Fill Link - Insert

Fill links can be created by the fill insert modifier and by specifying either the width and height, width and slope or height and slope.

Selecting Insert brings up the Fill - Insert panel

![Fill - Insert Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>choice box</td>
<td>available Layers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Layer for the new link to go into.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>For information on Layers, see 21.1.1.2 MTF Links and Layers.</td>
<td></td>
</tr>
<tr>
<td>Link name</td>
<td>input</td>
<td>select name menu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the fill link to create in the given Layer.</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>input</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>colour of the link being created.</td>
<td></td>
</tr>
<tr>
<td>Width /height/slope</td>
<td>input</td>
<td>measures menu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>width/ height/slope of the link being created - only use two of the three.</td>
<td></td>
</tr>
<tr>
<td>Before</td>
<td>choice box</td>
<td>select name menu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if not blank, the name of the link in the Layer to insert the new link before.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If blank and After is blank, the link is appended to the end of the fixed part of the template.</td>
<td></td>
</tr>
<tr>
<td>After</td>
<td>choice box</td>
<td>select name menu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if Before is not blank, After is ignored.</td>
<td></td>
</tr>
</tbody>
</table>
If not blank and Before is blank, the name of the link in the layer to insert the new link after. If blank and Before is blank, Before is used.

Note: Only one of Before or After can not be blank. If they are both blank then Before takes precedence over After.

Alias, Start Chainage, End Chainage, Interval

defines the start/end chainages to changes/stop the Template Decisions.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.
21.2.2.3.4 Final Modifiers

The Final walk-right brings up the Final menu with options to modify the final cut and fill links of the template.

See

- **Width**: 21.2.2.3.4.1 Final Link - Width
- **Cut slope**: 21.2.2.3.4.2 Final Link - Cut or Final Fill Slope
- **Fill slope**: 21.2.2.3.4.2 Final Link - Cut or Final Fill Slope
- **No cut slope**: 21.2.2.3.4.3 Final Link - No Cut Slope or Final No Fill Slope or Final No Cut/Fill Slope
- **No fill slope**: 21.2.2.3.4.3 Final Link - No Cut Slope or Final No Fill Slope or Final No Cut/Fill Slope
- **No cut/fill slope**: 21.2.2.3.4.3 Final Link - No Cut Slope or Final No Fill Slope or Final No Cut/Fill Slope
- **Change tin**: 21.2.2.3.4.4 Change Final Tin
- **Final link name**: 21.2.2.3.4.5 Change Final Link Name
21.2.2.3.4.1 Final Link - Width

The final Width modifier varies the Maximum slope width of the final link of the template.

Selecting Width brings up the Final - Width panel.

![Final - Width panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>name of the layer that the link to modify is in.</td>
<td>layer box</td>
<td>Design</td>
<td>available layers</td>
</tr>
<tr>
<td>Link name</td>
<td>name of the final link to modify.</td>
<td>link box</td>
<td>select name menu</td>
<td></td>
</tr>
<tr>
<td>Start width</td>
<td>width at the Start chainage for the Maximum slope width</td>
<td>input</td>
<td>measures menu</td>
<td></td>
</tr>
<tr>
<td>End width</td>
<td>width at the End chainage for the Maximum slope width</td>
<td>input</td>
<td>measures menu</td>
<td></td>
</tr>
<tr>
<td>Cubic</td>
<td>if ticked, the width is varied as a reverse cubic between the start and end chainages.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if not ticked, the width is varied linearly between the start and end chainages.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For information on Layers, see 21.1.1.2 MTF Links and Layers.
Alias, Start Chainage, End Chainage, Interval

defines the start/end chainages to modify the maximum width of the final link.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Continue to the next section 21.2.2.3.4.2 Final Link - Cut or Final Fill Slope or return to 21.2.2.3.4 Final Modifiers.
21.2.2.3.4.2 Final Link - Cut or Final Fill Slope

The final Cut slope modifier varies the cut slope of the final link of the template and the final Fill slope modifier varies the fill slope of the final link of the template.

Selecting the Cut slope or Fill slope options brings up the Final - Cut Slope and Final - Fill Slope panels respectively.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>layer box</td>
<td>Design</td>
<td>available layers</td>
</tr>
</tbody>
</table>

  name of the layer that the link to modify is in.

  For information on Layers, see 21.1.1.2 MTF Links and Layers.

| Link name               | link box   | select name menu |

  name of the final link to modify.

| Start slope             | input      | measures menu |

  slope at the Start chainage for the Final cut/fill slope 1v in of the final link of the template.

| End slope               | input      | measures menu |

  slope at the End chainage for the Final cut/fill slope 1v in of the final link of the template.

  Important note: For a cut link, positive slope is up. For a fill link, positive slope is down.

| Cubic                   | tick box   | |
if tinked, the slope is varied as a reverse cubic between the start and end chainages.

Rotate tick box

if tinned, the slope is varied linearly with respect to the angle, between the start and end chainages.

Note -

Only one of cubic and rotate can be set to tinned.
If both are set to not tinned, then the slope is varied linearly with respect to slope between the start and end chainages (the default).

Alias, Start Chainage, End Chainage, Interval

defines the start/end chainages to modify the final slope.
For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra End, Active, OK, Apply

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Continue to the next section 21.2.2.3.4.3 Final Link - No Cut Slope or Final No Fill Slope or Final No Cut/Fill Slope or return to 21.2.2.3.4 Final Modifiers.
21.2.2.3.4.3 Final Link - No Cut Slope or Final No Fill Slope or Final No Cut/Fill Slope

The final link can be stopped altogether or only stopped when it is in cut or only stopped when it is in fill.

The **No cut slope** modifier stops the final link when it is in *cut*, the **No fill slope** modifier stops the final link when it is in *fill* and the **No cut/fill fill slope** modifier stops the final link in any situation.

Selecting **No cut slope**, **No fill slope** or **No cut/fill slope** brings up the **Final - No Cut**, **Final - No Fill** or **Final - No Cut/Fill** panels respectively.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>layer box</td>
<td>Design</td>
<td>available layers</td>
</tr>
<tr>
<td>Link name</td>
<td>link box</td>
<td>select name menu</td>
<td></td>
</tr>
<tr>
<td>Alias, Start Chainage, End Chainage, Interval</td>
<td></td>
<td></td>
<td>name of the layer that the link to modify is in.</td>
</tr>
<tr>
<td>For information on these panel fields, see 21.1.2 MTF Links and Layers.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section 21.2.3.4.4 Change Final Tin or return to 21.2.3.4 Final Modifiers.
21.2.2.3.4.4 Change Final Tin

The **Change tin** modifier changes the tin that the final cut and fill slopes batter to.

Note that the default tin is the tin from the Apply MTF.

Selecting **Change tin** brings up the **Change Final Tin** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td>name of the tin for the final cut and fill links to batter to.</td>
</tr>
</tbody>
</table>

**Alias, Start Chainage, End Chainage, Interval**

defines the start/end chainages to change the tin that the final link to batters to.

For information on these panel fields, see [21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels](#).

**Comment, Extra start, Extra End, Active, OK, Apply**

For information on these panel fields, see [21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels](#).

Continue to the next section [21.2.2.3.4.4 Change Final Tin](#) or return to [21.2.2.3.4 Final Modifiers](#).
21.2.2.3.4.5 Change Final Link Name
NOTE: THIS OPTION HAS NOT BEEN IMPLEMENTED.

The **Final Link Name** modifier changes the name of the interface string.

Selecting **Final link name** brings up the **Final - Link Name** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Link name</strong></td>
<td>name box</td>
<td>available names</td>
<td>current name of the interface string.</td>
</tr>
<tr>
<td><strong>New name</strong></td>
<td>name box</td>
<td>available names</td>
<td>new name of the interface string.</td>
</tr>
</tbody>
</table>

Return to [21.2.3.4 Final Modifiers](#).
21.2.2.4 Interval

The Create walk-right brings up the Interval menu.

For

- **Alias**: 21.2.2.4.1 Chainage Alias
- **Interval**: 21.2.2.4.2 Change Interval
- **Interval relative**: 21.2.2.4.3 Change Interval Relative
- **Interval String TPs**: 21.2.2.4.4 Interval String Tangent Points
- **Intersection links/string**: 21.2.2.4.5 Intersect Links with String
21.2.2.4.1 Chainage Alias

The **Alias** option creates a row in the grid with a given **Alias** name. The **Alias** is then available to be used by **Smart Chainages**.

For the new information on **Smart Chainage**, see [21.4 Smart Chainages](#).

Selecting **Alias** brings up the panel **Chainage Alias**

![Chainage Alias Panel](image)

**Alias** text box

*a text name that can be used to refer to the row in the grid for this command.*

See [21.2.1.4 Alias for MTF Modifiers](#).

**Alias, Start Chainage, End Chainage, Interval**

defines the start/end chainages to define an **Alias** for this row.

For information on these panel fields, see [21.2.1.1 Common Fields and Buttons on MTF Modifier Panels](#).

**Comment, Extra start, Extra End, Active, OK, Apply**

For information on these panel fields, see [21.2.1.1 Common Fields and Buttons on MTF Modifier Panels](#).

Go to the next section [21.2.4.2 Change Interval](#) or return to [21.2.4 Interval](#).
21.2.2.4.2 Change Interval

The **Interval** option changes the interval between the MTF sections over the given chainage range.

The sections are at the chainages that are integer multiples of the interval, and less than or equal to the start chainage and less than the end chainage. That is, the chainage values are referenced about zero and inside the start/end range.

For example, if the interval is 10 and the start chainage is -13 and the end chainage is 24 then there will be sections as

-10, 0, 10 and 20

The default value used for Interval is the **Separation distance** in the **Apply MTF** panel.

Selecting **Interval** brings up the **Change Interval** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Alias</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Start Chainage</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>End Chainage</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Interval</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Comment</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Extra start</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Extra End</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Active</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>OK</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Apply</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Finish</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Help</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The **Interval** input

If **non blank**, the interval to use to create extra cross sections and strings over the given chainage range.

**Comment, Extra start, Extra End, Active, OK, Apply**

For information on these panel fields, see [21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels](#).
Modifier Panels.

Go to the next section 21.2.2.4.3 Change Interval Relative or return to 21.2.2.4 Interval.
21.2.2.4.3 Change Interval Relative

The Interval Relative option changes the interval between the MTF sections over the given chainage range but instead of being referenced about zero, the chainages are reference about the start chainage.

That is, the sections are at the chainages that are the start chainage plus integer multiples of the interval, and less than or equal to the start chainage and less than the end chainage. That is, the chainage values are referenced about the start chainage and inside the start/end range.

For example, if the interval is 10 and the start chainage is -13 and the end chainage is 24 then there will be sections as

-13, -3, 7 and 17

Selecting Interval relative brings up the Change Interval Relative panel

![Change Interval Relative panel](image)

**Alias, Start Chainage, End Chainage**

defines the start and end chainages to change the interval between.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

**Interval** input

if non blank, the interval to use to create extra cross sections and strings over the given chainage range. The values for chainage are referenced about the Start chainage.

**Comment, Extra start, Extra End, Active, OK, Apply**

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Go to the next section 21.2.2.4.4 Interval String Tangent Points or return to 21.2.2.4 Interval.
21.2.2.4.4 Interval String Tangent Points

The **Interval String TPs** option drops the tangents points of a selected string onto the reference string and includes the dropped points as extra chainages where sections are generated. Selecting **Interval string TPs** brings up the **Interval String Tangent Points** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>String</strong></td>
<td>string select</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*the string to select whose tangent points are dropped onto the reference string and if any of the dropped points are in the start and end chainage range then sections are generated at those dropped chainages.*

**Alias, Start Chainage, End Chainage, Interval**

defines the start and end chainages to drop tangent points.

*For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.*

**Comment, Extra start, Extra End, Active, OK, Apply**

*For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.*

Continue to next section **21.2.4.5 Intersect Links with String** or return to **21.2.4 Interval**.
21.2.2.4.5 Intersect Links with String

The intersection links/string option

Selecting intersection links/string brings up the Fixed - Intersect Links with String panel

![Fixed - Intersect Links with String panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>String</strong></td>
<td>string select</td>
<td>the string to select whose tangent points are dropped onto the reference string and if any of the dropped points are in the start and end chainage range then sections are generated at those dropped chainages.</td>
<td></td>
</tr>
<tr>
<td><strong>Alias, Start Chainage, End Chainage, Interval</strong></td>
<td></td>
<td>defines the start and end chainages to drop tangent points.</td>
<td></td>
</tr>
<tr>
<td><strong>Comment, Extra start, Extra End, Active, OK, Apply</strong></td>
<td></td>
<td>For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.</td>
<td></td>
</tr>
</tbody>
</table>

Return to 21.2.2.4 Interval.
21.2.2.5 MTF Create

The Create walk-right brings up the Create menu with options to create Shapes, Strings and Tins from selected MTF points.

For
- Shapes: 21.2.2.5.1 Create Shapes
- Strings: 21.2.2.5.2 Create Strings
- Tins: 21.2.2.5.3 Create Tin
21.2.2.5.1 Create Shapes

The **Shapes** option creates a shape from nominated MTF Points, and optionally strings and trimeshes.

For information on MTF Points, Strings, Shapes and Trimeshes, see [21.1.1 MTF Links, Points, Sections, Strings and Trimeshes](#).

Selecting **Shape** brings up the panel **Modify Create Shape**

![Modify Create Shape panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Shape</strong></td>
<td>text box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*name for the new shape*

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Colour</strong></td>
<td>colour box</td>
<td></td>
<td>available colours</td>
</tr>
</tbody>
</table>
colour of the shape.

**Strings model**

- Model box
- Available models

If **not blank**, strings are created for the MTF point listed in the Shape grid and added to this model. The strings have the same name and colour as the MTF points.

If **blank**, strings are not created.

**Trimesh model**

- Model box
- Available models

If **not blank**, a trimesh is created for the shape and added to this model.

If **blank**, trimeshes are not created.

**Regular**

- Tick box

If **ticked**, the shape will only be formed when all of the nominated strings exist. E.g. it will form multiple shapes if strings come and go along the length of the apply.

If **not ticked**.

**Closed**

- Tick box

If **ticked**, the shape is closed off. That is, the last MTF point in the list is joined to the first MTF point.

If **not ticked**, the shape is not closed off.

**Shape Grid**

- Layer box
- Available Layers

  layer to take the MTF point from. For information on Layers, see 21.1.1.2 MTF Links and Layers.

- Side choice box
  - Left, Right

  side of the template to take the MTF point from.

- Links L/JG? text box

  the name of the MTF point from the layer **Layer** and side **Side**.

The shape profile is constructed from the shape grid defines by joining each MTF point to the next MTF point in the list. See 21.1.1 MTF Links, Points, Sections, Strings and Trimeshes

If **Closed** is ticked, the last MTF point in the list is joined to the first MTF point.

**Alias, Start Chainage, End Chainage, Interval**

defines the start/end chainages to create the shape.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

**Comment, Extra start, Extra End, Active, OK, Apply**

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

For example, the list of MTF points

![MTF Grid Example](image)

creates a shape at each chainage by joining the four MTF points in the order down the list, and
then closes the shape by joining the fourth MTF point to the first MTF point.

Go to the next section 21.2.2.5.2 Create Strings or return to 21.2.2.5 MTF Create.
21.2.2.5.2 Create Strings

The **Strings** option creates longitudinal strings for nominated MTF points and places them in a given model.

One application of the **Strings** option is to create a model of strings for a given Layer instead of the **Boxing Layers** in the **Models** tab of the **Apply MTF Function**.

**Note**: Strings and sections are automatically created for all the MTF points in the default Layer **Design**.

For information on MTF Points, Strings, Shapes and Trimeshes, see **21.1.1 MTF Links, Points, Sections, Strings and Trimeshes**.

Selecting **Strings** brings up the panel **Modify Create Strings**

![Modify Create Strings panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Strings model</strong></td>
<td>model box</td>
<td>available models</td>
<td>the strings that created for the nominated points are placed in this model.</td>
</tr>
</tbody>
</table>

MTF Edit
**Selection type** specifies where to get all the names of points created at any section in the Start and End chainage range.

For any **Selection type** other than **Selection of links from all layers**, the points then have to match the **Wildcard** and then strings are created with the name and colour of the point, and placed in the **Strings model**.

- **If All points in a layer**, all points in the layer given in **Layer**.
- **If All LHS points in a layer**, all points in the layer given in **Layer** that are on the left hand side.
- **If All RHS points in a layer**, all points in the layer given in **Layer** that are on the right hand side.
- **If All points in all layers**, all points in the all layers.
- **If All LHS points in all layers**, all points in the all layers that are on the left hand side.
- **If All RHS points in all layers**, all points in the all layers that are on the right hand side.

**Layer** layer box available Layers used when **Selection type** is All points in a layer, All LHS points in a layer, or All RHS points in a layer. For information on Layers, see 21.1.1.2 MTF Links and Layers.

**Wildcard** text box used for all **Selection type**’s except Selection of points for all layers.

text including wild cards * and wild characters ?.

If **blank**, all points from **Selection type** have strings created for them

If **not blank**, any names of points from the **Selection type** that match the **Wildcard** have strings created for them with the same name and colour as the point.

**If Selection of points for all layers**, then a grid is used to nominate the points to be selected. The points do no have to be from the same layer:

**Selection Grid**
### Layer
- **Layer** layer box available Layers
  - layer to take the point from. For information on Layers, see [21.1.2 MTF Links and Layers](#).

### Side
- **Side** choice box Left, Right
  - side of the template to use to take the point.

### Points
- **Points** text box
  - the name of the point from the layer **Layer** and side **Side**.

For any of the points in the table, strings are created and placed in the **Strings model**.

**Alias, Start Chainage, End Chainage, Interval**
- defines the start and end chainages to create strings between.

*For information on these panel fields, see [21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels](#).*

**Comment, Extra start, Extra End, Active, OK, Apply**
- For information on these panel fields, see [21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels](#).

Go to the next section [21.2.5.3 Create Tin](#) or return to [21.2.5 MTF Create](#).
21.2.2.5.3 Create Tin

The **Tins** option creates a tin from selected MTF strings.

For information on MTF Points, Strings, Shapes and Trimeshes, see [21.1.1 MTF Links, Points, Sections, Strings and Trimeshes](#).

Selecting **Tins** brings up the panel **Modify Create Tin**

![Modify Create Tin dialog](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tin</strong></td>
<td>tin box</td>
<td>the name for the created tin.</td>
<td></td>
</tr>
<tr>
<td><strong>Colour for tin</strong></td>
<td>colour box</td>
<td>the colour of the created tin.</td>
<td></td>
</tr>
<tr>
<td><strong>Model for tin</strong></td>
<td>model box</td>
<td>the created tin is added to this model.</td>
<td></td>
</tr>
</tbody>
</table>
Selection type specifies where to get all the MTF points in sections in the Start and End chainage range, and create the strings that are used in the triangulation.

For any Selection type other than Selection of links from all layers, the points have to match the Wildcard. Then strings are created and used in the triangulation.

If All LHS strings in a layer, then all points in the layer given in Layer that are on the left hand side and satisfy Wildcard are used to create strings, and the strings are used in the triangulation.

If All RHS strings in a layer, then all points in the layer given in Layer that are on the right hand side and satisfy Wildcard are used to create strings, and the strings are used in the triangulation.

Layer layer box available Layers

The Layer to take MTF points from. For information on Layers, see 21.1.1.2 MTF Links and Layers.

Wildcard text box

used for all Selection type's except Selection of points for all layers.

Text including wild cards * and wild characters ?.

If blank, all points from Selection type have strings created for them, and the strings are used in the triangulation.

If not blank, any names of points from the Selection type that match the Wildcard have strings created for them and the strings are used in the triangulation.

If Selection of points for all layers, then a grid is used to nominate the points to be selected. The points do no have to be from the same layer.

Selection Grid

Layer layer box available Layers

layer to take the point from. For information on Layers, see 21.1.1.2 MTF Links and Layers.

Side choice box Left, Right

side of the template to use to take the point.

Points text box
the name of the point from the layer **Layer** and side **Side**.

For any of the points in the table, strings are created and placed in the **Strings model**.

**Alias, Start Chainage, End Chainge, Interval**

defines the start and end chainages to create a tin.

*For information on these panel fields, see [21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels](#).*

**Comment, Extra start, Extra End, Active, OK, Apply**

*For information on these panel fields, see [21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels](#).*

Return to [21.2.2.5 MTF Create](#).
21.2.2.6 Snippet

Clicking on Snippet brings up the MTF Snippet panel which is used to insert snippets.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snippet</td>
<td>snippet box</td>
<td>*.mtfsnippet, *.mtfsnippetc files</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If information on the snippets shipped by 12d Solutions and available from [Lib] in the Folder pop up, see 20.4.3.5 12d Supplied Snippets.

For more information on the inserting and use of snippets, see 21.5 Defining and Using Snippets.

**Alias, Start Chainage, End Chainage, Interval**

defines the start and end chainages to apply a snippet.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

**Comment, Extra start, Extra End, Active, OK, Apply**

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

For more information on the inserting and use of snippets, please go to the section 21.5 Defining and Using Snippets.

Go to the next section 21.2.2.7 Debug or return to 21.2.2.1 Create MTF Commands.
21.2.2.7 Debug

Clicking on Debug brings up the Layers Debug panel which is used to create debug information when you are having problems with your MTF, especially with Snippets.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug model prefix</td>
<td>text box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Debug models are created with the name of this prefix followed by the chainage.

Alias, Start Chainage, End Chainage, Interval

defines the start/end chainages to create debug models and file.

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

Comment, Extra start, Extra end, Active, OK, Apply

For information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.

What the Panel Does

For each chainage, a model is created with the name Debug model prefix followed by the chainage value. In the model all the link in all the layers are drawn with the offset as the x-value and height as the y-value so that the model can be looked at on a Plan View.

A report file is also created at the start chainage and it contains information debugging such as the snippets used and the values of the parameters in the snippets.

The Report has the name Debug model prefix followed by the chainage value with the decimal point replaced by an underscore, with 12D_APPLY_MTF_DEBUG_DUMP as the file extension.
For example, Lee Road debug 0_000.12D APPLY MTF DEBUG DUMP

Go to the next section 21.2.2.8 Pause or return to 21.2.2.1 Create MTF Commands.
21.2.2.8 Pause

Clicking on Pause brings up the MTF Pause Process panel which is used to enable/disable the processing of all the MTF commands in the given chainage range.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pause</td>
<td>choice box</td>
<td>Stop processing, Start processing, Stop processing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*If End processing, then for a given chainage ch in the chainage range, all commands after this command will NOT be processed until a MTF Pause Process panel with Process set to Start processing (and whose chainage range includes this chainage ch) is met.*

*If Start processing, then for a given chainage ch in the chainage range, all commands after this command will be processed until a MTF Pause Process panel with Process set to End processing (and whose chainage range includes this chainage ch), is met.*

**Alias, Start Chainage, End Chainage, Interval**

defines the start/end chainages to use the Pause command.

For information on these panel fields, see [21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels](#).

**Comment, Extra start, Extra End, Active, OK, Apply**

For information on these panel fields, see [21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels](#).

Go to the next section [21.2.2.9 Comment](#) or return to [21.2.2.1 Create MTF Commands](#).
21.2.2.9 Comment

Selecting Comment turns the line of the Template Modifier into a field that a comment can be typed into.

Typing will then enter a comment into this line and the entire line contains just the comment.

Go to the next section 21.2.10 Region or return to 21.2.1 Create MTF Commands.
21.2.2.10 Region

The Region option inserts a Region command into the grid.
Selecting Region brings up the Modify Region panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region description</td>
<td>text box</td>
<td>name for the Region.</td>
<td></td>
</tr>
<tr>
<td>Bookmark name</td>
<td>text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if not blank, this is a secondary name, often a shorter name, that is used in the Region pop up rather than using the Region description.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If blank, then when the grid is saved, the Bookmark name is set to be the same as the Region description.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collapse</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, all the commands in the grid until the next Region command are collapsed into this Region command.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked, the commands in the grid until the next Region command are not collapsed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK, Apply</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>for information on these panel fields, see 21.2.2.1.1 Common Fields and Buttons on MTF Modifier Panels.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are Regions, Previous Region and Next Region icons at the right hand side of the Left/Right Modifiers panel that use this created Region. For information on using these icons and information on Regions in a grid, see 4.19.6 Grids in Panels.

Return to 21.2.2.1 Create MTF Commands.
21.2.3 MTF Boxing

In the MTF, up to eight (8) layers of boxing can be defined. For each boxing layer, the boxing can be defined by
(a) the Left boxing only
(b) the Right boxing only
(c) the Left and Right boxing.

For cases (a) and (b), the Left boxing or the Right boxing defines the boxing across the entire design section and then only one of Left boxing or Right boxing is needed.

For case (c) where both Left and Right boxing are defined for a design section, then the last point of the left boxing is automatically connected to the first point of the right boxing.

Warning for case (c), the Left boxing must end before the Right boxing begins. If there is an overlap, the Right boxing will be pushed to the end of the Left boxing.

Note - no interpolation or modifiers exist for boxing.

For a general discussion of Boxing, go to the section 21.6 What is Boxing?, for the scenarios of applying Boxing, including but not restricted to the MTF, go to the section 21.6.2 Applying Boxing, and in particular 21.6.2.1 Scenario 1 - Design Generated by One Apply MTF.

When boxing is used in the Apply MTF, the cut and fill areas and volumes are also calculated for all the inter-boxing layers. The last layer defined is also referred to as the subgrade layer and volumes are also given for the natural surface to the subgrade, and the design to the subgrade.

The Boxing walk-right in the MTF Edit menu brings up the Boxing menu with options to specify the file supplying the boxing definitions and options to apply the definitions to the Left and Right side of the design sections.

For the option
File 21.2.3.1 MTF Boxing File
Left/Right side 21.2.3.2 Left Side and Right Side Boxing
Left/Right side for each layer 21.2.3.2 Left Side and Right Side Boxing

Each of the options from this menu will now described.
21.2.3.1 MTF Boxing File

Selecting File from the Boxing menu brings up the Boxing File panel for defining the file of Boxing Definitions to be used in this Apply MTF.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boxing file</td>
<td>input</td>
<td>*.bf files</td>
<td>name of the Boxing file containing the Boxing Definitions to be used for the MTF.</td>
</tr>
<tr>
<td>Comment</td>
<td>column header</td>
<td></td>
<td>comment to add to the end of the line. In the text mtf file, the comment will be preceded by //.</td>
</tr>
<tr>
<td>OK/Apply</td>
<td>button</td>
<td></td>
<td>OK stores the values in the fields and removes the panel.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Apply stores the values and leaves the panel on the screen.</td>
</tr>
</tbody>
</table>

The full definition of all the boxing command used in a Boxing Definition is given in the section 21.7 Full Definition of Boxing.

Please continue to the next section 21.2.3.2 Left Side and Right Side Boxing.
21.2.3.2 Left Side and Right Side Boxing

The panels brought up by selecting Left side or Right side from the Boxing menu brings up the Left Side Boxing and Right Side Boxing panels respectively. By default, this is for the first layer of boxing.

The Left Side Boxing and Right Side Boxing panels define for each boxing layer, what Boxing Definitions (from the boxing file) are applied, in what chainage ranges, along the reference string.

For the definition of boxing, go to the section 21.7 Full Definition of Boxing.

The panels are brought up by selecting Left side or Right side for Layer 2 to Layer 8 from the Boxing menu and then selecting the Layer number in the Layer choice box. Similar panels exist for Left and Right, and for each selected layer, and so won’t be documented separately.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left/Right Boxing Grid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chainage</td>
<td>smart chainage box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>chainage to start applying the Boxing Definition given in the Boxing column. The Boxing Definition goes until the chainage on the next row of the Grid.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If you right click in the Chainage column or select Browse if the Browse menu comes up, then a Chainage panel comes up which has the most of the standard MTF choices for Smart Chainages. See 21.2.1 MTF Hinge Modifiers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boxing</td>
<td>boxing definition box</td>
<td>available boxing definitions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the Boxing Definition to apply from this chainage to the chainage in the next row of the Grid.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>comment for this row of the grid.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Buttons at Bottom
**OK/Apply** button

**OK** stores the values in the fields and removes the panel.

**Apply** stores the values and leaves the panel on the screen.

Please continue to the next section **21.2.4 MTF Recalc**.
21.2.4 MTF Recalc

If Recalc is clicked, the Apply MTF associated with the MTF is recalced.

Please continue to the next section 21.2.5 MTF Auto Recalc.

21.2.5 MTF Auto Recalc

If Auto recalc is ticked, then whenever the Apply button is clicked on any of the panels for the Modifiers - Left Side Modifiers or Modifiers - Right Side or Boxing Definitions used in the Boxing, then a recalc of the associated Apply MTF for the MTF is done.

Please continue to the next section 21.2.6 MTF More.
21.2.6 MTF More

Position of menu:  Design => MTF => More

The More walk-right menu has options to apply and interpolate between templates, shift chainages by a delta value, use special chainage values and files and apply Strings modifiers.

The More walk-right menu is

![More menu]

For the options see:

- Templates  [21.2.6.1 MTF Templates]
- Shift  [21.2.6.2 MTF Shift]
- Specials  [21.2.6.3 MTF Special Chainages]
- Strings  [21.2.6.4 MTF String Modifiers]
- Hinge widening treatment  [21.2.6.6 MTF Hinge Widening Treatment]
- Loops  [21.2.6.7 MTF Remove Loops]
- Stripping  [21.2.6.8 MTF Stripping]
- Super/Widening  [21.2.6.9 MTF Super/Widening]
21.2.6.1 MTF Templates

The Templates walk-right brings up the Templates menu and selecting the Left side or Right side option brings up the Left Side Templates or Right Side Templates panels respectively which are used to specify which templates are used, and over what chainage range, for the Left and Right sides.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Templates Grid</td>
<td>For more information on creating and editing data in a grid, see 4.19.6 Grids in Panels.</td>
<td>smart chainage box</td>
<td>list of chainages for applying templates on the left/right hand side of the hinge string.</td>
<td></td>
</tr>
<tr>
<td>Chainage</td>
<td>smart chainage box</td>
<td>list of chainages for applying templates on the left/right hand side of the hinge string.</td>
<td>If you right click in the Chainage column or select Browse if the Browse menu comes up, then a Chainage panel comes up which has the most of the standard MTF choices for Smart Chainages. See 21.2.1 MTF Hinge Modifiers.</td>
<td></td>
</tr>
<tr>
<td>Template 1</td>
<td>template box</td>
<td>available templates</td>
<td>template to start applying at the chainage on the same row. If template 2 is blank, then template 1 is applied until the next chainage in the chainage column.</td>
<td></td>
</tr>
<tr>
<td>Template 2</td>
<td>template box</td>
<td>available templates</td>
<td>template to linearly interpolate to and finish with at the next chainage in the chainage column. In the file, the two templates will be separated by a comma.</td>
<td></td>
</tr>
</tbody>
</table>

Note - template 2 must have the same number of fixed and variable links as template 1 otherwise a gap
of the section separation length will be left between the end of template 1 and the start of template 2.

**Comment**

column header

*comment to add to the end of the line. In the file, the comment will be preceded by ///</.*

**Buttons at Bottom**

**OK/Apply**

- **OK** stores the values in the fields and removes the panel.
- **Apply** stores the values and leaves the panel on the screen.

Continue to the next section [21.2.6.2 MTF Shift](#) or return to [21.2.6.2 MTF Shift 21.6 MTF More](#).
21.2.6.2 MTF Shift

In an MTF, most modifiers are defined in terms of chainage on the reference string. For example, the width modifier is defined to apply between a given start and end chainage on the reference string.

If the horizontal geometry of the reference string is modified, the reference chainages in the MTF that are defined by the Smart Chainage mode Typed will be incorrect.

Shift can help correct the Typed chainages in the MTF file when modifications are made to the reference string horizontal geometry after the MTF has been defined.

For the MTF and all special chainage files referred to in the mtf that are only typed values, Shift adds a delta chainage (the shift distance) to chainages within a user specified range.

However depending on the type of modifications made to the reference string, shift may have to be applied a number of times over a number of different chainage ranges. And apart from a simple change of start chainage, there may be chainages that can not be corrected with Shift.

Before using Shift, it is necessary to know how the reference string has changed from its original position so to use shift it is advantageous to make a copy of the reference string before any changes are made.

Examples Using Shift:

1. If only the start chainage of the reference string was modified, shift would be applied to the mtf for the entire original reference string and end chainages, with a shift distance equal to the difference between the new and the old start chainages for the reference string. For this case the horizontal geometry has not changed, just the chainages.

2. If the radius of a horizontal curve is changed in the middle of the reference string, all chainages from the beginning of the string up to point where the horizontal geometry starts to change would stay the same. At some point after the modified curve, the horizontal geometry of the string is unchanged and for this section of the mtf, a shift distance equal to the difference between the new and the old chainages of a non-modified point.

In all areas where the horizontal geometry has been modified, the chainages in the mtf would have to be carefully examined to see what changes are required.

Warning: Shift option is very powerful but is also very dangerous. Where ever possible, Smart Chainage modes other than Typed should be used.

Selecting Shift brings up the Shift Chainages panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centreline</td>
<td>string-select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start chainage</td>
<td>smart chainage box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>chainage in the mtf to start adding the Shift distance. For information on Smart Chainages. See 21.2.1 MTF Hinge Modifiers.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End chainage</td>
<td>smart chainage box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>chainage in the mtf to stop adding the Shift distance. For information on Smart Chainages. See 21.2.1 MTF Hinge Modifiers.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shift distance</td>
<td>real box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>delta chainage to add to all the chainages in the mtf file and any special chainages that are between the Chainage to shift from and the Chainage to shift to</em></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Buttons at Bottom**

**OK/Apply**

- **OK** applies the shift and removes the panel.
- **Apply** applies the shift and leaves the panel on the screen.

Continue to the next section [21.2.6.3 MTF Special Chainages](#) or return to [21.2.6.2 MTF Shift21.2.6 MTF More](#).
21.2.6.3 MTF Special Chainages

The **Apply MTF** option automatically creates sections at a number of chainages including the supplied chainage interval, horizontal and vertical critical points, horizontal and vertical chord-arc tolerances, template change points and modifier change points.

However it is also possible to add extra sections at special chainages using the **Specials** option from the **MTF Edit** menu.

Walking right on the **Specials** menu brings up the **Special Chainages** walk-right menu:

![Special Chainages Menu](image)

For the options see:

- **Values**: [21.2.6.3.1 MTF Special Chainage Values](#)
- **Files**: [21.2.6.3.2 MTF Special Chainage Files](#)
21.2.6.3.1 MTF Special Chainage Values

Selecting Values brings up the **Special Chainage Values** panel

![Smart Chainage field]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Special Chainage Values Grid</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For information on the general operation of a grid including the icons on the right hand side, see <strong>4.19.6 Grids in Panels</strong>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Chainage</strong></td>
<td>smart chainage box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>list of special chainages for creating sections at.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If you right click in the <strong>Chainage</strong> column or select <strong>Browse</strong> if the Browse menu comes up, then a <strong>Chainage</strong> panel comes up which has the most of the standard MTF choices for <strong>Smart Chainages</strong>. See <strong>21.2.1 MTF Hinge Modifiers</strong>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Comment</strong></td>
<td>text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>comment for this row of the grid.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Buttons at Bottom**

- **OK/Apply** button
  - **OK** stores the values in the fields and removes the panel.
  - **Apply** stores the values and leaves the panel on the screen.

Continue to the next section **21.2.6.3.2 MTF Special Chainage Files** or return to **21.2.6.3 MTF Special Chainages** or **21.2.6 MTF More**
### 21.2.6.3.2 MTF Special Chainage Files

Selecting Files brings up the Special Chainage Files panel.

![Special Chainage Files Panel](image)

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>column header</td>
<td>size menu</td>
<td>for the fields *.spc files</td>
</tr>
</tbody>
</table>

*list of files of special chainages for creating sections at.*

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment</td>
<td>column header</td>
<td>comment to add to the end of the line. In the file, the comment will be preceded by //</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild card</td>
<td>input</td>
<td>*.spc</td>
</tr>
</tbody>
</table>

*the wild card used for pop-ups in the special chainage files fields.*

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK/Apply</td>
<td>button</td>
</tr>
</tbody>
</table>

*OK stores the values in the fields and removes the panel.*

*Apply stores the values and leaves the panel on the screen.*

Continue to the next section 21.2.6.4 MTF String Modifiers or return to 21.2.6.3 MTF Special Chainages or 21.2.6 MTF More.
21.2.6.4 MTF String Modifiers

For information on how the String Modifiers in the MTF editor work, see 21.2.6.3 Description of String Modifiers in MTF.

Selecting Strings from the MTF Edit menu brings up the String Modifiers panel.

The String Modifiers panel consists of a grid with of rows (or lines) with commands in them, and an OK or Apply button to record the results.

String Modifier Grid

For information on the general operation of a grid including the icons on the right hand side, see 4.19.6 Grids in Panels.

The commands in the String Modifier grid are processed sequentially from the top to the bottom of the grid.

When the Grid Row is Empty

If the row of the grid is empty, clicking LB in the empty row will bring up the Create menu which contains all the available string modifier commands. Note this may involve two clicks - one to highlight a column in a row and the second click to bring up the Create menu.

Selecting a menu item will bring up an associated panel which displays the information required for the hinge command. When the panel is filled in and OK or Apply selected, the panel information is written out to the row of the grid and is known as a hinge command. For information on each of the Hinge Commands, see 21.2.6.5 String Modifiers Commands.

When the Grid Row is Not Empty

If the row of the grid is not empty (and hence filled with a string modifier command) then clicking LB in the cell:

(a) Type will bring up the associated panel for the string modifier command.

For information on each of the Hinge Commands, see 21.2.6.5 String Modifiers Commands.

(b) Start chainage cell brings up the Smart Start Chainage panel
The **Start Chainage Mode** will determine what other fields are also on the panel (for example Extension ref for Mode **Start of reference string**. For more information on Chainage Modes, see 21.4 Smart Chainages.

(c) **End Chainage cell brings up the Smart End Chainage panel**

The **End Chainage Mode** will determine what other fields are also on the panel (for example Extension ref for Mode **End of reference string**. For more information on Chainage Modes, see 21.4 Smart Chainages.

(d) **Interval** will allow a real value to be typed into the cell

Note that the Interval column will not appear in the grid if Show interval column? is not ticked in the MTF Settings. See 21.2.7.8 MTF Setting Show Interval Column
(e) **Active** will toggle the *tick/not ticked*

(f) **Comment** will allow text to be typed into the cell

**Note** that clicking in the **Type, Start chainage, End chainage, Interval, Extra Start, Extra End, Active** and **Comment** cells may involve two clicks - one to highlight the cell in a row and the second click to edit or bring up the panel for the cell.

**Buttons at Bottom**

**OK** button

**OK** stores the values in the fields and removes the panel BUT no **recalc** is done.

**Apply** button

**Apply** stores the values in the grid and leaves the panel on the screen.

*If Auto recalc is ticked in the MTF, then whenever the **Apply** button is clicked, a **recalc** of the associated **Apply Many** for the MTF is done.*

**Autopan on/off** button

*when clicked to say **Autopan is on** then if the chainage range is not in the view that the Reference string is on then the view will be panned so that it is on the view.*

**Highlight** button

*clicking the **Highlight** button brings up the **Highlight Modifiers** panel.*

Continue to the next section 21.2.6.5 **String Modifiers Commands**, or return to 21.2.6 **MTF More**
21.2.6.5 String Modifiers Commands

The commands in the String Modifiers grid are processed sequentially from top to bottom. The String Modifier commands are selected from the Create menu that is displayed when clicking in a cell in the Type column of the String Modifiers panel.

The Create menu is

modify by xfall and height
modify by 2-strings

For a description of the options, see

Height 21.2.6.5.1 Height
Height 2x 21.2.6.5.2 Height 2X
21.2.6.5.1 Height

The *height* the Height string modifier calculates for the amend point is given by:

(a) if the absolute flag is not set, the height of the hinge point, otherwise zero.

plus

(b) the interpolated height for the user given heights at the start and end chainages

plus

(c) the interpolated height for the user given cross falls at the start and end chainage.

That is, if the absolute flag is not set:

\[
\text{new height} = \text{hinge height} + (\text{interpolated height}) + (\text{interpolated xfall}) \times (\text{offset distance})
\]

If the absolute flag is set:

\[
\text{new height} = (\text{interpolated height}) + (\text{interpolated xfall}) \times (\text{offset distance})
\]

Selecting Height brings up the String Modify by Xfall Height panel

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amend string</td>
<td>string-select</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
select string to have heights amended.

Reference string  string-select
select reference string.

Hinge string  string-select
select hinge string.

Start/End chainage  smart chainage box
start/end chainage on the reference string for applying the modifier. See 21.2.1 MTF Hinge Modifiers

Interval  input
if non blank, the chainage separation to apply the modifier.
If blank, the Section separation value from the Apply MTF panel is used.

Start/End xfall  input  measures menu
start/end crossfall for the modifier.

Start/End height  input  measures menu
start/end height for modifier.

Absolute height  tick box
if ticked, the calculated height does not include the hinge height.
if not ticked, the calculated height includes the hinge height.

Comment  input
comment for this command line

Active  tick box  tick
if ticked, use this modifier.
if not ticked, don’t use this modifier.

OK/Apply  button
OK stores the values in the fields and removes the panel.
Apply stores the values and leaves the panel on the screen.

For more information on how the String Modifiers in the MTF editor work, please go to the section 21.2.6.5.3 Description of String Modifiers in MTF.

Continue to the next section 21.2.6.5.2 Height 2X or return to 21.2.6.4 MTF String Modifiers or 21.2.6 MTF More.
21.2.6.5.2 Height 2X

The *height* the Height 2x string modifier calculates for the amend point is given by:

(a) the height of the hinge point

plus

(b) the offset distance multiplied by the cross fall between two user selected strings.

\[ \text{new height} = \text{hinge height} + \ (\text{xfall between string 1 and string 2}) \times \text{(offset distance)} \]

Selecting **Height 2x** brings up the **String Modify by 2 Strings** panel

![String Modify by 2 Strings](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Amend string</strong></td>
<td>string-select</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Reference string</strong></td>
<td>string-select</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Hinge string</strong></td>
<td>string-select</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Start/End chainage</strong></td>
<td>input</td>
<td>measures menu</td>
<td></td>
</tr>
<tr>
<td><strong>Interval</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
if non blank, the chainage separation to apply the modifier.
If blank, the Section separation value from the Apply MTF panel is used.

Crossfall string 1  string-select
select first string to define crossfall by.

Crossfall string 2  string-select
select second string to define crossfall by.

Comment  input
comment for this command line.

Active  tick box  tick
if ticked, use this modifier.
if not ticked, don’t use this modifier.

OK/Apply  button
OK stores the values in the fields and removes the panel.
Apply stores the values and leaves the panel on the screen.

For more information on how the String Modifiers in the MTF editor work, please go to the section 21.2.6.5.3 Description of String Modifiers in MTF.

Continue to 21.2.6.6 MTF Hinge Widening Treatment or return to 21.2.6.4 MTF String Modifiers or 21.2.6 MTF More.
21.2.6.5.3 Description of String Modifiers in MTF

Unlike the other MTF options, the string modifier options modify the heights on an existing string called the amend string.

Like the apply options, a reference string is used to define chainage and what is perpendicular at each chainage. A hinge string is used to define offsets and heights. If no hinge string is selected, the reference string is also used as the hinge string.

For a given chainage on the reference string (chainage point), a line perpendicular to the reference string is constructed to cut through the hinge string and the amend string (the cut points are called the hinge point and the amend point).

Horizontal offset is defined as the offset value from the hinge point, and the height of the amend point is a modification of the height at the hinge point.

The string modifier options create and/or modify the heights of the amend points on the amend string.

The height of the amend point is derived from the hinge point by starting with the height of the hinge point and applying a crossfall to it across the offset distance from the hinge string to the amend string.

The cross fall can be defined by either:
(a) giving the cross fall
or
(b) using the cross fall between two user selected strings.

For the string options, the length of the string being modified is restricted by giving a start and end reference chainage. A chainage interval can also be specified to define extra reference chainage points to use between the start and end chainages.

How and where the amend string is modified depends on the type of string and whether the chainage interval is blank (null) or not.
What Points are Modified

For 3d, 4d, polyline and super strings:

If the chainage interval is not blank:

(a) The start and end chainage points are projected from the reference string and inserted into the amend string. The heights of the inserted points are defined by the string modifier command.

(b) The chainage points at the given chainage interval are also projected from the reference string and inserted into the amend string. The heights of the inserted points are defined by the string modifier command.

(c) Finally, the vertices of the amend string are dropped perpendicularly back onto the hinge and reference string and then those points used to modify the heights of the same vertices of the amend string.

If the chainage interval is blank:

(a) The start and end chainage points are projected from the reference string and inserted into the amend string. The heights of the inserted points are defined by the string modifier command.

(b) The vertices of the amend string are dropped perpendicularly back onto the hinge and reference string and then those points used to modify the heights of the same vertices of the amend string.

For Alignment strings:

If the chainage interval is not blank:

(a) All the vertical geometry is removed between the start and end chainages. That is, the vertical intersection points (VIP’s) and their associated vertical curves are removed.

(b) The start and end chainage points are projected from the reference string and vertical intersection points (VIP’s) inserted into the amend string. The height of the inserted VIP points are defined by the string modifier command.

If the chainage interval is blank:

(a) The start and end chainage points are projected from the reference string and vertical intersection points (VIP’s) inserted into the amend string. The heights of the inserted VIP points are defined by the string modifier command.

(b) The vertical intersection points (VIP’s) of the amend string are dropped perpendicularly back onto the hinge and reference strings and then those points used to modify the heights of the same VIP’s of the amend string. The vertical curves for the VIP’s are not changed.

Return to 21.2.6.4 MTF String Modifiers or 21.2.1 MTF Hinge Modifiers
21.2.6.6 MTF Hinge Widening Treatment

The **Hinge Widening Treatment** specified in the **Hinge Widening Treatment** panel.

![Hinge Widening Treatment panel]

The choices are:

- **None**
- **Horizontal only**
- **Horizontal & Vertical**

**OK** - selecting **OK** sets the **Treatment**.

Continue to the next section [21.2.6.7 MTF Remove Loops](#) or return to [21.2.6 MTF More](#).
21.2.6.7 MTF Remove Loops

The Loops options tries to remove loops in nominated strings generated by the Apply MTF.

**Important Note** - the sections generated from the Apply MTF will not be modified and will still intersect each other. In that case, the sections can be generated after the *Apply MTF* by cutting through strings. See [28.9.13.2 Cuts by Centreline](#).

Selecting **Loops** from the menu displays the **Remove loops** panel.

### Name column header

_names of the strings to process to try and remove any loops from. The names can include wild cards (*) and wild characters (!)._
21.2.6.8 MTF Stripping

A fixed stripping depth can be specified in the **Apply** option whilst the **Apply MTF** option allows for stripping depths that can **vary along the design**.

If a **non-zero stripping depth** exists at a chainage, the **cut** and **fill** calculations are done with respect to the section through the tin **dropped in height** by the stripping depth.

However, the **design strings** are generated by battering into the **unstripped** surface, and the stripping volume is the volume between the stripped and unstripped surface for the design.

Striping depths are defined for chainages along the reference string and can be linearly interpolated between chainages.

**NOTE**: Cut and fill areas and volumes are adjusted for the stripping depths. The total stripping volume is given at the end of the volumes report.

Selecting the **Stripping** option on the **MTF edit** menu brings up the **Stripping Changes** panel.

![Stripping Changes Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Stripping Chainages Grid</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>For information on the general operation of a grid including the icons on the right hand side, see <a href="#">4.19.6 Grids in Panels</a>.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Chainage</strong></td>
<td>smart chainage box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>list of chainages for defining stripping depth.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If you right click in the <strong>Chainage</strong> column or select <strong>Browse</strong> if the Browse menu comes up, then a <strong>Chainage panel</strong> comes up which has the most of the standard MTF choices for <strong>Smart Chainages</strong>. See <a href="#">21.2.1 MTF Hinge Modifiers</a>.*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Strip depth 1</strong></td>
<td>real box</td>
<td>measures menu</td>
<td></td>
</tr>
<tr>
<td><em>strip depth to apply at the chainage given for this row of information. If strip depth 2 is blank, then strip depth 1 is applied until the next chainage in the chainage column.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Strip depth 2</strong></td>
<td>real box</td>
<td>measures menu</td>
<td></td>
</tr>
</tbody>
</table>
if **non-blank**, the strip depth to linearly interpolate to and finish with at the next chainage in the chainage column.

if blank, then strip depth 1 applies to the next chainage in the chainage column. In the mtf file, the two depths will be separated by a comma.

**Comment**

*column header*

*comment for the row.*

**Buttons at Bottom**

**OK/Apply**

*button*

**OK** stores the values in the fields and removes the panel.

**Apply** stores the values and leaves the panel on the screen.

Continue to the next section 21.2.6.9 MTF Super/Widening or return to 21.2.6 MTF More.
21.2.6.9 MTF Super/Widening

The Super Alignment string can define the super elevation and widening for a design. This super elevation and widening can be applied to the strings defined by the Apply MTF rather than having to use MTF crossfall and width modifiers. This section defines which strings in the apply have super elevation/widening from the super alignment applied to them.

For the options see

<table>
<thead>
<tr>
<th>Super/Widening</th>
<th>21.2.6.9.1 Enable Super/Widening Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable super/widening names</td>
<td>21.2.6.9.2 Left Super</td>
</tr>
<tr>
<td>Left super</td>
<td>21.2.6.9.3 Left Widths</td>
</tr>
<tr>
<td>Left widths</td>
<td>21.2.6.9.4 Right Super</td>
</tr>
<tr>
<td>Right super</td>
<td>21.2.6.9.5 Right Widths</td>
</tr>
<tr>
<td>Right widths</td>
<td></td>
</tr>
</tbody>
</table>
21.2.6.9.1 Enable Super/Widening Names

For 12d Model Version 8, super elevation/widening from the super alignment was applied to strings in the fixed section of the template that were defined by crossfall.

For 12d Model 9, this method was replaced by being able to define by string name, which strings have super elevation and/or widening applied to them.

For backward compatibility, this option allows the user to either use string names, or to revert to the cross fall method used in version 8. The default is to use string names.

Selecting Enable super/widening names from the menu displays the Auto Super/Widening panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable names</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
</tbody>
</table>

If not ticked, the super elevation/widening in the super string is applied to the string from the fixed template that are defined by crossfall.

Continue to the next section 21.2.6.9.2 Left Super or return to 21.2.6.9 MTF Super/Widening or return to 21.2.6 MTF More.
21.2.6.9.2 Left Super

This table defines the strings that have the left super elevation from the super alignment applied to them.

Selecting **Left Super** from the menu displays the **Left Side Super Crossfall Strings** panel.

![Left Side Super Crossfall Strings panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>String name</strong></td>
<td>column header</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>names of the strings to apply the left super elevation of the super alignment to.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Comment</strong></td>
<td>column header</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>comment to be recorded.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section [21.2.6.9.3 Left Widths](#) or return to [21.2.6.9 MTF Super/Widening](#) or return to [21.2.6 MTF More](#).
21.2.6.9.3 Left Widths

This table defines the strings that have the left widening from the super alignment applied to them.

Selecting Left widths from the menu displays the **Left Side Super Widening Strings** panel.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>String name</strong></td>
<td>column header</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>names of the strings to apply the left widening of the super alignment to.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Comment</strong></td>
<td>column header</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>comment to be recorded.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section [21.2.6.9.4 Right Super](#) or return to [21.2.6.9 MTF Super/Widening](#) or return to [21.2.6 MTF More](#).
21.2.6.9.4 Right Super

This table defines the strings that have the right super elevation from the super alignment applied to them.

Selecting Right super from the menu displays the Right Side Super Crossfall Strings panel.

![Right Side Super Crossfall Strings panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>String name</td>
<td>column header</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>column header</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

_string name_ column header: names of the strings to apply the right super elevation of the super alignment to.

Comment column header: comment to be recorded.

Continue to the next section 21.2.6.9.5 Right Widths or return to 21.2.6.9 MTF Super/Widening or return to 21.2.6 MTF More.
21.2.6.9.5 Right Widths

This table defines the strings that have the right widening from the super alignment applied to them.

Selecting **Right widths** from the menu displays the **Right Side Super Widening Strings** panel.

![Right Side Super Widening Strings panel](image)

**String name** column header

*names of the strings to apply the right widening of the super alignment to.*

**Comment** column header

*comment to be recorded.*

Return to [21.2.6.9 MTF Super/Widening](#) or [21.2.6 MTF More](#)
21.2.7 MTF Settings

Position of menu:   Design => MTF => Settings

The Settings walk-right menu is

- set the name of Design Layer
- set the default chainage type
- set the shape formation toggle
- set whether the Extra start and Extra end tick boxes are shown
- set the distance for placing extra sections before the start & end chainages
- set whether to show Extra start and Extra end columns
- set whether to show Absolute column
- set whether to show Interval column
- set the name of the link for the hinge string
- set the distance to search along a section when trying to find strings used in any of the MTF commands

For the options see:

- Design layer name  21.2.7.1 MTF Setting Design layer name
- Design chainage type  21.2.7.2 MTF Setting Default Chainage Type
- Shape formation toggle  21.2.7.3 MTF Setting Shape Formation Toggle
- Show extra start/end?  21.2.7.4 MTF Setting Show Extra Start/End
- Extra start/end value  21.2.7.5 MTF Setting Extra Start/End value
- Show start/end column?  21.2.7.6 MTF Setting Show Extra Start/End column
- Show absolute column?  21.2.7.7 MTF Setting Show Absolute Column
- Show interval column?  21.2.7.8 MTF Setting Show Interval Column
- Hinge link name  21.2.7.9 MTF Setting Hinge Link Name
- Width  21.2.7.10 MTF Width
21.2.7.1 MTF Setting Design layer name

In 12d Model, the MTF Modifiers can produce any number of named layers but there is one special layer referred to as the Design Layer, that is used to produce design x sections, design strings, the road tin, etc.

Any MTF points in the Design Layer will automatically generate points on the design x sections, and design strings will be generated without them having to be done by the Create =>Strings MTF Modifier command.

The name of the special Design Layer can be changed by clicking on Design layer name to bring up the Design Layer Name panel.

Design layer name - the name used for the special Design Layer.

OK - selecting OK sets the default name for the design layer.

Continue to the next section 21.2.7.2 MTF Setting Default Chainage Type or return to 21.2.7 MTF Settings.

21.2.7.2 MTF Setting Default Chainage Type

The Default Chainage Type panel specifies the default Smart Chainage Mode to use in the MTF Modifier commands in this MTF file.

The choices are:

None - no Smart Chainage choice is used as the default.
Typed - Typed is the default for Smart Chainages.
Extents reference string - the start of the reference string is used for Start modes and the end of the reference string is used for End modes.
Named part on reference string - named part on reference string is the default for Smart Chainages.
Named position on reference string - named position on reference string is the default for Smart Chainages.

OK - selecting OK sets the given Chainage type as the default.

Continue to the next section 21.2.7.3 MTF Setting Shape Formation Toggle or return to 21.2.7 MTF Settings.
21.2.7.3 MTF Setting Shape Formation Toggle

Creating shapes and strings can be a time consuming process so it is possible to set modes for if it occurs or not.

The choices are:

**Don't form shapes or strings** - don't create shapes or strings that are referred to in the Create => Shapes and Create => Strings MTF Modifier commands.

**Form shapes or strings** - generated the shapes and strings as specified in the Create => Shapes and Create => Strings MTF Modifier commands.

**Form shapes, not strings** - generated the shapes as specified in the Create => Shapes MTF Modifier command but do not generated the strings referred to in the Create => Strings MTF Modifier command.

**Form strings, not shapes** - generated the strings as specified in the Create => Strings MTF Modifier command but do not generated the shapes referred to in the Create => Shapes MTF Modifier command.

**OK** - selecting OK sets the given Shape Formation Type.

Continue to the next section 21.2.7.4 MTF Setting Show Extra Start/End or return to 21.2.7 MTF Settings.

21.2.7.4 MTF Setting Show Extra Start/End

With MTF Modifier commands, a command applies from the start chainage and finished just before the end chainage. This is to prevent a doubling up in the definitions for the chainage between the end of one command and the beginning of the following command.

To make values change correctly between the MTF definitions at the start and end chainages, for most MTF Modifier commands there are Extra start and Extra end tick boxes.

If Extra start is ticked on and the command is not the first, a section is created Extra start/end value before the Start chainage of the command. Because the definition for this extra section is given by the previous command. This ensures that the previous command applies to almost to the this Start chainage.

If Extra end is ticked on, a section is created Extra start/end value before the End chainage of the command. The definition of this extra section is given by the current command. This ensures that the current command applies almost to the end, especially when it is the last command and there is no next Start chainage.

For most situations, the Extra start and Extra end tick boxes for an MTF Modifier Command can be left ticked on and the default is to have them both ticked on.

If Show Extra start/end? is ticked, the Extra start and Extra end tick boxes are shown on the MTF Modifier command panels.

If Show Extra start/end? is not ticked, the Extra start and Extra end tick boxes are not shown on the MTF Modifier command panels.
Notes:
1. The display of the Extra start and Extra end columns in the Left/Right MTF Modifiers panel is controlled by the 21.2.7.6 MTF Setting Show Extra Start/End column.
2. The Extra start/end value is set by 21.2.7.5 MTF Setting Extra Start/End value.

Continue to the next section 21.2.7.5 MTF Setting Extra Start/End value or return to 21.2.7 MTF Settings.

21.2.7.5 MTF Setting Extra Start/End value

For 12d Model itself, the Extra start/end value does not need to be changed but when writing out sections that are to be loaded into some software products, the sections sometimes can’t be closer than a fixed value in the other software. In that case modifying the Extra start/end value will allow you to get over that restriction.

Extra start/end value - the distance to use for placing extra sections before the start and end chainages.
OK - selecting OK sets the Extra start/end value.

Continue to the next section 21.2.7.6 MTF Setting Show Extra Start/End column or return to 21.2.7 MTF Settings.

21.2.7.6 MTF Setting Show Extra Start/End column

If Show extra start/end column? is ticked, the Extra Start and Extra Start columns are shown in the Left/Right MTF Modifiers panel.
If Show extra start/end column? is not ticked the Extra Start and Extra Start columns are not shown in the Left/Right MTF Modifiers panel.
Note that the Extra start/Extra end tick boxes appearing in the MTF Modifier Commands is controlled by the 21.2.7.4 MTF Setting Show Extra Start/End.

21.2.7.7 MTF Setting Show Absolute Column

The Absolute column is a condensed way of displaying the value of the New value usage Absolute field in the MTF command Modify Link.
If Show absolute? is ticked, the Absolute column is shown in the Left/Right MTF Modifiers panel.
If Show absolute column? the Absolute column is not shown in the Left/Right MTF Modifiers panel.
Note that in both cases, the New value usage field (which the Absolute column represents) is shown in the MTF Modifier Link command panels.
For an example of New value usage and Absolute, see 21.1.2.3 New Value Usage.
21.2.7.8 MTF Setting Show Interval Column

If **Show interval column?** is **ticked**, the **Interval column** is shown in the **Left/Right MTF Modifiers** panel.

If **Show interval column?** the **Interval column** is **not** shown in the **Left/Right MTF Modifiers** panel.

Note that in both cases, the **Interval field** is shown on the **MTF Modifier command** panels.

Continue to the next section 21.2.7.9 **MTF Setting Hinge Link Name** or return to 21.2.7 MTF Settings.

21.2.7.9 MTF Setting Hinge Link Name

The name of the link for the Hinge string can now be given a user defined name.

**Hinge name** - the name used for the hinge link.

**OK** - selecting OK sets the **Hinge name**.

Continue to the next section 21.2.7.10 **MTF Width** or return to 21.2.7 MTF Settings.
21.2.7.10 MTF Width

A **section width** is used to limit the distance to search along a section when trying to find strings used in any of the MTF commands.

Selecting **Width** from the MTF edit men brings up the **Section Width** panel for setting the width.

![Section Width Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section width</td>
<td>A perpendicular offset from the Hinge string. It is used to limit the search distance for strings when performing MTF modifier commands.</td>
<td>input</td>
<td>10000</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>A comment to add to the end of the line. In the file, the comment will be preceded by //..</td>
<td>column header</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK/Apply</td>
<td><strong>OK</strong> stores the values in the fields and removes the panel. <strong>Apply</strong> stores the values and leaves the panel on the screen.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Return to **21.2.7 MTF Settings**.
21.2.8 MTF Save

Clicking **Save** on the **MTF Edit** menu (without walking right) saves the MTF file.

Clicking on the options on the walk right menu will:

- **If** **Save** is clicked, the MTF is saved to disk and the **MTF Edit** panel is left on the screen.
- **If** **Quit** is clicked, the MTF is **not** saved to disk and the **MTF Edit** panel is closed.
- **If** **Save & Finish** is clicked, the MTF is **s**aved to disk and the **MTF Edit** panel then closed.

Return to **21.1 The Modifiers and Templates File - MTF**.
21.3 Options Not Yet Re-documented for V11

V11 introduced the concept of Layers and also removed the restriction that links could only be modified by the two of the three width, height, xfall or slope, that they were defined by. These options have not yet been documented for the V11 changes.

21.3.0.1 Insert Cut Links from a Template

All the cut links from an existing template can be inserted by the Insert cut template command. Selecting Insert cut template brings up the Insert Cut Template panel.

![Insert Cut Template](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template</td>
<td>template box</td>
<td>select template menu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the name of the template to take the cut links from.</td>
<td></td>
</tr>
<tr>
<td>Before</td>
<td>input</td>
<td>select name menu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if non-blank, the cut links from the selected template are inserted before the given link.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If blank, the cut links from the selected template are appended to the end of the existing cut links.</td>
<td></td>
</tr>
<tr>
<td>Start/End mode</td>
<td>choice box</td>
<td>Start (ref)/End (ref)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>defines the start/end chainages for inserting the new template links.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>For more information on Start/End mode, see 21.2.1 MTF Hinge Modifiers</td>
<td></td>
</tr>
<tr>
<td>Interval</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if non blank, the interval to use to create cross sections and strings over the given chainage range.</td>
<td></td>
</tr>
</tbody>
</table>
If blank, the Section separation value from the Apply MTF panel is used.

Extra start/end tick box

if ticked, add an extra x-section 0.1 mm before the start/end chainage.

Comment input

comment to add to the end of the line. In the file, the comment will be preceded by //.

Active tick box

if ticked, use this modifier.
if not ticked, don’t use this modifier.

OK/Apply button

OK stores the values in the fields and removes the panel.
Apply stores the values and leaves the panel on the screen.

Continue to the next section 21.3.0.2 Cut Link - Remove or return to 21.3.0.1 Insert Cut Links from a Template

21.3.0.2 Cut Link - Remove

Cut links can be deleted between given chainages by using the Cut Remove command.
Selecting Remove brings up the Cut - Remove panel

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link name</td>
<td>input</td>
<td>defaults</td>
<td>select name menu</td>
</tr>
</tbody>
</table>
Start/End mode choice box Start (ref)/End (ref) defines the start/end chainages for removing the cut link. For more information on Start/End mode, see 21.2.1 MTF Hinge Modifiers.

Interval input
if non blank, the interval to use to create cross sections and strings over the given chainage range. If blank, the Section separation value from the Apply MTF panel is used.

Extra start/end tick box
if ticked, add an extra x-section 0.1 mm before the start/end chainage.

Comment input
comment to add to the end of the line. In the file, the comment will be preceded by //.

Active tick box
if ticked, use this modifier.
if not ticked, don’t use this modifier.

OK/Apply button
OK stores the values in the fields and removes the panel.
Apply stores the values and leaves the panel on the screen.

Continue to the next section 21.3.0.3 Cut Link - Modifier Width or Height or return to 21.3.0.1 Insert Cut Links from a Template.

21.3.0.3 Cut Link - Modifier Width or Height
The cut width modifier is used to modify the width of variable cut links originally defined by width. That is, links defined by width and slope or width and height.

Similarly the cut height modifier is used to modify the height of variable cut links originally defined by height. That is, links defined by height and width or height and slope.

Selecting Width or Height brings up the Cut - Width and Cut - Height panels respectively.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link name</td>
<td>input</td>
<td>select name menu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the link to modify.</td>
<td></td>
</tr>
<tr>
<td>Start/End mode</td>
<td>choice box</td>
<td>Start (ref)/End (ref)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>defines the start/end chainages for modifying the links. For more information on Start/End mode, see 21.2.1 MTF Hinge Modifiers</td>
<td></td>
</tr>
<tr>
<td>Interval</td>
<td>input</td>
<td>measures menu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if non blank, the interval to use to create cross sections and strings over the given chainage range. If blank, the Section separation value from the Apply MTF panel is used.</td>
<td></td>
</tr>
<tr>
<td>Start/End width/height</td>
<td>input</td>
<td>measures menu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>start/end width/height for modifying the link.</td>
<td></td>
</tr>
<tr>
<td>Extra start/end</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, add an extra x-section 0.1 mm before the start/end chainage.</td>
<td></td>
</tr>
<tr>
<td>Absolute</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, the width/height is set to the values given in the start and end value fields. If not ticked, the values given in the start and end value fields are added to the existing widths/heights.</td>
<td></td>
</tr>
<tr>
<td>Cubic</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
if ticked, the width/height is varied as a reverse cubic between the start and end chainages.
if not ticked, the width/height is varied linearly between the start and end chainages.

Comment input
comment to add to the end of the line. In the file, the comment will be preceded by //.

Active tick box tick
if ticked, use this modifier.
if not ticked, don’t use this modifier.

OK/Apply button
OK stores the values in the fields and removes the panel.
Apply stores the values and leaves the panel on the screen.

Continue to the next section 21.3.0.4 Cut Link - Modify Slope or return to 21.3.0.1 Insert Cut Links from a Template.

21.3.0.4 Cut Link - Modify Slope
The cut slope modifier is used to modify the slope of variable cut links originally defined by slope. That is, links defined by slope and width or slope and height.

Selecting Slope brings up the Cut - Slope panel

The fields and buttons used in this panel have the following functions.
### Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link name</td>
<td>input</td>
<td>select name menu</td>
<td></td>
</tr>
<tr>
<td>Start/End mode</td>
<td>choice box</td>
<td>Start (ref)/End (ref)</td>
<td></td>
</tr>
<tr>
<td>Interval</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start/End slope</td>
<td>input</td>
<td>measures menu</td>
<td></td>
</tr>
<tr>
<td>Extra start/end</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td>Cubic</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotate</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td>OK/Apply</td>
<td>button</td>
<td>OK stores the values in the fields and removes the panel.</td>
<td>Apply stores the values and leaves the panel on the screen.</td>
</tr>
</tbody>
</table>

- **Link name**: Name of the link to modify.
- **Start/End mode**: Defines the start/end chainages for modifying the link. For more information on Start/End mode, see 21.2.1 MTF Hinge Modifiers.
- **Interval**: If non blank, the interval to use to create cross sections and strings over the given chainage range. If blank, the Section separation value from the Apply MTF panel is used.
- **Start/End slope**: Measures menu start/end slope for modifying the link.
- **Extra start/end**: If ticked, add an extra x-section 0.1 mm before the start/end chainage.
- **Absolute**: If ticked, the slope is set to the values given in the start and end slope fields. If not ticked, the slopes given in the start and end value fields are added to the existing slopes.
- **Cubic**: Only none or one of Cubic and Rotate can be set to tick. The default is none - that is, neither is ticked and in the default case, the slope is varied linearly with respect to slope between the start and end chainages.
- **Rotate**: If ticked, the slope is varied linearly with respect to the angle, between the start and end chainages.
- **Comment**: Comment to add to the end of the line. In the file, the comment will be preceded by //.
- **Active**: If ticked, use this modifier. If not ticked, don't use this modifier.

### 21.3.0.5 Cut Link - from Link

The Cut from link walk-right brings up the Cut from Link menu with options to take the width, height or slope from another link.
Cut Width, Height or Slope from a Link

The **Width from link** modifier is used to modify the width of cut links originally defined by width to be the same width as another link. That is, the width of the link is a copy of the width of another link.

The **Height from link** modifier is used to modify the height of cut links originally defined by height to be the same height as another link. That is, the height of the link is a copy of the height of another link.

The **Slope from link** modifier is used to modify the slope of cut links originally defined by slope to be the same slope as another link. That is, the slope of the link is a copy of the slope of another link. The link to copy slope from can be defined in terms of slope or cross fall. If the link to copy is defined by cross fall, then the slope is calculated to match the cross fall.

Selecting **width from link**, **height from link** or **slope from link** brings up the **Cut - Width from Link**, **Cut Height - from Link** and **Cut - Slope from Link** panels respectively.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link name</td>
<td>input</td>
<td>select name menu</td>
<td>name of the link to modify.</td>
</tr>
<tr>
<td>Start/End mode</td>
<td>choice box</td>
<td>Start (ref)/End (ref)</td>
<td>defines the start/end chainages for modifying the link. For more information on Start/End mode, see 21.2.1 MTF Hinge Modifiers</td>
</tr>
<tr>
<td>Interval</td>
<td>input</td>
<td></td>
<td>If non blank, the interval to use to create cross sections and strings over the given chainage range. If blank, the Section separation value from the Apply MTF panel is used.</td>
</tr>
<tr>
<td>From link name</td>
<td>input</td>
<td>select name menu</td>
<td>template link to take width/height/slope from.</td>
</tr>
<tr>
<td>From zone</td>
<td>input</td>
<td>fixed</td>
<td>fixed, cut, fill</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>zone that the template link to take width/height/slope from, comes from.</td>
</tr>
<tr>
<td>Extra start/end</td>
<td>tick box</td>
<td></td>
<td>if ticked, add an extra x-section 0.1 mm before the start/end chainage.</td>
</tr>
<tr>
<td>Comment</td>
<td>input</td>
<td></td>
<td>comment to add to the end of the line. In the file, the comment will be preceded by //.</td>
</tr>
<tr>
<td>Active</td>
<td>tick box</td>
<td>tick</td>
<td>if ticked, use this modifier.</td>
</tr>
</tbody>
</table>
if not ticked, don’t use this modifier.

OK/Apply button
- OK stores the values in the fields and removes the panel.
- Apply stores the values and leaves the panel on the screen.

Continue to the next section 21.3.0.6 Cut Link - to String or return to 21.3.0.1 Insert Cut Links from a Template.

21.3.0.6 Cut Link - to String

The Cut to string walk-right brings up the Cut to String menu with options to take the width, height or slope by going to another string.

For To string, go to
- Cut Link - Modify To String
- Cut Link - Calculate Width, Height or Slope to a String

Cut Link - Modify To String

For any cut link, To string calculates the width, height and/or slope of the link needed to get from the start point of the link to the to the selected string.

However if the tin in the Apply MTF is cut before reaching the string, the cut link stops at the Apply MTF tin.

Selecting To string bring up the Cut - to String panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link name</td>
<td>input</td>
<td>select name menu</td>
<td>name of the link to modify:</td>
</tr>
<tr>
<td>Start/End mode</td>
<td>choice box</td>
<td>Start (ref)/End (ref)</td>
<td>defines the start/end chainages for modifying the link. For more information on Start/End mode, see <a href="#">21.2.1 MTF Hinge Modifiers</a> except for this option:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>When the <strong>Start mode</strong> is <strong>Start (ref)</strong>, or <strong>Typed</strong> and the chainage is <strong>blank</strong>, the modification begins at the low dropped chainage of the selected string.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>When the <strong>End mode</strong> is <strong>End (ref)</strong>, or <strong>Typed</strong> and the chainage is <strong>blank</strong>, the modification ends at the high dropped chainage of the selected string.</td>
</tr>
<tr>
<td>Interval</td>
<td>input</td>
<td></td>
<td>If <strong>non blank</strong>, the interval to use to create cross sections and strings over the given chainage range. If <strong>blank</strong>, the <strong>Section separation</strong> value from the <strong>Apply MTF</strong> panel is used.</td>
</tr>
<tr>
<td>String</td>
<td>string-select</td>
<td></td>
<td>select string to use for defining width/height/crossfall for the link.</td>
</tr>
<tr>
<td>Side to search</td>
<td>input</td>
<td>left side, right side, both sides</td>
<td>side of the hinge string to start searching to find the string to define width/height/crossfall.</td>
</tr>
<tr>
<td>Extra start/end</td>
<td>tick box</td>
<td></td>
<td>If <strong>ticked</strong>, add an extra x-section 0.1 mm before the start/end chainage.</td>
</tr>
</tbody>
</table>
| Comment           | input    |          | comment to add to the end of the line. In the file, the comment will be preceded by //.
**Chapter 21  Advanced Design**

**Options Not Yet Re-documented for V11**

Active tick box tick

if **ticked**, use this modifier.

if **not ticked**, don’t use this modifier.

OK/Apply button

**OK** stores the values in the fields and removes the panel.

**Apply** stores the values and leaves the panel on the screen.

**Cut Link - Calculate Width, Height or Slope to a String**

**Width to String:**

For a cut link defined by width and height or width and slope, Cut Width to string calculates the **width** of the link as the width from the start point of the link, to the **to the selected string**. The slope or height is taken from the link. The option will give an error for a link defined by height and slope.

However if the tin in the Apply MTF is cut before reaching the string, the cut link stops at the **Apply MTF tin**.

**Height to String:**

For a cut link defined by height and width or height and slope, Cut Height to string calculates the **height** of the link as the difference in the height at the start point of the link, and the height at the **selected string**. The slope or width is taken from the link. The option will give an error for a link defined by width and slope.

However if the tin in the Apply MTF is cut before reaching the string, the cut link stops at the **Apply MTF tin**.
Xfall to String:

For a cut link defined by slope and width or slope and height, Cut Slope to string calculates the slope of the link as the slope from the start point of the link to the selected string. The width or height is taken from the link. The option will give an error for a link defined by width and height.

However if the tin in the Apply MTF is cut before reaching the string, the cut link stops at the Apply MTF tin.
Options Not Yet Re-documented for V11

Note:
Using two of the above modifiers together and with the same string will place the end point of the link on the selected string. For example, for a modifier defined by *width* and *slope*, using *width to string* and a *slope to string* with the same string will place the end of the link on that string.

But the To string option will do the same thing in one command. See **Cut Link - Modify To String**.

Selecting *Width to string*, *Height to string* or *Slope to string* brings up the **Cut - Width to String**, **Cut - Height to String** and **Cut - Slope to String** panels respectively.

![Cut - Width to String](image)
![Cut - Height to String](image)
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link name</td>
<td>input</td>
<td></td>
<td>select name menu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>name of the link to modify:</td>
</tr>
<tr>
<td>Start/End mode</td>
<td>choice box</td>
<td>Start (ref)/End (ref)</td>
<td>defines the start/end chainages for modifying the link.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For more information on Start/End mode, see <a href="#">21.2.1 MTF Hinge Modifiers</a> except for this option:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>When the Start mode is Start (ref), or Typed and the chainage is blank, the modification begins at the low dropped chainage of the selected string.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>When the End mode is End (ref), or Typed and the chainage is blank, the modification ends at the high dropped chainage of the selected string.</td>
</tr>
<tr>
<td>Interval</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If non blank, the interval to use to create cross sections and strings over the given chainage range. If blank, the Section separation value from the Apply MTF panel is used.</td>
</tr>
<tr>
<td>String</td>
<td>string-select</td>
<td></td>
<td>select string to use for defining width/height/slope for the link.</td>
</tr>
<tr>
<td>Side to search</td>
<td>input</td>
<td>left side</td>
<td>left side, right side, both sides</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>side of the hinge string to start searching to find the string to define width/height/slope.</td>
</tr>
<tr>
<td>Extra start/end</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
if ticked, add an extra x-section 0.1 mm before the start/end chainage.

Comment
input

comment to add to the end of the line. In the file, the comment will be preceded by //.

Active
tick box tick

if ticked, use this modifier.
if not ticked, don’t use this modifier.

OK/Apply
button

OK stores the values in the fields and removes the panel.
Apply stores the values and leaves the panel on the screen.

Continue to the next section 21.3.0.7 Cut Link - to Tin or return to 21.3.0.1 Insert Cut Links from a Template.

21.3.0.7 Cut Link - to Tin

The Cut to tin walk-right brings up the Cut to Tin menu with options to calculate the width, height or slope to get to a given tin (which doesn’t have to be the Apply MTF tin).

For Width/Height/Tin to tin, go to the next section Cut Link - Modify Width, Height or Xfall to Sit on User Tin

Cut Link - Modify Width, Height or Xfall to Sit on User Tin

Width to Tin

For a cut link defined by width and height or width and slope, Width to tin calculates the width of the link as the width required so that the link will sit on the user given tin at the height/slope given in the link. The option gives an error for a link defined by height and slope.

Link - width and height - width calculated from the tin and given height (delta)
**Height to Tin**

For a cut link defined by *height and width* or *height and slope*, the **Height to tin** calculates the *height* of the link as the difference in the height of the start point of the link, and the height that is required so that the link will sit on the user tin at the *width/slope* given in the link. The option gives an error for a link defined by *width and xfall*.

**Slope to Tin**

For a cut link defined by *slope and width* or *slope and height*, the **Slope to tin** calculates the *slope* of the link as the *slope* required so that the link will sit on the user tin at the *width/height* given in the link. The option gives an error for a link defined by *width and height*. 
Selecting Width to tin, Height to tin, or Slope to tin brings up the Cut - Width to Tin, Cut - Height to Tin and Cut - Slope to Tin panels respectively.
Options Not Yet Re-documented for V11
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link name</td>
<td>input</td>
<td>select name menu</td>
<td></td>
</tr>
</tbody>
</table>

*name of the link to modify.*

**Start/End mode**

choice box  
Start (ref)/End (ref)

*defines the start/end chainages for modifying the link*

For more information on Start/End mode, see 21.2.1 MTF Hinge Modifiers

**Interval**

*if non blank,* the interval to use to create cross sections and strings over the given chainage range.

*If blank,* the Section separation value from the Apply MTF panel is used.

**Tin**

*input available tins*

*the tin to use for defining the width/height/slope*

**Extra start/end**

*tick box*

*if ticked,* add an extra x-section 0.1 mm *before* the start/end chainage.

**Comment**

*input*

*comment to add to the end of the line. In the file, the comment will be preceded by //.*

**Active**

*tick box*

*if ticked,* use this modifier.

*if not ticked,* don’t use this modifier.

**OK/Apply**

*button*

**OK** stores the values in the fields and removes the panel.

**Apply** stores the values and leaves the panel on the screen.

Continue to the next section 21.3.0.8 Cut Link - to Two Heights or return to 21.3.0.1 Insert Cut Links from a Template.

### 21.3.0.8 Cut Link - to Two Heights

For an existing link, the **to 2 heights** option has a number of methods for **defining the height** from the start mode chainage to the end mode chainage. For example, over the chainage range, the height can be interpolated between two given RL’s.

However if the Apply MTF tin is cut before reaching the end of the modified link, the **cut link stops at the tin.**
Note: the **2 Strings** modifiers work with two points in a **section**. See [21.3.0.9 Cut Link - to 2 Strings](#).

Selecting a **2 heights** brings up the **Cut - to 2 Heights** panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link name</td>
<td>input</td>
<td>select name menu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the link to modify.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modifier type</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The **Maintain** Slope/Width is the part of the new definition of the selected link that is taken from the selected **Link name**. See **Cut - Maintaining Width or Slope**.

The **Height** for the selected link is calculated by the method given by **Type**.

**Start/End mode**

choice box

Start (ref)/End (ref)

defines the start/end chainages for modifying the link.

For more information on **Start/End mode**, see **21.2.1 MTF Hinge Modifiers**.

**Interval**

input

if **non blank**, the interval to use to create cross sections and strings over the given chainage range.
If blank, the Section separation value from the Apply MTF panel is used.

**Type** choice box

![Select Choice](image)

For the calculation of height for each type, go to **Cut - Calculating the Heights for each Type**

**Extra start/end** tick box

*if ticked*, add an extra x-section 0.1 mm before the start/end chainage.

**Comment** input

*comment to add to the end of the line. In the file, the comment will be preceded by /*.*

**Active** tick box

*if ticked*, use this modifier.

*if not ticked*, don’t use this modifier.

**OK/Apply** button

**OK** stores the values in the fields and removes the panel.

**Apply** stores the values and leaves the panel on the screen.

**Cut - Maintaining Width or Slope**

The option **to 2 heights** defines the **height** of the selected string so to completely define the link, only the width or the slope is needed.

So from the selected link only the width or the xfall is used (maintained) - the height is calculated by the **to 2 heights** option.

If the selected link is defined by width and height, then at any chainage a slope can be calculated from the width and height at that chainage.

**Section View**

[Diagram showing the relationship between width, height, and slope]

For links defined by width and height, the slope at each chainage is uniquely defined.
If the selected link is defined by *slope and height*, then at any chainage a *width* can be calculated from the slope and height at that chainage.

For links defined by slope and height, the *width* at each chainage is uniquely defined.

Hence it doesn’t matter if the selected link is defined by *width and slope*, *width and height*, or *slope and height*, at each chainage a *width and slope* are uniquely defined.

So no matter how the selected link is defined, at any chainage, a unique width or a slope is known and it is that *Width* or *Slope* can be maintained by the **to 2 heights** option.

So the choices for the option are:

**Select Choice**
- Modify Height, Hold Width
- Modify Height, Hold Xfall

Continue to the next section **21.3.0.9 Cut Link - to 2 Strings** or return to **21.3.0.8 Cut Link - to Two Heights**, **21.3.0.1 Insert Cut Links from a Template**.

**Cut - Calculating the Heights for each Type**

**Select Choice**
- RL
- RL -> RL
- RL Grade ->
- < RL Grade
- Pos ->
- < Pos
- Pos -> Pos
- Pos Grade ->
- < Pos Grade
- RL -> Pos
- Pos -> RL

**Important Note**: Grade is calculated using *increasing Alignment chainages* and the *heights at the points* along the string being modifies. When going around a curve this will not be exactly the same as the grade along the string being modified.

The definitions of the calculations for each choice are the same as for the Fixed links. See **21.2.2.13.1 Fixed - Calculating the Heights for each Type**.

Continue to the next section **21.3.0.9 Cut Link - to 2 Strings** or return to **21.3.0.8 Cut Link - to Two Heights**, **21.3.0.1 Insert Cut Links from a Template**.
21.3.0.9 Cut Link - to 2 Strings

The Cut to 2 strings walk-right brings up the Cut to 2 Strings menu with options to calculate the width, height or slope from two given strings.

For Width/Height/Slope to 2 Strings, go to the next section Cut Link - Width, Height or Slope Between Two Strings.

Cut Link - Width, Height or Slope Between Two Strings

Width Between Two Strings

For a cut link defined by width and height or width and slope, Width to 2 strings sets the width for a link to be the width between two existing 12d Model strings.

However if the Apply MTF tin is cut before reaching the string, the cut link stops at the tin.

The option will give an error for a link defined by height and slope.

Height Between Two Strings

For a cut link defined by height and width or height and slope, Height to 2 strings sets the height for...
the link to be the **height between two** existing **12d Model** strings,

However if the Apply MTF tin is cut before reaching the string, the **cut link stops at the tin**.

The option will give an error for a link defined by **width** and **slope**.

Slope Between Two Strings

For a cut link defined by **slope** and **width** or **slope** and **height**, **Slope to 2 strings** sets the **slope** for the link to be the **slope between two** existing **12d Model** strings,

However if the Apply MTF tin is cut before reaching the string, the **cut link stops at the tin**.

The option will give an error for a link defined by **width** and **height**.
Modify Slope to be that between Two Strings - for Link defined by Xfall and Height

Selecting the width to 2 strings, height to 2 strings or slope to 2 strings option brings up the Cut - Width to 2 Strings, Cut - Height to 2 Strings and Cut - Slope to 2 String panels respectively.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field/Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link name</td>
<td>input</td>
<td>select</td>
<td>name menu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>name of the link to modify.</td>
</tr>
<tr>
<td>Start/End mode</td>
<td>choice box</td>
<td>Start (ref)/End (ref)</td>
<td>defines the start/end chainages for modifying the link. For more information on Start/End mode, see 21.2.1 MTF Hinge Modifiers.</td>
</tr>
<tr>
<td>Interval</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if non blank, the interval to use to create cross sections and strings over the given chainage range. If blank, the Section separation value from the Apply MTF panel is used.</td>
<td></td>
</tr>
<tr>
<td>String 1</td>
<td>string-select</td>
<td></td>
<td>select the first string to use for defining width/height/slope for the link.</td>
</tr>
<tr>
<td>String 2</td>
<td>string-select</td>
<td></td>
<td>select the second string to use for defining width/height/slope for the link.</td>
</tr>
<tr>
<td>Side 1 to search</td>
<td>input</td>
<td>left side</td>
<td>left side, right side, both sides</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>side of the hinge string to start searching to find string 1 to use in defining width/height/slope.</td>
</tr>
<tr>
<td>Side 2 to search</td>
<td>input</td>
<td>left side</td>
<td>left side, right side, both sides</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>side of the hinge string to start searching to find string 2 to use in defining width/height/slope.</td>
</tr>
<tr>
<td>Extra start/end</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, add an extra x-section 0.1 mm before the start/end chainage.</td>
<td></td>
</tr>
</tbody>
</table>
Comment input

*comment to add to the end of the line. In the file, the comment will be preceded by //</.*

Active tick box tick

*if* **ticked**, use this modifier.
*if not ticked**, don’t use this modifier.

OK/Apply button

**OK** stores the values in the fields and removes the panel.
**Apply** stores the values and leaves the panel on the screen.

Continue to the next section 21.3.0.10 Insert Fill Links from a Template or return to 21.3.0.1 Insert Cut Links from a Template.
21.3.0.10 Insert Fill Links from a Template

All the fill links from an existing template can be inserted by the Insert Template command. Selecting Insert fill template brings up the Insert Fill Template panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template</td>
<td>template box</td>
<td>template</td>
<td>select</td>
<td>template menu</td>
</tr>
<tr>
<td></td>
<td>the name of the template to take the fill links from.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before</td>
<td>input select name menu</td>
<td></td>
<td></td>
<td>select name menu</td>
</tr>
<tr>
<td></td>
<td>if non-blank, the fill links from the selected template are inserted before the given link. If blank, the fill links from the selected template are appended to the end of the existing fill links.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start/End mode</td>
<td>choice box</td>
<td>Start (ref)/End (ref)</td>
<td></td>
<td>defines the start/end chainages for inserting the new fill links. For more information on Start/End mode, see 21.2.1 MTF Hinge Modifiers</td>
</tr>
<tr>
<td>Interval</td>
<td>input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if non blank, the interval to use to create cross sections and strings over the given chainage range. If blank, the Section separation value from the Apply MTF panel is used.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra start/end</td>
<td>tick box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, add an extra x-section 0.1 mm before the start/end chainage.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>input</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
|                        | comment to add to the end of the line. In the file, the comment will be preceded by //.

The image shows the Insert Fill Template panel with fields for template selection, before/after chainages, start/end mode, interval, and extra start/end.
Active tick box

- if ticked, use this modifier.
- if not ticked, don’t use this modifier.

OK/Apply button

- OK stores the values in the fields and removes the panel.
- Apply stores the values and leaves the panel on the screen.

Continue to the next section 21.3.0.11 Fill Link - Remove or return to 21.3.0.10 Insert Fill Links from a Template.
21.3.0.11 Fill Link - Remove

Fill links can be deleted between given chainages by using the **fill remove** modifier.

Selecting **Remove** brings up the Fill - Remove panel.

![Fill - Remove Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link name</td>
<td>name of the link to removed.</td>
<td>input</td>
<td>select</td>
<td>name menu</td>
</tr>
<tr>
<td>Start/End mode</td>
<td>defines the start/end chainages for removing the link</td>
<td>choice box</td>
<td>Start (ref)/End (ref)</td>
<td></td>
</tr>
<tr>
<td>Interval</td>
<td>if non blank, the interval to use to create cross sections and strings over the given chainage range. If blank, the Section separation value from the Apply MTF panel is used.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra start/end</td>
<td>if ticked, add an extra x-section 0.1 mm before the start/end chainage.</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>comment to add to the end of the line. In the file, the comment will be preceded by //</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>if ticked, use this modifier. if not ticked, don’t use this modifier.</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
</tbody>
</table>
21.3.0.12 Fill Link - Modify Width or Height

The **fill width** modifier is used to modify the **width** of variable fill links originally defined by width. That is, links defined by *width and slope* or *width and height*.

Similarly the **fill height** modifier is used to modify the **height** of variable fill links originally defined by height. That is, links defined by *height and slope* or *height and width*.

**Important Note** - for a Fill link, a **positive** height is **down**.

Selecting the **width and height** option brings up the **Fill - Width** and **Fill - Height** panels respectively.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link name</td>
<td>input</td>
<td>select name menu</td>
<td>name of the link to modify:</td>
</tr>
<tr>
<td>Start/End mode</td>
<td>choice box</td>
<td>Start (ref)/End (ref)</td>
<td>defines the start/end chainages for modifying the link</td>
</tr>
</tbody>
</table>

For more information on Start/End mode, see [21.2.1 MTF Hinge Modifiers](#).
Interval input

if non blank, the interval to use to create cross sections and strings over the given chainage range.
If blank, the Section separation value from the Apply MTF panel is used.

Start/End width/height input measures menu

start/end width/height for modifying the template link.

Important Note - for a fill link, height positive is down.

Extra start/end tick box

if ticked, add an extra x-section 0.1 mm before the start/end chainage.

Absolute tick box

if ticked, the width/height is set to the values given in the start and end width/height fields.
if not ticked, the values given in the start and end height/width fields are added to the existing widths/heights.

Cubic tick box

if ticked, the width/height is varied as a reverse cubic between the start and end chainages.
if not ticked, the width/height is varied linearly between the start and end chainages.

Comment input

comment to add to the end of the line. In the file, the comment will be preceded by //.

Active tick box

if ticked, use this modifier.
if not ticked, don’t use this modifier.

OK/Apply button

OK stores the values in the fields and removes the panel.
Apply stores the values and leaves the panel on the screen.

Continue to the next section 21.3.0.13 Fill Link - Modify Slope or return to 21.3.0.10 Insert Fill Links from a Template.
21.3.0.13 Fill Link - Modify Slope

The **fill slope** modifier is used to modify the **slope** of variable fill links originally defined by slope. That is, links defined by **slope and width** or **slope and height**.

**Important Note** - for a Fill link, a **positive** fill slope is **down**.

Selecting **slope** brings up the **Fill - Slope** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link name</td>
<td>input</td>
<td></td>
<td>select name menu</td>
</tr>
</tbody>
</table>

- **name of the link to modify**.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start/End mode</td>
<td>choice box</td>
<td>Start (ref)/End (ref)</td>
<td>defines the start/end chainages for modifying the link. For more information on Start/End mode, see <a href="#">21.2.1 MTF Hinge Modifiers</a>.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interval</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **if non blank**, the interval to use to create cross sections and strings over the given chainage range. If **blank**, the **Section separation** value from the **Apply MTF** panel is used.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start/End slope</td>
<td>input</td>
<td></td>
<td>measures menu</td>
</tr>
</tbody>
</table>

- **start/end slope for modifying the template link.**

**Important Note** - for a fill link, a **positive** slope is down.
Extra start/end tick box
if ticked, add an extra x-section 0.1 mm before the start/end chainage.

Absolute tick box tick
if ticked, the slope is set to the values given in the start and end slope fields.
if not ticked, the values given in the start and end slope fields are added to the existing slopes.

Cubic and Rotate tick boxes:
Only none or one of Cubic and Rotate can be set to tick.
The default is none - that is, neither is ticked and in the default case, the slope is varied linearly with respect to slope between the start and end chainages.

Cubic tick box
if ticked, the slope is varied as a reverse cubic between the start and end chainages.

Rotate tick box
if ticked, the slope is varied linearly with respect to the angle, between the start and end chainages.

Comment input
comment to add to the end of the line. In the file, the comment will be preceded by //.

Active tick box tick
if ticked, use this modifier.
if not ticked, don’t use this modifier.

OK/Apply button
OK stores the values in the fields and removes the panel.
Apply stores the values and leaves the panel on the screen.

Continue to the next section 21.3.0.14 Fill Link - from Link or return to 21.3.0.10 Insert Fill Links from a Template.
21.3.0.14 Fill Link - from Link

The Fill from link walk-right brings up the Fill from Link menu with options to take the width, height or slope from another link.

For Width/Height/Slope from link, go to the next section Fill Link - Take Width, Height or Slope from another Link

Fill Link - Take Width, Height or Slope from another Link

The Width from link modifier is used to modify the width of fill links originally defined by width to be the same width as another link (width and height or width and slope). That is, the width of the link is a copy of the width of another link.

The Height from link modifier is used to modify the height of fill links originally defined by height to be the same height as another link (height and width or height and slope). That is, the height of the link is a copy of the height of another link.

The Slope from link modifier is used to modify the slope of fill links originally defined by slope to be the same slope as another link (slope and width or slope and height). That is, the slope of the link is a copy of the slope of another link. The link to copy slope from can be defined in terms of slope or cross fall. If the link to copy is defined by cross fall, then the slope is calculated to match the cross fall.

Selecting the width from link, height from link or slope from link option brings up the Fill - Width from Link, Fill - Height from Link and Fill - Slope from Link panels respectively.
Options Not Yet Re-documented for V11
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link name</td>
<td>input</td>
<td>select name menu</td>
<td>name of the link to modify.</td>
</tr>
<tr>
<td>Start/End mode</td>
<td>choice box</td>
<td>Start (ref)/End (ref)</td>
<td>defines the start/end chainages for modifying the link. For more information on Start/End mode, see 21.2.1 MTF Hinge Modifiers.</td>
</tr>
<tr>
<td>Interval</td>
<td>input</td>
<td>If non blank, the interval to use to create cross sections and strings over the given chainage range. If blank, the Section separation value from the Apply MTF panel is used.</td>
<td></td>
</tr>
<tr>
<td>From link name</td>
<td>input</td>
<td>select name menu</td>
<td>template link to take width/height/slope from.</td>
</tr>
<tr>
<td>From zone</td>
<td>input</td>
<td>fixed</td>
<td>fixed, cut, fill</td>
</tr>
<tr>
<td>Extra start/end</td>
<td>tick box</td>
<td>If ticked, add an extra x-section 0.1 mm before the start/end chainage.</td>
<td></td>
</tr>
</tbody>
</table>
| Comment           | input      | comment to add to the end of the line. In the file, the comment will be preceded by //.
| Active            | tick box   | tick | if ticked, use this modifier. |
if not ticked, don’t use this modifier.

**OK/Apply** button

**OK** stores the values in the fields and removes the panel.

**Apply** stores the values and leaves the panel on the screen.

Continue to the next section 21.3.0.15 Fill Link - to String or return to 21.3.0.10 Insert Fill Links from a Template.
21.3.0.15 Fill Link - to String

The *Fill to string* walk-right brings up the *Fill to String* menu with options to take the width, height or slope by going to another string.

For *To string*, go to

- *Width/Height/Slope to string*
- *Fill Link - Modify To String*
- *Fill Link - Calculate Width, Height or Slope to a String*

**Fill Link - Modify To String**

For any fill link, *To string* calculates the width, height and/or slope of the link needed to get from the start point of the link to the *selected string*.

However if the tin in the Apply MTF is cut before reaching the string, the *cut link stops at the Apply MTF tin*.

Selecting *To string* brings up the *Fill - to String* panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link name</td>
<td>input</td>
<td>select name menu</td>
<td></td>
</tr>
</tbody>
</table>

name of the link to modify.

Start/End mode: choice box Start (ref)/End (ref)

defines the start/end chainages for modifying the link

For more information on Start/End mode, see 21.2.1 MTF Hinge Modifiers except for this option:

When the Start mode is Start (ref), or Typed and the chainage is blank, the modification begins at the low dropped chainage of the selected string.

When the End mode is End (ref), or Typed and the chainage is blank, the modification ends at the high dropped chainage of the selected string.

Interval: input

if non blank, the interval to use to create cross sections and strings over the given chainage range.

If blank, the Section separation value from the Apply MTF panel is used.

String: string-select

select string to use for defining width/height/crossfall for the link.

Side to search: input left side left side, right side, both sides

de side of the hinge string to start searching to find the string to define width/height/crossfall.

Extra start/end: tick box

if ticked, add an extra x-section 0.1 mm before the start/end chainage.
Comment

Input

commence to add to the end of the line. In the file, the comment will be preceded by //.

Active

tick box

tick

if ticked, use this modifier.

if not ticked, don’t use this modifier.

OK/Apply

button

OK stores the values in the fields and removes the panel.

Apply stores the values and leaves the panel on the screen.

**Fill Link - Calculate Width, Height or Slope to a String**

**Width to String:**

For a fill link defined by *width* and *height* or *width* and *slope*, **Fill Width to string** calculates the width of the link as the width from the start point of the link, to the to the **selected string**. The slope or *height* is taken from the link. The option will give an error for a link defined by *height* and *slope*.

However if the tin in the Apply MTF is cut before reaching the string, the **fill link stops at the Apply MTF tin**.

**Height to String:**

For a fill link defined by *height* and *width* or *height* and *slope*, **Fill Height to string** calculates the height of the link as the difference in the height at the start point of the link, and the height at the **selected string**. The slope or *width* is taken from the link. The option will give an error for a link defined by *width* and *slope*.

However if the tin in the Apply MTF is cut before reaching the string, the **fill link stops at the Apply MTF tin**.
Slope to String:
For a fill link defined by slope and width or slope and height, Fill Slope to string calculates the slope of the link as the slope from the start point of the link to the selected string. The width or height is taken from the link. The option will give an error for a link defined by width and height.

However if the tin in the Apply MTF is cut before reaching the string, the fill link stops at the Apply MTF tin.
Note:

Using two of the above modifiers together and with the same string will place the end point of the link on the selected string. For example, for a modifier defined by width and slope, using width to string and a slope to string with the same string will place the end of the link on that string.

But the To string option will do the same thing in one command. See Cut Link - Modify To String.

Selecting the width to string, height to string or slope to string option brings up the Fill - Width to String, Fill - Height to String and Fill - Slope to String panels respectively.

![Diagram](image-url)
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link name</td>
<td>Name of the link to modify.</td>
<td>input</td>
<td>select name menu</td>
<td></td>
</tr>
<tr>
<td>Start/End mode</td>
<td>Defines the start/end chainages for modifying the link.</td>
<td>choice box</td>
<td>Start (ref)/End (ref)</td>
<td></td>
</tr>
<tr>
<td>Interval</td>
<td>If non blank, the interval to use to create cross sections and strings over the given chainage range. If blank, the Section separation value from the Apply MTF panel is used.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>String</td>
<td>Select string to use for defining width/height/slope for the link.</td>
<td>string-select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Side to search</td>
<td>Side of the hinge string to start searching to find the string to define width/height/slope.</td>
<td>input</td>
<td>left side, right side, both sides</td>
<td></td>
</tr>
<tr>
<td>Extra start/end</td>
<td>If ticked, add an extra x-section 0.1 mm before the start/end chainage.</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comment

input

comment to add to the end of the line. In the file, the comment will be preceded by //.

Active

tick box

tick

if ticked, use this modifier.
if not ticked, don’t use this modifier.

OK/Apply

button

OK stores the values in the fields and removes the panel.
Apply stores the values and leaves the panel on the screen.

Continue to the next section 21.3.0.16 Fill Link - to Tin or return to 21.3.0.10 Insert Fill Links from a Template.

21.3.0.16 Fill Link - to Tin

The Fill to Tin walk-right brings up the Fill to Tin menu with options to calculate the width, height or slope to get to a given tin (which doesn’t have to be the Apply MTF tin).

For Width/Height/Tin to tin, go to the next section Fill Link - Modify Width, Height or Xfall to Sit on User Tin.

Fill Link - Modify Width, Height or Xfall to Sit on User Tin

Width to Tin

For a fill link defined by width and height or width and slope, Width to Tin calculates the width of the link as the width required so that the link will sit on the user given tin at the height/slope given in the link. The option gives an error for a link defined by height and slope.

Given the height (delta) of the link, the end position being on the tin determines the end of the link. The width is then known.
Options Not Yet Re-documented for V11

### Height to Tin

For a fill link defined by height and width or height and slope, the **Height to tin** calculates the height of the link as the difference in the height of the start point of the link, and the height that is required so that the link will sit on the user tin at the **width/slope given in the link**. The option gives an error for a link defined by width and xfall.

**Important Note** - for a Fill link, positive height and slopes are down.

### Slope to Tin

Given the slope of the link, the end position being on the tin determines the end of the link. The **height (delta)** is then known.
For a fill link defined by slope and width or slope and height, Slope to tin calculates the slope of the link as the slope required so that the link will sit on the user tin at the width/height given in the link. The option gives an error for a link defined by width and height.

Selecting Width to tin, Height to tin, or Slope to tin brings up the Fill - Width to Tin, Fill - Height to Tin and Fill - Slope to Tin panels respectively.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link name</td>
<td>input</td>
<td>select name menu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the link to modify:</td>
<td></td>
</tr>
<tr>
<td>Start/End mode</td>
<td>choice box</td>
<td>Start (ref)/End (ref)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>defines the start/end chainages for modifying the link</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>For more information on Start/End mode, see 21.2.1 MTF Hinge Modifiers</td>
<td></td>
</tr>
<tr>
<td>Interval</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if non blank, the interval to use to create cross sections and strings over the given chainage range.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If blank, the Section separation value from the Apply MTF panel is used.</td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>input</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the tin to use for defining the width/height/slope</td>
<td></td>
</tr>
<tr>
<td>Extra start/end</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, add an extra x-section 0.1 mm before the start/end chainage.</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>comment to add to the end of the line. In the file, the comment will be preceded by //.</td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, use this modifier.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if not ticked, don’t use this modifier.</td>
<td></td>
</tr>
<tr>
<td>OK/Apply</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OK stores the values in the fields and removes the panel.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apply stores the values and leaves the panel on the screen.</td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section 21.3.0.17 Fill Link - to Two Heights or return to 21.3.0.10 Insert Fill Links from a Template.
21.3.0.17 Fill Link - to Two Heights

For an existing link, the **to 2 heights** option has a number of methods for **defining the height** from the start mode chainage to the end mode chainage. For example, over the chainage range, the height can be interpolated between two given RL’s.

However if the Apply MTF tin is cut before reaching the end of the modified link, the **fill link stops at the tin**.

**Note:** the **2 Strings** modifiers work with two points in a **section**. See 21.3.0.18 Fill Link - to Two Strings.

Selecting **2 heights** brings up the Fill - to 2 Heights panel
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link name</td>
<td>input</td>
<td>select name menu</td>
<td></td>
</tr>
<tr>
<td>name of the link to modify.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modifier type</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The **Maintain Slope/Width** is the part of the new definition of the selected link that is taken from the selected **Link name**. See [Fill - Maintaining Width or Slope](#).

The **Height** for the selected link is calculated by the method given by **Type**.

Start/End mode choice box Start (ref)/End (ref) defines the start/end chainages for modifying the link. For more information on Start/End mode, see [21.2.1 MTF Hinge Modifiers](#).

Interval input if non blank, the interval to use to create cross sections and strings over the given chainage range.
If blank, the **Section separation** value from the **Apply MTF** panel is used.

**Type**
- choice box

For the calculation of height for each type, go to **Fill - Maintaining Width or Slope**

**Extra start/end**
- tick box
  - if **ticked**, add an extra x-section 0.1 mm before the start/end chainage.

**Comment**
- input
  - comment to add to the end of the line. In the file, the comment will be preceded by //.

**Active**
- tick box
  - if **ticked**, use this modifier.
  - if **not ticked**, don’t use this modifier.

**OK/Apply**
- button
  - **OK** stores the values in the fields and removes the panel.
  - **Apply** stores the values and leaves the panel on the screen.

**Fill - Maintaining Width or Slope**

The option **to 2 heights** defines the **height** of the selected string so to completely define the link, only the width or the slope is needed.

So from the selected link only the **width** or the xfall is used (maintained) - the height is calculated by the **to 2 heights** option.

If the selected link is defined by **width and height**, then at any chainage a **slope** can be calculated from the width and height at that chainage.

Important note - for a **fill link**, for slope and heights, **positive is down**.

**Section View**
- width defined
- **slope calculated**
- height defined (+ve for a fill link)

For links defined by width and height, the **slope** at each chainage is uniquely defined.
If the selected link is defined by *slope and height*, then at any chainage a *width* can be calculated from the slope and height at that chainage.

For links defined by slope and height, the *width* at each chainage is uniquely defined.

Hence it doesn't matter if the selected link is defined by *width and slope*, *width and height*, or *slope and height*, at each chainage a *width and slope* are uniquely defined.

So no matter how the selected link is defined, at any chainage, a unique width or a slope is known and it is that *Width* or *Slope* can be maintained by the *to 2 heights* option.

So the choices for the option are:

```
Select Choice
Modify Height, Hold Width
Modify Height, Hold Xfall
```

Continue to the next section 21.3.0.18 Fill Link - to Two Strings or return to 21.3.0.17 Fill Link - to Two Heights, 21.3.0.10 Insert Fill Links from a Template.

**Fill - Calculating the Heights for each Type**

```
Select Choice
RL
RL -> RL
RL Grade ->
<- RL Grade
Pos ->
<- Pos
Pos -> Pos
Pos Grade ->
<- Pos Grade
RL -> Pos
Pos -> RL
```

**Important Note:** Grade is calculated using *increasing Alignment chainages* and the *heights at the points* along the string being modifies. When going around a curve this will not be exactly the same as the grade along the string being modified.

The definitions of the calculations for each choice are the same as for the Fixed links. See 21.2.2.2.13.1 Fixed - Calculating the Heights for each Type.

Continue to the next section 21.3.0.18 Fill Link - to Two Strings or return to 21.3.0.17 Fill Link - to Two Heights, 21.3.0.10 Insert Fill Links from a Template.
21.3.0.18 Fill Link - to Two Strings

The Fill to 2 strings walk-right brings up the Fill to 2 Strings menu with options to calculate the width, height or slope from two given strings.

For Width/Height/Slope to 2 Strings, go to the next section Fill Link - Width, Height or Slope Between Two Strings.

Fill Link - Width, Height or Slope Between Two Strings

Width Between Two Strings

For a fill link defined by width and height or width and slope, Width to 2 strings sets the width for a link to be the width between two existing 12d Model strings, however if the Apply MTF tin is cut before reaching the string, the fill link stops at the tin. The option will give an error for a link defined by height and slope.

Height Between Two Strings
For a fill link defined by height and width or height and slope, Height to 2 strings sets the height for the link to be the height between two existing 12d Model strings. However if the Apply MTF tin is cut before reaching the string, the fill link stops at the tin. The option will give an error for a link defined by width and slope.

Slope Between Two Strings

For a cut link defined by slope and width or slope and height, Slope to 2 strings sets the slope for the link to be the slope between two existing 12d Model strings. However if the Apply MTF tin is cut before reaching the string, the cut link stops at the tin. The option will give an error for a link defined by width and height.
Selecting the width to 2 strings, height to 2 strings or slope to 2 strings option brings up the Fill - Width to 2 Strings, Fill - Height to 2 Strings and Fill - Slope to 2 String panels respectively.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link name</td>
<td>input</td>
<td>select name menu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the link to modify.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start/End mode</td>
<td>choice box</td>
<td>Start (ref)/End (ref)</td>
<td>defines the start/end chainages for modifying the link</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For more information on Start/End mode, see <a href="#">21.2.1 MTF Hinge Modifiers</a></td>
</tr>
<tr>
<td>Interval</td>
<td>input</td>
<td></td>
<td>if <strong>non blank</strong>, the interval to use to create cross sections and strings over the given chainage range.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If <strong>blank</strong>, the <strong>Section separation</strong> value from the <strong>Apply MTF</strong> panel is used.</td>
</tr>
<tr>
<td>String 1</td>
<td>string-select</td>
<td></td>
<td>select the first string to use for defining width/height/slope for the link.</td>
</tr>
<tr>
<td>String 2</td>
<td>string-select</td>
<td></td>
<td>select the second string to use for defining width/height/slope for the link.</td>
</tr>
<tr>
<td>Side 1 to search</td>
<td>input</td>
<td>left side</td>
<td>left side, right side, both sides</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>side of the hinge string to start searching to find string 1 to use in defining width/height/slope.</td>
</tr>
<tr>
<td>Side 2 to search</td>
<td>input</td>
<td>left side</td>
<td>left side, right side, both sides</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>side of the hinge string to start searching to find string 2 to use in defining width/height/slope.</td>
</tr>
<tr>
<td>Extra start/end</td>
<td>tick box</td>
<td></td>
<td>if <strong>ticked</strong>, add an extra x-section 0.1 mm <strong>before</strong> the start/end chainage.</td>
</tr>
</tbody>
</table>
Comment

input

comment to add to the end of the line. In the file, the comment will be preceded by //.

Active

tick box

tick

if ticked, use this modifier.
if not ticked, don’t use this modifier.

OK/Apply

button

OK stores the values in the fields and removes the panel.
Apply stores the values and leaves the panel on the screen.

Continue to the next section 21.4 Smart Chainages or return to 21.3.0.10 Insert Fill Links from a Template.
21.4 Smart Chainages

Many options in 12d Model require a chainage value from another string, usually referred to as a reference string.

For example, in the Apply MTF and in all the left and right side modifiers in an MTF, there are start and end chainages where the chainage values refer to chainages on the reference string.

The traditional method of typing in a chainage value is supported but 12d Model supports numerous other methods, called smart chainages, that calculate the chainage in various ways from the reference string geometry and from other strings.

The power of smart chainages is that when things move around, the smart chainages often don’t have to be typed in again, but automatically recalculate themselves for the new situation. Hence the chainage values do not have to be revisited every time there is a change in geometry or for simple changes like modifying the start chainage of the reference string.

The ultimate goal is to be totally free of typed fixed chainages and to produce a chainage free design.

For panel fields and grids that allow smart chainages, instead of just a chainage field, there is also a Mode field with a pop up of all the smart chainages available for that field.

There is a Modes, Start Mode and/or End Mode depending on whether there is just a chainage value or the panel has start and end chainages and hence both a Start Mode and an End Mode.
What choices are available for Mode, Start Mode and End Mode depends on the option that the smart chainage is in.

Finally most smart chainages also have an Extension field that is added to the chainage value calculated by the Mode.

For example, if the Mode was End of reference string and the Extension value was -50 then the final smart chainage will be at chainage 50 before the end of the reference string, no matter what the actual end chainage is for the reference string. See 21.4.1 Extension Value.
Chainage Modes when option is not in the MTF Left and Right Modifiers

Select Choice

Typed
Start of reference string
End of reference string
Start of other string
End of other string
Lowest dropped chainage of other string
Highest dropped chainage of other string
Named part on reference string
Named part on other string
Named position on reference string
Named position on other string
Cut ref with other string
Intersection of 2 strings
Drop point to reference string
Drop point to other string

Start and End Modes - MTF Modifiers

Chainage Modes when option is not in the MTF Left and Right Modifiers

Select Choice

Typed
Start of reference string
End of reference string
Start of other string
End of other string
Lowest dropped chainage of other string
Highest dropped chainage of other string
Named part on reference string
Named part on other string
Named position on reference string
Named position on other string
Cut ref with other string
Intersection of 2 strings
Lowest dropped chainage of modifier string
Highest dropped chainage of modifier string
Relative to self end
Relative to alias start
Relative to alias end
Relative to previous start
Relative to previous end
Snippet cut ref with model of strings
Snippet placed to model of strings
Drop point to reference string
Drop point to other string

See

21.4.1 Extension Value
21.4.2 Typed
21.4.3 Start of Reference String
21.4.4 End of Reference String
21.4.5 Start of Other String
21.4.6 End of Other String
21.4.7 Lowest Dropped Chainage of Other String
21.4.8 Highest Dropped Chainage of Other String

Smart Chainages
21.4.9 Named Part on Reference String
21.4.10 Named Part on Other String
21.4.11 Named Position on Reference String
21.4.12 Named Position on Other String
21.4.13 Cut Reference with Other String
21.4.14 Intersection of Two Strings
21.4.15 Lowest Dropped Chainage of Modifier String
21.4.16 Highest Dropped Chainage of Modifier String
21.4.17 Relative to Self End
21.4.18 Relative to Self Start
21.4.19 Relative to Alias Start
21.4.20 Relative to Alias End
21.4.21 Relative to Previous Start
21.4.22 Relative to Previous End
21.4.23 Snippet Cut Reference with Model of Strings
21.4.24 Snippet Placed to Model of Strings
21.4.25 Drop Point to Reference String
21.4.26 Drop Point to Other String
21.4.1 Extension Value

For chainages given by Start mode, End mode or Mode, there is an Extension ref field in the Chainage panel and the Extension ref value is added to the reference chainage calculated by the Smart Chainage.

For example, if the Mode was End of reference string and the Extension value was -50 then the final smart chainage will be at chainage 50 before the end of the reference string no matter what the actual end chainage is for the reference string.

In the cases when the Mode uses another string as well as the reference string, there is a String and Extension other field for the other string as well as an Extension ref field for the reference string.

For example, for the Mode Start of other string, there is a Extension other and an Extension ref.

![Smart Chainage Panel](image)

To get the final chainage, the value of Extension other is added to the Start chainage of the string selected in String (the other string). This point on the other string is then dropped onto the Reference string.

The value of Extension ref is then added to the chainage of the dropped point onto the Reference string, to give the final chainage used.

**Notes**

Extension other and Extension ref can be positive or negative.

Continue to the next section 21.4.2 Typed or return to 21.2.1 MTF Hinge Modifiers.
21.4.2 Typed

Selecting **Typed** adds a *Chainage* and an *Extension ref* field.

A reference string chainage is typed into the *Chainage* field and the value in the *Extension ref* field is then **added** to this value to give the chainage used as the **final chainage**.

If the *Chainage* is left blank then the **start/end chainage of the reference string** is used as the *Chainage* value.

Continue to the next section 21.4.3 **Start of Reference String** or return to 21.2.1 **MTF Hinge Modifiers**.

21.4.3 Start of Reference String

Selecting **Start of reference string** adds an *Extension ref* field.

The value in the *Extension ref* field is **added** to the **start chainage of the reference string** to give the chainage used as the **final chainage**.

Continue to the next section 21.4.4 **End of Reference String** or return to 21.2.1 **MTF Hinge Modifiers**.

21.4.4 End of Reference String

Selecting **End of reference string** adds an *Extension ref* field.

The value in the *Extension ref* field is **added** to the **end chainage of the reference string** to give the chainage used as the **final chainage**.

Continue to the next section 21.4.5 **Start of Other String** or return to 21.2.1 **MTF Hinge Modifiers**.
21.4.5 Start of Other String

Selecting Start of other string adds String, Extension other and Extension ref fields.

The String field is to select a string referred to as the Other string.

To get the final chainage, the value of Extension other is added to the Start chainage of the Other string. This point on the other string is dropped onto the Reference string.

The value of Extension ref is then added to the chainage on the Reference string of the point dropped onto the Reference string, to give the final chainage used.

Continue to the next section 21.4.6 End of Other String or return to 21.2.1 MTF Hinge Modifiers.
21.4.6 End of Other String

Selecting End of other string adds String, Extension other and Extension ref fields.

The String field is to select a string referred to as the Other string.

To get the final chainage, the value of Extension other is added to the End chainage of the Other string. This point on the other string is dropped onto the Reference string.

The value of Extension ref is then added to the chainage on the Reference string of the point dropped onto the Reference string, to give the final chainage used.

Continue to the next section 21.4.7 Lowest Dropped Chainage of Other String or return to 21.2.1 MTF Hinge Modifiers.
21.4.7 Lowest Dropped Chainage of Other String

Selecting Lowest dropped chainage of other string adds String, Extension other and Extension ref fields.

The String field is to select a string referred to as the Other string.

The start and end of the Other string are dropped onto the Reference string and the lower of the reference chainages of the two dropped ends.

How is Extension other used?

To get the final chainage, the value of Extension other is added to the Start chainage of the Other string. This point on the other string is dropped onto the Reference string.

The value of Extension ref is then added to the chainage on the Reference string of the point dropped onto the Reference string, to give the final chainage used.

Continue to the next section 21.4.8 Highest Dropped Chainage of Other String or return to 21.2.1 MTF Hinge Modifiers.
21.4.8 Highest Dropped Chainage of Other String

Selecting lowest dropped chainage of other string adds *String*, *Extension other* and *Extension ref* fields.

<table>
<thead>
<tr>
<th>Start chainage</th>
<th>End chainage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>Mode</td>
</tr>
<tr>
<td><em>String</em></td>
<td><em>String</em></td>
</tr>
<tr>
<td><em>Extension other</em></td>
<td><em>Extension other</em></td>
</tr>
<tr>
<td><em>Extension ref</em></td>
<td><em>Extension ref</em></td>
</tr>
</tbody>
</table>

The *String* field is to select a string referred to as the *Other* string.

The *start* and *end* of the *Other* string are dropped onto the Reference string and the higher of the reference chainage of the two dropped end??.

How is *Extension other* used??

To get the final chainage, the value of *Extension other* is added to the *Start chainage of the Other string*. This point on the *other* string is dropped onto the Reference string.

The value of *Extension ref* is then added to the chainage on the Reference string of the point dropped onto the Reference string, to give the **final** chainage used.

Start of Other String

Point of *Extension other* from the start of Other

Point dropped onto Reference string

Start of Reference String

Final chainage on Reference String

Continue to the next section 21.4.9 Named Part on Reference String or return to 21.2.1 MTF Hinge Modifiers.
21.4.9 Named Part on Reference String

Selecting Named part on reference string adds the Part and Extension ref fields.

<table>
<thead>
<tr>
<th>Start chainage</th>
<th>End chainage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>Mode</td>
</tr>
<tr>
<td>Part</td>
<td>Part</td>
</tr>
<tr>
<td>Extension ref</td>
<td>Extension ref</td>
</tr>
</tbody>
</table>

The syntax for the required **Named Part** on the **Reference** string can be typed into the **Part** field. Or clicking LB or RB on the + for **Part** brings up the **Named Part Builder** for the reference string and this can be used to create the **Part text** for the section of a named part of the reference string that is required. Pressing **Set** then puts this value into the **Part** field.

![Named Part Builder](image)

The value in the **Extension ref** field is added to the reference chainage calculated for the selected named part to give the chainage used as the **final chainage**.

**Important Note**

The **Named Parts** fields access the **Vertical named parts** as well as the **Horizontal named Parts** of a Super Alignment and the **Part name** pop up list both the horizontal and vertical named parts. The **Modes** cannot distinguish between the names for horizontal and vertical named parts so the horizontal names are given priority. So if a vertical part has the same names as a horizontal part then the vertical name will not be shown in the **Part name** list.

Continue to the next section **21.4.10 Named Part on Other String** or return to **21.2.1 MTF Hinge Modifiers**.
21.4.10 Named Part on Other String

Selecting Named part on other string adds the String, Part, Extension other and Extension ref fields.

The String field is to select a string referred to as the Other string.

The syntax for the required Named Part on the Other string can be typed into the Part field. Or clicking LB or RB on the + for Part brings up the Named Part Builder for the Other string and this can be used to create the Part text for the section of a named part of the Other string that is required. Pressing Set then puts this value into the Part field.

The value in the Extension ref field is added to the reference chainage calculated for the selected named part to give the chainage used as the final chainage.

Important Note
The Named Parts fields access the Vertical named parts as well as the Horizontal named Parts of a Super Alignment and the Part name pop up list both the horizontal and vertical named parts.

The Modes cannot distinguish between the names for horizontal and vertical named parts so the horizontal names are given priority. So if a vertical named part has the same names as a horizontal named part then the vertical name will not be shown in the Part name list.

Continue to the next section 21.4.11 Named Position on Reference String or return to 21.2.1 MTF Hinge Modifiers.
21.4.11 Named Position on Reference String

Selecting Named position on reference string adds the Position and Extension ref fields.

A Named Position for the Reference string can be typed into the Position field, or selected from the Position pop up which brings up the list of all Named Positions for the Reference string.

The value in the Extension ref field is added to the reference chainage calculated for the selected named position to give the chainage used as the final chainage.

Important Note

The Named Position fields access the Vertical named positions as well as the Horizontal named positions of a Super Alignment and the Position pop up list both the horizontal and vertical named positions.

The Modes cannot distinguish between the names for horizontal and vertical named positions so the horizontal names are given priority. So if a vertical named part position has the same name as a horizontal named position then the vertical name will not be shown in the Named Position list.

Continue to the next section 21.4.12 Named Position on Other String or return to 21.2.1 MTF Hinge Modifiers.
21.4.12 Named Position on Other String

Selecting Named position on other string adds the String, Position, Extension other and Extension ref fields.

The String field is to select a string referred to as the Other string.

A Named Position for the Other string can be typed into the Position field, or selected from the Position pop up which brings up the list of all Named Positions for the Other string.

The value in the Extension ref field is added to the reference chainage calculated for the selected named part to give the chainage used as the final chainage.

Important Note

The Named Position fields access the Vertical named positions as well as the Horizontal named positions of a Super Alignment and the Position pop up list both the horizontal and vertical named positions.

The Modes cannot distinguish between the names for horizontal and vertical named positions so the horizontal names are given priority. So if a vertical named part position has the same name as a horizontal named position then the vertical name will not be shown in the Named Position list.

Continue to the next section 21.4.13 Cut Reference with Other String or return to 21.2.1 MTF Hinge Modifiers.
21.4.13 Cut Reference with Other String

Selecting Cut reference with other string adds the String and Extension ref fields.

The String field is to select a string referred to as the Other string.

The point on the Reference string where the Other string cuts the Reference string is first calculated.

The value in the Extension ref field is added to the reference chainage calculated for the cut point to give the chainage used as the final chainage.

Note - if the other string does not cut the reference string, or cuts it in more than one place, then the Mode is invalid and an error message is generated.

Continue to the next section 21.4.14 Intersection of Two Strings or return to 21.2.1 MTF Hinge Modifiers.
21.4.14 Intersection of Two Strings

Selecting Intersection of 2 strings adds the String 1, String 2 and Extension ref fields.

Two strings are selected with the String 1 and String 2 fields.

The value in the Extension ref field is added to the reference chainage calculated for the cut point to give the chainage used as the final chainage.

The intersection point of the two selected strings is calculated and dropped onto the Reference string.

The value in the Extension ref field is added to the reference chainage of the dropped intersection point to give the chainage used as the final chainage.

Continue to the next section 21.4.17 Relative to Self End or return to 21.2.1 MTF Hinge Modifiers.
21.4.15 Lowest Dropped Chainage of Modifier String

The Smart Chainage **Lowest dropped chainage of modifier string** is only available in the Apply MTF Left and Right Modifiers.

Selecting **Lowest dropped chainage of modifier string** adds **Extension other** and **Extension ref** fields.

The **start** and **end** of the **Modifier** string are dropped onto the Reference string and the lower of the reference chainages of the two dropped ends.

**How is Extension other used?**

To get the final chainage, the value of **Extension other** is added to the **Start chainage of the Other string**. This point on the **other** string is dropped onto the Reference string.

The value of **Extension ref** is then added to the chainage on the Reference string of the point dropped onto the Reference string, to give the **final** chainage used.

Continue to the next section 21.4.16 Highest Dropped Chainage of Modifier String or return to 21.2.1 MTF Hinge Modifiers.
21.4.16 Highest Dropped Chainage of Modifier String

The Smart Chainage **Lowest dropped chainage of modifier string** is only available in the Apply MTF Left and Right Modifiers.

Selecting **Lowest dropped chainage of modifier string** adds **Extension other** and **Extension ref** fields.

![_screenshot](image.png)

The *start* and *end* of the **Modifier** string are dropped onto the Reference string and the lower of the reference chainages of the two dropped ends??.

How is **Extension other** used??

To get the final chainage, the value of **Extension other** is added to the **Start chainage of the Other string**. This point on the *other* string is dropped **onto** the Reference string.

The value of **Extension ref** is then added to the chainage on the Reference string of the point dropped onto the Reference string, to give the **final** chainage used.

![Diagram](diagram.png)

Continue to the next section **21.4.17 Relative to Self End** or return to **21.2.1 MTF Hinge Modifiers**.
21.4.17 Relative to Self End

The Smart Chainage **Relative to self end** is only available in the Apply MTF Left and Right Modifiers. This Mode is only available for a Start Chainage.

Selecting **Relative to Self End** adds an **Extension ref** field.

The value in the **Extension ref** field is added to the **end chainage of the current MTF command** to give the chainage used as the **final chainage**.

This Mode is useful when the **end chainage** of the current MTF command is known and you want the start chainage of the same command to be relative to the known **end chainage** of the same command.

Continue to the next section 21.4.18 **Relative to Self Start** or return to 21.2.1 **MTF Hinge Modifiers**.

21.4.18 Relative to Self Start

The Smart Chainage **Relative to self start** is only available in the Apply MTF Left and Right Modifiers. This Mode is only available for an End Chainage.

Selecting **Relative to Self Start** adds an **Extension ref** field.

The value in the **Extension ref** field is added to the **start chainage of the current MTF command** to give the chainage used as the **final chainage**.

This Mode is useful when the **start chainage** of the current MTF command is known and you want the end chainage of the same command to be relative to the known **start chainage** of the same command.

Continue to the next section 21.4.19 **Relative to Alias Start** or return to 21.2.1 **MTF Hinge Modifiers**.
21.4.19 Relative to Alias Start

The Smart Chainage **Relative to alias start** is only available in the Apply MTF Left and Right Modifiers.

Selecting Relative to alias start adds Alias and Extension ref fields.

An **Alias** from the current MTF can be typed into the Alias field, or selected from the Alias pop up which brings up the list of all Aliases in the current MTF.

The value in the Extension ref field is **added** to the **start chainage** of the selected Alias to give the chainage used as the **final chainage**.

This Mode is useful when you want the start/end chainage to be relative to the start chainage of the command in the current MTF with the given Alias.

Continue to the next section 21.4.20 Relative to Alias End or return to 21.2.1 MTF Hinge Modifiers.

21.4.20 Relative to Alias End

The Smart Chainage **Relative to alias end** is only available in the Apply MTF Left and Right Modifiers.

Selecting Relative to alias end adds Alias and Extension ref fields.

An **Alias** from the current MTF can be typed into the Alias field, or selected from the Alias pop up which brings up the list of all Aliases in the current MTF.

The value in the Extension ref field is **added** to the **end chainage** of the selected Alias to give the chainage used as the **final chainage**.

This Mode is useful when you want the start/end chainage to be relative to the end chainage of the command in the current MTF with the given Alias.

Continue to the next section 21.4.21 Relative to Previous Start or return to 21.2.1 MTF Hinge Modifiers.
21.4.21 Relative to Previous Start

The Smart Chainage **Relative to previous start** is only available in the Apply MTF Left and Right Modifiers.

Selecting **Relative to previous start** adds **Rows back** and **Extension ref** fields.

Rows back gives the number of rows in the current MTF to go back to get the **Start chainage** from. Rows back must be greater or equal to one.

The value in the **Extension ref** field is added to the **start chainage of the selected row** to give the chainage used as the **final chainage**.

This Mode is useful when you want the start/end chainage to be relative to the start chainage of an earlier command that is a known number of rows back in the current MTF.

Continue to the next section 21.4.22 Relative to Previous End or return to 21.2.1 MTF Hinge Modifiers.

21.4.22 Relative to Previous End

The Smart Chainage **Relative to previous end** is only available in the Apply MTF Left and Right Modifiers.

Selecting **Relative to previous end** adds **Rows back** and **Extension ref** fields.

Rows back gives the number of rows in the current MTF to go back to get the **End chainage** from. Rows back must be greater or equal to one.

The value in the **Extension ref** field is added to the **end chainage of the selected row** to give the chainage used as the **final chainage**.

This Mode is useful when you want the start/end chainage to be relative to the end chainage of an earlier command that is a known number of rows back in the current MTF.

Continue to the next section 21.4.23 Snippet Cut Reference with Model of Strings or return to 21.2.1 MTF Hinge Modifiers.
21.4.23 Snippet Cut Reference with Model of Strings

The Smart Chainage **Snippet cut ref with model of strings** is only available with the Snippet option in the Apply MTF Left and Right Modifier.

This Mode takes a model of strings and the Snippet is applied where each string in the model cuts the Reference string.

Selecting Snippet cut ref with model of strings adds the Model, Wildcard and Extension other fields.

- **Model**
  - model box
  - the model of strings that is used for the snipped to be applied to where each of the strings cuts the Reference string.

- **Wildcard**
  - text box
  - if not blank, only those strings in the model Model that satisfy Wildcard are used.
    - If blank, all the strings in the model Model are used.

For each string, the point on the Reference string where the string cuts the Reference string is first calculated.

The value in the Extension ref field is added to the reference chainage calculated for the cut point to give the chainage used as the final chainage.

---

**For more information on the inserting and use of snippets, see 21.5 Defining and Using Snippets.**

Continue to the next section 21.4.24 Snippet Placed to Model of Strings or return to 21.2.1 MTF Hinge Modifiers.
21.4.24 Snippet Placed to Model of Strings

The Smart Chainage Snippet placed to model of strings is only available with the Snippet option in the Apply MTF Left and Right Modifier.

This Mode takes a model of strings and the Snippet and for each string in the model, the end points of the string are dropped onto the Reference string and the Snippet is run with the Start chainage taken as the smaller of the two dropped chainages and the End chainage of the snippet taken as the larger of the two dropped chainages.

Selecting Snippet cut ref with model of string adds the Model, Wildcard and Extension other fields.

![Snippet settings](image)

- **Model**: model box available models
  - the model of strings that the Snippped is applied to using the start and end of each string dropped onto the Reference string as the Start and End chainages for the Snippet.

- **Wildcard**: text box
  - if not blank, only those strings in the model Model that satisfy Wildcard are used.
  - If blank, all the strings in the model Model are used.

For each string, the start and the end of the string are dropped onto the Reference string and the dropped chainages and used as the Start and End chainages of the Snippet.

![Snippet diagram](image)

For more information on the inserting and use of snippets, see [21.5 Defining and Using Snippets](#).

Continue to the next section [21.4.25 Drop Point to Reference String](#) or return to [21.2.1 MTF Hinge Modifiers](#).
21.4.25 Drop Point to Reference String

Selecting Drop point to reference string adds X coordinate, Y coordinate and Extension ref fields.

X coordinate and Y coordinate are the coordinate of the point to drop onto the Reference string to give a reference chainage.

The value in Extension ref is added to the dropped chainage to give the chainage used as the final chainage.

This Mode is useful when you know the coordinates of a point and you want the start/end chainage to be relative to the chainage of the dropped point.

Continue to the next section 21.4.26 Drop Point to Other String or return to 21.2.1 MTF Hinge Modifiers.

21.4.26 Drop Point to Other String

Selecting Drop point to other string adds String, X coordinate, Y coordinate, Extension other and Extension ref fields.

The String field is to select a string referred to as the Other string.

X coordinate and Y coordinate are the coordinate of the point to drop onto the Other string to give a chainage on the Other string.

The value in Extension other is added to the dropped chainage on the Other string and the point at this chainage is then dropped onto the Reference string.

The value in Extension ref is then added to the chainage of the point dropped onto the Reference string to give the chainage used as the final chainage.

Return to 21.2.1 MTF Hinge Modifiers.
21.5 Defining and Using Snippets

The sections on snippets are:

- 21.5.1 What are MTF Snippets?
- 21.5.2 Creating a Snippet
- 21.5.3 An Example of a Snippet
- 21.5.4 Editing a Snippet File
- 21.5.5 How To Select a Snippet in an MTF
- 21.5.6 Comments in Snippets
- 21.5.7 Start and End Modes for a Snippet
- 21.5.8 Snippet Parameters and Commands
- 21.5.9 Automatic Parameters in Snippets
- 21.5.10 Arithmetic in Snippets
- 21.5.11 Trig and Maths Function Capabilities in Snippets
- 21.5.12.1 #define in Snippets - Do Not Use
- 21.5.12 Snippet Directives
- 21.5.13 Snippet Variables
- 21.5.14 Order of Snippet Processing
- 21.5.15 Debugging Snippets
- 21.5.16 Compiling Snippets
- 21.5.17 Tips and Tricks
- 21.5.18 Major Warning - You Will be Caught by This
21.5.1 What are MTF Snippets?

A snippet is a collection of many single MTF modifiers that can be inserted as a group into an MTF file.

However unlike an MTF file or an insert in an MTF, values to be used inside the snippet can be passed down to the snippet via parameters whose values are specified each time the snippet is placed.

So, snippets enable things such as driveway laybacks, kerb transitions, earthworks flares etc. to be a single entry in a MTF file thus reducing the size of the MTF file and enhancing it's readability.

Setting up a snippet is the same complexity as creating MTF items but once a snippet is created, it can be reused over and over again.

Snippets can also be used to hide complex modifiers from novice users.

Go to the next section 21.5.2 Creating a Snippet or back to 21.5 Defining and Using Snippets.
21.5.2 Creating a Snippet

There is currently no snippet Create/Editor in 12d Model so for the moment snippets must be manually created as a text file. Snippet text files have the extension MTFSNIPPET. Note that this is case insensitive. That is, each letter can be in upper or lower case.

Luckily the format for each snippet command is almost identical to the normal modifier commands as written out to the left_side_modifier or right_side_modifier sections of the MTF file when viewed as a text file. The snippet commands differ slightly in that they can contain variables and parameters that can be substituted when the snippet is run.

So the easiest way to create a snippet file is to create a normal MTF inside 12d Model with the modifiers to be included and used in the snippet. Once these modifier commands are in the MTF, they can be copied directly from the Modifiers grid in a snippet compatible format.

To do so, select one or more rows of modifiers in the grid. Then right-click on one of the row header to bring up the modifiers grid context menu and select Copy (snippet paste). This will copy the selected commands to the Windows clipboard.

Now that the desired modifier commands have been copied to the clipboard, you can create a new text document in your preferred text editor and paste the commands into the new document. A snippet, at its simplest, can simply be these same modifier commands in a snippet file. However, the real power and flexibility of snippets comes from using the more advanced functionality discussed in the following sections.

It is also worth noting that the snippet commands can be created manually, rather than by copy and paste, by typing the required snippet and modifier commands directly into a text file. Note, however, that the syntax and format of the snippet and modifiers must be correct or you will get errors when the snippet is inserted or run.

How to construct the additional information in the snippet file, and how a snippet works, will be explained in the following sections.

Go to the next section 21.5.3 An Example of a Snippet or back to 21.5 Defining and Using Snippets.
21.5.3 An Example of a Snippet

The following is an example of a snippet called KERB_SA_DW places a layback at a driveway. It will be used as the example in describing the workings of a snippet.

// PARAMETER WIDTH REAL "Layback width" 0.6
// PARAMETER DEPTH REAL "Layback depth" -0.04

// drop into DW

insert "SAL" "grey" 0.001 0 unknown named_position "MODIFIER_START" 0 named_position
"MODIFIER_START" 0.5 absolute extra_start extra_end
insert "SAI" "grey" 0.5 $DEPTH unknown named_position "MODIFIER_START" 0 named_position
"MODIFIER_START" 0.5 absolute extra_start extra_end
insert "SAT" "grey" 0.03 0.15 unknown named_position "MODIFIER_START" 0 named_position
"MODIFIER_START" 0.5 absolute extra_start extra_end
insert "SAB" "grey" 0.18 0 unknown named_position "MODIFIER_START" 0 named_position
"MODIFIER_START" 0.5 absolute extra_start extra_end

// push out links
width "SAT" named_position "MODIFIER_START" 0 named_position "MODIFIER_START" 0.5 0.03 $WIDTH absolute extra_start extra_end
width "SAB" named_position "MODIFIER_START" 0 named_position "MODIFIER_START" 0.5 0.18 0.0 absolute extra_start extra_end
height "SAT" named_position "MODIFIER_START" 0 named_position "MODIFIER_START" 0.5 0.15 0.2 absolute extra_start extra_end
height "SAB" named_position "MODIFIER_START" 0 named_position "MODIFIER_START" 0.5 0 0 absolute extra_start extra_end

// DW to -0.5
insert "SKL" "grey" 0.001 0 unknown named_position "MODIFIER_START" 0.5 named_position
"MODIFIER_END" -0.5 absolute extra_start extra_end
insert "SKI" "grey" 0.5 $DEPTH unknown named_position "MODIFIER_START" 0.5 named_position
"MODIFIER_END" -0.5 absolute extra_start extra_end
insert "SKB" "grey" $WIDTH 0.2 unknown named_position "MODIFIER_START" 0.5 named_position
"MODIFIER_END" -0.5 absolute extra_start extra_end

//back out -0.5 to end
insert "SAL" "grey" 0.001 0 unknown named_position "MODIFIER_END" -0.5 named_position "MODIFIER_END" 0.0 absolute extra_start extra_end
insert "SAI" "grey" 0.5 $DEPTH unknown named_position "MODIFIER_END" -0.5 named_position
"MODIFIER_END" 0.0 absolute extra_start extra_end
insert "SAT" "grey" 0.03 0.15 unknown named_position "MODIFIER_END" -0.5 named_position
"MODIFIER_END" 0.0 absolute extra_start extra_end
insert "SAB" "grey" 0.18 0 unknown named_position "MODIFIER_END" -0.5 named_position "MODIFIER_END" 0.0 absolute extra_start extra_end

// push out links
width "SAT" named_position "MODIFIER_END" -0.5 named_position "MODIFIER_END" 0.0 $WIDTH 0.03
Note: each line of the snippet is wrapping around because of the limited width of this document. Each line should be like:

// drop into DW
insert "SAL" *grey* 0.001 0 unknown named_position "MODIFIER_START" 0 named_position *MODIFIER_START* 0.5 absolute extra_start extra_end

But that would be impossible to read.

Go to the next section 21.5.4 Editing a Snippet File or back to 21.5 Defining and Using Snippets.
21.5.4 Editing a Snippet File

The option

\textit{Design =>MTF =>Edit snippets}

will list the local snippets files and if one is selected, opens it in the text editor.

Go to the next section \textit{21.5.5 How To Select a Snippet in an MTF} or back to \textit{21.5 Defining and Using Snippets}. 
21.5.5 How To Select a Snippet in an MTF

From the grid in the Right MTF Modifiers or Left MTF Modifiers panel, bring up the Create menu and select Snippet. This will display the MTF Snippet panel and clicking on the folder icon in the Snippet field brings up the choice of snippets to use.

A snippet is then selected from the snippet pop-up list.

Selecting a snippet can modify the fields on the MTF Snippet panel. The Start and End modes may or may not be enabled, and there may be extra field on the panel, with or without values in them.

For example, selecting the KERB_SA_DW snippet modifies the MTF Snippet panel and there are two extra panel fields - Layback width with the value 0.6 and Layback height with the value -0.4. Selecting the KERB_SA_DW_CENT snippet adds the extra panel fields but also disables the End mode.
If a Start mode or End mode is missing from the snippet, then the corresponding field will be left blank in the Start chainage/End chainage columns in the Left or Right Templates Modifiers panel. And the snippet name appears in the Type column under the text MTF Snippet.

A snippet with no End mode has Not used in the End chainage column.

How snippets control the Start and End modes is documented in the next section 21.5.7 Start and End Modes for a Snippet and how the extra panel fields are created is discussed in the
sections 21.5.8.2 Snippet Parameter of Type REAL, 21.5.8.6 Snippet Parameter of Type CHOICE and 21.5.8.8 Snippet Parameter of Type TICK.

Go to the next section 21.5.6 Comments in Snippets or back to 21.5 Defining and Using Snippets.
21.5.6 Comments in Snippets

Snippets support the same commenting syntax as MTF files, which has two forms:

1. **A Line Comment**
   
   All characters from a double forward-slash `//` until the end of that line are ignored.
   However, if the first word after the line comment character is PARAMETER, INFO or DISPLAY then the line will be interpreted as a special command by 12d.

   ```
 // PARAMETER this will not be interpreted as a normal line comment
 // This is a normal line comment
 @ def_tok WIDTH 3.5 // This is also a line comment
   ```

2. **A Block Comment**

   All characters between a starting `/*` and a terminating `*/` are ignored.

   ```
 /* This comment can
cover several lines
until we get to the terminating */
   ```

Continue to the next section 21.5.7 Start and End Modes for a Snippet or return to 21.5 Defining and Using Snippets.
21.5.7 Start and End Modes for a Snippet

The Start and End modes on the MTF Snippet panel calculate a position on the Reference string just like any other MTF modifier but how the values are specified inside the snippet file is slightly different to a standard MTF modifier.

Also unlike other MTF modifiers, some snippets only require one of the Start mode and End mode and if that is the case, the mode not required will be greyed out so that it can't be filled in.

The lines in the snippet file are similar to the normal MTF modifiers when "named position" has been selected for the Start and End modes. However the value of the "named position" in the text command needs to be replaced by either MODIFIER_START or MODIFIER_END followed by a real number.

So for example, the "named_position" "name" "extension" in a MTF command is replaced by

"named_position" MODIFIER_START snippet_extension

If a MODIFIER_START exists somewhere in the snippet then Start mode is enabled on the MTF Snipped panel.

If a MODIFIER_END exists somewhere in the snippet then End mode is enabled on the MTF Snipped panel.

Finally when a snippet runs, the chainage is calculated for the Start mode/End mode fields in the MTF Snippet panel and passed down to the snippet and where ever MODIFIER_START/MODIFIER_END appears, the passed chainage value PLUS the additional snippet_extension for each occurrence of the MODIFIER_START/MODIFIER_END is used as the chainage for that part of the snippet.

The following example for the KERB_SA_DW snippet shows how the snippet determines when a Start mode and/or End mode is needed, and how the extra snippet_extension is used.

```
// drop into DW
insert "SAL" "grey" 0.001 0 unknown named_position "MODIFIER_START" 0 named_position
"MODIFIER_START" 0.5 absolute extra_start extra_end
...
// DW to -0.5
insert "SKL" "grey" 0.001 0 unknown named_position "MODIFIER_START" 0.5 named_position
"MODIFIER_END" -0.5 absolute extra_start extra_end
...
// back out to -0.5 to end
insert "SAL" "grey" 0.001 0 unknown named_position "MODIFIER_END" -0.5 named_position
"MODIFIER_END" 0.0 absolute extra_start extra_end
```

These lines in the KERB_SA_DW snippet a lip of kerb through a driveway layback. It starts off as an SA style kerb, the layback is an SK style and then back to the SA style.

1. Looking at the first line: - the SA->SK transition:

```
insert "SAL" "grey" 0.001 0 unknown named_position "MODIFIER_START" 0 named_position
"MODIFIER_START" 0.5 absolute extra_start extra_end
```
In this line, the "named_position" "MODIFIER_START" 0 replaces the standard chainage command in that position in the text modifier.

"named_position" "MODIFIER_START" - this tells the snippet to have a Start mode on the MTF Snippet panel. The calculated chainage for the Start mode field on the MTF Snippet panel is then passed to the snippet to be used as the chainage (plus the snippet_extension) in that "named_position" MODIFIER_START position in the modifier command.

0 - the value after MODIFIER_START is an additional value to add to the chainage calculated in from the Start mode in the MTF Snippet panel and passed down to the snippet.

So "named_position" "MODIFIER_START" 0 is replaced by the chainage defined by the Start mode of the MTF Snippet panel.

Similarly the "named_position" "MODIFIER_START" 0.5 replaces the standard chainage command in that position in the modifier and evaluates to being chainage defined by the Start mode of the MTF Snippet panel plus 0.5.

So this snippet line inserts a link from the chainage value passed in from the Start mode on the MTF Snippet panel, to 0.5 after the chainage value passed in from the Start mode on the MTF Snippet panel.

2. Looking at the second line: - SK Layback:

```
insert "SKL" "grey" 0.001 0 unknown named_position "MODIFIER_START" 0.5 named_position "MODIFIER_END" -0.5 absolute extra_start extra_end
```

The difference to the previous line is that this line has the keywords MODIFIER_START and MODIFIER_END after "named_position" commands.

"named_position" "MODIFIER_END" - this tells the snippet to have a End mode on the MTF Snippet panel. The calculated chainage for the End mode field on the MTF Snippet panel is then passed to the snippet to be used as the chainage (plus the snippet_extension) in that "named_position" MODIFIER_END position in the modifier command.

-0.5 - the value after MODIFIER_END is an additional value to add to the chainage calculated in from the End mode in the MTF Snippet panel and passed down to the snippet.

So this snippet line inserts a link from 0.5 past the chainage value passed from Start mode in the MTF Snippet panel through to 0.5 before the chainage value passed in from End mode in the MTF Snippet panel.

3. Looking at the third line: - SK ->SA transition:

```
insert "SAL" "grey" 0.001 0 unknown named_position "MODIFIER_END" -0.5 named_position "MODIFIER_END" 0.0 absolute extra_start extra_end
```

So this snippet line inserts a link from 0.5 before the chainage value passed to the snippet from the Start mode in the MTF Snippet panel, to the chainage value passed to the snippet from the Start mode in the MTF Snippet panel.

Go to the next section 21.5.8 Snippet Parameters and Commands or back to 21.5 Defining and Using Snippets.
21.5.8 Snippet Parameters and Commands

A powerful feature of snippets is that parameters (fields presented to and populated by the user) can be defined and used throughout the snippet file.

To pass values for the parameters through to the snippet, each parameter is displayed as the appropriate panel Field in the MTF Snippet panel, with the label (descriptive text) for the panel field defined in the snippet. For example, a Real box panel field for a real parameter and a Model box panel field for a model parameter.

The user enters the value into the field on the MTF Snippet panel. This entered value is then passed through to the snippet during processing.

**Note** - Even if a parameter is defined in a snippet, it will only appear in the MTF Snippet panel if the parameter is actually used in the snippet.

**WARNING** - once a snippet with parameters has been saved in a MTF file, the parameters for the snippet are saved *in the MTF file*. Then when the Apply MTF is run, the parameters and their values are read in from the MTF file and passed into the current snippet file.

Hence if the snippet file has been modified and parameter definitions added, modified or removed since the snippet was originally place in the MTF, these modifications of parameters will be ignored until the snippet panel is reopened in the MTF editor which forces the snippet file to be parsed again and the changes to the parameter definitions are then recognised.

For the syntax of each available parameter types and commands, see

- 21.5.8.2 Snippet Parameter of Type REAL
- 21.5.8.3 Snippet Parameter of Type INTEGER
- 21.5.8.4 Snippet Parameter of Type TEXT
- 21.5.8.5 Snippet Parameter of Type SELECT
- 21.5.8.6 Snippet Parameter of Type CHOICE
- 21.5.8.7 Snippet Parameter of Type CHOICE2
- 21.5.8.8 Snippet Parameter of Type TICK
- 21.5.8.9 Snippet Parameter of Type COLOUR
- 21.5.8.10 Snippet Parameter of Type NAME
- 21.5.8.11 Snippet Parameters for Models
- 21.5.8.12 Snippet Parameters for Tins
- 21.5.8.13 Snippet Parameter of Type LAYER
- 21.5.8.14 Snippet Parameter of Type NAMED_GRADE
- 21.5.8.15 Snippet Command INFO
- 21.5.8.16 Snippet Command DISPLAY
- 21.5.8.17 Snippet Command INCREMENT
- 21.5.8.18 Optional Parameters in Snippets
21.5.8.1 Common Definitions for Snippet Parameters

The general syntax for a snippet parameter is:

```
// PARAMETER param_name param_type param_desc param_default other_values
```

where

```
// PARAMETER param_name
```

This signifies that it is a parameter definition. Note that there must be at least one space after
the // and before the word PARAMETER.

param_name

This is the name to use for the parameter. Where ever the parameter is to be used in the
snippet, put ${param_name}. The characters of the parameter name can only be alphanumeric (upper and lower case) and underscores, and the name cannot contain spaces. The name doesn’t have quotes around it. The parameter names are not case sensitive so two
names only differing by case are considered to be identical. The parameters names must
be unique in a snippet.

param_desc  param_default

param_desc

This description is written in the MTF Snippet panel for the field to enter values for this
parameter. The description can include spaces and if it does then the description must be
enclose in double quotes (").

param_default

This value is optional.

But if it exists then this value is displayed as the value in the field for the parameter on the
MTF Snippet panel. If the default value is text and it contains any spaces then the text must
be enclosed in double quotes (").

Important Note:

There will only be a panel field in the MTF Snippet panel for the parameter param_name if the
parameter is used in the snippet.
21.5.8.2 Snippet Parameter of Type REAL

If a floating point number (a real number) is required then the REAL parameter type is used. A Snippet Parameter of type REAL inserts a Real box panel field into the MTF Snippet panel. The user can type a real number into the panel field which is then passed down to the snippet.

The syntax for type REAL is:

```
// PARAMETER param_name REAL param_descr param_default_value
```

where

```
// PARAMETER param_name
```

This defines a parameter of the given name. See `// PARAMETER param_name` for what is allowed as the parameter name.

REAL - the parameter type.

desc param_def

The description for the field in the MTF Snippet panel and an optional default value that is entered as the value in the field. See `param_descr param_default`.

The following lines from the KERB_SA_DW snippet define two REAL parameters WIDTH and DEPTH and the values for the parameters are then used inside the snippet commands by writing $WIDTH and $DEPTH.

```
// PARAMETER WIDTH REAL "Layback width" 0.6
// PARAMETER DEPTH REAL "Layback depth" -0.04
// drop into DW
...
// push out links
width "SAT" named_position "MODIFIER_START" 0 named_position "MODIFIER_START" 0.5 0.03 $(WIDTH) absolute extra_start extra_end
...
```

Real panels field are in MTF Snippet panel because of the parameters WIDTH and DEPTH in the snippet

Description provided by the parameter definition in the snippet

Default value provided by the parameter definition in the snippet

**Important Note:**
The Real panel field for a REAL parameter will only appear in the MTF Snippet panel if the parameter is used in the snippet.

Continue to the next section 21.5.8.3 Snippet Parameter of Type INTEGER or return to 21.5.8 Snippet Parameters and Commands or 21.5 Defining and Using Snippets.
21.5.8.3 Snippet Parameter of Type INTEGER

If a whole number (an integer) is required then the INTEGER parameter type is used. A Snippet Parameter of type INTEGER inserts an Integer box panel field into the MTF Snippet panel. The user can type an integer into the panel field and it is then passed down to the snippet.

The syntax for type INTEGER is:

// PARAMETER param_name INTEGER param_desc param_default

where

// PARAMETER param_name

This defines a parameter of the given name. See // PARAMETER param_name for what is allowed as the parameter name.

INTEGER - the parameter type.

param_desc param_default

The description for the field in the MTF Snippet panel and an optional default value that is entered as the value in the field. See param_desc param_default.

Important Note:
The Integer panel field for a INTEGER parameter will only appear in the MTF Snippet panel if the parameter is used in the snippet.

Continue to the next section 21.5.8.4 Snippet Parameter of Type TEXT or return to 21.5.8 Snippet Parameters and Commands or 21.5 Defining and Using Snippets.
21.5.8.4 Snippet Parameter of Type TEXT

If text is required then the TEXT parameter type is used.

A Snippet Parameter of type TEXT inserts an Text box panel field into the MTF Snippet panel. The user can type text into the panel field and it is then passed down to the snippet.

The syntax for type TEXT is:

```
// PARAMETER param_name TEXT param_desc param_default
```

where

```
// PARAMETER param_name
```

This defines a parameter of the given name. See `// PARAMETER param_name` for what is allowed as the parameter name.

```
TEXT - the parameter type.
```

```
param_desc param_default
```

The description for the field in the MTF Snippet panel and an optional default value that is entered as the value in the field. See `param descr param default`.

*Note for the TEXT type, the $parameter should be enclosed in the double quotes character in the modifier line.*

**Important Note:**
The Text panel field for a TEXT parameter will only appear in the MTF Snippet panel if the parameter is used in the snippet.

Continue to the next section 21.5.8.5 Snippet Parameter of Type SELECT or return to 21.5.8 Snippet Parameters and Commands or 21.5 Defining and Using Snippets.
21.5.8.5 Snippet Parameter of Type SELECT

If a string is to be selected then the SELECT parameter type is used. A Snippet Parameter of type SELECT inserts a String Select box panel field into the MTF Snippet panel. Using the Select box, a user can pick a string and it is then passed down to the snippet.

The syntax for type SELECT is:

```plaintext
// PARAMETER param_name SELECT param_desc param_default
```

where

// PARAMETER param_name
This defines a parameter of the given name. See // PARAMETER param_name for what is allowed as the parameter name.

SELECT - the parameter type.

param_desc param_default
The description for the field in the MTF Snippet panel and an optional default value that is entered as the value in the field. See param_descr param_default.

Here the parameter name is BB_STRING, its type is SELECT and so a Select box appears in the MTF Snippet panel with the panel field text Base string. The substitution point in the modifier is "$BB_STRING".

Important Note:
The String Select panel field for a SELECT parameter will only appear in the MTF Snippet panel if the parameter is used in the snippet.

Continued to the next section 21.5.8.6 Snippet Parameter of Type CHOICE or return to 21.5.8 Snippet Parameters and Commands or 21.5 Defining and Using Snippets.
21.5.8.6 Snippet Parameter of Type CHOICE

If the user is to select from a list of choices and the text of the choice is to be passed through to the snippet, then the CHOICE parameter type is used.

The Snippet Parameter of type CHOICE inserts a Choice box panel field into the MTF Snippet panel.

The format also defines the list of text to be displayed in the pop-up of choices and when a choice is selected, the text that is displayed is passed back to the snippet.

The syntax for type CHOICE is:

```
// PARAMETER param_name CHOICE param_desc choice_1 choice_2 ... choice_n
```

where

// PARAMETER param_name
This defines a parameter of the given name. See // PARAMETER param_name for what is allowed as the parameter name.

CHOICE - the parameter type.

param_desc  - this description is written to the MTF Snippet panel for the field to enter values for this parameter. The description can include spaces and if it does then the description must be enclose in double quotes (").

choice_1 choice_2 ... choice_n - the choices that will be displayed in the parameter pop-up in the MTF Snippet panel.

Important Note:
The Choice panel field for a CHOICE parameter will only appear in the MTF Snippet panel if the parameter is used in the snippet.

Continue to the next section 21.5.8.7 Snippet Parameter of Type CHOICE2 or return to 21.5.8 Snippet Parameters and Commands or 21.5 Defining and Using Snippets.
21.5.8.7 Snippet Parameter of Type CHOICE2

If the user is to select from a list of choices, but different text than what appears on the choice list is to be passed through to the snippet, then the CHOICE2 parameter type is used.

The Snippet Parameter of type CHOICE2 inserts a Choice box panel field into the MTF Snippet panel.

The format also defines the list of text to be displayed in the pop-up of choices for each text that is displayed, a parameter value that is passed back to the snippet if that choice is selected.

The syntax for type CHOICE2 is:

```
// PARAMETER par_name CHOICE2 par_desc par_def par_1 desc_1 par_2 desc_2 ... par_n desc_n
```

where

```
// PARAMETER param_name
```

This defines a parameter of the given name. See `// PARAMETER param_name` for what is allowed as the parameter name.

CHOICE2 - the parameter type.

par_desc - this description is written in the MTF Snippet panel for the field to enter values for this parameter. The description can include spaces and if it does then the description must be enclose in double quotes (").

par_def - this value is optional but if it exists then this value is displayed as the value in the field for the parameter on the MTF Snippet panel. If the default value is text and it contains any spaces then the text must be enclosed in double quotes (").

par_i desc_i are pairs of parameters and description to go in the Choice box pop up. The description desc_i is displayed in the Choice pop up and if that description is selected, the parameter par_i is returned to the Snippet instead of the description.

For example

```
// PARAMETER CH CHOICE2 "Speed" S100 S80 "80 km/h" S100 "100 km/h"
```

This means that the text you have the default parameter, in this case S100, and then pairs of parameters and descriptions, S80 "80 km/h" etc.

**Important Note:**

The Choice panel field for a CHOICE2 parameter will only appear in the MTF Snippet panel if the parameter is used in the snippet.
Continue to the next section 21.5.8.8 Snippet Parameter of Type TICK or return to 21.5.8 Snippet Parameters and Commands or 21.5 Defining and Using Snippets.
21.5.8.8 Snippet Parameter of Type TICK

If a true of false choice is required then the **TICK** parameter type is used.

The Snippet Parameter of type **TICK** inserts a Tick box panel field into the **MTF Snippet** panel.

The user can set the tick to off or on.

The syntax for type **TICK** is:

```plaintext
// PARAMETER param_name TICK param_desc param_default
```

where

```
// PARAMETER param_name
```

This defines a parameter of the given name. See // **PARAMETER param_name** for what is allowed as the parameter name.

**TICK** - the parameter type.

**param_desc** param_default

The description for the field in the **MTF Snippet** panel and an optional default value that is entered as the value in the field. See **param_desc param_default**.

The value **param_default** is optional but if it exists then it must be 1 or a 0.

- If 1, the tick box come up set to tick/on.
- If 0, the tick box come up set to not ticked/off.

Note that in the above example, the value of the Tick box parameter TI ($TI), is used in a #define to set the value for _E (see 21.5.18 Major Warning - You Will be Caught by This).

**Important Note:**
The Tick panel field for a **TICK** parameter will only appear in the **MTF Snippet** panel if the parameter is used in the snippet.

Continue to the next section **21.5.8.9 Snippet Parameter of Type COLOUR** or return to **21.5.8 Snippet Parameters and Commands** or **21.5 Defining and Using Snippets**.
21.5.8.9 Snippet Parameter of Type COLOUR

If a colour is required then the COLOUR parameter type is used.

The Snippet Parameter of type COLOUR inserts a Colour box panel field into the MTF Snippet panel.

The user can type a colour name or colour number into the panel field, or select a colour from the pop-up of available colours in the project.

The syntax for type COLOUR is:

```
// PARAMETER param_name COLOUR param_desc param_default
```

where

```
// PARAMETER param_name
This defines a parameter of the given name. See // PARAMETER param_name for what is allowed as the parameter name.
```

```
COLOUR - the parameter type.
```

```
param_desc param_default
The description for the field in the MTF Snippet panel and an optional default value that is entered as the value in the field. See param_desc param_default.
```

```
```

Important Note:
The Colour panel field for a COLOUR parameter will only appear in the MTF Snippet panel if the parameter is used in the snippet.

Continue to the next section 21.5.8.10 Snippet Parameter of Type NAME or return to 21.5.8 Snippet Parameters and Commands or 21.5 Defining and Using Snippets.
21.5.8.10 Snippet Parameter of Type NAME

If a name of a string is required then the NAME parameter type is used.

The Snippet Parameter of type NAME inserts a Name box panel field into the MTF Snippet panel. The user can type a string name into the panel field, or select a name from the pop-up of names that are taken from the names.4d file.

The syntax for type NAME is:

```
// PARAMETER param_name NAME param_descr param_default
```

where

```
// PARAMETER param_name
```

This defines a parameter of the given name. See // PARAMETER param_name for what is allowed as the parameter name.

NAME - the parameter type.

```
param_desc param_default
```

The description for the field in the MTF Snippet panel and an optional default value that is entered as the value in the field. See param_desc param_default.

**Important Note:**
The String Name panel field for a NAME parameter will only appear in the MTF Snippet panel if the parameter is used in the snippet.

Continue to the next section 21.5.8.11 Snippet Parameters for Models or return to 21.5.8 Snippet Parameters and Commands or 21.5 Defining and Using Snippets.
21.5.8.11 Snippet Parameters for Models

There are three different Snippet parameter types for creating a Model box in the MTF Snippet panel. Which parameter is used depends on what is required to happen if the model exists or does not exist.

(a) use MODEL_CREATE when it doesn’t matter if the selected model exists or doesn’t exist.
   See 21.5.8.11.1 Snippet Parameters of Type MODEL_CREATE
(b) use MODEL_MUST_EXIST when the selected model must already exist.
   See 21.5.8.11.2 Snippet Parameter of Type MODEL_MUST_EXIST
(c) use MODEL_MUST_NOT_EXIST when the model must not already exist.
   21.5.8.11.3 Snippet Parameter Type MODEL_MUST_NOT_EXIST

Or return to 21.5.8 Snippet Parameters and Commands or 21.5 Defining and Using Snippets.
21.5.8.11.1 Snippet Parameters of Type MODEL_CREATE

The Snippet Parameter of type **MODEL_CREATE** inserts a Model box panel field into the MTF Snippet panel.

The user can type a model name into the panel field, or select a model from the pop-up of models for the Model box.

If the model does not exist when the snippet is run, then a new model is created.

The syntax for type **MODEL_CREATE** is:

```
// PARAMETER param_name MODEL_CREATE param_desc param_default
```

where

// PARAMETER  param_name
This defines a parameter of the given name. See // PARAMETER  param_name for what is allowed as the parameter name.

**MODEL_CREATE** - the parameter type.

param_desc  param_default
The description for the field in the MTF Snippet panel and an optional default value that is entered as the value in the field. See param descr param default.

---

Important Note:
The Model panel field for a MODEL_CREATE parameter will only appear in the MTF Snippet panel if the parameter is used in the snippet.

Continue to the next section 21.5.8.11.2 Snippet Parameter of Type MODEL_MUST_EXIST or return to 21.5.8.11 Snippet Parameters for Models or 21.5.8 Snippet Parameters and Commands or 21.5 Defining and Using Snippets.
21.5.8.11.2 Snippet Parameter of Type MODEL_MUST_EXIST

The Snippet Parameter of type **MODEL_MUST_EXIST** inserts a Model box panel field into the MTF Snippet panel.

The user can type a model name into the panel field, or select a model from the pop-up of models for the Model box.

If the model does not exist when the Snippet is run, an error will occur and a message written to the panel message area.

The syntax for type **MODEL_MUST_EXIST** is:

```plaintext
// PARAMETER param_name MODEL_MUST_EXIST param_desc param_default
```

where

// PARAMETER param_name
This defines a parameter of the given name. See // PARAMETER param_name for what is allowed as the parameter name.

MODEL_MUST_EXIST - the parameter type.

param_desc param_default
The description for the field in the MTF Snippet panel and an optional default value that is entered as the value in the field. See param_desc param_default.

---

// PARAMETER TM MODEL_MUST_EXIST "Trimesh model" "Tri RSK 0201"
create_strings "selection" "KSA<<LK" "KSA<<lK" "KSA<<Tk" "KSA<<K" start_ref 0 final_ref 0
  "no_colour" "" "$TM" absolute extra_start extra_end

... 

Model box panel field is in the MTF Snippet panel because of the parameter TM of type MODEL_MUST_EXIST

Pop-up of models because the parameter type is MODEL_MUST_EXIST

Description provided by the parameter definition in the snippet

Error message if the model does not exist

---

**Important Note:**
The Model panel field for a MODEL_MUST_EXIST parameter will only appear in the MTF Snippet panel if the parameter is used in the snippet.

Continue to the next section 21.5.8.11.3 Snippet Parameter Type MODEL_MUST_NOT_EXIST or return to 21.5.8.11 Snippet Parameters for Models or 21.5.8 Snippet Parameters and Commands or 21.5 Defining and Using Snippets.
21.5.8.11.3 Snippet Parameter Type MODEL_MUST_NOT_EXIST

The Snippet Parameter of type **MODEL_MUST_NOT_EXIST** inserts a Model box panel field into the **MTF Snippet** panel.

The user can type a model name into the panel field, or select a model from the pop-up of models for the Model box.

If the model **does** exist when the Snippet is run, an error will occur and a message written to the panel message area.

The syntax for type **MODEL_MUST_NOT_EXIST** is:

```
// PARAMETER param_name MODEL_MUST_NOT_EXIST param_desc param_default
```

where

```
// PARAMETER param_name
This defines a parameter of the given name. See // PARAMETER param_name for what is allowed as the parameter name.
MODEL_MUST_NOT_EXIST - the parameter type.
param_desc param_default
The description for the field in the **MTF Snippet** panel and an optional default value that is entered as the value in the field. See param_desc param_default.
```

---

```
// PARAMETER TM MODEL_MUST_NOT_EXIST "Trimesh model" "Tri RSK 0201"
create_strings "selection" "KSA<<LK" "KSA<<IK" "KSA<<TK" "KSA<<BK" start_ref 0 final_ref 0
"no_colour" "" "$TM" absolute extra_start extra_end
...
```

Model box panel field is in the **MTF Snippet** panel because of the parameter **TM** of type **MODEL_MUST_NOT_EXIST**.

Pop-up of models because the parameter type is **MODEL_MUST_NOT_EXIST**.

Description provided by the parameter definition in the snippet.

Error message if the model already exists.

---

**Important Note:**

The Model panel field for a **MODEL_MUST_NOT_EXIST** parameter will only appear in the **MTF Snippet** panel if the parameter is used in the snippet.

Continue to the next section 21.5.8.12 Snippet Parameters for Tins or return to 21.5.8.11 Snippet Parameters for Models or 21.5.8 Snippet Parameters and Commands or 21.5 Defining and Using Snippets.
21.5.8.12 Snippet Parameters for Tins

There are three different Snippet parameter types for creating a Tin box in the MTF Snippet panel. Which parameter is used depends on what is required to be done if the tin exists or does not exit.

(a) use TIN_CREATE when it doesn’t matter if the selected tin exists or doesn’t exist. See 21.5.8.12.1 Snippet Parameter Type TIN_CREATE

(b) use TIN_MUST_EXIST when the selected model must already exist. See 21.5.8.12.2 Snippet Parameter Type TIN_MUST_EXIST

(c) use TIN_MUST_NOT_EXIST when the model must not already exit. 21.5.8.12.3 Snippet Parameter Type TIN_MUST_NOT_EXIST

Or return to 21.5.8 Snippet Parameters and Commands or 21.5 Defining and Using Snippets.
21.5.8.12.1 Snippet Parameter Type TIN_CREATE

The Snippet Parameter of type TIN_CREATE inserts a Tin box panel field into the MTF Snippet panel.

The user can type a tin name into the panel field, or select a tin from the pop-up of tins for the Tin box.

If the tin does not exist when the snippet is run, then a new tin is created.

The syntax for type TIN_CREATE is:

```
// PARAMETER param_name TIN_CREATE param_desc param_default
```

where

```
// PARAMETER param_name
```

This defines a parameter of the given name. See // PARAMETER param_name for what is allowed as the parameter name.

TIN_CREATE - the parameter type.

```
param_desc param_default
```

The description for the field in the MTF Snippet panel and an optional default value that is entered as the value in the field. See param descr param default.

---

Important Note:

The Tin panel field for a TIN_CREATE parameter will only appear in the MTF Snippet panel if the parameter is used in the snippet.

Continue to the next section 21.5.8.12.2 Snippet Parameter Type TIN_MUST_EXIST or return to 21.5.8.12 Snippet Parameters for Tins or 21.5.8 Snippet Parameters and Commands or 21.5 Defining and Using Snippets.
21.5.8.12.2 Snippet Parameter Type TIN_MUST_EXIST

The Snippet Parameter of type TIN_MUST_EXIST inserts a Tin box panel field into the MTF Snippet panel.

The user can type a tin name into the panel field, or select a tin from the pop-up of tins for the Tin box.

If the tin does not exist when the Snippet is run, an error will occur and a message written to the panel message area.

The syntax for type TIN_MUST_EXIST is:

```
// PARAMETER param_name TIN_MUST_EXIST param_desc param_default
```

where

```
// PARAMETER param_name
This defines a parameter of the given name. See // PARAMETER param_name for what is allowed as the parameter name.
```

TIN_MUST_EXIST - the parameter type.

```
param_desc param_default
The description for the field in the MTF Snippet panel and an optional default value that is entered as the value in the field. See param_desc param_default.
```

Important Note:

The Tin panel field for a TIN_MUST_EXIST parameter will only appear in the MTF Snippet panel if the parameter is used in the snippet.

Continue to the next section 21.5.8.12.3 Snippet Parameter Type TIN_MUST_NOT_EXIST or return to 21.5.8.12 Snippet Parameters for Tins or 21.5.8 Snippet Parameters and Commands or 21.5 Defining and Using Snippets.
21.5.8.12.3 Snippet Parameter Type TIN_MUST_NOT_EXIST

The Snippet Parameter of type TIN_MUST_NOT_EXIST inserts a Tin box panel field into the MTF Snippet panel.

The user can type a tin name into the panel field, or select a tin from the pop-up of tins for the Model box.

If the tin does exist when the Snippet is run, an error will occur and a message written to the panel message area.

The syntax for type TIN_MUST_NOT_EXIST is:

```
// PARAMETER param_name TIN_MUST_NOT_EXIST param_desc param_default
```

where

```
// PARAMETER param_name
This defines a parameter of the given name. See // PARAMETER param_name for what is allowed as the parameter name.

TIN_MUST_NOT_EXIST - the parameter type.

param_desc param_default
The description for the field in the MTF Snippet panel and an optional default value that is entered as the value in the field. See param_desc param_default.
```

Important Note:
The Tin panel field for a TIN_MUST_NOT_EXIST parameter will only appear in the MTF Snippet panel if the parameter is used in the snippet.

Continue to the next section 21.5.8.13 Snippet Parameter of Type LAYER or return to 21.5.8.12 Snippet Parameters for Tins or 21.5.8 Snippet Parameters and Commands or 21.5 Defining and Using Snippets.
21.5.8.13 Snippet Parameter of Type LAYER

If a layer for links is required then the LAYER parameter type is used.

A Snippet Parameter of type LAYER inserts an Layer box panel field into the MTF Snippet panel. The user can type a layer name into the panel field or select a layer name from the pop-up of layers previously defined. The Layer name is then passed down to the snippet.

The syntax for type LAYER is:

```plaintext
// PARAMETER param_name LAYER param_desc param_default_value
```

where

// PARAMETER  param_name
This defines a parameter of the given name. See // PARAMETER  param_name for what is allowed as the parameter name.

LAYER - the parameter type.

param_desc  param_default
The description for the field in the MTF Snippet panel and an optional default value that is entered as the value in the field. See param_desc  param_default.

The value param_default is optional. But if it exists then if the default layer value does not already exist, it will be added to the choice list of Layer names.

Important Note:
The Layer panel field for a LAYER parameter will only appear in the MTF Snippet panel if the parameter is used in the snippet.

Continue to the next section 21.5.8.14 Snippet Parameter of Type NAMED_GRADE or return to 21.5.8 Snippet Parameters and Commands or 21.5 Defining and Using Snippets.
21.5.8.14 Snippet Parameter of Type NAMED_GRADE

If a named grade definition is required then the NAMED_GRADE parameter type is used.

A Snippet Parameter of type NAMED_GRADE inserts an Named Grade box panel field into the MTF Snippet panel.

The user can type a named grade into the panel field or select a named grade from the pop-up of named grades previously defined. The Named Grade is then passed down to the snippet.

The syntax for type NAMED_GRADE is:
// PARAMETER param_name NAMED_GRADE param_description param_default_value

where

// PARAMETER  param_name

This defines a parameter of the given name. See // PARAMETER  param_name for what is allowed as the parameter name.

NAMED_GRADE - the parameter type.

param_desc  param_default

The description for the field in the MTF Snippet panel and an optional default value that is entered as the value in the field. See  param_desc  param_default.

Important Note:
The Named Grade panel field for a NAMED_GRADE parameter will only appear in the MTF Snippet panel if the parameter is used in the snippet.

Continue to the next section 21.5.8.15 Snippet Command INFO or return to 21.5.8 Snippet Parameters and Commands or 21.5 Defining and Using Snippets.
21.5.8.15 Snippet Command INFO

There is an Info button on the MTF Snippet panel and when clicked, all the lines of the snippet file that start with "// INFO" are displayed in Snippet Description pop up.

The syntax for INFO is:

```
// INFO text_to_display
```

where

- `// INFO` is at the beginning of the line and defines the command INFO. Note that there must be one or more spaces between the // and INFO.
- `text_to_display` is a line of text that is to be displayed in the Snippet Description pop up when the Info button is clicked on the MTF Snippet panel. The text is taken from one space after the word INFO and to the end of the line.

For example, in the Snippet code:

```
// PARAMETER CLR COLOUR "Colour" "red"
// PARAMETER LN TEXT "Link" ""
// INFO ----------------------
// INFO Lee's Test Snippet
// INFO ----------------------
insert "Design=>$(LN)" $CLR 0.0 0.0 unknown $(SCH) 0 $(ECH) 0 absolute extra_start extra_end
```

Click on Info and the Snippet Description pop-up displays all the INFO lines in the Snippet.

Continue to the next section 21.5.8.16 Snippet Command DISPLAY or return to 21.5 Defining and Using Snippets.
21.5.8.16 Snippet Command DISPLAY

The **parameter description** and the **current value** that the parameter has can be displayed in the **Detail** and **Value** columns of the **MTF Modifiers** panel by using the **DISPLAY** command in the snippet.

The syntax for **DISPLAY** is:

```plaintext
// DISPLAY param_name
```

where

```plaintext
// DISPLAY
```

this is at the beginning of the line and defines the command DISPLAY. Note that there must be one or more spaces between the `//` and `DISPLAY`.

```plaintext
param_name
```

this is the name of the parameters to have its description and current value displayed in the **MTF Modifiers** panel.

When the **OK** or **Apply** button is clicked on the **MTF Snippets** panel, the **description** of the parameter **param_name** is displayed in the **Details** column of the **MTF Modifiers** panel and the **current value** of the parameter **param_name** is displayed in the **Value** column of the **MTF Modifiers** panel.

For example, in the Snippet code:

```plaintext
// PARAMETER CLR COLOUR "Colour" "red"
// PARAMETER LN TEXT "Link" ""
// DISPLAY CLR
// DISPLAY LN
```

insert "Design=>$(LN)" $CLR 0.0 0.0 unknown $(_SCH) 0 $(_ECH) 0 absolute extra_start extra_end
Continue to the next section 21.5.15.3 Temporary MTF Snippet File or return to 21.5 Defining and Using Snippets.
21.5.8.17 Snippet Command INCREMENT

There is an **INCREMENT** command to increment a snippet parameter by a given increment step. The increment step can be negative for a decrement.

The intended use is for TEXT parameters but it will actually work for any type of parameter but probably in an unexpected way.

How a parameter is incremented depends on the value of the parameter when it is interpreted as text. We will refer to the value of the parameter as text, as `value_text`.

For example, for an INTEGER, the value_text could be "13", for a TEXT it could be "STN003", for a REAL, it could be "23.45" and for a COLOUR, it could be "red". Obviously it usually doesn’t make sense to increment some parameters like REAL or COLOUR but it can be done.

The INCREMENT command only increments either a

(a) a group of digits at the end of the text. That is each character is one of "0" to "9". The number of digits to increment is fixed (the length of the group).

or

(b) a group of letters at the end of the text. That is, each characters is one of "a" to "z". The number of letters to increment is fixed (the length of the group). Upper and lower case letters are considered to be the same thing.

Note that INCREMENT does not increment a mixture of digits and letters.

For the `value_text`, the group of characters at the end of the value_text that will be incremented is determined by looking at the last character of the value_text and

(a) if the last character is a digit then it will be a digit group.

The rest of `value_text` is then searched from right to left until a letter is found. So all the digits at the end of the value_text make up a digit group of a fixed length.

For example, for "STN001" the group is digit group of length 3 ("001").

For "ST2N02", the group is a digit group of length 2 ("02").

For "002", the group is a digit group of length 3 ("002").

The digit group increments by the increment step but it will always keep the same number of digits. So if the incremented digit group would need an extra digit then that extra leading digit is dropped. So the number wraps around.

For example, incrementing "568" by 1 will eventually reach "999" and the next increment will give you "000".

(b) if the last character is an letter (i.e. one of a to z) then it will be a letter group.

The rest of `value_text` is then searched from right to left until a digit is found. So all the letters at the end of value_text make up a letter group of a fixed length.

For example, for "123ABC" the group is an letter group of length 3 ("ABC").

"incrementing a letter" means that you take the letters position in the alphabet and add the increment step to it to give you the position of the new incremented letter. For example, c is the third letter and increment it by two give the fifth letter which is e. When you have a letter group then you work in base 26. For example, incrementing AZ by 1 gives you BA.

As in the case for a digit group, the letter group increments by the increment step but it will always keep the same number of letters. So if the incremented digit group would need an extra letter then that extra leading letter is dropped.

For example, incrementing "TUV" by 1 will eventually reach "ZZZ" and the next increment will give you "AAA".
The syntax for **INCREMENT** is:

```
// INCREMENT param_name increment_step
```

where

**// INCREMENT**

this is at the beginning of the line and defines the command INCREMENT. Note that there must be one or more spaces between the `//` and INCREMENT.

**param_name**

the name of the parameter to increment.

**increment_step**

this is the amount the increment the group of digits or letters. The increment step can be negative for a decrement.

As an example,

```
// PARAMETER STRING_ID TEXT "String number" 1
// INCREMENT STRING_ID 1
```

Continue to the next section [21.5.8.18 Optional Parameters in Snippets](#) or return to [21.5 Defining and Using Snippets](#).
21.5.8.18 Optional Parameters in Snippets

Parameters can be set to be optional so that when they are displayed in the MTF Snippet panel and there is no value in the panel field, the Description is greyed out.

A parameters is made optional by adding **OPTIONAL** as the last word on the parameter line.

A default value for the parameter can still be passed in but in that case the Description in the MTF Snippet panel field will not be greyed out when it is first displayed because there is a value in it.

For example, in the Snippet code:

```plaintext
// PARAMETER CLR COLOUR "Colour" OPTIONAL
// PARAMETER LN TEXT "Link" "ES" OPTIONAL
// DISPLAY CLR
// DISPLAY LN
insert "Design=>$(LN)" $CLR 0.0 0.0 unknown $(_SCH) 0 $(_ECH) 0 absolute extra_start extra_end
```

The `Colour` is optional and the default value has been omitted. The `Link` is optional but because there is a value in it, the word `Link` is not greyed out.

**WARNING**

Be careful when making a parameter optional because the MTF may then have errors.

For example in the above example, if the `Colour` is not filled in then there will be an error in the MTF because the command

```plaintext
insert "Design=>$(LN)" $CLR 0.0 0.0 unknown $(_SCH) 0 $(_ECH) 0 absolute extra_start extra_end
```

will not be valid if CLR is blank and hence not there.

Continue to the next section 21.5.9 Automatic Parameters in Snippets or return to 21.5.8 Snippet Parameters and Commands or 21.5 Defining and Using Snippets.
### 21.5.9 Automatic Parameters in Snippets

In addition to the ability to create and define your own parameters in snippets, *12d Model* has a range of predefined parameters that are automatically created and calculated.

Automatic parameters allow for the use of values that are important to the snippet, but that you do not necessarily want to prompt the user to complete.

For example, string naming that is dependent on whether it is applied in the left side or right side modifiers. Rather than making the user select the correct left/right side value as a parameter, an automatic parameter can be used instead. In this way, automatic parameters can greatly simplify snippets and make them more portable.

Automatic parameters are fixed by the system and are identified by starting with an underscore, e.g. `$_AUTO_LR` or `$_AUTO_RS`.

All automatic parameter names are reserved in 12d. To ensure future compatibility, user-defined parameters should not start with an underscore.

Currently, the following automatic parameters are defined:

- `AUTO_LR`
- `SCH`
- `ECH`
- `CL_REF`, `CL_REF1`, `CLREF2`
- `CL_REF3`, `CL_REF4`
- `NULL`
- `AUTO_0I`, `AUTO_1J`, ..., `AUTO_9R`, `AUTO_AS`, `AUTO_BT`, ..., `AUTO_HZ`
- `AUTO_05`, `AUTO_16`, `AUTO_27`, ..., `AUTO_49`, `AUTO_AN`, `AUTO_BO`, ..., `AUTO_MZ`
- `INS_05`, `INS_LR`, `INS_0I`
- `INS_SIDE_05`
- `SIDE_FX`
- `AUTO_LAYER_LR`
- `APPLY_TIN`
- `APPLY_DESIGN_MODEL`
- `HINGE`
- `SIDE`
- `SILENT_NG`
- `PROJECT_ATTRIBUTE`
21.5.9.1 _AUTO_LR

Depending on the side from which the snippet is called this parameter will insert the value L if it is called from the left side modifiers and R if it is called from the right side modifiers.

<table>
<thead>
<tr>
<th>Insert Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;KLIP$_AUTO_LR&quot;&quot; &quot;red&quot; 5 unknown -2 $_SCH 0 $_ECH 0 absolute extra_start extra_end</td>
<td></td>
</tr>
</tbody>
</table>

Continue to 21.5.9.2 _SCH or return to 21.5.9 Automatic Parameters in Snippets.

21.5.9.2 _SCH

Will insert named_position MODIFIER_START.
This is typically used to insert the start chainage mode that has been passed to the snippet.
Note that this parameter does not include the extension value.

<table>
<thead>
<tr>
<th>Insert Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;KLIP&quot; &quot;red&quot; 5 unknown -2 $_SCH 0 $_ECH 0 absolute extra_start extra_end</td>
<td></td>
</tr>
</tbody>
</table>

Continue to 21.5.9.3 _ECH or return to 21.5.9 Automatic Parameters in Snippets.

21.5.9.3 _ECH

Will insert named_position MODIFIER_END.
This is typically used to insert the end chainage mode that has been passed to the snippet.
Note that this parameter does not include the extension value.

<table>
<thead>
<tr>
<th>Insert Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;KLIP&quot; &quot;red&quot; 5 unknown -2 $_SCH 0 $_ECH 0 absolute extra_start extra_end</td>
<td></td>
</tr>
</tbody>
</table>

Continue to 21.5.9.4 _CL_REF or return to 21.5.9 Automatic Parameters in Snippets.

21.5.9.4 _CL_REF

This will insert the entire name of the Reference string from the Apply many function.
For example, if the reference string name is RSR01, $_CL_REF will insert RSR01

Continue to 21.5.9.5 _CL_REF1 or return to 21.5.9 Automatic Parameters in Snippets.

21.5.9.5 _CL_REF1

This will insert the last character of the name of the Reference string from the Apply many function.
For example, if the reference string name is RSR01, $_CL_REF1 will insert 1.

Continue to 21.5.9.6 _CL_REF2 or return to 21.5.9 Automatic Parameters in Snippets.
21.5.9.6 _CL_REF2
This will insert the last two characters of the name of the Reference string from the Apply many function.
For example, if the reference string name is RSR01, $(_CL_REF1) will insert 01.
Continue to 21.5.9.7 _CL_REF3 or return to 21.5.9 Automatic Parameters in Snippets.

21.5.9.7 _CL_REF3
This will insert the last three characters of the name of the Reference string from the Apply many function.
For example, if the reference string name is RSR01, $(_CL_REF1) will insert R01.
Continue to 21.5.9.8 _CL_REF4 or return to 21.5.9 Automatic Parameters in Snippets.

21.5.9.8 _CL_REF4
This will insert the last four characters of the name of the Reference string from the Apply many function.
For example, if the reference string name is RSR01, $(_CL_REF1) will insert SR01.
Continue to 21.5.9.9 _NULL or return to 21.5.9 Automatic Parameters in Snippets.

21.5.9.9 _NULL
The current MTF syntax includes the use of $null for various values. In snippets, this would be interpreted as a parameter or token null.
Therefore, in snippets, if you would still like to include $null in MTF commands, they need to be replaced with this automatic parameter.
An example of MTF modifier syntax - note the present of $null values:

<table>
<thead>
<tr>
<th>named_grade</th>
<th>&quot;TEST&quot;</th>
<th>start_ref</th>
<th>0</th>
<th>final_ref</th>
<th>0</th>
<th>&quot;links&quot;</th>
<th>&quot;Design=&gt;CLIN&quot;</th>
<th>&quot;Design=&gt;EDGE&quot;</th>
</tr>
</thead>
<tbody>
<tr>
<td>$null</td>
<td>$null</td>
<td>$null</td>
<td></td>
<td>$null</td>
<td></td>
<td>&quot;&quot;</td>
<td>absolute</td>
<td>extra_start</td>
</tr>
<tr>
<td>extra_end</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The MTF snippet syntax for it - where $null has been replaced with $(_NULL):

<table>
<thead>
<tr>
<th>named_grade</th>
<th>&quot;TEST&quot;</th>
<th>$(_SCH)</th>
<th>0</th>
<th>$(_ECH)</th>
<th>0</th>
<th>&quot;links&quot;</th>
<th>&quot;Design=&gt;CLIN&quot;</th>
<th>&quot;Design=&gt;EDGE&quot;</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(_NULL)</td>
<td>$(_NULL)</td>
<td>$(_NULL)</td>
<td></td>
<td>$(_NULL)</td>
<td></td>
<td>&quot;&quot;</td>
<td>absolute</td>
<td>extra_start</td>
</tr>
<tr>
<td>extra_end</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to 21.5.9.10 _AUTO_0I, _AUTO_1J, …, _AUTO_9R, _AUTO_AS, _AUTO_BT, …, _AUTO_HZ or return to 21.5.9 Automatic Parameters in Snippets.

21.5.9.10 _AUTO_0I, _AUTO_1J, …, _AUTO_9R, _AUTO_AS, _AUTO_BT, …, _AUTO_HZ
This is a set of 18 different, but related, automatic parameters to assist with string naming conventions for multiple occurrences.
These automatic parameters follow the MOSS/MX naming convention for multiple occurrences:
**Defining and Using Snippets**

Left side is 0 to 9, A to H. Right side is I to Z.

So, for the 1\textsuperscript{st} occurrence of a string, you would use the \_AUTO\_0I parameter.

For the 2\textsuperscript{nd} occurrence of the string, you would use the \_AUTO\_1J parameter, and so on until for the 18\textsuperscript{th} occurrence you would use the \_AUTO\_HZ parameter.

12d will automatically insert either 0/I, 1/J, 2/K ... H/Z depending on whether the snippet is called on the left or right side of the modifiers.

Hence the names of the automatic parameter \_AUTO\_0I include the 0I to indicate that it substitutes 0 when on the Left and I when on the right.

```
insert "LANE$(_AUTO_0I)" "red" 3.5 unknown -3 $(_SCH) 0 $(_ECH) 0 absolute extra_start extra_end
insert "LANE$(_AUTO_1J)" "red" 3.5 unknown -3 $(_SCH) 0 $(_ECH) 0 absolute extra_start extra_end
insert "LANE$(_AUTO_2K)" "red" 3.5 unknown -3 $(_SCH) 0 $(_ECH) 0 absolute extra_start extra_end
```

Continue to 21.5.9.11 _AUTO_05, _AUTO_16, _AUTO_27, ... _AUTO_49, _AUTO_AN, _AUTO_BO, ... _AUTO_MZ or return to 21.5.9 Automatic Parameters in Snippets.

21.5.9.11 _AUTO_05, _AUTO_16, _AUTO_27, ... _AUTO_49, _AUTO_AN, _AUTO_BO, ... _AUTO_MZ

This is a set of 18 different, but related, automatic parameters to assist with string naming conventions for multiple occurrences.

These automatic parameters follow a similar, but alternative naming convention to the MOSS/MX for multiple occurrences:

```
Side | Occurrence
--- | ---
Left | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 | 0 1 2 3 4 A B C D E F G H I J K L M
Right| 5 6 7 8 9 N O P Q R S T U V W X Y Z
```

Left side is 0 to 9, A to H. Right side is I to Z.

So, for the 1\textsuperscript{st} occurrence of a string, you would use the \_AUTO_05 parameter.

For the 2\textsuperscript{nd} occurrence of the string, you would use the \_AUTO_16 parameter, and so on until for the 18\textsuperscript{th} occurrence you would use the \_AUTO_MZ parameter.

12d will automatically insert either 0/5, 1/6, 2/7 ... M/Z depending on whether the snippet is called on the left or right side of the modifiers.

Hence the names of the automatic parameter \_AUTO_05 include the 05 to indicate that it substitutes 0 when on the Left and 5 when on the right.
21.5.9.12 _INS_05, _INS_LR, _INS_0I

This is used as a normal TEXT parameter, which accepts a single character indicating the side. Different automatic parameters are used depending on the character expected.

- _INS_05 will insert 0 to 4 for left side, 5 to 9 for right side
- _INS_LR will insert L for left side, R for right side
- _INS_0I will insert 0 to 9 or A to H for left side, I to Z for right side

Once set-up, the _INS_?? automatic parameter is used to set the _SIDE_FX automatic parameter (see 21.5.9.14 _SIDE_FX).

Note that, as with any other parameter, in order for the _INS_05 / _INS_LR / _INS_0I parameter to appear in the MTF Snippet panel, it must be used at least once elsewhere in the snippet. This can be done in a token definition, directive, or expression.

Continue to 21.5.9.13 _INS_SIDE_05 or return to 21.5.9 Automatic Parameters in Snippets.

21.5.9.13 _INS_SIDE_05

This is similar to _INS_05 / _INS_0I / _INS_LR, but without the need to define it as a parameter. The _INS_SIDE_05 takes a single character.

The value of _INS_SIDE_05 is used to determine the value for the _SIDE_FX automatic parameter.

- _INS_SIDE_05 will be 0 to 4 for left side, 5 to 9 for right side

The _INS_SIDE_05 is unique as an automatic parameter, since its value can be set. In this way, it behaves more like a Directive (See 21.5.12 Snippet Directives).

To set the value of the _INS_SIDE_05 automatic parameter

```plaintext
$(_INS_SIDE_05)<value>
```

,value> should be a parameter.

The _INS_SIDE_05 should not be used anywhere else in snippets, including user_message commands, except to define its value.
// PARAMETER LINK1 TEXT "Attach to link" "EDGE0R"

// Set the _INS_SIDE_05 auto parameter to the 5th character of the LINK1 parameter
$(_INS_SIDE_05)$(LINK1[5:5])

user_message "_SIDE_FX = $(_SIDE_FX) " // Display the current value of _SIDE_FX

insert "Design$(_SIDE_FX)KLIP0R" "red" 2 unknown -3 $(_SCH) 0 $(_ECH) 0 absolute

Continue to 21.5.9.14 _SIDE_FX or return to 21.5.9 Automatic Parameters in Snippets.
21.5.9.14 _SIDE_FX

This will insert the link side indicator <\:< for link on left side, or >> for link on right side, depending on the most recent use of _INS_*.

That is, if the last state of _INS_* corresponds to the left side, _SIDE_FX will insert <\:< to indicate insertion to the left.

If the last state of _INS_* corresponds to the right side, _SIDE_FX will insert >> to indicate insertion to the right. Hence if

\[
\begin{align*}
_INS_05 = 0 \text{ to } 4, \text{ then } & _SIDE_FX = <\:< \\
_INS_05 = 5 \text{ to } 9, \text{ then } & _SIDE_FX = >> \\
_INS_LR = L, \text{ then } & _SIDE_FX = <\:< \\
_INS_LR = R, \text{ then } & _SIDE_FX = >> \\
_INS_0I = 0 \text{ to } 9, A \text{ to } H, \text{ then } & _SIDE_FX = <\:< \\
_INS_0I = I \text{ to } Z, \text{ then } & _SIDE_FX = >> \\
_INS_SID_05 = 0 \text{ to } 4, \text{ then } & _SIDE_FX = <\:< \\
_INS_SID_05 = 5 \text{ to } 9, \text{ then } & _SIDE_FX = >>
\end{align*}
\]

Note that in order for the _SIDE_FX parameter to be set, the corresponding parameter _INS_* must also have been set, given a value (0 to 9, A to Z) and used somewhere in the snippet.

For this reason, if not using the _INS_05 directly, it is necessary to reference it in a temporary parameter, token or expression.
Defining and Using Snippets

The _SIDE_FX allows links to be inserted on any side of the reference, regardless of the side calling the snippet. For example, a snippet on the right side could insert a link on the left side.

Once the _SIDE_FX value is used in the snippet, its value will remain the same until re-defined by any of the _INS_05 / _INS_LR / _INS_0I / _INS_SIDE_05 automatic parameters.

21.5.9.15 _AUTO_LAYER_LR

Depending on which side the snippet is called from, will insert the value layer_left if called from the left side modifiers and layer_right if called from the right side modifiers.

This is typically used for the Create String modifier commands.

The _SIDE_FX allows links to be inserted on any side of the reference, regardless of the side calling the snippet. For example, a snippet on the right side could insert a link on the left side.

Once the _SIDE_FX value is used in the snippet, its value will remain the same until re-defined by any of the _INS_05 / _INS_LR / _INS_0I / _INS_SIDE_05 automatic parameters.

Continue to 21.5.9.15 _AUTO_LAYER_LR or return to 21.5.9 Automatic Parameters in Snippets.
21.5.9.16 _APPLY_TIN
This will insert the name of the tin from the Apply MTF function

```
interface_tin "Design=>INT" $(_SCH) 0 $(_ECH) 0 "Design=>" "$(_APPLY_TIN)" 1 2 100 0
"red" "green" 0 0 absolute extra_start extra_end
```

Continue to 21.5.9.17 _APPLY_DESIGN_MODEL or return to 21.5.9 Automatic Parameters in Snippets.

21.5.9.17 _APPLY_DESIGN_MODEL
This will insert the name of the Road Surface Strings model entered in the Models tab of the Apply MTF function panel.

```
create_strings "$(AUTO_LAYER_LR)" "Design=>" *** $(_SCH) 0 $(_ECH) 0 "no_colour" ***
"$(APPLY_DESIGN_MODEL)" absolute extra_start extra_end
```

Continue to 21.5.9.18 _HINGE or return to 21.5.9 Automatic Parameters in Snippets.

21.5.9.18 _HINGE
This will insert the name of the hinge string.
Since the user can define a custom hinge name (the default is HINGE), this is needed to ensure portability and compatibility with different users and setups.

```
named_grade "CWAY" $(_SCH) 0 $(_ECH) 0 "links" "Design=>HING" "Design=>EDGE"
$null $null $null $null *** absolute extra_start extra_end
```

Continue to 21.5.9.19 _SIDE or return to 21.5.9 Automatic Parameters in Snippets.

21.5.9.19 _SIDE
Depending on which side the snippet is called from, will insert the value -1 if called from the left side modifiers and +1 if called from the right side modifiers.

Continue to 21.5.9.20 _SILENT_NG or return to 21.5.9 Automatic Parameters in Snippets.

21.5.9.20 _SILENT_NG
This will insert _SILENT_NAMED_GRADE.
When inserted in front of a named grade, the named grade will not appear in any Named Grade choice boxes.
This is typically used for temporary or construction named grades in snippets that you do not wish the end user to see in the GUI.

Continue to 21.5.9.21 _PROJECT_ATTRIBUTE or return to 21.5.9 Automatic Parameters in Snippets.
21.5.9.21 _PROJECT_ATTRIBUTE

This will insert a project attribute from the current 12d project.

The particular attribute to be inserted is specified between square brackets [ ] and follows the standard convention of attribute paths in 12d Model.

```
user_message "$_PROJECT_ATTRIBUTE[ProjectDetails/ProjectNumber/Value]"
```

This will insert the value of the ProjectNumber entered in the Project Details panel (if ProjectNumber is defined).

Continue to 21.5.9.22 Substrings of parameters or return to 21.5.9 Automatic Parameters in Snippets.

21.5.9.22 Substrings of parameters

Although there are some preset automatic parameters for extracting a few characters from a string, e.g. _CL_REF3, it is possible to extract a substring of all User parameters, and the one special auto parameter case, _CL_REF.

This is done with the following syntax:

```
param[start:end]
```

- **param** is the parameter or token name
- **start** is the character start position (the first character is at position 1). It must be an integer greater than or equal to 1.
- **end** is the character end position (the first character is at position 1). It must be an integer greater than or equal to the start position.

For the value of the selected *param*, only the text from *start* to *end* will be inserted.

Both **start** and **end** are compulsory. The colon is also compulsory.

If **end** is greater than the length of the complete param value, an end position equal to the string length will be used. That is, everything from the start up to the end of the string will be returned.

**start** must be less than **end**.

Substrings are currently supported on all user parameters. Automatic parameters and tokens are not supported.

For example,

If $(_TEXT_PARAM)$ has the value **Some text**

then

- $(TEXT_PARAM[1:3])$ is **Som**
- $(TEXT_PARAM[4:7])$ is **et**
- $(TEXT_PARAM[1:20])$ is **Some text**
- $(TEXT_PARAM[5:9])$(TEXT_PARAM[1:4]) is **textSome**

For the special auto parameter case, an example is:

```
$(CL_REF[2:6])
```

Continue to the next section 21.5.10 Arithmetic in Snippets or return to 21.5.9 Automatic Parameters in Snippets or 21.5 Defining and Using Snippets.
21.5.10 Arithmetic in Snippets

Arithmetic expressions can be used for any of the real values in the lines of a snippet file as long as special rules are obeyed.

1. If a real value is replaced by an expression then the expression must be surrounded by round brackets. That is "(" and ")".

2. If the arithmetic operators plus +, minus -, multiplication * and division / are used then there must be a space on both sides of them.

   For example, \((T_L) - (P_L)\) and \((0.0 - (D_L) / 2.0) - 0.5\)

   Note that the negative of a number has the negative sign hard up against the number with no space in-between. For example -0.5

**WARNING** - a future interactive Snippet editor may not be able to support arithmetic in snippets. Those snippets with arithmetic will still need to be modified using a text editor.

An example of some lines from a snippet file using an arithmetic expression is:

```
// RTA Type F Half Kerb to SA transition

// PARAMETER TL REAL "Transition Length" 5.5
// PARAMETER PL REAL "Part Length" 1.340

// insert the links for the 'F' to 'short F' transition

insert "1" "grey" 0.001 0.000 unknown named_position "MODIFIER_START" 0.0 named_position "MODIFIER_START" ($(TL) - (PL)) absolute extra_start extra_end

insert "2" "grey" 0.499 -0.040 unknown named_position "MODIFIER_START" 0.0 named_position "MODIFIER_START" ($(TL) - (PL)) absolute extra_start extra_end

...
```

Continue to the next section 21.5.11 Trig and Maths Function Capabilities in Snippets or return to 21.5 Defining and Using Snippets.
21.5.11 Trig and Maths Function Capabilities in Snippets

There is now some trig and maths capability in the MTF snippet grammar.

The trig functions supported are:
- sin(x), cos(x), tan(x) - trig functions
- asin(x), acos(x), atan(x) - the inverse trig functions
- square(x) - return x\(^2\)
- sqrt(x)
- fabs(x) - returns the absolute value of its x.
- ceil(x) - the ceil functions return a floating-point value that represents the smallest integer that is greater than or equal to x.
- floor(x) - the floor functions return a floating-point value that represents the largest integer that is less than or equal to x.
- log(x) - the log functions return the natural logarithm (base e) of x if successful.
- exp(x) - the exp function returns the exponential value of the floating-point parameter, x, if successful. That is, the result is e to the power x, where e is the base of the natural logarithm.
- cube(x) - return x\(^3\)
- pow(x,y) - returns the value of x to the power y.
- fmod(x,y) - returns the floating-point remainder of x / y

pi, halfpi, twopi - so you don't have to keep typing the values in

The trig functions etc then allows calculations in a snippet like

```
// Swept angle of 2nd radius.

@def_tok A2 "(asin(($(D2) - $(R1) + $(DEL_R1_R2) * cos($(A1))) / $(R2)) - $(A1) + halfpi)
```

**Note** - Mathematical formulae in snippets should always be quoted to prevent concatenation and unexpected results.

Continue to the next section 21.5.12.1.1 #define in Snippets - Do Not Use or return to 21.5 Defining and Using Snippets.
21.5.12 Snippet Directives

See

21.5.12.1 Deprecated C Preprocessor from V10
21.5.12.2 Snippet Directives for V11 Onwards
21.5.12.3 Flow control
21.5.12.4 Abbreviations
21.5.12.5 Comparisons of Data Types
21.5.12.6 Tokens and Tokens vs Tokens
21.5.12.7 Tokens vs Strings
21.5.12.8 Tokens vs Doubles
21.5.12.9 Tokens vs Integers
21.5.12.10 Values Defined and Value vs Value
21.5.12.11 Values vs Strings
21.5.12.12 Values vs Doubles
21.5.12.13 Values vs Integers
21.5.12.14 Values Defined and Value vs Value

Or return to 21.5 Defining and Using Snippets.
21.5.12.1 Deprecated C Preprocessor from V10

When Snippets were first introduced in 12d Model 10, the C preprocessor syntax (e.g. `#define` or `#if / #else / #endif`) was used to increase the power of snippets by performing conditional tests and evaluations on the final MTF file containing the snippet.

The C preprocessor is used throughout 12d Model (e.g. setup files) but once you progress from simple uses, it can be very confusing for users to fully understand.

Due to the complexity and limitations of using the C preprocessor, a new preprocessor has been created in 12d Model 11 specifically for Snippets. Snippets in 12d Model 11 can still use the C preprocessor style of directives and such snippets will still run in 12d Model 11. However, the use of the older style of directives has been superseded (deprecated) in 12d Model 11 and users are encouraged to only use the special Snippet Directives.

Continue to 21.5.12.1.1 #define in Snippets - Do Not Use or return to 21.5.12 Snippet Directives.
21.5.12.1.1 #define in Snippets - Do Not Use

**IMPORTANT WARNING**

From 12d Model 11 onwards, `#define` has been replaced by `@def_tok` directive and #define should not be used.

It is only documented here in case you are working on an old Snippet and need to know what the command does.

`#define` can be used in a snippet file to define parameters for use inside the snippet file.

**WARNING** - a future interactive Snippet editor may not be able to support `#define`. Those snippets with `#define` will still need to be modified using a text editor.

The `#define` is placed at the beginning of a line, followed by one or more spaces and then the define_name to be used, and then one or more spaces and the expression that the define_name stands for.

```
#define define_name define_expression
```

Then the define_name can be used instead of the define_expression anywhere else in the snippet file following the `#define`.

**Note** - snippet parameters can be used in the define_expression as long as the definition of the parameter occurs before the `#define`.

For example

```
// PARAMETER DL REAL "Drive length" 3.0
// PARAMETER WD REAL "Layback width" 0.6
// PARAMETER DP REAL "Layback depth" -0.04

#define _DR1 (0.0 - ($DL / 2.0) - 0.5)
#define _DR2 (0.0 - ($DL / 2.0))
#define _DR3 (($DL / 2.0))
#define _DR4 (($DL / 2.0) + 0.5)

// drop into DW
insert "SAL" "grey" 0.001 0.000 unknown named_position "MODIFIER_START" _DR1 named_position "MODIFIER_START" _DR2 absolute extra_start extra_end
insert "SAI" "grey" 0.499 $DP unknown named_position "MODIFIER_START" _DR1 named_position "MODIFIER_START" _DR2 absolute extra_start extra_end
insert "SAT" "grey" 0.030 0.150 unknown named_position "MODIFIER_START" _DR1 named_position "MODIFIER_START" _DR2 absolute extra_start extra_end
insert "SAB" "grey" 0.180 0.000 unknown named_position "MODIFIER_START" _DR1 named_position "MODIFIER_START" _DR2 absolute extra_start extra_end

...
21.5.12.2 Snippet Directives for V11 Onwards

The syntax for a Snippet Directive starts with a @, then a space, followed by the directive and any additional arguments.

```plaintext
@ <directive> <argument> [<argument>... <argument>]
```

- `<directive>` - name of the directive.
- `<argument>` - any required arguments for the directive. The number and type of these arguments will depend on the directive.

```plaintext
@ if_val_eq "$(KT)" "SM"
// Do something in here
@end if
```

For information on all the snippet directives, see the sections

- 21.5.12.3 Flow control.
- 21.5.12.4 Abbreviations.
- 21.5.12.5 Comparisons of Data Types.
- 21.5.12.6 Tokens and Tokens vs Tokens.
- 21.5.12.7 Tokens vs Strings.
- 21.5.12.8 Tokens vs Doubles.
- 21.5.12.9 Tokens vs Integers.
- 21.5.12.10 Values Defined and Value vs Value.
- 21.5.12.11 Values vs Strings.
- 21.5.12.12 Values vs Doubles.
- 21.5.12.13 Values vs Integers.
- 21.5.12.10 Values Defined and Value vs Value.

Or return to 21.5.12 Snippet Directives or 21.5 Defining and Using Snippets.
21.5.12.3 Flow control

In a snippet, the normal processing flow is that each snippet command is processed in the order in which they are encountered. It is possible, however, to change the order in which such commands are processed or even to totally skip commands. These are done through flow control directives in the snippets.

See

- 21.5.12.3.1 Conditional flow control
- 21.5.12.3.2 Transferring Flow Control

Or return to 21.5.12 Snippet Directives or 21.5 Defining and Using Snippets.
21.5.12.3.1 Conditional flow control

Snippet commands can be processed or ignored based on the result of a test. This is known as a conditional test.

Snippet directives based on conditional statements (i.e., testing whether a statement is true or false) are generally of the form `if/else/end if`.

```plaintext
@ if...
@ end_if

OR

@ if...
@ else
@ end_if
```

When the `if` condition is **true**, commands will be processed until the `else` or `end_if` directive is found.

When the `if` condition is **false**, commands will be ignored until the `else` or `end_if` directive is found.

When the `if` condition is **false** and an `else` directive is found the commands following the `else` until the `end_if` will be processed.

An `end_if` directive must always be present.

An `else` directive cannot exist without a preceding `if` directive.

There is no `else_if` directive.

```plaintext
@ if...
// When the if condition is true, the commands in this section,
// until the else or end_if will be processed.
@ else
// When the if condition is false, the commands in this section,
// until the end_if will be processed
@ end_if
```

Embedding if directives within other conditional directives (if or else), i.e., nested ifs, are **not** allowed.

Continue to 21.5.12.3.2 Transferring Flow Control or return to 21.5.12.3 Flow control or 21.5.12 Snippet Directives.
21.5.12.3.2 Transferring Flow Control

In addition to the conditional flow control, it is possible within snippets to transfer processing to an entirely different and disconnected section of the snippet. These transfers (jumps) are performed by the `goto` and `label` directives.

See

21.5.12.3.2.1 Goto - transfer processing to a given location.
21.5.12.3.2.2 Label - mark a location for goto

Or return to 21.5 Defining and Using Snippets.

21.5.12.3.2.1 Goto - transfer processing to a given location

The `goto` directive transfers processing to a corresponding `label` directive within the snippet. The syntax is:

```plaintext
@ goto <label>
```

- `<label>` - is the name of the label to which control will be transferred. One and only one label should be specified.

The `goto` directive must be defined with a corresponding `label` directive.

- **Control** can only be transferred **forwards** in a file (i.e. further down the contents of the file); control **cannot** be passed **backwards**.

- The corresponding `label` should **not** be inside a conditional flow group, `if/else/end_if`.

// PARAMETER KT TEXT "Kerb type" OPTIONAL

```plaintext
@ def_tok EXTRAS "absolute extra_start extra_end"

@ if_val_neq "$(KT)" "SA Kerb"
  @ goto fred
  user_message "Should not get here." $(SCH) 0 $(ECH) 0 $(EXTRAS)
  @ end_if

user_message "Should not get here." $(SCH) 0 $(ECH) 0 $(EXTRAS)

@ label fred
user_message "Should get here." $(SCH) 0 $(ECH) 0 $(EXTRAS)
```

Continue to 21.5.12.3.2.2 Label - mark a location for goto or return to 21.5.12.3.1 Conditional flow control or 21.5.12.3 Flow control or 21.5.12 Snippet Directives.
21.5.12.3.2.2 Label - mark a location for goto

The label directive is used in conjunction with a goto directive to indicate a position within the snippet.

The syntax is:

```
@ label <label>
```

`<label>` - is the name of this label. A label should normally be paired with a corresponding goto directive, though it is not compulsory. A label can exist without a goto.

The label must be placed after the goto directive to which it corresponds. Control can only be transferred forwards in a file (i.e. further down the contents of the file); control cannot be passed backwards.

The label directive should not be placed inside a conditional flow group, if/else/end_if.

The label does not have to be unique within the file and multiple pairs of goto/labels are permitted. Note, however, that goto will simply jump to the first/next found matching label.

```
@ goto end_earthowrks
@ label end_earthowrks
.
@ goto end_earthowrks
@ label end_earthowrks
```

Continue to 21.5.12.4 Abbreviations or return to 21.5.12.3.1 Conditional flow control or 21.5.12.3 Flow control or 21.5.12 Snippet Directives.
21.5.12.4 Abbreviations

When reading or writing snippet directives, it is useful to know and remember the abbreviations below.

if - conditional test
def - define a token
tok - token
val - value
str - string (i.e. text)
int - integer
dbl - double
tol - tolerance
eq - equal
neq - not equal
gt - greater than
lt - less than
ge - greater than or equal to
le - less than or equal to
in_range - within a range of values defined by lower and upper bounds
nin_range - not within (i.e. outside) a range of values defined by lower and upper bounds

These abbreviations can be used to determine the appropriate directive to use or interpret and understand directives in use.

For example, the if_val_le_dbl_tol, is a conditional directive (if) to test if a value (val) is less than or equal to (le) any of double values (dbl) with a user-specified tolerance (tol).

Continue to 21.5.12.5 Comparisons of Data Types or return to 21.5.12 Snippet Directives.
21.5.12.5 Comparisons of Data Types

There are two basic types of comparison used in snippets.

(a) The first is character-based and is typically used on strings of text.

In a character-based comparison of two values, the first character from one string is compared against the first character from the other string. If both characters are equal, processing continues to the next character in each string.

Character comparisons in snippets are not case sensitive.

(b) The second type of comparison is numeric and is typically used on numbers both integers and doubles.

In a numerical-based comparison of two values, each value is first converted into a double. If the value cannot be converted to a number, then an error is usually generated.

Assuming both values in a numerical comparison are valid numbers (or can be converted as such), the numbers are then compared in standard mathematical fashion.
Both double and integer numbers can be used in directive comparisons for doubles (contain `dbl` abbreviation). However, only integer numbers can be used in directive comparisons for integers (contain `int` abbreviation). Doubles will not be converted or truncated to integers in such cases, but instead produce an error.

Continue to 21.5.12.6 Tokens and Tokens vs Tokens or return to 21.5.12 Snippet Directives.
21.5.12.6 Tokens and Tokens vs Tokens

The following Snippet Directives define tokens, check whether tokens are defined and compare tokens with other tokens.

See

- 21.5.12.6.1 def_tok
- 21.5.12.6.2 if_tok
- 21.5.12.6.3 if_ntok
- 21.5.12.6.4 if_tok_notok
- 21.5.12.6.5 if_two_toks
- 21.5.12.6.6 if_two_toks_eq
- 21.5.12.6.7 if_all_toks
- 21.5.12.6.8 if_nall_toks
- 21.5.12.6.9 if_tok_eq_tok
- 21.5.12.6.10 if_tok_neq_tok
- 21.5.12.6.11 def_tok_minus
- 21.5.12.6.12 def_tok_minus_inc

Or return to 21.5 Defining and Using Snippets.
21.5.12.6.1 def_tok

The `def_tok` directive defines a token that can have an optional value.

The syntax is:

```plaintext
@ def_tok <token> ["<string>... "<string>"
```

- `<token>` - this is the name of the token.
 - Wherever the token is to be used in the snippet, put `$<token>`
 - Note that in the older V10 syntax, this was $token.
 - The characters of the token name can only be alphanumeric (upper and lower case) and underscores but the name **cannot contain spaces**.
 - The **token names** are not case sensitive.
 - So two names differing only by case are considered to be identical. That is, **THIS**, **This**, **this** and **tHis** are all considered identical by 12d Model.
 - Tokens are treated similarly to parameters, so any name must be unique within a snippet for all parameters and tokens.

- `<string>` - one or more optional strings of character (text).
 - Any string with spaces must be enclosed in quotes.
 - Multiple strings are concatenated.
 - The string can contain other tokens, though any tokens must have previously been defined.
 - The string can also contain mathematical expressions.
 - The snippet preprocessor will preserve any white space within quoted strings.
 - However, multiple strings or values will be concatenated without any white space.
 - If a string has spaces that need to be retained, enclose the string in quotes.

Tokens are used and substituted in the same way as parameters, e.g. `$<TOKEN>`.

```
@ def_tok TOK           //defines a token TOK with no value
@ def_tok TOK A         //defines a token TOK with the value "A"
@ def_tok TOK "A B"     //defines a token TOK with the value "A B"
@ def_tok TOK A B       //defines a token TOK with the value "AB", concatenates
@ def_tok TOK A B "C D" //defines a token TOK with the value "ABC D", concatenates
@ def_tok TOK $(KT)     //defines a token TOK with the value of the substituted parameter
```

Continue to 21.5.12.6.2 if_tok or return to 21.5.12.6 Tokens and Tokens vs Tokens or 21.5.12 Snippet Directives.
21.5.12.6.2 if_tok

The if_tok directive tests whether any of the given tokens are defined.

The syntax is:

```
@ if_tok <token> [<token>... <token>]
// Commands to be processed when statement is true
@ end_if
```

<token> - the name of the token to test.

At least one token must be specified, however, multiple tokens can be included.

Multiple tokens should be separated by whitespace.

If any of the tokens are defined, the statement is true.

If none of the tokens are defined, the statement is false.

Multiple tokens are handled as if joined by logical OR statements.

NOTE: This directive simply tests whether the token is defined and not whether the value is valid or blank.

```
@ def_tok "T1"
@ def_tok "T2"

@ if_tok "T1"
    user_message "Found token T1"
@ end_if

@ if_tok "T1" "T2"
    user_message "Found token T1 or T2"
@ end_if

@ if_tok "T2"
    user_message "Found token T2"
@ end_if
```

See also:

21.5.12.6.3 if_ntok - for logically opposite directive
21.5.12.6.7 if_all_toks - for testing if all tokens are defined

Continue to 21.5.12.6.3 if_ntok or return to 21.5.12.6 Tokens and Tokens vs Tokens or 21.5.12 Snippet Directives.
21.5.12.6.3 if_ntok

The if_ntok directive tests whether particular tokens are undefined.

The syntax is:

```plaintext
@ if_ntok <token> [<token>...] // Commands to be processed when statement is true @ end_if
```

- `<token>` - the name of the token to test.

 At least one token must be specified, however, multiple tokens can be included.

 Multiple tokens should be separated by whitespace.

 If none of the tokens are defined, the statement is true and the snippet commands until the next end_if directive are processed.

 If any of the tokens are defined, the statement is false and the entire block of commands (until the next end_if directive) are skipped.

 Multiple tokens are handled as if joined by logical OR statements.

 NOTE: This directive simply tests whether the token is defined and not whether the value is valid or blank.

```plaintext
@ def_tok T1
@ def_tok T2

@ if_ntok T1
  user_message "Didn't find token T1"
@ end_if

@ if_ntok T1 T2
  user_message "Didn't find token T1 or T2"
@ end_if

@ if_ntok T2
  user_message "Didn't find token T2"
@ end_if
```

See also:

- **21.5.12.6.2 if_tok** - logically opposite directive
- **21.5.12.6.8 if_nall_toks** - for testing if all tokens are undefined

Continue to **21.5.12.6.4 if_tok_ntok** or return to **21.5.12.6 Tokens and Tokens vs Tokens** or **21.5.12 Snippet Directives**.
21.5.12.6.4 if_tok_ntok

The if_tok_ntok directive tests if any token in one set is defined and if any token in another set is not defined.

The syntax is:

```
@ if_tok_ntok <token> [ <token> ] ; [ <token> ] [ <token> ]
```

- `<token>` - the name of the token to test.

At least one token in each set must be specified, however, multiple tokens can be included.

Multiple tokens should be separated by whitespace.

Two sets of tokens are separated by a semi-colon, which must be included.

Tokens in the first set, between the if_tok_ntok and the semi-colon, are tested to see if they are defined. Tokens in the second set, between the semi-colon and end, are tested to see if they are not defined.

If any of the tokens in the first set are defined and any of the tokens in the second set are undefined, the statement is true.

If none of the tokens in the first set are defined or if all of the tokens in the second set are defined, the statement is false.

Note that both sets must be true for the overall statement to be true. If either set is false, then the overall statement will be false.

```
Continue to 21.5.12.6.5 if_two_toks or return to 21.5.12.6 Tokens and Tokens vs Tokens or 21.5.12 Snippet Directives.
21.5.12.6.5 if_two_toks

The `if_two_toks` directive tests the result of a logical comparison of if two tokens are defined. The syntax is:

```
@ if_two_toks <token1> <op> <token2>
// Commands to be processed when statement is true
@ end_if
```

- `<token1>` - the name of the token to test. Must be only one token
- `<op>` - the logical operator to use for the two tokens. This can be `&&` for logical AND or `||` for logical OR
- `<token2>` - the name of the token to test. Must be only one token.

The conditional result of this directive is dependent on the two tokens and the logical operator. The combination of possible values and their results are in the table below.

<table>
<thead>
<tr>
<th>token1</th>
<th>op</th>
<th>token2</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>defined</td>
<td>&amp;&amp;</td>
<td>defined</td>
<td>true</td>
</tr>
<tr>
<td>defined</td>
<td>&amp;&amp;</td>
<td>undefined</td>
<td>false</td>
</tr>
<tr>
<td>undefined</td>
<td>&amp;&amp;</td>
<td>defined</td>
<td>false</td>
</tr>
<tr>
<td>undefined</td>
<td>&amp;&amp;</td>
<td>undefined</td>
<td>false</td>
</tr>
<tr>
<td>defined</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>defined</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>undefined</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>undefined</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
@ def_tok T1
@ def_tok T2
// Token T3 is not defined

@ if_two_toks T1 && T2
    user_message "Tokens T1 and T2 are both defined"
@ end_if

@ if_two_toks T1 || T2
    user_message "Token T1 or T2 is defined"
@ end_if

@ if_two_toks T1 && T3
    user_message "Token T1 and T3 are both defined" // This shouldn't be shown
    @ else
        user_message "Token T1 and T3 are not both defined" // This should be shown
    @ end_if

@ if_two_toks T1 || T3
    user_message "Token T1 or T3 is defined"
@ end_if

See also:
21.5.12.6.6 if_two_toks_eq - for logical comparison against values

Continue to 21.5.12.6.6 if_two_toks_eq or return to 21.5.12.6 Tokens and Tokens vs Tokens or 21.5.12 Snippet Directives.
21.5.12.6.6 if_two_toks_eq

The if_two_toks_eq directive tests the result of a two tests of tokens against corresponding values.

The syntax is:

```
@ if_two_toks_eq <token1> <value1> <op> <token2> <value2>
// Commands to be processed when statement is true
@ end_if
```

- `<token1>` - the name of the first token to test. Must be only one token.
- `<value1>` - the value to compare against token1.
- `<op>` - the logical operator to use for the two tokens.
  - This can be `&&` for logical AND or `||` for logical OR
- `<token2>` - the name of the second token to test. Must be only one token.
- `<value2>` - the value to compare against token2.

When evaluating the statement, token1 is compared against value1 and token2 is compared against value2. The results of both comparisons are then combined using the logical operator, `op`, and evaluated to set the final result of the if_two_toks_eq directive.

<table>
<thead>
<tr>
<th>token1</th>
<th>value1</th>
<th>op</th>
<th>token2</th>
<th>value2</th>
<th>Overall Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>true</td>
<td>B</td>
<td>B</td>
<td>true</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>false</td>
<td>B</td>
<td>B</td>
<td>false</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>true</td>
<td>D</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>false</td>
<td>D</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>true</td>
<td>B</td>
<td>D</td>
<td>true</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>false</td>
<td>B</td>
<td>D</td>
<td>true</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>false</td>
<td>B</td>
<td>D</td>
<td>false</td>
</tr>
</tbody>
</table>

```
@ def_tok TOK_A "alpha"
@ def_tok TOK_B "bravo"

@ if_two_toks_eq TOK_A "alpha" || TOK_B "bravo"
 user_message "TOK_A = alpha or TOK_B = bravo"
@ end_if

@ if_two_toks_eq TOK_A "charlie" && TOK_B "bravo"
 user_message "TOK_A = charlie and TOK_B = bravo" // This should not be output
 @ else
 user_message "TOK_A != charlie or TOK_B != bravo" // This should be output
 @ end_if
```
21.5.12.6.7 if_all_toks

The `if_all_toks` directive tests whether all given tokens are defined. The syntax is:

```plaintext
@if_all_toks <token> [<token>... <token>]
// Commands to be processed when statement is true
@end_if
```

- `<token>` - the name of the token to test.
  - At least one token must be specified, however, multiple tokens can be included.
  - Multiple tokens should be separated by whitespace.
  - If all of the tokens are defined, the statement is true.
  - If any of the tokens are undefined, the statement is false.
  - Multiple tokens are handled as if joined by logical AND statements.

**NOTE:** This directive simply tests whether the token is defined and not whether the value is valid or blank.

```plaintext
@def_tok T1
@def_tok T2
@def_tok T3
@if_all_toks T1
 user_message "Found token T1"
@end_if
@if_all_toks T1 T2
 user_message "Found token T1 and T2"
@end_if
@if_all_toks T1 T2 T3
 user_message "Found token T1, T2 and T3"
@end_if
```

See also:

- **21.5.12.6.5 if_two_toks** - testing if two tokens are defined with logical operator
- **21.5.12.6.8 if_nall_toks** - logically opposite directive
- **21.5.12.6.2 if_tok** - test if any given tokens are defined

Continue to **21.5.12.6.8 if_nall_toks** or return to **21.5.12.6 Tokens and Tokens vs Tokens** or **21.5.12 Snippet Directives**.
21.5.12.6.8 if_nall_toks

The **if_nall_toks** directive tests whether all of the given tokens are undefined.

The syntax is:

```plaintext
@ if_nall_toks <token> [<token>... <token>]
// Commands to be processed when statement is true
@ end_if
```

- **<token>** - the name of the token to test.
  - At least one token must be specified, however, multiple tokens can be included. Multiple tokens should be separated by whitespace.
  - If all of the tokens are undefined, the statement is true.
  - If any of the tokens are defined, the statement is false.
  - Multiple tokens are handled as if joined by logical AND statements.

**NOTE:** This directive simply tests whether the token is defined and not whether the value is valid or blank.

```plaintext
@ def_tok T1
@ def_tok T2
@ def_tok T3

@ if_nall_toks T1
 user_message "Didn't find token T1"
@ end_if

@ if_nall_toks T1 T2
 user_message "Didn't find tokens T1 or T2"
@ end_if

@ if_nall_toks T1 T2 T3
 user_message "Didn't find tokens T1, T2 or T3"
@ end_if
```

See also:

- 21.5.12.6.7 if_all_toks - logically opposite directive
- 21.5.12.6.3 if_ntok - testing if any given tokens are undefined

Continue to 21.5.12.6.9 if_tok_eq_tok or return to 21.5.12.6 Tokens and Tokens vs Tokens or 21.5.12 Snippet Directives.
21.5.12.6.9 if_tok_eq_tok

The **if_tok_eq_tok** directive tests whether a token is equal to another token.

The syntax is:

```plaintext
@ if_tok_eq_tok <token1> <token2>
// Commands to be processed when statement is true
@ end_if
```

*<token1>* - the first token to be compared.

*<token2>* - the second token to be compared.

*token1* and *token2* are compared using a character comparison (i.e. text-based, not numeric).

- If the token1 and token2 values are equal, the statement is true.
- If the token1 and token2 values do not match, the statement is false.
- If either or both token1 or token2 are undefined, the statement is false.

```plaintext
@ def_tok TOK1 "alpha"
@ def_tok TOK2 "bravo"

@ if_tok_eq TOK1 TOK2
 user_message "Tokens 1 and 2 are equal"
@ else
 user_message "Tokens 1 and 2 are not equal or undefined"
@ end_if
```

See also:

- **21.5.12.6.10 if_tok_neq_tok** - logically opposite directive
- if_tok_eq_str - testing against a string
- if_tok_eq_dbl - testing against a double
- if_tok_eq_int - testing against an integer

Continue to **21.5.12.6.10 if_tok_neq_tok** or return to **21.5.12.6 Tokens and Tokens vs Tokens** or **21.5.12 Snippet Directives**.
21.5.12.6.10 if_tok_neq_tok

The if_tok_neq_tok directive tests whether a token is not equal to another token.

The syntax is:

```plaintext
@ if_tok_neq_tok <token1> <token2>
// Commands to be processed when statement is true
@ end_if
```

- `<token1>` - the first token to be compared.
- `<token2>` - the second token to be compared.

`Token1` and `token2` are compared using a character comparison (i.e. text-based, not numeric).
If `token1` and `token2` values do not match, the statement is true.
If `token1` and `token2` values match, the statement is false.
If either `token1` or `token2` is undefined, an error message is produced and the statement is evaluated as true.

```plaintext
@ def_tok TOK1 "alpha"
@ def_tok TOK2 "bravo"

@ if_tok_neq_tok TOK1 TOK2
 user_message "Tokens 1 and 2 are not equal"
 @ else
 user_message "Tokens 1 and 2 are equal"
@ end_if
```

See also:

- 21.5.12.6.9 if_tok_eq_tok - logically opposite directive
- if_tok_neq_str - comparison against string
- if_tok_neq_dbl - comparison against double
- if_tok_neq_int - comparison against integer

Continue to 21.5.12.6.11 def_tok_minus or return to 21.5.12 Tokens and Tokens vs Tokens or 21.5.12 Snippet Directives.
21.5.12.6.11 def_tok_minus

The **def_tok_minus** directive defines a token as the result of a single digit or character subtracted from another.

The syntax is:

```
@ def_tok_minus <token> <value1> <value2>
```

- `<token>` - the name of the token to define.
- `<value1>` - a single integer or character or parameter that evaluates to such
- `<value2>` - a single integer or character or parameter that evaluates to such

The value of token is taken as the result of subtracting value2 from value1.

To determine the value of `<token>`, **value1** and **value2** are converted to their equivalent numerical ASCII character code (e.g. 0 = 48, 9 = 57, A = 65, Z = 90, a = 97, z = 122).

The ASCII character code for value2 is subtracted from the ASCII character code for value1. The result is set as the value of `<token>`.

**Example with integers:**

Raw snippet values: `<value1> = 5, <value2> = 2`
Equivalent ASCII character codes: `<value1> = 53, <value2> = 50`
Token value = 53 - 50 = 3

**Example with letters:**

Raw snippet values: `<value1> = D, <value2> = B`
Equivalent ASCII character codes: `<value1> = 68, <value2> = 66`
Token value = 68 - 66 = 2

For single-digit integers, this is the same as the basic arithmetic on the integers.

For single-digit integers, this is the same as the basic arithmetic on the integers.

For this reason, it is recommended that `<value1>` and `<value2>` are of the same type and case. That is, both values are:

- **integers (0-9)**
- **upper-case single letters (A-Z); or**
- **lower-case single letters (a-z).**

Mixing value types - e.g. integer and letter - will likely result in unexpected behaviour.

It is possible for `<value1>` or `<value2>` to contain parameters, e.g. "$\{(WIDTH)\}$", so long as the parameters evaluate to a single digit or character.

It is not possible to use tokens in either `<value1>` or `<value2>` due to the order in which snippets are processed and tokens substituted. For more information see [21.5.14 Order of Snippet Processing](#).

If value1 or value2 is not a single character, an error message will be produced.
Defining and Using Snippets

TIP - To ensure value1 and value2 are single characters, use the substring functionality to only use the first character.

// PARAMETER LANE1 INTEGER "Start lane" 5
// PARAMETER LANE2 INTEGER "End lane" 2

// ASCII character codes:
// 5 = 53
// 2 = 50

@ def_tok_minus NUM_LANES $(LANE1) $(LANE2)
// For LANE1 = 5, LANE2 = C, NUM_LANES = 53 - 50 = 3
user_message "Number of lanes between start and end = $(NUM_LANES)"

// PARAMETER LANE1 TEXT "Start lane character (A-Z)" "F"
// PARAMETER LANE2 TEXT "End lane character (A-Z)" "C"

// ASCII character codes:
// F = 70
// C = 67

@ def_tok_minus NUM_LANES $(LANE1) $(LANE2)
// For LANE1 = F and LANE2 = C, NUM_LANES = 70 - 67 = 3
user_message "Number of lanes between start and end = $(NUM_LANES)"

// PARAMETER LANE1 TEXT "Start lane character (A-Z)" "FAST"
// PARAMETER LANE2 TEXT "End lane character (A-Z)" "CAR"

// Using substring functionality to only use the 1st character of each parameter
@ def_tok_minus NUM_LANES $(LANE1[1:1]) $(LANE2[1:1])
user_message "Number of lanes between start and end = $(NUM_LANES)"

Continue to 21.5.12.6.12 def_tok_minus_inc or return to 21.5.12.6 Tokens and Tokens vs Tokens or 21.5.12 Snippet Directives.
21.5.12.6.12 def_tok_minus_inc

The **def_tok_minus_inc** defines a token with the result of a single digit or single-character subtracted from another, plus one.

That is, it is similar to **def_tok_minus**, but the result is one more than the equivalent def_tok_minus value (i.e. it is an inclusive subtraction).

The syntax is:

```
@ def_tok_minus_inc <token> <value1> <value2>
```

- `<token>` - the name of the token to define.
- `<value1>` - a single integer or character or parameter that evaluates to such
- `<value2>` - a single integer or character or parameter that evaluates to such

The value of token is taken as the result of subtracting value2 from value1 then adding one.

To determine the value of `<token>`, value1 and value2 are converted to their equivalent numerical ASCII character code (e.g. 0 = 48, 9 = 57, A = 65, Z = 90, a = 97, z = 122).

The ASCII character code for value2 is subtracted from the ASCII character code for value1 and one (1) is added. The result is set as the value of `<token>`.

**Example with integers:**

Raw snippet values:  
<value1> = 5, <value2> = 2  
Equivalent ASCII character codes:<value1> = 53, <value2> = 50  
Token value = 53 - 50 + 1 = 4

**Example with letters:**

Raw snippet values:  
<value1> = D, <value2> = B  
Equivalent ASCII character codes:<value1> = 68, <value2> = 66  
Token value = 68 - 66 + 1 = 3

For single-character integers, this is the same as the basic arithmetic on the integers.

For this reason, it is recommended that `<value1>` and `<value2>` are of the same type and case.

That is, both values are:

- integers (0-9)
- upper-case single letters (A-Z); or
- lower-case single letters (a-z).

Mixing value types - e.g. integer and letter - will likely result in unexpected behaviour.

It is possible for `<value1>` or `<value2>` to contain parameters, e.g. "$(WIDTH)"", so long as the parameters evaluate to a single character.

It is not possible to use tokens in either `<value1>` or `<value2>` due to the order in which snippets are processed and tokens substituted. For more information see 21.5.14 **Order of Snippet Processing**.

If value1 or value2 is not a single character, an error message will be produced.
Defining and Using Snippets

TIP - To ensure value1 and value2 are single characters, use the substring functionality to only use the first character.

```plaintext
// PARAMETER LANE1 INTEGER "Start lane" 5
// PARAMETER LANE2 INTEGER "End lane" 2

// ASCII character codes:
// 5 = 53
// 2 = 50

@ def_tok_minus_inc NUM_LANES $(LANE1) $(LANE2)
// For LANE1 = 5, LANE2 = C, NUM_LANES = 53 - 50 + 1 = 4
user_message "Number of lanes between start and end (inclusive) = $(NUM_LANES)"

// PARAMETER LANE1 TEXT "Start lane character (A-Z)" "F"
// PARAMETER LANE2 TEXT "End lane character (A-Z)" "C"

// ASCII character codes:
// F = 70
// C = 67

@ def_tok_minus NUM_LANES $(LANE1) $(LANE2)
// For LANE1 = F and LANE2 = C, NUM_LANES = 70 - 67 + 1 = 4
user_message "Number of lanes between start and end (inclusive) = $(NUM_LANES)"

// PARAMETER LANE1 TEXT "Start lane character (A-Z)" "FAST"
// PARAMETER LANE2 TEXT "End lane character (A-Z)" "CAR"

// Using substring functionality to only use the 1st character of each parameter
@ def_tok_minus NUM_LANES $(LANE1[1:1]) $(LANE2[1:1])
user_message "Number of lanes between start and end (inclusive) = $(NUM_LANES)"
```

Continue to 21.5.12.7 Tokens vs Strings or return to 21.5.12.6 Tokens and Tokens vs Tokens or 21.5.12 Snippet Directives.
21.5.12.7 Tokens vs Strings

The following directives compare a token value against given strings.

See

21.5.12.7.1 if_tok_eq_str
21.5.12.7.2 if_tok_neq_str

21.5.12.7.1 if_tok_eq_str

The if_tok_eq_str directive tests if a token's value is equal to any given strings.

The syntax is:

```
@ if_tok_eq_str <token> <string> [<string> ...
// Commands to be processed if statement is true
@end_if
```

- `<token>` - the name of the token to compare.
- `<string>` - the string to compare against the value of token.

At least one string must be specified; however, multiple strings can be included.

Multiple strings should be separated by whitespace. Strings should be enclosed in quotes.

If the value of token is equal to any of the strings, the statement is true.

If the value of token is not equal to any of the strings (i.e. the token value is equal to none of the given strings), the statement is false.

Multiple strings are handled as if joined by logical OR statements.

```
@ def_tok A_TOKEN "a token"
@ def_tok B_TOKEN "b token"

@ if_tok_eq_str A_TOKEN "a token" "b token" // must equal one of the list, should pass
 user_message "if_tok_eq_str = TRUE , A = a token OR b token"
@ else
 user_message "if_tok_eq_str = FALSE , A != x token OR y token"
@end_if
```

Continue to 21.5.12.7.2 if_tok_neq_str or return to 21.5.12 Tokens vs Strings or 21.5.12 Snippet Directives.
21.5.12.7.2 if_tok_neq_str

The if_tok_neq_str directive tests if a token is **not equal** to any of the given **strings**.

The syntax is:

```plaintext
@ if_tok_neq_str <token> <string> ['<string>'... '<string>']
// Commands to be processed if statement is true
@ end_if
```

**<token>** - the name of the token to compare.

**<string>** - the string to compare against the value of token.

At least one string must be specified, however, multiple strings can be included. Multiple strings should be separated by whitespace. Strings should be enclosed in quotes.

If the value of token is not equal to any of the strings, the statement is true.
If the value of token is equal to any of the string values, the statement is false.

Multiple strings are handled as if joined by logical OR statements.

```plaintext
@ def_tok A_TOKEN "a token"
@ def_tok B_TOKEN "b token"

@ if_tok_eq_str A_TOKEN "a token" "b token" // must equal one of the list, should pass
 user_message "if_tok_eq_str = TRUE , A = a token OR b token"

@ if tok_eq_str A_TOKEN "x token" "y token" // must equal one of the list, should fail
@ else
 user_message "if_tok_eq_str = FALSE , A != x token OR y token"
@ end_if
```

Continue to [21.5.12.8 Tokens vs Doubles](#) or return to [21.5.12 Tokens vs Strings](#) or [21.5.12 Snippet Directives](#).
21.5.12.8 Tokens vs Doubles

The following directives compare a token value against given doubles.

In these directives, `<double>` can be either a real number or an evaluation of a previously defined token. For example $(T49)$.

See

21.5.12.8.1 if tok_eq_dbl
21.5.12.8.2 if tok_eq_dbl_tol
21.5.12.8.3 if tok_neq_dbl
21.5.12.8.4 if tok_neq_dbl_tol
21.5.12.8.5 if tok_lt_dbl
21.5.12.8.6 if tok_lt_dbl_tol
21.5.12.8.7 if tok_le_dbl
21.5.12.8.8 if tok_le_dbl_tol
21.5.12.8.9 if tok_gt_dbl
21.5.12.8.10 if tok_gt_dbl_tol
21.5.12.8.11 if tok_ge_dbl
21.5.12.8.12 if tok_ge_dbl_tol
21.5.12.8.13 if tok_gt_dbl
21.5.12.8.14 if tok_gt_dbl_tol
21.5.12.8.15 if tok_ge_dbl
21.5.12.8.16 if tok_ge_dbl_tol
21.5.12.8.17 if tok_in_range_dbl
21.5.12.8.18 if tok_in_range_dbl_tol
21.5.12.8.19 if tok_nin_range_dbl
21.5.12.8.20 if tok_nin_range_dbl_tol

Or return to 21.5 Defining and Using Snippets.
21.5.12.8.1 if_tok_eq_dbl

The **if_tok_eq_dbl** directive tests if a token's value is **equal** to any given **double** values, within a fixed tolerance of 1.0\times10^{-6} (i.e. 1.0E-6).

The syntax is:

```plaintext
@ if_tok_eq_dbl <token> <double> [<double>... <double>]
// Commands processed if statement is true
@ end_if
```

- `<token>` - the name of the token to test.
- `<double>` - the double value to compare against the value of token.
  
  **double** can be a real number or the evaluation of a token eg $(T49)$.

At least one double value must be specified, however, multiple double values can be included.

Multiple double values should be separated by whitespace.

If the value of token is equal to any of the doubles within the tolerance, the statement is true.

If the value of token is not equal to any of the doubles within the tolerance, the statement is false.

If the token is undefined, the snippet will produce an error.

Multiple double values are handled as if joined by logical OR statements.

```plaintext
@ def_tok WIDTH 3.5

@ if_tok_eq_dbl WIDTH 3.0 3.5 4.0
 user_message "WIDTH is equal to 3.0, 3.5 or 4.0 within a tolerance of 1e-6"
@ end_if
```

Continue to **21.5.12.8.2 if_tok_eq_dbl_tol** or return to **21.5.12 Tokens vs Doubles** or **21.5.12 Snippet Directives**.
21.5.12.8.2 if_tok_eq_dbl_tol

The *if_tok_eq_dbl_tol* directive tests if a token's value is equal to any given double value, within a given tolerance.

The syntax is:

```verbatim
@ if_tok_eq_dbl_tol <token> <double> [<double> ... <double>] <tolerance>
// Commands processed if statement is true
@ end_if
```

- `<token>` - the name of the token to test.
- `<double>` - the double value to compare against the value of token.
  - At least one double value must be specified, however, multiple double values can be included. Multiple double values should be separated by whitespace.
  - Double values should not be quoted.
- `<tolerance>` - the tolerance, expressed as a valid double value, for comparison.
  - This value must be specified and must be the last value.

If the value of token is equal to any of the doubles within the tolerance, the statement is true.
If the value of token is not equal to any of the doubles within the tolerance, the statement is false.
If the token is undefined, the snippet will produce an error.
Multiple double values are handled as if joined by logical OR statements.

```verbatim
@ def_tok WIDTH 3.5

@ if_tok_eq_dbl_tol WIDTH 3.5 0.1
 user_message "WIDTH is equal to 3.5 within a tolerance of 0.1"
@ end_if
```

Continue to 21.5.12.8.3 if_tok_neq_dbl or return to 21.5.12.8 Tokens vs Doubles or 21.5.12 Snippet Directives.
21.5.12.8.3 if_tok_neq_dbl

The if_tok_neq_dbl directive tests if a token's value is not equal to any of the given doubles, within a fixed tolerance of 1.0x10^-6 \((i.e. \text{1.0E-6})\).

The syntax is:

\[
\text{@ if_tok_neq_dbl } <\text{token}> <\text{double}> \[<\text{double}>... <\text{double}>] \\
// Commands processed if statement is true \\
\text{@ end_if}
\]

\(<\text{token}>\) - the name of the token to test.
\(<\text{double}>\) - the double value to compare against the value of token.

At least one double value must be specified, however, multiple double values can be included.

Multiple double values should be separated by whitespace.

Double values should not be quoted.

If the value of token is not equal to any of the doubles within the tolerance, the statement is true.
If the value of token is equal to any of the doubles within the tolerance, the statement is false.
If the token is undefined, the snippet will produce an error.

Multiple double values are handled as if joined by logical OR statements.

\[
\text{@ def_tok WIDTH 3.5} \\
\text{@ if_tok_neq_dbl WIDTH 3.0} \\
\text{\quad user_message } "\text{WIDTH is not equal to 3.0 within a tolerance of 1e-6}" \\
\text{@ end_if}
\]

Continue to 21.5.12.8.4 if_tok_neq_dbl_tol or return to 21.5.12.8 Tokens vs Doubles or 21.5.12 Snippet Directives.
21.5.12.8.4 if_tok_neq_dbl_tol

The if_tok_neq_dbl_tol directive tests if a token's value is not equal to any given double values, within a given tolerance.

The syntax is:

```plaintext
@if_tok_neq_dbl_tol <token> <double> [... <double>] <tolerance>
// Commands processed if statement is true
@end_if
```

- `<token>` - the name of the token to test.
- `<double>` - the double value to compare against the value of token.
  At least one double value must be specified, however, multiple double values can be included.
  Multiple double values should be separated by whitespace.
  Double values should not be quoted.
- `<tolerance>` - the tolerance, expressed as a valid double value, for comparison.
  This value must be specified and must be the last value.

If the value of token is not equal to any of the double values within the tolerance, the statement is true.
If the value of token is equal to any of the double values within the tolerance, the statement is false.
If the token is undefined, the snippet will produce an error.
Multiple double values are handled as if joined by logical OR statements.

```plaintext
@ def_tok WIDTH 3.5

@if_tok_neq_dbl_tol WIDTH 3.0 0.1
 user_message "WIDTH is not equal to 3.0 within a tolerance of 0.1"
@end_if
```

Continue to 21.5.12.8.5 if_tok_lt_dbl or return to 21.5.12.8 Tokens vs Doubles or 21.5.12 Snippet Directives.
21.5.12.8.5 if_tok_lt_dbl

The **if_tok_lt_dbl** directive tests if a token is less than any given doubles, within a fixed tolerance of 1.0 x 10^-6 (1.0E-6).

The syntax is:

```plaintext
@ if_tok_lt_dbl <token> <double> [<double>... <double>]
// Commands processed if true
@ end_if
```

- `<token>` - the name of the token to test.
- `<double>` - the double value to compare against the value of token. At least one double value must be specified, however, multiple double values can be included. Multiple double values should be separated by whitespace. Double values should not be quoted.

If the token value is less than any of the double values within the tolerance, the statement is true.

If the token value is not less than any of the double values within the tolerance (i.e. the token value is greater than or equal to all double values), the statement is false.

If the token is undefined, the snippet will produce an error.

Multiple doubles are handled as if joined by logical OR statements.

---

```plaintext
@ def_tok WIDTH 3.5

@ if_tok_lt_dbl WIDTH 4.0
 user_message "WIDTH is less than 4.0 within a tolerance of 1e-6"
@ end_if
```

Continue to 21.5.12.8.6 if_tok_lt_dbl_tol or return to 21.5.12.8 Tokens vs Doubles or 21.5.12 Snippet Directives.
21.5.12.8.6 if_tok_lt_dbl_tol

The **if_tok_lt_dbl_tol** directive tests if a token is less than any given doubles, within a given tolerance. The comparison is numerical.

The syntax is:

```plaintext
@ if_tok_lt_dbl_tol <token> <double> [<double>... <double>] <tolerance>
// Commands processed if true
@ end_if
```

- **<token>** - the name of the token to test.
- **<double>** - the double value to compare against the value of token. At least one double value must be specified, however, multiple double values can be included. Multiple double values should be separated by whitespace. Double values should not be quoted.
- **<tolerance>** - the tolerance, expressed as a valid double value, for comparison. This value must be specified and must be the last value.

If the token value is less than any of the double values within the tolerance, the statement is true.

If the token value is not less than any of the double values within the tolerance (i.e. the token is greater than or equal to all double values), the statement is false.

If the token is undefined, the snippet will produce an error.

Multiple doubles are handled as if joined by logical OR statements.

```plaintext
@ def_tok WIDTH 3.5
@ if_tok_lt_dbl_tol WIDTH 4.0 0.1
 user_message "WIDTH is less than 4.0 within a tolerance of 0.1"
@ end_if
```

Continue to 21.5.12.8.7 if_tok_le_dbl or return to 21.5.12.8 Tokens vs Doubles or 21.5.12 Snippet Directives.
21.5.12.8.7 if_tok_le_db1

The if_tok_le_db1 directive tests if a token is less than or equal to any given doubles, within a fixed tolerance of 1.0 x 10-6 (1.0E-6).

The syntax is:

```
@ if_tok_le_db1 <token> <double> [<double>... <double>]
// Commands processed if true
@ end_if
```

- `<token>` - the name of the token to test.
- `<double>` - the double value to compare against the value of token. At least one double value must be specified, however, multiple double values can be included. Multiple double values should be separated by whitespace. Double values should not be quoted.

If the token value is less than or equal to any of the double values within the tolerance, the statement is true.

If the token value is not less than or equal to any of the double values within the tolerance, the statement is false.

If the token is undefined, the snippet will produce an error.

Multiple doubles are handled as if joined by logical OR statements.

@ def_tok WIDTH 3.5

@ if_tok_le_db1 WIDTH 3.5
  user_message "WIDTH is less than or equal to 3.5 within a tolerance of 1e-6"
@ end_if

@ if_tok_le_db1 WIDTH 3.5 4.0
  user_message "WIDTH is less than or equal to 3.5 or 4.0 within a tolerance of 1e-6"
@ end_if

Continue to 21.5.12.8.8 if_tok_le_db1_tol or return to 21.5.12.8 Tokens vs Doubles or 21.5.12 Snippet Directives.
21.5.12.8.8 if_tok_le_dbl_tol

The if_tok_le_dbl_tol directive tests if a token is less than or equal to any given double values, within a given tolerance.

The syntax is:

```bash
@ if_tok_le_dbl_tol <token> <double> [<double>]... <tolerance>
// Commands processed if true
@ end_if
```

- `<token>` - the name of the token to test.
- `<double>` - the double value to compare against the value of token. At least one double value must be specified, however, multiple double values can be included. Multiple double values should be separated by whitespace. Double values should not be quoted.
- `<tolerance>` - the tolerance, expressed as a valid double value, for comparison. This value must be specified and must be the last value.

If the token value is less than or equal to any of the double values within the tolerance, the statement is true.

If the token value is not less than or equal to any of the double values within the tolerance, the statement is false.

If the token is undefined, the snippet will produce an error.

Multiple doubles are handled as if joined by logical OR statements.

```bash
@ def_tok WIDTH 3.5
@ if_tok_le_dbl_tol WIDTH 3.5 0.1
 user_message "WIDTH is less than or equal to 3.5 within a tolerance of 0.1"
@ end_if
@ if_tok_le_dbl_tol WIDTH 3.5 4.0 0.1
 user_message "WIDTH is less than or equal to 3.5 or 4.0 within a tolerance of 0.1"
@ end_if
```

Continue to 21.5.12.8.9 if_tok_gt_dbl or return to 21.5.12 Tokens vs Doubles or 21.5.12 Snippet Directives.
21.5.12.8.9 if_tok_gt_dbl

The **if_tok_gt_dbl** directive tests if a token is greater than any given doubles, within a fixed tolerance of 1.0 x 10^-6 (1.0E-6).

The syntax is:

```
@ if_tok_gt_dbl <token> <double> [<double>... <double>]
// Commands processed if true
@ end_if
```

- `<token>` - the name of the token to test.
- `<double>` - the double value to compare against the value of token. At least one double value must be specified, however, multiple double values can be included. Multiple double values should be separated by whitespace. Double values should not be quoted.

If the token value is greater than any of the double values within the tolerance, the statement is true.

If the token value is not greater than any of the double values within the tolerance (i.e. the token value is less than or equal to all double values), the statement is false.

If the token is undefined, the snippet will produce an error.

Multiple doubles are handled as if joined by logical OR statements.

```
@ def_tok WIDTH 3.5

@ if_tok_gt_dbl WIDTH 3.0
 user_message "WIDTH is greater than 3.0 within a tolerance of 1e-6"
@ end_if

@ if_tok_gt_dbl WIDTH 3.0 4.0
 user_message "WIDTH is greater than 3.0 or 4.0 within a tolerance of 1e-6"
@ end_if
```

Continue to **21.5.12.8.10 if_tok_gt_dbl_tol** or return to **21.5.12 Tokens vs Doubles** or **21.5.12 Snippet Directives**.
21.5.12.8.10 if_tok_gt_dbl_tol

The `if_tok_gt_dbl_tol` directive tests if a token is greater than any given double values, within a given tolerance.

The syntax is:

```
@ if_tok_gt_dbl_tol <token> <double> [<double>... <double>] <tolerance>
// Commands processed if true
@ end_if
```

- `<token>` - the name of the token to test.
- `<double>` - the double value to compare against the value of token.
  - At least one double value must be specified, however, multiple double values can be included.
  - Multiple double values should be separated by whitespace.
  - Double values should not be quoted.
- `<tolerance>` - the tolerance, expressed as a valid double value, for comparison. This value must be specified and must be the last value.

If the token value is greater than any of the double values within the tolerance, the statement is true.

If the token value is not greater than any of the double values within the tolerance (i.e. the token is less than or equal to all double values), the statement is false.

If the token is undefined, the snippet will produce an error.

Multiple doubles are handled as if joined by logical OR statements.

```
@ def_tok WIDTH 3.5

@ if_tok_gt_dbl_tol WIDTH 3.0 0.1
 user_message "WIDTH is greater than 3.5 within a tolerance of 0.1"
@ end_if

@ if_tok_gt_dbl_tol WIDTH 3.0 3.5
 user_message "WIDTH is greater than 3.0 or 3.5 within a tolerance of 0.1"
@ end_if
```

Continue to 21.5.12.8.11 if_tok_ge_dbl or return to 21.5.12.8 Tokens vs Doubles or 21.5.12 Snippet Directives.
21.5.12.8.11 if_tok_ge_dbl

The if_tok_ge_dbl directive tests if a token is greater than or equal to any given double values, within a fixed tolerance of 1.0 x 10^-6 (1.0E-6).

```plaintext
@ if_tok_ge_dbl <token> <double> [<double>... <double>]
// Commands processed if true
@ end_if
```

- `<token>` - the name of the token to test.
- `<double>` - the double value to compare against the value of token. At least one double value must be specified, however, multiple double values can be included. Multiple double values should be separated by whitespace. Double values should not be quoted.

If the token value is greater than or equal to any of the double values within the tolerance, the statement is true.

If the token value is not greater than or equal to any of the double values within the tolerance (i.e. the token value is less than all double values), the statement is false.

If the token is undefined, the snippet will produce an error.

Multiple doubles are handled as if joined by logical OR statements.

```plaintext
@ def_tok WIDTH 3.5

@ if_tok_le_dbl WIDTH 3.5
 user_message "WIDTH is less than or equal to 3.5 within a tolerance of 1e-6"
@ end_if
@ if_tok_le_dbl WIDTH 3.5 4.0
 user_message "WIDTH is less than or equal to 3.5 or 4.0 within a tolerance of 1e-6"
@ end_if
```

Continue to 21.5.12.8.12 if_tok_le_dbl_tol or return to 21.5.12 Tokens vs Doubles or 21.5.12 Snippet Directives.
21.5.12.8.12 if_tok_le_dbl_tol

The *if_tok_le_dbl_tol* directive tests if a token is less than or equal to any given double values, within a given tolerance.

The syntax is:

```plaintext
@ if_tok_le_dbl_tol <token> <double> [<double> ... <double>] <tolerance>
// Commands processed if true
@ end_if
```

- `<token>` - the name of the token to test.
- `<double>` - the double value to compare against the value of token. At least one double value must be specified, however, multiple double values can be included. Multiple double values should be separated by whitespace. Double values should not be quoted.
- `<tolerance>` - the tolerance, expressed as a valid double value, for comparison. This value must be specified and must be the last value.

If the token value is less than or equal to any of the double values within the tolerance, the statement is true.

If the token value is not less than or equal to any of the double values within the tolerance, the statement is false.

If the token is undefined, the snippet will produce an error.

Multiple doubles are handled as if joined by logical OR statements.

```plaintext
@ def_tok WIDTH 3.5

@ if_tok_le_dbl_tol WIDTH 3.5 0.1
 user_message "WIDTH is less than or equal to 3.5 within a tolerance of 0.1"
@ end_if

@ if_tok_le_dbl_tol WIDTH 3.5 4.0 0.1
 user_message "WIDTH is less than or equal to 3.5 or 4.0 within a tolerance of 0.1"
@ end_if
```

Continue to 21.5.12.8.13 *if_tok_gt_dbl* or return to 21.5.12 Tokens vs Doubles or 21.5.12 Snippet Directives.
21.5.12.8.13 if_tok_gt_dbl

The if_tok_gt_dbl directive tests if a token is greater than any given doubles, within a fixed tolerance of 1.0 x 10^-6 (1.0E-6).

The syntax is:

```
@ if_tok_gt_dbl <token> <double> [<double>... <double>]
// Commands processed if true
@ end_if
```

- `<token>` - the name of the token to test.
- `<double>` - the double value to compare against the value of token. At least one double value must be specified, however, multiple double values can be included. Multiple double values should be separated by whitespace. Double values should not be quoted.

If the token value is greater than any of the double values within the tolerance, the statement is true.

If the token value is not greater than any of the double values within the tolerance (i.e. the token value is less than or equal to all double values), the statement is false.

If the token is undefined, the snippet will produce an error.

Multiple doubles are handled as if joined by logical OR statements.

```
@ def_tok WIDTH 3.5

@ if_tok_gt_dbl WIDTH 3.0
 user_message "WIDTH is greater than 3.0 within a tolerance of 1e-6"
@ end_if

@ if_tok_gt_dbl WIDTH 3.0 4.0
 user_message "WIDTH is greater than 3.0 or 4.0 within a tolerance of 1e-6"
@ end_if
```

Continue to 21.5.12.8.14 if_tok_gt_dbl_tol or return to 21.5.12 Tokens vs Doubles or 21.5.12 Snippet Directives.
21.5.12.8.14 if_tok_gt_dbl_tol

The if_tok_gt_dbl_tol directive tests if a token is greater than any given double values, within a given tolerance.

The syntax is:

```verbatim
@ if_tok_gt_dbl_tol <token> <double> [<double>... <double>] <tolerance>
// Commands processed if true
@ end_if
```

- `<token>` - the name of the token to test.
- `<double>` - the double value to compare against the value of token. At least one double value must be specified, however, multiple double values can be included. Multiple double values should be separated by whitespace. Double values should not be quoted.
- `<tolerance>` - the tolerance, expressed as a valid double value, for comparison. This value must be specified and must be the last value.

If the token value is greater than any of the double values within the tolerance, the statement is true.

If the token value is not greater than any of the double values within the tolerance (i.e. the token is less than or equal to all double values), the statement is false.

If the token is undefined, the snippet will produce an error.

Multiple doubles are handled as if joined by logical OR statements.

```verbatim
@ def_tok WIDTH 3.5

@ if_tok_gt_dbl_tol WIDTH 3.0 0.1
 user_message "WIDTH is greater than 3.5 within a tolerance of 0.1"
@ end_if

@ if_tok_gt_dbl_tol WIDTH 3.0 3.5
 user_message "WIDTH is greater than 3.0 or 3.5 within a tolerance of 0.1"
@ end_if
```

Continue to 21.5.12.8.15 if_tok_ge_dbl or return to 21.5.12 Tokens vs Doubles or 21.5.12 Snippet Directives.
21.5.12.8.15 if_tok_ge_dbl

The if_tok_ge_dbl directive tests if a token is greater than or equal to any given double values, within a fixed tolerance of 1.0 x 10^{-6} (1.0E-6).

The syntax is:

```
@ if_tok_ge_dbl <token> <double> [<double>... <double>]
// Commands processed if true
@ end_if
```

- `<token>` - the name of the token to test.
- `<double>` - the double value to compare against the value of token. At least one double value must be specified, however, multiple double values can be included. Multiple double values should be separated by whitespace. Double values should not be quoted.

If the token value is greater than or equal to any of the double values within the tolerance, the statement is true.

If the token value is not greater than or equal to any of the double values within the tolerance (i.e. the token value is less than all double values), the statement is false.

If the token is undefined, the snippet will produce an error.

Multiple doubles are handled as if joined by logical OR statements.

```
@ def_tok WIDTH 3.5

@ if_tok_ge_dbl WIDTH 3.5
user_message "WIDTH is greater than or equal to 3.5 within a tolerance of 1e-6"
@ end_if

@ if_tok_ge_dbl WIDTH 3.5 4.0
user_message "WIDTH is greater than or equal to 3.5 or 4.0 within a tolerance of 1e-6"
@ end_if
```

Continue to 21.5.12.8.16 if_tok_ge_dbl_tol or return to 21.5.12.8 Tokens vs Doubles or 21.5.12 Snippet Directives.
21.5.12.8.16 if_tok_ge_dbl_tol

The `if_tok_ge_dbl_tol` directive tests if a token is greater than or equal to any given double values, within a given tolerance.

The syntax is:

```plaintext
@if_tok_ge_dbl_tol <token> <double> [<double> ... <double>] <tolerance>
// Commands processed if true
@end_if
```

- `<token>` - the name of the token to test.
- `<double>` - the double value to compare against the value of token. At least one double value must be specified, however, multiple double values can be included. Multiple double values should be separated by whitespace. Double values should not be quoted.
- `<tolerance>` - the tolerance, expressed as a valid double value, for comparison. This value must be specified and must be the last value.

If the token value is greater than or equal to any of the double values within the tolerance, the statement is true.

If the token value is not greater than or equal to any of the double values within the tolerance (i.e. the token value is less than all double values), the statement is false.

If the token is undefined, the snippet will produce an error.

Multiple doubles are handled as if joined by logical OR statements.

```plaintext
@ def_tok WIDTH 3.5

@ if_tok_ge_dbl_tol WIDTH 3.5 0.1
 user_message "WIDTH is greater than or equal to 3.5 within a tolerance of 0.1"
 @ end_if

@ if_tok_ge_dbl_tol WIDTH 3.5 4.0
 user_message "WIDTH is greater than or equal to 3.5 or 4.0 within a tolerance of 0.1"
 @ end_if
```

Continue to 21.5.12.8.17 if_tok_in_range_dbl or return to 21.5.12.8 Tokens vs Doubles or 21.5.12 Snippet Directives.
21.5.12.8.17 if_tok_in_range_db1

The `if_tok_in_range_db1` directive tests if a token is between two double values, within a fixed tolerance of $1.0 \times 10^{-6}$ ($1.0E-6$).

The syntax is:

```plaintext
@ if_tok_in_range_db1 <token> <lower> <upper>
// Commands processed if true
@ end_if
```

- `<token>` - the name of the token to test.
- `<lower>` - the double representing the lower bound of the range to check against the token. This value must be specified.
- `<upper>` - the double representing the upper bound of the range to check against the token. This value must be specified.

If the token value is within the range from lower to upper within the tolerance, the statement is true.

If the token is not defined or is outside the range from lower to upper within the tolerance, the statement is false.

If the token is undefined, the snippet will produce an error.

```plaintext
@ def_tok WIDTH 3.5
@ if_tok_in_range_db1 WIDTH 3.0 4.0
 user_message "WIDTH is within range 3.0 to 4.0 within a tolerance of 1e-6"
@ else
 user_message "WIDTH is outside range 3.0 to 4.0 within a tolerance of 1e-6"
@ end_if
```

Continue to 21.5.12.8.18 if_tok_in_range_db1_tol or return to 21.5.12.8 Tokens vs Doubles or 21.5.12 Snippet Directives.
21.5.12.8.18 if_tok_in_range_dbl_tol

The **if_tok_in_range_dbl** directive tests if a token is between two double values, within a given tolerance.

The syntax is:

```plaintext
@ if_tok_in_range_dbl <token> <lower> <upper> <tolerance>
// Commands processed if true
@ end_if
```

- **<token>** - the name of the token to compare.
- **<lower>** - the double value representing the lower bound of the range to check against the token. This value must be specified.
- **<upper>** - the double value representing the upper bound of the range to check against the token. This value must be specified.
- **<tolerance>** - the tolerance, expressed as a valid double value, for comparison. This value must be specified and must be the last value.

If the token value is within the range from lower to upper within the tolerance, the statement is true.

If the token is outside the range from lower to upper within the tolerance, the statement is false.

If the token is undefined, the snippet will produce an error.

```plaintext
@ def_tok WIDTH 3.5
@ if_tok_in_range_dbl_tol WIDTH 3.0 4.0 0.1
 user_message "WIDTH is within range 3.0 to 4.0 within a tolerance of 0.1"
@ else
 user_message "WIDTH is outside range 3.0 to 4.0 within a tolerance of 0.1"
@ end_if
```

Continue to **21.5.12.8.19 if_tok_nin_range_dbl** or return to **21.5.12.8 Tokens vs Doubles** or **21.5.12 Snippet Directives**.
21.5.12.8.19 if_tok_nin_range_dbl

The `if_tok_nin_range_dbl` directive tests if a token is not between two double values, within a fixed tolerance of 1.0 x 10-6 (1.0E-6).

The syntax is:

```plaintext
@ if_tok_nin_range_dbl <token> <lower> <upper>
// Commands processed if true
@ end_if
```

- `<token>` - the name of the token to compare.
- `<lower>` - the double value representing the lower bound of the range to check against the token. This value must be specified.
- `<upper>` - the double value representing the upper bound of the range to check against the token. This value must be specified.

If the token value is within the range from lower to upper within the tolerance, the statement is true.
If the token is outside the range from lower to upper within the tolerance, the statement is false.
If the token is undefined, the snippet will produce an error.

```plaintext
@ def_tok WIDTH 4.0

@ if_tok_nin_range WIDTH 3.0 3.5
 user_message "WIDTH is not within range 3.0 to 3.5 within a tolerance of 1e-6"
@ end_if
```

See also:
- `if_tok_in_range_dbl` - logically opposite directive
- `if_val_nin_range_dbl` - for testing values rather than tokens

Continue to 21.5.12.8.20 if_tok_nin_range_dbl_tol or return to 21.5.12.8 Tokens vs Doubles or 21.5.12 Snippet Directives.
21.5.12.8.20 if_tok_nin_range_dbl_tol

The **if_tok_nin_range_dbl_tol** directive tests if a token is between two double values, within a given tolerance.

The syntax is:

```
@ if_tok_nin_range_dbl <token> <lower> <upper> <tolerance>
// Commands processed if true
@ end_if
```

- **<token>** - the name of the token to compare.
- **<lower>** - the double value representing the lower bound of the range to check against the token. This value must be specified.
- **<upper>** - the double value representing the upper bound of the range to check against the token. This value must be specified.
- **<tolerance>** - the tolerance, expressed as a valid double value, for comparison. This value must be specified and must be the last value.

If the token value is not within the range from lower to upper within the tolerance, the statement is true.

If the token is within the range from lower to upper within the tolerance, the statement is false.

If the token is undefined, the snippet will produce an error.

```
@ def_tok WIDTH 4.0

@ if_tok_nin_range_dbl_tol WIDTH 3.0 3.5 0.1
 user_message "WIDTH is not within the range 3.0 to 3.5 within a tolerance of 0.1"
@ end_if
```

See also:
- if_tok_nin_range_dbl - for comparison with fixed tolerance
- if_tok_in_range_dbl_tol - logically opposite directive
- if_val_nin_range_dbl_tol - for testing of values rather than tokens

Continue to [21.5.12.9 Tokens vs Integers](#) or return to [21.5.12.8 Tokens vs Doubles](#) or [21.5.12 Snippet Directives](#).
21.5.12.9 Tokens vs Integers

The following directives compare a token value against given integers.

See

- \texttt{if\_tok\_eq\_int}
- \texttt{if\_tok\_neq\_int}
- \texttt{if\_tok\_lt\_int}
- \texttt{if\_tok\_le\_int}
- \texttt{if\_tok\_gt\_int}
- \texttt{if\_tok\_ge\_int}

Or return to \texttt{21.5 Defining and Using Snippets}. 
21.5.12.9.1 if_tok_eq_int

The if_tok_eq_int directive tests if a token equals any of the given integers.

The syntax is:

```plaintext
@ if_tok_eq_int <token> <integer> [integer]... <integer>
// Commands to be processed if true
@ end_if
```

- `<token>` - the name of the token to compare.
- `<integer>` - the integer value to compare against the token. At least one integer must be specified, however, multiple integers can be included. Multiple integers should be separated by whitespace.

If the token value is equal to any of the integers, the statement is true.
If the token value is not equal to any of the integers, the statement is false.
If the token is undefined, the snippet will produce an error.
Multiple integers are handled as if joined by logical OR statements.

```plaintext
@ def_tok NUM_LANES 2
@ if_tok_eq_int NUM_LANES 2
 user_message "NUM_LANES equals 2"
@ end_if
@ if_tok_eq_int NUM_LANES 2 3 4
 user_message "NUM_LANES equals 2, 3 or 4"
@ end_if
```

See also:
- if_tok_neq_int - logically opposite directive
- if_tok_eq_dbl - for comparison with doubles
- if_val_eq_int - for testing of values rather than tokens

Continue to 21.5.12.9.2 if_tok_neq_int or return to 21.5.12 Tokens vs Integers or 21.5.12 Snippet Directives.
21.5.12.9.2 if_tok_neq_int

The if_tok_neq_int directive tests if a token does not equal any of the integers.

The syntax is:

```plaintext
@ if_tok_neq_int <token> <integer> [<integer>... <integer>]
// Commands to be processed if true
@ end_if
```

- `<token>` - the name of the token to compare.
- `<integer>` - the integer value to compare against the token. At least one integer must be specified, however, multiple integers can be included. Multiple integers should be separated by whitespace.

If the token value does not equal any of the integers, the statement is true.
If the token value equals any of the integers, the statement is false.
If the token is undefined, the snippet will produce an error.
Multiple integers are handled as if joined by logical OR statements.

```plaintext
@ def_tok NUM_LANES 2
@ if_tok_neq_int NUM_LANES 2
 user_message "NUM_LANES is not equal to 2"
@ end_if
@ if_tok_neq_int NUM_LANES 2 3 4
 user_message "NUM_LANES equal to 2, 3 or 4"
@ end_if
```

See also:
if_tok_eq_int - logically opposite directive
if_tok_neq_dbl - for comparison with doubles
if_val_neq_int - for testing of values rather than tokens

Continue to 21.5.12.9.3 if_tok_lt_int or return to 21.5.12.9 Tokens vs Integers or 21.5.12 Snippet Directives.
21.5.12.9.3 if_tok_lt_int

The **if_tok_lt_int** directive tests if a token is less than any given integers. The comparison is numerical.

The syntax is:

```plaintext
@ if_tok_lt_int <token> <integer> [<integer>... <integer>]
// Commands processed if true
@ end_if
```

- **<token>** - the name of the token to compare.
- **<integer>** - the integer value to compare against the token. At least one integer must be specified, however, multiple integers can be included. Multiple integers should be separated by whitespace.

If the token value is less than any of the integers, the statement is true.
If the token value is not less than any of the integers (i.e. the token value is greater than or equal to all integer values), the statement is false.
If the token is undefined, the snippet will produce an error.

Multiple integers are handled as if joined by logical OR statements.

```plaintext
@ def_tok NUM_LANES 2

@ if_tok_lt_int NUM_LANES 3
 user_message "NUM_LANES is less than 3"
@ end_if

@ if_tok_lt_int NUM_LANES 2 3 4
 user_message "NUM_LANES is less than 2, 3 or 4"
@ end_if
```

See also:
- **if_tok_le_int** - for less than or equal to comparison against integers
- **if_tok_gt_int** - for greater than comparison against integers
- **if_tok_ge_int** - for greater than or equal to comparison against integers
- **if_tok_lt_dbl** - for comparison against doubles
- **if_val_lt_int** - for testing of values rather than tokens

Continue to 21.5.12.9.4 if_tok_le_int or return to 21.5.12.9 Tokens vs Integers or 21.5.12 Snippet Directives.
21.5.12.9.4 if_tok_le_int

The if_tok_le_int directive tests if a token is less than or equal to any given integers. The comparison is numerical.

The syntax is:

```plaintext
@ if_tok_le_int <token> <integer> [<integer>... <integer>]
// Commands processed if true
@ end_if
```

- `<token>` - the name of the token to compare.
- `<integer>` - the integer value to compare against the token. At least one integer must be specified, however, multiple integers can be included. Multiple integers should be separated by whitespace.

If the token value is less than or equal to any of the integers, the statement is true.
If the token value is not less than or equal to any of the integers (i.e. the token value is greater than all integer values), the statement is false.
If the token is undefined, the snippet will produce an error.
Multiple integers are handled as if joined by logical OR statements.

```plaintext
@ def_tok NUM_LANES 2

@ if_tok_le_int NUM_LANES 2
 user_message "NUM_LANES is less than or equal to 2"
@ end_if

@ if_tok_le_int NUM_LANES 2 3 4
 user_message "NUM_LANES is less than or equal to 2, 3 or 4"
@ end_if
```

See also:
- if_tok_lt_int - for less than comparison against integers
- if_tok_gt_int - for greater than comparison against integers
- if_tok_ge_int - for greater than or equal to comparison against integers
- if_tok_le_dbl - for comparison against doubles
- if_val_le_int - for testing of values rather than tokens

Continue to 21.5.12.9.5 if_tok_gt_int or return to 21.5.12.9 Tokens vs Integers or 21.5.12 Snippet Directives.
21.5.12.9.5 \texttt{if\_tok\_gt\_int}

The \texttt{if\_tok\_gt\_int} directive tests if a token is greater than any given integers. The comparison is numerical.

The syntax is:

\begin{verbatim}
@ if_tok_gt_int <token> <integer> [<integer>... <integer>]
// Commands processed if true
@ end_if
\end{verbatim}

\texttt{<token>} - the name of the token to compare.

\texttt{<integer>} - the integer value to compare against the token. At least one integer must be specified, however, multiple integers can be included. Multiple integers should be separated by whitespace.

If the token value is greater than any of the integers, the statement is true.

If the token value is not greater than any of the integers (i.e. the token value is less than or equal to all integer values), the statement is false.

If the token is undefined, the snippet will produce an error.

Multiple integers are handled as if joined by logical OR statements.

\begin{verbatim}
@ def_tok NUM_LANES 3
@ if_tok_neq_int NUM_LANES 2
  user_message "NUM_LANES is greater than 2"
@ end_if

@ if_tok_neq_int NUM_LANES 2 3 4
  user_message "NUM_LANES is greater than 2, 3 or 4"
@ end_if
\end{verbatim}

See also:

\begin{itemize}
  \item \texttt{if\_tok\_le\_int} - for less than or equal to comparison against integers
  \item \texttt{if\_tok\_lt\_int} - for less than comparison against integers
  \item \texttt{if\_tok\_ge\_int} - for greater than or equal to comparison against integers
  \item \texttt{if\_tok\_gt\_dbl} - for comparison against doubles
  \item \texttt{if\_val\_gt\_int} - for testing of values rather than tokens
\end{itemize}

Continue to 21.5.12.9.6 \texttt{if\_tok\_ge\_int} or return to 21.5.12.9 Tokens vs Integers or 21.5.12 Snippet Directives.
21.5.12.9.6 if\_tok\_ge\_int

The \texttt{if\_tok\_ge\_int} directive tests if a token is greater than or equal to any given integers.

The syntax is:

\begin{verbatim}
@ if\_tok\_ge\_int <token> <integer> [... <integer>]
// Commands processed if true
@end\_if
\end{verbatim}

\texttt{<token>} - the name of the token to compare.

\texttt{<integer>} - the integer value to compare against the token. At least one integer must be specified, however, multiple integers can be included. Multiple integers should be separated by whitespace.

If the token value is greater than or equal to any of the integers, the statement is true.

If the token value is not greater than or equal to any of the integers (\textit{i.e.} the token value is less than all integer values), the statement is false.

If the token is undefined, the snippet will produce an error.

Multiple integers are handled as if joined by logical OR statements.

\begin{verbatim}
@ def\_tok NUM\_LANES 2
@ if\_tok\_ge\_int NUM\_LANES 2
  user\_message \textquotedblleft NUM\_LANES is greater than or equal to 2\textquotedblright
@ end\_if

@ if\_tok\_ge\_int NUM\_LANES 2 3 4
  user\_message \textquotedblleft NUM\_LANES is greater than or equal to 2, 3 or 4\textquotedblright
@ end\_if
\end{verbatim}

See also:

- \texttt{if\_tok\_lt\_int} - for less than comparison against integers
- \texttt{if\_tok\_gt\_int} - for greater than comparison against integers
- \texttt{if\_tok\_le\_int} - for less than or equal to comparison against integers
- \texttt{if\_tok\_ge\_dbl} - for comparison against doubles
- \texttt{if\_val\_ge\_int} - for testing of values rather than tokens

Continue to 21.5.12.10 Values Defined and Value vs Value or return to 21.5.12.9 Tokens vs Integers or 21.5.12 Snippet Directives.
21.5.12.10 Values Defined and Value vs Value

The following directives test whether values are empty and compare values with other values. Values can be parameter values (i.e. substituted) or raw values (i.e. in the file).

Note: these directives should not be used with tokens. The order in which parameters, directives and tokens are processed and substituted (see section 21.5.14 Order of Snippet Processing) will likely result in unexpected results.

See

21.5.12.10.1 if_val
21.5.12.10.2 if_nval
21.5.12.10.3 if_all_vals
21.5.12.10.4 if_nall_vals

Or return to 21.5 Defining and Using Snippets.
21.5.12.10.1 if_val

The if_val directive tests if any of the given values are empty.

The syntax is:

```plaintext
@ if_val <value> [<value>... <value>]
// Commands processed if statement is true
@ end_if
```

- `<value>` - the value to test. At least one value must be specified, however, multiple values can be included. Multiple values should be separated by whitespace.
- If any of the values are not empty, the statement is true.
- If all of the values are empty, the statement is false.
- Multiple values are handled as if joined by logical OR statements.
- NOTE: This directive simply tests whether the value is defined and exists and not whether the value is valid or blank.

```plaintext
// PARAMETER PA TEXT "PA" OPTIONAL
// PARAMETER PB TEXT "PB" OPTIONAL
// PARAMETER PC TEXT "PC" OPTIONAL

@ if_val "$(PA)"
user_message "Found PA"
@ end_if

@ if_val "$(PA)" "$(PB)"
user_message "Found PA or PB"
@ end_if

@ if_val "$(PA)" "$(PB)" "$(PC)"
user_message "Found PA or PB or PC"
@ end_if
```

Continue to 21.5.12.10.2 if_nval or return to 21.5.12.10 Values Defined and Value vs Value or 21.5.12 Snippet Directives.
21.5.12.10.2 if_nval

The if_nval directive tests if any of the given values are empty.

The syntax is:

```
@ if_nval <value> [<value>... <value>]
// Commands processed if statement is true
@ end_if
```

- The `if_nval` directive tests if any of the given values are empty.
- The syntax is: `<value>` - the value to test. At least one value must be specified, however, multiple values can be included. Multiple values should be separated by whitespace.
- If any of the values are empty, the statement is true.
- If none of the values are empty, the statement is false.
- Multiple values are handled as if joined by logical OR statements.

```
// PARAMETER PA TEXT "PA" OPTIONAL
// PARAMETER PB TEXT "PB" OPTIONAL
// PARAMETER PC TEXT "PC" OPTIONAL

@ if_nval "$(PA)"
user_message "Not found PA"
@ end_if

@ if_nval "$(PA)" "$(PB)"
user_message "Not found PA and PB"
@ end_if

@ if_nval "$(PA)" "$(PB)" "$(PC)"
user_message "Not found PA, PB and PC"
@ end_if
```

Continue to 21.5.12.10.3 if_all_vals or return to 21.5.12.10 Values Defined and Value vs Value or 21.5.12 Snippet Directives.
21.5.12.10.3 if_all_vals

The **if_all_vals** directive tests whether all given values are not empty.

The syntax is:

```
@ if_all_vals <value> [... <value>]
// Commands to be processed when statement is true
@ end_if
```

**<value>** - the value to test. At least one value must be specified, however, multiple values can be included. Multiple values should be separated by whitespace.

If all of the values are not empty, the statement is true.

If any of the values are empty, the statement is false.

Multiple values are handled as if joined by logical AND statements.

```
@ if_all_vals "$(PA)"
 user_message "PA exists"
@ end_if

@ if_all_vals "$(PA)" "$(PB)"
 user_message "PA and PB both exist!"
@ end_if

@ if_all_vals "$(PA)" "$(PB)" "$(PC)"
 user_message "PA, PB and PC all exist!"
@ else
 user_message "One of PA, PB or PC does not exist"
@ end_if
```

Continue to 21.5.12.10.4 if_nall_vals or return to 21.5.12.10 Values Defined and Value vs Value or 21.5.12 Snippet Directives.
21.5.12.10.4 if_nall_vals

The **if_nall_vals** directive tests if all of the given values are empty.

The syntax is:

```plaintext
@ if_nall_vals <value> [<value>... <value>]
// Commands to be processed when statement is true
@ end_if
```

- `<value>` - the value to test. At least one value must be specified, however, multiple values can be included. Multiple values should be separated by whitespace.
- If all of the values are empty, the statement is true.
- If any of the values are not empty, the statement is false.
- Multiple values are handled as if joined by logical AND statements.

```plaintext
@ if_nall_vals "$(PA)"
user_message "PA does not exist."
@ end_if

@ if_nall_vals "$(PA)" "$(PB)"
user_message "PA and PB do not exist.!
@ end_if

@ if_nall_vals "$(PA)" "$(PB)" "$(PC)"
user_message "PA,PB and PC do not exist."
@ end_if
```

Continue to 21.5.12.11 Values vs Strings or return to 21.5.12.10 Values Defined and Value vs Value or 21.5.12 Snippel Directives.
21.5.12.11 Values vs Strings

The following directives compare a value against given strings. Comparison is character-based and not numerical (e.g. "1" does not equal "1.0" or "01").

See

21.5.12.11.1 if_val_eq_str
21.5.12.11.2 if_val_neq_str

Or return to 21.5 Defining and Using Snippets.

21.5.12.11.1 if_val_eq_str

The if_val_eq_str directive tests if a value is equal to any of the given strings.
The syntax is:

```
@if_val_eq_str <value> <string> [<string> ... <string>]
// Commands processed if statement is true
@end if
```

- `<value>` - is the value to compare. One and only one value must be specified.
- `<string>` - is the string to compare against the value. At least one string must be specified, however, multiple strings can be included. Multiple strings should be separated by whitespace.

Strings or values containing whitespace should be enclosed in quotation marks.
If the value is equal to any of the strings, the statement is true.
If the value is not equal to any of the string values, the statement is false.
Multiple strings are handled as if joined by logical OR statements.

```
// PARAMETER KT TEXT "Kerb type" "SA"

@if_val_eq_str "$\{KT\}" "SA"
 user_message "Kerb type is equal to SA"
@end if

@if_val_eq_str "$\{KT\}" "SA" "SM"
 user_message "Kerb type is equal to either SA or SM"
@end if
```

Continue to 21.5.12.11.2 if_val_neq_str or return to 21.5.12.11 Values vs Strings or 21.5.12 Snippet Directives.
21.5.12.11.2 if_val_neq_str

The \texttt{if\_val\_neq\_str} directive tests if a value is not equal to any of the given strings.

The syntax is:

\begin{verbatim}
@if_val_neq_str <value> <string> [... <string>]
// Commands processed if statement is true
@end if
\end{verbatim}

\begin{itemize}
  \item \texttt{<value>} - is the value to compare. One and only one value must be specified.
  \item \texttt{<string>} - is the string to compare against the value. At least one string must be specified, however, multiple strings can be included. Multiple strings should be separated by whitespace.
  \item Strings or values containing whitespace should be enclosed in quotation marks.
  \item If the value is not equal to any of the strings, the statement is true.
  \item If the value is not equal to none of the strings (\textit{i.e.} it is equal to all strings), the statement is false.
  \item Multiple strings are handled as if joined by logical OR statements.
\end{itemize}

\begin{verbatim}
// PARAMETER KT TEXT "Kerb type" "SB"
@if_val_neq_str "$(KT)" "SA"
  user_message "Kerb type is not equal to SA"
@end if
@if_val_neq_str "$(KT)" "SA" "SM"
  user_message "Kerb type is not equal to either SA or SM"
@end if
\end{verbatim}

Continue to 21.5.12.12 \texttt{Values vs Doubles} or return to 21.5.12.11 \texttt{Values vs Strings} or 21.5.12 \texttt{Snippet Directives}.
21.5.12.12 Values vs Doubles

The following directives compare a token value against given doubles. Comparison is numerical.

See

21.5.12.12.1 if_val_eq_dbl
21.5.12.12.2 if_val_eq_dbl_tol
21.5.12.12.3 if_val_neq_dbl
21.5.12.12.4 if_val_neq_dbl_tol
21.5.12.12.5 if_val_lt_dbl
21.5.12.12.6 if_val_lt_dbl_tol
21.5.12.12.7 if_val_le_dbl
21.5.12.12.8 if_val_le_dbl_tol
21.5.12.12.9 if_val_gt_dbl
21.5.12.12.10 if_val_gt_dbl_tol
21.5.12.12.11 if_val_ge_dbl
21.5.12.12.12 if_val_ge_dbl_tol
21.5.12.12.13 if_val_in_range_dbl
21.5.12.12.14 if_val_in_range_dbl_tol
21.5.12.12.15 if_val_nin_range_dbl
21.5.12.12.16 if_val_nin_range_dbl_tol

Or return to 21.5 Defining and Using Snippets.
21.5.12.12.1 if_val_eq_dbl

The if_val_eq_dbl directive tests if a value is equal to any of the given double values, with a fixed tolerance of 1.0 x 10^-6 (1.0E-6).

The syntax is:

```
@ if_val_eq_dbl <value> <double> [<double> ... <double>]
// Commands processed if statement is true
@ end_if
```

- `<value>` - the value to compare. The value should evaluate to a numeric value – integer or double.
- `<double>` - the double to compare against the value. At least one double must be specified, however, multiple double can be included. Multiple double should be separated by whitespace.

Values containing whitespace should be enclosed in quotation marks.
If the value is equal to any of the doubles within the tolerance, the statement is true.
If the value is not equal to any of the doubles within the tolerance, the statement is false.
If the value or any doubles do not evaluate to a valid number, an error is produced.
Multiple doubles are handled as if joined by logical OR statements.

```
// PARAMETER WIDTH REAL "Lane width" 3.5
@ if_val_eq_dbl $\{(WIDTH)\} 3.5
 user_message "WIDTH is equal to 3.5 within a tolerance of 1e-6"
@ end_if
```

Continue to 21.5.12.12.2 if_val_eq_dbl_tol or return to 21.5.12 Values vs Doubles or 21.5.12 Snippet Directives.
21.5.12.12.2 if_val_eq_dbl_tol

The if_val_eq_dbl_tol directive tests if a value is equal to any given double value, within a given tolerance.

The syntax is:

```plaintext
@if_val_eq_dbl_tol <value> <double> [... <double>] <tolerance>
// Commands processed if statement is true
@end_if
```

- `<value>` - the value to compare. The value should evaluate to a numeric value—integer or double.
- `<double>` - the double to compare against the value. At least one double must be specified, however, multiple double can be included. Multiple double should be separated by whitespace.
- `<tolerance>` - the tolerance, expressed as a valid double value, for comparison. This value must be specified and must be the last value.

If the value is equal to any of the double values within the tolerance, the statement is true.
If the value is not equal to any of the double values within the tolerance, the statement is false.
If the value or any doubles do not evaluate to a valid number, an error is produced.
Multiple double values are handled as if joined by logical OR statements.

```plaintext
// PARAMETER WIDTH REAL "Lane width" 3.5
@if_val_eq_dbl_tol $(WIDTH) 3.5 0.1
 user_message "WIDTH is equal to 3.5 within a tolerance of 0.1"
@end_if
```

Continue to 21.5.12.12.3 if_val_neq_dbl or return to 21.5.12.12 Values vs Doubles or 21.5.12 Snippet Directives.
21.5.12.12.3 if_val_neq_dbl

The \texttt{if\_val\_neq\_dbl} directive tests if a value is not equal to any of the given doubles, with a fixed tolerance of 1.0 \times 10^{-6} (1.0E-6).

The syntax is:

\begin{verbatim}
@ if_val_neq_dbl <value> <double> [ <double> ... <double> ]
// Commands processed if statement is true
@ end_if
\end{verbatim}

- \texttt{<value>} - the value to compare. The value should evaluate to a numeric value - integer or double.
- \texttt{<double>} - the double to compare against the value. At least one double must be specified, however, multiple double can be included. Multiple double should be separated by whitespace.

If the value is not equal to any of the doubles within the tolerance, the statement is true.
If the value is equal to all of the doubles within the tolerance, the statement is false.
If the value or any doubles do not evaluate to a valid number, an error is produced.
Multiple doubles are handled as if joined by logical OR statements.

\begin{verbatim}
// PARAMETER WIDTH REAL "Lane width" 3.5
@ if_val_neq_dbl $(WIDTH) 3.0
  user_message "WIDTH is not equal to 3.0 within a tolerance of 1e-6"
@ end_if
\end{verbatim}

Continue to 21.5.12.12.4 \texttt{if\_val\_neq\_dbl\_tol} or return to 21.5.12.12 Values vs Doubles or 21.5.12 Snippet Directives.
21.5.12.12.4 if_val_neq_dbl_tol

The `if_val_neq_dbl_tol` directive tests if a value is not equal to any given doubles, within a given tolerance.

The syntax is:

```plaintext
@if_val_neq_dbl_tol <value> <double> [<double> ... <double>] <tolerance>
// Commands processed if statement is true
@end_if
```

- `<value>` - the value to compare. The value should evaluate to a numeric value- integer or double.
- `<double>` - the double to compare against the value. At least one double must be specified, however, multiple double can be included. Multiple double should be separated by whitespace.
- `<tolerance>` - the tolerance, expressed as a valid double value, for comparison. This value must be specified and must be the last value.

If the value is not equal to any of the doubles within the tolerance, the statement is true.
If the value is equal to all of the doubles within the tolerance, the statement is false.
If the value or any doubles do not evaluate to a valid number, an error is produced.
Multiple double values are handled as if joined by logical OR statements.

```plaintext
// PARAMETER WIDTH REAL "Lane width" 3.5
@if_val_neq_dbl_tol $(WIDTH) 3.0 0.1
 user_message "WIDTH is not equal to 3.0 within a tolerance of 0.1"
@end_if
```

Continue to 21.5.12.12.5 if_val_lt_dbl or return to 21.5.12.12 Values vs Doubles or 21.5.12 Snippet Directives.
21.5.12.12.5 if_val_lt_dbl

The if_val_lt_dbl directive tests if a value is less than any of the given double values within a fixed tolerance of 1.0 \times 10^{-6} (1.0E-6).

The syntax is:

```plaintext
@if_val_lt_dbl <value> <double> [<double>... <double>]
// Commands processed if true
@end_if
```

- `<value>` - the value to compare. The value should evaluate to a numeric value - integer or double.
- `<double>` - the double to compare against the value. At least one double must be specified, however, multiple double can be included. Multiple double should be separated by whitespace.

  If the value is less than any of the doubles within the tolerance, the statement is true.
  If the value is not less than any of the doubles within the tolerance (i.e. the value is greater than or equal to all doubles), the statement is false.
  If the value or any doubles do not evaluate to a valid number, an error is produced.

Multiple doubles are handled as if joined by logical OR statements.

```plaintext
// PARAMETER WIDTH REAL "Lane width" 3.5
@if_val_lt_dbl $(WIDTH) 4.0
 user_message "WIDTH is less than 4.0 within a tolerance of 1e-6"
@end_if

@if_val_lt_dbl $(WIDTH) 3.0 3.5 4.0
 user_message "WIDTH is less than 3.0, 3.5 or 4.0 within a tolerance of 1e-6"
@end_if
```

Continue to 21.5.12.12.6 if_val_lt_dbl_tol or return to 21.5.12 Values vs Doubles or 21.5.12 Snippet Directives.
21.5.12.12.6 if_val_lt_dbl_tol

The if_val_lt_dbl_tol directive tests if a value is less than any given double values, within a given tolerance.

The syntax is:

```plaintext
@if_val_lt_dbl_tol <value> <double> [<double>... <double>] <tolerance>
// Commands processed if true
@end_if
```

- `<value>` - the value to compare. The value should evaluate to a numeric value - integer or double.
- `<double>` - the double to compare against the value. At least one double must be specified, however, multiple double can be included. Multiple double should be separated by whitespace.
- `<tolerance>` - the tolerance, expressed as a valid double value, for comparison. This value must be specified and must be the last value.

If the value is less than any of the doubles within the tolerance, the statement is true.
If the value is not less than any of the doubles within the tolerance (i.e. the value is greater than or equal to all doubles), the statement is false.
If the value or any doubles do not evaluate to a valid number, an error is produced.

Multiple doubles are handled as if joined by logical OR statements.

```plaintext
// PARAMETER WIDTH REAL "Lane width" 3.5
@if_val_lt_dbl_tol $(WIDTH) 4.0 0.1
 user_message "WIDTH is less than 4.0 within a tolerance of 0.1"
@end_if
@if_val_lt_dbl_tol $(WIDTH) 3.0 3.5 4.0 0.1
 user_message "WIDTH is less than 3.0, 3.5 or 4.0 within a tolerance of 0.1"
@end_if
```

Continue to 21.5.12.12.7 if_val_le_dbl or return to 21.5.12.12 Values vs Doubles or 21.5.12 Snippet Directives.
21.5.12.12.7 if_val_le_dbl

The if_val_le_dbl directive tests if a value is less than or equal to any of the given double values within a fixed tolerance of 1.0 x 10^-6 (1.0E-6).

The syntax is:

```plaintext
@if_val_le_dbl <value> <double> [<double>... <double>]
// Commands processed if true
@end_if
```

- `<value>` - the value to compare. The value should evaluate to a numeric value - integer or double.
- `<double>` - the double to compare against the value. At least one double must be specified, however, multiple double can be included. Multiple double should be separated by whitespace.

If the value is less than or equal to any of the doubles within the tolerance, the statement is true.
If the value is not less than or equal to any of the doubles within the tolerance (i.e. the value is greater than all doubles), the statement is false.
If the value or any doubles do not evaluate to a valid number, an error is produced.
Multiple doubles are handled as if joined by logical OR statements.

```plaintext
// PARAMETER WIDTH REAL "Lane width" 3.5
@if_val_le_dbl $(WIDTH) 3.5
 user_message "WIDTH is less than or equal to 3.5 within a tolerance of 1e-6"
@end_if

@if_val_le_dbl $(WIDTH) 3.0 3.5 4.0
 user_message "WIDTH is less than or equal to 3.0, 3.5 or 4.0 within a tolerance of 1e-6"
@end_if
```

Continue to 21.5.12.12.8 if_val_le_dbl_tol or return to 21.5.12.12 Values vs Doubles or 21.5.12 Snippet Directives.
21.5.12.12.8 if_val_le_dbl_tol

The if_val_le_dbl_tol directive tests if a value is less than or equal to any given doubles, within a given tolerance.

The syntax is:

```plaintext
@if tok_le_dbl_tol <value> <double> [<double>... <double>] <tolerance>
// Commands processed if true
@end_if
```

- `<value>` - the value to compare. The value should evaluate to a numeric value - integer or double.
- `<double>` - the double to compare against the value. At least one double must be specified, however, multiple double can be included. Multiple double should be separated by whitespace.
- `<tolerance>` - the tolerance, expressed as a valid double value, for comparison. This value must be specified and must be the last value.

If the value is less than or equal to any of the doubles within the tolerance, the statement is true.
If the value is not less than or equal to any of the doubles within the tolerance (i.e. the value is greater than all of the doubles), the statement is false.
If the value or any doubles do not evaluate to a valid number, an error is produced.
Multiple doubles are handled as if joined by logical OR statements.

```plaintext
// PARAMETER WIDTH REAL "Lane width" 3.5
@if val_le_dbl_tol $(WIDTH) 3.5 0.1
 user_message "WIDTH is less than or equal to 3.5 within a tolerance of 0.1"
@end_if
@if val_le_dbl_tol $(WIDTH) 3.0 3.5 4.0 0.1
 user_message "WIDTH is less than or equal to 3.0, 3.5 or 4.0 within a tolerance of 0.1"
@end_if
```

Continue to 21.5.12.9 if_val_gt_dbl or return to 21.5.12 Values vs Doubles or 21.5.12 Snippet Directives.
21.5.12.9 if_val_gt dbl

The `if_val_gt dbl` directive tests if a value is greater than any of the given doubles, within a fixed tolerance of 1.0 x 10^-6 (1.0E-6).

The syntax is:

```bash
@if_val_gt dbl <value> <double> [<double>... <double>]
// Commands processed if true
@end_if
```

- `<value>` - the value to compare. The value should evaluate to a numeric value - integer or double.
- `<double>` - the double to compare against the value. At least one double must be specified, however, multiple double can be included. Multiple double should be separated by whitespace.

If the value is greater than any of the doubles within the tolerance, the statement is true.
If the value is not greater than any of the doubles within the tolerance (i.e. the value is less than or equal to all doubles), the statement is false.
If the value or any doubles do not evaluate to a valid number, an error is produced.
Multiple doubles are handled as if joined by logical OR statements.

```bash
// PARAMETER WIDTH REAL "Lane width" 3.5
@if_val_gt dbl $(WIDTH) 3.0
 user_message "WIDTH is greater than 3.5 within a tolerance of 1e-6"
@end_if
@if_val_gt dbl $(WIDTH) 3.0 3.5 4.0
 user_message "WIDTH is greater than 3.0, 3.5 or 4.0 within a tolerance of 1e-6"
@end_if
```

Continue to 21.5.12.8 if_val_le_dbl_tol or return to 21.5.12.8 Values vs Doubles or 21.5.12 Snippet Directives.
21.5.12.10 if_val_gt_dbl_tol

The `if_val_gt_dbl_tol` directive tests if a value is greater than any given double values, within a given tolerance.

The syntax is:

```
@ if_val_gt_dbl_tol <value> <double> [<double>... <double>] <tolerance>
// Commands processed if true
@ end_if
```

- `<value>` - the value to compare. The value should evaluate to a numeric value - integer or double.
- `<double>` - the double to compare against the value. At least one double must be specified, however, multiple double can be included. Multiple double should be separated by whitespace.
- `<tolerance>` - the tolerance, expressed as a valid double value, for comparison. This value must be specified and must be the last value.

If the value is greater than any of the doubles within the tolerance, the statement is true.

If the value is not greater than any of the doubles within the tolerance (i.e. the value is less than or equal to all doubles), the statement is false.

If the value or any doubles do not evaluate to a valid number, an error is produced.

Multiple doubles are handled as if joined by logical OR statements.

```
// PARAMETER WIDTH REAL "Lane width" 3.5

@ if_val_gt_dbl_tol $(WIDTH) 3.0 0.1
 user_message "WIDTH is greater than 3.0 within a tolerance of 0.1"
@ end_if

@ if_val_gt_dbl_tol $(WIDTH) 3.0 3.5 4.0 0.1
 user_message "WIDTH is greater than 3.0, 3.5 or 4.0 within a tolerance of 0.1"
@ end_if
```

Continue to 21.5.12.11 if_val_ge_dbl or return to 21.5.12 Values vs Doubles or 21.5.12 Snippet Directives.
21.5.12.11 if_val_ge_dbl

The *if_val_ge_dbl* directive tests if a value is greater than or equal to any of the given double values, within a fixed tolerance of $1.0 \times 10^{-6}$ ($1.0 \text{E-6}$).

The syntax is:

```plaintext
@ if_val_ge_dbl <value> <double> [<double>... <double>]
// Commands processed if true
@ end_if
```

*<value>* - the value to compare. The value should evaluate to a numeric value - integer or double.

*<double>* - the double to compare against the value. At least one double must be specified, however, multiple double can be included. Multiple double should be separated by whitespace.

If the value is greater than or equal to any of the doubles within the tolerance, the statement is true.

If the value is not greater than or equal to any of the doubles within the tolerance (*i.e.* the value is less than all of the double values), the statement is false.

If the value or any doubles do not evaluate to a valid number, an error is produced.

Multiple doubles are handled as if joined by logical OR statements.

```plaintext
// PARAMETER WIDTH REAL "Lane width" 3.5

@ if_val_ge_dbl $(WIDTH) 3.5
 user_message "WIDTH is greater than or equal to 3.5 within a tolerance of 1e-6"
@ end_if

@ if_val_gt_dbl $(WIDTH) 3.0 3.5 4.0
 user_message "WIDTH is greater than or equal to 3.0, 3.5 or 4.0 within a tolerance of 1e-6"
@ end_if
```

Continue to 21.5.12.12 if_val_ge_dbl_tol or return to 21.5.12 Values vs Doubles or 21.5.12 Snippet Directives.
21.5.12.12 if_val_ge_dbl_tol

The `if_val_ge_dbl_tol` directive tests if a value is greater than or equal to any given double values, within a given tolerance.

The syntax is:

```
@ if_val_ge_dbl_tol <value> <double> [<double>... <double>] <tolerance>
// Commands processed if true
@ end_if
```

- `<value>` - the value to compare. The value should evaluate to a numeric value - integer or double.
- `<double>` - the double to compare against the value. At least one double must be specified, however, multiple double can be included. Multiple double should be separated by whitespace.
- `<tolerance>` - the tolerance, expressed as a valid double value, for comparison. This value must be specified and must be the last value.

If the value is greater than or equal to any of the double within the tolerance, the statement is true.

If the value is not greater than or equal to any of the doubles within the tolerance (i.e. the value is less than all doubles), the statement is false.

If the value or any doubles do not evaluate to a valid number, an error is produced.

Multiple doubles are handled as if joined by logical OR statements.

```
// PARAMETER WIDTH REAL "Lane width" 3.5
@ if_val_ge_dbl_tol $(WIDTH) 3.0 0.1
 user_message "WIDTH is greater than or equal to 3.0 within a tolerance of 0.1"
@ end_if

@ if_val_ge_dbl_tol $(WIDTH) 3.0 3.5 4.0 0.1
 user_message "WIDTH is greater than or equal to 3.0, 3.5 or 4.0 within a tolerance of 0.1"
@ end_if
```

Continue to 21.5.12.13 if_val_in_range_dbl or return to 21.5.12.12 Values vs Doubles or 21.5.12 Snippet Directives.
21.5.12.12.13 if_val_in_range_dbl

The `if_val_in_range_dbl` directive tests if a value exists and is between two double values, within a fixed tolerance of 1.0 x 10-6 (1.0E-6).

The syntax is:

```
@ if_val_in_range_dbl <value> <lower> <upper>
// Commands processed if true
@end_if
```

- `<value>` - the value to compare. The value should evaluate to a numeric value—integer or double.
- `<lower>` - the double representing the lower bound of the range to check against value. This value must be specified.
- `<upper>` - the double representing the upper bound of the range to check against value. This value must be specified.

If the value is within the range from lower to upper within the tolerance, the statement is true. If the value is not within the range from lower to upper within the tolerance, the statement is false. If the value or any doubles do not evaluate to a valid number, an error is produced.

```
// PARAMETER WIDTH REAL "Lane width" 3.5

@ if_val_in_range_dbl $(WIDTH) 3.0 4.0
 user_message "WIDTH is between 3.0 and 4.0 within a tolerance of 1e-6"
@ end_if
```

Continue to 21.5.12.12.14 if_val_in_range_dbl_tol or return to 21.5.12.12 Values vs Doubles or 21.5.12 Snippet Directives.
21.5.12.12.14 if_val_in_range_dbl_tol

The if_val_in_range_dbl_tol directive tests if a value exists and is between two doubles, within a given tolerance.

The syntax is:

```
@if_val_in_range_dbl_tol <value> <lower> <upper> <tolerance>
// Commands processed if true
@end_if
```

- `<value>` - the value to compare. The value should evaluate to a numeric value- integer or double.
- `<lower>` - the double value representing the lower bound of the range to check against value. This value must be specified.
- `<upper>` - the double value representing the upper bound of the range to check against value. This value must be specified.
- `<tolerance>` - the tolerance, expressed as a valid double value, for comparison. This value must be specified and must be the last value.

If the value is within the range from lower to upper within the tolerance, the statement is true.
If the value is not within the range from lower to upper within the tolerance, the statement is false.
If the value or any doubles do not evaluate to a valid number, an error is produced.

```
// PARAMETER WIDTH REAL "Lane width" 3.5
@if_val_in_range_dbl_tol $(WIDTH) 3.0 4.0 0.1
 user_message "WIDTH is between 3.0 and 4.0 within a tolerance of 0.1"
@end_if
```

Continue to 21.5.12.12.15 if_val_nin_range_dbl or return to 21.5.12.12 Values vs Doubles or 21.5.12 Snippet Directives.
21.5.12.12.15 if_val_nin_range_dbl

The `if_val_nin_range_dbl` directive tests if a value exists and is not between two double values, within a given tolerance.

The syntax is:

```plaintext
@ if_val_nin_range_dbl <value> <lower> <upper>
// Commands processed if true
@ end_if
```

- `<value>` - the value to compare. The value should evaluate to a numeric value- integer or double.
- `<lower>` - the double representing the lower bound of the range to check against value. This value must be specified.
- `<upper>` - the double representing the upper bound of the range to check against value. This value must be specified.

If the value is not within the range from lower to upper within the tolerance, the statement is true. If the value is within the range from lower to upper within the tolerance, the statement is false. If the value or any doubles do not evaluate to a valid number, an error is produced.

```plaintext
// PARAMETER WIDTH REAL "Lane width" 4.0
@ if_val_nin_range_dbl $(WIDTH) 3.0 3.5
 user_message "WIDTH is outside the range 3.0 to 3.5 within a tolerance of 1e-6"
@ end_if
```

Continue to 21.5.12.12.16 if_val_nin_range_dbl_tol or return to 21.5.12.12 Values vs Doubles or 21.5.12 Snippet Directives.
21.5.12.16 if_val_nin_range_dbl_tol

The **if_val_nin_range_dbl_tol** directive tests if a value exists and is not between two double values, within a given tolerance.

The syntax is:

```plaintext
@ if_val_nin_range_dbl_tol <value> <lower> <upper> <tolerance>
// Commands processed if true
@ end_if
```

- `<value>` - the value to compare. The value should evaluate to a numeric value - integer or double.
- `<lower>` - the double representing the lower bound of the range to check against value. This value must be specified.
- `<upper>` - the double representing the upper bound of the range to check against value. This value must be specified.
- `<tolerance>` - the tolerance, expressed as a valid double value, for comparison. This value must be specified and must be the last value.

If the value is not within the range from lower to upper within the tolerance, the statement is true.
If the value is within the range from lower to upper within the tolerance, the statement is false.
If the value or any doubles do not evaluate to a valid number, an error is produced.

```plaintext
@ if_val_nin_range_dbl_tol $(WIDTH) 3.0 3.5 0.1
 user_message "WIDTH is outside the range 3.0 to 3.5 within a tolerance of 0.1"
@ end_if
```

Continue to **21.5.12.13 Values vs Integers** or return to **21.5.12.12 Values vs Doubles** or **21.5.12 Snippet Directives**.
21.5.12.13 Values vs Integers

The following directives compare a value against given integers.

See

21.5.12.13.1 if_val_eq_int
21.5.12.13.2 if_val_neq_int
21.5.12.13.3 if_val_eq_all_ints
21.5.12.13.4 if_val_neq_all_ints
21.5.12.13.5 if_val_lt_int
21.5.12.13.6 if_val_le_int
21.5.12.13.7 if_val_gt_int
21.5.12.13.8 if_val_ge_int
21.5.12.13.9 if_val_lt_all_ints
21.5.12.13.10 if_val_le_all_ints
21.5.12.13.11 if_val_gt_all_ints
21.5.12.13.12 if_val_ge_all_ints

Or return to 21.5 Defining and Using Snippets.

21.5.12.13.1 if_val_eq_int

The if_val_eq_int directive tests if a value equals any of the given integers.

The syntax is:

```plaintext
@if_val_eq_int <value> <integer> [... <integer>]
// Commands to be processed if true
@end_if
```

- `<value>` - the value to test. The value should evaluate to a valid integer.
- `<integer>` - the integer to compare against the value. At least one integer must be specified, however, multiple integers can be included. Multiple integers should be separated by whitespace.

If the value is equal to any of the integers, the statement is true.
If the value is not equal to any of the integers, the statement is false.
If the value or any integers do not evaluate to a valid integer, an error is produced.
Multiple integers are handled as if joined by logical OR statements.

```plaintext
// PARAMETER NUM_LANES INTEGER "Number of lanes" 2
@if_val_eq_int $(NUM_LANES) 2
 user_message "NUM_LANES is equal to 2"
@end_if
```

Continue to 21.5.12.13.2 if_val_neq_int or return to 21.5.12.13 Values vs Integers or 21.5.12 Snippet Directives.
21.5.12.13.2 if_val_neq_int

The `if_val_neq_int` directive tests if a value is not equal to any of the integers. The syntax is:

```
@ if_val_neq_int <value> <integer> [<integer>... <integer>]
// Commands to be processed if true
@ end_if
```

`<value>` - the value to test. The value should evaluate to a valid integer.

`<integer>` - the integer value to compare against the value. At least one integer must be specified, however, multiple integers can be included. Multiple integers should be separated by whitespace.

If the value is not equal to any of the integers, the statement is true.
If the value is equal to all of the integers, the statement is false.
If the value or any integers do not evaluate to a valid integer, an error is produced.

Multiple integers are handled as if joined by logical OR statements.

```
// PARAMETER NUM_LANES INTEGER "Number of lanes" 2
@ if_val_neq_int $(NUM_LANES) 3
 user_message "NUM_LANES is not equal to 3"
@ end_if
```

Continue to 21.5.12.13.3 if_val_eq_all_ints or return to 21.5.12.13 Values vs Integers or 21.5.12 Snippet Directives.
21.5.12.13.3 if_val_eq_all_ints
The if_val_eq_all_ints directive tests if a value is equal to all of the given integers.
The syntax is:

```
@ if_val_eq_all_ints <value> <integer> [<integer>... <integer>]
// Commands to be processed if true
@ end_if
```

- `<value>` - the value to test. The value should evaluate to a valid integer.
- `<integer>` - the integer to compare against the value. At least one integer must be specified, however, multiple integers can be included. Multiple integers should be separated by whitespace.

If the value is equal to all of the integers, the statement is true.
If the value is not equal to all of the integers, the statement is false.
If the value or any integers do not evaluate to a valid integer, an error is produced.
Multiple integers are handled as if joined by logical AND statements.

```
// PARAMETER NUM_LANES INTEGER "Number of lanes" 2

@ if_val_eq_all_ints $(NUM_LANES) 2
 user_message "NUM_LANES is equal to 2"
@ end_if

@ if_val_eq_all_ints $(NUM_LANES) 2 3 4
 user_message "NUM_LANES is equal to 2, 3 and 4" // This should never be true
@ end_if
```

Continue to 21.5.12.13.4 if_val_neq_all_ints or return to 21.5.12.13 Values vs Integers or 21.5.12 Snippet Directives.
21.5.12.13.4 if_val_neq_all_ints

The *if_val_neq_all_ints* directive tests if a value is not equal to all of the given integers.
The syntax is:

```
@ if_val_neq_all_ints <value> <integer> [<integer>... <integer>]
// Commands to be processed if true
@ end_if
```

- `<value>` - the value to test. The value should evaluate to a valid integer.
- `<integer>` - the integer to compare against the value. At least one integer must be specified, however, multiple integers can be included. Multiple integers should be separated by whitespace.

If the value is not equal to all of the integer values, the statement is true.
If the value is equal to any of the integer values, the statement is false.
If the value or any integers do not evaluate to a valid integer, an error is produced.
Multiple integers are handled as if joined by logical AND statements.

```
// PARAMETER NUM_LANES INTEGER "Number of lanes" 2

@ if_val_neq_all_ints $(NUM_LANES) 3 4 5
 user_message "NUM_LANES is not equal to 3, 4 AND 5"
@ end_if
```

Continue to 21.5.12.13.5 if_val_lt_int or return to 21.5.12.13 Values vs Integers or 21.5.12 Snippet Directives.
21.5.12.13.5 if_val_lt_int

The **if_val_lt_int** directive tests if a value is less than any given integers.

The syntax is:

```plaintext
@ if_val_lt_int <value> <integer> [<integer>... <integer>]
// Commands processed if true
@ end_if
```

- `<value>` - the value to test. The value should evaluate to a valid integer.
- `<integer>` - the integer value to compare against the value. At least one integer must be specified, however, multiple integers can be included. Multiple integers should be separated by whitespace.

If the value is less than any of the integers, the statement is true.

If the value is not less than any of the integers (*i.e.* the value is greater than or equal to all integer values), the statement is false.

If the value or any integers do not evaluate to a valid integer, an error is produced.

Multiple integers are handled as if joined by logical OR statements.

```plaintext
// PARAMETER NUM_LANES INTEGER "Number of lanes" 2

@ if_val_lt_int $(NUM_LANES) 3 4
 user_message "NUM_LANES is less than 3 or 4"
@ end_if
```

See also:
- if_val_le_int - for less than or equal to comparison against integers
- if_val_gt_int - for greater than comparison against integers
- if_val_ge_int - for greater than or equal to comparison against integers
- if_val_lt_dbl - for comparison against doubles
- if_tok_lt_int - for testing of tokens rather than values

Continue to 21.5.12.13.6 if_val_le_int or return to 21.5.12.13 Values vs Integers or 21.5.12 Snippet Directives.
21.5.12.13.6 if_val_le_int

The `if_val_le_int` directive tests if a value is less than or equal to any given integers.

The syntax is:

```verbatim
@if_val_le_int <value> <integer> [<integer>... <integer>]
// Commands processed if true
@end_if
```

- `<value>` - the value to test. The value should evaluate to a valid integer.
- `<integer>` - the integer value to compare against the value. At least one integer must be specified, however, multiple integers can be included. Multiple integers should be separated by whitespace.

If the value is less than or equal to any of the integers, the statement is true.
If the value is not less than or equal to any of the integers (i.e. the value is greater than all integer values), the statement is false.
If the value or any integers do not evaluate to a valid integer, an error is produced.
Multiple integers are handled as if joined by logical OR statements.

```
// PARAMETER NUM_LANES INTEGER "Number of lanes" 2
@if_val_le_int $(NUM_LANES) 3 4
 user_message "NUM_LANES is less than or equal to 3 or 4"
@end_if
```

See also:
- `if_val_lt_int` - for less than comparison against integers
- `if_val_gt_int` - for greater than comparison against integers
- `if_val_ge_int` - for greater than or equal to comparison against integers
- `if_val_le_dbl` - for comparison against doubles
- `if_tok_le_int` - for testing of tokens rather than values

Continue to 21.5.12.13.7 if_val_gt_int or return to 21.5.12.13 Values vs Integers or 21.5.12 Snippet Directives.
21.5.12.13.7 if_val_gt_int

The `if_val_gt_int` directive tests if a value is greater than any given integers.

The syntax is:

```
@ if_val_gt_int <value> <integer> [<integer> ... <integer>]
// Commands processed if true
@ end_if
```

- `<value>` - the value to test. The value should evaluate to a valid integer.
- `<integer>` - the integer to compare against the value. At least one integer must be specified, however, multiple integers can be included. Multiple integers should be separated by whitespace.

If the value is greater than any of the integers, the statement is true.
If the value is not greater than any of the integers (i.e. the value is less than or equal to all integer values), the statement is false.
If the value or any integers do not evaluate to a valid integer, an error is produced.
Multiple integers are handled as if joined by logical OR statements.

```
// PARAMETER NUM_LANES INTEGER "Number of lanes" 5
@ if_val_gt_int $(NUM_LANES) 3 4
 user_message "NUM_LANES is greater than 3 or 4"
@ end_if
```

See also:
- `if_val_le_int` - for less than or equal to comparison against integers
- `if_val_lt_int` - for less than comparison against integers
- `if_val_ge_int` - for greater than or equal to comparison against integers
- `if_val_gt_dbl` - for comparison against doubles
- `if_tok_gt_int` - for testing of tokens rather than values

Continue to 21.5.12.13.8 if_val_ge_int or return to 21.5.12.13 Values vs Integers or 21.5.12 Snippet Directives.
21.5.12.13.8 if_val_ge_int

The **if_val_ge_int** directive tests if a value is greater than or equal to any given integers.

The syntax is:

```plaintext
@if_val_ge_int <value> <integer> [<integer>... <integer>]
// Commands processed if true
@end_if
```

- `<value>` - the value to test. The value should evaluate to a valid integer.
- `<integer>` - the integer value to compare against the value. At least one integer must be specified, however, multiple integers can be included. Multiple integers should be separated by whitespace.

If the value is greater than or equal to any of the integers, the statement is true.
If the value is not greater than or equal to any of the integers *(i.e. the value is less than all integer values)*, the statement is false.
If the value or any integers do not evaluate to a valid integer, an error is produced.
Multiple integers are handled as if joined by logical OR statements.

```plaintext
//@ if_val_ge_int $(NUM_LANES) 3 4
user_message "NUM_LANES is greater than or equal to 3 or 4"
@end_if
```

See also:
- **if_val_lt_int** - for less than comparison against integers
- **if_val_gt_int** - for greater than comparison against integers
- **if_val_le_int** - for less than or equal to comparison against integers
- **if_val_ge_dbl** - for comparison against doubles
- **if_tok_ge_int** - for testing of tokens rather than values

Continue to [21.5.12.13.9 if_val_lt_all_ints](#) or return to [21.5.12.13 Values vs Integers](#) or [21.5.12 Snippet Directives](#).
21.5.12.13.9 if_val_lt_all_ints

The **if_val_lt_all_ints** directive tests if a value is less than all given integers. The comparison is numerical.

The syntax is:

```bash
@if_val_lt_all_ints <value> <integer> [<integer>... <integer>]
// Commands processed if true
@end_if
```

- `<value>` - the value to test. The value should evaluate to a valid integer.
- `<integer>` - the integer value to compare against the value. At least one integer must be specified, however, multiple integers can be included. Multiple integers should be separated by whitespace.

If the value is less than all of the integers, the statement is true.

If the value is not less than all of the integers (i.e. the value is greater than or equal to any integer values), the statement is false.

If the value or any integers do not evaluate to a valid integer, an error is produced.

Multiple integers are handled as if joined by logical AND statements.

```bash
// PARAMETER NUM_LANES INTEGER "Number of lanes" 2
@if_val_lt_all_ints $(NUM_LANES) 3 4 5
 user_message "NUM_LANES is less than 3, 4 AND 5"
@end_if
```

See also:

- `if_val_le_all_ints`- for less than or equal to comparison against integers
- `if_val_gt_all_ints` - for greater than comparison against integers
- `if_val_ge_all_ints` - for greater than or equal to comparison against integers
- `if_val_lt_int` - for comparison against any integers

Continue to 21.5.12.13.10 if_val_le_all_ints or return to 21.5.12.13 Values vs Integers or 21.5.12 Snippet Directives.
21.5.12.13.10 if_val_le_all_ints

The if_val_le_all_ints directive tests if a value is less than or equal to all given integers. The syntax is:

```
@if_val_le_all_ints <value> <integer> [<integer>... <integer>]
// Commands processed if true
@end_if
```

- `<value>` - the value to test. The value should evaluate to a valid integer.
- `<integer>` - the integer value to compare against the value. At least one integer must be specified, however, multiple integers can be included. Multiple integers should be separated by whitespace.

If the value is less than or equal to all of the integers, the statement is true.

If the value is not less than or equal to all of the integers (i.e. the value is greater than any integer), the statement is false.

If the value or any integers do not evaluate to a valid integer, an error is produced.

Multiple integers are handled as if joined by logical AND statements.

```
// PARAMETER NUM_LANES INTEGER "Number of lanes" 3
@if_val_le_all_ints $(NUM_LANES) 3 4 5
 user_message "NUM_LANES is less than or equal to 3, 4 AND 5"
@end_if
```

See also:
- if_val_lt_all_ints - for less than comparison against integers
- if_val_gt_all_ints - for greater than comparison against integers
- if_val_ge_all_ints - for greater than or equal to comparison against integers
- if_val_le_int - for comparison against any integers

Continue to 21.5.12.13.11 if_val_gt_all_ints or return to 21.5.12.13 Values vs Integers or 21.5.12 Snippet Directives.
21.5.12.13.11 if_val_gt_all_ints

The `if_val_gt_all_ints` directive tests if a value is greater than all given integers. The syntax is:

```
@ if_val_gt_all_ints <value> <integer> [<integer>... <integer>]
// Commands processed if true
@ end_if
```

- **<value>** - the value to test. The value should evaluate to a valid integer.
- **<integer>** - the integer value to compare against the value. At least one integer must be specified, however, multiple integers can be included. Multiple integers should be separated by whitespace.

If the value is greater than all of the integers, the statement is true.
If the value is not greater than all of the integers (i.e. the value is less than or equal to any integer), the statement is false.
If the value or any integers do not evaluate to a valid integer, an error is produced.
Multiple integers are handled as if joined by logical AND statements.

```
// PARAMETER NUM_LANES INTEGER "Number of lanes" 5

@ if_val_gt_all_ints $(NUM_LANES) 2 3 4
 user_message "NUM_LANES is greater than 2, 3 AND 4"
@ end_if
```

See also:
- `if_val_le_all_ints` - for less than or equal to comparison against integers
- `if_val_lt_all_ints` - for less than comparison against integers
- `if_val_ge_all_ints` - for greater than or equal to comparison against integers
- `if_val_gt_int` - for comparison against any integers

Continue to 21.5.12.13.12 if_val_ge_all_ints or return to 21.5.12.13 Values vs Integers or 21.5.12 Snippet Directives.
21.5.12.13.12 if_val_ge_all_ints

The **if_val_ge_all_ints** directive tests if a value is greater than or equal to all given integers.

The syntax is:

```
@if_val_ge_all_ints <value> <integer> [integer]...

// Commands processed if true
@end_if
```

- **<value>** - the value to test. The value should evaluate to a valid integer.
- **<integer>** - the integer value to compare against the value. At least one integer must be specified, however, multiple integers can be included. Multiple integers should be separated by whitespace.

If the value is greater than or equal to all of the integers, the statement is true.

If the value is not greater than or equal to all of the integers (*i.e.* the value is less than any integer values), the statement is false.

If the value or any integers do not evaluate to a valid integer, an error is produced.

Multiple integers are handled as if joined by logical AND statements.

```
// PARAMETER NUM_LANES INTEGER "Number of lanes" 5
@if_val_ge_all_ints $(NUM_LANES) 3 4 5
 user_message "NUM_LANES is greater than or equal to 3, 4 AND 5"
@end_if
```

See also:
- **if_val_lt_all_ints** - for less than comparison against integers
- **if_val_gt_all_ints** - for greater than comparison against integers
- **if_val_le_all_ints** - for less than or equal to comparison against integers
- **if_val_ge_int** - for comparison against any integers

Continue to 21.5.13 Snippet Variables or return to 21.5.12.13 Values vs Integers or 21.5.12 Snippet Directives.
21.5.13 Snippet Variables

In 12d Model snippets, it is possible to define variables whose values are calculated from the design model. For example, we can capture the offset or width of a link as a variable. This allows snippets to be more flexible and work with normal modifier commands that can alter the position of links.

See
21.5.13.1 Defining Link Variables
21.5.13.2 Defining General Variables
21.5.13.3 Snippet Helper Functions
21.5.13.4 Using Variables in Other Variables
21.5.13.5 Using Variables in Commands

Or return to 21.5 Defining and Using Snippets.

21.5.13.1 Defining Link Variables

The first necessary step in using snippet link variables is to define them. It is assumed that there are already some existing links in the design - not necessarily in the snippet or even output to a model. Defining a link variable allows 12d to identify which particular links need to be measured and calculated.

The syntax to define a link variable is:

```
<link_variable> <link_name> <chg_range> <alias>
```

<link_name> is the shorthand in MTF code for picking the desired link from the model. Refer to Sect. 19.1.1.2 of the 12d Help for more info.

<chg_range> is the chainage range for this variable, typically the standard range for the entire snippet: $(_SCH) 0 $(_ECH) 0

(alias) is the name for this particular link_variable. We will be able to refer to this link_variable elsewhere in our snippet by this name.

A link_variable is tied to a particular link in the MTF model. It is simply an alias to a particular link in our design.

So, for example, if we have a link called KLIP on the Design layer that we want to refer to, we would do this:

```
link_variable "Design=>KLIP" $(_SCH) 0 $(_ECH) 0 "LINK1"
```

"Design=>KLIP" is the link "KLIP" from the "Design" layer. The side (left/right) will be automatically selected depending on which side this snippet is applied.

$(_SCH) 0 $(_ECH) 0 is the standard snippet text defining the chainage range

"LINK1" is our custom alias for this particular link.

Continue to 21.5.13.2 Defining General Variables or return to 21.5.13 Snippet Variables.
21.5.13.2 Defining General Variables

In addition to link variables, which are specifically tied to a particular link in the model, it is possible to define general variables for intermediate calculations or storage of values. These are done with the generic variable command.

The general variable command has the syntax:

```
variable <name> <chg_range> <value>
```

- `<name>` is the name for this variable and must be in quotes, e.g. "VAR1"
- `<chg_range>` is the chainage range for this variable, typically the standard range for the entire snippet: $(_SCH)$ 0 $(_ECH)$ 0
- `<value>` is the value for this variable, which can include other variables, directives and formulae.

For example:

```
// PARAMETER WIDTH REAL "Road width" 3.5
variable "HALF_W" $(_SCH)$ 0 $(_ECH)$ 0 "($(WIDTH) / 2)"
```

So, if the WIDTH parameter had a value of 3.5, the resulting variable HALF_W would have a calculated value of 3.5 / 2 = 1.75. This value is calculated at run-time and at every section to which this snippet applies.

Continue to 21.5.13.3 Snippet Helper Functions or return to 21.5.13 Snippet Variables
21.5.13.3 Snippet Helper Functions

Snippets often require the calculation of various values and measurements. For example, the current offset of a link from the centreline or the height difference between two links.

These measurements and values could be used for performing conditional tests or simply as the basis for other parts of the snippet.

To this end, there are various helper functions available within snippets. 12d will automatically calculate the relevant value at every applicable section every time it is run. These can, therefore, also be used within variable commands.

```
link_variable "Design=>KLIP" $(_SCH) 0 $(_ECH) 0 "LINK1"
variable "HALF_W" $(_SCH) 0 $(_ECH) 0 "(link_width(LINK1) / 2)"
```

In this example, the value of the variable "HALF_W" is calculated from the width of the link_variable with the alias "LINK1" divided by 2. This way, if another modifier or snippet modified the link, we could still use it within our snippet without the user needing to manually enter any width manually.

The list of available helper functions is:

- `link_width(XX)` - the width of the link XX relative to the previous link
- `link_height(XX)` - the height of the link XX relative to the previous link
- `link_grade(XX)` - the grade of the link XX in y/x (not in %) relative to the previous link
- `rel_offset(XX)` - the unsigned offset of the link XX, typically +ve for LHS and RHS
- `abs_offset(XX)` - the signed offset of the link XX, typically -ve for LHS and +ve for RHS
- `abs_height(XX)` - the signed height difference from the hinge of the link XX, -ve lower, +ve higher
- `abs_level(XX)` - the level of the link XX, equal to (hinge level + height difference)
- `x_coord(XX)` - the X ordinate of the link XX
- `y_coord(XX)` - the Y ordinate of the link XX
- `apply_tin_height(XX)` - the height of the Apply MTF tin at the given link XX
- `other_tin_height(LINK;TIN)` - to capture the height of any tin (TIN) at a link (LINK) (note the semicolon separating the captured link and the tin name).
- `named_grade(NG)` - Capture signed grade (m/m) of a named grade, NG
- `named_grade_hdsd_fact(NG)` - For named grade, NG, the factor to multiply a horizontal distance by to get a slope distance.
- `named_grade_sdhd_fact(NG)` - For named grade, NG, the factor to multiply a slope distance by to get a horizontal distance.
- `named_grade_zdsd_fact(NG)` - For named grade, NG, the factor to multiply a height difference by to get a slope distance.
- `named_grade_zdzd_fact(NG)` - For named grade, NG, the factor to multiply a slope distance by to get a height difference.
- `named_grade_hdzd_fact(NG)` - For named grade, NG, the factor to multiply a horizontal distance...
by to get a height difference.

named_grade_zdhfd_fact(NG) - For named grade, NG, the factor to multiply a height difference by to get a horizontal distance.

More helper functions may be added in the future.

Continue to 21.5.13.4 Using Variables in Other Variables or return to 21.5.13 Snippet Variables

21.5.13.4 Using Variables in Other Variables

Once variables have been defined, they can be used and substituted into other variables.

To do so, wherever you would like to insert the variable, use the syntax:

```
variable(name)
```

Where variable is the keyword and name is the name of the variable to be substituted.

```
// PARAMETER NUM_LANES INTEGER "Number of lanes" 1
// PARAMETER LANE_WIDTH REAL "Lane width" 3.5
// PARAMETER XFALL "Crossfall %" -3

variable "W0" $(_SCH) 0 $(_ECH) 0 "($(LANE_WIDTH) * $(NUM_LANES))"
variable "H0" $(_SCH) 0 $(_ECH) 0 "(variable(W0) * $(XFALL) / 100)"
```

Continue to 21.5.13.5 Using Variables in Commands or return to 21.5.13 Snippet Variables
21.5.13.5 Using Variables in Commands

Once variables have been defined, they can be used in a selection of modifier commands. To do so, wherever you would like to insert the variable, use the syntax:

```
variable <name>
```

Where variable is a keyword and name is the name of the variable to be substituted.

For example:

```
// PARAMETER NUM_LANES INTEGER "Number of lanes" 1
// PARAMETER LANE_WIDTH REAL "Lane width" 3.5

variable "W0" $(_SCH) 0 $(_ECH) 0 "($(_LANE_WIDTH) * $(_NUM_LANES))"

insert "Design=>EDGE" "red" variable W0 unknown -3.0 $(_SCH) 0 $(_ECH) 0 absolute extra_start extra_end
```

Note that an MTF modifier commands must be specifically written to support the use of variables. Currently, the MTF modifier commands and their values that support variables are:

- Modify_Decision_Batter: width, height, slope
- Modify_Decision_Batter_Test: width, height, slope
- Modify_XFall_Point: m_offset, m_height1
- Modify_Insert_Absolute: width, height, slope
- Modify_Insert_Link: width, height, slope
- Modify Link All
- Modify_All_To_2_RL

More may be added in the future.

Continue to 21.5.14 Order of Snippet Processing or return to 21.5.13 Snippet Variables.
21.5.14 Order of Snippet Processing

When a snippet is used in 12d Model, it is as part of an MTF.

Each Snippet referred to in the MTF is in its own file, and each snippet file goes through set steps to calculate and substitute values in the snippet, before it is used in the MTF file.

It is important to understand each step in the processing of a snippet file, and the order of the steps, to ensure that snippet runs as you expect it to.

See

- Step 1. Initial Loading of the Snippet File
- Step 2. Parameters from the MTF Snippet Panel Are Substituted
- Step 3. Snippet Directives Executed
- Step 4. Token Values Substituted
- Step 5. Snippet Inserted into MTF
- Step 6. C Preprocessor Run as Part of MTF processing

Or return to 21.5 Defining and Using Snippets.
Step 1. Initial Loading of the Snippet File

The snippet file is read and loaded into memory.
All comments and blank lines are removed.
An example of a snippet file that we will use at each step is:

```plaintext
// PARAMETER FRUIT TEXT "Enter a fruit"
@ def_tok FRUIT_TOKEN "$(FRUIT)"
@ if_val_eq_str "$(FRUIT)" "apple"
 user_message "Correct, you entered apple!"
@ else
 user_message "You entered $(FRUIT), I wanted an apple!"
@end_if
@ if_val_eq_str "$(FRUIT_TOKEN)" "apple"
 user_message "Correct, you entered apple!"
@ else
 user_message "You entered $(FRUIT_TOKEN), I wanted an apple!"
@end_if
```

Warning - this may not do what you first think it will as we will see shortly.

Continue to Step 2, Parameters from the MTF Snippet Panel Are Substituted or return to 21.5.14 Order of Snippet Processing
Step 2. Parameters from the MTF Snippet Panel Are Substituted

In the next step on the snippet file, any values of parameters that are specified in the MTF Snippet panel are substituted.

That is, all instances of parameter variables, e.g. $TOK or $(TOK), are replaced with the value that was selected by the user in the MTF Snippet panel.

Automatic parameters (e.g. $_SCH)) are also substituted.

If a parameter cannot be substituted, for example, it has not been defined, it is left as-is in the temporary MTF file and an error to the user will be produced.

As an example of the parameter substitution, if in the snippet given in Step 1, the user entered a value of apple (or accepted the default value) for the Enter a fruit parameter field on the MTF Snippet panel, then after the Parameter Substitution for FRUIT, the snippet would then look like:

```
@ def_tok FRUIT_TOKEN "apple"
@ if_val_eq_str "apple" "apple"
 user_message "Correct, you entered apple!"
@ else
 user_message "You entered apple, I wanted an apple!"
@ end_if
@ if_val_eq_str "$(FRUIT_TOKEN)" "apple"
 user_message "Correct, you entered apple!"
@ else
 user_message "You entered $(FRUIT_TOKEN), I wanted an apple!"
@ end_if
```

Continue to Step 3. Snippet Directives Executed or return to 21.5.14 Order of Snippet Processing
**Step 3. Snippet Directives Executed**

In the next pass of the snippet file, any snippet directives are parsed and executed. At this point, no parameters (or automatic parameters) exist, because they have all been substituted in the previous processing step.

So the snippet started in *Step 1*, will now look like:

```plaintext
user_message "Correct, you entered apple!"
user_message "You entered $(FRUIT_TOKEN), I wanted an apple!"
```

Notice that the flow-control previously present has been evaluated and only the applicable commands (in this case, user_message commands) remain.

**How did we get the second line?**

The second conditional test directive:

```plaintext
@ if_val_eq_str "$"(FRUIT_TOKEN)" "apple"
```

has evaluated to *false*, because in *if_val_eq_str* the value "$"(FRUIT_TOKEN)" is being treated as the raw text string $(FRUIT_TOKEN) which is not equal to *apple*.

Hence the corresponding *else* block of commands is used and we get the line

```plaintext
user_message "You entered $(FRUIT_TOKEN), I wanted an apple!"
```

is left in the snippet. Which is probably not what you wanted.

In this particular case, the snippet author would have been better off using the *@ if_tok_eq_str* directive instead of the *@ if_val_eq_str* directive.

```plaintext
@ if_tok_eq_str FRUIT_TOKEN "apple"
 user_message "Correct, you entered apple!"
@ else
 user_message "You entered $(FRUIT_TOKEN), I wanted an apple!"
@ end_if
```

The conditional test directive:

```plaintext
@ if_tok_eq_str FRUIT_TOKEN "apple"
```

will evaluated to *true*, because FRUIT_TOKEN is *apple* and we then get the line in the snippet:

```plaintext
user_message "Correct, you entered apple!"
```

Continue to *Step 4. Token Values Substituted* or return to 21.5.14 Order of Snippet Processing
**Step 4. Token Values Substituted**

In the next processing stage of the snippet, tokens have their values substituted, in a similar manner to that in which parameters were substituted in the earlier step.

At this point, this is simply a replacement of tokens in the snippet file, $TOKEN or $(TOKEN), with their value.

There is no flow control at this point, since it has already been performed in the previous step.

So the snippet started in Step 1, will now look like:

```plaintext
user_message "Correct, you entered apple!"
user_message "You entered apple, I wanted an apple!"
```

Note that each line containing tokens is processed as many times as necessary until no further tokens remain to be substituted. This allows token values to contain other tokens.

```plaintext
@ def_tok TOK1 1.0
@ def_tok TOK2 2.0
@ def_tok TOK3 "($TOK1 + $TOK2)" // TOK3
will eventually equal 3.0
```

Although the substitution of parameters and tokens is similar, it is important to understand they occur at separate stages of the snippet processing.

After Step 4, the temporary MTF snippet file is generated (.temp_mtf).

All intelligence, formulae and user input have been removed in the temporary MTF snippet file.

Continue to [Step 5, Snippet Inserted into MTF](#) or return to [21.5.14 Order of Snippet Processing](#)
Step 5. Snippet Inserted into MTF
At this stage, whatever remains of the snippet is inserted into the MTF File. No further processing is done by the 12d Snippet Preprocessor.

However, note, that the older C preprocessor- the one the handles #define, #ifdef, etc.- has not yet been run.

Continue to Step 6. C Preprocessor Run as Part of MTF processing or return to 21.5.14 Order of Snippet Processing

Step 6. C Preprocessor Run as Part of MTF processing
In the next pass, the C preprocessor- i.e. the one handling #define, #if, etc.- is used on the entire MTF, which now includes the interpreted and processed snippets.

Any parts of any snippets still using the older C preprocessor directives (#define, #if, etc) will be processed at this stage as part of the overall MTF. At this point there is no concept of a snippet as a separate entity- all snippet results have already been inserted into the MTF.

Note
Because of the power and predictability of the Snippet Directives, they should always be used instead of any C Preprocessor commands.

For more information on the substitutions and C preprocessor directives supported in the MTF, refer to the 12d Model Help section 21.10.1.16 Substitutions in the Modifiers and Templates File.

Return to 21.5.14 Order of Snippet Processing or 21.5 Defining and Using Snippets, or continue to 21.5.15 Debugging Snippets.
21.5.15 Debugging Snippets

See

21.5.15.1 Print Messages and Log Lines to the Output Window
21.5.15.2 Intermediate Parsing Results
21.5.15.3 Temporary MTF Snippet File

Or return to 21.5 Defining and Using Snippets.
21.5.15.1 Print Messages and Log Lines to the Output Window

To help with writing and debugging snippets, V11 provides the ability to write messages to the Output Window. These are done via special snippet commands `user_message_print`, `user_message_log` and `user_message` with the syntax:

(a) `user_message_print`

```
user_message_print text_msg "variable" "var_name" st_ch extra_st end_ch extra_end
"variable" - optional.
"var_name" is the name of a variable.
"variable" is optional but if it exists then "var_name" must also exist.
```

```
st_ch extra_st end_ch extra_end - optional
 st_ch is a chainage
 extra_st is added to st_ch to give the start chainage
 end_ch is a chainage
 extra_end is added to end_ch to give the end chainage
```

Print the text `text_msg` to the Output Window and then print the value of the variable `var_name` to the Output Window.

The messages are produced for every section in the chainage range given by the start chainage and the end chainage.

If the start and end chainage modes are omitted, they are taken to be from the start to the end of the reference string.

```
user_message_print "Value of REL_OFFSET: " "variable" "REL_OFFSET" $(_SCH) 0 $(_ECH) 0
```

For every section between the start and the end chainage, this will print the text "Value of REL_OFFSET " followed by the value of the variable REL_OFFSET to the Output Window.

(b) `user_message_log`, `user_message`

```
user_message_log text_msg "variable" "var_name" st_ch extra_st end_ch extra_end
user_message text_msg "variable" "var_name" st_ch extra_st end_ch extra_end
"variable" - optional.
"var_name" is the name of a variable.
"variable" is optional but if it exists then "var_name" must also exist.
```

```
st_ch extra_st end_ch extra_end - optional
 st_ch is a chainage
 extra_st is added to st_ch to give the start chainage
 end_ch is a chainage
 extra_end is added to end_ch to give the end chainage
```

Create a log line in the Output Window of the text `text_msg` followed by the value of the variable `var_name`.

The log lines are produced for every section in the chainage range given by the start chainage and the end chainage.

If the start and end chainage modes are omitted, they are taken to be from the start to the end of the reference string.
user_message_log "Value of REL_OFFSET: " "variable" "REL_OFFSET" $(SCH) 0 $(ECH) 0
For every section between the start and the end chainage, a log line will be created in the Output Window with the text "Value of REL_OFFSET " followed by the value of the variable REL_OFFSET

TIP: If you only want one message, rather than a message for every section, use:
$(SCH) 0 $(SCH) 0.0001

user_message_print "This will only print once!" $(SCH) 0 $(SCH) 0.0001

Continue to the next section 21.5.15.2 Intermediate Parsing Results or return to 21.5.15 Debugging Snippets or 21.5 Defining and Using Snippets.
21.5.15.2 Intermediate Parsing Results

As explained in the section Order of Snippet Processing, any MTF Snippet file is processed in several rounds, with each round of the process performing various parsing, evaluation and substitution steps. To assist with debugging and understanding the manner in which snippets are processed by 12d Model, there is an additional snippet instruction that can be used.

```plaintext
// OUTPUT_PARSING_STAGES <filename>
```

For example:

```plaintext
// OUTPUT_PARSING_STAGES "dump.txt"
```

With this instruction present in a snippet, 12d will write a detailed log of the snippet at each stage of processing to the given file. The contents of the file are updated/overwritten on each recalc of the Apply MTF function.

For compiled snippets, even if this instruction is present, no output will be produced.

Continue to the next section 21.5.15.3 Temporary MTF Snippet File or return to 21.5.15 Debugging Snippets or 21.5 Defining and Using Snippets.
21.5.15.3 Temporary MTF Snippet File

To assist with the development and debugging of MTF snippets, there are a number of environment variables to control the naming of, and stop the deletion of, the temporary MTF file that is created after the Snippet Directives are evaluated and the snippet parameters have been substituted (see Snippet Directives).

At the point of the temporary MTF snippet file being created (.mtfsnippet.temp_mtf), all intelligence has been removed from the output. All formulae, variables, directives and fixed decisions have been removed and only the raw modifier commands remain.

(a) Don't Delete Snippet Temp File

MTF_SNIPPET_TEMP_FILE_USE_SNIPPET_NAME_KEEP_4D 1/0

If enabled (non zero), the temporary MTF file that is generated when MTF snippets are processed and parsed will not be deleted. Each run of the Apply MTF function will create or update the contents of a file containing the snippet after processing. The file will be created in the current project's working directory.

(b) Snippet Temp File Use Snippet Name

MTF_SNIPPET_TEMP_FILE_USE_SNIPPET_NAME_4D 1/0

If enabled (non zero), the temporary snippet file generated when MTF snippets are processed will be given the name of the snippet file with the extension ".temp_mtf".

For example, if the snippet file is called "INSERT_KERB.mtfsnippet" then, by default and when enabled, the temporary snippet file produced will be "INSERT_KERB.mtfsnippet.temp_mtf".

This env variable enables the user to have this consistently named temporary file open in an editor and it can then be refreshed each time a snippet is run.

(c) Snippet Temp File Custom Extension

MTF_SNIPPET_TEMP_FILE_EXTENSION_4D Extension_text

If Extension_text is not blank, the temporary snippet file generated when MTF snippets have been processed will have the extension Extension_text rather than the default extension of "temp_mtf".

(d) Unique Snippet Temp File Name

MTF_SNIPPET_TEMP_FILE_UNIQUE_4D 1/0

If enabled (non zero), a temporary snippet file will be generated for each MTF Snippet instance in the corresponding MTF. To better relate the temporary snippet file with the actual instance in the MTF, this setting will produce a temporary snippet file for every inserted snippet and be named like so:

<Snippet_File> - <MTF> <side> <modifier_number>.<extension>

For example,

CP.mtfsnippet - RSCR01.mtf Left No. 7.temp_mtf

Corresponds to the CP.mtfsnippet file inserted in the left side modifiers of RSCR01.mtf file as modifier number 7.

These environment variables are defined in the MTF & Boxing > MTF General section of the env.4d Editor which is brought up by selecting Project => Management => env.4d. See MTF.
& Boxing > MTF General in 7 Project.

Continue to the next section 21.5.16 Compiling Snippets or return to 21.5.15 Debugging Snippets or 21.5 Defining and Using Snippets.
21.5.16 Compiling Snippets

It is possible to compile a snippet via the option

Design => MTF => Snippet => Compile snippet

This can be done to protect any intellectual property (IP) and minimise concerns people may have in developing and sharing snippets.

Compiling a snippet encrypts and encodes the snippet contents into a new file with an extension of `mtfsnippet.c` (note the 'c' at the end, denoting a compiled snippet).

A compiled snippet can be run and used by anyone, but the snippet code itself cannot be viewed or edited.

Temporary snippet files, if enabled, are not generated for compiled snippets.

<table>
<thead>
<tr>
<th>Original Snippet</th>
</tr>
</thead>
<tbody>
<tr>
<td>// INFO Example compiled snippet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compiled Snippet</th>
</tr>
</thead>
<tbody>
<tr>
<td>nyKgSBhX6wGqQizY/fRFDcT/YReG2J34wsghywz6Ys+cfVn+Pi+crz/4c9XgNbYI+kmS14FfIh+l/bNu41RYyD4rTvliS9</td>
</tr>
</tbody>
</table>

Continue to the next section 21.5.17 Tips and Tricks or return to 21.5.15 Debugging Snippets or 21.5 Defining and Using Snippets.
21.5.17 Tips and Tricks

- When creating snippets, create the MTF modifier commands first and then copy and paste into a snippet. This helps ensure the format and syntax of the modifier commands is correct.
- Use comments liberally to document your snippet. This makes it easier for you and anyone else to see and understand your thought processes, reasoning and logic within the snippet, making it easier to debug and modify.
- Define tokens for commonly-used values to make code more readable and portable.

```plaintext
@ def_tok ABS "absolute"
@ def_tok ES "extra_start"
@ def_tok EE "extra_end"
@ def_tok ASE "$(ABS) $(ES) $(EE)"
Insert "LINK" "red" 3.5 unknown -3 $(_SCH) 0 $(_ECH) 0 $(ASE)
```

- When writing or testing snippets, output messages using user_message commands with values of parameters, variables and tokens to check correct calculation of values. These can be commented out or removed before finalising your snippet.
- The user_message commands will, by default, output a message for every applicable Apply MTF section. To cut down on the number of repetitive messages, specify a start and end chainage.

```plaintext
// PARAMETER WIDTH REAL "Link width" 1.0
@ def_tok MSG_CH "$(SCH) 0 $(SCH) 0.0001" // Define a token for easier readability
user_message "Link width = $(WIDTH) $(MSG_CH)" // Only output one message
```

- For all directives, there is a space between the @ and the name of the directive!
- For expressions and formula, use parentheses as much as needed. If in doubt, add more and double-check the results
- Parameter names should not contain spaces and should not start with an underscore.
- Token names should not contain spaces and should not start with an underscore.
- It is recommended that token names only contain alphanumeric characters and underscores.
- Parameter names and token names must be unique within the snippet file!
- Use the new V11 syntax, where possible! The V10 syntax- e.g. #define, $VAL - is deprecated and only supported for backwards-compatibility.

Continue to the next section 21.5.18 Major Warning - You Will be Caught by This or return to 21.5 Defining and Using Snippets.
21.5.18 Major Warning - You Will be Caught by This

**WARNING** - once a snippet with parameters has been saved in a MTF file, the parameters for the snippet are saved *in the MTF file*. Then when the Apply MTF is run, the parameters and their values are read in from the MTF file and passed into the current snippet file.

Hence if the snippet file has been modified and parameter definitions added, modified or removed since the snippet was originally place in the MTF, these modifications of parameters will be *ignored* until the snippet panel is reopened in the MTF editor which forces the snippet file to be parsed again and the changes to the parameter definitions are then recognised.

Note that when the Apply MTF for the MTF is run, the MTF used the *current* snippet file so if the snippet file has been modified since the snippet was placed in the MTF, the *modified* snippet file will be used (apart from any new parameter definitions and defaults)

Return to [21.5 Defining and Using Snippets](#).
21.6 What is Boxing?

A design is represented in 3d as a collection of strings. The design can also be approximated as a series of sections perpendicular to the centreline at various chainages. These are known as design cross section, or design sections.

See

- 21.6.1 Representing Cross Sections in 12d Model
- 21.6.2 Applying Boxing
- 21.6.2 Applying Boxing
- 21.7 Full Definition of Boxing

Go to the next section 21.6.1 Representing Cross Sections in 12d Model
21.6.1 Representing Cross Sections in 12d Model

In 12d Model, cross sections, are represented as 4d super strings. A 4d super string has an (x,y,z) coordinate for each vertex, PLUS text at each vertex. Hence, there are four bits of information, an (x,y,z,text) value, for each vertex.

Cross sections are generated in 12d Model by options such as
(a) cuts through strings along a centreline (see 28.9.13.2 Cuts by Centreline)
(b) the functions Apply MTF (see 20.3.2 Apply MTF Function) or Apply (see 20.3.1 Apply Template Function)
(c) the Boxing Many Function (see 20.5.4 Boxing Many Function)

For these cross sections, the text at each vertex of the 4d super string (vertex/point text), is the name of the string that the section cuts through at that vertex.

Also when the cross sections are generated by these options, the start chainage of the 4d string is set so that the chainages along the 4d string are the same as the offset of the vertices from the centreline used when generating the sections.

Boxing Layers
A Boxing Layer is simply another surface, usually modelling a construction material layer, under (or above) the design. The Boxing Layer is represented by strings, and also as a series of sections at the same chainages as the design sections.
Boxing Layers are normally defined in terms of the named vertices across the design section, offsets from the centreline, in terms of other boxing layers already specified, or in relationships to other strings.

When boxing is generated in the Apply MTF or the Boxing Many Function, there can be up to eight (8) layers of boxing and the last layer defined is referred to as the subgrade layer.

In 12d Model there are special commands called Boxing Commands that are be used to build a boxing layer.

A series of 12d Model boxing commands are grouped together as a Boxing Definition and when a Boxing Definition is applied to a cross section, it generates a boxing section. That is, it generates a section that is part of a particular Boxing Layer.

Each Boxing Definition is given a name, and is stored in a Boxing file. The names of the Boxing Definitions must be unique within the Boxing file.

How the Boxing file and Boxing Definitions are applied in 12d Model is described in the next section 21.6.2 Applying Boxing, and this is followed by the full definition of 12d Model boxing and the 12d Model boxing commands in the sections starting with 21.7 Full Definition of Boxing.
21.6.2 Applying Boxing

For any 12d Model project there are a number of different data creation scenarios and the appropriate method to use to generate boxing depends on how the data has been created, or is available, inside 12d Model.

See 21.6.2.1 Scenario 1 - Design Generated by One Apply MTF
See 21.6.2.2 Scenario 2 - More than One Apply MTF Needed to Generate the Design
See 21.6.2.3 Scenario 3 - Design Provided as Strings Only
See 21.6.2.4 Scenario 4 - Design Sections Already Exist
21.6.2.1 Scenario 1 - Design Generated by One Apply MTF

If a design is generated by just one Apply MTF function, then up to eight (8) layers of boxing can also be generated at the same time by the Apply MTF function.

In the Apply MTF option, the MTF, controls which Boxing file is used, and how the various Boxing Definitions from that file are used to create each layer of boxing.

In the MTF Edit menu, the Boxing File option specifies which Boxing file of Boxing Definitions is used.

For each boxing layer, the boxing can be defined by
(a) the Left boxing only
(b) the Right boxing only
or
(c) the Left and Right boxing.

For cases (a) and (b), the Left boxing or the Right boxing defines the boxing across the entire design section and then only Left boxing or Right boxing is needed.

For case (c) where both Left and Right boxing are used to define the boxing across the design section, the last point of the Left boxing is automatically connected to the first point of the Right boxing.

Warning for case (c), the Left boxing must end before the Right boxing begins. If there is an overlap, the Right boxing will be pushed to the end of the Left boxing.

Note - no interpolation or modifiers exist for boxing.

For each layer, the Left side/Right side specifies what Boxing Definition to use over what chainage range.
What is Boxing?

See 21.1 The Modifiers and Templates File - MTF and 21.4 Smart Chainages.

Go to the next section 21.6.2.2 Scenario 2 - More than One Apply MTF Needed to Generate the Design or back to 21.6.2 Applying Boxing.
21.6.2.2 Scenario 2 - More than One Apply MTF Needed to Generate the Design

In more complex designs, a number of separate Apply MTF's may be needed, and even some strings hand crafted, to produce the final design. Hence the design is only fully represented by a collection of strings.

In this situation, design sections are produced as a post process using Cuts through strings by either

Utilities => A-G => Cuts => by centreline

which can cut through a Data Source of strings (see 28.9.13.2 Cuts by Centreline), or by

Design => Boxing => Boxing many (function)

which can only cut through one model of strings (see 20.5.4 Boxing Many Function).

Note - the design sections produced by both options are 4d super strings where the text at each vertex of the super string is the name of the string cut to create that vertex of the super string.

The methods described in 21.6.2.4 Scenario 4 - Design Sections Already Exist are then used to generate boxing from the created design sections.

Go to the next section 21.6.2.3 Scenario 3 - Design Provided as Strings Only or back to 21.6.2 Applying Boxing.
21.6.2.3 Scenario 3 - Design Provided as Strings Only

Sometimes you only have the strings defining the design (the design strings).

This case is similar to 21.6.2.3 Scenario 3 - Design Provided as Strings Only and design sections are produced as 4d super string from the design strings using Cuts through strings by either

Utilities =>A-G =>Cuts =>by centreline

which can cut through a Data Source of strings (see 28.9.13.2 Cuts by Centreline), or by

Design =>Boxing =>Boxing many (function)

which can only cut through one model of strings (see 20.5.4 Boxing Many Function).

The methods described in 21.6.2.4 Scenario 4 - Design Sections Already Exist are then used to generate boxing from the created design sections.

Go to the next section 21.6.2.4 Scenario 4 - Design Sections Already Exist or back to 21.6.2 Applying Boxing.
21.6.2.4 Scenario 4 - Design Sections Already Exist

There is the case where you already have the design sections as 4d super strings.

The design sections may have been created by an earlier Apply MTF or Apply run, or generated by cuts through strings as in 21.6.2.2 Scenario 2 - More than One Apply MTF Needed to Generate the Design or 21.6.2.3 Scenario 3 - Design Provided as Strings Only, or simply provided.

Boxing can then be generated from the **design sections** using the options:

(a) **Design => Boxing => Boxing many function**

The **Boxing Many Function** can generate up to eight layers of boxing, as well as
Chapter 21 Advanced Design

calculating volumes. See 20.5.4 Boxing Many Function.

Note that the Boxing Many Function can also create the cuts through a model of strings to create the design sections and so can be used to cover 21.6.2.2 Scenario 2 - More than One Apply MTF Needed to Generate the Design, 21.6.2.3 Scenario 3 - Design Provided as Strings Only and 21.6.2.4 Scenario 4 - Design Sections Already Exist in the one function.

(b) Design =>Boxing =>Boxing many

A simplified version of the Boxing Many Function.

For Boxing Many, an MTF is used to define the application of the Boxing Definitions, and the Boxing file containing the Boxing Definitions is either that defined in the MTF or a different Boxing file. See 20.5.6 Apply Boxing Many.

The boxing can be applied to a model of sections, or just a single selected section.

(c) Design =>Boxing =>Boxing

An even more simplified version of the Boxing Many Function.

The Boxing option can only apply one Boxing Definition to all the design sections in a model. See 20.5.5 Apply Boxing.

Note - in the case when only 4d super string are provided, the option Design =>X-Sections =>Strings from sections can be used to generate design strings from these sections (see 20.14.8 Strings from Sections).

Go to the next section 21.7 Full Definition of Boxing or back to 21.6 What is Boxing? or 21.6.2 Applying Boxing.
21.7 Full Definition of Boxing

In 12d Model there are special commands called Boxing Commands that are be used to build up a boxing layer.

A series of 12d Model boxing commands are grouped together as a Boxing Definition and when a Boxing Definition is applied to a cross section, it generates a boxing section. That is, it generates a section that is part of a particular Boxing Layer.

Each Boxing Definition (the rules for calculating a specific type of boxing) is given a name, and is stored in a Boxing file (with a file name ending in .bf).

Any number of Boxing Definitions can be placed in the one Boxing file as long as each Boxing Definition in the Boxing file has a unique name.

Note that the same name of a Boxing Definition can appear in more than one Boxing file and even through they have the same name, the Boxing Definition in a different Boxing file can be completely different.

Please continue to the next section 21.7.1 Terminology Used in Boxing Commands
21.7.1 Terminology Used in Boxing Commands

The 12d Model Boxing Commands work on a cross section, which is a 4d super string (see 21.6.1 Representing Cross Sections in 12d Model).

A Boxing Definition is a group of boxing commands and the boxing commands work from left to right across the cross section to produce a boxing section.

Most of the boxing commands apply from the offset specified at the beginning of that command (Start Offset for the command) to the start offset of the next boxing command (like chainages and templates in the MTF). That is, the start offset of a boxing command is the End Offset for the previous boxing command.

So most boxing commands go from the Start Offset in the command to the Start Offset in the next boxing command.

An offset, such as the Start Offset, can be defined as:
(a) a fixed Centreline offset value (e.g. 10.5)
(b) specified relative to a vertex name on a design cross section, or any boxing section (at the section chainage) in a Boxing Layer already created.
(c) specified relative to a selected string that cuts the design cross section, or a specified Boxing Layer, in plan.

The offset represents a plan position on the cross section (a plan point on the cross section) which may or may not be the plan position of a vertex on the cross section.

The terminology used to specify such an offset is relative offset to a vertex or a string.
Note - if not all the vertex names and strings mentioned in a Boxing Definition are present in the cross section at the centreline chainage, then no boxing section is produced for that centreline chainage.

Hence

1. an offset relative to a vertex name (relative vertex offset) is defined to be the offset at a given named vertex on the design section, or a boxing section previously created, plus a given offset value.

   That is
   
   take the offset at the 4d vertex called "vertex name" and add "offset value" to it. The offset value can be positive of negative.

   If the "vertex name" is blank, then the "offset value" is taken to be the actual offset on the 4d super string.

   Hence the offset can be specified as either an actual offset value or given relative to the name of a vertex on the super string (relative offset).

   For convenience, in both cases the offset will be denoted by relative vertex offset.

2. an offset relative to string (relative string offset) is defined to be the offset on the cross section where the string cuts the section in plan, plus a given offset value.

   That is
   
   take the offset at the plan cut of the section and the string and add "offset value" to it. The offset value can be positive of negative.

A major advantage of defining boxing in terms of vertex names and strings is that whenever the vertices or strings are modified using MTF modifiers, or string edits, the boxing across the section is also automatically modified on a recalc.

A Boxing Definition may be used in either a Left Boxing or Right Boxing in an MTF, or in a Boxing Many Function option, however unlike the case for MTF modifiers, the Boxing Definition is applied to the vertex names going from left to right regardless of whether the Boxing Definition is used on the left or the right. So it is possible to create the entire boxing with just the Left Boxing or Right Boxing. If both are used, the end of the Left Boxing is joined to the start of the Right Boxing.

Warning

For a Boxing Definition to work, any cross section vertex names referred to in the Boxing Definition must be unique for that cross section. Similarly any strings cut must have unique names.

In the Apply MTF and Apply, the LHS prefix and RHS prefix panel files can be used to give vertices on cross sections different names even when the same Template is used on the left and
the right side of the centreline.

Boxing sections are generated by the Apply MTF, Boxing Many Function, Boxing Many and Boxing options, but boxing strings are only generated by the Apply MTF and Boxing Many Function. For the other cases, the option Strings=>Utilities=>Strings from sections can be used to create boxing strings from the boxing sections.

Vertical Walls

If a Boxing Definition creates two different height values at the one offset (i.e. a wall), then an extra offset point is automatically inserted into the boxing section (at offset 0.1 mm from the first vertex) so that no vertices in the created boxing section are on top of each other.

So in effect a vertical wall is created.

And since no vertices are created that are directly above each other, the boxing sections can be triangulated.

Please continue to the next section 21.7.2 Edit Boxing File or return to 21.7.1 Terminology Used in Boxing Commands.
21.7.2 Edit Boxing File

The option

   Design => Boxing => Create

creates a Boxing file which contains Boxing Definitions, and then brings up the Edit Boxing Definitions panel to create the actual Boxing Definitions (rules) to save in the Boxing file.

Similarly selecting a Boxing file from the walk-right list of

   Design => Boxing => Edit

also brings up the Edit Boxing Definitions panel to create/edit boxing definitions from the selected Boxing file.

The Edit Boxing Definitions panel is

![Edit Boxing Definitions panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boxing definition</td>
<td>input</td>
<td>boxing definitions in file</td>
<td></td>
</tr>
</tbody>
</table>

name of the Boxing Definition (in the current boxing file) to create or edit. Each Boxing Definition must have a unique name in the Boxing file.

Create button

create a Boxing Definition with name given by the Boxing definition panel field

If the Boxing Definition given in the Boxing definition field does not exist, then the Boxing Rules panel is placed on the screen and is used to created the new Boxing Definition for the Boxing file (see 21.7.2.1 Boxing Rules Panel).

If the Boxing Definition already exists, then nothing will happen when clicking on Create.

Edit button

edit an existing Boxing Definition with name given in the Boxing definition panel field

If the Boxing Definition given in the Boxing definition file exists, then the Boxing Rules panel is placed on the screen and is used to edit the existing Boxing Definition (see 21.7.2.1 Boxing Rules Panel).

If the Boxing Definition does not exist, then nothing happens when clicking on Edit.

Delete button

delete the existing Boxing Definition with the name given in the Boxing definition panel field

A Yes-No panel confirms the deletion.

Save file button

save the Boxing file with the Boxing Definitions to disk.

For more information on how Boxing works in 12d Model, go to the section 21.6 What is Boxing?.

Go to the next section 21.7.2.1 Boxing Rules Panel or return to 21.7.2 Edit Boxing File.
21.7.2.1 Boxing Rules Panel

Selecting the Create or Edit button on the Edit Boxing Definitions panel brings up the Boxing Rules panel which is used to build up/edit the nominated Boxing Definition from the Boxing Commands.

The Boxing Rules panel consists of:

(a) a **Boxing Rules** grid with rows (or lines) with commands in them

   The commands for the Boxing Rules grid are fully described in the section 21.7.2.2 Commands for Boxing Rules Grid.

   For more information on creating and editing data in a grid, see 4.19.6 Grids in Panels.

(b) **Left Side Interface** and **Right Side Interface** areas

   See the following document ion on fields and buttons for this panel

(c) **Copy from start of section** and **Copy to end of section** tick boxes

   See the following document ion on fields and buttons for this panel

(d) an **OK** or **Apply** button to record the results.

   See the following document ion on fields and buttons for this panel
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Boxing Rules Grid</strong></td>
<td>commands for defining the Boxing Definition.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The commands will be described in the section 21.7.2.2 Commands for Boxing Rules Grid.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For information on the general operation of a grid including the icons on the right hand side, see 4.19.6 Grids in Panels.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Left Side Interface**

**Type**

choice box

![Select Choice](image)

**If No interface:**

nothing is done

**If Xfall:**

<table>
<thead>
<tr>
<th>Xfall</th>
<th>real box</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>if non-zero, a batter with the given xfall is applied going to the left from the first point of the boxing, and goes until it intersects the design section. The intersection point is added as the first point in the boxing. If no intersection is made, nothing is added to the boxing. A positive xfall is up and negative xfall down.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**If Slope:**

<table>
<thead>
<tr>
<th>Slope</th>
<th>real box</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>if non-zero, a batter with the given slope is applied going to the left of the first point of the boxing, and goes until it intersects the design section. The intersection point is added as the first point in the boxing. If no intersection is made, nothing is added to the boxing. A positive slope is up and negative slope down.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**If Xfall from point:**

<table>
<thead>
<tr>
<th>Set point</th>
<th>button</th>
</tr>
</thead>
<tbody>
<tr>
<td>clicking on Set point brings up the Boxing LHS Xfall panel which allows the battering xfall to be defined in more complex ways. This is described in the section 21.7.2.17 Boxing Left Side Interface Xfall from Point.</td>
<td></td>
</tr>
</tbody>
</table>

**Copy from start of section**

<table>
<thead>
<tr>
<th>tick box</th>
</tr>
</thead>
<tbody>
<tr>
<td>if ticked, then the part of the design section from the start of the design section to the offset that is the start of the boxing section, is copied and made the beginning of the boxing section.</td>
</tr>
</tbody>
</table>

Hence the Copy from start of section tick is used to begin the boxing section with the start of the design section to make a full width left side boxing section.

| If not ticked, nothing is done |

**Right Side Interface**
If No interface:
nothing is done

If Xfall:

Xfall

if non-blank, a batter with the given xfall is applied to the last point of the boxing and goes until it intersects the design section. The intersection point is added as the last point in the boxing. If no intersection is made, nothing is added to the boxing. A xfall slope is up and negative xfall down.

If Slope:

Slope

if non-blank, a batter with the given slope is applied to the last point of the boxing and goes until it intersects the design section. The intersection point is added as the last point in the boxing. If no intersection is made, nothing is added to the boxing. A positive slope is up and negative slope down.

If Xfall from point:

Set point

clicking on Set point brings up the Boxing RHS Xfall panel which allows the battering xfall to be defined in more complex ways. This is described in the section 21.7.2.2.18 Boxing Right Side Interface Xfall from Point.

Copy to end of section

tick box

if ticked, then the part of the design section from the offset of the last boxing vertex to the last vertex on the design section, is copied and made the end of the boxing section.

Hence the RHS copy flag is used to continue the boxing section from the last boxing point, with the design section to the end of the design section to make a full width right side boxing section.

If not ticked, nothing is done.

Buttons at Bottom

OK

button

OK stores the values in the fields and removes the panel BUT no recalc is done.

Apply

button

Apply stores the values and leaves the panel on the screen.

If the Boxing Definition is being used in an Apply MTF MTF and Auto recalc is ticked in the MTF, then whenever the Apply button is clicked, then a recalc of the associated Apply MTF for the MTF is done.

If the Boxing Definition is being used in a Boxing Many Function then whenever the Apply button is clicked, a recalc of the Boxing Many Function is done.

Notes
1. When a Boxing Definition is applied on the Left side in the MTF of an **Apply MTF**, or the Left side in a **Boxing Many Function**, any **Right Side Interface** and **Copy to end of section** is ignored. Similarly, when a Boxing Definition is applied on the right side the MTF of an **Apply MTF**, or the Right side in a **Boxing Many Function**, any **Left Side Interface** and **Copy from start of section** is ignored.

Hence a boxing definition can have all of **Left Side Interface**, **Copy from start of section** and **Right Side Interface**, **Copy to end of section** but which set is used depends on whether the boxing definition is used on the Left or the Right.

In **Apply MTF’s** and **Boxing Many Functions**, if only the Left side boxing or only the Right side boxing exists, then the boxing for the entire design section can be created by just the Left/Right side boxing and then all of the **Left Side Interface** and the **Right Side Interface** is used.

For more information on how Boxing works in **12d Model**, please go to the section **21.6 What is Boxing?**
21.7.2.2 Commands for Boxing Rules Grid

For information on the general operation of a grid including the icons on the right hand side, see 4.19.6 Grids in Panels.

If the row of the grid is empty, clicking LB in the empty row will bring up the Create menu which contains all the available boxing commands. Note this may involve two clicks - one to highlight a column in a row and the second click to bring up the Create Rule menu.

Selecting a menu item will bring up an associated panel which displays the information required for the boxing command.

When the panel is filled in and OK or Apply selected, the panel information is written out to the command line in the correct format for that boxing command.

If the row of the grid is not empty (and hence filled with a command) clicking LB in the Type column will bring up the associated panel for the boxing command. Note this may involve two clicks - one to highlight the Type column in a row and the second click to bring up the panel to edit that Command.
The information in the panel can be changed and if OK or Apply is selected, the modified panel information is written out to the row a a command line.

Each of the panels created by selecting a command from the Create menu, will now be described.

For

- **Copy**, go to 21.7.2.2.1 Boxing Copy
- **Vertex** 21.7.2.2.2 Boxing Vertex
- **Vertex (Adv)** 21.7.2.2.3 Boxing Vertex Advanced
- **X-fall** 21.7.2.2.4 Boxing Xfall - line through a point with a given crossfall
- **X-fall 1** 21.7.2.2.5 Boxing Xfall 1 - line through a point with a crossfall taken from a point
- **Line** 21.7.2.2.6 Boxing Line - line through two points
- **Intersect** 21.7.2.2.7 Boxing Intersect - Intersection of Two Lines
- **Intersect (Adv)** 21.7.2.2.8 Boxing Intersect Advanced
- **Xfall pt** 21.7.2.2.9 Boxing Xfall Point
- **Drop (kerb)** 21.7.2.2.10 Boxing Drop
- **Decision** 21.7.2.2.11 Boxing Decision
- **Label** 21.7.2.2.12 Boxing Label
- **Goto** 21.7.2.2.13 Boxing Goto
- **Comment** 21.7.2.2.14 Boxing Comment
- **Extend tin** 21.7.2.2.15 Boxing Extend Tin
- **End** 21.7.2.2.16 Boxing End

The text file format of all the Boxing Commands in the Boxing file is given in the section 21.10.2 Text Format of the Boxing File.

Go to the next section 21.7.2.2.1 Boxing Copy or return to 21.7.2.2 Commands for Boxing Rules Grid.
21.7.2.2.1 Boxing Copy

The Copy command copies part of the selected Layer from the Start Offset defined for the Copy command, to the Start Offset of the next boxing command.

The present slope of each segment is kept but the height of each segment is adjusted by a constant value provided by user.

Note: The height adjustment may be zero so that part of the selected Layer is copied as is.

Selecting Copy brings up the Boxing Copy panel

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Offset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copy from layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New name</td>
<td>pre*post</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Select Offset defines where the Copy commands starts from.

If the 3d cut of string is used (Cut of string), the Z-Diff is used with Height in determining how far the
Layer is copied.

**Type**

*choice box*

---

For the documentation on the methods of defining the **Start Offset** except for **Last created**, see 21.7.2.3 Defining Relative Offset for Boxing Commands

**If Last created:**

the Copy command starts at the Start Offset but for the boxing commands Intersect and Intersect Adv, the offset position for the vertex is calculated by intersection and its actual value may not be known.

So for **Last created**, the offset is the offset of the last vertex of the selected **Layer**.

**Offset**

*real box*

0

offset to add to the offset of the last vertex. **Offset** can be positive or negative but the final Start Offset must still be on **Layer**.

---

**Copy from layer**

**Layer**

*choice box*

---

**Height**

*real box*

0

If **Start Offset Type** is NOT: **Cut of string**:

Height is added to the z-values of the part of the section of the Copy from layer **Layer** being copied to give the z-values of the boxing. For example, if Height is -0.3, the part of the Copy from layer **Layer** being copied is dropped by 0.3

If **Start Offset Type** is: **Cut of string**:

At the plan cut of the string and the START OFFSET **Layer**, **Z-Diff** (the difference of the z-values between the string and START OFFSET **Layer**) is calculated and **Height** added to it. This combined value is added to the z-values of the part of the COPY FROM LAYER **Layer** being copied, to give the z-values of the boxing
New name

**Pre*post** text input

When part of a section is copied for the boxing, the vertices of the boxing are given names from either the vertices of the section, or the selected strings that are used in limiting the section, or a unique number not related to vertices or strings.

These constructed boxing vertex names are then modified by the text given in the *Pre*post field.

The text before the * is prepended to the vertex names, and the text after the * is postpended to the vertex names.

**Active** tick box

*If ticked*, use this Boxing Command.

*If not ticked*, don’t use this Boxing Command.

**OK** button

*OK* stores the values in the fields and removes the panel BUT no *recalc* is done.

**Apply** button

*Apply* stores the values and leaves the panel on the screen.

*If the Boxing Definition* is being used in an *Apply MTF* and *Auto recalc* is ticked in the MTF, then whenever the *Apply* button is clicked, then a *recalc* of the associated *Apply MTF* for the MTF is done.

*If the Boxing Definition* is being used in a *Boxing Many Function* then whenever the *Apply* button is clicked, a *recalc* of the *Boxing Many Function* is done.

For the typed formats of the *Copy* and *Copy with height adjustment* commands created by this panel, see 21.10.2.1 Text Format - Boxing Copy and 21.10.2.2 Text Format - Boxing Copy with Height Adjustment.

For more information on how Boxing works in 12d Model, please go to the section 21.6 What is Boxing?.

Go to the next section 21.7.2.2.2 Boxing Vertex or return to 21.7.2.2 Commands for Boxing Rules Grid.

**Copy** diagrams for more methods of defining *Offsets*:

Copy Option - Start Offset and Copy from Layer are the same Layer
21.7.2.2 Boxing Vertex

The **Vertex** command inserts into the boxing section, one or two new vertices that are at the same **Start Offset**. So **Vertex** can be used to quickly create a vertical wall at a given **Start Offset**.

**Note** - to allow the boxing sections and strings to triangulate, *12d Model* increases the offset of the second vertex by ten thousandth of a unit.

![Section View](image)

Selecting **Vertex** brings up the **Boxing Vertex**

![Boxing Vertex](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Start Offset</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Layer</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Name</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Offset</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>New vertices</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Height 1</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Name 1</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Height 2</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Name 2</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Start Offset**

*Layer to use with **Offset** to defined the Start Offset where the one or two vertices are created.*
Type

choice box

For the documentation on the methods of defining the Start Offset, see 21.7.2.3 Defining Relative Offset for Boxing Commands

New vertices

Height 1

real box

If Start Offset Type is NOT: Cut of string:

Height 1 is added to the z-value of the Layer at the Start Offset to give the z-values of the new boxing vertex. For example, if Height 1 is -0.3, the vertex is dropped by 0.3 from Layer.

If Start Offset Type is: Cut of string:

At the plan cut of the string and Layer, Z-Diff (the difference of the z-values between the string and the Layer) is calculated and Height 1 added to it. This combined z-difference is added to z-value of the Layer at the Start Offset to give the z-value of the new boxing vertex.

Name 1

cname box

if non blank, a vertex is created on the boxing section at Start Offset with this name and the appropriate height using Type and Height 1.

If blank, a vertex is created with a default name.

Height 2

real box

If Start Offset Type is NOT: Cut of string:

Height 2 is added to the z-value of the Layer at the Start Offset to give the z-values of the new boxing vertex. For example, if Height 2 is -0.5, the vertex is dropped by 0.5 from Layer.

If Start Offset Type is: Cut of string:

At the plan cut of the string and Layer, Z-Diff (the difference of z-values between the string and the Layer) is calculated and Height 2 added to it. This combined z-difference is added to z-value of the Layer at the Start Offset to give the z-value of the new boxing vertex.

Name 2

cname box

if non blank, a vertex is created on the boxing section at Start Offset with this name and the appropriate height using Type and Height 2.

If blank, no vertex is created.

Note - to allow the boxing sections and strings to triangulate, if two vertices are created, 12d Model actually increases the offset of the second vertex by ten thousandth of a unit.

Active
tick box

if ticked, use this Boxing Command.
If not ticked, don’t use this Boxing Command.

OK
button
**OK** stores the values in the fields and removes the panel BUT no **recalc** is done.

**Apply** button

**Apply** stores the values and leaves the panel on the screen.

If the **Boxing Definition** is being used in an **Apply MTF** and **Auto recalc** is ticked in the MTF, then whenever the **Apply** button is clicked, then a **recalc** of the associated **Apply MTF** for the MTF is done.

If the **Boxing Definition** is being used in a **Boxing Many Function** then whenever the **Apply** button is clicked, a **recalc** of the **Boxing Many Function** is done.

For the typed format of the **Vertex** command created by this panel, see [21.10.2.3 Text Format - Boxing Vertex](#).

For more information on how Boxing works in **12d Model**, please go to the section [21.6 What is Boxing?](#).

Go to the next section [21.7.2.2.3 Boxing Vertex Advanced](#) or return to [21.7.2.2 Commands for Boxing Rules Grid](#).

**Vertex** diagrams for more methods of defining **Offsets**:

---

**Vertex, Centreline Offset or 2d Cut to take **Offset** from**

- **Selected Layer**
- **Height 1 (-ve)** at Start offset
- **Height 2 (+ve)** at Start offset
- **boxing created so far**

**Section View**

**Vertex** Option - not 3d cut of string

---

**String Cut to take **Offset** from, and to use with **Height 1** and **Height 2** for the new vertices**

- **Selected Layer**
- **z-difference to use at Start Offset**
- **Height 2 (-ve)** at start offset
- **Height 1 (-ve)** at start offset
- **boxing created so far**

**Section View**

**Vertex** Option - 3d cut of string
21.7.2.2.3 Boxing Vertex Advanced

The **Vertex Advanced** command allows a vertex to be placed where the distance is measured **NORMAL** or vertical or to a segment.

**Vertex** only allowed a vertical distance and not a normal distance.

Selecting **Vertex (Adv)** brings up the **Boxing Vertex (Adv)** panel

![Boxing Vertex (Adv) panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Start Offset</strong></td>
<td><strong>Layer to use with Offset</strong> to defined the Start Offset where the one or two vertices are created.</td>
<td><strong>Vertex</strong></td>
<td><strong>None</strong></td>
<td></td>
</tr>
</tbody>
</table>
Type  

choice box

For the documentation on the methods of defining the Start Offset, see 21.7.2.3 Defining Relative Offset for Boxing Commands.

Xfall from  

choice box  

Left, Right

When Hgt type is Normal:

if Left, the xfall to measure the distance NORMAL to is taken from the segment of the Start Offset layer that is slightly to the left of the Start Offset.

if Right, the xfall to measure the distance NORMAL to is taken from the segment of the Start Offset layer that is slightly to the right of the Start Offset.

When Hgt type is Vertical, Xfall from is not used.

New Vertices

Hgt type  

choice box  

Vertical, Normal

When Hgt type is Normal, the distance is measured NORMAL to a segment.

If Xfall from is Left, the xfall to measure the distance NORMAL to is taken from the segment of the Start Offset layer that is slightly to the left of the Start Offset.

If Xfall from is Right, the xfall to measure the distance NORMAL to is taken from the segment of the Start Offset layer that is slightly to the right of the Start Offset.

When Hgt type is Vertical, the distance is measured in the vertical plane and Xfall from is not used.

Name 1  

name box

if non blank, a vertex is created on the boxing section with this name and the appropriate position using Type, Xfall from, Hgt type and Height 1.

If blank, a vertex is created with a default name.

Height 1  

real box

If Start Offset Type is NOT: Cut of string:

If Hgt type is Normal, the distance Height 1 is taken from the point on the Layer at the Start Offset, and going out NORMAL to the segment specified by Start Offset and Xfall from.
If Hgt type is Vertical, the distance Height 1 is taken from the point on the Layer at the Start Offset, and going vertically. For example, if Height 1 is -0.5, the vertex is dropped by 0.5 from Layer.

If Start Offset Type is: Cut of string:

??

Name 2 name box

If blank, no vertex is created.

Height 2 real box

If Start Offset Type is NOT: Cut of string:

If Hgt type is Normal, the distance Height 2 is taken from the point on the Layer at the Start Offset, and going out NORMAL to the segment specified by Start Offset and Xfall from.

If Hgt type is Vertical, the distance Height 2 is taken from the point on the Layer at the Start Offset, and going vertically. For example, if Height 2 is -0.5, the vertex is dropped by 0.5 from Layer.

Active tick box

if ticked, use this Boxing Command.
If not ticked, don’t use this Boxing Command.

OK button

OK stores the values in the fields and removes the panel BUT no recalc is done.

Apply button

Apply stores the values and leaves the panel on the screen.

If the Boxing Definition is being used in an Apply MTF and Auto recalc is ticked in the MTF, then whenever the Apply button is clicked, then a recalc of the associated Apply MTF for the MTF is done.
If the **Boxing Definition** is being used in a **Boxing Many Function** then whenever the **Apply** button is clicked, a **reca**l of the **Boxing Many Function** is done.

**Important Notes**

1. the boxing vertices must be created from left to right so be careful that vertex Name 2 is no created to the left of vertex of Name 1. If it is then it will be move to be slightly to the right of vertex Name 1.

2. to allow the boxing sections and strings to triangulate, if two vertices are created that are on top of each other, **12d Model** actually increases the offset of the second vertex by ten thousandth of a unit.

For more information on how Boxing works in **12d Model**, please go to the section **21.6 What is Boxing?**.

Go to the next section **21.7.2.2.4 Boxing Xfall - line through a point with a given crossfall** or return to **21.7.2.2 Commands for Boxing Rules Grid**.
21.7.2.2.4 Boxing Xfall - line through a point with a given crossfall

The Xfall command creates a link from the Start Offset to the Start Offset on the next boxing command, with a

(a) user given cross fall (Xfall)

(b) start height given by projecting the line with a given xfall and going through a given control point, through to the Start Offset,

Selecting Xfall brings up the Boxing Xfall panel
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Offset</td>
<td>choice</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Start Offset**

Start Offset defines the offset where the new line starts from.

*For the Xfall command, the 3d cut of string is not needed. Only 2d cut of string is required.*

<table>
<thead>
<tr>
<th>Type</th>
<th>choice box</th>
</tr>
</thead>
</table>

*For the documentation on the methods of defining the Start Offset, see 21.7.2.3 Defining Relative Offset for Boxing Commands.*

**Control**

the definition of the Control Point that the line goes through.

<table>
<thead>
<tr>
<th>Layer</th>
<th>choice box</th>
</tr>
</thead>
</table>

Layer to use with Control Offset to define the offset of the Control Point.

<table>
<thead>
<tr>
<th>Type</th>
<th>choice box</th>
</tr>
</thead>
</table>

*If Vertex on section:*

<table>
<thead>
<tr>
<th>Name</th>
<th>name box</th>
</tr>
</thead>
</table>

name of the vertex on the Control Layer to use with Offset to defined the Control Offset. And used with Height to define the height of the Control Point

<table>
<thead>
<tr>
<th>Offset</th>
<th>real box</th>
<th>0</th>
</tr>
</thead>
</table>

this value is added to the offset of the vertex given in the Name field to define the Control Offset. Offset can be positive or negative as long as the final Control Offset is still on the Control Layer.

<table>
<thead>
<tr>
<th>Height</th>
<th>real box</th>
<th>0</th>
</tr>
</thead>
</table>
Height is added to the z-value of the Control Layer at the Control Offset to give the height of the Control Point.

**If Offset from centreline:**

- **Offset**
  - real box
  - 0
  - an actual offset from centreline (actually just the chainage of the section) which is used as the Control Offset. Offset can be positive or negative as long as the Control Point is still on the Control Layer.

- **Height**
  - real box
  - 0
  - Height is added to the z-value of the Control Layer at the Control Offset to give the height of the Control Point.

**If 2d cut of string, height from section:**

- **String**
  - string select
  - the selected string needs to cut the Control Layer in plan wherever the boxing is being applied.

The Control Offset is the offset of the plan cut of the selected string with the Control Layer, plus the Offset value. Offset can be positive or negative as long as the final Control Offset is still on the Control Layer.

- **Offset**
  - real box
  - 0
  - offset to add to the offset of the plan cut of the Control Layer with the selected string to give the Start Offset. Offset can be positive or negative but the final Control Offset must still be on the Control Layer.

- **Height**
  - real box
  - 0
  - Height is added to the z-value of the Control Layer at the Control Offset to give the height of the Control Point.

**If Cut of string:**

- **String**
  - string select
  - the selected string needs to cut the Control Layer in plan wherever the boxing is being applied.

The Control Offset is the offset of the plan cut of the selected string with the Control Layer, plus the Offset value. Offset can be positive or negative but the final position must still be on the section.

- **Offset**
  - real box
  - 0
  - offset to add to the offset of the plan cut of the section with the selected string to give the Control Offset. Offset can be positive or negative but the final Control Offset must still be on the section.

- **Height**
  - real box
  - 0
  - At the plan cut of the string and the Control Layer, the difference of the z-values between the string and the Control Layer is calculated and Height added to it. This combined value is added to the z-values on the Control Layer to give the z-value of the Control Point.

- **Xfall**
  - input
  - 0
  - xfall of the line going through the Control Point.

**New vertices**

- **Name 1**
  - name box
  - if non blank, the vertex created at the Start Offset is given this name
  - If blank, the vertex created at the Start Offset is given a default name.

- **Name 2**
  - name box
if non blank, the vertex created at the End Offset (the Start Offset of the next command) is given this name.

If blank, the vertex created at the End Offset is given a default name.

Active tick box

if ticked, use this Boxing Command.
If not ticked, don’t use this Boxing Command.

OK button

OK stores the values in the fields and removes the panel BUT no recalc is done.

Apply button

Apply stores the values and leaves the panel on the screen.

If the Boxing Definition is being used in an Apply MTF and Auto recalc is ticked in the MTF, then whenever the Apply button is clicked, then a recalc of the associated Apply MTF for the MTF is done.

If the Boxing Definition is being used in a Boxing Many Function then whenever the Apply button is clicked, a recalc of the Boxing Many Function is done.

For the typed formats of the Xfall command created by this panel, see 21.10.2.5 Text Format - Boxing Xfall.

For more information on how Boxing works in 12d Model, please go to the section 21.6 What is Boxing?.

Go to the next section 21.7.2.2.5 Boxing Xfall 1 - line through a point with a crossfall taken from a point or return to 21.7.2.2 Commands for Boxing Rules Grid.

Xfall diagrams for more methods of defining Offsets:
Full Definition of Boxing
21.7.2.2.5 Boxing Xfall 1 - line through a point with a crossfall taken from a point

The **Xfall 1** command creates a link from the Start Offset, to the Start Offset on the next boxing command, with

(a) a Xfall which is the xfall at a given offset plus an additional xfall Delta

(b) a start height given by projecting to the Start Offset, the line with the specified Xfall and going through a given Control Point.

**Note** - the difference between the boxing commands **Xfall** and **Xfall 1** is that in the command **Xfall**, the user supplies the value of the xfall whereas in the command **Xfall 1**, the xfall is taken from a link on the Xfall Layer.

Selecting **Xfall 1** brings up the **Boxing Xfall 1** panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start offset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xfall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New vertices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Start offset**

*Start Offset defines the offset where the new line starts from.*

*For the Xfall 1 command, the 3d cut of string is not needed. Only 2d cut of string is required.*

**Type**

choice box

*For the documentation on the methods of defining the Start Offset, see [21.7.2.3 Defining Relative Offset for Boxing Commands](#)*
Control
the definition of the Control Point for the line to go through.

Layer choice box

Layer to use with Control Offset to define the offset of the Control Point.

Type choice box

If Vertex on section:
Name name box
name of the vertex on the Control Layer to use with Offset to define the Control Offset. And used with Height to define the height of the Control Point
Offset real box 0
this value is added to the offset of the vertex given in the Name field to define the Control Offset. Offset can be positive or negative as long as the final Control Offset is still on the Control Layer.
Height real box 0
Height is added to the z-value of the Control Layer at the Control Offset to give the height of the Control Point.

If Offset from centreline:
Offset real box 0
an actual offset from centreline (actually just the chainage of the section) which is used as the Control Offset. Offset can be positive or negative as long as the Control Point is still on the Control Layer.
Height real box 0
Height is added to the z-value of the Control Layer at the Control Offset to give the height of the Control Point.

If 2d cut of string, height from section:
String string select
the selected string needs to cut the Control Layer in plan wherever the boxing is being applied.
The Control Offset is the offset of the plan cut of the selected string with the Control Layer, plus the Offset value. Offset can be positive or negative as long as the final Control Offset is still on the Control Layer.

**Offset**

real box 0

offset to add to the offset of the plan cut of the Control Layer with the selected string to give the Start Offset. Offset can be positive or negative but the final Control Offset must still be on the Control Layer.

**Height**

real box 0

Height is added to the z-value of the Control Layer at the Control Offset to give the height of the Control Point.

*If Cut of string:*

**String**

string select

the selected string needs to cut the Control Layer in plan wherever the boxing is being applied.

The Control Offset is the offset of the plan cut of the selected string with the Control Layer, plus the Offset value. Offset can be positive or negative but the final position must still be on the Control Layer.

**Offset**

real box 0

offset to add to the offset of the plan cut of the section with the selected string to give the Control Offset. Offset can be positive or negative but the final Control Offset must still be on the section.

**Height**

real box 0

At the plan cut of the string and the Control Layer, the difference of the z-values between the string and the Control Layer is calculated and Height added to it. This combined value is added to the z-values on the Control Layer, to give the z-value of the Control Point.

**Xfall**

the xfall of the line going through the Control Point is:

*the xfall of the Xfall Layer at Xfall Offset, plus the value Delta.*

**Layer**

choice box

Layer to use with Offset to defined the Xfall
Type choice box

If Vertex on section:

Name name box

name of the vertex on Xfall Layer to use with Offset to define the Xfall Offset.

Offset real box

this value is added to the offset of the vertex given in the Name field to define the Xfall Offset. Offset can be positive or negative as long as the final Xfall Offset is still on the Xfall Layer.

Delta real box

the Xfall of the line is the xfall of the Xfall Layer at Xfall Offset plus Delta

If Offset from centreline:

Offset real box

an actual offset from centreline (actually just the chainage of the section) which is used as the Xfall Offset. Offset can be positive or negative as long as it is still on the Xfall Layer.

Delta real box

the Xfall of the line is the xfall of the segment of Xfall Layer at Xfall Offset plus Delta

If 2d cut of string:

String string select

the selected string needs to cut the Xfall Layer in plan wherever the boxing is being applied.

The Xfall Offset is the offset of the plan cut of the selected string with the Xfall Layer, plus the Offset value. Offset can be positive or negative but the final position Xfall Offset must still be on the Xfall Layer

Offset real box

offset to add to the offset of the plan cut of the Xfall Layer with the selected string to give the Xfall Offset. Offset can be positive or negative but the final Xfall Offset must still be on the Xfall Layer.

Delta real box

the Xfall of the line is the xfall of the segment of Xfall Layer at Xfall Offset plus Delta.

New vertices

Name 1 name box

if non blank, the vertex created at the Start Offset is given this name

If blank, the vertex created at the Start Offset is given a default name.

Name 2 name box

if non blank, the vertex created at the End Offset (the Start Offset of the next command) is given this name

If blank, the vertex created at the End Offset is given a default name.
Active tick box

if ticked, use this Boxing Command.
If not ticked, don’t use this Boxing Command.

OK button

OK stores the values in the fields and removes the panel BUT no recalc is done.

Apply button

Apply stores the values and leaves the panel on the screen.

If the Boxing Definition is being used in an Apply MTF and Auto recalc is ticked in the MTF, then whenever the Apply button is clicked, then a recalc of the associated Apply MTF for the MTF is done.

If the Boxing Definition is being used in a Boxing Many Function then whenever the Apply button is clicked, a recalc of the Boxing Many Function is done.

For the typed format of the xfall1 command created by this panel, see 21.10.2.6 Text Format - Boxing Xfall1.

For more information on how Boxing works in 12d Model, please go to the section 21.6 What is Boxing?.

Go to the next section 21.7.2.2.6 Boxing Line - line through two points or return to 21.7.2.2 Commands for Boxing Rules Grid.

Xfall 1 diagrams for more methods of defining Offsets:
Section View

**Xfall 1 Option - only using one Layer & not String Cut for Control Point or Xfall Point**

Section View

**Xfall 1 Option - not Cut of string for Control Point or Xfall**

Section View

**Xfall 1 Option - Cut of string for Control Point**

---

**Chapter 21  Advanced Design**

**Full Definition of Boxing**
21.7.2.2.6 Boxing Line - line through two points

The Line command creates a line from the Start Offset to the Start Offset of the next boxing command, with a
(a) slope given by two points
(b) start height given by projecting to the Start Offset, the line through the two points.

The first point defining the line has the offset **Point 1 Offset** which may be given in terms of a Vertex, or Cut with a string, and a height given by the height of a selected Layer, or at the Cut string, plus a given **Height**.

The second point defining the line has the offset **Point 2 Offset** which may be given in terms of a Vertex, or Cut with a string, and a height given by the height of a selected Layer, or at the Cut string, plus a given **Height**.

Selecting Line brings up the Boxing Line panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Start offset</strong></td>
<td>Type</td>
<td>Vertex</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Offset</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Height</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Point 1</strong></td>
<td>Type</td>
<td>Vertex</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Offset</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Height</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Point 2</strong></td>
<td>Type</td>
<td>Vertex</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Offset</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Height</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>New vertices</strong></td>
<td>Name 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Name 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Start offset**

Start Offset defines the offset where the new line starts from.

For the Line command, the 3d cut of string is not needed. Only 2d cut of string is required.

**Type**

choice box

For the documentation on the methods of defining the Start Offset, see 21.7.2.3 Defining Relative Offset for Boxing Commands
Point 1
the definition of the first point that the line goes through.

Type choice box

For the documentation on the methods of defining the Point 1 Offset, see 21.7.2.3 Defining Relative Offset for Boxing Commands

If Vertex on section:
Height real box 0
Height is added to the z-value on the Layer at the Point 1 Offset to give the height of Point 1.

If Offset from centreline:
Height real box 0
Height is added to the z-value on the Layer at the Point 1 Offset to give the height of Point 1.

If 2d cut of string, height from section:
Height real box 0
Height is added to the z-value on the Layer at the Point 1 Offset to give the height of Point 1.

If Cut of string:
Height real box 0
Height is added to the z-value of the cut string to give the z-value of Point 1.

Point 2
the definition of the second point that the line goes through.

Type choice box

For the documentation on the methods of defining the Point 2 Offset, see 21.7.2.3 Defining Relative Offset for Boxing Commands

If Vertex on section:
Height real box 0
Height is added to the z-value on the Layer at the Point 2 Offset to give the height of Point 2.

If Offset from centreline:
Height real box 0
Height is added to the z-value of the Layer at the Point 2 Offset to give the height of Point 2.

If 2d cut of string, height from section:

Height real box 0

Height is added to the z-value on the Layer at the Point 2 Offset to give the height of Point 2.

If Cut of string:

Height real box 0

Height is added to the z-value of the cut string to give the z-value of Point 2.

New Vertices

Name 1

if non blank, the vertex created at the Start Offset is given this name
If blank, the vertex created at the Start Offset is given a default name.

Name 2

if non blank, the vertex created at the End Offset (the Start Offset of the next command) is given this name
If blank, the vertex created at the End Offset is given a default name.

Active
tick box

if ticked, use this Boxing Command.
If not ticked, don’t use this Boxing Command.

OK

OK stores the values in the fields and removes the panel BUT no recalc is done.

Apply

button

Apply stores the values and leaves the panel on the screen.

If the Boxing Definition is being used in an Apply MTF and Auto recalc is ticked in the MTF, then whenever the Apply button is clicked, then a recalc of the associated Apply MTF for the MTF is done.

If the Boxing Definition is being used in a Boxing Many Function then whenever the Apply button is clicked, a recalc of the Boxing Many Function is done.

For the typed formats of the Line command created by this panel, see 21.10.2.4 Text Format - Boxing Line.

For more information on how Boxing works in 12d Model, please go to the section 21.6 What is Boxing?.

Go to the next section 21.7.2.2.7 Boxing Intersect - Intersection of Two Lines or return to 21.7.2.2 Commands for Boxing Rules Grid.

Line diagrams for more methods of defining Offsets:
Full Definition of Boxing
21.7.2.2.7 Boxing Intersect - Intersection of Two Lines

The Intersect command creates a vertex on the boxing section that is the intersection of two lines.

The first line goes through Point 1 where the offset for Point 1 is the offset of a vertex from a Layer, and the height at Point 1 is the height on the vertex plus of a given Height. The xfall of the line is taken from the Layer segment to either the Left or Right of the selected vertex.

The second line goes through Point 2 where the offset for Point 2 is a relative offset to a vertex or a selected string, and the height at Point 2 is either the height on the Layer section plus a given Height, or the height at the cut string, with the addition of a given Height. The Xfall of the line is taken from the Layer segment to either the Left or Right of the relative offset of Point 2.

A new boxing vertex is created at the intersection of the two lines.

Selecting Intersect brings up the Boxing Intersect panel
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Vertex 1</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the definition of the point that the first line goes through. The point must be vertically over a vertex from a Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Layer</strong></td>
<td>choice box</td>
<td></td>
<td>Design, Layer 1 ... Layer 8</td>
</tr>
<tr>
<td>Layer to select the vertex from to define the offset of the point the first line goes through.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Type</strong></td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Name</strong></td>
<td>name box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>name of the vertex on Layer to use with Height to defined the offset and height for point that the first line goes through</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Height</strong></td>
<td>real box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height is added to the z-value of the selected vertex to give the point the first line goes through.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Xfall from choice box Left, Right

if Left, the xfall for the line is taken from the segment that is a little left of the selected vertex.

If Right, the xfall for the line is taken from the segment that is a little right of the selected vertex.

Point 2

the definition of the point that the second line goes through.

Layer choice box Design, Layer 1 ... Layer 8

Layer to select the vertex from to define the offset of the point the second line goes through.

Type choice box

If Vertex on section:

Name name box

name of the vertex on the cross section to use with Offset to defined the Point 2 Offset. And used with Height to define the height of the Point 2.

Offset real box 0

this value is added to the offset of the vertex given in the Name field to define the Point 2 Offset. Offset can be positive or negative as long as the final Point 2 Offset is still on the section.

Height real box 0

Height is added to the z-value of the section at the Point 2 Offset to give the height of Point 2.

If Offset from centreline:

Offset real box 0

an actual offset from centreline (actually just the chainage of the section) which is used as the Point 2 Offset. Offset can be positive or negative as long as the Point 2 Offset is still on the section.

Height real box 0

Height is added to the z-value of the section at the Point 2 Offset to give the height of Point 2.

If 2d cut of string, height from section:

String string select

the selected string needs to cut the sections in plan wherever the boxing is being applied.

The Point 2 Offset is the offset of the plan cut of the selected string with the section, plus the Offset value. Offset can be positive or negative as long as the final Point 2 Offset is still on the section.

Offset real box 0

this value is added to the offset of the plan cut of the section with the selected string to give the Point 2 Offset. Offset can be positive or negative but the final Point 2 Offset must still be on the section.

Height real box 0

Height is added to the z-value of the section at the Point 2 Offset to give the height of Point 2.
If Cut of string:

String  string select
the selected string needs to cut the sections in plan wherever the boxing is being applied.

The Point 2 Offset is the offset of the plan cut of the selected string with the section, plus the Offset value. Offset can be positive or negative but the final position must still be on the section.

Offset  real box  0
this value is added to the offset of the plan cut of the section with the selected string to give the Point 2 Offset. Offset can be positive or negative but the final Point 2 Offset must still be on the section.

Height  real box  0
Height is added to the z-value of the cut string to give the z-value of Point 2.

Point 2 Xfall
the definition of xfall of the second line

Layer  choice box  Design, Layer 1 ... Layer 8
Layer to select the vertex from to define the offset of the point the second line goes through.

Xfall from  choice box  Left, Right
if Left, the xfall of the second line is taken from the segment that is a little to the left of the relative offset.

If Right, the xfall of the second line is taken from the segment that is a little to the right of the relative offset

New vertex
a new vertex is created at the intersection of the two lines

Name  name box
the vertex created at the intersection of the two lines is given this name

Active  tick box
if ticked, use this Boxing Command.
If not ticked, don’t use this Boxing Command.

OK  button
OK stores the values in the fields and removes the panel BUT no recal is done.

Apply  button
Apply stores the values and leaves the panel on the screen.

If the Boxing Definition is being used in an Apply MTF and Auto recal is ticked in the MTF, then whenever the Apply button is clicked, then a recal of the associated Apply MTF for the MTF is done.

If the Boxing Definition is being used in a Boxing Many Function then whenever the Apply button is clicked, a recal of the Boxing Many Function is done.

For the typed format of the intersect command created by this panel, see 21.10.2.7 Text Format.
- Boxing Intersect.

For more information on how Boxing works in 12d Model, please go to the section 21.6 What is Boxing?.

Go to the next section 21.7.2.2.8 Boxing Intersect Advanced or return to 21.7.2.2 Commands for Boxing Rules Grid.

Intersect diagrams for more methods of defining Offsets:
21.7.2.2.8 Boxing Intersect Advanced

The **Intersect Advanced** command is similar to the **Intersect** command where a vertex on the boxing section is the intersection of two lines. The major difference is that the distance of the lines from vertices etc can be measured NORMAL to a segment, not just a vertical distance (See 21.7.2.2.7 Boxing Intersect - Intersection of Two Lines).

Selecting **Intersect (Adv)** brings up the **Boxing Intersect (Adv)** panel
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Vertex 1</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the definition of the point that the first line goes through. The point can be normal to a segment left or right of a vertex from a Layer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Layer - after Type</strong></td>
<td>choice box</td>
<td>Design, Layer 1 ... Layer 8</td>
<td></td>
</tr>
<tr>
<td>Layer to select the vertex from to define the offset of the point the first line goes through.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Type</strong></td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Boxing Intersect (Adv) panel](image)
If Vertex on section:

**Name**

name box

name of the vertex on **Layer** to use with **Type**, **Xfall from**, **Height type** and **Height** to define the offset and height for point that the first line goes through

**Height type**

choice box **Vertical, Normal**

*When Height type is Normal, the distance is measured NORMAL to a segment.*

*If Xfall from is Left, the xfall to measure the distance NORMAL to is taken from the segment that is slightly to the left of Name.*

*If Xfall from is Right, the xfall to measure the distance NORMAL to is taken from the segment that is slightly to the right of Name.*

*When Height type is Vertical, the distance is measured in the vertical plane and Xfall from is not used. For example, if Height is -0.5, the vertex is dropped by 0.5 from Layer.*

**Height**

real box

depending on **Height type**, Height is added to added vertically or normally to give the z-value of the point the first line goes through.

**Xfall from**

choice box **Left, Right**

if Left, the xfall for the line is taken from the segment that is a little left of the selected vertex.

If Right, the xfall for the line is taken from the segment that is a little right of the selected vertex

**Point 2**

the definition of the point that the second line goes through.

**Layer**

choice box **Design, Layer 1 ... Layer 8**

Layer to select in defining the offset of the point the second line goes through. The point can be normal to a segment left or right of the relative offset from Layer.

**Type**

choice box

If Vertex on section:

**Name**

name box
name of the vertex on the cross section to use with Offset to defined the Point 2 Offset. And used with Height type and Height to define the height of Point 2.

**Offset**

real box 0

this value is added to the offset of the vertex given in the Name field to define the Point 2 Offset. Offset can be positive or negative as long as the final Point 2 Offset is still on the section.

**If Offset from centreline:**

Offset real box 0

an actual offset from centreline (actually just the chainage of the section) which is used as the Point 2 Offset. Offset can be positive or negative as long as the Point 2 Offset is still on the section.

**If 2d cut of string, height from section:**

String string select

the selected string needs to cut the sections in plan wherever the boxing is being applied.

The Point 2 Offset is the offset of the plan cut of the selected string with the section, plus the Offset value. Offset can be positive or negative as long as the final Point 2 Offset is still on the section.

Offset real box 0

this value is added to the offset of the plan cut of the section with the selected string to give the Point 2 Offset. Offset can be positive or negative but the final Point 2 Offset must still be on the section.

**If Cut of string:**

String string select

the selected string needs to cut the sections in plan wherever the boxing is being applied.

The Point 2 Offset is the offset of the plan cut of the selected string with the section, plus the Offset value. Offset can be positive or negative but the final position must still be on the section.

Offset real box 0

this value is added to the offset of the plan cut of the section with the selected string to give the Point 2 Offset. Offset can be positive or negative but the final Point 2 Offset must still be on the section.

**Height type**

choice box Vertical, Normal

When Height type is Normal, the distance is measured NORMAL to a segment.

If Xfall from is Left, the xfall to measure the distance NORMAL to is taken from the segment that is slightly to the left of the Point 2 offset.

If Xfall from is Right, the xfall to measure the distance NORMAL to is taken from the segment that is slightly to the right of the Point 2 offset.

When Height type is Vertical, the distance is measured in the vertical plane and Xfall from is not used. For example, if Height is -0.5, the vertex is dropped by 0.5 from Layer

Height real box 0

depending on Height type, Height is added vertically or normally to give the z-value of the point the second line goes through.
Point 2 Xfall

the definition of xfall of the second line. The xfall comes from the segment in the elected Layer slightly to the left or right of the Point 2 offset

Layer choice box

Design, Layer 1 ... Layer 8

Layer to select the xfall from for the second line.

Xfall from choice box

if Left, the xfall of the second line is taken from the segment that is a little to the left of Point 2 Offset.

If Right, the xfall of the second line is taken from the segment that is a little to the right of Point 2 Offset.

If Manual, the xfall is taken from the Xfall field.

If Left Max, the xfall on the left side of Point 2 will never exceed the value in the Xfall field. If the xfall is greater than the value in Xfall field then the xfall takes the value in the Xfall field.

If Right Max, the xfall on the right side of Point 2 will never exceed the value in the Xfall field. If the xfall is greater than the value in Xfall field then the xfall takes the value in the Xfall field.

If Left Min, the xfall on the left side of Point 2 will never be less than the value in the Xfall field. If the xfall is less than the value in Xfall field then the xfall takes the value in the Xfall field.

If Right Min, the xfall on the right side of Point 2 will never be less than the value in the Xfall field. If the xfall is less than the value in Xfall field then the xfall takes the value in the Xfall field.

For example, to force a crown in the subgrade no matter what the super elevation of the road is, you would use Left Min on the left hand side of the road and Right Max on the right side of the road.

Intersection Type

the definition of xfall of the second line. The xfall comes from the segment in the elected Layer slightly to the left or right of the Point 2 offset
Full Definition of Boxing

**Type**
choice box

*If Intersect extended segment,*

*If Intersect segment stop.*

**New vertex**
*a new vertex is created at the intersection of the two lines*

**Name**
name box
*the vertex created at the intersection of the two lines is given this name*

**Active**
tick box
*if ticked, use this Boxing Command.*
*If not ticked, don’t use this Boxing Command.*

**OK**
button
*OK stores the values in the fields and removes the panel BUT no recalc is done.*

**Apply**
button
*Apply stores the values and leaves the panel on the screen.*

*If the Boxing Definition is being used in an Apply MTF and Auto recalc is ticked in the MTF, then whenever the Apply button is clicked, then a recalc of the associated Apply MTF for the MTF is done.*

*If the Boxing Definition is being used in a Boxing Many Function then whenever the Apply button is clicked, a recalc of the Boxing Many Function is done.*
For the typed format of the `intersect Advanced` command created by this panel, see 21.10.2.7 Text Format - Boxing Intersect.

For more information on how Boxing works in 12d Model, please go to the section 21.6 What is Boxing?.

Go to the next section 21.7.2.2.9 Boxing Xfall Point or return to 21.7.2.2 Commands for Boxing Rules Grid.

*Intersect Adv* diagrams for more methods of defining *Offsets*:
Chapter 21  Advanced Design

Full Definition of Boxing

Page 4799
21.7.2.2.9 Boxing Xfall Point

The Xfall Pt command is similar to the Vertex command in that it inserts one or two new vertices at the given Start Offset.

However, instead of adjusting the height from the z-value of the Layer, the Xfall Pt command extrapolates from the z-value of the selected Layer or 2d cut with a selected string (depending on Type) using the Xfall at the Xfall Offset given in the Xfall Pt command.

Like Vertex, Xfall Pt can be used to quickly create a vertical wall of two vertices.

Note - to allow the boxing sections and strings to triangulate, 12d Model increases the offset of the second vertex by ten thousandth of a unit.

Selecting Xfall pt brings up the Boxing Xfall Pt panel
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Start offset</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Vertex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Layer - after Type</strong></td>
<td>choice box</td>
<td>None, Design, Layer 1 ... Layer 8</td>
<td></td>
</tr>
<tr>
<td><strong>Type</strong></td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>New vertices</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Start offset**

Start Offset defines the vertex, plan cut or cut string to define where the grade line start goes through, and then the Offset defines where the line is projected to and creates the one or two new vertices.

**Layer - after Type**

Layer to use with Type to select the point the line goes through, and for how far.

**Type**

If Vertex on section:

Name

name box

name of the vertex on the given Layer that the line will go through. The line will have xfall given in the Xfall section. Offset is added to the offset of the vertex to defined the Start Offset, and the line is extended thought the vertex to Start Offset.

Height 1/Height 2 are then used with the projected point to define the heights of the new boxing
vertices.

**Offset**

```
real box 0
```

This value is added to the offset of the vertex given in the **Name** field to define the **Start Offset**. **Offset** can be positive or negative as long as the final **Start Offset** is still on the section.

**Height 1/Height 2**

```
real box 0
```

**Height 1/Height 2** is added to the z-value of the line that is extended to **Start Offset** to give the z-values of the new boxing vertices.

If **Offset from centreline**:

```
real box 0
```

An actual offset from centreline (actually just the chainage of the section) which is used as the **Start Offset**. **Offset** can be positive or negative as long as it is still on the section.

If **Offset from centreline is used**, the **Xfall** section is not used.

**Height 1/Height 2**

```
real box 0
```

**Height 1/Height 2** is added to the z-value of the section at the **Start Offset**, to give the z-values of the new boxing vertices. For example, if Height is -0.3, the vertex is dropped by 0.3.

If **2d Cut of string, height from section**:

**String**

```
string select
```

The **Start Offset** is the offset of the plan cut of the selected string with the section from **Layer**, plus the **Offset** value.

The **plan cut** on the section from **Layer** is used as the position to take a line through with xfall given at the Xfall Offset defined in the Xfall section. This goes through the **plan cut** on **Layer** and is extended through to the z-value at **Start Offset**.

**Height 1/Height 2** are then added to the z-value at **Start Offset** to define the heights of the new boxing vertices.

The selected string needs to cut the sections from **Layer** in plan wherever the boxing is being applied.

```
real box 0
```

Offset to add to the offset of the plan cut of the section from **Layer** with the selected string to give the **Start Offset**. **Offset** can be positive or negative but the final **Start Offset** must still be on **Layer**.

**Height 1/Height 2**

```
real box 0
```

**Height 1/Height 2** is used with the z-value of the extended line at the **Start Offset** to give the z-value of the new boxing vertices.

If **Cut of string**:

**String**

```
string select
```

The **Start Offset** is the offset of the **plan cut** of the selected string with the section from **Layer**, plus the **Offset** value. **Offset** can be positive or negative but the final position must still be on the section.

The line goes through the **3d cut** with the xfall given at the Xfall Offset defined in the Xfall section. This line goes through the **3d cut** point and is extended to **Start Offset** to give a z-value.

**Height 1/Height 2** are then added to the projected point to define the heights of the new boxing vertices.

The selected string needs to cut the sections in plan wherever the boxing is being applied.
Chapter 21  Advanced Design

Full Definition of Boxing

Offset  
real box  
0

offset to add to the offset of the plan cut of the section with the selected string to give the Start Offset. Offset can be positive or negative but the final Start Offset must still be on the section.

Height 1/Height 2  
real box  
0

Height 1/Height 2 is used with the z-value of the extended line at the Start Offset to give the z-value of the new boxing vertices.

Xfall

the definition of the offset that Xfall is taken from.

Type  
choice box

For the documentation on the methods of defining the Xfall Offset, see 21.7.2.3 Defining Relative Offset for Boxing Commands.

The xfall is taken from the point on the section in Layer with offset Xfall Offset.

Name 1  
name box

if non blank, a vertex is created on the boxing section at Start Offset with this name and the appropriate height.

If blank, no vertex is created.

Height 1  
real box

Height 1 to used in the calculation height of the new boxing vertex

Name 2  
name box

if non blank, a vertex is created on the boxing section at Start Offset with this name and the appropriate height.

If blank, no vertex is created.

Height 2  
real box

Height 2 to used in the calculation height of the new boxing vertex

Note - to allow the boxing sections and strings to triangulate, if two vertices are created, 12d Model actually increases the offset of the second vertex by ten thousandth of a unit.

Active  
tick box

if ticked, use this Boxing Command.
If not ticked, don’t use this Boxing Command.

OK  
button

OK stores the values in the fields and removes the panel BUT no recalc is done.

Apply  
button

Apply stores the values and leaves the panel on the screen.
If the **Boxing Definition** is being used in an **Apply MTF** and **Auto recalc** is ticked in the MTF, then whenever the **Apply** button is clicked, then a **recalc** of the associated **Apply MTF** for the MTF is done.

If the **Boxing Definition** is being used in a **Boxing Many Function** then whenever the **Apply** button is clicked, a **recalc** of the **Boxing Many Function** is done.

For the typed format of the **Xfall Point** command created by this panel, see [21.10.2.8 Text Format - Boxing Xfall Point](#).

For more information on how Boxing works in **12d Model**, please go to the section [21.6 What is Boxing?](#).

Go to the next section [21.7.2.10 Boxing Drop](#) or return to [21.7.2.2 Commands for Boxing Rules Grid](#).
21.7.2.2.10 Boxing Drop

The **Drop** command is a quick way of creating three vertices, the first two on a line of given Xfall, and the third vertically above the second vertex.

If the **End Offset** is before the **Start Offset** then the **Drop** is done in reverse. That is, the line still goes through the Start vertex but it then goes to the left.

Selecting **Drop (kerb)** brings up the **Boxing Drop** panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start offset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xfall to end</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xfall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End offset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New vertices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xfall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apply</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Help</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The first vertex is created with offset Start Offset and z-value determined by Start Offset Type and Height.

For the documentation on the methods of defining the Start Offset except for Last created, see 21.7.2.3 Defining Relative Offset for Boxing Commands

If Start Offset Type is NOT: Cut of string:
the height of the fist vertex is $Height$ added to the z-values of the selected Layer at Start Offset. For example, if Height is -0.3, the first vertex is 0.3 below the Layer at Start Offset.

If Start Offset Type is: Cut of string:

At the plan cut of the string and the START OFFSET Layer, $Z$-Diff (the difference of the z-values between the string and START OFFSET Layer) is calculated and $Height$ added to it. This combined value is added to the z-value of Layer at the Start Offset to give the z-values of the first vertex.

Xfall to end

Xfall real box

A line is created going through the first vertex (the Start vertex) with the xfall given in the Xfall field. Positive Xfall is up and negative Xfall is down.

End offset

The second vertex lies on the line through the first vertex when it is extrapolated to End Offset.

The third vertex is created with offset End Offset and z-value determined by End Offset Type and Height.

Type choice box

For the documentation on the methods of defining the Start Offset except for Last created, see 21.7.2.3 Defining Relative Offset for Boxing Commands.

Height real box 0

If End Offset Type is NOT: Cut of string:

the height of the last vertex is $Height$ added to the z-value of the selected Layer at End Offset. For example, if Height is -0.1, the third vertex is 0.1 below the Layer at End Offset.

If End Offset Type is: Cut of string:

At the plan cut of the string and the END OFFSET Layer, $Z$-Diff (the difference of the z-values between the string and END OFFSET Layer) is calculated and $Height$ added to it. This combined value is added to the z-value of Layer at the End Offset to give the z-values of the third vertex.

IMPORTANT NOTE: if the End Offset is before the Start Offset then the line from the first vertex is reversed and goes to the left rather than the right. The use of Offset inside the Start Offset and End Offset sections is also reversed so that a positive offset goes to the left.

New Vertices

Start name box

If Start is non blank then it is the name of the first vertex, otherwise a default name is used.

Xfall name box

If Xfall is non blank then it is the name of the second vertex, otherwise a default name is used.
Full Definition of Boxing

End name box

*If End is non blank then it is the name of the third vertex, otherwise a default name is used.*

Active tick box

*if ticked, use this Boxing Command.
If not ticked, don’t use this Boxing Command.*

OK button

*OK stores the values in the fields and removes the panel BUT no recalc is done.*

Apply button

*Apply stores the values and leaves the panel on the screen.

If the Boxing Definition is being used in an Apply MTF and Auto recalc is ticked in the MTF, then whenever the Apply button is clicked, then a recalc of the associated Apply MTF for the MTF is done.

If the Boxing Definition is being used in a Boxing Many Function then whenever the Apply button is clicked, a recalc of the Boxing Many Function is done.*

For more information on how Boxing works in 12d Model, please go to the section 21.6 What is Boxing?.

Go to the next section 21.7.2.11 Boxing Decision or return to 21.7.2.2 Commands for Boxing Rules Grid.
21.7.2.2.11 Boxing Decision

A Test is specified and depending on the result, processing of the boxing commands is sent to a specified **Label** in the **Boxing Definition** where processing then continues from the next command after the Label, or no jump is made and processing continues to the next boxing command in the **Boxing Definition**.

Selecting **Decision** brings up the **Boxing Decision** panel

![Boxing Decision panel](image)

**Type** choice box

-determines the type of test to be made.

*If Type* is **Test offset**:

**Test Offset**
Layer - after Type

Layer to use with Type to defined the test.

Type

If Vertex on section:

the test is satisfied if the Test Offset defined by Layer, Name and Offset is still on Layer.

Name

name of the vertex on Layer to use with Offset to defined the Test Offset. If it is not a name of a vertex then the test is not satisfied.

Offset

this value is added to the offset of the vertex given in the Name field to define the Test Offset. Offset can be positive or negative.

If Offset from centreline:

the test is satisfied if the Offset is on Layer.

Offset

an actual offset from centreline (actually just the chainage on Layer) which is used as the Test Offset. Offset can be positive or negative.

If 2d Cut of string, height from section:

the test is satisfied if the selected string cuts Layer in plan and the Test Offset given by the plan cut plus Offset is still on Layer.

String

the selected string needs to cut the sections of Layer in plan wherever the boxing decision is being applied.

The Test Offset is the offset of the plan cut of the selected string with Layer, plus the Offset value.

Offset

offset to add to the offset of the plan cut of the selected string to give the Test Offset. Offset can be positive or negative but the final Test Offset must still be on Layer.
End of definition for **Type** equal to **Test offset**.

*If Type is Above Tin or Below Tin:*

**Above/Below Tin decision**

**Layer - Below Type** choice box

Layer to use with **Type** to defined the height for the test.

**Type** choice box

*If Vertex on section:*

the test is satisfied if the **height** on the section at **Test Offset** defined by **Layer**, **Name** and **Offset** is **ABOVE/BELOW** the sum of the value given in the field **Tin height offset** and the height of the tin given in the field **Tin** at **Test Offset**.

**Name** name box

name of the vertex on **Layer** to use with **Offset** to defined the **Test Offset**. If it is not a name of a vertex then the test is not satisfied.

**Offset** real box 0

this value is added to the offset of the vertex given in the **Name** field to define the **Test Offset**. **Offset** can be positive or negative.

*If Offset from centreline:*

the test is satisfied if the height of the section at **Offset** is **ABOVE/BELOW** the sum of the value given in the field **Tin height offset** and the height of the tin given in the field **Tin** at **Test Offset**.

**Offset** real box 0

an actual offset from centreline (actually just the chainage on **Layer**) which is used as the **Test Offset**. **Offset** can be positive or negative.

*If 2d Cut of string, height from section:*

the test is satisfied if the selected string cuts **Layer** in plan and the **height** of the section at **Test Offset** given by the plan cut plus **Offset** is **ABOVE/BELOW** the sum of the value given in the field **Tin height offset** and the height of the tin given in the field **Tin** at **Test Offset**.
String string select
the selected string needs to cut the sections of Layer in plan wherever the boxing decision is being applied.

The Test Offset is the offset of the plan cut of the selected string with Layer plus the Offset value.

Offset real box 0
offset to add to the offset of the plan cut of the section from Layer with the selected string to give the Test Offset. Offset can be positive or negative but the final Test Offset must still be on Layer.

If Cut of string:
the selected string can not have only null z-values.

The test is satisfied if the selected string cuts Layer in plan and the height on the cut string at Test Offset given by the plan cut plus Offset is ABOVE/BELOW the sum of the value given in the field Tin height offset and the height of the tin given in the field Tin at Test Offset.

String string select
the selected string needs to cut the sections of Layer in plan wherever the boxing decision is being applied.

The Test Offset is the offset of the plan cut of the selected string with Layer plus the Offset value.

Offset real box 0
offset to add to the offset of the plan cut of the section from Layer with the selected string to give the Test Offset. Offset can be positive or negative but the final Test Offset must still be on Layer.

End of definition for Type equal to Above Tin or Below Tin.

Goto label text box
the name of the Label in the Boxing Definition to pass control to.

When test is choice box True, False
if True, then the Goto is done if the test is satisfied.
If False, then the Goto is done test is not satisfied.
If the Goto is not done, then control passes to the next boxing command in the Boxing Definition.

Active tick box
if ticked, use this Boxing Command.
If not ticked, don’t use this Boxing Command.

OK button
OK stores the values in the fields and removes the panel BUT no recalc is done.

Apply button
Apply stores the values and leaves the panel on the screen.
If the Boxing Definition is being used in an Apply MTF and Auto recalc is ticked in the MTF, then whenever the Apply button is clicked, then a recalc of the associated Apply MTF for the MTF is done.
If the Boxing Definition is being used in a Boxing Many Function then whenever the Apply button is
clicked, a recal of the Boxing Many Function is done.

For more information on how Boxing works in 12d Model, please go to the section 21.6 What is Boxing?.

Go to the next section 21.7.2.2.12 Boxing Label or return to 21.7.2.2 Commands for Boxing Rules Grid.
21.7.2.2.12 Boxing Label

Selecting Label brings up the Boxing Label panel which is used to define a label for this line in the Boxing Definition, and control can be passed to via a Goto or a Decision boxing command.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goto Label</td>
<td>input</td>
<td>name of the label for this line in the Boxing Definition.</td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>tick box</td>
<td>if ticked, use this Boxing Command. If not ticked, don’t use this Boxing Command.</td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>button</td>
<td>OK stores the values in the fields and removes the panel BUT no recalc is done.</td>
<td></td>
</tr>
<tr>
<td>Apply</td>
<td>button</td>
<td>Apply stores the values and leaves the panel on the screen.</td>
<td></td>
</tr>
</tbody>
</table>

If the Boxing Definition is being used in an Apply MTF and Auto recalc is ticked in the MTF, then whenever the Apply button is clicked, then a recalc of the associated Apply MTF for the MTF is done.

If the Boxing Definition is being used in a Boxing Many Function then whenever the Apply button is clicked, a recalc of the Boxing Many Function is done.

For more information on how Boxing works in 12d Model, please go to the section 21.6 What is Boxing?

Go to the next section 21.7.2.13 Boxing Goto or return to 21.7.2.2 Commands for Boxing Rules Grid.
21.7.2.2.13 Boxing Goto

Selecting Goto brings up the Boxing Goto panel which is used to transfer control to the line in the Boxing Definition with the Label given in the Goto label field of the panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Goto label</strong></td>
<td>input</td>
<td>name of the Label in the Boxing Definition to transfer control to.</td>
<td></td>
</tr>
<tr>
<td><strong>Active</strong></td>
<td>tick box</td>
<td>if ticked, use this Boxing Command. If not ticked, don’t use this Boxing Command.</td>
<td></td>
</tr>
<tr>
<td><strong>OK</strong></td>
<td>button</td>
<td><strong>OK</strong> stores the values in the fields and removes the panel BUT no recalc is done.</td>
<td></td>
</tr>
<tr>
<td><strong>Apply</strong></td>
<td>button</td>
<td><strong>Apply</strong> stores the values and leaves the panel on the screen.</td>
<td></td>
</tr>
</tbody>
</table>

If the Boxing Definition is being used in an Apply MTF and Auto recalc is ticked in the MTF, then whenever the **Apply** button is clicked, then a recalc of the associated **Apply MTF** for the MTF is done.

If the Boxing Definition is being used in a Boxing Many Function then whenever the **Apply** button is clicked, a recalc of the Boxing Many Function is done.

For more information on how Boxing works in 12d Model, please go to the section 21.6 What is Boxing?

Go to the next section 21.7.2.2.14 Boxing Comment or return to 21.7.2.2 Commands for Boxing Rules Grid.
21.7.2.2.14 Boxing Comment

Selecting Comment brings up the Boxing Comment panel and the panel is used to insert a comment as a line of the Boxing Definition. Comments are not processed when running the boxing commands.

![Boxing Comment Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment</td>
<td>input</td>
<td>user comment - for information purposes only</td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>button</td>
<td>OK stores the values in the fields and removes the panel BUT no recal is done.</td>
<td></td>
</tr>
<tr>
<td>Apply</td>
<td>button</td>
<td>Apply stores the values and leaves the panel on the screen.</td>
<td></td>
</tr>
</tbody>
</table>

If the Boxing Definition is being used in an Apply MTF and Auto recal is ticked in the MTF, then whenever the Apply button is clicked, then a recal of the associated Apply MTF for the MTF is done.

If the Boxing Definition is being used in a Boxing Many Function then whenever the Apply button is clicked, a recal of the Boxing Many Function is done.

For more information on how Boxing works in 12d Model, please go to the section 21.6 What is Boxing?.

Go to the next section 21.7.2.2.15 Boxing Extend Tin or return to 21.7.2.2 Commands for Boxing Rules Grid.
21.7.2.2.15 Boxing Extend Tin

The Extend to Tin option is used to extend the link containing the last two vertices (or the first two vertices) already created in the boxing layer until it hits the selected Stripped Tin.

Selecting Extend Tin brings up the Boxing Extend Tin panel.

The boxing link is extended to cut the stripped tin

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extend to</td>
<td>choice box</td>
<td>Left, Right</td>
<td></td>
</tr>
</tbody>
</table>

- **Extend to**
  - If Right, then the link through the last two boxing vertices is extended until it intersects the stripped tin. The last vertex is then moved to the intersection point. Other boxing commands can then follow.
  - If Left, then the link through the first two boxing vertices is extended until it intersects the stripped tin. The first vertex is then moved to the intersection point. Note that this is moving the first vertex of the boxing defined so far. The "Copy from start of section" with the Left Side Interface will add vertices before this vertex.

  **Note** - there must be at least two vertices in the boxing before this command can be used.

- If the extend fails, then no vertex is moved and an error message is written to the output window and the boxing processing terminated at that chainage.

<table>
<thead>
<tr>
<th>Tin</th>
<th>tin box</th>
<th>available tins</th>
</tr>
</thead>
</table>

  - the tin, dropped by the Strip depth, to batter to.

<table>
<thead>
<tr>
<th>Strip depth</th>
<th>input</th>
</tr>
</thead>
</table>
distance below the tin to stop at.

**Active**

*If ticked*, use this Boxing Command.  
*If not ticked*, don’t use this Boxing Command.

**OK**

*OK* stores the values in the fields and removes the panel but no *recalc* is done.

**Apply**

*Apply* stores the values and leaves the panel on the screen.

*If the Boxing Definition* is being used in an *Apply MTF* and *Auto recalc* is ticked in the MTF, then whenever the *Apply* button is clicked, then a *recalc* of the associated *Apply MTF* for the MTF is done.

*If the Boxing Definition* is being used in a *Boxing Many Function* then whenever the *Apply* button is clicked, a *recalc* of the *Boxing Many Function* is done.

For more information on how Boxing works in **12d Model**, please go to the section 21.6 What is Boxing?.

Go to the next section 21.7.2.2.16 Boxing End or return to 21.7.2.2 Commands for Boxing Rules Grid.
21.7.2.2.16 Boxing End

Most Boxing commands go from the Start Offset defined with the command, to the Start Offset of the next Boxing command.

However sometimes a Boxing command needs to be stopped before the Start Offset of the next Boxing command.

The End command can be used to provide a "Start Offset" to act as the finishing position for the previous boxing command. So the End command simply terminates the previous Boxing command.

Apart from supplying the End Offset for the previous command, End is a "no operation" command.

Other Boxing commands can then follow the End command.

Selecting End brings up the Boxing End panel

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>choice box</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>The Relative Offset defined becomes the End Offset for the previous command.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the documentation on the methods of defining the Relative Offset see 21.7.2.3 Defining Relative Offset for Boxing Commands.

OK button

OK stores the values in the fields and removes the panel BUT no recalc is done.

Apply button

Apply stores the values and leaves the panel on the screen.

If the Boxing Definition is being used in an Apply MTF and Auto recalc is ticked in the MTF, then whenever the Apply button is clicked, then a recalc of the associated Apply MTF for the MTF is done.

If the Boxing Definition is being used in a Boxing Many Function then whenever the Apply button is
clicked, a \texttt{recalc} of the \textit{Boxing Many Function} is done.

For the typed format of the \texttt{End} command created by this panel, see \texttt{21.10.2.9 Text Format - Boxing End}.

For more information on how Boxing works in \textit{12d Model}, please go to the section \texttt{21.4 Smart Chainages}.

Return to \texttt{21.7.2.2 Commands for Boxing Rules Grid}. 
21.7.2.2.17 Boxing Left Side Interface Xfall from Point

The **Xfall from Point** command creates a line from the left hand end of the boxing already defined and then batters to the *left* at a specified xfall until it intersects the design surface. The xfall of the batter is defined as

(a) the xfall on the section at a given section offset
(b) the xfall on the section at a *relative vertex offset*
(c) the xfall on the section at a *relative string offset*

plus in each case:

an additional xfall value Delta.

If the design surface is not intersected by the batter, then no extra line is created.

Xfall is percent cross-fall and a positive xfall is up and negative xfall is down.

**Note** that the **Xfall from Point** creates a line at the *beginning* of the boxing created by running all the boxing commands in the boxing grid. So it is applied *after* all the other boxing commands have been run.

If **Copy from start of section** is ticked, then the part of the design section from the start of the design section to the offset that is the start of the boxing section, is copied and made the beginning of the boxing section.

On the **Boxing Rules** panel, selecting the **Set Point** button when the **Left Side Interface** Type is **Xfall from Point** brings up the **Boxing LHS Xfall** panel

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xfall for &quot;std&quot;</td>
<td>Vertex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Layer - after Type choice box

Layer of sections to use with Type.

Type choice box

If Vertex on section:

Name name box

name of the vertex on Layer to use with Offset to define the section offset to take the Xfall value from

Offset real box

this value is added to the offset of the vertex given in the Name field to define the section offset to take the Xfall value from. Offset can be positive or negative as long as the final section offset is still on the section from Layer.

If Offset from centreline:

Offset real box

an actual offset from centreline (actually just the chainage of the section) which is used as the section from Layer offset to take the Xfall value from. Offset can be positive or negative as long as it is still on the section from Layer.

If 2d cut of string:

String string select

the selected string needs to cut the sections from Layer in plan wherever the boxing is being applied.

The section offset to take the Xfall value from is the offset of the plan cut of the selected string with the section from Layer, plus the Offset value. Offset can be positive or negative but the final section offset must still be on the section from Layer.

Offset real box

offset to add to the offset of the plan cut of the section from Layer with the selected string to give the section offset to take the Xfall value from. Offset can be positive or negative but the final section offset must still be on the section from Layer.

Delta input 0
add the value Delta to the xfall taken from the section from Layer.

OK/Apply button

OK stores the values in the fields and removes the panel.
Apply stores the values and leaves the panel on the screen.

For the typed format of the left_xfall command created by this panel, see 21.10.2.13 Text Format - Boxing Left_Xfall, for left_slope see 21.10.2.14 Text Format - Boxing Left_slope and left_copy see 21.10.2.15 Text Format - Boxing Left_copy.

For more information on how Boxing works in 12d Model, please go to the section 21.4 Smart Chainages.

Go to the next section 21.7.2.2.18 Boxing Right Side Interface Xfall from Point or return to 21.7.2 Edit Boxing File.
21.7.2.2.18 Boxing Right Side Interface Xfall from Point

The **Xfall from Point** command creates a line from the right hand end of the boxing already defined and then batters to the **right** at a specified xfall until it intersects the design surface. The xfall of the batter is defined as

(a) the xfall on the section at a given section offset
(b) the xfall on the section at a relative vertex offset
(c) the xfall on the section at a relative string offset

plus in each case:

- an additional xfall value *Delta*.

If the design surface is not intersected by the batter, then no extra line is created. xfall is percent cross-fall and a positive xfall is up and negative xfall is down.

**Note** that the **Xfall from Point** creates a line at the **end** of the boxing created by running all the boxing commands in the boxing grid. So it is applied **after** all the other boxing commands have been run.

If **Copy to end of section** is ticked, then the part of the design section from the offset of the last boxing vertex to the last vertex on the design section, is copied and made the end of the boxing section.

On the **Boxing Rules** panel, selecting the **Set Point** button when the **Right Side Interface** Type is **Xfall from Point** brings up the **Boxing RHS Xfall** panel
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer - after Type</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Layer of sections to use with Type.*

Type choice box

*If Vertex on section:*

Name name box

name of the vertex on the section from Layer to use with Offset to define the section offset to take the Xfall value from

Offset real box

this value is added to the offset of the vertex given in the Name field to define the section from Layer offset to take the Xfall value from. Offset can be positive or negative as long as the final section offset is still on the section from Layer.

*If Offset from centreline:*

Offset real box

an actual offset from centreline (actually just the chainage of the section) which is used as the section from Layer offset to take the Xfall value from. Offset can be positive or negative as long as it is still on the section from Layer.

*If 2d cut of string:*

String string select

the selected string needs to cut the sections from Layer in plan wherever the boxing is being applied.

The section offset to take the Xfall value from is the offset of the plan cut of the selected string with the section from Layer, plus the Offset value. Offset can be positive or negative but the final section offset must still be on the section from Layer.

Offset real box

offset to add to the offset of the plan cut of the section from Layer with the selected string to give the section offset to take the Xfall value from. Offset can be positive or negative but the final section offset must still be on the section from Layer.
Delta input 0

add the value Delta to the xfall taken from the section from Layer.

OK/Apply button

OK stores the values in the fields and removes the panel.
Apply stores the values and leaves the panel on the screen.

For the typed format of the right_xfall command created by this panel, see 21.10.2.10 Text Format - Boxing Right_Xfall, for right_slope see 21.10.2.11 Text Format - Boxing Right_slope and right_copy see 21.10.2.12 Text Format - Boxing Right_copy.

For more information on how Boxing works in 12d Model, please go to the section 21.4 Smart Chainages.

Go to the next section 21.7.2.19 Boxing Definitions Examples or return to 21.7.2 Edit Boxing File.
21.7.2.2.19 Boxing Definitions Examples

<table>
<thead>
<tr>
<th>Type</th>
<th>Point</th>
<th>Point offset</th>
<th>Details</th>
<th>Value</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy</td>
<td>Point Linterface</td>
<td>0</td>
<td>Height:</td>
<td>0.000</td>
<td>yes</td>
</tr>
<tr>
<td>Copy</td>
<td>Point Lpath2</td>
<td>0</td>
<td>Height:</td>
<td>-0.075</td>
<td>yes</td>
</tr>
<tr>
<td>Copy</td>
<td>Point Lpath1</td>
<td>0</td>
<td>Height:</td>
<td>0.000</td>
<td>yes</td>
</tr>
<tr>
<td>Xfall</td>
<td>Point Lbok</td>
<td>-0.15</td>
<td>Control name: Control offset: Control height: Xfall:</td>
<td>Lbok: 0.000 -0.300 0.000</td>
<td>yes</td>
</tr>
<tr>
<td>Copy</td>
<td>Point Llok</td>
<td>0</td>
<td>Height:</td>
<td>-0.300</td>
<td>yes</td>
</tr>
<tr>
<td>Xfall</td>
<td>Point Rllok</td>
<td>0</td>
<td>Control name: Control offset: Control height: Xfall:</td>
<td>Rllok: 0.000 -0.300 0.000</td>
<td>yes</td>
</tr>
<tr>
<td>Copy</td>
<td>Point Rbok</td>
<td>0.15</td>
<td>Height:</td>
<td>0.000</td>
<td>yes</td>
</tr>
<tr>
<td>Copy</td>
<td>Point Rpath1</td>
<td>0</td>
<td>Height:</td>
<td>-0.095</td>
<td>yes</td>
</tr>
<tr>
<td>Copy</td>
<td>Point Rpath2</td>
<td>0</td>
<td>Height:</td>
<td>0.000</td>
<td>yes</td>
</tr>
<tr>
<td>End</td>
<td>Point Rinterface</td>
<td>0</td>
<td></td>
<td></td>
<td>yes</td>
</tr>
</tbody>
</table>

Line 1 copy from “Linterface” to “Lpath2”
Line 2 copy & drop by 0.075 from “Lpath 2” to “Lpath 1”
Line 3 copy from “Lpath1” to 0.15 before “Lbok”
Line 4 go from 0.15 before “Lbok” to “Llok” at depth 0.3 below “Llok”, with cross fall 0
Line 5 copy and drop by 0.3 from “Llok” to “Rlok”
Line 6 go from “Rllok” to 0.15 past “Rbok” at depth 0.3 below “Rllok”, with cross fall 0
Line 7 copy from 0.15 past “Rbok” to “Rpath1”
Line 8 copy & drop by 0.095 from “Rpath1” to “Rpath2”
Line 9 copy from “Rpath2” to “Rinterface”
Line 10 Just giving the End Offset for the Copy on Line 9
“Linterface”, copy // line 1
“Lpath2”, copy, -0.075 // line 2
“Lpath1”, copy // line 3
“Lbok” - 0.15, xfall, “Llok”, -0.3, 0 // line 4
“Llok”, copy, -0.3 // line 5
“Rlok”, xfall, “Rlok”, -0.3, 0 // line 6
“Rbok” + 0.15, copy // line 7
“Rpath1”, copy -0.095 // line 8
“Rpath2”, copy // line 9
“Rinterface”, end // line 10
}

Description
Line 1  copy from “Linterface” to “Lpath2”
Line 2  copy and drop by 0.075 from “Lpath 2” to “Lpath 1”
Line 3  copy from “Lpath1” to 0.15 before “Lbok”
Line 4  go from 0.15 before “Lbok” to “Llok” at depth 0.3 below “Llok”, with cross fall 0
Line 5  copy and drop by 0.3 from “Llok” to “Rlok”
Line 6  go from “Rlok” to 0.15 past “Rbok” at depth 0.3 below “Rlok”, with cross fall 0
Line 7  copy from 0.15 past “Rbok” to “Rpath1”
Line 8  copy and drop by 0.095 from “Rpath1” to “Rpath2”
Line 9  copy from “Rpath2” to “Rinterface”
Line 10 just giving the End Offset for the Copy in Line 9
boxing “left narrow” { // boxing defined from just before lkerb to m001
  “lkerb” - 0.7,          copy
  “m001” - 1.0,          copy, -0.6
  “m001”,              end
}
boxing “left” {        // boxing defined from the left start of the section to m001 (the centreline say)
  “lkerb”,          copy, -0.6
  “m001”,          end
  left_slope 5.0
  left_copy 1
}
boxing “right” {       // boxing defined from m001 to the far right of the section
  “m001”,           copy, 0.6
  “rkerb”,           end
  right_slope 5.0
  right_copy 1
}
boxing “full” {       // a full width boxing - defines the entire boxing going from left to right
  “lkerb”,          copy, -0.6
  “rkerb”,          end
  left_slope 5.0
  left_copy 1
  right_slope -5.0
  right_copy 1
}

For more information on how Boxing works in 12d Model, please go to the section 21.4 Smart Chainages or to the section 21.6.2 Applying Boxing.
21.7.2.3 Defining Relative Offset for Boxing Commands

Most boxing commands use **Relative Offsets** to define offset positions across Design or Boxing Layers. For example, the **Start Offset** is a relative offset and is used in most boxing commands to specify where the boxing command starts.

There are a number of ways the **Relative Offset** can be defined:

(a) **Offset from centreline**

Relative to an actual Offset for the Design or Boxing Layer - relative offset

Adding a given value to an actual Offset of the given Layer.

(b) **Vertex on section**

Relative to a vertex on the Design or Boxing Layer - relative vertex offset

The offset of the given vertex is calculated and then a user given value added to it to give the **relative vertex offset**.

(c) **2d cut of string**

Relative to **2d cut** of a selected string with a given Layer.

First calculate the offset on the selected Layer of the plan cut of a selected string (2d cut). A user given value is then added to it to give the **relative 2d offset**.
(d) Cut of string

Relative to 3d cut of a selected string

This is actually the same in offset value as the 2d cut of a selected string but some boxing commands also take the 3d cut of the selected string and use the height difference of the cut of the string and the height on the Layer elsewhere in the command. This is referred to as the Z-Diff of the 3d cut.

Note that some strings only have a horizontal (plan) definition and have no z-values at all. In that case, there is no 3d cut but there can be a 2d cut (plan cut). For example, a string with only null heights or a Super Alignment with no vertical geometry.

So for the case where Relative Offset is the Start Offset:
On a Boxing Command panel, the fields and buttons where a Relative Offset is required have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative Offset (e.g. Start Offset, Xfall Offset etc)</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Layer - after Type

![Select Choice](image)
Layer to use with Offset to defined the Relative Offset.

Type  
choice box

If Vertex on section:

this is the Relative (Vertex) Offset

Name  
name box

name of the vertex on the Layer to use with Offset to define the Start Offset.

Offset  
real box

this value is added to the offset of the vertex given in the Name field to define the Relative Offset. Offset can be positive or negative as long as the final Start Offset is still on Layer.

If Offset from centreline:

this is the Relative (Centreline) Offset

Offset  
real box

an actual offset from centreline (actually just the chainage of the section). Offset can be positive or negative as long as it is still on Layer.

If 2d cut of string:

this is the Relative (2d Cut) Offset
**String**

string select

the selected string needs to cut the **Layer** in plan wherever the boxing is being applied.

**Offset**

real box

the Relative Offset is the offset of the plan cut of the selected string with the **Layer**, plus the **Offset** value. **Offset** can be positive or negative but the final position **Relative Offset** must still be on **Layer**.

*If Cut of string:*

this is the Relative (3d Cut) **Offset**

**String**

string select

the selected string needs to cut the sections of the selected **Layer** in plan wherever the boxing is being applied.

**Offset**

real box

0

The Relative Offset is the offset of the plan cut of the selected string with the section, plus the **Offset** value. **Offset** can be positive or negative but the final position must still be on **Layer**.

**Z-Diff** is the difference between the z-value of the cut string, and the z-value on the **Layer** at the same plan position as the cut with the string. The use of **Z-Diff** depends on the boxing command.
21.8 Full Definition of Template Decisions

12d Model supports templates with an unlimited number of fixed links which are in the Fixed table of the Temple definition and they are processed first.

At the end of the fixed links, 12d Model checks to see if a Decisions table exists.

If a Decisions table exists, then it is used and the Decision commands processed.

If a Continue Cut/Fill command is reached in the decision command processing, then this stops the Decision command processing, and the processing moves onto the Cut, Fill and Final Cut/Fill tables.

If no Continue Cut/Fill command is reached in the decisions, then the processing stops after the decision commands are exhausted and the Cut, Fill and Final Cut/Fill tables ARE NOT USED.

If no Decisions table exists, then the Cut, Fill and Final Cut/Fill tables are used after the Fixed table.

Templates are created and edited using the Templates=>Create/edit option which brings up the Template Create/Edit panel.

The description of the fields and the buttons Fixed, Cut, Fill, Final Cut/Fill in this panel are given in the section 20.2.1 Templates.

Selecting Decisions on the Template Create/Edit panel brings up the Decisions Template panel:

The Decisions Template panel consists of a grid with of rows (or lines) with commands in them, and an OK or Apply button to record the results.
Decisions Templates Grid

For information on the general operation of a grid including the icons on the right hand side, see 4.19.6 Grids in Panels.

The commands in the Decisions Template grid form a simple language where the commands are processed sequentially unless control is passed to a labelled line from where sequential processing continues, or the processing is terminated by an end command. For a description of all the Decisions Template Commands, see 21.8.1 Decisions Template Commands.

When the Grid Row is Empty

If the row of the grid is empty, clicking LB in the empty row will bring up the Create Rule menu which contains all the available decisions commands. Note this may involve two clicks - one to highlight a column in a row and the second click to bring up the Create Rule menu.

Selecting a menu item will bring up an associated panel which displays the information required for the Decisions Template command. When the panel is filled in and OK or Apply selected, the panel information is written out to the row of the grid and is known as a decisions template command.

When the Grid Row is Not Empty

If the row of the grid is not empty (and hence filled with a Decisions Template command) then clicking LB in the cell:

(a) Type will bring up the associated panel for the Decisions Template command.

For a description of all the Decisions Template Commands, see 21.8.1 Decisions Template Commands.
(b) **Active** will toggle the **tick/not ticked**

(c) **Comment** will allow text to be typed into the cell

**Note** that clicking in the **Type**, **Start chainage**, **End chainage**, **Interval**, **Extra Start**, **Extra End**, **Active** and **Comment** cells may involve two clicks - one to highlight the cell in a row and the second click to edit or bring up the panel for the cell.

**Buttons at Bottom**

**OK** button

**OK** stores the values in the fields and removes the panel.

**Apply** button

**Apply** stores the values in the grid and leaves the panel on the screen.

If the template is written out using **File I/O=>Templates output** or **Templates=>Utilities=>Output**, the Decisions Template commands will be written out in the order that they are displayed in the grid.

Please continue to the next section [21.8.1 Decisions Template Commands](#).
21.8.1 Decisions Template Commands

The **commands** in the **Decisions Template** grid form a simple language where the commands are processed sequentially unless control is passed to a labelled line from where sequential processing continues, or the processing is terminated by an **end** command.

The Decisions Template Commands can:

(a) create a fixed link - **fixed xfall** and **fixed slope**

(b) create a link of fixed width but with a slope automatically selected so that the link reaches a given tin in the width - **tin width**

(c) create a link that goes within an offset of a given string **string offset**

(d) test for being between two depths below a tin, and transfer control if true - **tin decision**

(e) test that a link would get within a given depth from a tin at a given offset, and transfer control if true - **batter decision**

(f) create a link of set slope that batters to a depth below a tin at a given offset - **batter**

(g) create a label which can have processing passed to - **label**

(h) transfer processing to a given label - **goto**

(i) end the processing of commands - **end**

The **Decisions Commands** are selected from the **Create Rule** menu that is displayed when clicking in a cell in the **Type** column of the **Decisions Template** panel.

The **Create Rule** menu is

![Create Rule Menu]

fixed width and xfall
fixed width and slope
fixed width, up to a tin
go to an offset from a string
test depth below a tin
test if a batter cuts a tin
batter to a tin
create a label
goto a label
undo links
stop processing decisions, and continue with the cut/fill tables
add comment line
create a region row
terminate the decisions

For a description of each command, see

- **Fixed xfall**  [21.8.2 Template Decisions - Fixed Xfall]
- **Fixed slope**  [21.8.3 Template Decisions - Fixed Slope]
- **Tin width**  [21.8.4 Template Decisions - Tin Width]
- **String offset**  [21.8.5 Template Decisions - String Offset]
- **Tin decision**  [21.8.6 Template Decisions - Tin Decision]
- **Batter decision**  [21.8.7 Template Decisions - Batter Decision]
- **Batter**  [21.8.8 Template Decisions - Batter]
- **Label**  [21.8.9 Template Decisions - Label]
- **Goto**  [21.8.10 Template Decisions - Goto]
- **Undo links**  [21.8.11 Template Decisions - Undo]
Continue cut fill  21.8.12 Template Decisions - Continue Cut Fill
Comment  21.8.13 Template Decisions - Comment
Region  21.8.14 Template Decisions - Region
End  21.8.15 Template Decisions - End

For examples of a using decisions, go to the section 21.8.17 Decisions Examples.

Please continue to the next section 21.8.2 Template Decisions - Fixed Xfall.
21.8.2 Template Decisions - Fixed Xfall

Selecting Fixed xfall brings up the Fixed Xfall panel which is used to constructed the command for a fixed link with the possibility of using cross fall (xfall). The fixed link is defined by specifying values for two of the three fields width, height and x-fall.

Note - if defining a slope rather than a xfall is required, use Fixed Slope (see 21.8.3 Template Decisions - Fixed Slope).

The format of the Fixed Xfall command in the panel is

```
Fixed Xfall Width value Height value XFall value Name text Colour colour // comment
```

where only two of the three commands Width, Height and Xfall are used.

The format of the command typed into the template file is

```
Fixed_Xfall width_value height_value xfall_value name colour // comment
```

where one of width_value, height_value or xfall_value is the key word unknown.

The panel brought up when Fixed xfall is selected from the Create Rule menu is:

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xfall %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
the width for the link.

**Height**  
the height for the link.

**Xfall %**  
the x-fall, in percent cross-fall, of the link. Positive is up and negative down.

**Name**  
the name to be used for the created point and string.

**Colour**  
the colour to be used for the created string

cyan  
available colours

**Comment, Active, OK and Apply**  
For information on these panel fields, see 21.8.16 Common Fields in Template Decisions Panels.

Continue to the next section 21.8.3 Template Decisions - Fixed Slope or return to 21.8 Full Definition of Template Decisions.
21.8.3 Template Decisions - Fixed Slope

Selecting Fixed slope brings up the Fixed Slope panel which is used to constructed a fixed link. The fixed link is defined by specifying values for two of the three fields width, height and slope.

Note - if defining a cross fall (xfall) rather than a slope is required, use Fixed Xfall (see 21.8.2 Template Decisions - Fixed Xfall).

The format of the Fixed Slope command in the panel is

\[ \text{Fixed Slope Width value Height value Slope value Name text Colour colour // comment} \]

where only two of the three commands Width, Height and Slope are used.

The format of the command typed into the template file is

\[ \text{Fixed_Slope width_value height_value slope_value name colour // comment} \]

where one of width_value, height_value or slope_value is the key word unknown.

The panel brought up when Fixed slope is selected from the Create Rule menu is:

![Fixed Slope Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

the width for the link.
Height

input

the height for the link.

Slope 1v in

input

the slope, in 1v in, of the link. Positive is up and negative down.

Name

input

the name to be used for the created point and string.

Colour

input cyan available colours

the colour to be used for the created string

Comment, Active, OK and Apply

For information on these panel fields, see 21.8.16 Common Fields in Template Decisions Panels.

Continue to the next section 21.8.4 Template Decisions - Tin Width or return to 21.8 Full Definition of Template Decisions.
21.8.4 Template Decisions - Tin Width

Selecting Tin width brings up the Tin Width panel which is used to construct a link which has a *given width* and stops at the depth *strip* below the tin. Control then passes to the next line of the table.

*strip* can be positive (end point is below the tin) or negative (end point is above the tin).

The format of the Tin Width command in the panel is

```
Tin Width tin_name Strip value Width value Name text Colour colour // comment
```

The format of the command typed into the template file is

```
Tin_Width tin_name strip_value width_value name colour // comment
```

The panel brought up when Tin width is selected from the Create Rule menu is:

![Tin Width Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>input</td>
<td></td>
<td>available tins</td>
</tr>
<tr>
<td>Strip</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
distance below the tin to stop at (strip depth). **strip** can be positive (point is below the tin) or negative (point is above the tin).

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Width</strong></td>
<td>input width of the link</td>
<td>1</td>
</tr>
<tr>
<td><strong>Name</strong></td>
<td>input the name to be used for the created point and string.</td>
<td></td>
</tr>
<tr>
<td><strong>Colour</strong></td>
<td>input cyan available colours</td>
<td>cyan</td>
</tr>
</tbody>
</table>

**Comment, Active, OK and Apply**

For information on these panel fields, see 21.8.16 Common Fields in Template Decisions Panels.

Continue to the next section 21.8.5 Template Decisions - String Offset or return to 21.8 Full Definition of Template Decisions.
21.8.5 Template Decisions - String Offset

Selecting String offset brings up the String Offset panel which is used to construct a link which goes to a given offset from string and stops at the depth strip below the string. Control then passes to the next line of the table.

offset and strip can be positive or negative.

The format of the command typed into the template file is

```
String_Offset string_name strip_value offset_value name text Colour colour // comment
```

The panel brought up when String offset is selected from the Create Rule menu is:

![String Offset Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>String</td>
<td>string to go to</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strip</td>
<td>input</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
distance below the string to stop at.

**Offset**

offset from the string to stop at.

---

**Name**

the name to be used for the created point and string.

---

**Colour**

the colour to be used for the created string

---

**Comment, Active, OK and Apply**

For information on these panel fields, see [21.8.16 Common Fields in Template Decisions Panels](#).

Continue to the next section [21.8.6 Template Decisions - Tin Decision](#) or return to [21.8 Full Definition of Template Decisions](#).
21.8.6 Template Decisions - Tin Decision

Selecting Tin decision brings up the Tin Decision panel which tests to see if the depth from the end of the previous link, offset by the amount given in the offset field, is between the two values given in the minimum depth and maximum depth fields. If the depth is between the values, then control is transferred to the line with the label given by the goto field. Otherwise, control passes to the next line of the table.

offset, minimum and maximum depth can be positive or negative.

The format of the Tin Decision command in the panel is

**Tin Decision** tin_name Offset value Min value Max value Goto label // comment

The format of the command typed into the template file is

**Tin_Decision** tin_name offset_value min_value max_value goto_label // comment

The panel brought up when Tin decision is selected from the Create Rule menu is:

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td></td>
<td>available tins</td>
</tr>
<tr>
<td>Offset</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

The tin to calculate the depth to.

the depth is calculate at an offset distance of offset from the end of the previous link.
Minimum depth  input  0

if the depth is between the minimum and maximum depth, then control is passed to the line with the
label given in the goto field, otherwise control passes onto the next line of the table.

Maximum depth  input  1000

see previous field.

Goto  input

label to go to if the depth is between the minimum and maximum depths.

Comment, Active, OK and Apply

For information on these panel fields, see 21.8.16 Common Fields in Template Decisions Panels.

Continue to the next section 21.8.7 Template Decisions - Batter Decision or return to 21.8 Full
Definition of Template Decisions.
21.8.7 Template Decisions - Batter Decision

Selecting Batter decision brings up the Batter Decision panel which is used to test whether a given link comes within:

(a) a strip depth of a tin
(b) an offset distance from a tin.
(c) a strip depth of a tin calculated at a given offset from the link.

If the test is satisfied, then control is transferred via a goto, otherwise control continues onto the next line in the table.

The test link is defined by specifying values for two of the three fields width, height and slope.

Notes
1. no link is created, just the test is performed
2. cases (a) and (b) are just special cases of (c)
3. the batter decision is mainly used to test if a batter will stop without performing the batter.

---

**Case (a)**

The batter link ends if the tin is cut at the strip depth below the tin.

The goto is performed.

batter link defined by any two of width, height and slope and the test is meeting the tin at the strip depth.

---

**Case (b)**

The batter link ends if the tin is cut at the offset distance from the link.

The goto is performed.

batter link defined by any two of width, height and slope and the test is meeting the tin at the offset distance.
The batter link ends if the tin is cut at the strip depth calculated at the offset distance from the link.

The **goto** is performed.

The batter link does **not** cut at the strip depth below the tin, calculated at the offset distance from the link.

The **goto** is **not** performed and control goes to the next line.

The format of the Batter Decision command in the panel is

```
Batter Decision tin_name Strip value Offset value Width value Height value Slope value Goto label // comment
```

where only two of the three commands Width, Height and Slope are used.

The format of the command typed into the template file is

```
Batter_Decision tin_name strip_value offset_value width_value height_value slope_value goto_label // comment
```

where one of `width_value`, `height_value` or `slope_value` is the key word `unknown`
The panel brought up when **Batter decision** is selected from the **Create Rule** menu is:

![Batter Decision Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>default tins available tins</td>
<td></td>
</tr>
<tr>
<td>Strip</td>
<td>input</td>
<td>0</td>
<td>distance below the tin to stop at.</td>
</tr>
<tr>
<td>Offset</td>
<td>input</td>
<td>0</td>
<td>offset distance from the link to check strip depth</td>
</tr>
<tr>
<td>Width</td>
<td>input</td>
<td>the width for the link.</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>input</td>
<td>the height for the link.</td>
<td></td>
</tr>
<tr>
<td>Slope 1v in</td>
<td>input</td>
<td>the slope, in 1v in, of the link. Positive is up and negative down.</td>
<td></td>
</tr>
<tr>
<td>Goto</td>
<td>input</td>
<td>label to goto if the test link comes within the strip depth of the tin at the given offset distance.</td>
<td></td>
</tr>
</tbody>
</table>

**Comment, Active, OK and Apply**

For information on these panel fields, see [21.8.16 Common Fields in Template Decisions Panels](#).

Continue to the next section [21.8.8 Template Decisions - Batter](#) or return to [21.8 Full Definition of Template Decisions](#).
21.8.8 Template Decisions - Batter

Selecting Batter brings up the Batter panel which is used to construct a link which stops if it comes within:

(a) a strip depth of a tin
(b) an offset distance from a tin.
(c) a strip depth of a tin calculated at a given offset from the link.

If the link does stop, control is transferred via a goto, otherwise control continues onto the next line in the table.

The batter link is defined by specifying values for two of the three fields width, height and slope.

Notes
1. cases (a) and (b) are just special cases of (c)
2. strip and offset can be used to stop the link to allow for a fixed structure (such as a drain) to be inserted so that it ends up on the tin.

---

**Case (a)**

The batter link ends if the tin is cut at the strip depth below the tin.

A point is created at the cut point with name and colour given in the batter command.

The goto is performed.

batter link defined by any two of width, height and slope and stops if it meets the tin at the strip depth.

---

**Case (b)**

The batter link ends if the tin is cut at the offset distance from the tin.

A point is created at the cut point with name and colour given in the batter command.

The goto is performed.

batter link defined by any two of width, height and slope and stops if it meets the tin at the offset distance.
The batter link ends if the tin is cut at the **strip** depth calculated at the **offset** distance from the link.

A point is created at the cut point with **name** and **colour** given in the batter command.

The **goto** is performed.

---

The batter link does **not** cut at the strip depth below the tin, calculated at the offset distance from the link.

A point is created at the end of the batter link with **name** and **colour** given in the batter command.

The **goto** is **not** performed and control goes to the next line.

---

The format of the Batter command in the panel is

```
Batter tin_name Strip value Width value Height value Slope value Name text
 Colour colour Goto label // comment
```

where only two of the three commands Width, Height and Slope are used.

The format of the command typed into the template file is

```
Batter tin_name strip_value width_value height_value slope_value
 name colour goto_label // comment
```

where one of width_value, height_value or slope_value is the key word **unknown**
The panel brought up when Batter is selected from the Create Rule menu is:

![Batter Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Strip</td>
<td>input</td>
<td>0</td>
<td>distance below the tin to stop at.</td>
</tr>
<tr>
<td>Offset</td>
<td>input</td>
<td>0</td>
<td>offset distance from the link to check strip depth</td>
</tr>
<tr>
<td>Width</td>
<td>input</td>
<td></td>
<td>the width for the link.</td>
</tr>
<tr>
<td>Height</td>
<td>input</td>
<td></td>
<td>the height for the link.</td>
</tr>
<tr>
<td>Slope 1v in</td>
<td>input</td>
<td></td>
<td>the slope, in 1v in, of the link. Positive is up and negative down.</td>
</tr>
<tr>
<td>Name</td>
<td>input</td>
<td></td>
<td>the name to be used for the created point and string.</td>
</tr>
<tr>
<td>Colour</td>
<td>colour box</td>
<td>cyan</td>
<td>available colours</td>
</tr>
<tr>
<td>Goto</td>
<td>input</td>
<td></td>
<td>label to goto if the batter link comes within the depth strip of the tin.</td>
</tr>
</tbody>
</table>

Comment, Active, OK and Apply
For information on these panel fields, see 21.8.16 Common Fields in Template Decisions Panels.

Continue to the next section 21.8.9 Template Decisions - Label or return to 21.8 Full Definition of Template Decisions.
21.8.9 Template Decisions - Label

Selecting Label brings up the Label panel which is used to define a label for the line for which control can be passed to via a goto.

The format of the Label command in the panel is

```
Label label_name // comment
```

The format of the command typed into the template file is

```
Label label_name // comment
```

The panel brought up when Label is selected from the Create Rule menu is:

![Label panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>input</td>
<td>name of the label for the line in the table.</td>
<td></td>
</tr>
</tbody>
</table>

**Comment, Active, OK and Apply**

For information on these panel fields, see 21.8.16 Common Fields in Template Decisions Panels.

Continue to the next section 21.8.10 Template Decisions - Goto or return to 21.8 Full Definition of Template Decisions.
21.8.10 Template Decisions - Goto

Selecting Goto brings up the Goto panel which is used to transfer control to the line with the label given in the goto field of the panel.

The format of the Goto command in the panel is

```
Goto label_name // comment
```

The format of the command typed into the template file is

```
Goto label_name // comment
```

The panel brought up when Goto is selected from the Create Rule menu is:

![Goto panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goto</td>
<td>input</td>
<td>name of the label to transfer control to.</td>
<td></td>
</tr>
</tbody>
</table>

**Comment, Active, OK and Apply**

For information on these panel fields, see 21.8.16 Common Fields in Template Decisions Panels.

Continue to the next section 21.8.11 Template Decisions - Undo or return to 21.8 Full Definition of Template Decisions.
21.8.11 Template Decisions - Undo

Selecting undo brings up the Undo Decision panel which is used to delete a given number of points (and hence links) from the template being constructed.

The format of the Label command in the panel is

```
Undo number_of_points // comment
```

The format of the command typed into the template file is

```
Undo number_of_links // comment
```

The panel brought up when undo is selected from the Create Rule menu is:

![Undo Decision Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undo npts</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

number of points to delete from the template, if the number is larger than the number of points in the template all points in the template are removed.

Comment, Active, OK and Apply

For information on these panel fields, see 21.8.16 Common Fields in Template Decisions Panels.

Continue to the next section 21.8.12 Template Decisions - Continue Cut Fill or return to 21.8 Full Definition of Template Decisions.
21.8.12 Template Decisions - Continue Cut Fill

If the *Continue Cut Fill* statement is reached when processing the decision commands, the decision section is terminated, and the processing continues to the Cut and Fill tables.

The panel brought up when *Continue Cut Fill* is selected from the *Create Rule* menu is:

![Continue Cut Fill Panel]

**Comment, Active, OK and Apply**

*For information on these panel fields, see [21.8.16 Common Fields in Template Decisions Panels].*

Clicking on **OK** or **Apply** inserts the *Continue Cut Fill*, and any *Comment*, into the current line of the *Command* table.

Continue to the next section [21.8.13 Template Decisions - Comment] or return to [21.8 Full Definition of Template Decisions].
21.8.13 Template Decisions - Comment

Selecting Comment brings up the Comment panel and inserts a comment into the line of the table. Comments are ignored by the decisions calculations.

The panel brought up when Comment is selected from the Create Rule menu is:

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment</td>
<td>Active, OK and Apply</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For information on these panel fields, see 21.8.16 Common Fields in Template Decisions Panels.

Continue to the next section 21.8.14 Template Decisions - Region or return to 21.8 Full Definition of Template Decisions.

21.8.14 Template Decisions - Region

The Region option inserts a Region command into the row. Selecting Region brings up the Decisions Region panel

There are Regions, Previous Region and Next Region icons at the right hand side of the Hinge Modifiers panel. For information on using these icons and information on Regions in a grid, see 4.19.6 Grids in Panels.

Continue to the next section 21.8.15 Template Decisions - End or return to 21.8 Full Definition of Template Decisions.
21.8.15 Template Decisions - End

Selecting \texttt{End} brings up the \texttt{End} panel and inserts an end command into the line of the table. When control reaches an \texttt{end} command, the decisions calculations are terminated.

The format of the \texttt{End} command in the panel is

\texttt{End // comment}

The format of the command typed into the template file is

\texttt{End // comment}

The panel brought up when \texttt{End} is selected from the \texttt{Create Rule} menu is:

![End Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Default</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment, Active, OK and Apply</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For information on these panel fields, see 21.8.16 Common Fields in Template Decisions Panels.

Continue to the next section 21.8.16 Common Fields in Template Decisions Panels or return to 21.8 Full Definition of Template Decisions.
21.8.16 Common Fields in Template Decisions Panels

All the Template Decisions panels have the common panel fields Comments and Active, and buttons OK and Apply.

**Comment**
- input
- user comment - for information purposes only. In the file, the comment text will be preceded by //.

**Active**
- tick box
- tick if ticked, use this modifier.
- If not ticked, don’t use this modifier.

**OK**
- button
- OK stores command and the values in the fields and removes the panel.

**Apply**
- button
- Apply stores command and the values in the fields and leaves the panel on the screen.

Continue to the next section 21.8.17 Decisions Examples or return to 21.8 Full Definition of Template Decisions.
21.8.17 Decisions Examples

**One Tin Example**

//From: 12D Solutions
//
//Basic Decisional Template for cut in 9m depth, 5m depth, and less
//Note the Tin Used is "SURVEY"
//
//template "std" {
  fixed {
    link 5 unknown -3 cyan "eb"
  }
  decisional {
    // if at offset 1m it is below "SURVEY" then goto drain
    Tin_Decision "SURVEY" 1 0 1000 "drain"
    Fixed_Xfall 1 unknown -3 "edge1" cyan
    Batter "SURVEY" 0 100 unknown -3 "fill" cyan "done"
    // label drain
    // create a table drain
    Label "drain"
    Fixed_Slope 1 -0.5 unknown "invert" cyan
    Fixed_Slope 1 0.5 unknown "edge" cyan
    // now at end of table drain, check depth of 5, 9
    Tin_Decision "SURVEY" 0 0 5 "smallestcut"
    Tin_Decision "SURVEY" 0 0 9 "smallcut"
    // deeper than 9m, batter to within 9m of surface
    Batter "SURVEY" 9 100 unknown 0.75 "cut1" cyan "bench"
    // label smallcut -
    Label "smallcut"
    Batter "SURVEY" 5 100 unknown 0.75 "small" cyan "bench2"
    // label smallestcut -
    Label "smallestcut"
    Batter "SURVEY" 0 100 unknown 2 "smallcut" cyan "done"
    // label bench
    Label "bench"
    Fixed_Slope 3 -0.3 unknown "bench1" cyan
    Batter "SURVEY" 5 100 unknown 1.5 "cut2" cyan "bench2"
    // label bench2 -
    Label "bench2"
    Fixed_Slope 3 -0.3 unknown "bench2" cyan
    Batter "SURVEY" 0 100 unknown 2 "cut3" cyan "done"
    // label done -
    Label "done"
  }
}
Three Tins Example

// From: 4D Solutions
// Date: 11/07/97
//
// Example with three surfaces - rock, shale, terrain
// Assume that rock is below shale is below terrain

template "std" {
  fixed {
    link 3 unknown -3 cyan "kerb"
    link 1 unknown -4 magenta "shoulder"
    link 2 unknown -5 purple "verge"
  }
  decisional {
    // test if in rock
    Tin_Decision "rock" 0 0 1000 "cut_rock"
    // not in rock, test if in shale
    Tin_Decision "shale" 0 0 1000 "cut_shale"
    // not in rock or shale, test if below or above terrain
    Tin_Decision "terrain" 0 0 1000 "cut_terrain"
    // fill terrain - loop on creating some benches
    Label "fill_terrain"
    Batter "terrain" 0 0 8 unknown -3 "f1" blue "alldone"
    Batter "terrain" 0 0 1 unknown 0 "f2" "dark green" "alldone"
    Goto "fill_terrain"
    // cut rock
    Label "cut_rock"
    Tin_Decision "rock" 0 0 0.3 "cut_rock_done"
    Batter "rock" 0.3 0 5 unknown 0.5 "r1" cyan "cut_rock_done"
    Batter "rock" 0 0 2.5 unknown 0 "r2" yellow "cut_rock_done"
    Goto "cut_rock"
    // cut rock done - work on shale
    Label "cut_rock_done"
    Tin_Decision "shale" 0 0 1000 "cut_shale"
    Goto "cut_shale_done"
    // cut shale
    Label "cut_shale"
    Tin_Decision "shale" 0 0 0.6 "cut_shale_done"
    Batter "shale" 0.6 0 6 unknown 1 "s1" magenta "cut_shale_done"
    Batter "shale" 0 0 3 unknown 0 "s2" "dark red" "cut_shale_done"
    Goto "cut_shale"
// cut shale done - work on terrain
Label "cut_shale_done"
Tin_Decision "terrain" 0 0 1000 "cut_terrain"
Goto "alldone"

// cut terrain
Label "cut_terrain"
Batter "terrain" 0 0 3 unknown 1.5 "t1" red "alldone"
Batter "terrain" 0 0 2 unknown 0 "t2" green "alldone"
Goto "cut_terrain"

// all done - end of decisional
Label "alldone"
}
final {
cut_slope 1 fill_slope 2 search_distance 100
}
}
template "headwall" {
fixed {
    link 3 unknown -3 cyan "kerb"
    link 1 unknown -4 magenta "shoulder"
    link 2 unknown -5 purple "verge"
}
decisional {
    Tin_Decision "" 0 0 1000 "done" // should never happen
    Batter "" 0 0 10 -100 unknown "int" cyan "done"
    Label "done"
}
final {
cut_slope na fill_slope na search_distance 100
}
}

Return to 21.8 Full Definition of Template Decisions.
21.9 Placing Parts for Super Alignments

Placing a super alignment consists of:

(a) defining the horizontal geometry which ultimately consisting of lines, arcs, transitions and tapers
(b) defining the vertical geometry which ultimately consisting of lines, parabolas and arcs.

A simple way to create horizontal and vertical geometry for the super alignment is by using horizontal intersection points (HIPs) with arcs and transitions (eg spirals), and vertical intersection points (VIPs) with parabolas or arcs for placing the vertical geometry.

However the super alignment also allows for more complex construction methods to define the lines, arcs and transitions (the horizontal elements) that within 12d Model are be grouped together to make up the Parts of the horizontal geometry.

For example, a horizontal line can be defined to be a given parallel offset of a selected line segment from another string. Or an arc of a known radius going through a point of another string and having a a leading and a trailing transition.

Similarly complex construction methods are available to define the lines, parabolas and arcs (the vertical elements) that are grouped together within 12d Model to make up the vertical geometry.

So for a super alignment, the Horizontal Geometry is made up of horizontal parts, which may be as simple as a straight line between two points or an arc with a given centre and radius, or a horizontal intersection point with given leading and trailing transitions, or the horizontal parts can be very complicated where for example the points of a line are defined by the offset intersection of the two arcs from other strings.

Similarly for a super alignment, the Vertical Geometry is made up of vertical parts.

The definition of parts that are not fully defined are classified as being

(a) fixed if the part is fully defined
(b) floating if the part has one degree of freedom. That is, one unknown is still to be determined.
(c) free if the part has two degrees of freedom. That is, two unknowns are still to be determined.

When the parts definitions have some degree of freedom, the extra restriction that the horizontal parts must be linked tangentially is imposed to try and fully defined the horizontal geometry.

If, with tangentiality, 12d Model can fully determine the horizontal geometry then the horizontal geometry is said to solve. For more information, see 21.9.1 Fixed, Floating and Free, and Solving.

Once it solves, the horizontal geometry consists of linked known segments of types lines, arcs and transition, and so can be drawn in a plan view.

So the horizontal geometry is made up of the constructive definitions called parts, and if the horizontal geometry solves, it also contains the resultant horizontal segments.

For example, if a Free Arc with Known Radius (an arc with known radius and leading and trailing transitions of known lengths) is placed between two known lines then the tangentiality condition means that the position of the Free Arc with Known Radius (arc and two transitions) is uniquely defined as a arc and leading and trailing transitions on the intersection point of the two lines. Or just a fillet between the two lines if the two transitions have zero length.

Similarly the Vertical Geometry is made up of parts, which are made up of simple or complicated combinations of straight lines, arcs or a parabolas. Again the extra restriction that the vertical parts must be linked tangentially is often necessary to fully defined the vertical geometry. The vertical geometry is then said to be solved and the solved vertical geometry simply consists of
linked known segments of types lines, arcs and parabolas, and so can be drawn in a section view.
So the vertical geometry is made up of the constructive definitions called parts, and if the vertical geometry solves, it also contains the resultant vertical segments.

Important Note
The horizontal and vertical parts of a super alignment are only displayed when the super alignment is being edited. When the super alignment is not being edited, the segments of the solved parts are displayed and any unsolved parts are displayed as red crosses.

See 21.9.1 Fixed, Floating and Free, and Solving
See 21.9.2 Types of Horizontal Parts
See 21.9.3 Types of Vertical Parts
See 21.9.4 Definitions of Super Alignment Horizontal Parts
See 21.9.5 Definitions of Super Alignment Vertical Parts
For the documentation of the options on the Edit SA toolbar, see 14.4.11 Edit Super Alignment.
21.9.1 Fixed, Floating and Free, and Solving

The definition of fixed and floating part has to do with how many unknowns, or degrees of freedom, exist for a part.

**Fixed parts**, as the names suggests, are totally fixed in position, radius etc.

**Floating parts** have one unknown, or one degree of freedom. Solving for that one unknown will then totally determine the part.

**Free parts** have two unknowns, or two degree of freedom. Solving for both unknowns then totally determines the part.

The most common examples for the major parts used in the horizontal and vertical geometry are:

### Horizontal Geometry

**Fixed line** - its position in space is totally defined

(a) line given by two points on the line

(b) line given by one point on the line and a bearing

**Floating lines - one unknown**

(a) line going through one known point. The bearing of the line is unknown

(b) line of a given bearing. A point that the line goes through is needed to fix it.

This unknown as the names suggests, are totally fixed in position, radius etc.

**Free lines - a totally unconstrained line**

**Fixed arc** - the arcs position in space and radius is totally defined

(a) arc given by centre and radius

(b) arc defined by three points on the arc

(c) arc defined by centre and two points on the arc

**Floating arc - one unknown**

(a) arc partially defined by one point on the arc and a radius.

(b) two points on an arc.

This unknown as the names suggests, are totally fixed in position, radius etc.

**Free arc - two unknowns**

(a) only the radius of the arc is known

(b) only one point on the arc is known

(c) only the arc length is known

### Vertical Geometry

**Fixed line** - its position and shape in (chainage, height) is totally defined

(a) line given by two points on the line

(b) line given by one point on the line and a grade

**Floating lines - one unknown**

(a) line going through one known point. The grade of the line is unknown

(b) line of a given grade. A point that the line goes through is needed to fix it.

**Free lines - a totally unconstrained line**
Fixed parabola - the parabolas position in (chainage, height) space is totally defined
(a) parabola given by three points on the parabola
(b) parabola defined by its apex and effective signed radius

Floating parabola - one unknown
(a) one point on the parabola and K value are known
(b) two points on an parabola are known.

Free parabola - two unknowns
(a) only the K value of the arc is known
(b) only one point on the parabola is known
(c) only the length of the parabola is known

Fixed arc - the arcs position in (chainage, height) and radius is totally defined
(a) arc given by centre and radius
(b) arc defined by three points on the arc
(c) arc defined by centre and two points on the arc

Floating arc - one unknown
(a) arc partially defined by one point on the arc and a radius.
(b) two points on an arc.

This unknown as the names suggests, are totally fixed in position, radius etc.

Free arc - two unknowns
(a) only the radius of the arc is known
(b) only one point on the arc is known
(c) only the arc length is known

Solving
The horizontal and vertical geometry of a super alignment is made up of a series of Horizontal and Vertical Parts where the sequencing and types of the Parts, plus the condition that, if possible, each Part is tangential to the adjacent elements, allows 12d Model to calculate and solve for all the unknowns in the Part definitions and totally define the super alignment.

The order and the whether adjacent parts are Fixed, Floating or Free is very important as only certain combinations will satisfy the tangentiality conditions and hence solve to give a super alignment.

If, with tangentiality, 12d Model can fully determine the horizontal or vertical geometry then the horizontal or vertical geometry is said to solve.

Once it solves, the horizontal geometry consists of linked known segments of types lines, arcs and transition, and so can be drawn in a plan view.

So the horizontal geometry is made up of the constructive definitions called parts, and if the horizontal geometry solves, it also contains the resultant horizontal segments.

Similarly the vertical geometry is made up of the constructive definitions called parts, and if the vertical geometry solves, it also contains the resultant vertical segments.

The horizontal and vertical parts of a super alignment are only displayed when the super alignment is being edited. When the super alignment is not being edited, the solved segments are displayed and any unsolved parts are displayed as red crosses.

See 21.9.2 Types of Horizontal Parts
See 21.9.3 Types of Vertical Parts
See 21.9.4 Definitions of Super Alignment Horizontal Parts
See 21.9.5 Definitions of Super Alignment Vertical Parts
21.9.2 Types of Horizontal Parts

See 21.9.2.1 Horizontal IPs
See 21.9.2.2 Horizontal Lines - Fixed
See 21.9.2.3 Horizontal Lines - Floating
See 21.9.2.4 Horizontal Lines - Fixed
See 21.9.2.5 Horizontal Arcs - Fixed
See 21.9.2.6 Horizontal Arcs - Floating
See 21.9.2.7 Horizontal Arcs - Free
See 21.9.2.8 Horizontal Transitions - Floating
See 21.9.2.9 Horizontal Transitions - Free
See 21.9.2.10 Horizontal Transitions - Compound

21.9.2.1 Horizontal IPs

**Speed**, go to 21.9.4.1.1 HIP: Speed
**Radius**, go to HIP: Radius:
**Length**, go to HIP: Arc Length
Return to 21.9.3 Types of Vertical Parts

Return to 21.9.2 Types of Horizontal Parts

21.9.2.2 Horizontal Lines - Fixed

**Two points**, go to Fixed Line: Two Points
**Point & direction**, go to Fixed Line: Point & Direction

Return to 21.9.2 Types of Horizontal Parts

21.9.2.3 Horizontal Lines - Floating

**Through point**, go to Floating Line: Through a Point:
**Direction**, go to Floating Line: Known Direction
**From end**, go to Floating line: Known End and Nominal Length

Return to 21.9.2 Types of Horizontal Parts

21.9.2.4 Horizontal Lines - Free

**Free**, go to Free Line: No Constraints

Return to 21.9.2 Types of Horizontal Parts

21.9.2.5 Horizontal Arcs - Fixed

**Centre, radius and ends**, go to Fixed Arc: Known Centre, Radius and Start and End
**Three points**, go to Fixed Arc: Arc Passes through Three Known Points
**Point, radius & direction**, go to Fixed Arc: Known Start Point and Direction, Known Radius

Return to 21.9.2 Types of Horizontal Parts

21.9.2.6 Horizontal Arcs - Floating
Point and radius, go to Floating Arc: Known Radius and Passes through a Known Point
Point and direction, go to Floating Arc: Known Point and Tangent Direction at the Point
Two points, go to Floating Arc: Arc Passes through Two known Points
From end through point, go to Floating Arc: Arc Passes through Known point and End of Previous or Next Element
From end, radius and length, go to Floating Arc: Arc has Know Radius and Length, and End of Previous or Next Element
From end, radius and sweep, go to Floating Arc: Arc has Know Radius and Sweep Angle, and End of Previous or Next Element

Return to 21.9.2 Types of Horizontal Parts

21.9.2.7 Horizontal Arcs - Free

Radius, go to Free Arc: Known Radius
Through point, go to Free Arc: Passes through Known Point
Length, go to Free Arc: Arc has a Known Length
From end, go to Free Arc: Arc has a Known End Point

Return to 21.9.2 Types of Horizontal Parts

21.9.2.8 Horizontal Transitions - Floating

Arc to arc, go to Floating Transition: From Arc to Arc
Taper, go to Floating Transition: Taper
Transition, go to Floating Transition: Known Length

Return to 21.9.2 Types of Horizontal Parts

21.9.2.9 Horizontal Transitions - Free

Transition, go to Free Transition: Unconstrained
Back to back, go to Free Transition: Back to Back Transitions of Known Lengths Between Lines
Arc to arc, go to Free Transition: Back to Back Transitions Between Two Arcs
Taper, go to Free Taper: Taper of Known Length

Return to 21.9.2 Types of Horizontal Parts

21.9.2.10 Horizontal Transitions - Compound

Three centred, go to Compound Transitions: Three Centre Curve
Two centred, go to Compound Transition: Two Centred Curve
Compound transition, lengths, go to Compound Transition: Two Transition Curves of Known Lengths
Compound line length, go to Compound Transition: Two Transitions Separated by Line of Known Length
Compound curve, go to Compound Transition: Two Arcs of Known Radii
Compound taper, go to Compound Transition: Two Arcs of Known Radii with a Taper
21.9.3 Types of Vertical Parts

See 21.9.3.1 Vertical IPs
See 21.9.3.2 Vertical Lines - Fixed
See 21.9.3.3 Vertical Lines - Floating
See 21.9.3.4 Vertical Lines - Free
See 21.9.3.5 Vertical Parabolas - Fixed
See 21.9.3.6 Vertical Parabolas - Floating
See 21.9.3.7 Vertical Parabolas - Free
See 21.9.3.8 Vertical Arcs - Fixed
See 21.9.3.9 Vertical Arcs - Floating
See 21.9.3.10 Vertical Arcs - Free

21.9.3.1 Vertical IPs

**Speed**, go to [VIP: Speed]
**Radius**, go to [VIP: Radius]
**K value**, go to [VIP: K-value]
**Length**, go to [VIP: Length]
**Asymmetric**, go to [VIP: Asymmetric]

Return to 21.9.3 Types of Vertical Parts

21.9.3.2 Vertical Lines - Fixed

**Two points**, go to [Fixed Line: Two Points]
**Point & grade**, go to [Fixed Line: Known Point and Grade]

Return to 21.9.3 Types of Vertical Parts

21.9.3.3 Vertical Lines - Floating

**Point**, go to [Floating Line: Known Point]
**Grade**, go to [Floating Line: Known Grade]
**From end**, go to [Floating Line: Known End and Nominal Length]

Return to 21.9.3 Types of Vertical Parts

21.9.3.4 Vertical Lines - Free

**Free**, go to [Free line - No Constraints]

Return to 21.9.3 Types of Vertical Parts

21.9.3.5 Vertical Parabolas - Fixed

**Three points**, go to [Fixed Parabola - Parabola Passes through Three Known Points]
**Apex & radius**, go to [Fixed Parabola: Known Apex and Effective Radius]

Return to 21.9.3 Types of Vertical Parts
21.9.3.6 Vertical Parabolas - Floating

Two points, go to Floating Parabola: Through Two Points
Apex, go to Floating Parabola: Known Apex
Radius, go to Floating Parabola: Known Point and Effective Radius
Grade, go to Floating Parabola: Known Point and Grade at that Point
K value, go to Floating Parabola: Known Point and K Value
From end & grade, go to Floating Parabola: Known Length and Grade at End
From end & radius, go to Floating Parabola: Known Radius and Nominal Length
From end & point, go to Floating Parabola: Known Point and Known End

Return to 21.9.3 Types of Vertical Parts

21.9.3.7 Vertical Parabolas - Free

Through point, go to Free Parabola: Known Point
Length, go to Free Parabola: Known Length
Radius, go to Free Parabola: Known Effective Radius
RL, go to Free Parabola: Known Parabolic Length/100
K value, go to Free Parabola: Known K Value
Maximum length, go to Free Parabola: Fit with Maximum Length
Asymmetric, go to Free Asymmetric Parabola: Two Known Lengths
Compound, go to Free Compound Parabola: Two Parabolas with Optional Total Parabolic Length

Return to 21.9.3 Types of Vertical Parts

21.9.3.8 Vertical Arcs - Fixed

Fixed, go to Fixed Arc: Known Centre, Start and End Points

Return to 21.9.3 Types of Vertical Parts

21.9.3.9 Vertical Arcs - Floating

Point and radius, go to Floating Arc: Known Point and Radius
Point and grade, go to Floating Arc: Known Point and Grade at Point
Two points, go to Floating Arc: Through Two Known Points

Return to 21.9.3 Types of Vertical Parts

21.9.3.10 Vertical Arcs - Free

Radius, go to Free Arc: Known Radius
Point, go to Free Arc: Known Point on the Arc
Length, go to Free Arc: Known Length of Arc

Return to 21.9.3 Types of Vertical Parts
21.9.4 Definitions of Super Alignment Horizontal Parts

See 21.9.4.1 Horizontal IPs
See 21.9.4.2 Horizontal Lines
See 21.9.4.3 Horizontal Arcs
See 21.9.4.4 Horizontal Transitions
See 21.9.4.5 Horizontal Computators

21.9.4.1 Horizontal IPs

See HIP: Speed
See HIP: Radius
See HIP: Arc Length

21.9.4.1.1 HIP: Speed

A horizontal intersection point (HIP) is created and the sizes of the arc and transition curves for the HIP come from the Design Template of the super alignment.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>if ticked, then the Part is used in the horizontal geometry. If not ticked, the Part is not used in the horizontal geometry.</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>if ticked, then the Part is drawn in the horizontal geometry. If not ticked, the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>if not blank, then the Part is given this name. If blank then the Part has no name.</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
</tbody>
</table>

Note: If the part has a name, then a ! is placed after the type of the part in the Horizontal Parts list.
Type choice box types of horizontal parts
the type of this part. To change the Part type, choose another type from the pop-up list.

Geometry tab
the geometrical information defining the Part

X coordinate, Y coordinate
the (x,y) coordinates for the HIP can be typed in, or selected using the X, Y or XY icons.

Speed
If Speed is not bank, then that is the speed used when looking up the Design Template for the HIP
If Speed is left bank, then the Design Speed for the super alignment in used when looking up the Design Template.

Comment tab
the text type into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.

Set button
the Set button must be clicked for the information for this Part to be used.

Same As button
after clicking the Same As button, an existing HIP can be selected from the screen and its information piped into the appropriate fields in the panel.
**HIP: Radius:**
A horizontal intersection point (HIP) is created and the sizes of the arc and transition curves for the HIP are given.

**Same As Button**
Use the **Same As** button to select an existing HIP from the screen.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if ticked, then the Part is used in the horizontal geometry.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If not ticked, the Part is not used in the horizontal geometry.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if ticked, then the Part is drawn in the horizontal geometry.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if not blank, then the Part is given this name.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If blank then the Part has no name.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Note:</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If the part has a name, then a ! is placed after the type of the part in the Horizontal Parts list.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of horizontal parts</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>the type of this Part. To change the Part type, choose another type from the pop-up list.</em></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Geometry tab**

the geometrical information defining the Part

**X coordinate, Y coordinate**

the (x, y) coordinates for the HIP can be typed in, or selected using the X, Y or XY icons.

**Curve radius**

if not blank, the radius used for the arc on the HIP.

*If blank then no arc is used on the HIP.*
**Note:** if the **Curve radius** is blank then the **Leading transition** and **Trailing transition** must also be blank. That is, there is **no arc or transitions** on the HIP.

**Leading transition**
- If not blank, then it is the length of the leading transition on the HIP. This can only be non zero if the **Curve radius** is also non zero.
- If blank then there is no leading transition on the HIP.

**Leading transition**
- If not blank, then it is the length of the trailing transition on the HIP. This can only be non zero if the **Curve radius** is also non zero.
- If blank then no trailing transition on the HIP.

**Comment tab**
- The text typed into the text box is stored as a comment for the Part.

**Note:** If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.

**Set** button
- The **Set** button must be clicked for the information for this Part to be used.

**Same As** button
- After clicking the **Same As** button, an existing HIP can be selected from the screen and its information piped into the appropriate fields in the panel.
**HIP: Arc Length**
A horizontal intersection point (HIP) is created with an arc of a given arc length.

![Horizontal panel](image)

**Same As Button**
Use the Same As button to select an existing HIP from the screen.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
</tbody>
</table>
|                   | *if ticked, then the Part is used in the horizontal geometry.*
|                   | *If not ticked, the Part is not used in the horizontal geometry.* |
| Visible           | tick box      | ticked   |        |
|                   | *if ticked, then the Part is drawn in the horizontal geometry.*
|                   | *If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.* |
| Name              | text box      | blank    |        |
|                   | *if not blank, then the Part is given this name.*
|                   | *If blank then the Part has no name.* |
| Note: If the part has a name, then a ! is placed after the type of the part in the Horizontal Parts list. |
| Type              | choice box    | types of horizontal parts |        |
|                   | *the type of this part. To change the Part type, choose another type from the pop-up list.* |

**Geometry tab**
the geometrical information defining the Part

- **X coordinate, Y coordinate**
  *the (x,y) coordinates for the HIP can be typed in, or selected using the X, Y or XY icons.*

- **Curve length**
  *the length used for the arc on the HIP. This field can not be left blank.*
  *If zero then no arc is used on the HIP.*

**Comment tab**
the text typed into the text box is stored as a comment for the Part.

*Note: If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.*

**Set button**
the Set button must be clicked for the information for this Part to be used.
Same As button

After clicking the **Same As** button, an existing HIP can be selected from the screen and its information piped into the appropriate fields in the panel.
21.9.4.2 Horizontal Lines

See Fixed Line: Two Points
See Fixed Line: Point & Direction
See Floating Line: Through a Point:
See Floating Line: Known Direction
See Floating Line: Known End and Nominal Length
See Free Line: No Constraints

Fixed Line: Two Points
The Fixed Line is a given offset from a line that passes through two known points.

Offset:
-ve to the left of the line from start to end points
+ve to the right

Same As Button:
Use the Same As button to select an existing line segment from the screen

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, then the Part is used in the horizontal geometry. If not ticked, the Part is not used in the horizontal geometry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, then the Part is drawn in the horizontal geometry. If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if not blank, then the Part is given this name. If blank then the Part has no name.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If the part has a name, then a ! is placed after the type of the part in the Horizontal Parts list.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type choice box types of horizontal parts
the type of this part. To change the Part type, choose another type from the pop-up list.
**Geometry tab**
the geometrical information defining the Part

**Start X coordinate, Y coordinate**
the start (x,y) coordinates for the line can be typed in, or selected using the X, Y or XY icons.

**End X coordinate, Y coordinate**
the end (x,y) coordinates for the line can be typed in, or selected using the X, Y or XY icons.

**Offset measure box**
Point to point or String to point
offset of the Fixed line from the line through the two points

**Comment tab**
the text typed into the text box is stored as a comment for the Part.

**Note:** If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.

**Set button**
the Set button must be clicked for the information for this Part to be used.

**Same As button**
after clicking the Same As button, an existing segment can be selected from the screen and its start and end coordinates are piped into the appropriate fields in the panel.
**Fixed Line: Point & Direction**

The Fixed Line is a given offset from a line going through a known point and with a known bearing.

![Fixed Line Diagram](image)

Offset:
- **-ve** to the left of the line
- **+ve** to the right

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if ticked, then the Part is used in the horizontal geometry.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If not ticked, the Part is not used in the horizontal geometry.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if ticked, then the Part is drawn in the horizontal geometry.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if not blank, then the Part is given this name.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If blank then the Part has no name.</em></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Note:** If the part has a name, then a `!` is placed after the type of the part in the Horizontal Parts list.

<table>
<thead>
<tr>
<th>Type</th>
<th>choice box</th>
<th>types of horizontal parts</th>
</tr>
</thead>
</table>

**Geometry tab**

*the geometrical information defining the Part*

- **X coordinate, Y coordinate**
  *the (x,y) coordinates that the line goes through can be typed in, or selected using the X, Y or XY icons.*

- **Direction**
  *the direction as a bearing can be typed in using 4.17.1 HP Notation (dd.mmssss) or selected using the measure box.*

---

Page 4884  Placing Parts for Super Alignments
Relative start measure box available measures
the plan (2d) distance, relative to the given point, to start the line at. A negative value is to the left of
the point, and a positive value is to the right of the point.

Relative end measure box available measures
the plan (2d) distance, relative to the given point, to end the line at. A negative value is to the left of the
point, and a positive value is to the right of the point.

Offset measure box Point to point or String to point
offset of the Fixed line from the line through the two points

Comment tab
the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.

Set button
the Set button must be clicked for the information for this Part to be used.

Same As button
after clicking the Same As button, an existing HIP can be selected from the screen and its information
piped into the appropriate fields in the panel.
### Floating Line: Through a Point:
The Floating Line line passes through a **known point** but the bearing is unknown.

**Example:**
Floating line from a point becomes a tangent to an arc when attached to a following fixed arc.

---

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, then the Part is used in the horizontal geometry. If not ticked, the Part is not used in the horizontal geometry.</td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, then the Part is drawn in the horizontal geometry. If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have <strong>Visible</strong> not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if not blank, then the Part is given this name. If blank then the Part has no name.</td>
<td></td>
</tr>
<tr>
<td><strong>Note:</strong></td>
<td></td>
<td>If the part has a name, then a <code>!</code> is placed after the type of the part in the Horizontal Parts list.</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of horizontal parts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the type of this part. To change the Part type, choose another type from the pop-up list.</td>
<td></td>
</tr>
</tbody>
</table>

#### Geometry tab
the geometrical information defining the Part

**X coordinate, Y coordinate**
the (x,y) coordinates for the floating line can be typed in, or selected using the X, Y or XY icons.

**Transition length**
measure box available measures
if non zero, a transition curve of this length is at the end of the Floating Line that **Attach to** specifies. If blank, no transition curve is used

**Attach to**
choice box previous part, next part
the Part that the Floating Line is made tangential to. If there is a transition, it is at this end of the Floating line.
Comment tab
the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.

Set button
the Set button must be clicked for the information for this Part to be used.

Same As button
after clicking the Same As button, an point is selected from the screen and its coordinates are piped into the appropriate fields in the panel.
Floating Line: Known Direction
The Floating Line has a known bearing and a length.

Example:
Floating line with a direction becomes a tangent to an arc when attached to a previous fixed arc.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
</tbody>
</table>
|                            | *If ticked, then the Part is used in the horizontal geometry.*
|                            | *If not ticked, the Part is not used in the horizontal geometry.* |
| Visible                    | tick box           | ticked   |        |
|                            | *If ticked, then the Part is drawn in the horizontal geometry.*
|                            | *If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.* |
| Name                       | text box           | blank    |        |
|                            | *If not blank, then the Part is given this name.*
|                            | *If blank then the Part has no name.* |

**Note:** If the part has a name, then a `!` is placed after the type of the part in the Horizontal Parts list.

Type choice box types of horizontal parts the type of this part. To change the Part type, choose another type from the pop-up list.

Geometry tab the geometrical information defining the Part

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction</td>
<td>measure box</td>
<td>available measures</td>
<td>the direction of the line as a bearing can be typed in using 4.17.1 HP Notation (dd.mmssss) or selected using the measure box.</td>
</tr>
<tr>
<td>Length</td>
<td>measure box</td>
<td>available measures</td>
<td>length of the Floating Line</td>
</tr>
<tr>
<td>Transition length</td>
<td>measure box</td>
<td>available measures</td>
<td>if non zero, a transition curve of this length is at the end of the Floating Line that Attach to specifies. If blank, no transition curve is used</td>
</tr>
</tbody>
</table>
Attach to choice box previous part, next part

the Part that the Floating Line is made tangential to. If there is a transition, it is at this end of the Floating line.

Comment tab

the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.

Set button

the Set button must be clicked for the information for this Part to be used.

Same As button

after clicking the Same As button, an existing HIP can be selected from the screen and its information piped into the appropriate fields in the panel.
Floating line: Known End and Nominal Length

The Floating Line has a known nominal length and is attached tangentially to the end of previous part or the beginning of the next part.

Example:
Extends from the end of a previous fixed arc for a given length

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box if ticked, then the Part is used in the horizontal geometry. If not ticked, the Part is not used in the horizontal geometry.</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box if ticked, then the Part is drawn in the horizontal geometry. If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box if not blank, then the Part is given this name. If blank then the Part has no name.</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
</tbody>
</table>

Note: If the part has a name, then a ! is placed after the type of the part in the Horizontal Parts list.

Type choice box types of horizontal parts
the type of this part. To change the Part type, choose another type from the pop-up list.

Geometry tab
the geometrical information defining the Part

Length measure box available measures
the nominal length of the Floating Line

Rotation (cw) measure box available measures
if non zero then the bearing of the line is decreased by Rotation degrees (and is no longer tangential). The transition, if it exists, is still tangential to the Attach to part. See diagram at the end of this panel description.

Transition length measure box available measures
if non zero, a transition curve of this length is at the end of the Part that Attach to specifies. So if the Floating Line is Attach to the Previous Part, then the Previous Part comes first, then the transition and then the line. If the Floating Line is Attach to the Next Part, then the line comes first and then the transition, and the Next Part.
If blank, no transition curve is used

Attach to choice box previous part, next part

the Part that the Floating Line is attached to, and made tangential to. If there is a transition, it is at this end of the Floating line.

Comment tab

the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.

Set button

the Set button must be clicked for the information for this Part to be used.

Same As button

not used for this Part

Two Examples of Floating Lines with Rotation = 0
Two Examples of Floating Lines with Rotation = 45 degrees
**Free Line: No Constraints**

The **Free Line** is not constrained. It is determined by having to be tangential to the Parts at either end of the Line.

**Example:**
Free line is a tangent from a previous fixed arc to the following fixed arc.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, then the Part is used in the horizontal geometry. If not ticked, the Part is not used in the horizontal geometry.</td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, then the Part is drawn in the horizontal geometry. If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have <strong>Visible</strong> not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if not blank, then the Part is given this name. If blank then the Part has no name.</td>
<td></td>
</tr>
</tbody>
</table>

*Note:* If the part has a name, then a ! is placed after the type of the part in the Horizontal Parts list.

<table>
<thead>
<tr>
<th>Type</th>
<th>choice box</th>
<th>types of horizontal parts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>the type of this part. To change the Part type, choose another type from the pop-up list.</td>
</tr>
</tbody>
</table>

**Geometry tab**

*the geometrical information defining the Part*

- **Leading transition** measure box available measures
  
  *if non zero, a transition curve of this length is at the beginning of the Free Line. If blank or 0, no leading transition curve is used.*

- **Trailing transition** measure box available measures
  
  *if non zero, a transition curve of this length is at the end of the Free Line. If blank or 0, no trailing transition curve is used.*

**Comment tab**

*the text typed into the text box is stored as a comment for the Part.*

*Note:* If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.
Set button

the Set button must be clicked for the information for this Part to be used.

Same As button

not used
21.9.4.3 Horizontal Arcs

See Fixed Arc: Known Centre, Radius and Start and End
See Fixed Arc: Arc Passes through Three Known Points

**Fixed Arc: Known Centre, Radius and Start and End**
The Fixed Arc is fully defined by a given offset from an arc with known arc centre, a known radius and known start and end points.

**Offset:**
-ve to the left of the arc: direction is start to end
+ve to the right of the arc

**Same As Button:**
Use the Same As button to select an existing arc from the screen

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
</tbody>
</table>

**Note:** If the part has a name, then a ! is placed after the type of the part in the Horizontal Parts list.
Type choice box types of horizontal parts
the type of this part. To change the Part type, choose another type from the pop-up list.

**Geometry tab**
the geometrical information defining the Part

Centre X coordinate, Y coordinate
the centre (x,y) coordinates for the arc can be typed in, or selected using the X, Y or XY icons.

Radius radius box Measure Radius
the radius of the arc. This can be typed in or selected using the Measure Radius pop-up.

Start X coordinate, Y coordinate
the start (x,y) coordinates for the arc can be typed in, or selected using the X, Y or XY icons.

End X coordinate, Y coordinate
the end (x,y) coordinates for the arc can be typed in, or selected using the X, Y or XY icons.

Offset measure box Measure Length
offset of the Fixed Arc from the arc defined above by Centre, Radius, Start and End points
Positive offset is to the right of the arc going in the direction of the arc from Start point to End point.
Negative offset is to the left of the arc going in the direction of the arc from Start point to End point.

**Comment tab**
the text typed into the text box is stored as a comment for the Part.

*Note:* If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.

Set button
the Set button must be clicked for the information for this Part to be used.

Same As button
after clicking the Same As button, an existing arc can be selected from the screen and its information piped into the appropriate fields in the panel.
Fixed Arc: Arc Passes through Three Known Points
The Fixed Arc is fully defined by a given offset from an arc going through three known points.

Offset:
-ve to the left of the arc: direction is point 1 to 3
+ve to the right of the arc

Same As Button:
Use the Same As button to select an existing arc from the screen

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If ticked, then the Part is used in the horizontal geometry. If not ticked, the Part is not used in the horizontal geometry.</td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If ticked, then the Part is drawn in the horizontal geometry. If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If not blank, then the Part is given this name. If blank then the Part has no name.</td>
<td></td>
</tr>
</tbody>
</table>

Note: If the part has a name, then a ! is placed after the type of the part in the Horizontal Parts list.

Type
the type of this part. To change the Part type, choose another type from the pop-up list.

Geometry tab
the geometrical information defining the Part

Point 1 X coordinate, Y coordinate
the (x,y) coordinates of the first point on the arc can be typed in, or selected using the X, Y or XY icons
**Point 2 X coordinate, Y coordinate**

the (x,y) coordinates of the second point on the arc can be typed in, or selected using the X, Y or XY icons

**Point 3 X coordinate, Y coordinate**

the (x,y) coordinates of the third point on the arc can be typed in, or selected using the X, Y or XY icons

**Offset measure box**

offset of the Fixed Arc from the arc defined by the three points above.

Positive offset is to the right of the arc going in the direction of the arc from Point 1 to Point 3.

Negative offset is to the left of the arc going in the direction of the arc from Point 1 to Point 3.

**Comment tab**

the text typed into the text box is stored as a comment for the Part.

*Note:* If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.

**Set button**

the Set button must be clicked for the information for this Part to be used.

**Same As button**

after clicking the Same As button, an existing arc can be selected from the screen and its information piped into the appropriate fields in the panel.
Fixed Arc: Known Start Point and Direction, Known Radius

The Fixed Arc is fully defined by a given offset from an arc starting at a known point with a known direction for the tangent to the arc at that point, and a known radius.

**Fields and Buttons Used in the Panel Have the Following Functions.**

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of horizontal parts</td>
<td></td>
</tr>
</tbody>
</table>

**Geometry Tab**

- the geometrical information defining the Part

**X coordinate, Y coordinate**

- the (x,y) coordinates on the point on the arc can be typed in, or selected using the X, Y, or XY icons.
Placing Parts for Super Alignments

Radius

measure box

the radius of the arc. This can be typed in or selected using the Measure Radius pop-up.

Direction

measure box

the direction of the tangent of the point on the arc as a bearing can be typed in using Notation (dd.mmssss) or selected using the measure box.

Offset

measure box

offset of the Fixed Arc from the arc defined above by Point, Radius, and Direction (bearing) at Point. Positive offset is to the right of the arc going in the direction of the arc. Negative offset is to the left of the arc going in the direction of the arc.

Comment tab

the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.

Set button

the Set button must be clicked for the information for this Part to be used.

Same As button

after clicking the Same As button, an existing arc can be selected from the screen and its information piped into the appropriate fields in the panel.

Known Point

Bearing of tangent at Point of 60 degrees
Floating Arc: Known Radius and Passes through a Known Point

The Floating Arc passes through a known point and has a known radius. It may not always be possible for the Floating Arc to actually solve.

For example in the case where it follows a fixed line, if the perpendicular distance between the known point and the line is greater than the given radius, then there is no solution.

**Example:**
The Floating Arc may become fully defined when it is attached to a previous fixed line

**Radius:**
- ve to the left of the direction
+ ve to the right of the direction

**Same As Button:**
Use the Same As button to select an existing arc from the screen

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>Use tick box if ticked, then the Part is used</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in the horizontal geometry. If not ticked, the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part is not used in the horizontal geometry.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>Visible tick box if ticked, then the Part is</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>drawn in the horizontal geometry. If not ticked,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>then the Part is not drawn whenever all the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parts before it, or all the Parts after it, also</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>have Visible not ticked. The effect may not be</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>apparent until leaving the Editor and all the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>construction work is removed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Name text box if not blank, then the Part is</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td>given this name. If blank then the Part has no</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>name.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td>If the part has a name, then a ! is placed after</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the type of the part in the Horizontal Parts list.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Type choice box of the type of this part. To</td>
<td>choice box</td>
<td>types of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>change the Part type, choose another type from</td>
<td></td>
<td>horizontal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the pop-up list.</td>
<td></td>
<td>parts.</td>
<td></td>
</tr>
</tbody>
</table>

**Geometry tab**
the geometrical information defining the Part
X coordinate, Y coordinate
the (x,y) coordinates of the point on the arc can be typed in, or selected using the X, Y or XY icons.

Radius
radius box
Measure Radius
the radius of the arc. This can be typed in or selected using the Measure Radius pop-up.

Transition length
measure box
available measures
if non zero, a transition curve of this length is at the end of the Floating Arc that Attach to specifies. If blank, no transition curve is used

Attach to
choice box
previous part, next part
the Part that the Floating Arc is attached to, and made tangential to. If there is a transition, it is at this end of the Floating line.

Alternative solution
tick box
not ticked
there can be two solutions. One solution is first shown. If ticked, the other solution is shown.

Comment tab
the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.

Set
button
the Set button must be clicked for the information for this Part to be used.

Same As
button
after clicking the Same As button, an existing arc can be selected from the screen and its information piped into the appropriate fields in the panel.
Floating Arc: Known Point and Tangent Direction at the Point

The Floating Arc passes through a known point and has a known direction for the tangent to the arc at the known point.

It may not always be possible for the Floating Arc to actually solve.

For example in the case where it follows a fixed line, if the perpendicular distance between the known point and the line is greater than the given radius, then there is no solution.

**Example:**
The Floating Arc may become fully defined when it is attached to a previous fixed line

**Radius:**
-ve to the left of direction  
+ve to the right of the direction

**Same As Button:**
Use the Same As button to select an existing arc from the screen

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
</tbody>
</table>
| **if ticked, then the Part is used in the horizontal geometry.**  
  **If not ticked, the Part is not used in the horizontal geometry.** |
| Visible                            | tick box   | ticked   |        |
| **if ticked, then the Part is drawn in the horizontal geometry.**  
  **If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.** |
| Name                               | text box   | blank    |        |
| **if not blank, then the Part is given this name.**  
  **If blank then the Part has no name.** |
| **Note:** If the part has a name, then a ! is placed after the type of the part in the Horizontal Parts list. |
| Type                               | choice box | types of horizontal parts |        |
| **the type of this part. To change the Part type, choose another type from the pop-up list.** |

**Geometry tab**
the geometrical information defining the Part
X coordinate, Y coordinate
the (x,y) coordinates for the point on the arc can be typed in, or selected using the X, Y or XY icons.

Direction measure box available measures
the direction of the tangent of the point on the arc as a bearing can be typed in using 4.17.1 HP.
Notation (dd.mmssss) or selected using the measure box.

Attach to choice box previous part, next part
the Part that the Floating Arc is attached to, and made tangential to.

Alternative solution tick box not ticked
there can be two solutions. One solution is first shown.
If ticked, the other solution is shown.

Comment tab
the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.

Set button
the Set button must be clicked for the information for this Part to be used.

Same As button
after clicking the Same As button, an existing arc can be selected from the screen and its information piped into the appropriate fields in the panel.
Floating Arc: Arc Passes through Two known Points
The Floating Arc passes through two known points.

It may not always be possible for the Floating Arc to actually solve.

For example in the case where it follows a fixed line and the two known points are on the lines, then there is no solution.

Example:
The Floating Arc may become fully defined when it is attached to a previous fixed line.

Same As Button:
Use the Same As button to select an existing arc from the screen.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: If the part has a name, then a ! is placed after the type of the part in the Horizontal Parts list.

Type
the type of this part. To change the Part type, choose another type from the pop-up list.

Geometry tab
the geometrical information defining the Part.
Start X coordinate, Y coordinate
the (x,y) coordinates of the first point on the arc can be typed in, or selected using the X, Y or XY icons

End X coordinate, Y coordinate
the (x,y) coordinates of the second point on the arc can be typed in, or selected using the X, Y or XY icons

Transition length measure box
available measures
if non zero, a transition curve of this length is at the end of the Floating Arc that Attach to specifies.
If blank, no transition curve is used

Attach to choice box
previous part, next part
the Part that the Floating Arc is attached to, and made tangential to. If there is a transition, it is at this end of the Floating line.

Alternative solution tick box
not ticked
there can be two solutions. One solution is first shown.
If ticked, the other solution is shown.

Comment tab
the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.

Set button
the Set button must be clicked for the information for this Part to be used.

Same As button
after clicking the Same As button, an existing arc can be selected from the screen and its information piped into the appropriate fields in the panel.
Floating Arc: Arc Passes through Known point and End of Previous or Next Element

The *Floating Arc* is attached to the actual end of the previous or next element and also passes through a known point.

It may not always be possible for the *Floating Arc* to actually solve.

For example in the case where it follows a fixed line and the known point is on the line, then there is no solution.

**Example:**
The *Float Arcing* may become fully defined when it is attached to a previous fixed line.

**Same As Button:**
Use the *Same As* button to select an existing arc from the screen.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
</tbody>
</table>
|                   |         | *if ticked, then the Part is used in the horizontal geometry.*  
|                   |         | *If not ticked, the Part is not used in the horizontal geometry.* |
| Visible           | tick box| ticked   |        |
|                   |         | *if ticked, then the Part is drawn in the horizontal geometry.*  
|                   |         | *If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.* |
| Name              | text box| blank    |        |
|                   |         | *if not blank, then the Part is given this name.*  
|                   |         | *If blank then the Part has no name.* |

**Note:** If the part has a name, then a ![ symbol is placed after the type of the part in the Horizontal Parts list.

<table>
<thead>
<tr>
<th>Type</th>
<th>choice box</th>
<th>types of horizontal parts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><em>the type of this part. To change the Part type, choose another type from the pop-up list.</em></td>
<td></td>
</tr>
</tbody>
</table>

**Geometry tab**
the geometrical information defining the Part
X coordinate, Y coordinate

the (x,y) coordinates of a point on the arc can be typed in, or selected using the X, Y or XY icons.

Attach to

the choice box previous part, next part

the Part that the Floating Arc is attached to, and made tangential to.

Comment tab

the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.

Set button

the Set button must be clicked for the information for this Part to be used.

Same As button

after clicking the Same As button, an existing arc can be selected from the screen and its information piped into the appropriate fields in the panel.
Floating Arc: Arc has Know Radius and Length, and End of Previous or Next Element
The Floating Arc is attached to the actual end of the previous or next element and also has a known radius and known length.

Example:
The Floating Arc may become fully defined when it is attached to a previous fixed line

Radius:
-ve to the left of direction of travel
+ve to the right of the direction of travel

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of horizontal parts</td>
<td></td>
</tr>
</tbody>
</table>

Geometry tab
the geometrical information defining the Part

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius</td>
<td>radius box</td>
<td>Measure Radius</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>measure box</td>
<td>Measure Length</td>
<td></td>
</tr>
<tr>
<td>Transition length</td>
<td>measure box</td>
<td>available measures</td>
<td></td>
</tr>
</tbody>
</table>

if non zero, a transition curve of this length is at the end of the Floating Arc that Attach to specifies.
If blank, no transition curve is used

Attach to choice box previous part, next part

the Part that the Floating Arc is attached to, and made tangential to. If there is a transition, it is at this end of the Floating line.

Comment tab

the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.

Set button

the Set button must be clicked for the information for this Part to be used.

Same As button

after clicking the Same As button, an existing arc can be selected from the screen and its information piped into the appropriate fields in the panel.
Floating Arc: Arc has Know Radius and Sweep Angle, and End of Previous or Next Element
The Floating Arc is attached to the actual end of the previous or next element, has a known radius and known sweep angle.

Example:
The Floating Arc may become fully defined when it is attached to a previous fixed line

Radius:
-ve to the left of direction of travel
+ve to the right of the direction of travel

The fields and buttons used in the panel have the following functions.

Field Description          Type          Defaults          Pop-Up
Use                      tick box          ticked
                   if ticked, then the Part is used in the horizontal geometry.
                   If not ticked, the Part is not used in the horizontal geometry.
Visible                  tick box          ticked
                   if ticked, then the Part is drawn in the horizontal geometry.
                   If not ticked, the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.
Name                     text box              blank
                   if not blank, then the Part is given this name.
                   If blank then the Part has no name.

Note: If the part has a name, then a ! is placed after the type of the part in the Horizontal Parts list.

Type                     choice box          types of horizontal parts
                   the type of this part. To change the Part type, choose another type from the pop-up list.

Geometry tab
the geometrical information defining the Part

Radius                    radius box          Measure Radius
                   the radius of the arc. This can be typed in or selected using the Measure Radius pop-up.
Sweep                     measure box          available measures
                   the angle in degrees in 4.17.1 HP Notation (dd.mm.ssss) that the arc sweep through
Transition length measure box available measures
if non zero, a transition curve of this length is at the end of the Floating Arc that Attach to specifies.
If blank, no transition curve is used

Attach to choice box previous part, next part
the Part that the Floating Arc is attached to, and made tangential to. If there is a transition, it is at this end of the Floating line.

Comment tab
the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.

Set button
the Set button must be clicked for the information for this Part to be used.

Same As button
after clicking the Same As button, an existing arc can be selected from the screen and its information piped into the appropriate fields in the panel.
Free Arc: Known Radius
The Free Arc has a known radius.

It may not always be possible for the Free Arc to actually solve.

For example in the case where the Free Arc is between two fixed lines and the two lines are on top of each other.

Example:
The Free Arc become fully defined when it is placed between two fixed lines.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, then the Part is used in the horizontal geometry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked, the Part is not used in the horizontal geometry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, then the Part is drawn in the horizontal geometry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if not blank, then the Part is given this name.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If blank then the Part has no name.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Note:** If the part has a name, then a ! is placed after the type of the part in the Horizontal Parts list.

Type

the type of this part. To change the Part type, choose another type from the pop-up list.

Geometry tab

the geometrical information defining the Part

Radius

radius box Measure Radius

the radius of the arc. This can be typed in or selected using the Measure Radius pop-up.

Leading transition measure box available measures

if non zero, a leading transition curve of this length is at the start of the Free Arc.
If blank or zero, no leading transition curve is used

Trailing transition measure box available measures
if non zero, a trailing transition curve of this length is at the end of the Free Arc.
If blank or zero, no trailing transition curve is used.

Alternative solution tick box not ticked
there can be two solutions. One solution is shown first.
If ticked, the other solution is shown.

Comment tab
the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.

Set button
the Set button must be clicked for the information for this Part to be used.

Same As button
after clicking the Same As button, an existing arc can be selected from the screen and its information piped into the appropriate fields in the panel.
Free Arc: Passes through Known Point
The Free Arc passes through a known point.

It may not always be possible for the Free Arc to actually solve.

For example in the case where the Free Arc is between two fixed lines and the two lines are on top of each other.

Example:
The Free Arc becomes fully defined when it is placed between two fixed lines.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, then the Part is used in the horizontal geometry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked, the Part is not used in the horizontal geometry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, then the Part is drawn in the horizontal geometry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if not blank, then the Part is given this name.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If blank then the Part has no name.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Note:** If the part has a name, then a ! is placed after the type of the part in the Horizontal Parts list.

<table>
<thead>
<tr>
<th>Type</th>
<th>choice box</th>
<th>types of horizontal parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>the type of this part. To change the Part type, choose another type from the pop-up list.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Geometry tab**
the geometrical information defining the Part

X coordinate, Y coordinate
the (x,y) coordinates of a point on the arc can be typed in, or selected using the X, Y or XY icons.

Alternative solution tick box not ticked
there can be two solutions. One solution is shown first.
If ticked, the other solution is shown.

**Comment tab**

the text typed into the text box is stored as a comment for the Part.

**Note:** If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.

**Set button**

the **Set** button must be clicked for the information for this Part to be used.

**Same As button**

after clicking the **Same As** button, an existing arc can be selected from the screen and its information piped into the appropriate fields in the panel.
**Free Arc: Arc has a Known Length**

The *Free Arc* has a known length.

It may not always be possible for the *Free Arc* to actually solve.

For example in the case where the Free Arc is between two fixed lines and the two lines are on top of each other.

---

**Example:**
The Free Arc become fully defined when it is placed between two fixed lines.

---

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Use</strong></td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If ticked, then the Part is used in the horizontal geometry.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If not ticked, the Part is not used in the horizontal geometry.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Visible</strong></td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If ticked, then the Part is drawn in the horizontal geometry.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If not ticked, the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have <em>Visible</em> not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Name</strong></td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If not blank, then the Part is given this name.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If blank then the Part has no name.</em></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Note:** If the part has a name, then a ! is placed after the type of the part in the Horizontal Parts list.

<table>
<thead>
<tr>
<th><strong>Type</strong></th>
<th>choice box</th>
<th>types of horizontal parts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><em>the type of this part. To change the Part type, choose another type from the pop-up list.</em></td>
<td></td>
</tr>
</tbody>
</table>

**Geometry tab**

*the geometrical information defining the Part*

<table>
<thead>
<tr>
<th><strong>Length</strong></th>
<th>length box</th>
<th>Measure Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><em>the length of the arc. This can be typed in or selected using the Measure Length pop-up.</em></td>
<td></td>
</tr>
</tbody>
</table>
Alternative solution tick box not ticked

there can be two solutions. One solution is shown first.
If ticked, the other solution is shown.

Comment tab
the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.

Set button
the Set button must be clicked for the information for this Part to be used.

Same As button
after clicking the Same As button, an existing arc can be selected from the screen and its information piped into the appropriate fields in the panel.
**Free Arc: Arc has a Known End Point**

The *Floating Arc* is attached to a **known end point** of a Previous or Next Part.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, then the Part is used in the horizontal geometry.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If not ticked, the Part is not used in the horizontal geometry.</td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, then the Part is drawn in the horizontal geometry.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if not blank, then the Part is given this name.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If blank then the Part has no name.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Note:</strong> If the part has a name, then a ! is placed after the type of the part in the Horizontal Parts list.</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of horizontal parts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the type of this part. To change the Part type, choose another type from the pop-up list.</td>
<td></td>
</tr>
</tbody>
</table>

**Geometry tab**

*the geometrical information defining the Part*

- **Leading transition** measure box available measures
  - if non zero, a leading transition curve of this length is at the start of the Free Arc.
  - If blank or zero, no leading transition curve is used

- **Trailing transition** measure box available measures
  - if non zero, a trailing transition curve of this length is at the end of the Free Arc.
  - If blank or zero, no trailing transition curve is used.
Attaching parts for Super Alignments

Attach to previous part, next part choice box the Part that the Free Arc is attached to.

Comment tab

the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.

Set button

the Set button must be clicked for the information for this Part to be used.

Same As button

after clicking the Same As button, an existing arc can be selected from the screen and its information piped into the appropriate fields in the panel.
21.9.4.4 Horizontal Transitions

See [Floating Transition: From Arc to Arc](#)
See [Floating Transition: Taper](#)
See [Floating Transition: Known Length](#)
See [Free Transition: Unconstrained](#)
See [Free Transition: Back to Back Transitions of Known Lengths Between Lines](#)
See [Free Transition: Back to Back Transitions Between Two Arcs](#)
See [Free Taper: Taper of Known Length](#)
See [Compound Transitions: Three Centre Curve](#)
See [Compound Transition: Two Centred Curve](#)
See [Compound Transition: Two Transition Curves of Known Lengths](#)
See [Compound Transition: Two Transitions Separated by Line of Known Length](#)
See [Compound Transition: Two Arcs of Known Radii](#)
See [Compound Transition: Two Arcs of Known Radii with a Taper](#)

**Floating Transition: From Arc to Arc**
The Floating Transition consists of one or two transition curves going between two arcs.

![Diagram of Floating Transition](image)

**Example:**
The Floating Transition become fully defined when it is placed between two arcs

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td>If ticked, then the Part is used in the horizontal geometry. If not ticked, the Part is not used in the horizontal geometry.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td>If ticked, then the Part is drawn in the horizontal geometry. If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Name text box blank
   if not blank, then the Part is given this name.
   If blank then the Part has no name.

   Note: If the part has a name, then a ! is placed after the type of the part in the Horizontal Parts list.

Type choice box types of horizontal parts
   the type of this part. To change the Part type, choose another type from the pop-up list.

Geometry tab
   the geometrical information defining the Part

Approaching length measure box Measure Length
   the length of the leading transition curve at the start of the Floating Transition. This must be non zero.
   This will be tangential to the Previous Part.

Tangent length length box Measure Length
   if non zero, a straight of this length is placed between the two transition curves.
   This will be tangential to the Previous Part.

Departing length measure box Measure Length
   the length of the trailing transition curve at the end of the Floating Transition. This must be non zero.
   This will be tangential to the Next Part.

Comment tab
   the text typed into the text box is stored as a comment for the Part.

   Note: If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.

Set button
   the Set button must be clicked for the information for this Part to be used.

Same As button
**Floating Transition: Taper**
The Floating Transition consists of.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, then the Part is used in the horizontal geometry. If not ticked, the Part is not used in the horizontal geometry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, then the Part is drawn in the horizontal geometry. If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if not blank, then the Part is given this name. If blank then the Part has no name.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Note:** If the part has a name, then a $!$ is placed after the type of the part in the Horizontal Parts list.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>choice box</td>
</tr>
<tr>
<td></td>
<td>types of horizontal parts</td>
</tr>
<tr>
<td></td>
<td>the type of this part. To change the Part type, choose another type from the pop-up list.</td>
</tr>
</tbody>
</table>

**Geometry tab**
the geometrical information defining the Part

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>length box</td>
</tr>
<tr>
<td></td>
<td>Point to point, String to point</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio</td>
<td>measure box</td>
</tr>
<tr>
<td></td>
<td>available measures</td>
</tr>
</tbody>
</table>

**Comment tab**
the text typed into the text box is stored as a comment for the Part.

**Note:** If a comment exists, a $#$ is placed after the type of the part in the Horizontal Parts list.

Example:
The Floating Taper become fully defined when it is placed between two fixed lines.
Set button
the Set button must be clicked for the information for this Part to be used.

Same As button
after clicking the Same As button, an existing HIP can be selected from the screen and its information piped into the appropriate fields in the panel.
Floating Transition: Known Length
The Floating Transition consists of a transition curve of known length.

Example:
The Floating Transition become fully defined when it is placed between a fixed line and a floating arc.

The fields and buttons used in the panel have the following functions.

Field	Description	Type	Defaults	Pop-Up
Use | if ticked, then the Part is used in the horizontal geometry. If not ticked, the Part is not used in the horizontal geometry. | tick box | ticked |
Visible | if ticked, then the Part is drawn in the horizontal geometry. If not ticked, the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed. | tick box | ticked |
Name | if not blank, then the Part is given this name. If blank then the Part has no name. | text box | blank | |
Type | the type of this part. To change the Part type, choose another type from the pop-up list. | choice box | types of horizontal parts | |
Geometry tab | the geometrical information defining the Part | |
Length | the length of the transition. This must be non zero. | length box | Measure Length |

Comment tab | the text typed into the text box is stored as a comment for the Part. | |
Set button | the Set button must be clicked for the information for this Part to be used. | | |
Same As button
Free Transition: Unconstrained
The Free Transition is unconstrained.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td>if ticked, then the Part is used in the horizontal geometry. If not ticked, the Part is not used in the horizontal geometry.</td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td>if ticked, then the Part is drawn in the horizontal geometry. If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td>if not blank, then the Part is given this name. If blank then the Part has no name.</td>
</tr>
<tr>
<td>Note: If the part has a name, then a ! is placed after the type of the part in the Horizontal Parts list.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of horizontal parts</td>
<td>the type of this part. To change the Part type, choose another type from the pop-up list.</td>
</tr>
<tr>
<td>Comment tab</td>
<td>the text typed into the text box is stored as a comment for the Part.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td></td>
<td>the Set button must be clicked for the information for this Part to be used.</td>
</tr>
<tr>
<td>Same As</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Free Transition: Back to Back Transitions of Known Lengths Between Lines
The Free Transition consists of two back to back transitions of known lengths between two lines. The transitions can be the same hand or reversed.

Example:
The Free Transition become fully defined when it is placed between two fixed lines.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, then the Part is used in the horizontal geometry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked, the Part is not used in the horizontal geometry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, then the Part is drawn in the horizontal geometry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if not blank, then the Part is given this name.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If blank then the Part has no name.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td>If the part has a name, then a ! is placed after the type of the part in the Horizontal Parts list.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of horizontal parts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the type of this part. To change the Part type, choose another type from the pop-up list.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geometry tab
the geometrical information defining the Part

Approaching length | measure box | Measure Length |
the length of the leading transition curve at the start of the Floating Transition. This must be non zero. This will be tangential to the Previous Part.

Departing length | measure box | Measure Length |
the length of the trailing transition curve at the end of the Floating Transition. This must be non zero. This will be tangential to the Next Part.
Reverse tick box not ticked
if ticked, transitions of opposite hands are used

**Comment tab**
the text typed into the text box is stored as a comment for the Part.

*Note:* If a comment exists, a \# is placed after the type of the part in the Horizontal Parts list.

Set button
the **Set** button must be clicked for the information for this Part to be used.

Same As button
Free Transition: Back to Back Transitions Between Two Arcs

The *Free Transition* consists of a two back to back transitions between two arcs. The length of one transition is needed. The transitions can be the same hand or reversed.

Example:
The Free Transition become fully defined when it is placed between two fixed arcs.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, then the Part is used in the horizontal geometry.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If not ticked, the Part is not used in the horizontal geometry.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, then the Part is drawn in the horizontal geometry.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if not blank, then the Part is given this name.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If blank then the Part has no name.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: If the part has a name, then a ! is placed after the type of the part in the Horizontal Parts list.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of horizontal parts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the type of this part. To change the Part type, choose another type from the pop-up list.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometry tab</td>
<td>the geometrical information defining the Part</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Known departing</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If not ticked,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Known length</td>
<td>length box</td>
<td>Point to point, String to point</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tangent length  length box  Point to point, String to point

**Comment tab**

*the text typed into the text box is stored as a comment for the Part.*

**Note:** If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.

**Set button**

*the Set button must be clicked for the information for this Part to be used.*

**Same As button**
Free Taper: Taper of Known Length
The Free Transition consists of a taper of known length.

Example
The Free Transition Taper becomes fully defined when it is placed.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, then the Part is used in the horizontal geometry. If not ticked, the Part is not used in the horizontal geometry.</td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, then the Part is drawn in the horizontal geometry. If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if not blank, then the Part is given this name. If blank then the Part has no name.</td>
<td></td>
</tr>
</tbody>
</table>

Note: If the part has a name, then a ! is placed after the type of the part in the Horizontal Parts list.

Type
the type of this part. To change the Part type, choose another type from the pop-up list.

Geometry tab
the geometrical information defining the Part

Length
length box
Point to point, String to point

Comment tab
the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.

Set button
the Set button must be clicked for the information for this Part to be used.
Same As button
Compound Transitions: Three Centre Curve

The Compound Transition consists of a three centred curve. That is, three arcs with given radii and an approaching and departing offset.

Example

The Compound Transition becomes fully defined when it is placed between two fixed lines.

**Radius and Offset**
- ve to the left of the direction of travel
+ ve to the right of the direction of travel

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If ticked, then the Part is used in the horizontal geometry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If not ticked, the Part is not used in the horizontal geometry.</td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If ticked, then the Part is drawn in the horizontal geometry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If not blank, then the Part is given this name.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If blank then the Part has no name.</td>
</tr>
<tr>
<td>Note: If the part has a name, then a ! is placed after the type of the part in the Horizontal Parts list.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type: the type of this Part. To change the Part type, choose another type from the pop-up list.

**Geometry Tab**

The geometrical information defining the Part

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate radius</td>
<td>radius box</td>
<td>Point, String from point</td>
<td></td>
</tr>
<tr>
<td>Approaching radius</td>
<td>radius box</td>
<td>Point, String from point</td>
<td></td>
</tr>
</tbody>
</table>
Departing radius  radius box  Point, String from point
Approaching offset  length box  Point to point, String to point
Departing offset  length box  Point to point, String to point

Comment tab

the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.

Set  button

the Set button must be clicked for the information for this Part to be used.

Same As  button

after clicking the Same As button, an existing HIP can be selected from the screen and its information piped into the appropriate fields in the panel.
Compound Transition: Two Centred Curve

The Compound Transition consists of a two centred curve. That is, two arcs with given radii.

Example

The Compound Transition becomes fully defined when it is placed between two fixed elements.

Radius

-ve to the left of the direction of travel
+ve to the right of the direction of travel

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>Use tick box if ticked, then the Part is used in the horizontal geometry. If not ticked, the Part is not used in the horizontal geometry.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>Visible tick box if ticked, then the Part is drawn in the horizontal geometry. If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Name text box if not blank, then the Part is given this name. If blank then the Part has no name.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> If the part has a name, then a ! is placed after the type of the part in the Horizontal Parts list.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Type choice box types of horizontal parts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geometry tab

the geometrical information defining the Part

Approaching radius   radius box  Point, String from point

Departing radius     radius box  Point, String from point

Comment tab

the text typed into the text box is stored as a comment for the Part.

**Note:** If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.
Set button

the Set button must be clicked for the information for this Part to be used.

Same As button

after clicking the Same As button, an existing HIP can be selected from the screen and its information piped into the appropriate fields in the panel.
Compound Transition: Two Transition Curves of Known Lengths
The Compound Transition consists of a **two transition curves** of **known lengths**.

**Example**
The Compound Transition becomes fully defined when it is placed between two fixed elements.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
</tbody>
</table>
|                   | *if ticked, then the Part is used in the horizontal geometry.*
|                   | *If not ticked, the Part is not used in the horizontal geometry.* |
| Visible           | tick box      | ticked   |        |
|                   | *if ticked, then the Part is drawn in the horizontal geometry.*
|                   | *If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.* |
| Name              | text box      | blank    |        |
|                   | *if not blank, then the Part is given this name.*
|                   | *If blank then the Part has no name.* | | |
|                   | **Note:** If the part has a name, then a `!` is placed after the type of the part in the Horizontal Parts list. |
| Type              | choice box    | types of horizontal parts |        |
|                   | *the type of this part. To change the Part type, choose another type from the pop-up list.* |

**Geometry tab**
the geometrical information defining the Part

- **Approaching length**
  - length box
  - Point to point, String to point

- **Departing length**
  - length box
  - Point to point, String to point

**Comment tab**
the text typed into the text box is stored as a comment for the Part.

**Note:** If a comment exists, a `#` is placed after the type of the part in the Horizontal Parts list.
Set button
the Set button must be clicked for the information for this Part to be used.

Same As button
after clicking the Same As button, an existing HIP can be selected from the screen and its information piped into the appropriate fields in the panel.
Compound Transition: Two Transitions Separated by Line of Known Length

The Compound Transition consists of a approaching transition curves of known length followed by a line of known length and then a departing transition curve with a calculated length.

Example

The Compound Transition becomes fully defined when it is placed between two fixed elements. The second transition curve length is calculated.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, then the Part is used in the horizontal geometry.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If not ticked, the Part is not used in the horizontal geometry.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, then the Part is drawn in the horizontal geometry.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If not ticked, the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if not blank, then the Part is given this name.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If blank then the Part has no name.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: If the part has a name, then a ! is placed after the type of the part in the Horizontal Parts list.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of horizontal parts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the type of this part. To change the Part type, choose another type from the pop-up list.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometry tab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the geometrical information defining the Part</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approaching spiral length</td>
<td>length box</td>
<td>Point to point, String to point</td>
<td></td>
</tr>
<tr>
<td>Line length</td>
<td>length box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Point to point, String to point</td>
<td></td>
</tr>
</tbody>
</table>

Comment tab

the text typed into the text box is stored as a comment for the Part.
Note: If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.

Set button

the Set button must be clicked for the information for this Part to be used.

Same As button

after clicking the Same As button, an existing HIP can be selected from the screen and its information piped into the appropriate fields in the panel.
Compound Transition: Two Arcs of Known Radii
The Compound Transition consists of two arcs of known radii.

Example
The Compound Transition between a fixed line and a fixed arc.

Radius
-ve to the left of the direction of travel
+ve to the right of the direction of travel

The fields and buttons used in the panel have the following functions.

Field Description	Type	Defaults	Pop-Up
Use | tick box | ticked | if ticked, then the Part is used in the horizontal geometry. If not ticked, the Part is not used in the horizontal geometry.
Visible | tick box | ticked | if ticked, then the Part is drawn in the horizontal geometry. If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.
Name | text box | blank | if not blank, then the Part is given this name. If blank then the Part has no name.

Note: If the part has a name, then a ! is placed after the type of the part in the Horizontal Parts list.

Type | choice box | types of horizontal parts | the type of this part. To change the Part type, choose another type from the pop-up list.

Geometry tab
the geometrical information defining the Part

Approaching radius | radius box | Point, String from point
Departing radius | radius box | Point, String from point
Attach to | choice box | previous part, next part
Alternative solution | tick box | not ticked
Comment tab
the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.

Set button
the Set button must be clicked for the information for this Part to be used.

Same As button
after clicking the Same As button, an existing HIP can be selected from the screen and its information piped into the appropriate fields in the panel.
Compound Transition: Two Arcs of Known Radii with a Taper

The Compound Transition consists of

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, then the Part is used in the horizontal geometry. If not ticked, the Part is not used in the horizontal geometry.</td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, then the Part is drawn in the horizontal geometry. If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if not blank, then the Part is given this name. If blank then the Part has no name.</td>
<td></td>
</tr>
<tr>
<td>Note: If the part has a name, then a ! is placed after the type of the part in the Horizontal Parts list.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of horizontal parts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the type of this part. To change the Part type, choose another type from the pop-up list.</td>
<td></td>
</tr>
</tbody>
</table>

Example

**Radius**
-ve to the left of the direction of travel
+ve to the right of the direction of travel

The geometrical information defining the Part:

<p>| Use tangent length   | tick box   | not ticked |
|                      |            |            |
|                      |            | if ticked, |
| Taper length         | length box | Point to point, String to point |</p>
<table>
<thead>
<tr>
<th>Approaching radius</th>
<th>radius box</th>
<th>Point, String from point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Departing radius</td>
<td>radius box</td>
<td>Point, String from point</td>
</tr>
<tr>
<td>Attach to</td>
<td>choice box</td>
<td>previous part, next part</td>
</tr>
</tbody>
</table>

**Comment tab**

The text typed into the text box is stored as a comment for the Part.

**Note:** If a comment exists, a # is placed after the type of the part in the Horizontal Parts list.

<table>
<thead>
<tr>
<th>Set button</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Same As button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After clicking the **Same As** button, an existing HIP can be selected from the screen and its information piped into the appropriate fields in the panel.
21.9.4.5 Horizontal Computators

Not yet documented.
21.9.5 Definitions of Super Alignment Vertical Parts

See [21.9.5.1 Vertical IPs](#)  
See [21.9.4.2 Horizontal Lines](#)

### 21.9.5.1 Vertical IPs

See [VIP: Speed](#)  
See [VIP: K-value](#)  
See [VIP: Radius](#)  
See [VIP: Length:](#)  
See [VIP: Asymmetric](#)  

**VIP: Speed**  
A vertical intersection point (VIP) is created and the sizes of the parabolas for the VIP come from the Design Template of the super alignment.

![](image)

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>Description of type</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>Description of type</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Description of type</td>
<td>text box</td>
<td>blank</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note:* If the part has a name, then a ! is placed after the type of the part in the Vertical Parts list.
Placing Parts for Super Alignments

Type choice box types of vertical parts
the type of this part. To change the Part type, choose another type from the pop-up list.

Geometry tab
the geometrical information defining the Part

Chainage, Height
the (chainage, height) coordinates for the VIP can be typed in, or selected using the C, Z or CZ icons.

Speed
If Speed is not blank, then that is the speed used when looking up the Design Template for the VIP
If Speed is left blank, then the Design Speed for the super alignment in used when looking up the Design Template.

Comment tab
the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Vertical Parts list.

Set button
the Set button must be clicked for the information for this Part to be used.

Same As button
after clicking the Same As button, an existing VIP can be selected from the screen and its information piped into the appropriate fields in the panel.
VIP: Length:
A vertical intersection point (VIP) is created and either length of the parabola on the VIP is given, or the maximum allowable parabola is used.

![VIP: Length](image)

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
</tbody>
</table>
|                   | *if ticked, then the Part is used in the vertical geometry.*
|                   | *If not ticked, the Part is not used in the vertical geometry.* |
| Visible           | tick box   | ticked   |        |
|                   | *if ticked, then the Part is drawn in the vertical geometry.*
|                   | *If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.* |
| Name              | text box   | blank    |        |
|                   | *if not blank, then the Part is given this name.*
|                   | *If blank then the Part has no name.* | | |
| Type              | choice box | types of vertical parts |        |
|                   | *the type of this part. To change the Part type, choose another type from the pop-up list.* |

**Geometry tab**
the geometrical information defining the Part

- **Chainage, Height**
  the (chainage, height) coordinates for the VIP can be typed in, or selected using the C, Z or CZ icons.

- **Length (blank for max length)**
  the length used for the parabola on the VIP. This field can not be left blank.
  *If zero then a parabola of maximum length is used on the VIP.*

**Comment tab**
the text typed into the text box is stored as a comment for the Part.

*Note: If a comment exists, a # is placed after the type of the part in the Vertical Parts list.*
Set button

the Set button must be clicked for the information for this Part to be used.

Same As button

after clicking the Same As button, an existing VIP can be selected from the screen and its information piped into the appropriate fields in the panel.
VIP: Radius
A vertical intersection point (VIP) is created and the effective radius for the parabola on the VIP is given.

![VIP Panel Diagram]

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If ticked, then the Part is used in the vertical geometry.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If not ticked, the Part is not used in the vertical geometry.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If ticked, then the Part is drawn in the vertical geometry.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If not blank, then the Part is given this name.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If blank then the Part has no name.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If the part has a name, then a ! is placed after the type of the part in the Vertical Parts list.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of vertical parts</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>the type of this part. To change the Part type, choose another type from the pop-up list.</em></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Geometry tab**

*the geometrical information defining the Part*

**Chainage, Height**

*the (chainage, height) coordinates for the VIP can be typed in, or selected using the C, Z or CZ icons.*

**Radius**

*if not blank or non zero, the radius entered is used for the parabola/arc on the VIP.*

*If blank or zero then no parabola/arc is used on the VIP.*

**Circular**

*if ticked, then the curve on the VIP is an arc*
If not ticked, then the curve on the VIP is a parabola.

**Comment tab**
the text typed into the text box is stored as a comment for the Part.

**Note:** If a comment exists, a # is placed after the type of the part in the Vertical Parts list.

**Set button**
the Set button must be clicked for the information for this Part to be used.

**Same As button**
after clicking the Same As button, an existing VIP can be selected from the screen and its information piped into the appropriate fields in the panel.
VIP: K-value
A vertical intersection point (VIP) is created and the K value for the parabola on the VIP is given.

The fields and buttons used in the panel have the following functions.

Field Description	Type	Defaults	Pop-Up
Use | tick box | ticked | 
if ticked, then the Part is used in the vertical geometry.
If not ticked, the Part is not used in the vertical geometry.
Visible | tick box | ticked | 
if ticked, then the Part is drawn in the vertical geometry.
If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.
Name | text box | blank | 
if not blank, then the Part is given this name.
If blank then the Part has no name.
Note: If the part has a name, then a ! is placed after the type of the part in the Vertical Parts list.
Type | choice box | types of vertical parts | 
the type of this part. To change the Part type, choose another type from the pop-up list.

Geometry tab
the geometrical information defining the Part

Chainage, Height
the (chainage, height) coordinates for the VIP can be typed in, or selected using the C, Z or CZ icons.

K-value | measure box | available measures
the K value to use for the parabola on the VIP

Comment tab
the text typed into the text box is stored as a comment for the Part.
Note: If a comment exists, a # is placed after the type of the part in the Vertical Parts list.
Set button

The Set button must be clicked for the information for this Part to be used.

Same As button

After clicking the Same As button, an existing VIP can be selected from the screen and its information piped into the appropriate fields in the panel.
**VIP: Asymmetric**

A vertical intersection point (VIP) is created with an asymmetric parabola on the VIP. The two parabolic lengths are given for the asymmetric parabola.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td>if ticked, then the Part is used in the vertical geometry.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If not ticked, the Part is not used in the vertical geometry.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td>if ticked, then the Part is drawn in the vertical geometry.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td>if not blank, then the Part is given this name.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If blank then the Part has no name.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: If the part has a name, then a ! is placed after the type of the part in the Vertical Parts list.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of vertical parts</td>
<td></td>
</tr>
<tr>
<td>the type of this part. To change the Part type, choose another type from the pop-up list.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Geometry tab**

the geometrical information defining the Part

**Chainage, Height**

the (chainage, height) coordinates for the VIP can be typed in, or selected using the C, Z or CZ icons.

**Approaching length**

measure box available measures

the parabolic length of the first parabola of the asymmetric parabola. This parabola is tangential to the Previous Part.

**Departing length**

measure box available measures

the parabolic length of the second parabola of the asymmetric parabola. This parabola is tangential to
the Next Part.

**Comment tab**
the text typed into the text box is stored as a comment for the Part.

*Note:* If a comment exists, a # is placed after the type of the part in the Vertical Parts list.

**Set button**
the Set button must be clicked for the information for this Part to be used.

**Same As button**
21.9.5.2 Vertical Lines

See Fixed Line: Two Points
See Fixed Line: Known Point and Grade
See Floating Line: Known Point
See Floating Line: Known Grade
See Floating Line: Known End and Nominal Length
See Free line - No Constraints

Fixed Line: Two Points
A Fixed Line is created by specifying two known points as the start and end points of the line.

![Diagram of Fixed Line: Two Points](image)

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, then the Part is used in the vertical geometry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked, the Part is not used in the vertical geometry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, then the Part is drawn in the vertical geometry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if not blank, then the Part is given this name.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If blank then the Part has no name.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: If the part has a name, then a ! is placed after the type of the part in the Vertical Parts list.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of vertical parts</td>
<td>the type of this part. To change the Part type, choose another type from the pop-up list.</td>
</tr>
</tbody>
</table>
Geometry tab
the geometrical information defining the Part

Start Chainage, Height
the coordinates in (chainage,height) of the start of the line can be typed in, or selected using the C, Z or CZ icons.

End Chainage, Height
the coordinates in (chainage,height) of the end of the line can be typed in, or selected using the C, Z or CZ icons.

Comment tab
the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Vertical Parts list.

Set button
the Set button must be clicked for the information for this Part to be used.

Same As button
Fixed Line: Known Point and Grade

A Fixed Line is created by specifying a known point and a grade for the line.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field/Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If ticked, then the Part is used in the vertical geometry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If not ticked, the Part is not used in the vertical geometry.</td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If ticked, then the Part is drawn in the vertical geometry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If not blank, then the Part is given this name.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If blank then the Part has no name.</td>
</tr>
<tr>
<td>Note: If the part has a name, then a ! is placed after the type of the part in the Vertical Parts list.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of vertical parts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The type of this part. To change the Part type, choose another type from the pop-up list.</td>
</tr>
</tbody>
</table>

Geometry tab

The geometrical information defining the Part

Point Chainage, Height

the coordinates in (chainage, height) of the point that the line goes through can be typed in, or selected using the C, Z or CZ icons.

Grade (%) measure box available measures

the grade (in percent) of the line through the point
Relative start measure box available measures
the chainage distance, relative to the given point, to start the line at. A negative value is to the left of the point, and a positive value is to the right of the point.

Relative end measure box available measures
the chainage distance, relative to the given point, to end the line at. A negative value is to the left of the point, and a positive value is to the right of the point.

Comment tab
the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Vertical Parts list.

Set button
the Set button must be clicked for the information for this Part to be used.

Same As button

---

Diagram:
- Negative Relative Start
- Positive Relative End
- Point the line goes through
- Previous Part
Floating Line: Known Point

The Floating Line line passes through a known point but the grade is unknown.

Example

Floating Line attached to the previous parabola

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td>if ticked, then the Part is used in the vertical geometry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If not ticked, the Part is not used in the vertical geometry.</td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td>if ticked, then the Part is drawn in the vertical geometry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td>if not blank, then the Part is given this name.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If blank then the Part has no name.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note: If the part has a name, then a ! is placed after the type of the part in the Vertical Parts list.</td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of vertical parts</td>
<td>the type of this part. To change the Part type, choose another type from the pop-up list.</td>
</tr>
</tbody>
</table>

Geometry tab

the geometrical information defining the Part

Chainage, Height

the (chainage,height) coordinates that the line passes through can be typed in, or selected using the C, Z or CZ icons.

Attach to choice box previous part previous part, next part

the Part that the Floating Line is attached to and tried to make tangential to
Comment tab
the text typed into the text box is stored as a comment for the Part.

*Note:* If a comment exists, a # is placed after the type of the part in the Vertical Parts list.

Set button
the Set button must be clicked for the information for this Part to be used.

Same As button
Floating Line: Known Grade

The Floating Line line has a known grade but no point on the line is known.

Example

Floating Line attached to the previous parabola

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, then the Part is used in the vertical geometry.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If not ticked, the Part is not used in the vertical geometry.</td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, then the Part is drawn in the vertical geometry.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if not blank, then the Part is given this name.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If blank then the Part has no name.</td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td></td>
<td>If the part has a name, then a ! is placed after the type of the part in the Vertical Parts list.</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of vertical parts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the type of this part. To change the Part type, choose another type from the pop-up list.</td>
<td></td>
</tr>
</tbody>
</table>

Geometry tab

the geometrical information defining the Part

Grade (%)	measure box	available measures
		the grade (in percent) of the line through the point
Length	measure box	available measures
		nominal length of the line
Attach to	choice box	previous part, next part
		the Part that the Floating Line is attached to and tried to make tangential to
Comment tab
the text typed into the text box is stored as a comment for the Part.

*Note:* If a comment exists, a # is placed after the type of the part in the Vertical Parts list.

Set button
the Set button must be clicked for the information for this Part to be used.

Same As button
Floating Line: Known End and Nominal Length
The *Floating Line* has a known nominal length and is attached tangentially to the end of previous part or the beginning of the next part.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if ticked, then the Part is used in the vertical geometry.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If not ticked, the Part is not used in the vertical geometry.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if ticked, then the Part is drawn in the vertical geometry.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if not blank, then the Part is given this name.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If blank then the Part has no name.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Note: If the part has a name, then a ! is placed after the type of the part in the Vertical Parts list.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of vertical parts</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>the type of this part. To change the Part type, choose another type from the pop-up list.</em></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Geometry tab**
the geometrical information defining the Part

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>measure box</td>
<td>available measures</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>the nominal length of the Floating Line. Must be non zero.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change of grade</td>
<td>measure box</td>
<td>available measures</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>LIG?? if non zero then the grade of the line is increased by Change of grade (units of percent grade). It is no longer tangential to the Attach to part.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attach to</td>
<td>choice box</td>
<td>previous part, next part</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>the Part that the Floating Line is attached to, and made tangential to. If there is a Change of grade, then after the line is calculated to be tangential, the Change of grade is added to the grade of the line.</em></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comment tab

the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Vertical Parts list.

Set button

the Set button must be clicked for the information for this Part to be used.

Same As button

Two Examples of Floating Lines with Change of Grade = 0
**Free line - No Constraints**
The *Free Line* is not constrained. It is determined by having to be tangential to the Parts at either end of the Line.

**Example**
Typical application is a Free Line tangent between two solved parts

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td>If ticked, then the Part is used in the vertical geometry. If not ticked, the Part is not used in the vertical geometry.</td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td>If ticked, then the Part is drawn in the vertical geometry. If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td>If not blank, then the Part is given this name. If blank then the Part has no name.</td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of vertical parts</td>
<td>the type of this part. To change the Part type, choose another type from the pop-up list.</td>
</tr>
</tbody>
</table>

**Comment tab**
The text typed into the text box is stored as a comment for the Part.
Note: If a comment exists, a # is placed after the type of the part in the Vertical Parts list.

Set button

the Set button must be clicked for the information for this Part to be used.

Same As button
21.9.5.3 Vertical Parabolas

See Fixed Parabola - Parabola Passes through Three Known Points
See Fixed Parabola: Known Apex and Effective Radius
See Floating Parabola: Through Two Points
See Floating Parabola: Known Apex
See Floating Parabola: Known Point and Effective Radius
See Floating Parabola: Known Point and Grade at that Point
See Floating Parabola: Known Point and K Value
See Floating Parabola: Known Length and Grade at End
See Floating Parabola: Known Radius and Nominal Length
See Floating Parabola: known Point and Known End
See Free Parabola: Known Point
See Free Parabola: Known Length
See Free Parabola: Know Effective Radius
See Free Parabola: Known Parabolic Length/100
See Free Parabola: Known K Value
See Free Parabola: Fit with Maximum Length
See Free Asymmetric Parabola: Two Known Lengths
See Free Compound Parabola: Two Parabolas with Optional Total Parabolic Length

Fixed Parabola - Parabola Passes through Three Known Points
The Fixed Parabola is fully defined by going through three known points.

The fields and buttons used in the panel have the following functions.
<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>if</strong> ticked, then the Part is used in the vertical geometry.**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>If not ticked, the Part is not used in the vertical geometry.</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>if</strong> ticked, then the Part is drawn in the vertical geometry.**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>if</strong> not blank, then the Part is given this name.**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>If blank then the Part has no name.</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>If the part has a name, then a ! is placed after the type of the part in the Vertical Parts list.</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of vertical parts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the type of this Part. To change the Part type, choose another type from the pop-up list.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Geometry tab**
the geometrical information defining the Part

**Point 1 Chainage, Height**
the (chainage,height) coordinates for the first point the parabola goes through can be typed in, or selected using the C, Z or CZ icons.

**Point 2 Chainage, Height**
the (chainage,height) coordinates for the second point the parabola goes through can be typed in, or selected using the C, Z or CZ icons.

**Point 3 Chainage, Height**
the (chainage,height) coordinates for the third point the parabola goes through can be typed in, or selected using the C, Z or CZ icons.

**Comment tab**
the text typed into the text box is stored as a comment for the Part.

**Note:** If a comment exists, a # is placed after the type of the part in the Vertical Parts list.

**Set button**
the Set button must be clicked for the information for this Part to be used.

**Same As button**
Fixed Parabola: Known Apex and Effective Radius
The Fixed Parabola is fully defined by the known apex and effective radius of the parabola.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if ticked, then the Part is used in the vertical geometry.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If not ticked, the Part is not used in the vertical geometry.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if ticked, then the Part is drawn in the vertical geometry.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if not blank, then the Part is given this name.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If blank then the Part has no name.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If the part has a name, then a ! is placed after the type of the part in the Vertical Parts list.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of vertical parts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the type of this part. To change the Part type, choose another type from the pop-up list.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geometry tab
the geometrical information defining the Part

Apex Chainage, Height
the (chainage,height) coordinates for the apex of the parabola can be typed in, or selected using the C, Z or CZ icons.

Radius
available measures
the effective radius of the parabola (this is 100 times the K value). Positive radius for a sag point (minimum) and a Negative radius for a crest point (maximum).
Relative start measure box available measures
the chainage distance, relative to the given apex, to start the parabola at. A negative value is to the left of the apex, and a positive value is to the right of the apex.

Relative end measure box available measures	he chainage distance, relative to the given apex, to end the parabola at. A negative value is to the left of the apex, and a positive value is to the right of the apex.

Comment tab
the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Vertical Parts list.

Set button
the Set button must be clicked for the information for this Part to be used.

Same As button

Fixed Apex Parabola with Radius -500 (crest) and Relative start of -100 and Relative end of 50
Floating Parabola: Through Two Points
This *Floating Parabola* passes through two known points. It is fully determined by being tangential to either the previous part or the following part.

It may not always be possible for the Floating Parabola to actually solve.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>if ticked, then the Part is used in the vertical geometry. If not ticked, the Part is not used in the vertical geometry.</td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>if ticked, then the Part is drawn in the vertical geometry. If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>if not blank, then the Part is given this name. If blank then the Part has no name.</td>
</tr>
<tr>
<td>Note:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If the part has a name, then a ! is placed after the type of the part in the Vertical Parts list.</td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of vertical parts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>the type of this part. To change the Part type, choose another type from the pop-up list.</td>
</tr>
</tbody>
</table>

Geometry tab
the geometrical information defining the Part

Point 1 Chainage, Height
the (chainage, height) coordinates for the first point the parabola goes through can be typed in, or selected using the C, Z or CZ icons.
Point 2 Chainage, Height

the (chainage,height) coordinates for the second point the parabola goes through can be typed in, or
selected using the C, Z or CZ icons.

Attach to choice box previous part, next part

the Part that the Floating Parabola is attached to, and made tangential to.

Comment tab

the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a \# is placed after the type of the part in the Vertical Parts list.

Set button

the Set button must be clicked for the information for this Part to be used.

Same As button
Floating Parabola: Known Apex
This Floating Parabola has a known apex. It is fully determined by being tangential to either the previous part or the following part.

It may not always be possible for the Floating Parabola to solve.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>Use tick box</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, then the Part is used in the vertical geometry.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked, the Part is not used in the vertical geometry.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>Visible tick box</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, then the Part is drawn in the vertical geometry.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Name text box</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if not blank, then the Part is given this name.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If blank then the Part has no name.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometry</td>
<td>Note: If the part has a name, then a ! is placed after the type of the part in the Vertical Parts list.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Type choice box</td>
<td>choice box</td>
<td>types of vertical parts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the type of this part. To change the Part type, choose another type from the pop-up list.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geometry tab
the geometrical information defining the Part

Apex Chainage, Height
the (chainage, height) coordinates for the apex of the parabola can be typed in, or selected using the C, Z or CZ icons.

Attach to
choice box previous part previous part, next part
the Part that the Floating Parabola is attached to, and made tangential to.

Comment tab
the text typed into the text box is stored as a comment for the Part.
**Note:** If a comment exists, a # is placed after the type of the part in the Vertical Parts list.

- Set button
  
  The Set button must be clicked for the information for this Part to be used.

- Same As button
Floating Parabola: Known Point and Effective Radius

This Floating Parabola goes through a known point and has a given effective radius. It is fully determined by being tangential to either the previous part or the following part.

It may not always be possible for the Floating Parabola to solve.

The fields and buttons used in the panel have the following functions.

**Field Description**	**Type**	**Defaults**	**Pop-Up**
Use | tick box | ticked | 
*if ticked, then the Part is used in the vertical geometry.*

*If not ticked, the Part is not used in the vertical geometry.*

Visible | tick box | ticked | 
*if ticked, then the Part is drawn in the vertical geometry.*

*If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.*

Name | text box | blank | 
*if not blank, then the Part is given this name.*

*If blank then the Part has no name.*

**Note:** *If the part has a name, then a ! is placed after the type of the part in the Vertical Parts list.*

Type | choice box | types of vertical parts | 
*the type of this part. To change the Part type, choose another type from the pop-up list.*

**Geometry tab**

*the geometrical information defining the Part*

Chainage, Height | 
*the (chainage, height) coordinates for the point on the parabola can be typed in, or selected using the C, Z or CZ icons.*

Radius | measure box | available measures | 
*the effective radius of the parabola (this is 100 times the K value).*
Attach to choice box previous part previous part, next part

the Part that the Floating Parabola is attached to, and made tangential to.

**Comment tab**

the text typed into the text box is stored as a comment for the Part.

**Note:** If a comment exists, a # is placed after the type of the part in the Vertical Parts list.

**Set button**

the Set button must be clicked for the information for this Part to be used.

**Same As button**
Floating Parabola: Known Point and Grade at that Point

This Floating Parabola goes through a known point and has a given at the known point. It is fully determined by being tangential to either the previous part or the following part.

It may not always be possible for the Floating Parabola to solve.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, then the Part is used in the vertical geometry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked, the Part is not used in the vertical geometry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, then the Part is drawn in the vertical geometry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if not blank, then the Part is given this name.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If blank then the Part has no name.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: If the part has a name, then a ! is placed after the type of the part in the Vertical Parts list.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of vertical parts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the type of this part. To change the Part type, choose another type from the pop-up list.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geometry tab

the geometrical information defining the Part

Chainage, Height

the (chainage,height) coordinates for the point on the parabola can be typed in, or selected using the C, Z or CZ icons.

Grade

the grade of the parabola in units of percent grade
Attach to choice box previous part previous part, next part
the Part that the Floating Parabola is attached to, and made tangential to.

Comment tab
the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Vertical Parts list.

Set button
the Set button must be clicked for the information for this Part to be used.

Same As button
Floating Parabola: Known Point and K Value
This Floating Parabola goes through a known point and has a given K value. It is fully determined by being tangential to either the previous part or the following part.

It may not always be possible for the Floating Parabola to solve.

The fields and buttons used in the panel have the following functions.

Field Description	Type	Defaults	Pop-Up
Use | tick box | ticked | 
If ticked, then the Part is used in the vertical geometry. 
If not ticked, the Part is not used in the vertical geometry.
Visible | tick box | ticked | 
If ticked, then the Part is drawn in the vertical geometry. 
If not ticked, the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.
Name | text box | blank | 
If not blank, then the Part is given this name. 
If blank then the Part has no name.
Type | choice box | types of vertical parts | 
The type of this part. To change the Part type, choose another type from the pop-up list.

Geometry tab
the geometrical information defining the Part

Chainage, Height
the (chainage,height) coordinates for the point on the parabola can be typed in, or selected using the C, Z or CZ icons.

K value | measure box | available measures |
The K value of the parabola
Attach to previous part, next part
the Part that the Floating Parabola is attached to, and made tangential to.

Comment tab
the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Vertical Parts list.

Set button
the Set button must be clicked for the information for this Part to be used.

Same As button
after clicking the Same As button, an existing VIP can be selected from the screen and its information piped into the appropriate fields in the panel.
Floating Parabola: Known Length and Grade at End
This Floating Parabola has a known length and a given grade at the opposite end of the parabola to the Attached To part. It is fully determined by being tangential to either the previous part or the following part.

It may not always be possible for the Floating Parabola to solve.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of vertical parts</td>
<td></td>
</tr>
</tbody>
</table>

Geometry tab
the geometrical information defining the Part

Length measure box available measures
the length of the Floating parabola. Must be non zero.

Grade measure box available measures
the parabola has a given length Length and has the grade Grade at the opposite end from the Attach to part. The units for Grade is percent grade.

Attach to choice box previous part, next part
the Part that the Floating Parabola is attached to, and made tangential to.
Comment tab

the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Vertical Parts list.

Set button

the Set button must be clicked for the information for this Part to be used.

Same As button

Floating Parabola with Length = 50 and grade at the opposite the
Attach to Part of 3 percent

Grade at end is 3 percent
Floating Parabola: Known Radius and Nominal Length
This Floating Parabola has a known effective radius (100 times K value). It is fully determined by being tangential to either the previous part or the following part. It may not always be possible for the Floating Parabola to solve.

The fields and buttons used in the panel have the following functions.

Field Description	Type	Defaults	Pop-Up
Use | tick box | ticked
if ticked, then the Part is used in the vertical geometry.
If not ticked, the Part is not used in the vertical geometry.
Visible | tick box | ticked
if ticked, then the Part is drawn in the vertical geometry.
If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.
Name | text box | blank
if not blank, then the Part is given this name.
If blank then the Part has no name.
Note: If the part has a name, then a ! is placed after the type of the part in the Vertical Parts list.
Type | choice box | types of vertical parts
the type of this part. To change the Part type, choose another type from the pop-up list.

Geometry tab
the geometrical information defining the Part
Length | measure box | available measures
the nominal length of the Floating Parabola. Must be non zero.
Radius | measure box | available measures
the effective radius of the parabola (this is 100 times the K value).
Attach to | choice box | previous part, next part
the Part that the Floating Parabola is attached to, and made tangential to

Comment tab
the text typed into the text box is stored as a comment for the Part.
Note: If a comment exists, a # is placed after the type of the part in the Vertical Parts list.

Set button

the Set button must be clicked for the information for this Part to be used.

Same As button
**Floating Parabola: known Point and Known End**
This *Floating Parabola* goes through a known point and it attached to another known point from either the previous part or the following part. Being tangential to the Part fully determines the Floating Parabola.

It may not always be possible for the Floating Parabola to solve.

The fields and buttons used in the panel have the following functions.

### Field Description	Type	Defaults	Pop-Up
Use | tick box | ticked |  
If ticked, then the Part is used in the vertical geometry.  
If not ticked, the Part is not used in the vertical geometry.
Visible | tick box | ticked |  
If ticked, then the Part is drawn in the vertical geometry.  
If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have **Visible** not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.
Name | text box | blank |  
If not blank, then the Part is given this name.  
If blank then the Part has no name.  
**Note:** If the part has a name, then a ! is placed after the type of the part in the Vertical Parts list.

### Geometry tab
The geometrical information defining the Part

Through point Chainage, Height  
the (chainage,height) coordinates for the point on the parabola can be typed in, or selected using the C, Z or CZ icons.

Attach to | choice box | previous part | previous part, next part  
the Part that the Floating Parabola is attached to, and made tangential to
Comment tab
the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Vertical Parts list.

Set button
the Set button must be clicked for the information for this Part to be used.

Same As button
Free Parabola: Known Point
This Free Parabola passes through a known point. Being tangential to the parts on either side fully determines the parabola.

It may not always be possible for the Free Parabola to solve.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, then the Part is used in the vertical geometry.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If not ticked, the Part is not used in the vertical geometry.</td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, then the Part is drawn in the vertical geometry.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if not blank, then the Part is given this name.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If blank then the Part has no name.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: If the part has a name, then a ! is placed after the type of the part in the Vertical Parts list.</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of vertical parts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the type of this part. To change the Part type, choose another type from the pop-up list.</td>
<td></td>
</tr>
</tbody>
</table>

Geometry tab
the geometrical information defining the Part

Chainage, Height
the (chainage,height) coordinates for the point on the parabola can be typed in, or selected using the C, Z or CZ icons.

Comment tab
the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Vertical Parts list.
Set button

the Set button must be clicked for the information for this Part to be used.

Same As button
Free Parabola: Known Length
This Free Parabola has a known length. Being tangential to the parts on either side fully determines the parabola.

It is not always possible for the Free Parabola to solve.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>Use tick box</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, then the Part is used in the vertical geometry.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked, the Part is not used in the vertical geometry.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>Visible tick box</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, then the Part is drawn in the vertical geometry.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Name text box</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if not blank, then the Part is given this name.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If blank then the Part has no name.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> If the part has a name, then a ! is placed after the type of the part in the Vertical Parts list.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Type choice box</td>
<td>choice box</td>
<td>types of vertical parts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the type of this part. To change the Part type, choose another type from the pop-up list.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometry tab</td>
<td>Geometry tab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>Length measure box</td>
<td>measure box</td>
<td>available measures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the geometrical information defining the Part</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the length of the Free Parabola. Must be non zero.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment tab</td>
<td>Comment tab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the text typed into the text box is stored as a comment for the Part.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> If a comment exists, a # is placed after the type of the part in the Vertical Parts list.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>Set button</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the Set button must be clicked for the information for this Part to be used.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Same As button
21.9.5.4 Vertical Parabolas

**Free Parabola: Know Effective Radius**

This Free Parabola has a known effective radius. Being tangential to the parts on either side fully determines the parabola.

It is not always possible for the Free Parabola to solve.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if ticked, then the Part is used in the vertical geometry.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If not ticked, the Part is not used in the vertical geometry.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if ticked, then the Part is drawn in the vertical geometry.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if not blank, then the Part is given this name.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If blank then the Part has no name.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> If the part has a name, then a ! is placed after the type of the part in the Vertical Parts list.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of vertical parts</td>
<td></td>
</tr>
<tr>
<td>Geometry tab</td>
<td>the geometrical information defining the Part</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius</td>
<td>measure box</td>
<td>available measures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the effective radius of the parabola (this is 100 times the K value).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment tab</td>
<td>the text typed into the text box is stored as a comment for the Part.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
|                   | **Note:** If a comment exists, a # is placed after the type of the part in the Vertical Parts list.
Set button

the Set button must be clicked for the information for this Part to be used.

Same As button
Free Parabola: Known Parabolic Length/100
This Free Parabola has a known parabolic length divided by 100. Being tangential to the parts on either side fully determines the parabola.

It is not always possible for the Free Parabola to solve.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, then the Part is used in the vertical geometry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked, the Part is not used in the vertical geometry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, then the Part is drawn in the vertical geometry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if not blank, then the Part is given this name.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If blank then the Part has no name.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If the part has a name, then a ! is placed after the type of the part in the Vertical Parts list.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of vertical parts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the type of this Part. To change the Part type, choose another type from the pop-up list.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometry tab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length/100 Value</td>
<td>measure box</td>
<td>available measures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the parabolic length divided by 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment tab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the text typed into the text box is stored as a comment for the Part.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If a comment exists, a # is placed after the type of the part in the Vertical Parts list.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the Set button must be clicked for the information for this Part to be used.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Same As button
Free Parabola: Known K Value

This Free Parabola has a known K value. Being tangential to the parts on either side fully determines the parabola.

It is not always possible for the Free Parabola to solve.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>Use tick box</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, then the Part is used in the vertical geometry.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked, the Part is not used in the vertical geometry.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>Visible tick box</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, then the Part is drawn in the vertical geometry.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Name text box</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if not blank, then the Part is given this name.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If blank then the Part has no name.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note: If the part has a name, then a ! is placed after the type of the part in the Vertical Parts list.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Type choice box</td>
<td>choice box</td>
<td>types of vertical parts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the type of this part. To change the Part type, choose another type from the pop-up list.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometry tab</td>
<td>Geometry tab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the geometrical information defining the Part</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-Value</td>
<td>K-Value measure box</td>
<td>measure box</td>
<td>available measures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the K value of the parabola</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment tab</td>
<td>Comment tab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the text typed into the text box is stored as a comment for the Part.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note: If a comment exists, a # is placed after the type of the part in the Vertical Parts list.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>Set button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the Set button must be clicked for the information for this Part to be used.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Same As  button
Free Parabola: Fit with Maximum Length
This Free Parabola has a maximum parabolic length which will be determined by the parts on either side. Also being tangential to the parts on either side fully determines the parabola.
It is not always possible for the Free Parabola to solve.

Example:
The Free Transition is between the line of the left and the parabola on the right

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
</tbody>
</table>
| If ticked, then the Part is used in the vertical geometry.  
If not ticked, the Part is not used in the vertical geometry. |
| Visible           | tick box   | ticked   |        |
| if ticked, then the Part is drawn in the vertical geometry.  
If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed. |
| Name              | text box   | blank    |        |
| If not blank, then the Part is given this name.  
If blank then the Part has no name. |
| Note: If the part has a name, then a ! is placed after the type of the part in the Vertical Parts list. |
| Type              | choice box | types of vertical parts |        |
| the type of this part. To change the Part type, choose another type from the pop-up list. |

**Geometry tab**
the geometrical information defining the Part

**Comment tab**
the text typed into the text box is stored as a comment for the Part.

**Note:** If a comment exists, a # is placed after the type of the part in the Vertical Parts list.
Set button

the Set button must be clicked for the information for this Part to be used.

Same As button
Free Asymmetric Parabola: Two Known Lengths
This Free Parabola has asymmetric parabolic with known leading and trailing lengths. Being tangential to the parts on either side fully determines the parabola.

It is not always possible for the Free Parabola to solve.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If ticked, then the Part is used in the vertical geometry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If not ticked, the Part is not used in the vertical geometry.</td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If ticked, then the Part is drawn in the vertical geometry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If not blank, then the Part is given this name.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If blank then the Part has no name.</td>
</tr>
</tbody>
</table>

**Note:** If the part has a name, then a ! is placed after the type of the part in the Vertical Parts list.

Type choice box types of vertical parts
the type of this part. To change the Part type, choose another type from the pop-up list.

**Geometry tab**
the geometrical information defining the Part

Leading length measure box available measures
the length of the leading parabola of the asymmetric parabola

Trailing length measure box available measures
the length of the trailing parabola of the asymmetric parabola

**Comment tab**
the text typed into the text box is stored as a comment for the Part.

**Note:** If a comment exists, a # is placed after the type of the part in the Vertical Parts list.
Set button

the **Set** button must be clicked for the information for this Part to be used.

Same As button

---

Floating Asymmetric Parabola with Leading Length = 100 and Trailing Length = 50
Free Compound Parabola: Two Parabolas with Optional Total Parabolic Length
This Free Parabola has two parabolas with a given total length and a ratio of the division between the two parabolas. There is an option total length of the two parabolas.

With a given Total Length, a straight between the two parabolas may need to be automatically inserted to get a solution.

Being tangential to the parts on either side fully determines the two parabolas and any necessary straight. The grades on the previous and next parts also determine if the parabolas are crest or sag parabolas.

It is not always possible for the Free Parabola to solve.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>if ticked, then the Part is used in the vertical geometry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If not ticked, the Part is not used in the vertical geometry.</td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>if ticked, then the Part is drawn in the vertical geometry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>if not blank, then the Part is given this name.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If blank then the Part has no name.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note: If the part has a name, then a ! is placed after the type of the part in the Vertical Parts list.</td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of vertical parts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>the type of this part. To change the Part type, choose another type from the pop-up list.</td>
</tr>
</tbody>
</table>

Geometry tab
the geometrical information defining the Part

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length on leading curve (%)</td>
<td>measure box</td>
<td>available measures</td>
<td>the percentage of the total parabolic length going to the first parabola. Must be non zero.</td>
</tr>
</tbody>
</table>
Total curves length measure box available measures
if blank, the two parabolic lengths are calculated in the given ratio to fit.

If no zero, this value and the Length on leading curve (%) fully determines the lengths of the two parabolic curves but a straight between the two parabolas may need to be automatically inserted to get a solution.

Comment tab
the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Vertical Parts list.

Set button
the Set button must be clicked for the information for this Part to be used.

Same As button
after clicking the Same As button, an existing VIP can be selected from the screen and its information piped into the appropriate fields in the panel.
21.9.5.5 Vertical Arcs

See **Fixed Arc- Known Centre, Start and End Points**

See **Floating Arc: Known Point and Radius**

See **Floating Arc: Known Point and Grade at Point**

See **Floating Arc: Through Two Known Points**

See **Free Arc: Known Radius**

See **Free Arc: Known Point on the Arc**

See **Free Arc: Known Length of Arc**

**Fixed Arc- Known Centre, Start and End Points**

The *Fixed Arc* is fully defined by a **known arc centre**, a **known radius** and **known start** and **end** points.

**Example**

Arc with radius of 100 and given centre, start and end points.

Vertical Exaggeration = 1

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>if ticked, then the Part is used in the vertical geometry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If not ticked, the Part is not used in the vertical geometry.</td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>if ticked, then the Part is drawn in the vertical geometry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have <strong>Visible</strong> not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>if not blank, then the Part is given this name.</td>
</tr>
</tbody>
</table>
If blank then the Part has no name.

**Note:** If the part has a name, then a ! is placed after the type of the part in the Vertical Parts list.

**Type** choice box types of vertical parts
the type of this part. To change the Part type, choose another type from the pop-up list.

**Geometry tab**
the geometrical information defining the Part

**Centre Chainage, Height**
the (chainage,height) coordinates of the centre of the arc can be typed in, or selected using the C, Z or CZ icons

**Radius** radius box Measure Radius
radius of the arc. Must be non zero.

**Start Chainage, Height**
the (chainage,height) coordinates of the start of the arc can be typed in, or selected using the C, Z or CZ icons

**End Chainage, Height**
the (chainage,height) coordinates of the end of the arc can be typed in, or selected using the C, Z or CZ icons

**Comment tab**
the text typed into the text box is stored as a comment for the Part.

**Note:** If a comment exists, a # is placed after the type of the part in the Vertical Parts list.

**Set** button
the Set button must be clicked for the information for this Part to be used.

**Same As** button
Floating Arc: Known Point and Radius
The Floating Arc passes through a known point and has a known radius. Being tangential to a previous or next part is needed to fully determine the Floating Arc.

It is not always be possible for the Floating Arc to solve.

For example in the case where it follows a fixed line, if the perpendicular distance between the known point and the line is greater than the given radius, then there is no solution.

Example
Floating Arc going through a known point and with radius of 100.
Vertical Exaggeration = 1

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, then the Part is used in the vertical geometry. If not ticked, the Part is not used in the vertical geometry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, then the Part is drawn in the vertical geometry. If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if not blank, then the Part is given this name. If blank then the Part has no name.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: If the part has a name, then a ! is placed after the type of the part in the Vertical Parts list.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of vertical parts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the type of this part. To change the Part type, choose another type from the pop-up list.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geometry tab
the geometrical information defining the Part

Chainage, Height
the (chainage, height) coordinates of the point the arc goes through can be typed in, or selected using the C, Z or CZ icons

Radius
radius box Measure Radius
radius of the arc. Must be non zero.
Attach to choice box previous part previous part, next part

the Part that the Floating Arc is attached to, and made tangential to.

Comment tab
the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Vertical Parts list.

Set button
the Set button must be clicked for the information for this Part to be used.

Same As button
Floating Arc: Known Point and Grade at Point

The **Floating Arc** passes through a known point and has a known grade for the tangent to the arc at the known point.

It may not always be possible for the Floating Arc to actually solve.

For example in the case where it follows a fixed line, if the perpendicular distance between the known point and the line is greater than the given radius, then there is no solution.

---

**Example**

*Floating Arc* going through a known point with a grade at that point of -50 per cent.

Vertical Exaggeration = 1

---

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of vertical parts</td>
<td></td>
</tr>
</tbody>
</table>

**Geometry tab**

the geometrical information defining the Part

*Point Chainage, Height*

the (chainage, height) coordinates of the point the arc goes through can be typed in, or selected using the C, Z or CZ icons
Grade measure box available measures
the grade (in percent grade) of the tangent at the given point

Attach to choice box previous part previous part, next part
the Part that the Floating Arc is attached to, and made tangential to.

Comment tab
the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Vertical Parts list.

Set button
the Set button must be clicked for the information for this Part to be used.

Same As button
Floating Arc: Through Two Known Points

The Floating Arc passes through two known points.

It is not always possible for the Floating Arc to solve.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If ticked, then the Part is used in the vertical geometry.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If not ticked, the Part is not used in the vertical geometry.</td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If ticked, then the Part is drawn in the vertical geometry.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have Visible not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If not blank, then the Part is given this name.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If blank then the Part has no name.</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of vertical parts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the type of this part. To change the Part type, choose another type from the pop-up list.</td>
<td></td>
</tr>
</tbody>
</table>

Geometry tab

the geometrical information defining the Part

Start Chainage, Height

the (chainage, height) coordinates for the first point the parabola goes through can be typed in, or selected using the C, Z or CZ icons.
End Chainage, Height

the (chainage, height) coordinates for the second point the parabola goes through can be typed in, or
selected using the C, Z or CZ icons.

Attach to

previous part

previous part, next part

the Part that the Floating Arc is attached to, and made tangential to.

Comment tab

the text typed into the text box is stored as a comment for the Part.

Note: If a comment exists, a # is placed after the type of the part in the Vertical Parts list.

Set

button

the Set button must be clicked for the information for this Part to be used.

Same As

button
**Free Arc: Known Radius**
The Free Arc has a **known radius**. The Free arc is fully determined by being tangential to the parts on either side.

It is not always possible for the Free Arc to solve.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If ticked, then the Part is used in the vertical geometry.</td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If ticked, then the Part is drawn in the vertical geometry.</td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If not blank, then the Part is given this name.</td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If blank then the Part has no name.</td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td>types of vertical parts</td>
<td>the type of this Part. To change the Part type, choose another type from the pop-up list.</td>
</tr>
</tbody>
</table>

**Geometry tab**
the geometrical information defining the Part
Radius
radius box
the radius of the arc

**Comment tab**
the text typed into the text box is stored as a comment for the Part.

*Note:* If a comment exists, a # is placed after the type of the part in the Vertical Parts list.

Set
button
the Set button must be clicked for the information for this Part to be used.

Same As
button
**Free Arc: Known Point on the Arc**

The *Free Arc* passes through a **known point**. The Free arc is fully determined by being tangential to the parts on either side.

It is not always possible for the *Free Arc* to solve.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td></td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, then the Part is used in the vertical geometry.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td>tick box</td>
<td></td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, then the Part is drawn in the vertical geometry.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td></td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if not blank, then the Part is given this name.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If blank then the Part has no name.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td>If the part has a name, then a ! is placed after the type of the part in the Vertical Parts list.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>choice box</td>
<td></td>
<td>types of vertical parts</td>
<td></td>
</tr>
<tr>
<td>Geometry tab</td>
<td>the geometrical information defining the Part</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point Chainage, Height</td>
<td>the (chainage,height) coordinates of the point that the arc goes through can be typed in, or selected using the C, Z or CZ icons.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment tab</td>
<td>the text typed into the text box is stored as a comment for the Part.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note: If a comment exists, a # is placed after the type of the part in the Vertical Parts list.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set button</td>
<td>the Set button must be clicked for the information for this Part to be used.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Same As button
**Free Arc: Known Length of Arc**

The *Free Arc* has a **known length**. The Free arc is fully determined by being tangential to the parts on either side.

It is not always possible for the *Free Arc* to solve.

---

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
</tbody>
</table>
| **If ticked, then the Part is used in the vertical geometry.**

If not ticked, the Part is not used in the vertical geometry.

| Visible           | tick box   | ticked   |        |
| **If ticked, then the Part is drawn in the vertical geometry.**

If not ticked, then the Part is not drawn whenever all the Parts before it, or all the Parts after it, also have **Visible** not ticked. The effect may not be apparent until leaving the Editor and all the construction work is removed.

| Name              | text box   | blank    |        |
| **If not blank, then the Part is given this name.**

If blank then the Part has no name.

*Note:* If the part has a name, then a `!` is placed after the type of the part in the Vertical Parts list.

| Type              | choice box | types of vertical parts |
| **the type of this part. To change the Part type, choose another type from the pop-up list.**

---

**Geometry tab**

*the geometrical information defining the Part*

| Length            | length box | Point to point, String to point |
| **the length of the Free arc. Must be non zero.**

---

**Comment tab**

*the text typed into the text box is stored as a comment for the Part.*

*Note:* If a comment exists, a `#` is placed after the type of the part in the Vertical Parts list.

**Set** button

*the Set button must be clicked for the information for this Part to be used.*

**Same As** button
21.9.5.6 Vertical Computators

Not yet documented.
21.10 Text Format of Files

Go to

21.10.1 Text Format of the MTF File
21.10.2 Text Format of the Boxing File
21.10.1 Text Format of the MTF File

In the text version of the mtf file, most of (a) to (h) begin with a key word, following by an equals sign (=) and then special commands enclosed in { }.

\[
\text{key_word} = \{ \text{commands} \}
\]

The key words for each case above are

(a) left_side, right_side
(b) specials
(c) hinge_modifier
(d) left_side_modifier, right_side_modifier
(e) stripping
(f) boxing_file, left_boxing, right_boxing, left_boxing_2, right_boxing_2 ... left_boxing_8, right_boxing_8
(g) auto_super_tables, left_auto_super, left_auto_width, right_auto_super, right_auto_width
(h) loops
(i) section_width
(j) string_modifiers

If any of the key words exist, then they must be in the following order in the mtf file:

\[
\begin{align*}
\text{left_side} &= \{ \ldots \} \\
\text{right_side} &= \{ \ldots \} \\
\text{specials} &= \{ \ldots \} \\
\text{hinge Modifier} &= \{ \ldots \} \\
\text{left_side_modifier} &= \{ \ldots \} \\
\text{right_side_modifier} &= \{ \ldots \} \\
\text{stripping} &= \{ \ldots \} \\
\text{boxing_file} &= \text{“something.bf”} \ \\
\text{left_boxing} &= \{ \ldots \} \\
\text{right_boxing} &= \{ \ldots \} \\
\text{section_width} &= \text{value} \\
\text{string_modifiers} &= \{ \ldots \} \\
\text{auto_super_tables} &= 1 \text{ or } 0 \\
\text{left_auto_super} &= \{ \ldots \} \\
\text{left_auto_width} &= \{ \ldots \} \\
\text{right_auto_super} &= \{ \ldots \} \\
\text{right_auto_width} &= \{ \ldots \} \\
\text{loop_removals} &= \{ \ldots \} \\
\end{align*}
\]

The format for boxing_file is simply

\[
\text{boxing_file} = \text{“something.bf”}
\]

where something.bf is the name of a file containing boxing definitions to use for the mtf.

The format for (g) is simply

\[
\text{section_width} = \text{value} \quad // \text{default is 10000}
\]
where \textit{value} is the distance to search from the hinge string for strings required in some options. If \textit{section\_width} is missing, then it takes the default value of 10000.

The key words, \textit{left\_side} and \textit{right\_side} which are for initially applying templates (for part (a)), have already been described under the Design=>Apply=>Apply MTF option but will be summarised in the next section \textit{21.2.1 MTF Hinge Modifiers}.

The documentation for the \textbf{text file syntax} of the MTF file now follows.

See \textit{21.10.1.1 MTF Templates File Format}
\textit{21.10.1.2 MTF Specials File Format}
\textit{21.10.1.3 MTF Hinge Modifier File Format}
\textit{21.10.1.4 MTF MTF Modifiers File Format}
\textit{21.10.1.12 MTF Stripping File Format}
\textit{21.10.1.13 MTF Boxing File Format}
\textit{21.10.1.14 MTF Width File Format}
\textit{21.10.1.15 MTF String Modifiers File Format}
\textit{21.10.1.16 Substitutions in the Modifiers and Templates File}
21.10.1.1 MTF Templates File Format

The templates on the left and right hand sides of the centre line (or Hinge string if one is selected) are specified separately in the *Modifiers and Templates File*. Apart from a key word denoting whether the following part of the definition is for the left side or the right side, the set out for the left-side is identical to the right-side. Hence, only the left-side will be described in detail.

The left-side definition begins with the key words

```
left_side =
```

A list of chainages (in ascending order, one per line) with corresponding template names then follows. This list of chainages and templates is enclosed in curly braces `{}`.

**Note** if the template name includes spaces, then the name must be enclosed in quotes "". For example, "left 1".

The chainage-template lists are assembled as follows

**(a)** To represent a template starting at a given chainage, the chainage value followed by the template name is given. The chainage and name are separated by one or more spaces. For example, the template `std` starting at chainage 150 is represented by

```
150 std
```

The template is assumed to apply until the chainage given on the next line of the left-side definition.

If the template is to go to the end of the centre-line, add a line with a chainage greater than or equal to the end chainage. For example,

```
150 std
99999
```

**(b)** if no template exists from a chainage, simply include the chainage with no template name following it. For example, if there is no template from chainage 250, this is represented by

```
250
```

The non-existence of a template is assumed to apply until the chainage given on the next line of the left-side definition

**(c)** the case of a linear change from one template to another template over a specified chain-age range is represented by giving the start chainage of the linear change, followed on the same line by the start template, a comma, and the end template. For example, if the template is to vary linearly between the template `std` and the template `left`, beginning at the chainage 350, then the line in the file would be

```
350 std, left
```

The linear change takes place over the interval beginning at the chainage given on the defining line and ending at the chainage given on the next line of the left-side. Distances and percent cross-falls are interpolated linearly and slopes are interpolated on the radian value of the slope angles.

Combining these rules, the following lines in a template file

```
left_side = {
100 std
200 std, "left 1"
250 "left 1"
300
350 std
99999
}
```

describes the situation

1. the left-hand side of the centre-line has no template from the beginning of the centre-line until chainage 100.
2. at chainage 100, the template `std` begins and continues until chainage 200.
3. there is a linear change from the template *std* to the template *left 1* between chainage 200 and chainage 250.

4. the template *left 1* goes from chainage 250 to chainage 300.

5. there is a gap between chainage 300 and chainage 350.

6. the template *std* goes from chainage 350 to chainage 99999, or if the end chainage is smaller than 99999, to the end of the centre-line.

The right-side template definition begins with the key word right_side. The rest of the definition follows the same rules at the left hand side of the centre-line. For example,

```plaintext
right_side = {
 100 std
 200 std , right
 250 right
 300 right , std
 350 std
 400
}
```

The left and right sides can vary independently.

**Restrictions on the Template File Definitions**

1. If one template stops at the same chainage that another template begins, then the two templates must have the same number of fixed and variable links. The templates will be varied linearly from the stopping template to the starting template over one section separation distance.

2. If there is a linear variation between two templates, the two templates must have the same number of fixed and variable links.

3. If two templates do not have the same number of links, they must be separated by a gap, that is, by a region with no template.

**Summarising:**

The templates on the left and right hand sides of the centre line are specified separately in the Modifiers and Templates File.

The left-side (right-side) definition begins with the key words

```plaintext
left_side =
right_side =
```

with a list of chainages (in ascending order, one per line) with template names. This list of chainages and templates is enclosed in curly braces `{}`.

The chainage-template lists are assembled as follows

(a) To represent a template starting at a given chainage, the chainage value followed by the template name is given. The chainage and name are separated by one or more spaces. For example, the template *std* starting at chainage 150 is represented by

```plaintext
150 std
```

The template is assumed to apply until the chainage given on the next line of the left-side definition.

If the template is to go to the end of the centre-line, add a line with a chainage greater than or equal to the end chainage. For example,

```plaintext
150 std
99999
```

(b) if no template exists from a chainage, simply include the chainage with no template name following it. For example, if there is no template from chainage 250, this is represented by
The non-existence of a template is assumed to apply until the chainage given on the next line of the left-side definition.

(c) the case of a linear change from one template to another template over a specified chainage range is represented by giving the start chainage of the linear change, followed on the same line by the start template, a comma, and the end template. For example, if the template is to vary linearly between the template std and the template left, beginning at the chainage 350, then the line in the file would be

```
350 std, left
```

The linear change takes place over the interval beginning at the chainage given on the defining line and ending at the chainage given on the next line of the left-side. Distances and percent cross-falls are interpolated linearly and slopes are interpolated on the radian value of the slope angles.

### A Left and Right Side File Example

```plaintext
left_side = {
 100 std,
 200 std, "left 1",
 250 "left 1",
 300,
 350 std,
 99999
}
```

```plaintext
right_side = {
 100 std,
 200 std, right,
 250 right,
 300 right, std,
 350 std,
 400
}
```

The left_side describes the situation:

1. the left-hand side of the centre-line has no template from the beginning of the centre-line until chainage 100.
2. at chainage 100, the template std begins and continues until chainage 200.
3. there is a linear change from the template std to the template left 1 between chainage 200 and chainage 250.
4. the template left 1 goes from chainage 250 to chainage 300.
5. there is a gap between chainage 300 and chainage 350.
6. the template std goes from chainage 350 to chainage 99999, or if the end chainage is smaller than 99999, to the end of the centre-line.

Go to the next section [21.10.1.2 MTF Specials File Format](#) or back to [21.10.1 Text Format of the MTF File](#)
21.10.1.2 MTF Specials File Format

In the Modifiers and Templates File, the specials definition begins with the key word

\[
\text{specials} =
\]

This is followed by a list of

(a) chainages, in any order, one per line

and/or

(b) the names of files (enclosed in quotes "") which include lists of chainages (The default ending for a special chainage file is *.spc)

The list of chainages and/or file names is enclosed in curly braces {}.

**A Specials Example**

\[
\text{specials} = \{
\begin{align*}
125.3 \\
1925.4 \\
\text{“fred”} & \quad \text{// file of chainages to read in} \\
3007 \\
\text{“joe”}
\end{align*}
\}
\]

Go to the next section 21.10.1.3 MTF Hinge Modifier File Format or back to 21.10.1 Text Format of the MTF File
21.10.1.3 MTF Hinge Modifier File Format

In the Modifiers and Templates File, the **hinge modifier** definition begins with the key word

```
 hinge_modifier =
```

followed by one or more of the hinge modifier commands **offset**, **height**, **coord** and **nohinge** enclosing curly braces `{}`.

```
 hinge_modifier = {
 hinge modifier commands
 }
```

The definition of the hinge modifier commands will now be given.

**Offset**

The **Offset** modifier will move the hinge point a given offset distance (perpendicular to the reference string) from its current plan position. A positive offset is to the right of the hinge string and a negative offset to the left.

The format of the modifier to vary the **offset** is

```
offset st_ch end_ch st_offset end_offset absrel type extra_start extra_end
```

where

- **st_ch** start chainage for the modifier
- **end_ch** end chainage for the modifier
- **st_offset** offset to be used at the start modifier chainage, **st_ch**
- **end_offset** offset to be used at the end modifier chainage, **end_ch**.
- **absrel** relative (default) or absolute
- **type** linear (default) or cubic
- **extra_start** optional - adds in an extra x-section 0.1mm before start chainage
- **extra_end** optional - adds in an extra x-section 0.1mm before end chainage

**offset** is **relative** (the default) then

the **st_offset** is added to the current position of the hinge point at chainage **st_ch**.

and

the **end_offset** is added to the current position of the hinge point at chainage **end_ch**.

**offset** is **absolute**, then

the offset of the hinge point is taken with respect to the original position of the hinge string at chainage **st_ch**.

and

the offset of the hinge point is taken with respect to the original position of the hinge string at chainage **end_ch**.

**offset** is **linear** (the default), then the offset is varied linearly (with respect to the reference chainage) between the offsets at chainage **st_ch** and chainage **end_ch**.

**offset** is **cubic**, then the offset is varied as a reverse cubic (with respect to the reference chainage) between the offsets at chainage **st_ch** and chainage **end_ch**.

---

```
 reference string
 hinge string
 original point to apply template from hinge
```

**offset** moves the hinge point along the line perpendicular to the reference string.
Offset to String

The offset for the hinge point can also be varied by going out to another 12d Model string.

`offset`  `st_ch`  `end_ch`  `full_string_name`  `extra_start`  `extra_end`

where

`st_ch`  start chainage for the modifier
`end_ch`  end chainage for the modifier
`full_string_name`  name of a 12d Model string to take the hinge point out to. The format of the string name is “model_name->string_name”.
`extra_start`  optional - adds in an extra x-section 0.1mm before start chainage
`extra_end`  optional - adds in an extra x-section 0.1mm before end chainage

Height

The height modifier varies the height of the hinge point between the given chainages.

`height`  `st_ch`  `end_ch`  `st_height`  `end_height`  `absrel`  `type`  `extra_start`  `extra_end`

where

`st_ch`  start chainage for the modifier
`end_ch`  end chainage for the modifier
`st_height`  height to be used at the start modifier chainage, st_ch
`end_height`  height to be used at the end modifier chainage, end_ch.
`absrel`  relative (default) or absolute
`type`  linear (default) or cubic
`extra_start`  optional - adds in an extra x-section 0.1mm before start chainage
`extra_end`  optional - adds in an extra x-section 0.1mm before end chainage

If `absrel` is relative (the default) then

the st_height is added to the current height of the hinge point at chainage st_ch.
the end_height is added to the current height of the hinge point at chainage end_ch.

If `absrel` is absolute, then

the height of the hinge point is set to st_height above the original hinge string at
chainage st_ch.
the height of the hinge point is set to end_height above the original hinge string
at chainage end_ch.

If `type` is linear (the default), then the height is varied linearly (with respect to the reference
chainage) between the height at chainage st_ch and chainage end_ch.

If `type` is cubic, then the height is varied as a reverse cubic (with respect to the reference
chainage) between the height at chainage st_ch and chainage end_ch.

Height to String

The height of the hinge point can also be specified by taking the height from another
12d Model string.

`height`  `st_ch`  `end_ch`  `full_string_name`  `extra_start`  `extra_end`

where

`st_ch`  start chainage for the modifier
`end_ch`  end chainage for the modifier
`full_string_name`  name of a 12d Model string to take the hinge point height from. The format of the string name is “model_name->string_name”.
`extra_start`  optional - adds in an extra x-section 0.1mm before start chainage
`extra_end`  optional - adds in an extra x-section 0.1mm before end chainage
Coord to String

The coord modifier is used to replace the x, y and z position of the hinge point by the x, y and z position of another 12d Model string between given chainages. Hence coord replaces the hinge string by another string between the given chainages.

coord  st_ch  end_ch  full_string_name  extra_start  extra_end  
where

st_ch    start chainage for the modifier
end_ch   end chainage for the modifier
full_string_name name of the 12d Model string used to replace the hinge string between the chainages st_ch and end_ch. The format of the string name is “model_name->string_name”.
extra_start optional - adds in an extra x-section 0.1mm before start chainage
extra_end optional - adds in an extra x-section 0.1mm before end chainage

Nohinge

The nohinge modifier is used to stop the hinge string (and hence the apply) between given chainages. This will leave a gap in the strings created by the apply between the given chainages.

nohinge  st_ch  end_ch  extra_start  extra_end  
where

st_ch    start chainage to stop the apply
end_ch   end chainage for stopping the apply
extra_start optional - adds in an extra x-section 0.1mm before start chainage
extra_end optional - adds in an extra x-section 0.1mm before end chainage

A Hinge Modifier Example

hinge_modifier = {  
  offset  0 250 0 3  // linearly offset the hinge by 0 to 3  
  // over the chainage range 0 to 250.  
  height  125 300 2 2  // add 2 to the hinge height  
  // over the chainage range 125 to 300.  
  coord  300 400 "mod->new_string"  // use the position of the string  
  // new_string over the chainage  
  // range 300 to 400.  
  nohinge  400 500 2 2  // stop the apply between the chainages  
  // over the chainage range 400 to 500.  
}  

Go to the next section 21.10.1.4 MTF MTF Modifiers File Format or back to 21.10.1 Text Format of the MTF File
21.10.1.4 MTF MTF Modifiers File Format

In the Modifiers and Templates File, the **template modifier** definition begins with the key word

left_side_modifier =

and/or

right_side_modifier =

followed by one or more of the template modifier commands enclosing curly braces { }

(a) fixed link modifiers - commands working on fixed links

```
insert

remove
```

width, height, xfall, xfall_crc, copy_width, copy_height, copy_xfall, tin_height, tin_xfall

(b) stop and start decisions commands

```
decision
```

(c) variable cut and fill link modifiers - commands working on cut/fill links

```
insert_cut, insert_fill

remove_cut, remove_fill
```

cut_width, cut_height, cut_slope, copy_cut_width, copy_cut_height, copy_cut_slope, tin_cut_height, tin_cut_slope

```
fill_width, fill_height, fill_slope, copy_fill_width, copy_fill_height, copy_fill_slope, tin_fill_height, tin_fill_slope
```

(d) final cut/fill link modifiers

```
final_width, final_cut_slope, final_no_cut_slope

final_fill_slope, final_no_fill_slope
```

(e) snippets - inserting groups of modifier commands

```
snippet
```

That is,

```
left_side_modifier = { template modifier commands }
```

and/or

```
right_side_modifier = { template modifier commands }
```

The definition of the template modifier commands and their file format will now be given.

For **Start mode** and **End mode**, go to the section 21.10.1.5 Start and End Chainages in the Modifier File Format.

For **Fixed Link** modifiers, go to the section 21.10.1.6 MTF Fixed Link Modifiers File Format.
For Decision Link modifiers, go to the section 21.10.1.7 Decision File Format.
For Cut and Fill Link modifiers, go to the section 21.10.1.8 Cut and Fill Variable Link Modifiers File Format.
For Final Link modifiers, go to the section 21.10.1.9 Final Link Modifiers File Format.
For Snippets, go to the section 21.10.1.10 Snippets File Format.
Please continue to the next section 21.10.1.5 Start and End Chainages in the Modifier File Format.
21.10.1.5 Start and End Chainages in the Modifier File Format

Modifiers work between two chainages and in each modifier command, the position of the start and end chainages for the commands are denoted by:

\[
\begin{align*}
st_ch & \quad \text{start chainage for the modifier} \\
end_ch & \quad \text{end chainage for the modifier}
\end{align*}
\]

However, there are a number of ways for defining the start and end chainages in the modifier command (called Start mode and End mode on the modifier panels).

**Start Mode - st_ch**

For each of the Start modes, the replacement for \texttt{st\_ch} is:

(a) Typed

the actual typed in chainage value

(b) Start of reference string

\texttt{$null$

(c) Start of other string

\texttt{chainage\_start "model\_of\_string->string\_name"}

where model\_of\_string and string\_name are the model and name of the string to take the start chainage from. The double quotes (") are needed.

(d) End of other string

\texttt{chainage\_final "model\_of\_string->string\_name"}

where model\_of\_string and string\_name are the model and name of the string to take the end chainage from. The double quotes (") are needed.

(e) Lowest dropped chainage of other string

\texttt{chainage\_low "model\_of\_string->string\_name"}

where model\_of\_string and string\_name are the model and name of the string to take the lowest dropped chainage from. The double quotes (") are needed.

(f) Highest dropped chainage of other string

\texttt{chainage\_high "model\_of\_string->string\_name"}

where model\_of\_string and string\_name are the model and name of the string to take the highest dropped chainage from. The double quotes (") are needed.

(g) Named part of reference other string

\texttt{named\_part "part\_specifier" start\_extension\_value}

where part\_specifier is the full specification of the part of the reference string to use. The
start_extension_value is added to the chainage. The double quotes (") are needed.

(h) Named part of other string

\[
\text{named_part } \text{"model_of_string->string_name" } \text{"part_specifier" } \text{start_extension_value}
\]

where model_of_string and string_name are the model and name of the string to take the name part from, and part_specifier is the full specification of the part from that string. The start_extension_value is added to the chainage. The double quotes (") are needed.

(i) Named position of reference

\[
\text{named_position } \text{"pos_name" } \text{start_extension_value}
\]

where pos_name is the name of the named position of the reference string to use. The start_extension_value is added to the chainage. The double quotes (") are needed.

(j) Named position on other string

\[
\text{named_position } \text{"model_of_string->string_name" } \text{"pos_name" } \text{start_extension_value}
\]

where model_of_string and string_name are the model and name of the string to take the name position from, and pos_name is the name of the named position from that string. The start_extension_value is added to the chainage. The double quotes (") are needed.

(k) Cut of other string

\[
\text{cut_other } \text{"model_of_string->string_name" } \text{"name" } \text{start_extension_value}
\]

where model_of_string and string_name are the model and name of the selected string. A chainage is calculated from the cut of the string with the reference string. The start_extension_value is added to the chainage. The double quotes (") are needed.

**Note:** If there are no cuts, or if there is more than one cut, then the command is not processed.

### End Mode - end_ch

For each of the **End modes**, the replacement for end_ch is:

(a) Typed  
the actual typed in chainage value
(b) End of reference string
$null

(c) Start of other string

chainage_start "model_of_string->string_name"

where model_of_string and string_name are the model and name of the string to take the start chainage from. The double quotes (") are needed.

(d) End of other string

chainage_final "model_of_string->string_name"

where model_of_string and string_name are the model and name of the string to take the end chainage from. The double quotes (") are needed.

(e) Lowest dropped chainage of other string

chainage_low "model_of_string->string_name"

where model_of_string and string_name are the model and name of the string to take the lowest dropped chainage from. The double quotes (") are needed.

(f) Highest dropped chainage of other string

chainage_high "model_of_string->string_name"

where model_of_string and string_name are the model and name of the string to take the highest dropped chainage from. The double quotes (") are needed.

(g) Named part of reference other string

named_part "part_specifier" start_extension_value

where part_specifier is the full specification of the part of the reference string to use. The start_extension_value is added to the chainage. The double quotes (") are needed.

(h) Named part of other string

named_part "model_of_string->string_name" "part_specifier" end_extension_value

where model_of_string and string_name are the model and name of the string to take the name part from, and part_specifier is the full specification of the part from that string. The end_extension_value is added to the chainage. The double quotes (") are needed.

(i) Named position of reference

named_position "pos_name" end_extension_value

where pos_name is the name of the named position of the reference string to use. The end_extension_value is added to the chainage. The double quotes (") are needed.

(j) Named position on other string

named_position "model_of_string->string_name" "pos_name" end_extension_value

where model_of_string and string_name are the model and name of the string to take the name position from, and pos_name is the name of the named position from that string. The end_extension_value is added to the chainage. The double quotes (") are needed.

(k) Cut of other string

cut_other "model_of_string->string_name" "name" start_extension_value

where model_of_string and string_name are the model and name of the selected string. A chainage is calculated from the cut of the string with the reference string. The end_extension_value is added to the chainage. The double quotes (") are needed.

Note: is there is no cuts or more than one cut then the command is not processed.

Please continue to the next section 21.10.1.6 MTF Fixed Link Modifiers File Format.
21.10.1.6 MTF Fixed Link Modifiers File Format

Fixed - Link Insert

Fixed links can be created by one of three `insert` commands by specifying either width and height, width and xfall, or height and xfall.

```
insert link_name colour width height unknown st_ch end_ch optional // use width, height
insert link_name colour width unknown xfall st_ch end_ch optional // use width, xfall
insert link_name colour unknown height xfall st_ch end_ch optional // use height, xfall
```

where `unknown` takes the place of the one of width, height or xfall not being used, and

- **link_name** name of the link being created
- **colour** colour of the link being created
- **width, height, xfall** width, height or xfall of the created link
- **st_ch** start chainage for creating the link
- **end_ch** end chainage for creating the link

and **optional** can be none, one or more of the following

- **name** if non-blank, insert before the link name in the template
  - if blank, then append after the last link of the fixed template table
- **interval** if interval exists, then sections are created at the interval_value for the range of this command
  - if interval is missing, then the interval for the Apply MTF is used
- **interval_value** only exists if **interval** exists
- **extra_start** optional - adds in an extra x-section 0.1 mm before start chainage
- **extra_end** optional - adds in an extra x-section 0.1 mm before end chainage
- **inactive** if **inactive** is there then the command is not processed.
  - If inactive is not there then the command is processed
- **// text** the text is a comment

See 21.10.1.5 Start and End Chainages in the Modifier File Format for the format for st_ch and end_ch.

Fixed - Link Remove

Fixed links can be deleted by the `remove` command:

```
remove link_list st_ch end_ch optional
```

where

- **link_list** one or more names of links to be removed, in the form `name1 name2 ... namei`
- **st_ch** start chainage for removing the link
- **end_ch** end chainage for removing the link

and **optional** can be none, one or more of

- **interval** if interval exists, then sections are created at the interval_value for the range of this command
  - if interval is missing, then the interval for the Apply MTF is used
- **interval_value** only exists if **interval** exists
- **extra_start** optional - adds in an extra x-section 0.1 mm before start chainage
- **extra_end** optional - adds in an extra x-section 0.1 mm before end chainage
inactive if inactive is there then the command is not processed.
// text
the text is a comment
See 21.10.1.5 Start and End Chainages in the Modifier File Format for the format for st_ch and end_ch.

Fixed - Width
The width modifier is used to modify the width of fixed links originally defined by width.
The format of the modifier to vary the width of the fixed links given by link_list is
width link_list st_ch end_ch st_wid end_wid absrel type optional
where
link_list one or more names of fixed links given in the template definition; with format
name1 name2 ... namei
st_ch start chainage for the modifier
end_ch end chainage for the modifier
st_wid width to be used at the start modifier chainage, st_ch
end_wid width to be used at the end modifier chainage, end_ch.
absrel relative (default) or absolute
If absrel is relative (the default) then
the st_wid is added to the current width of links in link_list at chainage st_ch.
the end_wid is added to the current width of links in link_list at chainage end_ch.
If absrel is absolute, then
the width of links in link_list are set to st_wid at chainage st_ch.
the width of links in link_list are set to end_wid at chainage end_ch.
type linear (default) or cubic
If type is linear (the default), then the width of links in link_list are varied linearly (with respect
to the reference chainage) between the width at chainage st_ch and chainage end_ch.
If type is cubic, then the width of links in link_list is varied as a reverse cubic (with respect to
the reference chainage) between the width at chainage st_ch and chainage end_ch.
and optional can be none, one or more of
interval if interval exists, then sections are created at the interval_value for the range of this command
if interval is missing, then the interval for the Apply MTF is used
interval_value only exists if interval exists
extra_start optional - adds in an extra x-section 0.1mm before start chainage
extra_end optional - adds in an extra x-section 0.1mm before end chainage
inactive if inactive is there then the command is not processed.
// text
the text is a comment

The width for a link can also be varied by going out to another 12d Model string or by taking
the width between two 12d Model strings.
width link_list st_ch end_ch full_string_name side optional
width link_list st_ch end_ch str_name_1 side_1 str_name_2 side_2 optional
where
link_list one or more names of fixed links given in the template definition;
Chapter 21  Advanced Design

Text Format of Files

st_ch        start chainage for the modifier
end_ch       end chainage for the modifier
full_string_name name of a **12d Model** string to take links in link_list out to.
The format of the string name is “model_name->string_name”.
side          side to search for string:   -1 for left, 0 for left and right, 1 for right

str_name_1    name of the first **12d Model** string. The format of the string name is “model_name->string_name”.
side_1        side to search for string_1:   -1 for left, 0 for left and right, 1 for right

str_name_2    name of the second **12d Model** string. The format of the string name is “model_name->string_name”.
side_2        side to search for string_2:   -1 for left, 0 for left and right, 1 for right

and **optional** can be none, one or more of

interval       if interval exists, then sections are created at the interval_value for the range of this command
                if interval is missing, then the interval for the Apply MTF is used
            interval_value only exists if interval exists
extra_start    optional - adds in an extra x-section 0.1mm before start chainage
extra_end      optional - adds in an extra x-section 0.1mm before end chainage
inactive       if *inactive* is there then the command is not processed.
                If inactive is not there then the command is processed
// text         the text is a comment

The **width** of links in link_list are taken to be the distance between str_name_1 and str_name_2.
See [21.10.1.5 Start and End Chainages in the Modifier File Format](#) for the format for st_ch and end_ch.

**Fixed- Width from Link**

The **width from link** modifier is used to modify the width of fixed links originally defined by width to be the same as another link. That is, the width of the link is a copy of the width of another link.

The format of the modifier to vary the **width from link** of the fixed links given by link_list is

**copy_width** link_list  st_ch  end_ch  from_link  zone  optional

where

link_list     one or more names of fixed links given in the template definition; with format name1 name2 ... namei
st_ch         start chainage for the modifier
end_ch        end chainage for the modifier
from_link     name of link to take the width from
zone          section of the template that the from_link is from (i.e. fixed, cut or fill)

and **optional** can be none, one or more of

interval       if interval exists, then sections are created at the interval_value for the range of this command
                if interval is missing, then the interval for the Apply MTF is used
Fixed - Height

The **height** modifier is used to modify the height of fixed links originally defined by height.

The format of the modifier to vary the **height** of the fixed links in the **link_list** is almost identical to varying the width and is:

```
height link_list st_ch end_ch st_ht end_ht absrel type optional
```

where

- **link_list**: one or more names of fixed links given in the template definition; with format `name1  name2  ...  namei`
- **st_ch**: start chainage for the modifier
- **end_ch**: end chainage for the modifier
- **st_ht**: height to be used at the start modifier chainage, st_ch
- **end_ht**: height to be used at the end modifier chainage, end_ch.
- **absrel**: relative (default) or absolute
  - If **absrel** is **relative** (the default) then
    - the st_ht is added to the current height of links in link_list at chainage st_ch.
    - the end_ht is added to the current height of links in link_list at chainage end_ch.
  - If **absrel** is **absolute**, then
    - the height of links in link_list are set to st_ht at chainage st_ch.
    - the height of links in link_list are set to end_ht at chainage end_ch.

- **type**: linear (default) or cubic
  - If **type** is **linear** (the default), then the height of links in link_list are varied linearly (with respect to the reference chainage) between the height at chainage st_ch and chainage end_ch.
  - If **type** is **cubic**, then the height of links in link_list is varied as a reverse cubic (with respect to the reference chainage) between the height at chainage st_ch and chainage end_ch.

and **optional** can be none, one or more of:

```
interval only exists if interval exists
extra_start optional - adds in an extra x-section 0.1mm before start chainage
extra_end optional - adds in an extra x-section 0.1mm before end chainage
inactive if inactive is there then the command is not processed.
// text the text is a comment
```

The height for a link can also be varied by taking the height from a 12d Model string or by
taking the height between two 12d Model strings.

**height** link_list st_ch end_ch full_string_name side optional

**height** link_list st_ch end_ch str_name_1 side1 str_name_2 side2 optional

where

- **link_list**: one or more names of fixed links given in the template definition; with format name1 name2 ... namei
- **st_ch**: start chainage for the modifier
- **end_ch**: end chainage for the modifier
- **full_string_name**: name of a 12d Model string to take links in link_list out to. The format of the string name is “model_name->string_name”.
- **side**: side to search for string: -1 for left, 0 for left and right, 1 for right
- **str_name_1**: name of the first 12d Model string. The format of the string name is “model_name->string_name”.
- **side2**: side to search for string: -1 for left, 0 for left and right, 1 for right
- **str_name_2**: name of the second 12d Model string. The format of the string name is “model_name->string_name”.
- **side2**: side to search for string: -1 for left, 0 for left and right, 1 for right

and **optional** can be none, one or more of

- **interval**: if interval exists, then sections are created at the interval_value for the range of this command. If interval is missing, then the interval for the Apply MTF is used
- **interval_value**: only exists if **interval** exists
- **extra_start**: optional - adds in an extra x-section 0.1mm before start chainage
- **extra_end**: optional - adds in an extra x-section 0.1mm before end chainage

// text the text is a comment

The height of links in link_list are taken to be the height between str_name_1 and str_name_2.

See [21.10.1.5 Start and End Chainages in the Modifier File Format](#) for the format for st_ch and end_ch.

### Fixed - Height from Link

The height from link modifier is used to modify the height of fixed links originally defined by height to be the same height as another link. That is, the height of the link is a copy of the height of another link.

The format of the modifier to vary the height from link of the fixed links given by link_list is

**copy_height** link_list st_ch end_ch from_link zone optional

where

- **link_list**: one or more names of fixed links given in the template definition; with format name1 name2 ... namei
- **st_ch**: start chainage for the modifier
- **end_ch**: end chainage for the modifier
- **from_link**: name of link to take the height from
- **zone**: section of the template that the from_link is from (i.e. fixed, cut or fill)

and **optional** can be none, one or more of
interval if interval exists, then sections are created at the interval_value for
the range of this command
if interval is missing, then the interval for the Apply MTF is used
interval_value only exists if interval exists
extra_start optional - adds in an extra x-section 0.1mm before start chainage
extra_end optional - adds in an extra x-section 0.1mm before end chainage
inactive if inactive is there then the command is not processed.
If inactive is not there then the command is processed
// text the text is a comment
See 21.10.1.5 Start and End Chainages in the Modifier File Format for the format for st_ch and end_ch.

Fixed - Cross Fall

The xfall modifier is used to modify the cross fall of fixed links originally defined by xfall.
The format of the modifier to vary the cross-fall of the fixed links in the link_list is almost identical
to varying the width and is:

xfall link_list st_ch end_ch st_xfall end_xfall absrel type optional

where

link_list one or more names of fixed links given in the template definition; with format
        name1 name2 ... namei

st_ch start chainage for the modifier
end_ch end chainage for the modifier
st_xfall xfall to be used at the start modifier chainage, st_ch
end_xfall xfall to be used at the end modifier chainage, end_ch.
absrel relative (default) or absolute
If absrel is relative (the default) then
    the st_xfall is added to the current xfall of links in link_list at chainage st_ch.
    the end_xfall is added to the current xfall of links in link_list at chainage end_ch.
If absrel is absolute, then
    the xfall of links in link_list are set to st_xfall at chainage st_ch.
    the xfall of links in link_list are set to end_xfall at chainage end_ch.
type linear (default) or cubic
If type is linear (the default), then the xfall of links in link_list are varied linearly (with respect
to the reference chainage) between the xfall at chainage st_ch and chainage end_ch.
    cubic, then the xfall of links in link_list are varied as a reverse cubic (with respect
to the reference chainage) between the xfall at chainage st_ch and chainage end_ch.
    rotate, then the angle of the xfall of the links in link_list is varied linearly (with
respect to the reference chainage) between the angle of the xfall at chainage st_ch and
chainage end_ch.
and optional can be none, one or more of

interval if interval exists, then sections are created at the interval_value for
the range of this command
if interval is missing, then the interval for the Apply MTF is used
interval_value only exists if interval exists
extra_start optional - adds in an extra x-section 0.1mm before start chainage
extra_end optional - adds in an extra x-section 0.1mm before end chainage
inactive if inactive is there then the command is not processed.
If inactive is not there then the command is processed
The xfall of a link can be defined by using the xfall from the **beginning of the link** (i.e. the end of the previous link or the hinge string if it is the first link) to another 12d Model, or by taking the **xfall between two 12d Model strings**.

\[
\text{xfall} \quad \text{link_list} \quad \text{st_ch} \quad \text{end_ch} \quad \text{full_string_name} \quad \text{side} \quad \text{optional}
\]

\[
\text{xfall} \quad \text{link_list} \quad \text{st_ch} \quad \text{end_ch} \quad \text{str_name_1} \quad \text{side1} \quad \text{str_name_2} \quad \text{side2} \quad \text{optional}
\]

where

- **link_list** one or more names of fixed links given in the template definition; with format
  - name1
  - name2 ...
  - namei
- **st_ch** start chainage for the modifier
- **end_ch** end chainage for the modifier
- **full_string_name** name of a 12d Model string to use to calculate xfall. The format of the string name is “model_name->string_name”.
- **side** side to search for string: -1 for left, 0 for left and right, 1 for right
- **str_name_1** name of the first 12d Model string. The format of the string name is “model_name->string_name”.
- **side1** side to search for string_1: -1 for left, 0 for left and right, 1 for right
- **str_name_2** name of the second 12d Model string.
- **side2** side to search for string_2: -1 for left, 0 for left and right, 1 for right

and **optional** can be none, one or more of

- **interval** if interval exists, then sections are created at the interval_value for the range of this command
- **interval_value** only exists if **interval** exists
- **extra_start** optional - adds in an extra x-section 0.1mm before start chainage
- **extra_end** optional - adds in an extra x-section 0.1mm before end chainage
- **inactive** if inactive is there then the command is not processed. If inactive is not there then the command is processed

// text

The xfall of links in link_list are taken to be the xfall between str_name_1 and str_name_2.

See **21.10.1.5 Start and End Chainages in the Modifier File Format** for the format for st_ch and end_ch.

**Fixed - Cross Fall Circular Reverse Curve**

The xfall_crc modifier is used to modify the cross fall of fixed links originally defined by xfall using the circular reverse curve formula.

The format of the modifier to vary the cross-fall of the fixed links (using circular reverse curves) in the link_list is:

\[
\text{xfall_crc} \quad \text{link_list} \quad \text{st_ch} \quad \text{end_ch} \quad \text{st_xfall} \quad \text{end_xfall} \quad \text{st_len} \quad \text{end_len} \quad \text{optional}
\]

where

- **link_list** one or more names of fixed links given in the template definition; with format
  - name1
  - name2 ...
  - namei
Text Format of Files

st_ch  start chainage for the modifier
end_ch  end chainage for the modifier
st_xfall xfall to be used at the start modifier chainage, st_ch
end_xfall xfall to be used at the end modifier chainage, end_ch.
st_len  length of the start circular arc to be used at the start modifier chainage, st_ch.
end_len  length of the end circular arc to finish at the end modifier chainage, st_ch.

and optional can be none, one or more of

interval  if interval exists, then sections are created at the interval_value for
          the range of this command
          if interval is missing, then the interval for the Apply MTF is used
interval_value  only exists if interval exists
extra_start  optional - adds in an extra x-section 0.1mm before start chainage
extra_end  optional - adds in an extra x-section 0.1mm before end chainage
inactive  if inactive is there then the command is not processed.
          If inactive is not there then the command is processed
// text  the text is a comment

See 21.10.1.5 Start and End Chainages in the Modifier File Format for the format for st_ch and end_ch.

Fixed - Xfall from Link

The xfall from link modifier is used to modify the xfall of fixed links originally defined by xfall to be the same xfall as another link. That is, the xfall of the link is a copy of the xfall of another link.
The format of the modifier to vary the xfall from link of the fixed links given by link_list is

```
copy_xfall link_list st_ch end_ch from_link zone optional
```
where

link_list  one or more names of fixed links given in the template definition; with format
           name1  name2  ...  namei
st_ch  start chainage for the modifier
end_ch  end chainage for the modifier
from_link  name of the link to take the xfall from
zone  section of the template that the from_link is from (i.e. fixed, cut or fill)

and optional can be none, one or more of

interval  if interval exists, then sections are created at the interval_value for
          the range of this command
          if interval is missing, then the interval for the Apply MTF is used
interval_value  only exists if interval exists
extra_start  optional - adds in an extra x-section 0.1mm before start chainage
extra_end  optional - adds in an extra x-section 0.1mm before end chainage
inactive  if inactive is there then the command is not processed.
          If inactive is not there then the command is processed
// text  the text is a comment

Important Note

The link to copy cross fall from can be defined in terms of cross fall or slope.
If the link to copy is defined by slope, then the cross fall is calculated to match the slope.
See 21.10.1.5 Start and End Chainages in the Modifier File Format for the format for st_ch and end_ch.
Fixed - Tin Height

The tin height modifier is used to modify the height of the link so that the link will sit on the tin at the given width.

The tin height can only be used for a fixed link defined by width and height.

The format of the modifier to vary the tin height of the fixed links in the link_list is:

```
tin_height link_list st_ch end_ch tin_name optional
```

where

- **link_list** one or more names of fixed links given in the template definition; with format name1 name2 ... namei
- **st_ch** start chainage for the modifier
- **end_ch** end chainage for the modifier
- **tin_name** name of the tin to be used in defining the height.

and **optional** can be none, one or more of

- **interval** if interval exists, then sections are created at the interval_value for the range of this command
  - if interval is missing, then the interval for the Apply MTF is used
- **interval_value** only exists if **interval** exists
- **extra_start** optional - adds in an extra x-section 0.1mm before start chainage
- **extra_end** optional - adds in an extra x-section 0.1mm before end chainage
- **inactive** if **inactive** is there then the command is not processed.
  - If inactive is not there then the command is processed
- ```// text``` the text is a comment

See [21.10.1.5 Start and End Chainages in the Modifier File Format](#) for the format for st_ch and end_ch.

Fixed - Tin Xfall

The tin xfall modifier is used to modify the xfall of the link so that the link will sit on the tin at the given width.

The tin xfall can only be used for a fixed link defined by width and xfall.

The format of the modifier to vary the tin xfall of the fixed links in the link_list is:

```
tin_xfall link_list st_ch end_ch tin_name
```

where

- **link_list** one or more names of fixed links given in the template definition; with format name1 name2 ... namei
- **st_ch** start chainage for the modifier
- **end_ch** end chainage for the modifier
- **tin_name** name of the tin to be used in defining the xfall.

and **optional** can be none, one or more of

- **interval** if interval exists, then sections are created at the interval_value for the range of this command
  - if interval is missing, then the interval for the Apply MTF is used
- **interval_value** only exists if **interval** exists
- **extra_start** optional - adds in an extra x-section 0.1mm before start chainage
- **extra_end** optional - adds in an extra x-section 0.1mm before end chainage
- **inactive** if **inactive** is there then the command is not processed.
  - If inactive is not there then the command is processed
- ```// text``` the text is a comment

See [21.10.1.5 Start and End Chainages in the Modifier File Format](#) for the format for st_ch and end_ch.
If inactive is not there then the command is processed

// text the text is a comment

Please continue to the next section 21.10.1.7 Decision File Format.

See 21.10.1.5 Start and End Chainages in the Modifier File Format for the format for st_ch and end_ch.
21.10.1.7 Decision File Format

Each template is made up of the sections fixed, decisions, cut, fill and final cut/fill. If a template has a decisions section then by default it is used instead of the cut, fill and final cut/fill sections.

Hence by default, either the decisions section

or

the cut, fill and final cut/fill sections

from the template being used over the chainage range.

Using the decision modifier, it is possible to override the default and for a given chainage range

use the cut, fill and final cut/fill sections instead of the decisions section

or

use the decisions section from another template instead of the current templates sections.

The format of the decision modifier is

decision template_name st_ch end_ch optional

decision " " st_ch end_ch optional

where

template_name name of template to take the decision section from.

If the template name is given as " ", then the decision section for the template being used in the chainage range is ignored, and the cut, fill and final cut/fill tables for the template are used instead. Hence this overrides the default of using the decisions section in preference to the cut, fill and final cut/fill sections of the template.

st_ch start chainage for applying/removing the decision

end_ch end chainage for applying/removing the decision

and optional can be none, one or more of

interval if interval exists, then sections are created at the interval_value for the range of this command

if interval is missing, then the interval for the Apply MTF is used

interval_value only exists if interval exists

extra_start optional - adds in an extra x-section 0.1mm before start chainage

extra_end optional - adds in an extra x-section 0.1mm before end chainage

inactive if inactive is there then the command is not processed.

If inactive is not there then the command is processed

// text the text is a comment

See 21.10.1.5 Start and End Chainages in the Modifier File Format for the format for st_ch and end_ch.

Note

The full description of the Decisions section of a template is given in 21.8 Full Definition of Template Decisions.

Please continue to the next section 21.10.1.8 Cut and Fill Variable Link Modifiers File Format.
21.10.1.8 Cut and Fill Variable Link Modifiers File Format

Cut and Fill Link Insert
Cut and fill links can be created by one of three `insert` commands by specifying either width and height, width and slope, or height and slope.

\[
\text{insert\_cut} \quad \text{link\_name} \quad \text{colour} \quad \text{width} \quad \text{height} \quad \text{unknown} \quad \text{st\_ch} \quad \text{end\_ch} \quad \text{optional} // \text{width, ht}
\]
\[
\text{insert\_fill} \quad \text{link\_name} \quad \text{colour} \quad \text{width} \quad \text{height} \quad \text{unknown} \quad \text{st\_ch} \quad \text{end\_ch} \quad \text{optional} // \text{width, ht}
\]
\[
\text{insert\_cut} \quad \text{link\_name} \quad \text{colour} \quad \text{width} \quad \text{unknown} \quad \text{slope} \quad \text{st\_ch} \quad \text{end\_ch} \quad \text{optional} // \text{width, slope}
\]
\[
\text{insert\_fill} \quad \text{link\_name} \quad \text{colour} \quad \text{width} \quad \text{unknown} \quad \text{slope} \quad \text{st\_ch} \quad \text{end\_ch} \quad \text{optional} // \text{width, slope}
\]
\[
\text{insert\_cut} \quad \text{link\_name} \quad \text{colour} \quad \text{unknown} \quad \text{height} \quad \text{slope} \quad \text{st\_ch} \quad \text{end\_ch} \quad \text{optional} // \text{ht, slope}
\]
\[
\text{insert\_fill} \quad \text{link\_name} \quad \text{colour} \quad \text{unknown} \quad \text{height} \quad \text{slope} \quad \text{st\_ch} \quad \text{end\_ch} \quad \text{optional} // \text{ht, slope}
\]

where `unknown` takes the place of the one of width, height or slope not being used, and

\[
\begin{align*}
\text{link\_name} & \quad \text{name of the link being created} \\
\text{colour} & \quad \text{colour of the link being created} \\
\text{width, height, slope} & \quad \text{width, height or slope of the created link} \\
\text{st\_ch} & \quad \text{start chainage for creating the link} \\
\text{end\_ch} & \quad \text{end chainage for creating the link}
\end{align*}
\]

and `optional` can be none, one or more of the following

\[
\begin{align*}
\text{name} & \quad \text{if non-blank, insert before the link name in the template} \\
& \quad \text{if blank, then append after the last link of the fixed template table} \\
\text{interval} & \quad \text{if interval exists, then sections are created at the interval\_value for} \\
& \quad \text{the range of this command} \\
& \quad \text{if interval is missing, then the interval for the Apply MTF is used} \\
\text{interval\_value} & \quad \text{only exists if `interval` exists} \\
\text{extra\_start} & \quad \text{optional - adds in an extra x-section 0.1mm before start chainage} \\
\text{extra\_end} & \quad \text{optional - adds in an extra x-section 0.1mm before end chainage} \\
\text{inactive} & \quad \text{if `inactive` is there then the command is not processed.} \\
& \quad \text{If inactive is not there then the command is processed} \\
// \text{text} & \quad \text{the text is a comment}
\end{align*}
\]

See 21.10.1.5 Start and End Chainages in the Modifier File Format for the format for `st\_ch` and `end\_ch`.

Cut and Fill Link Remove
Cut and fill links can be deleted by the `remove` commands:

\[
\text{remove\_cut} \quad \text{link\_list} \quad \text{st\_ch} \quad \text{end\_ch} \quad \text{optional}
\]
\[
\text{remove\_fill} \quad \text{link\_list} \quad \text{st\_ch} \quad \text{end\_ch} \quad \text{optional}
\]

where

\[
\begin{align*}
\text{link\_list} & \quad \text{one or more names of links to be removed, in the form} \\
& \quad \text{name1 name2 ... namei} \\
\text{st\_ch} & \quad \text{start chainage for removing the link} \\
\text{end\_ch} & \quad \text{end chainage for removing the link}
\end{align*}
\]

and `optional` can be none, one or more of

\[
\begin{align*}
\text{interval} & \quad \text{if interval exists, then sections are created at the interval\_value for} \\
& \quad \text{the range of this command}
\end{align*}
\]
Text Format of Files

Chapter 21  Advanced Design

Cut and Fill Width

The cut_width modifier is used to modify the width of variable cut links originally defined by width. Similarly the fill_width modifier is used to modify the width of variable fill links originally defined by width.

The format of the modifier to vary the width of the variable cut/fill links in link_list is

\[
\text{cut_width link_list st_ch end_ch st_wid end_wid absrel type optional}\\
\text{fill_width link_list st_ch end_ch st_wid end_wid absrel type optional}
\]

where

link_list one or more names of cut/fill links given in the template definition; with format name1 name2 ... namei

st_ch start chainage for the modifier

end_ch end chainage for the modifier

st_wid width to be used at the start modifier chainage, st_ch

end_wid width to be used at the end modifier chainage, end_ch.

absrel relative (default) or absolute

If absrel is relative (the default) then

the st_wid is added to the current width of links in link_list at chainage st_ch.

the end_wid is added to the current width of links in link_list at chainage end_ch.

If absrel is absolute, then

the width of links in link_list are set to st_wid at chainage st_ch.

the width of links in link_list are set to end_wid at chainage end_ch.

type linear (default) or cubic

If type is linear (the default), then the width of links in link_list are varied linearly (with respect to the reference chainage) between the width at chainage st_ch and chainage end_ch.

If type is cubic, then the width of links in link_list are varied as a reverse cubic (with respect to the reference chainage) between the width at chainage st_ch and chainage end_ch.

and optional can be none, one or more of

interval if interval exists, then sections are created at the interval_value for the range of this command

interval_value only exists if interval exists

extra_start optional - adds in an extra x-section 0.1mm before start chainage

extra_end optional - adds in an extra x-section 0.1mm before end chainage

inactive if inactive is there then the command is not processed.

If inactive is not there then the command is processed

// text the text is a comment

See 21.10.1.5 Start and End Chainages in the Modifier File Format for the format for st_ch and end_ch.
The **width** for a variable link can also be varied by going out to another **12d Model** string.

**cut_width** link_list st_ch end_ch full_string_name side optional

**fill_width** link_list st_ch end_ch full_string_name side optional

where

- link_list: one or more names of cut/fill links given in the template definition; with format name1 name2 ... namei
- st_ch: start chainage for the modifier
- end_ch: end chainage for the modifier
- full_string_name: name of a **12d Model** string to take links in link_list out to. The format of the string name is "model_name->string_name".
- side: side to search for string: -1 for left, 0 for left and right, 1 for right

and **optional** can be none, one or more of

- interval: if interval exists, then sections are created at the interval_value for the range of this command.
- interval_value: only exists if interval exists
- extra_start: optional - adds in an extra x-section 0.1mm before start chainage
- extra_end: optional - adds in an extra x-section 0.1mm before end chainage
- inactive: if inactive is there then the command is not processed.
- // text: the text is a comment

The **width** for a link can also be varied by using the **width between two **12d Model** strings str_name_1 and str_name_2.**

**cut_width** link_list st_ch end_ch str_name_1 str_name_2 side1 side2 optional

**fill_width** link_list st_ch end_ch str_name_1 str_name_2 side1 side2 optional

See **21.10.1.5 Start and End Chainages in the Modifier File Format** for the format for st_ch and end_ch.

**Cut and Fill Width from Link**

The cut and fill **width from link** modifiers are used to modify the width of cut and fill links originally defined by width, to be the same as another link. That is, the width of the link is a copy of the width of another link.

The format of the modifier to vary the cut and fill **width from link** of the fixed links given by link_list is

**copy_cut_width** link_list st_ch end_ch from_link zone optional

**copy_fill_width** link_list st_ch end_ch from_link zone optional

where

- link_list: one or more names of fixed links given in the template definition; with format name1 name2 ... namei
- st_ch: start chainage for the modifier
- end_ch: end chainage for the modifier
- from_link: name of the link to take the width from
- zone: section of the template that the from_link is from (i.e. fixed, cut or fill)
and *optional* can be none, one or more of

- **interval**: if interval exists, then sections are created at the interval_value for the range of this command. If interval is missing, then the interval for the Apply MTF is used.
- **interval_value**: only exists if *interval* exists.
- **extra_start**: optional - adds in an extra x-section 0.1mm before start chainage.
- **extra_end**: optional - adds in an extra x-section 0.1mm before end chainage.
- **inactive**: if *inactive* is there then the command is not processed. If inactive is not there then the command is processed.
- **// text**: the text is a comment.

See [21.10.1.5 Start and End Chainages in the Modifier File Format](#) for the format for *st_ch* and *end_ch*.

### Cut and Fill Height

The **cut_height** modifier is used to modify the height of variable cut links originally defined by *height*. Similarly the **fill_height** modifier is used to modify the height of variable fill links originally defined by *height*.

The format of the modifier to vary the height of the variable cut/fill links in **link_list** is

- **cut_height** `link_list` *st_ch* `end_ch* *st_ht* `end_ht* absrel *type* optional
- **fill_height** `link_list` *st_ch* `end_ch* *st_ht* `end_ht* absrel *type* optional

where

- **link_list**: one or more names of cut/fill links given in the template definition; with format `name1` `name2` ... `namei`
- **st_ch**: start chainage for the modifier.
- **end_ch**: end chainage for the modifier.
- **st_ht**: height to be used at the start modifier chainage, *st_ch*.
- **end_ht**: height to be used at the end modifier chainage, *end_ch*.
- **absrel**: relative (default) or absolute.

If **absrel** is *relative* (the default) then

- the *st_ht* is added to the current height of links in **link_list** at chainage *st_ch*.
- the *end_ht* is added to the current height of links in **link_list** at chainage *end_ch*.

If **absrel** is *absolute*, then

- the height of links in **link_list** are set to *st_ht* at chainage *st_ch*.
- the height of links in **link_list** are set to *end_ht* at chainage *end_ch*.

- **type**: linear (default) or cubic.

If **type** is *linear* (the default), then the height of links in **link_list** are varied linearly (with respect to the reference chainage) between the height at chainage *st_ch* and chainage *end_ch*.

If **type** is *cubic*, then the height of links in **link_list** are varied as a reverse cubic (with respect to the reference chainage) between the height at chainage *st_ch* and chainage *end_ch*.

and *optional* can be none, one or more of

- **interval**: if interval exists, then sections are created at the interval_value for the range of this command. If interval is missing, then the interval for the Apply MTF is used.
- **interval_value**: only exists if *interval* exists.
- **extra_start**: optional - adds in an extra x-section 0.1mm before start chainage.
The height for a variable link can also be varied by taking the height from a 12d Model string.

cut_height link_list st_ch end_ch full_string_name side optional
fill_height link_list st_ch end_ch full_string_name side optional

where

link_list one or more names of cut/fill links given in the template definition; with format
name1 name2 ... namei
st_ch start chainage for the modifier
end_ch end chainage for the modifier
full_string_name name of a 12d Model string to take links in link_list out to. The
format of the string name is “model_name->string_name”.
side side to search for string: -1 for left, 0 for left and right, 1 for right

and optional can be none, one or more of

interval if interval exists, then sections are created at the interval_value for
the range of this command
if interval is missing, then the interval for the Apply MTF is used
interval_value only exists if interval exists
extra_start optional - adds in an extra x-section 0.1mm before start chainage
extra_end optional - adds in an extra x-section 0.1mm before end chainage
inactive if inactive is there then the command is not processed.
If inactive is not there then the command is processed
// text the text is a comment

The height for a link can also be varied by using the height between two 12d Model strings str_name_1 and str_name_2.

cut_height link_list st_ch end_ch str_name_1 side1 str_name_2 side2 optional
fill_height link_list st_ch end_ch str_name_1 side1 str_name_2 side2 optional

See 21.10.1.5 Start and End Chainages in the Modifier File Format for the format for st_ch and end_ch.

Cut and Fill Height from Link

The cut and fill height from link modifiers are used to modify the height of cut and fill links
originally defined by height, to be the same as another link. That is, the height of the link is a copy
of the height of another link.

The format of the modifier to vary the cut and fill height from link of the fixed links given by
link_list is

copy_cut_height link_list st_ch end_ch from_link zone optional
copy_fill_height link_list st_ch end_ch from_link zone optional

where

link_list one or more names of fixed links given in the template definition; with format
name1 name2 ... namei
st_ch   start chainage for the modifier
end_ch   end chainage for the modifier
from_link   name of the link to take the height from
zone   section of the template that the from_link is from (i.e. fixed, cut or fill)

and optional can be none, one or more of

interval   if interval exists, then sections are created at the interval_value for
the range of this command
if interval is missing, then the interval for the Apply MTF is used
interval_value   only exists if interval exists
extra_start   optional - adds in an extra x-section 0.1mm before start chainage
extra_end   optional - adds in an extra x-section 0.1mm before end chainage
inactive   if inactive is there then the command is not processed.
If inactive is not there then the command is processed
// text   the text is a comment

See 21.10.1.5 Start and End Chainages in the Modifier File Format for the format for st_ch and end_ch.

Cut and Fill Slope

The cut_slope modifier is used to modify the slope of variable cut links originally defined by
slope. Similarly the fill_slope modifier is used to modify the slope of variable fill links originally
defined by slope.

The format of the modifier to vary the cut/fill slope of the variable links in link_list is

cut_slope link_list st_ch end_ch st_slope end_slope absrel type optional
fill_slope link_list st_ch end_ch st_slope end_slope absrel type optional

where

link_list   one or more names of cut/fill links given in the template definition; with format
name1 name2 ... namei
st_ch   start chainage for the modifier
end_ch   end chainage for the modifier
st_slope   slope to be used at the start modifier chainage, st_ch
end_slope   slope to be used at the end modifier chainage, end_ch.

absrelrelative (default) or absolute
If absrel is relative (the default) then
the st_slope is added to the current slope of links in link_list at chainage st_ch.
the end_slope is added to the current slope of links in link_list at chainage
end_ch.
If absrel is absolute, then
the slope of links in link_list is set to st_slope at chainage st_ch.
the slope of links in link_list is set to end_slope at chainage end_ch.

type   linear (default) or cubic
If type is linear (the default), then the slope of links in link_list is varied linearly (with respect
to the reference chainage) between the slope at chainage st_ch and chainage end_ch.
cubic, then the angle of the slope of links in link_list are varied as a reverse cubic
(with respect to the reference chainage) between the angle of the slope at chainage st_ch
and chainage end_ch.
rotate, then the angle of the slope of the links in link_list are varied linearly (with
respect to the reference chainage) between the angle of the slope at chainage st_ch and
chainage end_ch.
and optional can be none, one or more of

interval if interval exists, then sections are created at the interval_value for
the range of this command
if interval is missing, then the interval for the Apply MTF is used
interval_value only exists if interval exists
extra_start optional - adds in an extra x-section 0.1mm before start chainage
extra_end optional - adds in an extra x-section 0.1mm before end chainage
inactive if inactive is there then the command is not processed.
If inactive is not there then the command is processed
// text the text is a comment

The slope of a link can also be defined by using the slope from the beginning of the link (i.e. the end of the previous link or the hinge string if its the first link) to a given 12d Model string.

cut_slope link_list st_ch end_ch full_string_name side optional
fill_slope link_list st_ch end_ch full_string_name side optional

where

link_list one or more names of cut/fill links given in the template definition; with format
name1 name2 ... namei
st_ch start chainage for the modifier
end_ch end chainage for the modifier
full_string_name name of a 12d Model string to use to calculate slope. The format of
the string name is “model_name->string_name”.
side side to search for string: -1 for left, 0 for left and right, 1 for right

and optional can be none, one or more of

interval if interval exists, then sections are created at the interval_value for
the range of this command
if interval is missing, then the interval for the Apply MTF is used
interval_value only exists if interval exists
extra_start optional - adds in an extra x-section 0.1mm before start chainage
extra_end optional - adds in an extra x-section 0.1mm before end chainage
inactive if inactive is there then the command is not processed.
If inactive is not there then the command is processed
// text the text is a comment

The slope of a link can also be defined by using the slope between two 12d Model strings str_name_1 and str_name_2.

cut_slope link_list st_ch end_ch str_name_1 side1 str_name_2 optional
fill_slope link_list st_ch end_ch str_name_1 side1 str_name_2 side2 optional

See 21.10.1.5 Start and End Chainages in the Modifier File Format for the format for st_ch and end_ch.

Cut and Fill Slope from Link

The cut and fill slope_from_link modifiers are used to modify the slope of cut and fill links originally defined by slope, to be the same slope or xfall as another link. That is, the slope of the link is a copy of the slope of another link.

The format of the modifier to vary the cut and fill slope_from_link of the fixed links given by
link_list is

**copy_cut_slope** link_list st_ch end_ch from_link zone optional
**copy_fill_slope** link_list st_ch end_ch from_link zone optional

where

link_list one or more names of fixed links given in the template definition; with format
name1 name2 ... namei

st_ch start chainage for the modifier

end_ch end chainage for the modifier

from_link name of the link to take the slope or xfall from

zone section of the template that the from_link is from (i.e. fixed, cut or fill)

and optional can be none, one or more of

interval if interval exists, then sections are created at the interval_value for the range of this command

if interval is missing, then the interval for the Apply MTF is used

interval_value only exists if interval exists

extra_start optional - adds in an extra x-section 0.1mm before start chainage

extra_end optional - adds in an extra x-section 0.1mm before end chainage

inactive if inactive is there then the command is not processed.

If inactive is not there then the command is processed

// text the text is a comment

**Important Note**
The link to copy slope from can be defined in terms of slope or cross fall.

If the link to copy is defined by cross fall, then the slope is calculated to match the cross fall. Hence this command can be used with cut and fill slopes to match to rotation of cross fall of fixed links for super-elevation.

See **21.10.1.5 Start and End Chainages in the Modifier File Format** for the format for st_ch and end_ch.

**Cut and Fill Tin Height**
The **cut and fill tin height** modifiers are used to modify the height of the link so that the link will sit on the tin at the given width.

The tin height can only be used for a cut or fill link defined by width and height.

The format of the modifiers to vary the **cut** and **fill tin height** of the links in the **link_list** are:

**tin_cut_height** link_list st_ch end_ch tin_name optional

**tin_fill_height** link_list st_ch end_ch tin_name optional

where

link_list one or more names of cut/fill links given in the template definition; with format
name1 name2 ... namei

st_ch start chainage for the modifier

end_ch end chainage for the modifier

tin_name name of the tin to be used in defining the height.

and optional can be none, one or more of

interval if interval exists, then sections are created at the interval_value for the range of this command

if interval is missing, then the interval for the Apply MTF is used
interval_value only exists if interval exists
extra_start optional - adds in an extra x-section 0.1mm before start chainage
extra_end optional - adds in an extra x-section 0.1mm before end chainage
inactive if inactive is there then the command is not processed.
If inactive is not there then the command is processed
// text the text is a comment
See 21.10.1.5 Start and End Chainages in the Modifier File Format for the format for st_ch and end_ch.

Cut and Fill Tin Slope

The **cut and fill tin slope** modifier is used to modify the slope of the link so that the link will sit on the tin at the given width.

The cut and fill tin slope can only be used for a cut/fill link defined by width and slope.

The format of the modifiers to vary the **cut** and fill **tin slope** of the links in the **link_list** are:

\[
\text{cut_slope} \quad \text{link_list} \quad \text{st_ch} \quad \text{end_ch} \quad \text{tin_name} \quad \text{optional}
\]

\[
\text{fill_slope} \quad \text{link_list} \quad \text{st_ch} \quad \text{end_ch} \quad \text{tin_name} \quad \text{optional}
\]

where

- **link_list** one or more names of fixed links given in the template definition; with format name1 name2 ... namei
- **st_ch** start chainage for the modifier
- **end_ch** end chainage for the modifier
- **tin_name** name of the tin to be used in defining the slope.

and **optional** can be none, one or more of

- **interval** if interval exists, then sections are created at the interval_value for the range of this command
  if interval is missing, then the interval for the Apply MTF is used
- **interval_value** only exists if interval exists
- **extra_start** optional - adds in an extra x-section 0.1mm before start chainage
- **extra_end** optional - adds in an extra x-section 0.1mm before end chainage
- **inactive** if inactive is there then the command is not processed.
  If inactive is not there then the command is processed
- **// text** the text is a comment

See 21.10.1.5 Start and End Chainages in the Modifier File Format for the format for st_ch and end_ch.

Please continue to the next section 21.10.1.9 Final Link Modifiers File Format.
21.10.1.9 Final Link Modifiers File Format

**Final Width**

The format of the modifier to vary the **width** of the final cut and fill link *link_name* is

```
final_width link_name st_ch end_ch st_wid end_wid absrel type optional
```

where

- **link_name**: name of final link given in the template definition
- **st_ch**: start chainage for the modifier
- **end_ch**: end chainage for the modifier
- **st_wid**: width to be used at the start modifier chainage, *st_ch*
- **end_wid**: width to be used at the end modifier chainage, *end_ch*
- **absrel**: relative (default) or absolute

If **absrel** is **relative** (the default) then

- the **st_wid** is added to the current width of *link_name* at chainage **st_ch**.
- the **end_wid** is added to the current width of *link_name* at chainage **end_ch**.

If **absrel** is **absolute**, then

- the width of *link_name* is set to **st_wid** at chainage **st_ch**.
- the width of *link_name* is set to **end_wid** at chainage **end_ch**.

- **type**: linear (default) or cubic

  - If **type** is **linear** (the default), then the width of *link_name* is varied linearly (with respect to the reference chainage) between the width at chainage **st_ch** and chainage **end_ch**.
  
  - If **type** is **cubic**, then the width of *link_name* is varied as a reverse cubic (with respect to the reference chainage) between the width at chainage **st_ch** and chainage **end_ch**.

and **optional** can be none, one or more of

- **interval**: if interval exists, then sections are created at the interval_value for the range of this command
  - if interval is missing, then the interval for the Apply MTF is used
  - if **interval** exists only exists if **interval** exists
  - **extra_start**: optional - adds in an extra x-section 0.1mm before start chainage
  - **extra_end**: optional - adds in an extra x-section 0.1mm before end chainage
  
  **inactive**: if **inactive** is there then the command is not processed.
  - If inactive is not there then the command is processed

  // text the text is a comment

See **21.10.1.5 Start and End Chainages in the Modifier File Format** for the format for **st_ch** and **end_ch**.

**Final Cut and Fill Slope**

The format of the modifier to vary the cut/fill slope of the final link *link_name* is

```
final_cut_slope link_name st_ch end_ch st_slope end_slope absrel type optional
final_fill_slope link_name st_ch end_ch st_slope end_slope absrel type optional
```

where

- **link_name**: name of final link given in the template definition
- **st_ch**: start chainage for the modifier
- **end_ch**: end chainage for the modifier
- **st_slope**: slope to be used at the start modifier chainage, *st_ch*
- **end_slope**: slope to be used at the end modifier chainage, *end_ch*
- **absrel**: relative (default) or absolute
If `absrel` is **relative** (the default) then
the `st_slope` is added to the current slope of `link_name` at chainage `st_ch`.
the `end_slope` is added to the current slope of `link_name` at chainage `end_ch`.

If `absrel` is **absolute**, then
the slope of `link_name` is set to `st_slope` at chainage `st_ch`.
the slope of `link_name` is set to `end_slope` at chainage `end_ch`.

**type**

- linear (default) or cubic

If `type` is **linear** (the default), then the slope of `link_name` is varied linearly (with respect to
the reference chainage) between the slope at chainage `st_ch` and chainage `end_ch`.
**cubic**, then the angle of the slope of `link_name` is varied as a reverse cubic (with
respect to the reference chainage) between the angle of the slope at chainage `st_ch` and
chainage `end_ch`.

and **optional** can be none, one or more of

- `interval` if interval exists, then sections are created at the `interval_value` for
  the range of this command
  if interval is missing, then the interval for the Apply MTF is used
  `interval_value` only exists if `interval` exists
- `extra_start` optional - adds in an extra x-section 0.1mm before start chainage
- `extra_end` optional - adds in an extra x-section 0.1mm before end chainage
- `inactive` if `inactive` is there then the command is not processed.
  If inactive is not there then the command is processed
  // text the text is a comment

See 21.10.1.5 Start and End Chainages in the Modifier File Format for the format for `st_ch` and `end_ch`.

**Stopping Final Cut and Fill Slope**

The final link can be stopped altogether in either cut or fill.
The format of the modifier to stop the cut/fill slope of the final link `link_name` is

- `final_no_cut_slope` *link_name* `st_ch` `end_ch` optional
- `final_no_fill_slope` *link_name* `st_ch` `end_ch` optional

where

- `link_name` name of final link given in the template definition
- `st_ch` start chainage for the final link to stop
- `end_ch` end chainage for the final link to stop

and **optional** can be none, one or more of

- `interval` if interval exists, then sections are created at the `interval_value` for
  the range of this command
  if interval is missing, then the interval for the Apply MTF is used
  `interval_value` only exists if `interval` exists
- `extra_start` optional - adds in an extra x-section 0.1mm before start chainage
- `extra_end` optional - adds in an extra x-section 0.1mm before end chainage
- `inactive` if `inactive` is there then the command is not processed.
  If inactive is not there then the command is processed
  // text the text is a comment

See 21.10.1.5 Start and End Chainages in the Modifier File Format for the format for `st_ch` and `end_ch`.
Please continue to the next section 21.10.1.10 Snippets File Format.
21.10.1.10 Snippets File Format

Snippets are a method of inserting groups of modifiers at once. Snippets can have parameters but the values of the parameters are saved in the actual MTF.

```
snippet snippet_file st_ch end_ch param_name_1 param_value_1...
 param_name_n param_value_n optional
```

where **unknown** takes the place of the one of width, height or xfall not being used, and

- **snippet_file** file containing the snippet definition
- **st_ch** start chainage for creating the link
- **end_ch** end chainage for creating the link
- **param_name_n** name of the nth parameter - must be in quotes ("")
- **param_value_n** value for the nth parameter - must be in quotes

and **optional** can be none, one or more of

- **interval** if interval exists, then sections are created at the interval_value for the range of this command
  - if interval is missing, then the interval for the Apply MTF is used
- **interval_value** only exists if **interval** exists
- **extra_start** optional - adds in an extra x-section 0.1mm before start chainage
- **extra_end** optional - adds in an extra x-section 0.1mm before end chainage

- **inactive** if **inactive** is there then the command is not processed.
  - If inactive is not there then the command is processed
- **// text** the text is a comment

See 21.10.1.5 Start and End Chainages in the Modifier File Format for the format for st_ch and end_ch.

For more information on the inserting and use of snippets, see 21.5 Defining and Using Snippets.

Please continue to the next section 21.10.1.11 A Template Modifier File Example.
21.10.1.11 A Template Modifier File Example

```plaintext
left_side = {
 -99999.9 "std"
 99999.9
}
right_side = {
 -99999.9 "std"
 99999.9
}

// -- assumes --
left_side_modifier = {

 width "kerb" 103 203.0 0.0 3.0 absolute linear // widen from width 0 to width 3 - linear
 width "kerb" 203.0 303.0 3.0 3.0 absolute // keep width at 3
 width "kerb" 303.0 403.0 3.0 0.0 absolute // widen from width 3 to width 0 - linear
 width "kerb" 153.0 253.0 0.0 9.0 cubic relative
 width "kerb" 253.0 353.0 9.0 0.0 cubic // relative is default
 xfall "kerb" 53.0 153.0 0.0 6.0 relative linear
 xfall "kerb" 153.0 353.0 6.0 6.0 relative // linear
 xfall "kerb" 353.0 453.0 6.0 0.0 // relative & linear
 width "kerb" 440.0 480.0 "table drain->table drain" extra_start extra_end
 xfall "kerb" 440.0 480.0 "table drain->table drain" extra_start extra_end
 width "kerb" 440.0 480.0 1.0 1.0 relative
 cut_width "a" 103.0 203.0 0.0 9.0
 cut_width "a" 203.0 303.0 9.0 9.0
 cut_width "a" 303.0 403.0 9.0 0.0
 cut_slope "a" 103.0 203.0 0.0 3.0
 cut_slope "a" 203.0 303.0 3.0 3.0
 cut_slope "a" 303.0 403.0 3.0 0.0
 cut_width "a" 500.0 520.0 "table drain->table drain" extra_start extra_end
 cut_slope "a" 500.0 520.0 "table drain->table drain" extra_start extra_end
 fill_width "a" 103.0 203.0 0.0 9.0
 fill_width "a" 203.0 303.0 9.0 9.0
 fill_width "a" 303.0 403.0 9.0 0.0
 fill_slope "a" 103.0 203.0 0.0 3.0
 fill_slope "a" 203.0 303.0 3.0 3.0
 fill_slope "a" 303.0 403.0 3.0 0.0
 fill_width "a" 560.0 610.0 "table drain->table drain" extra_start extra_end
 fill_slope "a" 560.0 610.0 "table drain->table drain" extra_start extra_end
 final_width "final" 103.0 403.0 100.0 50.0
 final_cut_slope "final" 103.0 403.0 0.0 3.0
 final_fill_slope "final" 103.0 403.0 0.0 2.0
 final_no_cut_slope "final" 190.0 310.0 extra_start extra_end
 final_no_fill_slope "final" 190.0 310.0 extra_start extra_end

}
right_side_modifier = {
}
```

---

"Text Format of Files"
Go to the next section 21.10.1.12 MTF Stripping File Format or back to 21.10.1 Text Format of the MTF File.
21.10.1.12 MTF Stripping File Format

The stripping depth is given in the Modifiers and Templates File (*.mtf) and is similar to the format for applying templates except there is no separate left and right side.

The stripping definition begins with the key words

    stripping =

A list of chainages (in ascending order, one per line) with corresponding stripping depth then follows. The list of chainages and stripping depths is enclosed in curly braces {}.

The chainage-stripping lists are assembled as follows

(a) to represent a stripping depth starting at a given chainage, the chainage value followed by the stripping depth is given. The chainage and stripping depth are separated by one or more spaces. For example, the stripping depth 0.03 starting at chainage 150 is represented by

    150 0.03

The stripping depth is assumed to apply until the chainage given on the next line of the stripping definition.

If the stripping depth is to go to the end of the reference string, add a line with a chainage greater than or equal to the end chainage. For example

    150 0.03
    9999 0.0

Warning - unlike applying templates, a stripping depth must exist after a chainage, however the stripping depth can be zero.

(b) linearly varying stripping depth between chainages is represented by giving the start chainage for the variation followed on the same line by the start depth and the end depth separated by a comma.

The linear change takes place over the interval beginning at this chainage and ending at the chainage given on the next line of the stripping definition.

For example, to linearly vary the stripping depth from 0.02 to 0.03 between the chainages 350 and 500, use

    350 0.02, 0.03
    500 0.03

A Stripping Example

An example of a stripping command is

    stripping = {
        -999 0.03
        30 0.0
        70 0.03, 0.05
        110.5 0.05
        999 0.05
    }

Go to the next section 21.10.1.13 MTF Boxing File Format or back to 21.10.1 Text Format of the MTF File
21.10.1.13 MTF Boxing File Format

Apart from a key word specifying whether the following part of the definition is for the left or the right, the set out for the left boxing is identical to the right boxing. Hence only the left boxing will be described in detail.

The left boxing definition begins with the key words

```
left_boxing =
```

A list of chainages (in ascending order, one per line) with corresponding boxing names then follows. The list of chainages and boxing is enclosed in curly braces `{ }`.

The chainage-boxing lists are assembled as follows

(a) to represent a boxing starting at a given chainage, the chainage value followed by the boxing name is given. The chainage and boxing name are separated by one or more spaces. For example, the boxing `left` starting at chainage 150 is represented by

```
150 left
```

The boxing is assumed to apply until the chainage given on the next line of the left_boxing definition.

(b) if no boxing exists from a chainage, simply include the chainage with no boxing name following it. For example, if there is no boxing from chainage 250, this is represented by

```
250
```

The non-existence of boxing is assumed until the chainage given on the next line of the left_side definition.

If the boxing is to go to the end of the reference string, add a line with a chainage greater than or equal to the end chainage. For example

```
150 left
9999
```

When using the Apply MTF option, the name of the boxing definitions file is given by a `boxing_file` command in the Modifiers and Templates File.

```
boxing_file = boxing_definitions_file
```

When using the boxing many option, if a file name is given in the boxing file panel field, it is used for the boxing definitions file, otherwise the boxing_file command in the Modifiers and Templates File is used.

**Note** - if the boxing name includes spaces, then the name must be enclosed in quotes “. For example, “left 1”.

**An Applying Boxing Example**

```
boxing_file = "boxing_for_client.bf"
left_boxing = {
 -999 left
 30
 70 "left narrow"
 110.5 left
 999
}
right_boxing = {
 -999 right
 30
 70 "right narrow"
 110.5 right
```
Warning - no interpolation or modifiers exist for boxing.

Go to the next section 21.10.1.14 MTF Width File Format or back to 21.10.1 Text Format of the MTF File
21.10.1.14 MTF Width File Format

The format for section width in the mtf file is simply

\[ \text{section\_width} = \text{value} \quad \text{// default is 10000} \]

where value is the distance to search from the hinge string for strings required in some options. If section_width is missing, then it takes the default value of 10000.

For example

\[ \text{section\_width} = 100.0 \]

Go to the next section 21.10.1.15 MTF String Modifiers File Format or back to 21.10.1 Text Format of the MTF File
21.10.1.15 MTF String Modifiers File Format

In the Modifiers and Templates File, the **string modifiers** definition begins with the key word

```
string_modifiers =
```

followed by one or more occurrences of the string modifier command **height** enclosed by curly braces `{ }`.

The definition of the string modifier commands will now be given.

**Height**

The **height** the **Height** string modifier calculates for the amend point is given by:

(a) if the absolute flag is not set, the height of the hinge point, otherwise zero.

plus

(b) the interpolated height for the user given heights at the start and end chainages

plus

(c) the interpolated height for the user given cross falls at the start and end chainage.

That is, if the absolute flag is not set:

```plaintext
new height = hinge height + (interpolated height) + (interpolated xfall) x (offset distance)
```

If the absolute flag is set:

```plaintext
new height = (interpolated height) + (interpolated xfall) x (offset distance)
```

The format of the **Height** string modifier is

```
height amend_str ref_str hinge_str st_ch end_ch ch_int st_xfall end_xfall st_ht end_ht absolute
```

where

- **amend_str** name of a **12d Model** string to take the hinge point out to. The format of the string name is “model_name->string_name”.
- **ref_str** name of reference string. The format of the string name is “model_name->string_name”.
- **hinge_str** name of hinge string. The format of the string name is “model_name->string_name”.
- **st_ch** start chainage for the modifier
- **end_ch** end chainage for the modifier
- **ch_int** interval between chainage points - can be the word **null**
- **st_xfall** xfall to be used at the start modifier chainage, **st_ch**
- **end_xfall** xfall to be used at the end modifier chainage, **end_ch**.
- **st_ht** height to be used at the start modifier chainage, **st_ch**
- **end_ht** height to be used at the end modifier chainage, **end_ch**.
- **absolute** optional - if it exists, include the height of the hinge string

**Height and Two Strings**

The **height** the **Height 2x** string modifier calculates for the amend point is given by:

(a) the height of the hinge point

plus
(b) the offset distance multiplied by the cross fall between two user selected strings.

\[
\text{new height} = \text{hinge height} + (\text{xfall between string 1 and string 2}) \times \text{(offset distance)}
\]

The format of the \text{Height 2x} string modifier is

\[
\text{height amend_str ref_str hinge_str st_ch end_ch ch_int xfall_str1 xfall_str2}
\]

where

- \text{amend_str} name of a 12d Model string to take the hinge point out to. The format of the string name is “model_name->string_name”.
- \text{ref_str} name of reference string. The format of the string name is “model_name->string_name”.
- \text{hinge_str} name of hinge string. The format of the string name is “model_name->string_name”.
- \text{st_ch} start chainage for the modifier
- \text{end_ch} end chainage for the modifier
- \text{ch_int} interval between chainage points - can be the word \text{null}
- \text{xfall_str_1} name of first string to calculate cross fall between. The format of the string name is “model_name->string_name”.
- \text{xfall_str_2} name of second string to calculate cross fall between. The format of the string name is “model_name->string_name”.

Go to the next section 21.10.1.16 \text{Substitutions in the Modifiers and Templates File} or back to 21.10.1 \text{Text Format of the MTF File}
21.10.1.16 Substitutions in the Modifiers and Templates File

The many template variables are special variables standing for information about the reference string used in the Apply MTF operation.

The many template variables are only evaluated when the many template file is used in an Apply MTF operation and provide a mechanism to generalize the many template file.

The many template file also recognizes the CCCP preprocessor rules including #include, #define, #if etc.

**Many Template Variables**

The list of the many template variables is:

- $tangent_curve_n: chainage of the tangent curve point for the nth HIP
- $tangent_spiral_n: tangent spiral
- $curve_spiral_n: curve spiral
- $spiral_curve_n: spiral curve
- $spiral_spiral_n: spiral curve
- $spiral_tangent_n: spiral tangent
- $curve_tangent_n: curve tangent
- $start_spiral_n: length of the start spiral on the nth HIP point
- $end_spiral_n: length of the end spiral
- $radius_n: absolute radius of the curve
- $signed_radius_n: signed radius of the curve
- $vertical_tangent_curve_n: chainage of the tangent curve point for the nth VIP
- $vertical_spiral_n: chainage of the tangent spiral point for the nth VIP
- $vertical_sag_n: chainage of the sag point for the nth HIP
- $vertical_crest_n: crest
- $vertical_crest_sag_n: crest or sag

For example,

- $tangent_spiral_3: get the chainage for the tangent spiral on HIP 3.

The variables can be used in expressions with the arithmetic operations +, -, *, and / as long as the expression is surrounded by round brackets ( ).

For example, in the width command:

```
width E ($tangent_spiral_2 - 50) ($tangent_spiral_2 + 50) 3 5 absolute
```

the expression ($tangent_spiral_2 - 50) will yield the chainage of fifty metres before the tangent spiral point of the second HIP point.

The variables can also be used in #define's and #include's according to the following CCCP rules.

(a) **#define** NAME Expansion of NAME

   if the #define is longer than one line, the backslash character `\` is added to the end of each line that has another line of the #define following to indicate that the #define continues to the next line.

(b) **#define** can be used to define a block of things with more than one argument

   For example,
#define SUPER(name,ip,xf1,xf2)  
  xfall name START_TAPER(ip) xf1 xf2 absolute \ 
  xfall name FIXED_TAPER(ip) xf2 xf2 absolute \ 
  xfall name END_TAPER(ip) xf2 xf1 absolute 

means that SUPER("EB",3,-3.0,3.0) will be expanded to the three lines:

```c
xfall "EB" START_TAPER(3) -3.0 3.0 absolute
xfall "EB" FIXED_TAPER(3) 3.0 3.0 absolute
xfall "EB" END_TAPER(3) 3.0 -3.0 absolute
```

Note that \ is used to indicate that the #define continues to the next line.

(c) \( (\text{if} (\text{express}) \{ \text{expression1} \} \text{ else } \{ \text{expression 2} \}) \) is an expression \text{express}, which evaluates to

- if \text{express} is true, then the value of the expression is \text{expression1}
- otherwise \text{expression 2}.

(d) \text{word##p}
is equivalent to \text{wordp}

(e) \#include \text{file_name}

A number of #defines can be placed in a file and included in the mtf by using the #include.

As an example combining the above rules, the meaning of

```
LEADING_TAPER_START(2)
```
given by the following $define:

```
#define LEADING_TAPER_START(ip) (if($radius_##ip < 75) {$tangent_spiral_##ip - 50} else {$tangent_spiral_##ip - 75})
```

is

- if the radius of the second HIP is less than 75, then set LEADING_TAPER_START(2) to the chainage of the tangent spiral point of the second HIP point, less fifty metres,
- otherwise LEADING_TAPER_START(2) is set to the chainage of the tangent spiral point of the second HIP point, less seventy five metres.

A more complicated example now follows which shows how #defines can be used to easily apply super-elevation according to rules involving leading and trailing spirals.

```c
// ---
#define LEADING_TAPER_START(ip) (if($radius_##ip < 75) {$tangent_spiral_##ip - 50} else {$tangent_spiral_##ip - 75})
// Note: LEADING_TAPER_START evaluates to a chainage.
#define LEADING_TAPER_END(ip) (if($radius_##ip < 75) {$tangent_spiral_##ip + 10} else {$tangent_spiral_##ip + 25})
// Note: LEADING_TAPER_END evaluates to a chainage.
#define TRAILING_TAPER_START(ip) (if($radius_##ip < 75) {$spiral_tangent_##ip - 10} else {$spiral_tangent_##ip - 25})
// Note: TRAILING_TAPER_START evaluates to a chainage.
#define TRAILING_TAPER_END(ip) (if($radius_##ip < 75) {$spiral_tangent_##ip + 50} else {$spiral_tangent_##ip + 75})
// Note: TRAILING_TAPER_END evaluates to a chainage.
```
#define START_TAPER(ip) LEADING_TAPER_START(ip)\ LEADING_TAPER_END(ip)

// Note: START_TAPER evaluates to two chainages:  chainage1  chainage2.
#define FIXED_TAPER(ip) LEADING_TAPER_END(ip)\ TRAILING_TAPER_START(ip)

// Note: FIXED_TAPER evaluates to two chainages:  chainage1  chainage2.
#define END_TAPER(ip)   TRAILING_TAPER_START(ip)\ TRAILING_TAPER_END(ip)

// Note: TRAILING_TAPER evaluates to two chainages:  chainage1  chainage2.
#define SUPER(name,ip,x1,x2) \ 
  xfall name START_TAPER(ip) x1 x2 absolute \ 
  xfall name FIXED_TAPER(ip) x2 x2 absolute \ 
  xfall name END_TAPER(ip)   x2 x1 absolute

With the above #defines, SUPER evaluates to three lines of xfall MTF Modifiers which rotates cross-fall, keeps it constant and then counter-rotates the cross-fall about leading and trailing spirals for an HIP point.

For example,

SUPER(EB,2,-3,3)

would give expand to the following three lines of xfall commands for link EB which will rotate xfall from -3 to 3, hold it at 3 and then rotate it back form 3 to -3, all about the leading and trailing spirals for horizontal intersection point number two:

xfall EB begin_chainage_for_start_taper end_chainage_for_start_taper 3 3 absolute
xfall EB begin_chainage_for_fixed_taper end_chainage_for_fixed_taper_ch 3 3 absolute
xfall EB begin_chainage_for_end_taper end_chainage_for_end_taper 3 -3 absolute

The above definitions of SUPER could be placed in a file, say

f:\12d\12dmodel\library\super_mtf.def

and then simply included into a mtf file using the a #include:

#include "f:\12d\12dmodel\library\super_mtf.def"

Examples of Substitutions in the Modifiers and Templates File

The following example shows how #defines can be used to easily apply super-elevation according to rules involving leading and trailing spirals.

The definition of SUPER is given in the file, f:\12d\12dmodel\library\super_mtf.def, which is simply included in the mtf file using a #include.

    // ----------------------------------------------------------------
    // include the file containing the definition of SUPER
    // ----------------------------------------------------------------
    #include "f:\12d\12dmodel\library\super_mtf.def"
// apply templates left and right and then modifier them
// -----------------------------------------------------------------

left_side = {
    -999999 std
    999999
}

right_side = {
    -999999 std
    999999
}

specials = {
}

hinge_modifier = {
}

left_side_modifier = {
    // linearly widen the link EB by 12 metres and bring it back
    // in again.
    width EB ($tangent_spiral_2 - 50) ($tangent_spiral_2 + 50) 0 12
    width EB ($tangent_spiral_2 + 50) ($spiral_tangent_7 - 50) 12 12
    width EB ($spiral_tangent_7 - 50) ($spiral_tangent_7 + 50) 12 0

    // define superelevation
    SUPER(EB,2,-3,3)
    SUPER(EB,4,-3,3)
    SUPER(EB,5,-3,3)
    SUPER(EB,6,-3,3)
}

right_side_modifier = {
    SUPER(EB,3,-3,3)
    SUPER(EB,7,-3,3)
}

stripping = {
}

//boxing_file = "yourfile.bf"
left_boxing = {
}
right_boxing = {
}
string_modifiers = {
}
//section_width = 10000.0
21.10.2 Text Format of the Boxing File

The interactive editor for creating the Boxing Definitions in the Boxing file has been given in the previous sections 21.7.2 Edit Boxing File.

This section will describe the text layout of the text boxing file.

Boxing is defined by a series of commands going from left to right across the points of a cross section. (Cross sections are generated as 4d strings by options such as apply and cuts).

Named and unnamed points across a 4d string representing a cross section

The definitions of boxing cross sections are set up in a file ending in .bf (called the boxing file) and any number of boxing definitions can be placed in the boxing file as long as each boxing definition is given a unique name.

In the boxing file, a Boxing Definition with name boxing_name is set out as

```
boxing boxing_name {
 boxing commands
}
```

The boxing commands apply from the offset specified at the beginning of that command (start offset for the command) to the start offset of the next command in the file (like chainages and templates in the Apply MTF file). Hence the end offset for a command is the start offset of the following command in the file.

For example, in the sequence

```
offset1, command1
offset2, command2
```

command1 goes from offset1 (the start offset for command1) to offset2 (the end offset for command1).

The offsets can be fixed values or can be specified relative to a point name on the 4d string representing the x-section. One restriction is that all the points mentioned in a boxing definition, must be present in each x-section the boxing definition is applied to.

The notation used to specify an actual offset, or offset relative to a point name is

```
offset_value
```

or

```
"point_name"
```

or

```
"point_name" +/- offset_value
```

and means in the first case

take the specified offset value (offset_value can be positive or negative).

and for the other two relative cases

take the offset at the string or 4d point called point_name and add offset_value to it (offset_value can be positive of negative).

Hence the offset can be specified as either a value or given relative to point_name (relative offset). For convenience, the offset will be denoted by rel_off.
The major advantage of defining boxing in terms of point names is that whenever the points are modified using MTF Modifiers, the boxing across the section is also automatically modified.

Since the offset part of a command can consist of text plus or minus a number, commas are used to separate each field of the command.

A boxing definition may be used in either a left_boxing or right_boxing mtf command (see the section, creating boxing), however unlike the case for templates, the boxing definition is applied to the point names going from left to right regardless of whether the boxing definition is used on the left or the right.

In practice, the definitions for left and right boxing are usually different because of the necessity of having unique point names across the entire cross section.

Vertical Walls
If a boxing definition creates two different height values at the one offset (i.e. a wall), then extra offset points are automatically inserted into the boxing x-section (at 0.1 mm from the previous point) so that no points are on top of each other.

So in effect a vertical wall is created but since no points are created that are directly above each other, the data can be triangulated.

The commands in the boxing definition are:
- see 21.10.2.1 Text Format - Boxing Copy
- see 21.10.2.2 Text Format - Boxing Copy with Height Adjustment
- see 21.10.2.4 Text Format - Boxing Line
- see 21.10.2.5 Text Format - Boxing Xfall
- see 21.10.2.6 Text Format - Boxing Xfall1
- see 21.10.2.9 Text Format - Boxing End
- see 21.10.2.10 Text Format - Boxing Right_Xfall
- see 21.10.2.11 Text Format - Boxing Right_slope
- see 21.10.2.12 Text Format - Boxing Right_copy
- see 21.10.2.13 Text Format - Boxing Left_Xfall
- see 21.10.2.14 Text Format - Boxing Left_slope
- see 21.10.2.15 Text Format - Boxing Left_copy
- see 21.10.2.16 Text Format - Boxing Definitions Example

21.10.2.1 Text Format - Boxing Copy

rel_off,              copy

This copies the links (or parts of links) from the start offset rel_off to the offset on the next line, keeping the present crossfall and height of each link.

For the boxing panel that creates this boxing command, see 21.7.2.2.1 Boxing Copy.
21.10.2.2 Text Format - Boxing Copy with Height Adjustment

\texttt{rel\_off, \ copy, \ delta\_height}

This copies the links (or parts of links) from the start offset \texttt{rel\_off} to the offset on the next line, keeping the present slope of each link but adjusting the height of each link by \texttt{delta\_height}.

For the boxing panel that creates this boxing command, see Section 21.7.2.2.1 Boxing Copy.

21.10.2.3 Text Format - Boxing Vertex

For the boxing panel that creates this boxing command, see Section 21.7.2.2.2 Boxing Vertex.

21.10.2.4 Text Format - Boxing Line

\textbf{Line Through Two Given Points}

\texttt{rel\_off, \ line, \ rel\_off\_1, \ delta\_height\_1, \ rel\_off\_2, \ delta\_height\_2}

This creates a link from the start offset \texttt{rel\_off} to the offset on the next line, with a
(a) slope given by two points
(b) start height given by projecting to the start offset, the line through the two points.

The first point defining the line has an offset \texttt{rel\_off\_1} and a height given by the height of the design x-section at offset \texttt{rel\_off\_1} adjusted by \texttt{delta\_height\_1}.

The second point defining the line has an offset \texttt{rel\_off\_2} and a height given by the height of the design x-section at offset \texttt{rel\_off\_2} adjusted by \texttt{delta\_height\_2}.

The typed format of the \texttt{line} commands created by this panel is (all on one line):
\texttt{point\_name + point\_offset, line, point\_1\_name + point\_1\_offset, delta\_height\_1, point\_2\_name + point\_2\_offset, delta\_height\_2}
21.10.2.5 Text Format - Boxing Xfall

**Line Through a Given Point with a Given Crossfall**

rel_off, xfall, rel_off_1, delta_height_1, xfall_value

This creates a link from the start offset to the offset on the next line, with a

(a) user given xfall

(b) start height given by projecting to the start offset, the line with a given xfall and going through a given point.

The point defining the line has an offset rel_off_1 and a height given by the height of the design x-section at offset rel_off_1 adjusted by delta_height_1.

The typed formats of the xfall commands created by this panel is:

point_name + point_offset, xfall, control_name + control_offset, control_height, xfall

The crossfall of the line is given by xfall_value

rel_off, xfall, rel_off_1, delta_height_1, xfall_value

next_off, ...

For the boxing panel that creates this boxing command, see 21.7.2.4 Boxing Xfall - line through a point with a given crossfall.
21.10.2.6 Text Format - Boxing Xfall1

Line Through a Given Point with Crossfall Taken from a Point
rel_off, xfall1, rel_off_1, delta_height_1, rel_off_2, delta_xfall

This creates a link from the start offset rel_off to the offset on the next line, with a
(a) xfall which is the xfall at a given offset plus an addition given xfall
and
(b) start height given by projecting to the start offset, the line with the given xfall and going
through a given point.

The point defining the line has offset rel_off_1 and a height given by the height of the design
x-section at offset rel_off_1 adjusted by delta_height_1

The typed formats of the xfall1 commands created by this panel is:
point_name + point_offset, xfall1, control_name + control_offset, control_height,
xfall_name + xfall_offset, xfall_delta

The xfall of the line is delta_xfall added to the xfall on the design x-section at the offset rel_off_2

For the boxing panel that creates this boxing command, see 21.7.2.2.5 Boxing Xfall 1 - line
through a point with a crossfall taken from a point.

21.10.2.7 Text Format - Boxing Intersect

For the boxing panel that creates this boxing command, see 21.7.2.2.7 Boxing Intersect -
Intersection of Two Lines.

21.10.2.8 Text Format - Boxing Xfall Point

For the boxing panel that creates this boxing command, see 21.7.2.2.9 Boxing Xfall Point.

21.10.2.9 Text Format - Boxing End
rel_off, end

The typed format of the line commands created by this panel is:
point_name + point_offset,  end

This command is used to give an end offset for any of the above commands when no command follows to use for the end offset. That is, the offset rel_off is used as the end offset for the previous command.

end doesn't begin another command and none of the above commands can follow an end command.

All of the above boxing commands are known as standard commands. Hence the end command is the last standard command.

For the boxing panel that creates this boxing command, see 21.7.2.16 Boxing End.

21.10.2.10 Text Format - Boxing Right_Xfall

Batter off Right End of Boxing with Crossfall Taken from a Point

The right_xfall command has two versions - providing a fixed cross fall or using the crossfall from part of the design x-section.

right_xfall rel_off,      delta_xfall
right_xfall xfall_value

The typed formats of the right_xfall commands created by this panel is:

right_xfall,  xfall_name + xfall_offset, xfall_delta

For the first case, the right_xfall command batters off the right end of the boxing using the xfall from the design section at a given offset rel_off plus an additional given xfall delta_xfall, until the design section is intersected. The intersection point is used as the next point in the boxing. Hence the xfall of the batter is delta_xfall added to the xfall on the design x-section at the offset rel_off.

For the second case, the right_xfall command batters off to the right end of the boxing at the given xfall xfall_value until the design section is intersected. The intersection point is used as the next point in the boxing.

In the right_xfall command, the xfall is percent cross-fall and a positive xfall is up and negative down.

For the boxing panel that creates this boxing command, see 21.7.2.18 Boxing Right Side Interface Xfall from Point.
21.10.2.11 Text Format - Boxing Right_slope

**Batter Off the Right End of Boxing with a Given Slope**

right_slope slope_value

The `right_slope` commands batter off to the right end of the boxing at the given slope `slope_value` until the design section is intersected. The intersection point is used as the next point in the boxing. In this command, a positive slope is up and negative down.

For the boxing panel that creates this boxing command, see 21.7.2.2.18 Boxing Right Side Interface Xfall from Point.

21.10.2.12 Text Format - Boxing Right_copy

**Copy from the Last Boxing Point to the end of Design Section**

right_copy value

If value is non-zero, the `right_copy` command copies from the last boxing point to the last point on the design section. Hence the `right_copy` command is used to continue the boxing section from the intersection point with the design section to the end of the design section (a full width boxing section).

**Note**

The `right_xfall` command takes precedence over the `right_slope` command. That is, if both commands exist then only the `right_xfall` command is used.

For the boxing panel that creates this boxing command, see 21.7.2.2.18 Boxing Right Side Interface Xfall from Point.

21.10.2.13 Text Format - Boxing Left_Xfall

**Batter off Left End of Boxing with Crossfall Taken from a Point**

left_xfall rel_off, delta_xfall

left_xfall xfall_value

The typed formats of the `left_xfall` commands created by this panel is:

left_xfall, xfall_name + xfall_offset, xfall_delta

The `left_xfall` is identical to the `right_xfall` command except that it is applied at the beginning of the boxing definition and batter off to the left rather than to the right.

In the `left_xfall` command, the `xfall` is percent cross-fall and a positive `xfall` is up and negative down.

For the boxing panel that creates this boxing command, see 21.7.2.2.17 Boxing Left Side Interface Xfall from Point.

21.10.2.14 Text Format - Boxing Left_slope
Batter Off the Left End of Boxing with a Given Slope

left_slope  slope_value

The left_slope is identical to the right_slope command except that it is applied at the beginning of
the boxing definition and batters off to the left rather than to the right. In this command, a positive
slope is up and negative down.

The left_slope and left_copy are identical to the right_slope and right_copy except that they are
applied at the beginning of the boxing definition and batter off and copy to the left rather than to
the right. In this command, a positive slope is up and negative down.

The left_copy command must come before the left_slope command but they both come after all
of the standard commands.

Note
The left_xfall command takes precedence over the left_slope command. That is, if both
commands exist then only the left_xfall command is used.

For the boxing panel that creates this boxing command, see 21.7.2.17 Boxing Left Side
Interface Xfall from Point.

21.10.2.15 Text Format - Boxing Left_copy

Copy from the Start of Design Section to the First Boxing Point

left_copy  value

The left_copy is identical to the right_copy except that it is applied at the beginning of the boxing
definition and copies to the left rather than to the right.

If value is non-zero, the left_copy command copies from the last boxing point to the last point on
the design section. Hence the left_copy command is used to continue the boxing section from
the first boxing point to the start of the design section (a full width boxing section).

Note
The left_xfall, left_slope, left_copy, right_xfall, right_slope and right_copy commands should
come after all of the standard commands.

When a boxing definition is applied on the left side, any right_xfall, right_slope or right_copy is
ignored. Similarly, when a boxing definition is applied on the right side, any left_xfall, left_slope or
left_copy is ignored.

Hence a boxing definition can have a left_xfall, left_slope, left_copy and a right_xfall, right_slope,
right_copy but which set is used depends on whether the boxing definition is used on the left or
the right.

When the boxing panel is used to create the boxing, only one boxing definition is needed and all
of the right_xfall, right_slope, right_copy, left_xfall, left_slope and left_copy commands are used.

For the boxing panel that creates this boxing command, see 21.7.2.17 Boxing Left Side
Interface Xfall from Point.
21.10.2.16 Text Format - Boxing Definitions Example

boxing “1” {
    “Linterface”, copy // line 1
    “Lpath2”, copy, -0.075 // line 2
    “Lpath1”, copy // line 3
    “Lbok” - 0.15, xfall, “Llok”, -0.3, 0 // line 4
    “Llok”, copy, -0.3 // line 5
    “Rlok”, xfall, “Rlok”, -0.3, 0 // line 6
    “Rbok” + 0.15, copy // line 7
    “Rpath1”, copy -0.095 // line 8
    “Rpath2”, copy // line 9
    “Rinterface”, end // line 10
}

Description
Line 1    copy from “Linterface” to “Lpath2”
Line 2    copy and drop by 0.075 from “Lpath 2” to “Lpath 1”
Line 3    copy from “Lpath1” to 0.15 before “Lbok”
Line 4    go from 0.15 before “Lbok” to “Llok” at depth 0.3 below “Llok”, with cross fall 0
Line 5    copy and drop by 0.3 from “Llok” to “Rlok”
Line 6    go from “Rlok” to 0.15 past “Rbok” at depth 0.3 below “Rlok”, with cross fall 0
Line 7    copy from 0.15 past “Rbok” to “Rpath1”
Line 8    copy and drop by 0.095 from “Rpath1” to “Rpath2”
Line 9    copy from “Rpath2” to “Rinterface”

boxing “left narrow” { // boxing defined from just before lkerb to m001
    “lkerb” - 0.7 , copy
    “m001” - 1.0, copy , -0.6
    “m001”, end
}
boxing “left” {
    // boxing defined from the left start of the section to m001 (the centreline say)
    “lkerb”,    copy,    -0.6
    “m001”,    end
    left_slope  5.0
    left_copy   1
}
boxing “right” {
    // boxing defined from m001 to the far right of the section
    “m001”,    copy,    0.6
    “rkerb”,    end
    right_slope 5.0
    right_copy  1
}
boxing “full” {
    // a full width boxing - defines the entire boxing going from left to right
    “lkerb”,    copy,    -0.6
    “rkerb”,    end
    left_slope  5.0
    left_copy   1
    right_slope -5.0
    right_copy  1
}

For more information on how Boxing works in 12d Model, please go to the section 21.4 Smart Chainages.
### 21.11 Superseded MTF Commands

These MTF Modifier options were superseded by the commands in 12d Model 11 that did not care how the links were originally defined.

#### 21.11.0.1 Fixed Link - Modify Width or Height - Superseded

This option has been superseded in V11 by the Fixed Link modifier, Modify Link. See 21.2.2.2.4 Fixed - Modify Link.

The **Width** modifier is used to modify the width of fixed links originally defined by width (width and height or width and xfall).

The **Height** modifier is used to modify the height of fixed links originally defined by height (height and width or height and xfall).

Selecting width and height brings up the Fixed - Modify Width and Fixed - Modify Height panels respectively.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link name</td>
<td>input</td>
<td>select name menu</td>
<td></td>
</tr>
<tr>
<td>Start/End mode</td>
<td>choice box</td>
<td>Start (ref)/End (ref)</td>
<td></td>
</tr>
</tbody>
</table>
defines the start/end chainages for modifying the link.

**Interval**

**Input**

*If non blank*, the interval to use to create cross sections and strings over the given chainage range. 
*If blank*, the **Section separation** value from the **Apply MTF** panel is used.

**Start/End width/height**

**Input**

**Measures menu**

*Start/end width/height for modifying the template link.*

**Extra start/end**

**Tick box**

*If ticked*, add an extra x-section 0.1 mm **before** the start/end chainage.

**Absolute**

**Tick box**

*If ticked*, the width/height is set to the values given in the **start** and **end value** fields.  
*If not ticked*, the values given in the **start** and **end value** fields are added to the existing widths/heights.

**Cubic**

**Tick box**

*If ticked*, the width/height is varied as a reverse cubic between the start and end chainages. 
*If not ticked*, the width/height is varied linearly between the start and end chainages.

**Comment**

**Input**

*Comment to add to the end of the line. In the file, the comment will be preceded by //.*

**Active**

**Tick box**

*If ticked*, use this modifier. 
*If not ticked*, don't use this modifier.

**OK**

**Button**

**OK** stores the values in the fields and removes the panel **BUT no recal**c is done.

**Apply**

**Button**

**Apply** stores the values and leaves the panel on the screen. 

*If the MTF is being used in an **Apply MTF** and **Auto recal**c is ticked in the MTF, then whenever the **Apply** button is clicked, a recal of the associated **Apply MTF** for the MTF is done.*

Continue to the next section **21.11.0.2 Fixed Link - Modify Xfall - Superseded** or go to the replacement options **21.2.2.2 Fixed Link Modifiers** or **21.2.2 Left and Right MTF Modifiers**.
21.11.0.2 Fixed Link - Modify Xfall - Superseded

This option has been superseded in V11 by the Fixed Link modifier, Modify Link. See 21.2.2.2.4 Fixed - Modify Link.

The Xfall modifier is used to modify the cross fall of fixed links originally defined by cross fall (xfall and width or xfall and height). Selecting Xfall brings up the Fixed - Modify Xfall panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link name</td>
<td>input</td>
<td>select name menu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the link to modify.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start/End mode</td>
<td>choice box</td>
<td>Start (ref)/End (ref)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>defines the start/end chainages for modifying the link.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if non blank, the interval to use to create cross sections and strings over the given chainage range. If blank, the Section separation value from the Apply MTF panel is used.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start/End xfall</td>
<td>input</td>
<td>measures menu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>measures menu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra start/end</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
if **ticked**, add an extra x-section 0.1 mm **before** the start/end chainage.

**Absolute** tick box **tick**

if **ticked**, the xfall is set to the values given in the **start** and **end** xfall fields.
if **not ticked**, the values given in the **start** and **end** xfall fields are added to the existing xfall.

**Cubic and Rotate tick boxes:**

Only none or one of **Cubic** and **Rotate** can be set to **tick**.
The **default** is none - that is, **neither is ticked** and in the default case, the crossfall is varied **linearly with respect to crossfall** between the start and end chainages.

**Cubic** tick box

if **ticked**, the crossfall is varied as a reverse cubic between the start and end chainages.

**Rotate** tick box

if **ticked**, the xfall is varied **linearly with respect to the angle**, between the start and end chainages.

**Comment** input

comment to add to the end of the line. In the file, the comment will be preceded by //.

**Active** tick box **tick**

if **ticked**, use this modifier.
if **not ticked**, don’t use this modifier.

**OK** button

**OK** stores the values in the fields and removes the panel BUT no **recalc** is done.

**Apply** button

**Apply** stores the values and leaves the panel on the screen.

If the **MTF** is being used in an **Apply MTF** and **Auto recalc** is ticked in the MTF, then whenever the **Apply** button is clicked, a **recalc** of the associated **Apply MTF** for the MTF is done.

Continue to the next section [21.11.0.3 Fixed Link - Modify Xfall by CRC Formula - Superseded](#) or go to the replacement options [21.2.2 Fixed Link Modifiers](#) or [21.2.2 Left and Right MTF Modifiers](#).
21.11.0.3 Fixed Link - Modify Xfall by CRC Formula - Superseded

This option has been superseded in V11 by the Fixed Link modifier, Modify Link. See 21.2.2.2.4 Fixed - Modify Link.

The Xfall CRC modifier is used to modify the cross fall of fixed links originally defined by xfall and uses the circular reverse curve formula to modify the cross fall.

Selecting Xfall CRC brings up the Fixed - Modify Xfall Circular Reverse Curve panel

![Fixed - Modify XFall Circular Reverse Curve Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link name</td>
<td>input</td>
<td>select name menu</td>
<td>name of the link to modify.</td>
</tr>
<tr>
<td>Start/End mode</td>
<td>choice box</td>
<td>Start (ref)/End (ref)</td>
<td>defines the start/end chainages for modifying the link.</td>
</tr>
<tr>
<td>Interval</td>
<td>input</td>
<td></td>
<td>if non blank, the interval to use to create cross sections and strings over the given chainage range. If blank, the Section separation value from the Apply MTF panel is used.</td>
</tr>
<tr>
<td>Start/End xfall</td>
<td>input</td>
<td>measures menu</td>
<td>start/end crossfall for modifying the template link.</td>
</tr>
<tr>
<td>Start/End length</td>
<td>input</td>
<td>measures menu</td>
<td>start/end length for circular arcs.</td>
</tr>
<tr>
<td>Extra start/end</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
if ticked, add an extra x-section 0.1 mm before the start/end chainage.

Comment  
input  
comment to add to the end of the line. In the file, the comment will be preceded by //.

Active  
tick box  
tick  
if ticked, use this modifier.  
if not ticked, don’t use this modifier.

OK  
button  
OK stores the values in the fields and removes the panel BUT no recalcs is done.

Apply  
button  
Apply stores the values and leaves the panel on the screen.

If the MTF is being used in an Apply MTF and Auto recalcs is ticked in the MTF, then whenever the Apply button is clicked, a recalcs of the associated Apply MTF for the MTF is done.

Continue to the next section 21.11.0.4 Fixed Link - From Link - Superseded or go to the replacement options 21.2.2.2 Fixed Link Modifiers or 21.2.2 Left and Right MTF Modifiers.
21.11.0.4 Fixed Link - From Link - Superseded

The fixed from Link walk-right brings up the fixed from Link menu with options to take the width, xfall or height from another link.

For Width/Height/Xfall from link, go to the next section Fixed Link - Take Width, Height or Xfall from another Link

Fixed Link - Take Width, Height or Xfall from another Link

Width from Link
The Width from link modifier is used to modify the width of fixed links originally defined by width (width and height or width and xfall) to be the same width as another link. That is, the width of the link is a copy of the width of another link.

Height from Link
The Height from link modifier is used to modify the height of fixed links originally defined by height (height and xfall or height and width) to be the same height as another link. That is, the height of the link is a copy of the height of another link.

Xfall from Link
The Xfall from link modifier is used to modify the cross fall of fixed links originally defined by xfall (xfall and height or xfall and width) to be the same xfall as another link. That is, the cross fall of the link is a copy of the cross fall of another link. The link to copy cross fall from can be defined in terms of cross fall or slope. If the link to copy is defined by slope, then the cross fall is calculated to match the slope.

Selecting the Width from link, Height from link or Xfall from link option brings up the Fixed - Modify Width from Link, Fixed- Modify Height from Link and Fixed- Modify Xfall from Link panels respectively.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chainages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Link(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chainages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From link name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From zone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Link name  input  select name menu
  name of the link to modify.

Start/End mode  choice box  Start (ref)/End (ref)
  defines the start/end chainages for modifying the link.

Interval  input
  if non blank, the interval to use to create cross sections and strings over the given chainage range.
  If blank, the Section separation value from the Apply MTF panel is used.

From link name  input  select name menu
  template link to take width/height/xfall from.

From zone  input  fixed
  fixed, cut, fill
    zone that the template link to take width/height/xfall from, comes from.

Extra start/end  tick box
  if ticked, add an extra x-section 0.1 mm before the start/end chainage.

Comment  input
  comment to add to the end of the line. In the file, the comment will be preceded by //</.

Active  tick box  tick
  if ticked, use this modifier.
  if not ticked, don’t use this modifier.

OK  button
  OK stores the values in the fields and removes the panel BUT no recalc is done.

Apply  button
  Apply stores the values and leaves the panel on the screen.

  If the MTF is being used in an Apply MTF and Auto recalc is ticked in the MTF, then whenever the
  Apply button is clicked, a recalc of the associated Apply MTF for the MTF is done.

Continue to the next section 21.11.0.5 Fixed Link - to String - Superseded or go to the
replacement options 21.2.2.2 Fixed Link Modifiers or 21.2.2 Left and Right MTF Modifiers.
21.11.0.5 Fixed Link - to String - Superseded

The fixed from string walk-right brings up the fixed from string menu with options to take the width, xfall or height by going to another string.

For To string, go to
Width/Height/Xfall to string

Fixed Link - Modify To String
Fixed Link - Calculate Width, Height or Xfall to a String

Fixed Link - Modify To String

For any fixed link, To string calculates the required width, height and/or xfall of the link needed to get from the start point of the link to the selected string.

Selecting To string bring up the Fixed - Modify to String panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link name</td>
<td>input select name</td>
<td>names of the links to modify.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start/End mode</td>
<td>choice box</td>
<td>Start (ref)/End (ref)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval</td>
<td>input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>String</td>
<td>string-select</td>
<td>select string to use for defining width/height/crossfall for the link.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Side to search</td>
<td>input</td>
<td>left side, left side, right side, both sides</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra start/end</td>
<td>tick box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>input</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If there is more then one link name then the names must be separated by spaces. If the link name includes a space, then the name must be enclosed in the quotes " (eg "EB 1").

When the Start mode is Start (ref), or Typed and the chainage is blank, the modification begins at the low dropped chainage of the selected string.

When the End mode is End (ref), or Typed and the chainage is blank, the modification ends at the high dropped chainage of the selected string.
comment to add to the end of the line. In the file, the comment will be preceded by //</.

Active tick box tick
if ticked, use this modifier.
if not ticked, don’t use this modifier.

OK button
OK stores the values in the fields and removes the panel BUT no recalc is done.

Apply button
Apply stores the values and leaves the panel on the screen.

If the MTF is being used in an Apply MTF and Auto recalc is ticked in the MTF, then whenever the Apply button is clicked, a recalc of the associated Apply MTF for the MTF is done.
Fixed Link - Calculate Width, Height or Xfall to a String

**Width to String:**
For a fixed link defined by `width` and `height` or `width` and `xfall`, Width to string calculates the width of the link as the width from the start point of the link, to the the selected string. The `xfall` or `height` is taken from the link. The option will give an error for a link defined by `height` and `xfall`.

**Height to String:**
For a fixed link defined by `height` and `width` or `height` and `xfall`, Height to string calculates the height of the link as the difference in the height at the start point of the link, and the height at the selected string. The `xfall` or `width` is taken from the link. The option will give an error for a link defined by `width` and `xfall`.

![Diagram of Width to String](image)

![Diagram of Height to String](image)
Superseded MTF Commands

Xfall to String:
For a fixed link defined by xfall and width or xfall and height, Xfall to string calculates the xfall of the link as the xfall from the start point of the link to the selected string. The width or height is taken from the link. The option will give an error for a link defined by width and height.

Note:
Using two of the above modifiers together and with the same string will place the end point of the link on the selected string. For example for a modifier defined by width and xfall, using width to string and a xfall to string with the same string will place the end of the link on that string.

But the To string option will do the same thing in one command. See Fixed Link - Modify To String.

Selecting the width to string, height to string or xfall to string option brings up the Fixed - Modify Width
to String, Fixed - Modify Height to String and Fixed - Modify Xfall to String panels respectively.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link name</td>
<td>input</td>
<td>select name menu</td>
<td>name of the link to modify:</td>
</tr>
<tr>
<td>Start/End mode</td>
<td>choice box</td>
<td>Start (ref)/End (ref)</td>
<td>defines the start/end chainages for modifying the link.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>When the <strong>Start mode</strong> is <strong>Start (ref)</strong>, or <strong>Typed</strong> and the chainage is <strong>blank</strong>, the modification begins at the low dropped chainage of the selected string.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>When the <strong>End mode</strong> is <strong>End (ref)</strong>, or <strong>Typed</strong> and the chainage is <strong>blank</strong>, the modification ends at the high dropped chainage of the selected string.</td>
</tr>
<tr>
<td>Interval</td>
<td>input</td>
<td></td>
<td>If <strong>non blank</strong>, the interval to use to create cross sections and strings over the given chainage range. <strong>If blank</strong>, the <strong>Section separation</strong> value from the <strong>Apply MTF</strong> panel is used.</td>
</tr>
<tr>
<td>String</td>
<td>string-select</td>
<td></td>
<td>select string to use for defining width/height/crossfall for the link.</td>
</tr>
<tr>
<td>Side to search</td>
<td>input</td>
<td>left side, right side, both sides</td>
<td>side of the hinge string to start searching to find the string to define width/height/crossfall.</td>
</tr>
<tr>
<td>Extra start/end</td>
<td>tick box</td>
<td></td>
<td><strong>If ticked</strong>, add an extra x-section 0.1 mm <strong>before</strong> the start/end chainage.</td>
</tr>
<tr>
<td>Comment</td>
<td>input</td>
<td></td>
<td><strong>comment to add to the end of the line. In the file, the comment will be preceded by //.</strong></td>
</tr>
<tr>
<td>Active</td>
<td>tick box</td>
<td>tick</td>
<td><strong>if ticked</strong>, use this modifier. <strong>if not ticked</strong>, don’t use this modifier.</td>
</tr>
<tr>
<td>OK</td>
<td>button</td>
<td></td>
<td><strong>OK stores the values in the fields and removes the panel BUT no <strong>recalc</strong> is done.</strong></td>
</tr>
<tr>
<td>Apply</td>
<td>button</td>
<td></td>
<td><strong>Apply stores the values and leaves the panel on the screen.</strong></td>
</tr>
</tbody>
</table>

If the **MTF** is being used in an **Apply MTF** and **Auto recalc** is ticked in the **MTF**, then whenever the **Apply** button is clicked, a **recalc** of the associated **Apply MTF** for the **MTF** is done.

Continue to the next section **21.11.0.6 Fixed Link - to Tin - Superseded** or go to the replacement options **21.2.2.2 Fixed Link Modifiers** or **21.2.2 Left and Right MTF Modifiers**.
21.11.0.6 Fixed Link - to Tin - Superseded

The fixed to tin walk-right brings up the fixed to Tin menu with options to calculate the width, xfall or height to get to a given tin.

For Width/Height/Xfall to tin, go to the next section Fixed Link - Modify Width, Height or Xfall to Sit on User Tin.
Fixed Link - Modify Width, Height or Xfall to Sit on User Tin

**Width to Tin**

For a fixed link defined by *width* and *height* or *width* and *xfall*, Width to tin calculates the *width* of the link as the width required so that the link will sit on the user given tin at the *height/xfall given in the link*. The option gives an error for a link defined by *height* and *xfall*.

**Height to Tin**

For a fixed link defined by *height* and *width* or *height* and *xfall*, the Height to tin calculates the *height* of the link as the difference in the height of the start point of the link, and the height that is required so that the link will sit on the user tin at the *width/xfall given in the link*. The option gives an error for a link defined by *width* and *xfall*.
Section View

For a fixed link defined by \textit{xfall and width} or \textit{xfall and height}, \textit{Xfall to Tin} calculates the \textit{xfall} of the link as the \textit{xfall} required so that the link will sit on the user tin at the \textit{width/height given in the link}. The option gives an error for a link defined by \textit{width} and \textit{height}.

\textbf{Xfall to Tin}

For a fixed link defined by \textit{xfall and width} or \textit{xfall and height}, \textit{Xfall to Tin} calculates the \textit{xfall} of the link as the \textit{xfall} required so that the link will sit on the user tin at the \textit{width/height given in the link}. The option gives an error for a link defined by \textit{width} and \textit{height}.

Selecting \textit{Width to Tin}, \textit{Height to Tin}, or \textit{Xfall to Tin} brings up the \textit{Fixed - Modify Width to Tin}, \textit{Fixed - Modify Height to Tin} and \textit{Fixed - Modify Xfall to Tin} panels respectively.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link name</td>
<td>input select name menu</td>
<td></td>
<td>name of the link to modify.</td>
<td></td>
</tr>
<tr>
<td>Start/End mode</td>
<td>choice box</td>
<td></td>
<td>Start (ref)/End (ref)</td>
<td>defines the start/end chainages for modifying the link.</td>
</tr>
<tr>
<td>Interval</td>
<td>input</td>
<td></td>
<td></td>
<td>if non blank, the interval to use to create cross sections and strings over the given chainage range.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>If blank, the Section separation value from the Apply MTF panel is used.</td>
</tr>
<tr>
<td>Tin</td>
<td>input</td>
<td></td>
<td>available tins</td>
<td>the tin to use for defining the width/height/xfall</td>
</tr>
<tr>
<td>Extra start/end</td>
<td>tick box</td>
<td></td>
<td></td>
<td>if ticked, add an extra x-section 0.1 mm before the start/end chainage.</td>
</tr>
<tr>
<td>Comment</td>
<td>input</td>
<td></td>
<td></td>
<td>comment to add to the end of the line. In the file, the comment will be preceded by //.</td>
</tr>
<tr>
<td>Active</td>
<td>tick box</td>
<td></td>
<td>tick</td>
<td>if ticked, use this modifier.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>if not ticked, don’t use this modifier.</td>
</tr>
<tr>
<td>OK/Apply</td>
<td>button</td>
<td></td>
<td></td>
<td>OK stores the values in the fields and removes the panel.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Apply stores the values and leaves the panel on the screen.</td>
</tr>
</tbody>
</table>

Continue to the next section 21.11.0.7 Fixed Link - to RL - Superseded or go to the replacement options 21.2.2.2 Fixed Link Modifiers or 21.2.2 Left and Right MTF Modifiers.
21.11.0.7 Fixed Link - to RL - Superseded

The fixed to RL walk-right brings up the fixed to RL menu with options to calculate the width, xfall or height to get to a given RL.

For Width/Height/Xfall to tin, go to the next section Fixed Link - Modify Width, Height or Xfall to Get to an RL

Fixed Link - Modify Width, Height or Xfall to Get to an RL

**Width to RL**
The Modify Width to RL, only applies to links defined by *Width and Xfall* NOT Width and Height or Xfall and Height.

For a fixed link defined by *width* and *xfall*, Modify Width to RL calculates the **width** required for the link to end at the given RL using the xfall given in the link.

The Modify Width to RL gives an error for a link defined by *width* and height or *xfall* and height.

**Height to RL**
The Modify Height to RL, only applies to links defined by *Width and Height* and Height NOT Width and Xfall.

For a fixed link defined by *height* and *width*, the Modify Height to RL calculates the **height** required for the link as the difference in height of the start point of the link and the given RL.
For a fixed link defined by height and xfall, the **Modify Height to RL** calculates the height required for the link to end at the given RL using the xfall given in the link. That is, the difference in the height of the start point of the link, and the height that is required so that the link will sit on the RL at the given xfall.

The **Modify Height to RL** gives an error for a link defined by width and xfall.

**Xfall to RL**

The **Modify Xfall to Get an RL**, only applies to links defined by Xfall and Width, NOT Xfall and Height or Width and Height.

For a fixed link defined by xfall and width, **Modify Xfall to RL** calculates the xfall of the link required for the link to end at the given RL using the width given in the link.

The **Modify Xfall to RL** gives an error for a link defined by xfall and height, or width and height.
Selecting Width to RL, Height to RL, or Xfall to RL brings up the Fixed - Modify Width to RL, Fixed - Modify Height to RL and Fixed - Modify Xfall to RL panels respectively.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link name</td>
<td>input</td>
<td>select name menu</td>
<td>name of the link to modify.</td>
</tr>
<tr>
<td>Start/End mode</td>
<td>choice box</td>
<td>Start (ref)/End (ref)</td>
<td>defines the start/end chainages for modifying the link.</td>
</tr>
<tr>
<td>Interval</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if non blank, the interval to use to create cross sections and strings over the given chainage range. If blank, the Section separation value from the Apply MTF panel is used.</td>
<td></td>
</tr>
<tr>
<td>RL/Elevation</td>
<td>double box</td>
<td></td>
<td>the RL (Elevation) to be reached at the end of the link.</td>
</tr>
<tr>
<td>Extra start/end</td>
<td>tick box</td>
<td></td>
<td>if ticked, add an extra x-section 0.1 mm before the start/end chainage.</td>
</tr>
<tr>
<td>Comment</td>
<td>input</td>
<td></td>
<td>comment to add to the end of the line. In the file, the comment will be preceded by //.</td>
</tr>
</tbody>
</table>
| Active            | tick box | tick    | if ticked, use this modifier.  
|                   |          | if not ticked, don’t use this modifier. |

**OK** button

**OK** stores the values in the fields and removes the panel BUT no recalc is done.
Apply button

Apply stores the values and leaves the panel on the screen.

If the MTF is being used in an Apply MTF and Auto recalc is ticked in the MTF, then whenever the Apply button is clicked, a recalc of the associated Apply MTF for the MTF is done.

Continue to the next section 21.11.0.8 Fixed Link - to Two Strings - Superseded or go to the replacement options 21.2.2.2 Fixed Link Modifiers or 21.2.2 Left and Right MTF Modifiers.
21.11.0.8 Fixed Link - to Two Strings - Superseded

The fixed to 2 strings walk-right brings up the fixed to 2 Strings menu with options to calculate the width, xfall or height from two given strings.

For Width/Height/Xfall to 2 Strings, go to the next section Fixed Link - Width, Height or Xfall between Two Strings

Fixed Link - Width, Height or Xfall between Two Strings

Width Between Two Strings

For a fixed link defined by width and height or width and xfall, Width to 2 strings sets the width for a link to be the width between two existing 12d Model strings,

The option will give an error for a link defined by height and xfall.

Height Between Two Strings

For a fixed link defined by height and width or height and xfall, Height to 2 strings sets the height for the link to be the height between two existing 12d Model strings,
The option will give an error for a link defined by \textit{width} and \textit{xfall}.

\begin{center}
\begin{tikzpicture}
\begin{scope}[scale=0.5]
\draw[->,thick] (0,0) -- (0,6); \node at (0,7) {string 1};
\draw[->,thick] (7,0) -- (7,6); \node at (7,7) {string 2};
\draw[->,thick] (0,0) -- (7,7);
\draw[thick] (0,0) -- (2,2);
\node at (-1,2) {start of link};
\node at (-1,5) {height from \textit{strings}};
\node at (-1,0) {width from link};
\node at (5,5) {height from \textit{2 strings}};
\node at (5,3) {(delta) height between 2 strings};
\node at (2,1) {width from link};
\node at (2,4) {height from \textit{2 strings}};
\node at (2,0) {width from link};
\node at (0,2) {xfall from link};
\end{scope}
\end{tikzpicture}
\end{center}

\textbf{Modify Height to be that between two Strings - for Link defined by Height and Xfall}

\begin{center}
\begin{tikzpicture}
\begin{scope}[scale=0.5]
\draw[->,thick] (0,0) -- (0,6); \node at (0,7) {string 1};
\draw[->,thick] (7,0) -- (7,6); \node at (7,7) {string 2};
\draw[->,thick] (0,0) -- (7,7);
\draw[thick] (0,0) -- (2,2);
\node at (-1,2) {start of link};
\node at (-1,5) {height from \textit{strings}};
\node at (-1,0) {width from link};
\node at (5,5) {height from \textit{2 strings}};
\node at (5,3) {(delta) height between 2 strings};
\node at (2,1) {width from link};
\node at (2,4) {height from \textit{2 strings}};
\node at (2,0) {width from link};
\node at (0,2) {xfall from link};
\end{scope}
\end{tikzpicture}
\end{center}

\textbf{Modify Height to be that between two Strings - for Link defined by Height and Width}

\textbf{Xfall Between Two Strings}

For a fixed link defined by \textit{xfall} and \textit{width} or \textit{xfall} and \textit{height}, Xfall to 2 strings sets the \textit{xfall} for the link to be the \textbf{xfall between two} existing \textit{12d Model} strings.

The option will give an error for a link defined by \textit{width} and \textit{height}.

\begin{center}
\begin{tikzpicture}
\begin{scope}[scale=0.5]
\draw[->,thick] (0,0) -- (0,6); \node at (0,7) {string 1};
\draw[->,thick] (7,0) -- (7,6); \node at (7,7) {string 2};
\draw[->,thick] (0,0) -- (7,7);
\draw[thick] (0,0) -- (2,2);
\node at (-1,2) {start of link};
\node at (-1,5) {xfall from \textit{2 strings}};
\node at (-1,0) {width from link};
\node at (5,5) {xfall between 2 strings};
\node at (5,3) {xfall from \textit{2 strings}};
\node at (5,1) {width from link};
\node at (2,1) {width from link};
\node at (2,4) {xfall from \textit{2 strings}};
\end{scope}
\end{tikzpicture}
\end{center}

\textbf{Modify Xfall to be that between Two Strings - for Link defined by Xfall and Width}
Selecting the width to 2 strings, height to 2 strings or xfall to 2 strings option brings up the Fixed - Modify Width to 2 Strings, Fixed - Modify Height to 2 Strings, and Fixed - Modify Xfall to 2 Strings panels respectively.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link name</td>
<td>input</td>
<td>select name menu</td>
<td></td>
</tr>
<tr>
<td>name of the link to modify:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start/End mode</td>
<td>choice box</td>
<td>Start (ref)/End (ref)</td>
<td></td>
</tr>
<tr>
<td>defines the start/end chainages for modifying the link,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if non blank, the interval to use to create cross sections and strings over the given chainage range. If blank, the Section separation value from the Apply MTF panel is used.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>String 1</td>
<td>string-select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>select the first string to use for defining width/height/crossfall for the link.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>String 2</td>
<td>string-select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>select the second string to use for defining width/height/crossfall for the link.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Side 1 to search</td>
<td>input</td>
<td>left side</td>
<td>left side, right side, both sides</td>
</tr>
<tr>
<td>side of the hinge string to start searching to find string 1 to use in defining width/height/crossfall.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Side 2 to search</td>
<td>input</td>
<td>left side</td>
<td>left side, right side, both sides</td>
</tr>
<tr>
<td>side of the hinge string to start searching to find string 2 to use in defining width/height/crossfall.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra start/end</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, add an extra x-section 0.1 mm before the start/end chainage.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comment input

comment to add to the end of the line. In the file, the comment will be preceded by //.

Active tick box tick

if ticked, use this modifier.
if not ticked, don’t use this modifier.

OK button

**OK** stores the values in the fields and removes the panel BUT no recalc is done.

Apply button

**Apply** stores the values and leaves the panel on the screen.

If the MTF is being used in an **Apply MTF** and Auto recalc is ticked in the MTF, then whenever the **Apply** button is clicked, a recalc of the associated **Apply MTF** for the MTF is done.

Continue to the next section [21.11.0.9 Fixed Link - Absolute - Superseded](#) or go to the replacement options [21.2.2.2 Fixed Link Modifiers](#) or [21.2.2 Left and Right MTF Modifiers](#).
21.11.0.9 Fixed Link - Absolute - Superseded

These options were never released. They should be replaced in your MTF by the appropriate Absolute option.

**Fixed Link - Width Absolute - Superseded**

These options were never released. They should be replaced in your MTF by the appropriate Absolute option.

Return to 21.2.2 Fixed Link Modifiers or 21.2.2 Left and Right MTF Modifiers.

21.11.0.10 Fixed Link - to Two Points - Superseded

These options were never released. They should be replaced in your MTF by the appropriate to 2 heights options.

Return to 21.2.2 Fixed Link Modifiers or 21.2.2 Left and Right MTF Modifiers.

**Fixed Link - Modify to 2 Points - Superseded**

These options were never released. They should be replaced in your MTF by the appropriate to 2 heights options.

Return to 21.2.2 Fixed Link Modifiers or 21.2.2 Left and Right MTF Modifiers.

**Fixed Link - Modify Width, Height or Xfall to 2 Points - - Superseded**

These options were never released. They should be replaced in your MTF by the appropriate to 2 heights options.

Return to 21.2.2 Fixed Link Modifiers or 21.2.2 Left and Right MTF Modifiers.
22 Drainage and Sewer

Position of menu: Design -> Drainage-Sewer

The Drainage-Sewer option is used to place drainage and sewer networks within a subdivision, along highways and culverts for cross drainage. Pumps may also be included in the network. The network is placed in three dimensions including manholes (maintenance holes), and for sewer work, lot controls and house connections can be defined. A 12d drainage string is used for all of these options.

If used in conjunction with the services on a section view, interference with neighbouring pipe strings can be taken into consideration when placing the network.

Note that the drainage string and plots capabilities are only available with the drainage and sewer options, and the sewer extensions (property control, house controls and Melbourne Water plots) are only available with the sewer option.

The drainage string is based on a polyline string so that arcs can exist between manholes (maintenance holes). The manholes may be placed anywhere along the polyline but generally manholes are located at the polyline indices.

The use of the drainage string for drainage is only a subset of its use for sewer so the steps for the sewer will be given since they cover drainage as well.

The sewer process consists of a number of steps (the drainage process does not use steps 2 and 3):

1. creating the drainage or sewer network
2. vertical alignment, pipe cover and utility clash checking using the Drainage Network Editor
3. checking that residential blocks are controlled by the sewer network
4. creating the house connections for the sewer
5. network design using custom routines, spread sheets or advanced network analysis packages via the Drainage Network Editor
6. producing Drainage Plots (plan and long section) and Reports (material quantity reports, excavation volumes and manhole construction reports)

These steps are described in the rest of this chapter.

The Drainage walk-right menu is laid out to reflect the standard sequence of placing drainage and wastewater pipes, i.e. creating, editing and plotting.
For a description of the drainage string in *12d Model*, please go to the section *Drainage Strings*.

For a definition of a drainage network and a junction in *12d Model*, please go to the section *Networks and Junctions*.

For a description of the drainage defaults in *12d Model*, please go to the section *Drainage Definitions - Manholes and Pipes*.

For a description of the drainage design import/export interface, please go to the section *"Drainage import/export"*.

For the option *Defaults*, please continue to the section *Defaults*.
- *Create*, please continue to the section *Create*.
- *Editor*, please continue to the section *String Editor*.
- *Network editor*, please continue to the section *Drainage Network Editor*.
- *Utility string editor*, please continue to the section *Utility String Editor*.
- *String editor*, please continue to the section *String Editor*.
- *String split/join*, please continue to the section *String split/join*.
- *Adjust Pit Locations*, please continue to the section *Adjust Pit Locations*.
- *Dynamic Culvert*, please continue to the section *Dynamic Culvert Design*.
- *Downhill strings*, please continue to the section *Downhill Strings*.
- *Raindrop*, please continue to the section *Raindrop/Teardrop*.
- *Aquaplaning risk*, please continue to the section *Aquaplaning Risk Assessment*.
- *Rainfall editor*, please continue to the section *Rainfall File ppf Editor*.
- *Extract Sewer Controls*, please continue to the section *Extract Sewer Property Controls*.
- *Convert to pts and lines*, please continue to the section *Convert to Points and Lines*.
- *Plots*, please continue to the section *Drainage Plots*.
- *Reports*, please continue to the section *Reports*.
- *More*, please continue to the section *More Drainage*.
22.1 Drainage Strings

A drainage string consists of a series of manholes (maintenance holes) at user selected (x,y,z) positions. The manholes can be joined by either straight or curved pipes.

Manholes may be any type of drainage structure and are represented by circles or rectangles. Drainage inlets, pump wet wells, gross pollutant traps, soak away pit, open channel changes in direction are all examples of manholes. The manholes have cover, grate and sump levels as well as wall and bottom thicknesses.

Pipes are the conduits connecting the manholes. Round pipes, box culverts, trapazoidal channels, pump rising mains, basin links, weirs and orifices are all examples of pipes.

Like all 12d Model strings, the drainage string has an implied direction, starting at the first manhole and going in the direction towards the next manhole in the drainage string. This order is normally determined by the creation order (or string order) of the manholes.

The chainage of the drainage string starts at the first manhole and then increases along the direction of the drainage string.

In 12d Model, drainage strings have a property indicating

(a) the most upstream manhole is entered as the first point of the string and hence the water flows in the direction of ascending string chainage. The flow direction is said to be in ascending chainage.

or

(b) the most downstream manhole is entered as the first point of the string and hence the water flows in the direction of descending chainage. The flow direction is said to be in descending chainage.

When a drainage string with flow direction in ascending order is profiled in a section view, the left hand side of a manhole is normally upstream and the right hand side of a manhole downstream.

It is recommended that drainage strings are entered with the flow direction in ascending chainage so that the minimum grade and cover can be satisfied as the drainage string is being placed.

That is, if the drainage string flow is in ascending chainage direction, then as manholes are appended, minimum cover and minimum grade can be automatically maintained. In all cases the invert levels can be recalculated using the Drainage Network Editor.
22.1.1 Pipes

A pipe is automatically created when a second or additional manhole is added to a drainage string. The properties of the pipe follow:

22.1.1.1 Type

22.1.1.2 Size (diameter, width, top width and natural channel shapes (dynamic only).

22.1.1.3 Inverts Levels

22.1.1.4 Wall Thickness

22.1.1.5 Minimum cover limit

22.1.1.6 Length

The pipe length by default is set to manhole centre to manhole centre. This length is displayed in the DNE and on the section view (Toggle->Grades) when the drainage string is profiled.

The pipe length maybe be also be calculated from the inside edge of the drainage manhole by using pit connections points enabled in the Drainage Network Editor on the Global Tab.

22.1.1.7 Grade

The pipe grade is calculated from the length and invert properties discussed above. This grade is displayed on the section view (Toggle->Grades) when the drainage string is profiled. It is shown as % or 1 in via Section View Menu View => Settings =>Grade annot

Please continue to the next section Networks and Junctions.
22.2 Networks and Junctions

In 12d Model, a drainage network consists of one or more drainage strings in the same model. Consequently, all the drainage strings in the same model are considered to be part of the same drainage network. It is suggested that all drainage strings in a network be entered with the same flow direction.

If two drainage strings from the same model have a manhole at exactly the same (x,y) location, then 12d Model assumes that the co-incident manholes are the same manhole and that the situation represents a junction. Most junction manholes are at the ends of the drainage strings. A junction may have a maximum of one manhole that is not at the end of the drainage string.

When water flows into a drainage string (from a branch drainage string) it is referred to as a trunk line. A trunk line may be a branch for another downstream trunk line.

Also for a network, if all the drainage strings are entered with the flow direction in ascending chainage, not only can minimum cover and minimum grade be maintained as manholes are appended, but if the branches are laid down before the trunk, then as you connect each branch to the trunk, the invert level for the trunk will be set to below the invert level of the branch line (less the default drop for the manholes). In all cases the invert levels for the entire network be recalculated using the Drainage Network Editor.

Please continue to the next section Drainage Definitions - Manholes and Pipes.
22.3 Drainage Definitions - Manholes and Pipes

A file of pipe and manhole (maintenance hole) definitions is used to create pipe and manhole (maintenance hole) types to allow tailoring for a particular project. The manhole or pipe type is one method to set many of the objects properties such as inlet capacity, thickness and roughness along with the objects user defined attributes.

When 12d Model starts up, it checks to see if an environment variable called DRAINAGE_4D exists and if it does, then the file it points to is used to provide the available types of manholes (maintenance holes) and pits.

If the environment variable is not set, then 12d Model searches for a file called drainage.4d in the standard 12d Model search sequence for set up files.

The drainage definitions file format is a text format and consists of one or more pipe and manhole definitions. Each definition in the file begins with the key word Pipe or Manhole, followed by the pipe or manhole type and then curly braces { }. The order that the definitions appear in the file determines the order they appear in the drop down lists inside 12d Model.

IMPORTANT: the file is only read when 12d Model starts up. When the file is changed while, 12d Model is running, you must restart 12d Model for the changes to become active. If any syntax errors have been made editing the file, the line number will be displayed in the output window. The error generally slightly above this line. The most common errors are missing curly braces { } and forgetting quotes around entries containing spaces.

A minimal example of a drainage definitions file is:

```
// ---
// drainage.4d 1/6/96
// Used to define the types of Pipes and Manholes
// ---
Pipe "PVC" { }
Pipe "VC" { }
Pipe "PVC Extra Heavy" { }
Pipe "Plastic" { }
Manhole "CONC COVER" { }
Manhole "Gatic" { }
Manhole "Rubber" { }
```

Notes
1. spaces in text - any text string that includes spaces or only numbers, must be enclosed in double quotes "".
2. comments - anything after // until the end of the line is ignored.
3. blank lines - blank lines are ignored
4. Duplicate definitions are not allowed.

Please continue to the next section Drainage Definitions - Manhole Types.
22.3.1 Drainage Definitions - Manhole Types

Manhole types may be used to set the following manhole properties via the DNE.

- manhole diameter, length/width and thickness
- manhole description, notes, group, ku/kw method, ku/kw values, rational engine design freeboard,
- manhole level modes for cover level, grate level, survey setout level and sump levels,
- survey setout xy modes and road chainage modes
- user defined manhole attributes

Each definition (manhole block) in the file begins with the key word **Manhole**, followed by the manhole type and then curly braces `{ }`. The order that the definitions appear in the file determines the order they appear in the drop down lists inside **12d Model**.

The minimum requirement for a pit type definition is

```
Manhole "type name" {
}
```

The type name must be unique and the braces {} cannot be () or [].

Optional manhole commands may be placed inside the braces. These commands include may include **Manhole Editor Commands**, **Manhole Drainage Network Editor Commands** and Manhole Calculation Commands.

22.3.1.1 Manhole Editor Commands

These optional commands change the properties of the manhole objects. Changes to these commands will used in creating new drainage strings and the **Drainage Network Editor** will prompt you to update the object if these settings are different to the strings current settings. A list of these commands follows

- **mhdiam**  x.x  set the manhole as circular (internal diameter in base units)
- **mhsize**  x.x y.y  set the manhole as rectangular (over rides mhdiam) length and width in base units
- **mthickness**  
  - **diam_thickness**  x.xxx a.aaa b.bbb c.ccc d.ddd

  - **x.xxx**  nominal diameter choices will appear in the DNE->Pipe->Diameter drop down
  - **a.aaa**  optional front thickness (base units) 0.000 if omitted
  - **b.bbb**  optional back thickness (base units) front thickness if omitted
  - **c.ccc**  optional left thickness in direction of chainage (base units) front thickness if omitted
  - **d.ddd**  optional right thickness in direction of chainage (base units) front thickness if omitted

22.3.1.2 Manhole Level Modes

There are several modes that may be used to calculate x,y,and z values for the manholes. A description of each follows.

- **FS tin**  the manhole centre x,y location is used to obtain the level from the drainage finished surface tin
- **NS tin**  the manhole centre x,y location is used to obtain the level from the drainage natural surface tin
- **Setout string**  the manhole centre x,y location is dropped perpendicular onto the setout string. The x,y
Drainage Definitions - Manholes and Pipes

or z value is then obtained from this string. If this string is missing then the pit x,y location or finished surface tin level is used instead.

Centre string the manhole centre x,y location is dropped perpendicular onto the road centre string and the chainage value is obtained. If this string is missing an error message will be created in the output window.

Sz + Setout string the manhole centre x,y location is dropped perpendicular onto the setout string. The Sz value for the manhole is then added to the z value obtained from this string. If this string is missing the Sz value is added to the finished surface tin level at the pit centre x,y location.

Manual the x,y,z or chainage value is manually entered by the user.

Cover RL the z level is set the the Cover RL level (after it has been recalculated.

Max Obvert the maximum obvert level from off the conduits connected to this manhole is used.

Floating sump the manhole sump level is set to the lowest invert of all the conduits connected to this manhole + the sump offset

22.3.1.3 Manhole Drainage Network Editor Commands

These optional commands store user defined data on the manholes or change the calculation modes available in the Drainage Network Editor. The set pit details button in the editor will recalculate these for all manholes in the network. A list of these commands follows

mhdesc "description" creates a pit text attribute "pit type description" and is used in the drainage pit schedule report.

mhnotes "note" creates a pit text attribute "pit type remarks" and is used in the drainage pit schedule report.

mhgroup "group" routines that select manholes will select from a manhole belonging to the same group

attribute_integer "attribute name1" x x is an integer value (no decimal, stored exactly by computers

attribute_real "attribute name2" x.xxx x is a real value (used to store numbers with decimals or very large or very small numbers

attribute_text "attribute name3" "text" text is a series of words or numbers not intended for calculations

Note: If a non-special attribute name is set for some, but not all manhole types, that attribute will be deleted on all manholes with types where the attribute is not defined.

The following special attribute commands create/modify an attribute as described above but these attributes also control calculations performed by the set pit details button on the Drainage Network Editor. The DNE fields will be locked when these attributes are defined for the selected pit type. If these attribute are not defined for the selected pit type the DNE field will not be locked and remain unchanged.

attribute_integer "cover rl mode" x DNE field ->Pit=>Main=>Cover RL mode

Mode x
FS tin 0
Setout string 1
Manual 2
NS tin 3
Max Obvert 4
Sz + setout string 8
### Drainage Definitions - Manholes and Pipes

#### Grate RL Mode

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual</td>
<td>User enters the ku value stored as pit real attribute &quot;ku&quot;</td>
</tr>
<tr>
<td>FS tin</td>
<td>Ku, Kw calculated during analysis</td>
</tr>
<tr>
<td>Setout string</td>
<td>Ku, Kw &gt;0 - Missouri/Hare Charts</td>
</tr>
<tr>
<td>NS tin</td>
<td>Ku, Kw calculated during analysis (ku &lt; 0.0 changed to 0.0)</td>
</tr>
<tr>
<td>Max Obvert</td>
<td>Culvert analysis using inlet control and</td>
</tr>
<tr>
<td></td>
<td>backwater control (entrance and exit losses automatically set)</td>
</tr>
<tr>
<td>Cover RL</td>
<td>Remaining</td>
</tr>
<tr>
<td>Sz + setout string</td>
<td>Culvert analysis - use numbers from DNE drop down list</td>
</tr>
</tbody>
</table>

#### Ku Method

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td>User enters the ku value stored as pit real attribute &quot;ku&quot;</td>
</tr>
<tr>
<td>Ku, Kw - Missouri/Hare Charts</td>
<td>ku calculated during analysis</td>
</tr>
<tr>
<td>Ku, Kw &gt; 0 - Missouri/Hare Charts</td>
<td>ku calculated during analysis (ku &lt; 0.0 changed to 0.0)</td>
</tr>
<tr>
<td>Ku - Culvert Inlet - Generic (101 or 201)</td>
<td>Culvert analysis using inlet control and</td>
</tr>
<tr>
<td></td>
<td>backwater control (entrance and exit losses automatically set)</td>
</tr>
</tbody>
</table>

#### Sump Offset

If sump RL mode is floating then this is the offset (negative down) from the lowest pipe invert (base units).

#### Ku

x.xx is used to calculate pit upstream hgl when ku method is Direct.

#### Kw

x.xx is used to calculate pit hgl when ku method is Direct.

#### Setout XY Mode

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual</td>
<td>Setout analysis</td>
</tr>
<tr>
<td>FS tin</td>
<td>Remaining</td>
</tr>
<tr>
<td>Setout string</td>
<td>Culvert analysis - use numbers from DNE drop down list</td>
</tr>
</tbody>
</table>

#### Setout Z Mode

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual</td>
<td>Setout analysis</td>
</tr>
<tr>
<td>FS tin</td>
<td>Remaining</td>
</tr>
<tr>
<td>Setout string</td>
<td>Culvert analysis - use numbers from DNE drop down list</td>
</tr>
</tbody>
</table>

#### Road Chainage Mode

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Road</td>
<td>Remaining</td>
</tr>
<tr>
<td>Centre string</td>
<td>Culvert analysis - use numbers from DNE drop down list</td>
</tr>
<tr>
<td>Manual</td>
<td>Remaining</td>
</tr>
</tbody>
</table>

The following example of a channel ip point is given below. The setout modes are set, the cover and grate level modes are set and the ku (losses) are set. Finally, the inlet capacity is set to an on-grade pit with 200% inlet capacity so that even in a major storm with a choke factor of 0.5 it will
still have 100% inlet capacity.

Manhole "CHNL auto" {

  mhdesc  "channel hip-vip"
  attribute_text "lplot description1"  "OPEN CHANNEL"

  mhsize  0.0
  mhdiam  0.0
  attribute_integer "setout xy mode" 0 // centre of the channel
  attribute_integer "setout z mode" 6 // sump invert is the bottom of the channel
  attribute_integer "cover rl mode" 4 // max obvert - top of the channel
  attribute_integer "grate rl mode" 4 // max obvert - top of the channel
  attribute_integer "ku method" 0 // direct
  attribute_real    "ku" 0.0 // zero unless interested in bend losses

  cap_config G

  cap_percent 200 // if a choke factor of 0.5 is applied then it will still have 100% inlet capacity
}

// attribute_real    "design freeboard" Pipe=>Design=>Freeboard limit at US pit

22.3.1.4 Manhole Drainage Analysis Inlet Capacity Commands

Manhole inlet configuration and bypass pit entries determine if these inlet capacity commands are used. Both may be set in the Drainage Network Editor.

22.3.1.4.1 cap_config

The inlet configuration may be set via the following command

  cap_config x
  Mode x
  Manhole m
  Ongrade g
  Sag s

Inlet Configuration = manhole - no water will enter the pit through the grate. Commands not used.

Inlet configuration = on grade or sag

  Bypass pit not set - 100% of the approach flow will enter the pit. Commands not used.
  Bypass pit is entered. The following commands define the stormwater inlet capacity characteristics.
22.3.1.4.2 Inlet Capacity Equation

The inlet capacity equation is built up with optional components (single polynomial + curve polynomial + curve coordinates). Generally, only one of the components is used for each manhole type but they may all be used if desired.

\[
\text{inlet capacity} = \text{inlet efficiency} \times \text{inlet multiplier} \times \left( \text{single polynomial} + \text{curve multiplier} \times \text{curve polynomial} + \text{curve coordinates} \right)
\]

An inlet efficiency (choke factor) is specified in the Drainage Network Editor. An inlet efficiency (choke factor) of 0 would stop all water from entering the inlet. The inlet multiplier is specified with a cap_multi parameter.

**Multipliers**

\[
\text{cap_multi} \times x\times \text{inside a cap_curve_grade block or cap_curve_sag block, the curve inlet capacity is multiplied by this value outside a cap_curve_grade or cap_curve_sag, the total inlet capacity is multiplied by this value}
\]

**Single Polynomial**

The inlet capacity for an inlet may be specified by a single polynomial equation based on the approach flow. This is the most simplistic method and generally used for percentage capture or fixed capture rates.

\[
\text{inlet capacity} = \text{cap_fixed} + \text{cap_percent} \times 0.01 \times Q_a + \text{cap_coeff} \times Q_a^{\text{cap_power}}
\]

**Example**

This example creates an inlet with a fixed inlet capacity of 0.010 (cms or cfs).

Manhole "fixed inlet capacity" {
\[
\text{cap_fixed} 0.010
\]}

**Default values**

\[
\begin{align*}
\text{cap_multi} &= 1.0 \\
\text{cap_fixed} &= 0.0 \\
\text{cap_percent} &= 0.0 \\
\text{cap_coeff} &= 0.0 \\
\text{cap_power} &= 1.0
\end{align*}
\]

**Curve Polynomial**

For on-grade inlets, the polynomial parameters may change with road grade and cross fall threshold values. The formula is the same for cap_fixed, cap_percent, cap_coef and cap_power. Note that each curve may have its own curve multiplier specified with a cap_multi parameter (discussed below). Some hydraulic model tests have their on grade inlet results converted to polynomial equations.

**Example**

This example creates an inlet where the inlet capacity polynomials have been determined for 2 road grades (1% and 3%). Note that the road_grade 0.0 command is used for the 1% road grade. Since this is the flattest road grade curve we have calculated we will start using it at a road grade of 0%.

Note that the second curve "NJ G3" will be used when the road grade reaches 2.5. The threshold value where 12d should change to the next curve is generally slight less than the road grade from the source.
Manhole "On grade pit type NJ" {
    cap_config G
    
    cap_curve_grade  "NJ 1G" {
        road_grade  0
        cap_coeff  0.215
        cap_power  0.67
    }
    
    cap_curve_grade  "NJ 3G" {
        road_grade  2.5
        cap_coeff  0.24
        cap_power  0.673
    }
}

Curve Coordinates (On grade and SAG)

For on-grade and sag inlets, the inlet capacity may be determined by entering coordinates along
the inlet capacity curve. These coordinates are usually obtained from hydraulic model studies or
analytical methods such as HEC-22.

For on grade inlets, the coordinates are Qapproach and Qin, and the curves may change with
road grade and cross fall threshold values. The inlet capacity curves are never extrapolated.

Example

    Manhole "Ongrade coordinates" {
        cap_config G
        
        cap_curve_grade "0.5G" {
            road_grade  0
            coord 0.000 0.000
            coord 0.060 0.060
            coord 0.140 0.112
            coord 0.260 0.174
            coord 0.430 0.244
            coord 0.500 0.270
        }
        
        cap_curve_grade "1G" {
            road_grade  0.75
            coord 0.000 0.000
            coord 0.060 0.060
            coord 0.140 0.108
            coord 0.260 0.164
            coord 0.430 0.227
            coord 0.500 0.248
        }
    }

For sag inlets, the coordinates are Depth (base units) and Qin, and there is only one curve. Each
curve has a curve multiplier specified with a cap_multi parameter (discussed below).
Example

Manhole "SAG coordinates" {
    cap_config S
    cap_curve_sag "SAG" {
        coord 0.000 0.040
        coord 0.045 0.101
        coord 0.070 0.151
        coord 0.095 0.245
        coord 0.120 0.302
        coord 0.170 0.347
        coord 0.220 0.371
        coord 0.270 0.391
    }
}

22.3.1.4.3 Polynomial Inlet Capacity Commands

The following commands are used to set the parameters in the following polynomial equation

\[
\text{inlet capacity} = \text{cap_fixed} + \text{cap_percent} \times 0.01 \times Qa + \text{cap_coeff} \times Qa^\text{cap_power}
\]

- **cap_fixed**: x.x cms or cfs
- **cap_percent**: x.x percentage (0 to 100)
- **cap_coeff**: x.x multiplier
- **cap_power**: x.x exponent

22.3.1.4.4 Inlet Curve Block Commands

Inlet curve blocks may be specified for both on-grade or sag inlets. Inside the curve block you may include the Polynomial Inlet Capacity Commands and Coordinate Inlet Capacity Commands.

\[
cap_curve_grade "unique name for the pit type" {
    road_grade x.xx
    road_xfall x.xx
}
\]

Inside the cap_curve_grade block the road grade and road crossfall threshold values (percent) may be set. The road grade and crossfall are calculated by the Drainage Network Editor. When the 12d analysis engine selects the inlet curve, all curves with the same road_xfall are grouped together and then within the crossfall group the road_grade curves is selected. The inlet curve with the maximum grade threshold that is less than or equal to the road grade is selected.

Rules for 'cap_curve_grade' entries:
- Only applicable to on-grade pits.
- All cap_curve_grade names must be unique within a Manhole block.
- If both 'road_grade' and 'road_xfall' entries are omitted, only one cap_curve_grade entry is allowed within a pit.
- The cap_curve_grade 'coord' entries (if used) must be in order of increasing Qa.

\[
cap_curve_sag "unique name for the pit type" {
}
\]
Rules for 'cap_curve_sag' entries:
  - Only applicable to sag pits.
  - Only one cap_curve_sag entry is allowed within a pit, and it must have a valid name.

22.3.1.4.5 Coordinate Inlet Capacity Commands

The coord command must be used inside the cap_curve_grade or cap_curve_sag grouping.
coord x.xx y.yy
x.xx must be in increasing order.

For cap_curve_grade group, the coord command has the parameters Qapproach and Qin.
For cap_curve_sag group, the coord command has the parameters Depth and Qin.

Please continue to the next section Drainage Definitions - Pipe Types.
22.3.2 Drainage Definitions - Pipe Types

Pipe types may be used to set the following pipe properties via the DNE:

- pipe nominal/actual diameters and thickness
- roughness method and value
- rational method design mode and design percent depth
- minimum pipe height for the rational design engine
- user defined pipe attributes

Each definition (pipe block) in the file begins with the key word **Pipe**, followed by the pipe type and then curly braces `{ }`. The order that the definitions appear in the file determines the order they appear in the drop down lists inside 12d Model.

The minimum requirement for a pipe type definition is

```
Pipe "name" {
}
```

The name must be unique and the braces {} cannot be () or [].

Example:

```
Pipe "CHNL GRASS PROPOSED" { //Open Channel created below the tin. cover set in cover file to 0.0
 roughness_n 0.040
 attribute_integer "design size mode" 3 // open channel mode
}
```

22.3.2.1 Pipe Drainage Network Editor Commands

22.3.2.1.1 Pipe Thickness

```
pipethickness {
 diam_thickness x.xxx y.yyy a.aaa b.bbb c.ccc d.ddd
}
```

- x.xxx nominal diameter choices will appear in the DNE->Pipe->Diameter drop down field
- y.yyy internal diameter (base units) will be entered into the DNE->Pipe->Diameter field
- a.aaa optional top thickness (base units) 0.000 if omitted
- b.bbb optional bottom thickness (base units) top thickness if omitted
- c.ccc optional left thickness in direction of chainage (base units) top thickness if omitted
- d.ddd optional right thickness in direction of chainage (base units) top thickness if omitted

22.3.2.1.2 Pipe Attributes

```
attribute_integer "attribute name1" x x is an integer value (no decimal, stored exactly by computers
attribute_real "attribute name2" x.xxx x is a real value (used to store numbers with decimals or very large or very small numbers
attribute_text "attribute name3" "text" text is a series of words or numbers not intended for calculations
```

The following special attribute commands create/modify an attribute as described above but
these attributes also control calculations performed by the set pit details button on the **Drainage Network Editor**. The DNE fields will be locked when these attributes are defined for the selected pipe type. If these attribute are not defined for the selected pipe type the DNE field will not be locked and remain unchanged.

**roughness_n** \( x.xx > \) DNE field \( \rightarrow \) Pipe \( \rightarrow \) Main \( \rightarrow \) Roughness
DNE field \( \rightarrow \) Pipe \( \rightarrow \) Main \( \rightarrow \) Roughness type (set to Manning)

**roughness_k** \( x.xx \) DNE field \( \rightarrow \) Pipe \( \rightarrow \) Main \( \rightarrow \) Roughness
Colebrook k roughness value in millimetres
DNE field \( \rightarrow \) Pipe \( \rightarrow \) Main \( \rightarrow \) Roughness type (set to Colebrook)

**attribute_real** \( x.xx \) DNE field \( \rightarrow \) Pipe \( \rightarrow \) Design \( \rightarrow \) Min pipe height
min height in base units

**attribute_integer** "design size mode" \( x \) DNE field \( \rightarrow \) Pipe \( \rightarrow \) Design \( \rightarrow \) Design mode

<table>
<thead>
<tr>
<th>Mode</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressurised Pipe: Freeboard design</td>
<td>0</td>
</tr>
<tr>
<td>Part-full Pipe: Freeboard design</td>
<td>1</td>
</tr>
<tr>
<td>Part-full Pipe: Flow depth design</td>
<td>2</td>
</tr>
<tr>
<td>Open Channel: Freeboard design</td>
<td>3</td>
</tr>
</tbody>
</table>

**attribute_real** "design percent depth" \( x.xx \) DNE field
Pipe \( \rightarrow \) Design \( \rightarrow \) Flow-depth at pipe entrance

Please continue to the next section **Defaults**
22.4 Defaults

Position of menu:  Design => Drainage-Sewer => Defaults

The defaults menu sets default tin, manhole (maintenance hole) information, drainage pipe information, property control (sewer module only) and house connection (sewer module only) defaults which are all used when defining drainage networks.

The Defaults walk-right menu is

![Defaults Menu](image)

For the option *Tins (fs)*, please continue to the section *Tins (fs).*

*Manholes*, please continue to the section *Manholes (Maintenance Holes).*

*Pipes*, please continue to the section *Pipes.*

*Property controls*, please continue to the section *Property Controls.*

*House connections*, please continue to the chapter *House Connections.*
22.4.1 Tin (fs)

Position of option on menu:  Design => Drainage-Sewer => Defaults => Tin (fs)

On selecting the Tin (fs) option, the Drainage Tin Defaults panel is displayed.

This panel is for setting the default finished surface tin in the Create Drainage Strings panel which is used for creating a new drainage string.

For the drainage string, the finished surface tin is used as the surface that manholes automatically sit on when z float is set on, and for defining cover when placing controls and connections.
22.4.2 Manholes (Maintenance Holes)

Position of option on menu: Design => Drainage-Sewer => Defaults => Manholes

On selecting the Manholes option, the Drainage Manhole Defaults panel is displayed.

These defaults are used when creating a manhole in a drainage string. The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>input</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>default diameter of a drainage manhole</td>
<td></td>
</tr>
<tr>
<td>Drop</td>
<td>input</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>drop (metres) through the manhole</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>input</td>
<td>MH.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>default name for the manhole Note that if a manhole name is EOL or eol, then the diameter of the manhole is forced to be zero.</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>input</td>
<td>CONC COVER</td>
<td>CONC COVER, GATIC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the default cover or lid type of the manholes</td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>set the drainage manhole defaults to the values in the above fields.</td>
<td></td>
</tr>
</tbody>
</table>
22.4.3 Pipes

Position of option on menu: Design => Drainage-Sewer => Defaults => Pipes

On selecting the Pipes option, the Drainage Pipes Defaults panel is displayed.

This panel is for setting the default drainage pipe diameter, grade, cover and type. These defaults are used when creating a pipe in a drainage string.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>input</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>

_default diameter of the pipe._

| Minimum grade      | input    | 1.0      |        |

_the minimum grade (measured as 1: value) used when laying down the pipe._

| Minimum cover      | input    | 1.0      |        |

_the minimum cover, measured in world units from the surface to the top of the pipe (obvert); used when laying down the pipe._

| Type               | input    | PVC      | PVC, VC, PVC X/HEAVY |

_the default type of the pipe_

Set button

_set the drainage pipe defaults to the values in the above fields._

**IMPORTANT NOTE.**

If the drainage string is laid down in the direction of flow (and hence the flow direction is in ascending chainage), then the minimum grade and minimum cover along the pipe are maintained as the drainage string is created. Otherwise the minimum grade and cover cannot be maintained.

Cover for the pipe segment can also be calculated and/or set afterwards by the pipe=>cover option in the drainage string editor.

Minimum cover and minimum grade for the pipe segment to the end of the line can be set afterwards by the pipe=>default grading option in the drainage string editor.
22.4.4 Property Controls

**Position of option on menu:** Design => Drainage-Sewer => Defaults => Property Controls

On selecting the Property controls option, the Drainage Property Control Defaults panel is displayed.

On a section view, the Profile => One substring and Profile => Many substrings options will profile the property control. Note that the centre (axis) of the property control is drawn on the section view, not the invert (bottom) or the obvert (top).

![Drainage Property Control Defaults Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>input</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Grade 1v in</td>
<td>input</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Cover</td>
<td>input</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>input</td>
<td>cyan</td>
<td>available colours</td>
</tr>
<tr>
<td>Name</td>
<td>input</td>
<td>Lot</td>
<td></td>
</tr>
</tbody>
</table>

Set button

set the property control defaults to the values in the above fields.

- **Diameter**
  - default diameter of the property control.

- **Grade 1v in**
  - grade (units are "1v in" given value) to use for the property control

- **Cover**
  - cover measured from the surface to the top of the property control (world units) to be maintained from the end of the property control in the house block to the drainage string.

- **Colour**
  - colour to use to draw the property control

- **Name**
  - name for the property control - usually the lot number
22.4.5 House Connections

Position of option on menu:  Design => Drainage-Sewer => Defaults => House connections

On selecting the House connections option, the Drainage House Connection Defaults panel is displayed.

![Drainage House Connection Defaults panel]

This panel is for setting the default information used for connections from the drainage pipe to the house blocks.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin (fs)</td>
<td>input</td>
<td>drainage tin</td>
<td>available tins</td>
</tr>
<tr>
<td>Section view</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>input</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Grade 1v in</td>
<td>input</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Cover</td>
<td>input</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>input</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>input</td>
<td>cyan</td>
<td>available colours</td>
</tr>
<tr>
<td>Name</td>
<td>input</td>
<td>Lot</td>
<td></td>
</tr>
<tr>
<td>Connection type</td>
<td>input</td>
<td>A special</td>
<td>A, A special, B, C, OB,</td>
</tr>
</tbody>
</table>
the default type of house connection. Please continue to the section "House Connection Types" for a description of each connection type.

Set button

set the house connection defaults to the values in the above fields.

House Connection Types

All house connection calculations do not take into account any thickness of pipe, joint sizes or actual entry points into the sewer. Hence they are approximate only and should only ever be used as a guide. Any quantities calculations should allow for a suitable margin of error.

House Connection - Type A

Connection level is the height at this point

Connection length

House Connection: Type A

House Connection - Type A Special
House Connection - Type B

Connection level is the height at this point

House Connection: Type B

House Connection - Type C
House Connection: Type C

House Connection - Type Special Jump Up

Connection length

Connection level is the height at this point

House Connection: Type Special Jump Up

House Connection - Type OB (Oblique)

House Connection: Type OB

Please continue to the next section Create.
22.5 Create

**Position of menu:** Design => Drainage-Sewer => Create

The Create walk-right menu is

![Drainage Create](image)

For Create, please see [Create Drainage String](#).
Create from strings, please see [Create from Strings](#).
Create from pts and lines, please see [Create from Points and Lines](#).
Create culvert, please see [Create Culvert Change](#).
Create spaced along string, please see [Create Drainage Spaced Along String](#).
Create/Read template, please see [Create/Read Drainage Template](#).
Create drainage.4d, please see [Create drainage.4d](#).
Create hydrographs from peaks, please see [Create Hydrographs from Peaks](#).
22.5.1 Create Drainage String

Position of option on menu:  Design => Drainage-Sewer => Create => Create

This section of documentation is a work in progress and will be updated in subsequent releases.

The Create option is used to produce new drainage strings and networks. If a drainage string already exists, the Editor option is used to modify it.

On selecting the Create option, the Create Drainage String panel is displayed.

To create a new drainage string, the name, colour, model and style of the new string are entered into the appropriate fields, plus the finished surface triangulation that the manholes are normally flush with, the natural surface triangulation, and the Create button selected.

The new fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>name box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>colour box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow direction</td>
<td>input</td>
<td>ascending chainage</td>
<td>descending chainage</td>
</tr>
<tr>
<td>Tin (fs)</td>
<td>input</td>
<td>drainage=&gt;defaults=&gt;tin available tins</td>
<td>the finished surface tin. If manholes are &quot;floating&quot;, the top of the manhole is automatically place on the tin surface (&quot;floated&quot; on the surface).</td>
</tr>
<tr>
<td>Tin (ns)</td>
<td>input</td>
<td>available tins</td>
<td>the natural surface tin used in longsection plots.</td>
</tr>
<tr>
<td>Purpose</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use pit connection points</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Many strings tick box
Create button

The **Create Drainage String** panel is then removed and the **Drainage Edit** menu and **Drainage Edit Info** panel fired up.

As for a 3d string, to create a new drainage string with some of the **same** name, colour, model and style as an existing string (not necessarily a drainage), the **Same as** button is chosen and the appropriate string selected.

The **Drainage Edit** menu contains all the available options for editing a drainage string and its associated block controls and house connections. The **Drainage Edit Info** panel contains information areas. The **Drainage Edit** menu and **Drainage Edit Info** panel are

To create a new drainage string, the user selects the **Append** option from the **Edits** walk right menu on the **Drainage Edit** menu.

Since the **Drainage Edit** menu and **Drainage Edit Info** panel are the same as those used when editing a drainage string, the options will be discussed under the drainage **Edit** option.

For documentation on editing Drainage string, please continue to the next section **String Editor**.
For drainage utilities and import/export see **More Drainage**

### 22.6 String Editor

**Position of option on menu:** Design => Drainage-Sewer => String editor

This is the same option as **Editor** from the **Strings** walk-right menu on the **12d Model** menu.

The string editor is used to modify any **12d Model** strings. After selecting the **Editor** option, the **Edit String** panel is placed on the screen to record any error messages.
The option is already in the **pick** mode (the **pick & edit** button only needs to be selected if the pick was cancelled) and the user simply picks and accepts the string to be edited.

From the picked string’s type, the editor is able to determine the edits that apply to the string and list them in the string’s **edit** menu.

If a drainage string is selected, the **Drainage Edit** menu and **Drainage Edit** panel (as shown in the previous section) are placed on the screen.

The individual edit operations for a drainage string will now be discussed in detail.

Please continue to the next section **Drainage Edit**.
22.6.1 Create from Strings

Position of option on menu:  Design => Drainage-Sewer => Create => Create from strings

12d will convert the super strings into 12d drainage strings. The default pipe, pit and tin data will be used to set the levels for the network. Do not use the other string convert commands found on the menu system.

See Also

Drainage overview

On selecting the Create from strings option, the Convert to Drainage Strings panel is displayed.

![Image of Convert to Drainage Strings panel]

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source</strong></td>
<td>source box</td>
<td>model</td>
<td></td>
</tr>
<tr>
<td></td>
<td>data source for strings to be converted</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Model for drainage strings</strong></td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The new drainage strings will be added to this model. If it does not exist it will be created.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Tin for pit cover level</strong></td>
<td>tin box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The new drainage manhole cover level will be set to the tin level at the manhole centre (optional)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Flow direction</strong></td>
<td>choice box</td>
<td>same as string direction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>same as string direction if the strings have been drawn in the direction of water flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>opposite to string direction if the strings are drawn opposite to the direction of flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Clean drainage model</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>When selected, all strings in the model will be deleted before creating the new strings.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Process</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Converts the strings to the drainage strings.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Finish</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
|                                        | Removes the panel from the screen.
Important notes:

The imported strings must all be drawn in the same direction. Either all in the direction the water flows or all opposite the direction of flow.

Pits are created at all vertices on the strings.

Trunk lines must have a vertex where the branch lines join.

String names can be used to control the order in which the drainage lines are numbered. These names will be transferred to the 12d drainage strings. Later, the string names can be changed in the Drainage Network Editor.

Pits can always be renamed in 12d after the import is complete.

The drainage lines must have string names to use the Set Pit Names feature on the network editor.
22.6.2 Create from Points and Lines

Position of option on menu:  Design => Drainage-Sewer => Create => Create from pts and lines

This section of documentation is a work in progress and will be updated in subsequent releases.

On selecting the Create from pts and lines option, the Drainage Create from Ptd and Lines panel is displayed.

![Drainage Create From Pts And Lines Panel]

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Tab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Database models</td>
<td>view box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing drainage/sewer models</td>
<td>view box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainage-Sewer model (new strings)</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>String colour</td>
<td>colour box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipe end to manhole tolerance</td>
<td>measure box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use connection points</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Manhole Tab
**Pipe Tab**

- **Name**: choice box
- **Type**: choice box
- **Diameter**: choice box
- **Width**: choice box
- **Cover level**: choice box
- **Sump level**: choice box
- **Factor**: measure boxes
12d Model Reference Manual

String Editor

![Diagram of Drainage Create From Pts And Lines]

- **Name**: choice box
- **Type**: choice box
- **Diameter**: choice box
- **Width**: choice box
- **Top width**: choice box
- **US invert**: measure boxes
- **DS invert**: measure boxes
- **Num pipes**: measure boxes
- **Factor**: measure boxes

**Buttons at Bottom**
- **Run**: button
22.6.3 Create Culvert Change

Position of option on menu:  
Design => Drainage-Sewer => Create => Create culvert

This section of documentation is a work in progress and will be updated in subsequent releases.

On selecting the Create culvert option, the Culvert Create-Change panel is displayed.

![Culvert create-change panel]

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create options</td>
<td>choice box</td>
<td>Culvert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel length</td>
<td>measure box</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan view</td>
<td>view box</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section view</td>
<td>view box</td>
<td>LS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3d view</td>
<td>view box</td>
<td>3D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inlet xy</td>
<td>xy box</td>
<td>0 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outlet xy</td>
<td>xy box</td>
<td>10 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
22.6.4 Create Drainage Spaced Along String

Position of option on menu:  Design => Drainage-Sewer => Create => Create spaced along string

This section of documentation is a work in progress and will be updated in subsequent releases.

On selecting the Create spaced along string option, the Create Drainage Spaced Along String panel is displayed.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage string name</td>
<td>name box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainage string colour</td>
<td>colour box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow direction</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pit type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipe type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pit cover level offset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipe obvert depth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diam/Height</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top Width</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade vs Spacing Lookup Table</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade (%) more than Pit spacing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions:
String Editor

- Pit type: choice box
- Pipe type: choice box
- Pit cover level offset: measure box
- Pipe obvert depth: measure box
- Diam/Height: measure box
- Width: measure box
- Top Width: measure box
- Lock cover RLs: tick box
- Lock pipe inverts: tick box
- Lock grate RLs to cover RLs: tick box
- Lock pipe sizes: tick box
- Default pit spacing: measure box
- Grade (%) more than: grid
- Pit spacing: grid
- Model for drainage strings: model box
- Pick: button
22.6.5 Create/Read Drainage Template

Position of option on menu:  Design => Drainage-Sewer => Create => Create/Read template

This section of documentation is a work in progress and will be updated in subsequent releases.

On selecting the Create/Read template option, the Drainage Template I/O panel is displayed.

![Drainage Template I/O Panel]

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read-write</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainage model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Template file</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
22.6.6 Create drainage.4d

Position of option on menu:  
Design => Drainage-Sewer => Create => Create drainage.4d

This section of documentation is a work in progress and will be updated in subsequent releases.

On selecting the Create drainage.4d option, the Drainage Create Drainage.4d panel is displayed.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainage.4d</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use 100% inlet capacity</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
22.6.7 Create Hydrographs from Peaks

Position of option on menu: Design => Drainage-Sewer => Create => Create hydrographs from peaks

This section of documentation is a work in progress and will be updated in subsequent releases.

On selecting the Create hydrographs from peaks option, the Drainage Set Pipe Type panel is displayed.

![Drainage set pipe type panel](Image)

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrograph event</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainage model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent loss conserved</td>
<td>measure box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
22.6.8 Drainage IO Defaults
22.7 Drainage Network Editor

Position of option on menu: Design => Drainage-Sewer => Network editor

The drainage network editor enables the user to edit all of the drainage strings in a model (a network). The global and default settings may be stored and loaded via . There are five main tabs and plus function buttons on the bottom of the panel.

Using the Drainage Network Editor

Recommended order to use the tabs and Buttons.
(This is not required but it will lead you through the process in an systematic method.)

<table>
<thead>
<tr>
<th>Tab</th>
<th>Function Buttons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Global tab</td>
<td>3. Set Pit Names</td>
</tr>
<tr>
<td>2. Defaults tab</td>
<td>4. Set Catchments</td>
</tr>
<tr>
<td>5. Pipe tab</td>
<td>8. Set Pit Details</td>
</tr>
<tr>
<td>6. Pit tab</td>
<td>9. Regrade Network</td>
</tr>
<tr>
<td>7. Catchment</td>
<td>Storm Analysis</td>
</tr>
<tr>
<td></td>
<td>Plot</td>
</tr>
<tr>
<td></td>
<td>Import/Export</td>
</tr>
</tbody>
</table>

For information on specific tasks see the following sections,

- **Manhole Setout Settings**
  - Road Design File for Pit Setout - x, y, level, road chainage and setout offset

- **Hydrology Settings**
  - Catchment Areas
  - Checking the Automatic Catchment Linking
  - Coefficients of Runoff
  - Percent Impervious
  - Times of Concentration Methods
  - Tc Path Strings

- **Hydraulic Design Settings**
  - Pipe Friction Method
  - Pipe Friction Values and Freeboard Limit
  - Setout to Grate Offset
  - Pit Losses Ku, and Direct Flow
  - Outlet and Tailwater Conditions

- **Pipe Design Parameters**
- **Bypass Flow Settings**

On selecting the Drainage network editor option, the Drainage network editor panel is displayed.
22.7.1 Global Tab

Design values for the hydrology and hydraulics calculations are set either globally (one value for the entire network) or via Defaults for the manholes or pipes. Defaults values may be overridden by explicit settings found on the catchment, pits or pipes tab. Explicit manhole/pipe settings need only be specified if the default value is not desired.

There are 4 sub tabs. See Main tab, Utility Models tab, Notes tab and Display tab.

22.7.1.1 Main tab

Universal data Group

- **Units** - Metric or US. Catchment areas in ha/acres and rainfall-infiltration-storage in mm/in
- **Viscosity** - Used with Colebrook-White energy loss calculations
- **TUFLOW file** - with the dynamic drainage analysis and TUFLOW modules this specifies the TUFLOW tcf file to be used for the 2d storm analysis.
- **Att group (minor)** - results from the storm analysis (minor event ) may be contained within this pit/pipe attribute group
- **Att group (major)** - results from the storm analysis (major event ) may be contained within this pit/pipe attribute group
- **Use pit connection pts** - when not selected, pipes connect at the centre of the manhole. When selected the pipes connect at the pit connection points. See Pit Connection Points for more details.
- **Finished surface tin** - used for determining pipe cover and surface levels for the manholes.
- **Natural surface tin** - specified so that it can be included on the drainage longsection plots
- **Clear attributes** - when selected all pit/pipe attributes will be deleted before the Apply/AutoApply saves the data currently in the panel.
Catchment data Group

see Coefficients of Runoff

For Global pipe data see Pipe Friction Method.
22.7.2 Pit Connection Points

Pit Connection points allow the pipes connected to the pit to join at locations other than the inside perimeter of the pit wall. This feature is off by default and may be enabled on the DNE->Global->Main tab.

All pits have their connection point initially set to Points. This setting is found on the DNE->Pits->Setout tab.

Pit Connection Point Modes

Pit connection points may be moved via Strings->Points Edit->Move (except for Centre mode described below). The other modes constrain the movement of the connection points. If a pipe is manually moved to a new connection point, it will be locked to the connection point and will not move if the pit or neighbouring pit is moved (see exceptions below).

Centre (rectangle and circular) - This mode is the same as having the Use connection points turned off. The connection points will be located on the inside perimeter of the pit wall with the centre line of the pipe intersecting the centre of the pit. In this mode the connection points may not be adjusted.

Points (rectangle) - A connection point is created at the mid point of each internal side of the pit. This may be changed for a Pit type by using the con_points command in the drainage.4d file. In this mode the pipe ends will snap to the connection points. It is possible to place more than one pipe on the same connection point (the elevation of the pipes is not checked for clashes).

Points (circular) - The connection point may be moved anywhere around the pit internal wall as there are no connection points on the circular pits. Again, it is possible to place more than one pipe on the same connection location (the elevation of the pipes is not checked for clashes).

If the manhole centre is moved the connection point locks are removed.

Perimeter (rectangular and circular) - Same as Points (circular) above.

Unrestricted (rectangular and circular) - There are no constraints on the location of the pit connection points. This mode is intended for irregular shapes such as GPT structures and...
stormwater basins.

22.7.2.1 Utility Models tab

The utility models tab is used to specify the following data:

- Catchment polygons, the catchment slope strings, catchment labelling data
- Bypass flow strings
- Road setout strings, road centre line strings and crossfall/grade offsets
- Service/utility models and the allowable clearances
- Additional details
  - Catchments Areas
  - Bypass flow
  - Manhole setout via setout strings
  - Service and Utility Clashes

22.7.2.2 Display tab
The display tab is used to specify the following data:

22.7.2.3 Notes tab

The notes tab is used to specify the following data:
22.7.3 Defaults tab

The values on the defaults tabs are used unless the values are explicitly set on the Main Catchment, Pit and Pipe tabs.

22.7.3.1 Catchment subtab

The Catchment subtab is used to specify the following data:

- Catchment Areas
- Percent Impervious
- Times of Concentration Methods
- Coefficients of Runoff

22.7.3.2 Pits subtab

The Pits subtab is used to specify the following data:
Manhole Setout Settings
Pit Losses Ku, and Direct Flow
Setout to Grate Offset

22.7.3.3 Pipes subtab

The Pipes subtab is used to specify the following data:
Pipe Friction Method
Pipe Friction Values and Freeboard Limit
Pit Losses Ku, and Direct Flow
Pipe Design Parameters
22.7.4 Catchment tab

The Catchment tab is used to specify the following data:

- **Impervious**
  - Tc method
  - Length
  - Slope (%)
  - Retardance
  - Tc (minor)
  - Tc (major)

- **Pervious**
  - Tc method
  - Length
  - Slope (%)
  - Retardance
  - Tc (minor)
  - Tc (major)
  - C (minor)
  - C (major)
  - Vcg/Sor

The pit tab has the explicit settings for the values entered on the Defaults catchment tab. When these fields are blank the default value is used. Three catchment sets are available. Typically the user will use one set for different types of catchment areas. For example: Set 1-Road area, Set 2-Lots, Set 3-Parks.

All 3 sets use the same default values except the percent impervious which has a separate default for each set.

[Catchment Areas](#)
22.7.5 Pit tab

The Pit tab is used to specify the following data:

The pit tab has the explicit settings for the values entered on the Defaults pit tab. When these fields are blank the default value is used.

- Manhole Setout Settings
- Pit Losses Ku, and Direct Flow
- Setout to Grate Offset
- Outlet and Tailwater Conditions
- Pipe Design Parameters
- Bypass Flow Settings
22.7.5.1 Setout subtab
22.7.5.2 Bypass subtab

[Image of the Drainage Network Editor interface with the Bypass subtab selected]
22.7.5.3 Bypass Shape subtab
22.7.5.4 Basin subtab
22.7.5.5 Inflow subtab
22.7.5.6 Notes subtab
22.7.6 Pipe tab

The Pipe tab is used to specify the following data:

![Drainage Network Editor](image)

The pipe tab has the explicit settings for the values entered on the Defaults pipe tab. When these fields are blank the default value is used. It has 2 sub tabs.

Pipe:Main subtab

- Pipe sizes, Max pipe height and Multiple Pipes and Box Culverts

22.7.6.1 Design subtab
Pipe Friction Values and Freeboard Limit
Pipe Friction Method
Pipe Friction Values and Freeboard Limit
Pipe Design Parameters

22.7.6.2 Channels subtab
22.7.6.3 Notes subtab
22.7.6.4 Set Catchments

This selection links the catchment strings to the manholes and recalculates the areas. For SAG pits the catchments strings from all 3 sets are draped onto the design surface to locate the lowest overflow point. This level is used for the ponding depth. Information messages are written to the output window during this process.

See Set Catchments

22.7.6.5 Regrade Pipes

This option resets the pipe invert levels using the pipe design parameters. Information, warning and problem messages will be displayed in the output window. These messages will include pipe cover warnings, service crossing data and invert alignment messages. The user may place too many restraints using the regrade options results in no feasible solutions to the grading. These messages will also be shown.

22.7.6.6 Set Pit Details

This option resets the following manhole values: cover level. If activated the following are also set: road design string, setout x,y and z, road centre line chainage and offset, the manhole
symbol rotation, the road grade and crossfall, the bypass pit,

22.7.6.7 Set Pit Names

**Tin for pit cover level** tin box

*The new drainage manhole cover level will be set to the tin level at the manhole centre (optional)*

22.7.6.8 Plot

This plotting option will create a drainage plan and/or long section using the ppf files entered. The ppf editors can be launched from this panel by selecting the More Information folder icon beside the ppf field.

See [Using Drainage Network Plot Button]

22.7.6.9 Import/Export

22.7.6.10 String Editor

22.7.6.11 Set Catchments
See [Drainage Export and Import to Design Software](#)
22.7.7 Drainage Network Design

See Also Using [Drainage Design in 12d Drainage Design](#)

On selecting the Storm Analysis button, the Drainage Network Design panel is displayed.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run</td>
<td>button</td>
<td></td>
<td>Run 12d hydrology and hydraulic check routine</td>
</tr>
<tr>
<td>Edit</td>
<td>button</td>
<td></td>
<td>return to the Drainage Network Editor</td>
</tr>
<tr>
<td>Finish</td>
<td>button</td>
<td></td>
<td>removes the panel</td>
</tr>
<tr>
<td>Help</td>
<td>button</td>
<td></td>
<td>displays this help page</td>
</tr>
</tbody>
</table>
22.7.8 Flood Extents Tab

![22.7.8 Flood Extents Tab Image]
22.7.9 Dynamic Settings Tab
22.7.10 Drainage Edit

On picking a drainage string when in the string Editor option, or by selecting Create in the Create Drainage String panel, the Drainage Edit menu and panel are placed on the screen.

The edit is cancelled by selecting the Quit. No changes to the string are recorded and the Drainage Edit option terminates.

The edit is finished and the changes recorded when the Finish is chosen. The Drainage Edit option then terminates.

When either button is selected, a Yes-No-Cancel panel is displayed and the user must confirm the selection.

The Drainage Edit Info panel is principally used to display information and messages during the creation and editing of the drainage string. It is toggled on and off by Info on the Drainage Edit menu.

The main message area indicates the purpose of the mouse buttons at each step.

Message area 1 displays the current Drainage Edit option and message area 4 indicate the next step in the edit option.

Message areas 2 and 3 are used to display information about the string as the cursor is moved near the drainage string and the drainage manholes.

Each of the options in the Drainage Edit menu will now be described.

For the option Drainage properties, please continue to the section Edits.

Edits, please continue to the section Edits.
Advanced Edits, please continue to the section Advanced Edits.
Manhole, please continue to the section Manhole (Maintenance Hole).
Pipe, please continue to the section Pipe.
Controls, please continue to the section House Connections.
Connections, please continue to the chapter House Connections.
Utilities, please continue to the chapter Utilities.
Z float, please continue to the chapter Z Float.

22.7.10.1 Edits
The options in the Edits menu are used for placing the initial manholes of a new drainage string, editing a new drainage string once the initial manholes are placed or editing an existing drainage string.

The Edits walk-right menu is

![Edits menu](image)

22.7.10.1.1 Append, Append+Radius

The Append, Append+Radius operations for a drainage string are similar to the Append options for a polyline string except that manholes are also automatically placed at each added point.

**Note** - a manhole can be removed from the point afterwards using the Manhole=>Remove option. The point will still be there but without a manhole on it.

If the Append + Radius option selected, then before each point is appended, an enter radius typed-input box is placed on the screen.

The enter radius typed-input box looks like

![Enter radius](image)

The radius is entered into the typed-input box, terminated with <enter>. The entered value is taken as the radius of the arc to the next drainage string point and the arc will be drawn correctly as the cursor is moved to the next point.

A radius value of 0 is taken to mean no arc.

If z Float is set to tick, then the top of the manhole is automatically placed on the terrain given in the tin field for the drainage string.

If height snap is toggled on in the Snaps menu, the height will be displayed as a new height entered but the new height will only be used if z Float is turned off for the manhole.

Each manhole in the string is connected by a drainage pipe. The diameter, type and cover at each end of the drainage pipe are taken from the Drainage Pipe Defaults panel.

The Append options are terminated by selecting Cancel from the Pick Ops menu, or by selecting Quit, Finish, or a new option from the Drainage Edit menu.

22.7.10.1.2 Move

If used in a plan view, the Move option is used to move the (x,y) position of a manhole.

If used in a section view, the Move option can be used to change the height of the top of any manhole or the height of either end of the drainage pipe connecting adjacent manholes in the drainage string.

After the Move option is chosen, the user selects either a manhole in a plan view or the top of a manhole or a pipe end in a section view.
If a manhole is selected from a plan view, then the plan position of the selected manhole will move with the cursor. The new position for the top of the manhole can be chosen by either cursor selection or typed input in exactly the same way as for moving a point on a 3d string.

If the top of a manhole or the end of a pipe connecting adjacent manholes is chosen in a section view, then only the height of the selected point can be modified. That is, if a point is selected in a section view, then it is constrained to move in the z-direction only.

The Move option is terminated by selecting Cancel from the Pick Ops menu, or by selecting Quit, Finish, or a new option from the Drainage Edit menu.

22.7.10.1.3 Insert

The Insert option is designed to place a new manhole between two adjacent manholes (note that the inserted manhole does not have to be on the line joining the two adjacent manholes).

To insert a new manhole, the two adjacent manholes are chosen by selecting the line connecting the two manholes. Once the line is selected, the new manhole is assumed to be at the current cursor position. As the cursor is moved, the drainage string is redrawn reflecting the changing position of the inserted manhole.

The Insert option is terminated by selecting Cancel from the Pick Ops menu, or by selecting Quit, Finish, or a new option from the Drainage Edit menu.

22.7.10.1.4 Between

The Between option is similar to the Insert option except that the inserted manhole does have to be on the line joining the two adjacent manholes. To accomplish this, the cursor position is projected onto the manhole-manhole line to give the new manhole position.

Note - once the manhole is placed, it is no longer constrained to be on the one straight or arc joining adjacent manholes. If this is required, then the manhole is placed using the Manhole=>Add option.

The Between option is terminated by selecting Cancel from the Pick Ops menu, or by selecting Quit, Finish, or a new option from the Drainage Edit menu.

22.7.10.1.5 Delete

The Delete option is used to delete manholes/and or points from the drainage string.

The manhole/point to be deleted is selected with the cursor and when the selection is accepted (MB), it is deleted.

Once a manhole/point has been deleted, the delete option is still current and can be repeated without re-selecting the Delete option.

The string, minus the deleted manhole/point, is redrawn after each deletion.

The Delete option is terminated by selecting Cancel from the Pick Ops menu, or by selecting Quit, Finish, or a new option from the Drainage Edit menu.

22.7.10.1.6 Extend

The Extend option is used to move a manhole/point along the line joining the manhole/point to one of its adjacent manhole/point.

That is, the bearing of the manhole/point-manhole/point line is kept constant and the manhole/point moved along that line either towards or away from its neighbouring manhole/point.

Extending, like moving a manhole/point, is a two step process.

Step (a) - selecting the manhole/point-manhole/point line and the manhole/point to be moved along that line
Step (b) - selecting the final position for the manhole

Both steps are identical to extending an point in a polyline string.

Once the extend is completed, the extend option is still current and can be repeated without re-
selecting the extend option.

The **Extend** option is terminated by selecting **Cancel** from the **Pick Ops** menu, or by selecting **Quit**, **Finish**, or a new option from the **Drainage Edit** menu.

**Note** - Extend can be used on the end manholes of the drainage string

**22.7.10.1.7 Height**

The **Height** option is used to modify the height (z value) of the top of any manhole, or the height of the ends of the pipes connecting adjacent manholes in the drainage string.

The top of the manhole can be selected in either a plan or a section view. The pipe ends can only be selected in a section view.

After the **Height** option is chosen, the user must select the manhole top or pipe end that is going to have its height modified.

Once the manhole or pipe end has been selected, an **New height** typed-input box is displayed on the screen with the items current height (z value) in it.

![New height](image)

The required height is entered into the typed-input box, terminated with <enter>. The entered value is taken as the height of the manhole or pipe and the string redrawn with the new height at that point. The typed-input box then disappears.

The **Height** option is terminated by selecting **Quit**, **Finish**, or a new option from the **Drainage Edit** menu.

**22.7.10.1.8 Radius**

Selecting **Radius** brings up the **Change Radius** panel which is used to modify the radius of any arc/line joining adjacent manhole points.

![Change Radius](image)

After selecting the **Radius** option, the user selects the arc/straight to be modified and the current arc radius and bulge setting will be displayed in the **Change Radius** panel.

New values can then be entered and the arc modified by selecting the **Set** button.

If the radius is positive, the arc is drawn from the start point to the next point on the polyline in a clockwise direction. If the radius is negative, the arc is drawn from the start point to the next point on the polyline in a counter-clockwise direction.

For a given radius (positive or negative), there are two possible cases for the arc- one where the arc is less than a semi-circle, the other when the arc is greater than a semi-circle.

If bulge is turned on, the larger arc is used. The default is bulge turned off.
22.7.10.2 Advanced Edits

The options in the Advanced Edits menu are used for placing the adding manholes at locations other than a vertex and removing these manholes.

The Advanced Edits walk-right menu is

![Advanced Edits Menu]

22.7.10.2.1 Insert MH (no vertex)

The Insert MH (no vertex) operation for a drainage adds a manhole on the existing string. When either of the 2 adjacent manholes with a vertex are moved, this manhole will move as well.

22.7.10.2.2 Remove MH (no vertex)

The Remove MH (no vertex) operation for a drainage removes a manhole on the existing string. If the manhole is on a vertex the vertex remains in the horizontal geometry but does not affect the vertical geometry.
22.7.10.3 Manhole (Maintenance Hole)

The options in the Manhole menu are used to modify information about individual manholes in the drainage string.

The Manhole walk-right menu is

![Manhole Menu]

22.7.10.3.1 Add

The add option is similar to the Edits=>Between option in that a new manhole is created that must be on the line or arc between two adjacent manholes.

However, once the manhole is placed, it is always constrained to be on the one straight or arc joining its adjacent manholes.

To add a new manhole, the two adjacent manholes are chosen by selecting the line connecting the two manholes. Once the line is selected, the new manhole is assumed to be at the current cursor position. As the cursor is moved, the drainage string is redrawn reflecting the changing position of the inserted manhole.

The add option is terminated by selecting Cancel from the Pick Ops menu, or by selecting Quit, Finish, or a new option from the Drainage Edit menu.

22.7.10.3.2 Remove

The Remove option is used to remove manholes from the drainage string but unlike the Edits=>Delete option, the underlying point on the drainage string remains. Hence only the manhole is deleted, but not the polyline point underneath.

The manhole to be removed is selected with the cursor and when the selection is accepted (MB), it is removed.

Once a manhole has been removed, the Remove option is still current and can be repeated without re-selecting the Remove option.

The string, minus the deleted manhole/point, is redrawn after each removal.

The Remove option is terminated by selecting Cancel from the Pick Ops menu, or by selecting Quit, Finish, or a new option from the Drainage Edit menu.

22.7.10.3.3 Name

The Name option is used to change a manhole's label.

After selecting the option, the mouse is used to pick the manhole to have a name change.

Once a manhole has been selected, an Enter text typed-input box is displayed on the screen containing the selected manhole's name.
The new name is entered into the typed-input box, terminated with <enter>. The typed-input box then disappears.

The Name option is terminated by selecting Cancel from the Pick Ops menu, or by selecting Quit, Finish, or a new option from the Drainage Edit menu.

**NOTE** - if the name of the manhole is EOL or eol then the diameter of the manhole is forced to zero.

### 22.7.10.3.4 Diameter

The Diameter option is used to change a manhole's diameter.

After selecting the option, the mouse is used to pick the manhole to have its diameter modified.

Once a manhole has been selected, an Enter value typed-input box is placed on the screen displaying the selected manhole's current diameter.

The new diameter is entered into the typed-input box, terminated with <enter>. The typed-input box then disappears.

The Diameter option is terminated by selecting Cancel from the Pick Ops menu, or by selecting Quit, Finish, or a new option from the Drainage Edit menu.

### 22.7.10.3.5 Type

The Type option is used to change the type of the cover (lid) placed on a manhole.

After selecting the option, the mouse is used to pick the manhole to have its cover type modified.

Once a manhole has been selected, a Manhole type typed-input box is displayed on the screen containing the selected manhole's cover type.

The list of common covers for the manhole can be obtained by clicking the [+] in the Manhole type input box and getting a menu of valid cover types.

The new cover type is entered into the typed-input box, terminated with <enter>. The typed-input box then disappears.

The Type option is terminated by selecting Cancel from the Pick Ops menu, or by selecting Quit, Finish, or a new option from the Drainage Edit menu.

### 22.7.10.3.6 Drop

The Drop option is used to change the vertical distance between the bottom of the pipes on either side of a manhole, i.e., the difference in the invert levels of the pipe.

Since the drop in simply the difference in vertical distance between two pipes on either side of a manhole, the actual value of the drop can be changed by moving either of the pipes up or down the manhole.

After selecting the option, the end of the pipe to be moved is selected with the mouse.
Once the pipe end been selected, an enter value typed-input box is displayed containing the drop across the manhole that the pipe end connects into.

The new drop type is entered into the typed-input box, terminated with <enter>. If the end of the pipe was on the upstream side of the manhole (normally the right hand side of a manhole in a section view), the end of the pipe will be moved upward until the drop across the manhole equals the entered value.

If the end of the pipe was on the downstream side of the manhole (normally the left hand side of a manhole in a section view), the end of the pipe will be moved down until the drop across the manhole equals the entered value.

The typed-input box then disappears.

The Drop option is terminated by selecting Cancel from the Pick Ops menu, or by selecting Quit, Finish, or a new option from the Drainage Edit menu.

22.7.10.3.7 Z Float

A floating manhole takes the z-value for the top of the manhole from the tin selected for the drainage string. Hence as a floating manhole moves around in a plan view, the top of manhole will automatically change to suit the new z-value of the drainage string tin.

Selecting Z float brings up the Manhole Z Float panel which is used to change a manhole from floating to non-floating and vice-versa.

After selecting the Z Float option, the user selects the manhole to be modified and the current floating z status is displayed in the Manhole Z Float panel.

The tick box can then be changed and the manhole modified by then selecting the Set button.

22.7.10.3.8 Road Name

A road name can be set for a manhole of the line. Selecting Road name brings up the Manhole Road Name panel which is used to give and change a road name for a manhole.
The option is running as soon as the panel is on the screen and the user is asked to selected a manhole.

<Select manhole> [picks]|[Menu]

When the manhole is selected, any existing road name and the manhole number is placed in the road name and vertex no. fields respectively of the Manhole Road Name panel.

A new road name is then typed into the road name panel field and the Set button selected to record the road name with the manhole.

### 22.7.10.3.9 Road Chainage

A road chainage can be set for a manhole of the line.

Selecting Road ch brings up the Manhole Road Chainage panel which is used to give and change a road chainage for a manhole.

The option is running as soon as the panel is on the screen and the user is asked to selected a manhole.

<Select manhole> [picks]|[Menu]

When the manhole is selected, any existing road chainage and the manhole number is placed in the road chainage and vertex no. fields respectively of the Manhole Road Chainage panel.

A new road chainage is then typed into the road chainage panel field and the Set button selected to record the road chainage with the manhole.

### 22.7.10.3.10 Outfall Height

When a drainage string is created, the furthest downstream is often an outfall and the height of the outfall known.

When the furthest downstream manhole is considered to be an outfall, the Outfall ht option is used to set and change the outfall height. Once set, the outfall height is taken to be the height at the bottom of the furthest downstream manhole.

If this option is not used, the outfall height is left undefined.

After selecting the option, an enter value typed-input box is displayed on the screen containing the existing outfall height or null if no outfall height has been set.

The new outfall height is entered into the typed-input box, terminated with <enter>.

The height of the bottom of the furthest downstream manhole in the drainage string is then set to the given height and the typed-input box removed.

The Outfall ht option automatically terminates after use.

**Note:**

For a drainage string with flow direction in ascending chainage, the furthest downstream manhole is the last manhole.

For a drainage string with flow direction in descending chainage, the furthest downstream manhole is the first manhole.
flow direction in ascending chainage

flow direction in descending chainage

last pit or manhole

the Outfall height

first pit or manhole

the outfall height
22.7.10.4 Pipe

The options in the Pipe menu are used to modify information about the pipes joining adjacent manholes in the drainage string.

The Pipe walk-right menu is

```
Pipe
Move
Name
Cover
Diameter
Type
Colour
Grade
Grade to end
Default grading
```

22.7.10.4.1 Move

The Move option is used to move a pipe connecting two manholes whilst keeping the grade of the pipe constant.

After selecting the option, the mouse is used to pick the pipe to be moved.

Once a pipe has been selected, the pipe will be moved up or down so that the cursor remains on the pipe (or on the extension of the pipe if the cursor is on the other side of the manholes at either end of the pipe). The grade of the pipe is kept constant.

The manholes at either end of the pipe will also be extended if necessary so that the pipe still connects into the adjacent manholes.

The Move option is terminated by selecting Cancel from the Pick Ops menu, or by selecting Quit, Finish, or a new option from the Drainage Edit menu.

22.7.10.4.2 Name

The Name option is used to change a pipe's label.

After selecting the option, the mouse is used to pick the pipe to have a name change.

Once a pipe has been selected, an Enter text typed-input box is displayed on the screen containing the selected pipe's name.

```
Enter text
```

The new name is entered into the typed-input box, terminated with <enter>. The typed-input box then disappears.

The Name option is terminated by selecting Cancel from the Pick Ops menu, or by selecting Quit, Finish, or a new option from the Drainage Edit menu.

22.7.10.4.3 Cover

The Cover option is used to place the selected pipe so that minimum cover is maintained along the top of the pipe (obvert) with respect to the finished surface tin (tin (fs)).

After selecting the option, the pipe to set the cover for is selected with the mouse.

Once a pipe has been selected, an Enter value typed-input box is displayed on the screen.
containing the existing cover.

The new cover is entered into the typed-input box, terminated with <enter>. The typed-input box then disappears and the pipe is adjusted so that the specified cover is maintained for the full length of the pipe at the pipes existing grade.

The **Cover** option is terminated by selecting **Cancel** from the **Pick Ops** menu, or by selecting **Quit**, **Finish**, or a new option from the **Drainage Edit** menu.

### 22.7.10.4.4 Diameter

The **Diameter** option is used to change a drainage pipe's diameter.

After selecting the option, the mouse is used to pick the pipe to be modified.

Once a drainage pipe has been selected, an Enter value typed-input box is placed on the screen displaying the selected pipe's current diameter.

The new diameter is entered into the typed-input box, terminated with <enter>. The typed-input box then disappears.

The **Diameter** option is terminated by selecting **Cancel** from the **Pick Ops** menu, or by selecting **Quit**, **Finish**, or a new option from the **Drainage Edit** menu.

### 22.7.10.4.5 Type

The **Type** option is used to change the type of material that the pipe is made of.

After selecting the option, the mouse is used to pick the pipe to have its material type modified.

Once a pipe has been selected, a Pipe type typed-input box is placed on the screen displaying the selected pipes material type.

The list of common materials for the pipe can be obtained by clicking B3 in the type input box and getting a menu of valid material types.

The new material type is entered into the typed-input box, terminated with <enter>. The typed-input box then disappears.

The **Type** option is terminated by selecting **Cancel** from the **Pick Ops** menu, or by selecting **Quit**, **Finish**, or a new option from the **Drainage Edit** menu.

### 22.7.10.4.6 Grade

The **Grade** option is used to specify an exact grade for a drainage pipe. The value for the grade is entered using typed input and is in the units "1v in".

In this option, the new grade is given to a pipe by keeping one end fixed and raising or lowering the other end by the amount required to give the pipe the new grade.

After the **Grade** option is selected, the pipe whose grade is to be modified is selected **at the end that is going to be moved**.

Once the pipe end has been selected, an enter value typed-input box is displayed on the screen
containing the current grade of the pipe. The new grade is entered into the typed-input box, terminated with <enter>.

The selected end of the drainage pipe is then moved up or down so that the pipe has the new grade.

If necessary, the manhole at the moved end of the pipe will be lengthened so that the pipe still connects into the adjacent manholes.

The Grade option is terminated by selecting Cancel from the Pick Ops menu, or by selecting Quit, Finish, or a new option from the Drainage Edit menu.

22.7.10.4.7 Grade to End

The Grade to end option is used to specify a fixed grade for all the drainage pipes from a selected pipe to the low chainage end (beginning) of the line. That is, it grades from right to left on a long section of the drainage string.

The value for the grade is entered using typed input and is in the units "1v in".

This option was originally written for pipes with flow direction in descending chainage direction which is the reason why it works from the selected pipe back towards the beginning of the line.

Hence Grade to end should only be run on pipes with flow in descending chainage direction. If the flow is in ascending chainage direction, use the reverse string option (string=>strings edit=>reverse) before using this option, and then reverse the string again after the option is run. Note that the Default grading option looks at maintaining minimum grade and minimum cover for flow in either ascending or descending chainage direction and supersedes Grade to end.

In this option, the new grade is given to a pipe by keeping the high chainage end of the selected pipe fixed and raising or lowering the low chainage end by the amount required to give the pipe the new grade. The minimum cover is over ridden during this process. If necessary, the bottom of the manhole will be lowered so that the pipe still connects into its adjacent manholes.

The next lower chainage pipe is then dropped through the default drop and given the new grade. The drop is measured from the lowest pipe invert of all pipes in the network entering the manhole.

This process is repeated until the low chainage end (beginning) of the line is reached.

After the Grade to end option is selected, the first pipe whose grade is to be modified is selected.

Once the pipe end has been selected, an enter value typed-input box is displayed on the screen containing the current grade of the selected pipe. The new grade is entered into the typed-input box, terminated with <enter>. The option then does the grading.

The Grade to end option is terminated by selecting Cancel from the Pick Ops menu, or by selecting Quit, Finish, or a new option from the Drainage Edit menu.

22.7.10.4.8 Default Grading

The Default grading option starts at the given pipe and then works to the end of the line when the flow direction is in ascending chainage, or the beginning of the line when the flow direction is in descending chainage. The Default grading option maintains minimum grade and minimum cover.
Default grading is not designed to optimise the placement of the pipes but provides one solution preserving minimum grade and cover.
22.7.10.5 Property Controls

Property, block or lot controls are trial connections from a sewer line (drainage string) to a user specified plan point.

The property controls are used as checks that selected house blocks can be serviced by the sewer line. That is, they are used to test if the house block is under the control of the sewer line.

For the trial connection, once the cover (measured from the finished surface to the top of the property connection line) that the property connection must maintain and the grade are specified, the position and depth that the trial property connection must have at the sewer line can be calculated, and where the height of the centre line of the property control when it reaches the sewer line is displayed in any section view containing a profile of the sewer line.

If the calculated depth of the trial property connection at the sewer line (drainage string) is below the sewer pipe, then no such connection would be feasible and the house block would not be totally controlled by the sewer line.

On a section view, the Profile => One substring and Profile => Many substrings options will profile the property control. Note that the centre line (axis) of the property control is drawn on the section view, not the invert (bottom) or the obvert (top).

NOTE - property controls are only accessible by the Sewer module.

The options in the Controls menu are used to place and modify the trial connections. The Controls walk-right menu is

22.7.10.5.1 Add

The Add option is used to create a new trial control line going from a selected drainage pipe to a user specified plan position (the free end of the connection).

After selecting the option, the mouse is used to pick the plan position of the connection point on the drainage pipe, and then the points defining the path to the plan position of the free end of the trial connection.

After the free end has been selected, the property name typed-input box is displayed on the screen so that a label for the control can be entered (this usually consists of the lot number).

When the property name box is placed on the screen, it will already have some text in it. This text comes from the name field in the Drainage Property Control Defaults panel.

A z-value equal to the drainage tin value minus the default control cover depth is automatically given to the free end of the control. The default control grade is then used to define z-values.
along the trial path (ensuring that the default control cover depth is always observed) to give a z-
value back at the drainage pipe (the connection height of the control).

A cross at the calculated connection height is displayed whenever the drainage string is profiled
on a section view.

The colour for the new control is taken from the Drainage Property Control Defaults panel.

The Add option is terminated by selecting Cancel from the Pick Ops menu, or by selecting Quit, Fin-
ish, or a new option from the Drainage Edit menu.

22.7.10.5.2 Include

The Include option is used to make a control out of an existing polyline string.

The polyline string must start at the connection point on the drainage string and end at the free
end (use Strings=>Strings Edit=>Reverse if the string’s direction is incorrect).

After selecting the option, the mouse is used to pick the polyline string and its plan position is
copied and used to define a new control.

A z-value equal to the default drainage tin at that point, minus the default control cover depth is
automatically given to the free end of the new control. The default control grade is then used to
define z-values along the trial path (ensuring that the default control cover depth is always
observed) to give a z-value back at the drainage pipe.

The Include option is terminated by selecting Cancel from the Pick Ops menu, or by selecting Quit,
Finish, or a new option from the Drainage Edit menu.

22.7.10.5.3 Delete

The Delete option is used to delete a control.

After selecting the option, the mouse is used to pick the block control to be deleted.

Once a block control has been selected, it will deleted and removed from the screen.

The Delete option is terminated by selecting Cancel from the Pick Ops menu, or by selecting Quit,
Finish, or a new option from the Drainage Edit menu.

22.7.10.5.4 Name

The Name option is used to change the Property name of a control.

After selecting the option, the mouse is used to pick the control that will have a name change.

Once a control has been selected, an enter text typed- input box is displayed on the screen con-
taining the selected control’s name.

The new name is entered into the typed-input box, terminated with <enter>. The typed-input box
then disappears.

The Name option is terminated by selecting Cancel from the Pick Ops menu, or by selecting Quit,
Finish, or a new option from the Drainage Edit menu.

22.7.10.5.5 Diameter

The Diameter option is used to change the diameter of a control.

After selecting the option, the mouse is used to pick the control that will have its diameter
modified.
Once a control has been selected, an Enter value typed-input box is placed on the screen displaying the selected control's current diameter.

![Enter value input box](image)

The new diameter is entered into the typed-input box, terminated with <enter>. The typed-input box then disappears.

The Diameter option is terminated by selecting Cancel from the Pick Ops menu, or by selecting Quit, Finish, or a new option from the Drainage Edit menu.

### 22.7.10.5.6 Cover

The Cover option is used to change the distance that the control is below the tin (fs) for the drainage string.

After selecting the option, the cursor is used to pick the control whose cover will be modified.

Once a control has been selected, an Enter value typed-input box is placed on the screen displaying the selected block control's current cover.

![Enter value input box](image)

The new cover is entered into the typed-input box, terminated with <enter>. The typed-input box then disappears and the new connection height using the new cover calculated.

The Cover option is terminated by selecting Cancel from the Pick Ops menu, or by selecting Quit, Finish, or a new option from the Drainage Edit menu.

### 22.7.10.5.7 Grade

The Grade option is used to change the grade of a control (units "1v in").

After selecting the option, the mouse is used to pick the control whose grade will be modified.

Once a control has been selected, an enter value typed-input box is placed on the screen displaying the selected control's grade.

The new grade is entered into the typed-input box, terminated with <enter>. The typed-input box then disappears and the new connection height using the new grade calculated.

The Grade option is terminated by selecting Cancel from the Pick Ops menu, or by selecting Quit, Finish, or a new option from the Drainage Edit menu.

### 22.7.10.5.8 Boundary

The Boundary option is used to specify a boundary trap depth which is used as a final drop at the drainage pipe end of the control.

After selecting the option, the mouse is used to pick the control whose boundary depth will be modified.

Once a control has been selected, an Enter value typed-input box is placed on the screen displaying the selected boundary depth.

![Enter value input box](image)

The new boundary trap depth is entered into the typed-input box, terminated with <enter>. The typed-input box then disappears and the new connection height using the new boundary trap depth is calculated.

The Boundary option is terminated by selecting Cancel from the Pick Ops menu, or by selecting Quit, Finish, or a new option from the Drainage Edit menu.
22.7.10.5.9 Calc all

The Calc all option is used to re-calculate the connection heights for all controls of the drainage line.

The calculation uses the plan layout of the control, the control's cover, grade and boundary trap depth and the default tin for the drainage line.

The Calc bc's option automatically terminates after use.

22.7.10.5.10 Delete All

The Delete all option is used to remove all the controls defined for the drainage line being edited.

The Delete all option automatically terminates after use.
22.7.10.6 House Connections

The Connections option is used to create the connections from the sewer line (drainage string) to the house blocks in a subdivision.

When placing a house connection, the user indicates the two corners of the frontage of the block to allow the cross-fall of the block to be calculated and allow the frontage to be used in positioning the house connection.

When placing house connections, a section view is used to automatically display the connection to facilitate checking the type of connection used and any obstructions that may need to be avoided.

NOTES
1. House connections are only accessible by the Sewer module.
2. All house connection calculations do not take into account any thickness of pipe, joint sizes or actual entry points into the sewer. Hence they are approximate only and should only ever be used as a guide. Any quantities calculations should allow for a suitable margin of error.

The Connections walk-right menu is

The process for creating a house connection will now be described in detail.

22.7.10.6.1 Create from Controls

The Create from Controls option is used to create a new house connection from existing controls or modify an existing house connection.

After selecting the Create from Controls option, the Default House Connections panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>
| Mode              | input| update all| remove existing first,
update new, update all |

if remove existing first, all the existing connections are deleted before new ones are created from the controls.
if update new, connections are only created from controls with names different from any existing connection.
if update all, connections are created from all controls.
**Factor of safety**

Input: 0.15

The connection height for the control is adjusted by this depth from the control connection depth.

**Create** button

After selecting **Create**, the connections are created from the selected controls.
22.7.10.6.2 Create/Edit

The Create/edit option is used to create a new house connection or modify an existing house connection.

After selecting the Create/edit option, the House Connections panel is displayed.

Creating A House Connection

Step 1 Select Create

To create a new house connection, the Create button is selected from the House Connections menu.

If either the default drainage tin or section view have not be defined, the Drainage House Connection Basic Defaults panel will be placed on the screen after the Create button is selected.
The missing values need to be filled in and the Set selected. This information is needed so that the house connections can be drawn up in a section view as soon as they are created.

**Step 2** Selecting the Sewer (drainage) Pipe to Connect to

The user is then asked to select the sewer pipe to connect into.

**Step 3** Selecting the House Lot Frontage

Next the user indicates the two frontage points for the house block.

**Step 4** Positioning the House Connection on the Sewer Pipe

From the two frontage points and the default drainage tin, the program calculates the crossfall for the block frontage.

The crossfall is displayed in the name of the enter distance up line typed-input box which is now placed on the screen. The distance up line is the distance along the frontage that the house connection will be placed.
Depending on the crossfall, a default value for the distance up line is displayed. If the ground crossfall is greater than 1%, the lot mid point is the suggested connection location. For crossfalls less than 1%, the connection is located 3m off the lowest lot boundary.

A pop-up also exists for placing the connection point at the distance 2.0, 3.0, 5.0 along the frontage, the mid point of the frontage, and the distances 2.0, 3.0 and 5.0 from the other end of the frontage.

The distance up line value is entered into the typed-input box, terminated with <enter>. The typed-input box is then removed from the screen.

**Step 5: Defining the House Connection Type**

Next the **House Connection Edit** panel is placed on the screen.

Most of the values in the field come from the drainage house connection defaults.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chainage up line</td>
<td>input/output</td>
<td>chainage of connection</td>
<td>the chainage on the sewer string where the house connection is attached to the sewer line.</td>
</tr>
<tr>
<td>Lot name</td>
<td>input</td>
<td>from drainage defaults</td>
<td>name of the house block</td>
</tr>
<tr>
<td>HCB #</td>
<td>input</td>
<td>PVC, PVC X/HEAVY, VC</td>
<td>a user supplied house connection branch (HCB) number</td>
</tr>
<tr>
<td>Material</td>
<td>input</td>
<td>from drainage defaults</td>
<td>the material used for the house connection.</td>
</tr>
<tr>
<td>Bush required</td>
<td>input</td>
<td>no bush, PVC to VC</td>
<td>the type of bush used</td>
</tr>
<tr>
<td>Connection type</td>
<td>input</td>
<td>A, A Special, B, C, OB, Special jump up</td>
<td>the type of connection used. Go to the section House Connection Types for a description of each connection type</td>
</tr>
<tr>
<td>Connection side</td>
<td>input</td>
<td>right side, left side</td>
<td>the side of the line to make the connection</td>
</tr>
<tr>
<td>Connection length</td>
<td>input</td>
<td>from drainage defaults</td>
<td>length of pipe for the house connection</td>
</tr>
<tr>
<td>Connection level</td>
<td>input</td>
<td>calculated</td>
<td>height of the house connection. When this is first displayed, it is calculated using the invert level of the sewer pipe where the house connection is attached, the house connection type and connection length (if required by the house connection type), the default house connection grade, the default house connection cover and the surface level at the end of the house connection.</td>
</tr>
</tbody>
</table>

Try button
using the parameters in the panel fields, create the house connection. Also calculate a section along the house connection and draw it in the drainage default section view.

Finish button
end the option, remove the panel.

Step 5 Continued
After entering the appropriate values in the House Connection Edit panel and then selecting the Try button, the house connection will created.

To help check the house connection parameters, a section along the house connection will automatically be calculated and displayed in the section view given in the drainage defaults panel. Any tins or models on the section view will be included in the section.

Step 6 Modifying the Connection
If any of the fields in the House Connection Edit panel are changed, selecting the Try button will modify the house connection and redraw the section in the default drainage section view.

Editing A House Connection
To edit an existing house connection, the Edit button is selected from the House Connections menu and then the appropriate house connection selected.
The **House Connection Edit** panel will then be placed on the screen with the details of the selected house connection.

If any of the fields in the **House Connection Edit** panel are changed, the **Try** is used button to modify the house connection and redraw the section in the default drainage section view.

### 22.7.10.6.3 Delete

The **Delete** option is used to delete a connection.

After selecting the option, the mouse is used to pick the house connection to be deleted.

Once a house connection has been selected and accepted, it is deleted and removed from the screen.

The **Delete** option is terminated by selecting **Cancel** from the **Pick Ops** menu, by selecting a new option from the **Drainage Edit** menu.

### 22.7.10.6.4 Delete all

The **Delete all** option is used to delete all connections.

After selecting the option, all the connections are deleted and the option terminates.
22.7.10.7 Utilities

The options in the Utilities menu are used to modify default drainage tin, the name, colour, style and start chainage of the drainage string, and the size, angle, and offsets used when displaying the text for the names of all the manholes.

The Drainage Utilities walk-right menu is

![Drainage Utilities Menu]

22.7.10.7.1 Tin (fs)

The Tin (fs) option changes the default finished surface tin (tin (fs)) for the drainage string.

After selecting the option, the FS Tin for Drainage panel is displayed.

![FS Tin for Drainage Panel]

The existing default tin is displayed in the tin panel field. If a new tin is required, simply enter the new tin name into the tin (fs) field and select the Set button.

22.7.10.7.2 Tin (ns)

The Tin (ns) option changes the default natural surface tin (tin (ns)) for the drainage string.

After selecting the option, the NS Tin for Drainage panel is displayed.

![NS Tin for Drainage Panel]

The existing default tin is displayed in the tin (ns) panel field. If a new tin is required, simply enter the new tin name into the tin field and select the Set button.

22.7.10.7.3 Angle

The Angle option changes the angle of the text for manhole labels.

After selecting the option, an enter angle typed-input box is displayed on the screen containing the
current text angle.
The new angle is entered into the typed-input box, terminated with <enter>. The typed-input box then disappears.
The Angle option then terminates.

22.7.10.7.4 Size
The Size option is used to change the size of the text for manhole labels.
After selecting the option, an enter value typed-input box is displayed on the screen containing the current text size.
The new size is entered into the typed-input box, terminated with <enter>. The typed-input box then disappears.
The Size option then terminates.

22.7.10.7.5 Properties
The Properties option brings up the Drainage String Properties panel for the current drainage string.

![Drainage String Properties Panel](image)

Any of the data in the panel fields can be modified and then set for the drainage string by selecting the OK or Apply button.

22.7.10.8 Z Float
The status of Z Float is used each time a new manhole is created.
If Z Float is set to tick, then the top of the manhole is set to z float which means that automatically sits on the default drainage tin.
If Z Float is not set to tick, then the top of the manhole is given a set z value when it is created.
The z float status of the manhole can be changed after it has been created by using the Drainage Edit=>Manhole=>Z Float option.
22.7.11 Utility String Editor

Position of option on menu:  Design => Drainage-Sewer => Utility String Editor

This editor is used to edit properties of the strings used by the DNE. Properties always change at an existing vertex.

**Cross Section Strings (Manning’s n)** - set the left and right bank n values. the centre n value is assigned by the DNE.

**Flooded Width Values on Bypass Flow Strings** - the default setting of the bypass flow strings when used to calculate flooded widths in the Drainage Analysis. Changes are in effect until the end of the string or it has been re specified at vertex at a higher chainage.

Vertex labels are created whenever properties are set (Texstyle is required).

**Usage**

First the string is selected at the vertex where the values are to be assigned. Next select the purpose of the string (cross section or bypass) to unlock the appropriate fields. A textstyle favourite is required as the vertex is labelled with the assigned values. Enter the values into the fields and then select Set to set the values as vertex attributes and create the label as a vertex annotation.

On selecting the Utility String Editor option, the Drainage Utility String Editor panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Vertex index</strong></td>
<td>vertex</td>
<td>selected vertex</td>
<td></td>
</tr>
</tbody>
</table>

*Once the string is selected use this to move between vertices*

| **Style for Vertex Labels** | textstyle favourite | textstyles |                         |

*A label is created on the vertex using this textstyle favourite*

| **Left bank**               | Input         |  |  |

*manning’s n value, to delete clear and select set*

| **Right bank**              | Input         |  |  |
mannings \(n\) value, to delete clear and select set

**Max Flooded with**Input

*This changes the threshold where warning bars are created during flooded width calculations. It remains in effect till the next change or the end of the bypass flow string.*

**Qdc percentage**Input

*This changes the percentage of the \(Q_{direct} + Q_{catchment}\) that is used to interpolate the discharges during flooded width calculations. It is generally set on the first vertex past upstream pit and remains in effect till the next change or the end of the bypass flow string. The flow changes from the bypass flow at the upstream pit to this value/100*(\(Q_{direct} + Q_{catchment}\)).*

**Manning’s \(n\)** Input

*This changes the Manning’s \(n\) value used for during flooded width calculations. It remains in effect till the next change or the end of the bypass flow string.*

**Pick** button

*Use this button to select the string. Select near the vertex you want to assign the values to.*

**Set** button

*Create the attributes and the label on the vertex.*

**Finish** button

*Removes the panel from the screen.*

**Help** button

*Launches the 12d help*

---

In the example above, The Qdc is set to 80% at the eastern end of the catchment. The Qdc is set to 2% for the water overtopping the road. The 18% of the area is not considered large enough to do the flooded width calculation for. If desired, another bypass flow string approaching from the east could be drawn but the final bypass string to the west (direction during bypass should
remain).
22.7.12 Rainfall File ppf Editor

Position of option on menu:  Design => Drainage-Sewer => Rainfall editor

On selecting the Rainfall editor option, the Rainfall File Editor panel is displayed.

Data is entered using one (or more if desired) input methods and then saved by entering a Meteorology file name and selecting Write. The standard 12d system file search paths are used (project folder, user library folder and then library folder).
22.7.12.0.1 IFD Tables

IFD tables are often available from meteorological services. The table input format follows. The first row is used to define up to 9 return periods and the following rows list the rainfall intensities for the duration entered in the first column.

Hint: to increase the size of the grid control select another method, ARR 1987 for example, and then select IFD table again.
22.7.12.0.2 Australian Rainfall and Runoff 1987 Method

The rainfall intensities and other factors from Volume 2 of ARR 1987 are entered in this table.

22.7.12.0.3 Australian Rainfall and Runoff 1977 Method

The seven coefficients for each return period from ARR 1977 are entered in this table.
22.7.12.1 Rainfall Temporal Patterns

Temporal patterns are referred to as storms in dynamic drainage. Several example hydro files are included in the 12d library. These examples have the temporal patterns for the minor and major storms in the 8 zones of Australia.

Temporal patterns are not required for the SCS NZ method as the standard 24 hour temporal pattern from TP108 is built into the 12d analysis engine.

The Run storm, Zone filter, From ARI and To ARI columns are used determine which storms are analysed (run). The Run storm column must be checked for that temporal pattern to be analysed. Many storms may be selected.

The Zone filter is optional. Entering a value here will allow the selected storms to be further filtered. A Zone filter field (accepts wild card characters) is found on the DNE Global tab that is used to determine which of the selected storms (paragraph above) are analysed.

The ARI field on the Run panel is used with the From ARI and To ARI columns. The value on the run panel must be within the From-To range for the storm to be analysed.
The **Duration** column determines the total length of the storm. This value divided by the **Interval** must be a whole number and this number determines the number of % values to be entered to the right of the **Interval column**. The total of the percentage must equal 100.

### 22.7.12.2 Horton Losses

The pervious portion of the catchments used in the **ILSAX 2** analysis will have a loss type defined describing the soil type. The loss type is defined in the DNE Default->catchment and catchment tabs.

These soil types use the classifications of Terstriep and Stall (1974), based on the system developed by the U.S. Department of Agriculture. The default values entered from the library represent the soil types of

1. Type A - low runoff potential, high infiltration rates (consists of sand and gravel
2. Type B - moderate infiltration rates and moderately well-drained
3. Type C - slow infiltration rates (may have layers that impede downward movement of water)
4. Type D - high runoff potential, very slow infiltration rates (consists of clays with a permanent high water table and a high swelling potential)

Numbers are assigned to each soil type to allow interpolation between the defined soil types. When interpolated values are used they must be included in the list (2.5 and 3.5 for example). Interpolated values do not need loss data entered. If loss data is entered for the interpolated names then this data will be used rather than an interpolation occurring. If any loss data is entered then all of the values must be entered.

Four preset AMC points are defined in the rainfall file to mark AMC conditions ranging from dry (AMC1) to saturated (AMC4). The required data for each line is the **Initial loss rate**, **Final loss rate**, **decay rate** and 4 antecedent moisture conditions (AMCs). The AMC values are entered in depth of rainfall (mm) they represent the total rainfall prior to the start of the temporal pattern.

The AMC point numbers are set once for all catchments on the DNE Global tab. Value between 1 and 4 (decimal value are permitted) are entered for the minor and major events.

### 22.7.12.3 SCS NZ Losses (Initial Abstraction and Curve Numbers)

The SCS NZ method uses Initial abstraction (Ia) and the curve number (CN) to determine the losses for the catchments. Names are given to the SCS curve numbers in the rainfall file. These names and Ia (entered as storage values) and selected in the DNE catchment data.

A curve number of 0 results in zero runoff while a CN=100 results in 100% runoff. **TP 108** recommends the selection of the curve number by identifying 1) the soil type and 2) the land use. **A CN=98 an Ia=0 are recommended for impervious areas.**
22.7.13 String split/join

Position of option on menu: Design => Drainage-Sewer => String split/join

This option must be used on drainage strings instead of the standard split or join commands. On selecting the String split/join option, the String split/join panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>US string name</td>
<td>The upstream section of the split string is assigned this name.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS string name</td>
<td>The downstream section of the split string is assigned this name.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Split</td>
<td>The split may only occur at a manhole. The upstream and downstream sections are renamed if names are provided above.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Join US to DS</td>
<td>The upstream segment must be selected first and then the downstream. The properties from the upstream string are used for the new string created. If there is a gap in between the joined strings, a pipe will be inserted with the default pipe properties. The attributes of the upstream pit on the downstream string will be discarded.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Join DS to US</td>
<td>The downstream segment must be selected first and then the upstream. The properties from the downstream string are used for the new string created. If there is a gap in between the joined strings, a pipe will be inserted with the default pipe properties. The attributes of the downstream pit on the upstream string will be discarded.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finish</td>
<td>remove the panel from the screen</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Help</td>
<td>display the help for this panel</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
22.7.14 Adjust Pit Locations

Position of option on menu:  Design => Drainage-Sewer => Adjust Pit Locations

Key Points
1. Pits are moved perpendicular to the road string.
2. The string to be moved to must be closer than the search distance or it will not be moved.

On selecting the Adjust pit locations option, the Adjust Pit Locations panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This function will re adjust the drainage pits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainage model</td>
<td>model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The drainage model to have the pits moved.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use road strings</td>
<td>tick</td>
<td></td>
<td></td>
</tr>
<tr>
<td>When selected, a DNE road string is checked for each pit. When found, the pit will be moved perpendicular to this string at the Road string offset distance. If the road string is not found, the layout string will be searched for using the Max layout search distance. If not selected the only the layout strings with an offset of zero will be used.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pit type offset file</td>
<td>file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The grid data below is stored in this file when the Process button is selected.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pit type</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Only used when Use road strings is selected. Each pit scans for its pit type in the Pit type column. When found, the pit is placed at the Road string offset distance from the road string.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Road string offset input

Only used when Use road strings is selected. The pit is placed at the Road string offset distance from the road string. Positive is away from the road centreline and negative is towards the centreline. When no Road string offset is set via the pit type, the offset value is zero.

Data Source of Pit Layout Strings sourcemodel

Used when Use road strings is NOT selected or when no road string is found. As road strings are often in several models, so the filter option is usually the best. Select a view with the road string models and then use the string info tab and name field (* wild card can be used) to select the strings to move to.

Max Layout Search Distance real 1.0

Only used for layout strings. Road strings do not have a search distance. If the closest string in the pit layout strings is farther than this distance the pit will not be moved.

Run button

This moves the pits horizontally. Undo is available.

Finish button

Removes the panel from the screen.
22.7.15 Dynamic Culvert Design

Position of option on menu:  Design => Drainage-Sewer => Dynamic Culvert

This section of documentation is a work in progress and will be updated in subsequent releases.

On selecting the Dynamic Culvert option, the Drainage Dynamic Culvert Design panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culvert type</td>
<td>choice box</td>
<td>Pipe</td>
<td></td>
</tr>
</tbody>
</table>
Culvert shape choice box Pipe Culvert - (outlet control only)
Inlet Shape choice box No Inlet Control
US Invert measure box
DS Invert measure box
Slope (%) input
Culvert Length measure box
Num. of Barrels input 1
Culvert Roughness (Manning's n) input
Entrance Loss input
Exit Loss input
Other Loss input
Sediment input
Diameter measure box
Design Flow input
Max WSL measure box
Road Low Point Elev. measure box
Set Weir Data button
Tailwater Mode choice box
Tailwater Elev. measure box
Set Tailwater Data button
Culvert Size tick box
Preferred Sizes button
Culvert Flow tick box
Culvert WSL tick box
Solve button
Max Flow input
HGL US input
HGL DS input
Qfull input
% Full input
Depth input
Velocity input
Froude No. input
Report File file box
More Results button
Show in Tabs button
<table>
<thead>
<tr>
<th>Model</th>
<th>model box</th>
</tr>
</thead>
<tbody>
<tr>
<td>String</td>
<td>choice box</td>
</tr>
<tr>
<td>Pit</td>
<td>choice box</td>
</tr>
<tr>
<td>Pick Edit</td>
<td>button</td>
</tr>
<tr>
<td>Apply</td>
<td>button</td>
</tr>
</tbody>
</table>
22.7.16 Extract Sewer Property Controls

Position of option on menu:  Design => Drainage-Sewer => Extract Sewer Property Controls

The sewer property control strings are a sub string of the drainage string and therefore may only be profiled using a right mouse click of the profile button. To include these control strings on plots or export to other packages they need to be converted to super strings.

On selecting the Extract Sewer Property Controls option, the Extract Sewer Property Controls panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage model</td>
<td>mode box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for property controls</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extract with diameters</td>
<td>tick box</td>
<td>on</td>
<td></td>
</tr>
<tr>
<td>Run</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finish</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All drainage strings in this model will have their property controls strings duplicated as super strings.

The super strings for the property controls are placed in this model.

The super strings will have the constant pipe dimension set to the control diameter.

Create the super strings representing the property controls.

Remove the panel from the screen.
22.8 Reports

Position of menu:  Design => Drainage-Sewer => Reports

Reports menu contains an option to report on the property controls for the drainage strings and an option produce network quantities.

The Reports walk-right menu is

![Drainage Reports]

For the option Network quantities, please continue to the section Drainage Network Quantities.

Network report, please continue to the section Network Report.

Property control, please continue to the section Property Controls.

Excavation quantities, please continue to the section Excavation Quantities.

Pit schedules, please continue to the section Pit Schedules.

Barwon quantities, please continue to the section Barwon Quantities.

Barwon HC’s, please continue to the section Barwon House Connections.

Barwon design checks, please continue to the section Barwon Design Checks.

Barwon services reports, please continue to the section Barwon Services Report.
22.8.1 Drainage Network Quantities

Position of option on menu:  Design => Drainage => Reports=> Network Quantities

The Network quantities report contains information about the manholes and pipes that make up the selected drainage strings. Configuration files allow the user to specify the depth ranges and sizes of pipes to report on.

This option creates quantity tables for manholes, pipes and house connections.

The manholes/pipes/house connections are summarised by user defined depths and types.

See Also
Drainage overview

Key points
1. Items are counted/totalled by depth and optionally type.
2. The routine will not "double count" items even if the ranges overlap.
3. Types are case sensitive, types with spaces in the name must be enclosed in quotes and the wild card * may be used.
4. Use vertically offset tins and "banded" depth ranges to get quantities under roads, foot paths, etc. This is discussed later in detail.
5. Erase count file fields if the items are not to be counted.

On selecting the Network quantities option, the Drainage quantities panel is displayed.

The fields and buttons used in this panel have the following functions.
<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data String Source</strong></td>
<td>Choice</td>
<td></td>
<td>usually the entire model is selected but view is also available for combining models</td>
</tr>
<tr>
<td><strong>Pipe size filter attribute</strong></td>
<td>Choice</td>
<td>diameter or pipe size</td>
<td>The second item in a count line is used to filter by diameter (in meters/ft) or the pipe size attribute. The diameter can only be used when no box culverts or trapezoidal channels are used. The pipe size attribute is the label generally used in the plan plots. This is the pipe size in mm/inches (375), for box culverts width x height (750x375) and for trapezoidal channels TopwidthBottomwidthxHeight (T5000B1000x500).</td>
</tr>
<tr>
<td>Tin</td>
<td>tin box</td>
<td></td>
<td>This tin will be used for the pipe and pit depths.</td>
</tr>
<tr>
<td>MH config file</td>
<td>file box</td>
<td></td>
<td>This file specifies the types and depth ranges for the pits. Details of this file are contained below.</td>
</tr>
<tr>
<td>Pipe config file</td>
<td>file box</td>
<td></td>
<td>This file specifies the types and depth ranges for the pipes. Details of this file are contained below.</td>
</tr>
<tr>
<td>HC config file</td>
<td>file box</td>
<td></td>
<td>This file specifies the types and depth ranges for the house connections. Details of this file are contained below.</td>
</tr>
<tr>
<td>HC pit config file</td>
<td>file box</td>
<td></td>
<td>This file specifies the types and depth ranges for the HC pits. Details of this file are contained below.</td>
</tr>
<tr>
<td>HC jump ups file</td>
<td>file box</td>
<td></td>
<td>This file specifies the types and depth ranges for the house connections jump ups. Details of this file are contained below.</td>
</tr>
<tr>
<td>Report file</td>
<td>file box</td>
<td></td>
<td>a sample report file is given below.</td>
</tr>
<tr>
<td>Report unused ranges</td>
<td>tick box</td>
<td></td>
<td>the depth ranges for the pit/pipe/house connections are defined in the *.4d files. Selecting this option will cause the depth ranges in the file to be printed even if there are no pit/pipe/house connections in these depth ranges (zero quantity values will be shown).</td>
</tr>
<tr>
<td>Report types</td>
<td>tick box</td>
<td></td>
<td>Selecting this option will cause the pit/pipe/house connection types used in the model types to be listed (even if quantities are not requested in the *.4d files). Since this is a complete of the type used in the model, the list informs the user what types have not been included in the quantity calculation.</td>
</tr>
<tr>
<td>Count</td>
<td>button</td>
<td></td>
<td>executes the option.</td>
</tr>
<tr>
<td>Finish</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
removes the dialogue from the screen

The *.4d files listed above are contained in the 12d library directory. Each line is the file performs a count (count lines). No items are counted twice. Therefore, if an item is counted its type and then a count line is found the wild card is used for the type, the type already counted will not be included in the count.

The format for a count line is three or four values (space delimited) per line. Size is optional.

```
<type (from drainage.4d)> <size> <starting depth> <ending depth>
```

Notes:

All types with spaces in the name must be enclosed in quotes. The wild card * may be used.

The size is optional and if omitted the all sizes will be counted in this group (do not use the * for a wild card).

The starting depth and ending depth are required for all count lines.

Quantities Under Roads and Footpaths

By creating super tins with vertically offset sections, quantities under roads, footpaths, etc. can be determined. For example.

Offset your road design tin up by 1000m (Tins->Utility->Translate/Copy) and then use the depth range 1000-1999 for pipes under roads.

Create a tin from the footpaths only, null by angle length with a small length to remove the road and then offset it vertically by 2000m. The depth range 2000-2999 is not the quantities under the footpath.

Sample count lines

```
// sum concrete cover manholes is various ranges

"CONC COVER" 0.0 1.6
"CONC COVER" 1.5 3.0
"CONC COVER" 3.0 999.9 // this is expected to be zero
"CONC COVER" -999.0 0.0 // trap errors

// any that are not Concrete cover will be counted here

* 0.0 1.6
* 1.6 3.0
* 3.0 999.9
```
### Manhole Quantities

<table>
<thead>
<tr>
<th></th>
<th>0.00</th>
<th>1.60</th>
<th>13</th>
<th>16.506</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONC COVER</td>
<td>1.60</td>
<td>3.00</td>
<td>1</td>
<td>1.510</td>
</tr>
<tr>
<td>CONC COVER</td>
<td>3.00</td>
<td>999.9</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td>CONC COVER</td>
<td>-999.0</td>
<td>0.0</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td>*</td>
<td>0.00</td>
<td>1.60</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td>*</td>
<td>1.60</td>
<td>3.00</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td>*</td>
<td>3.00</td>
<td>999.9</td>
<td>0</td>
<td>0.000</td>
</tr>
</tbody>
</table>

total length = 18.016

### Types Used

- **CONC COVER**

### Diameters Used

- 1.100

---

Since the **Report unused ranges** tick box was selected, these lines were printed even though there were no pits in the data ranges.

This data results from selecting the **Report types** tick box.

Sample count lines for pipes follow.

```plaintext
// sum class 2 pipes by diameter and for various ranges

// count 375
2 0.375 0.0 2.0
2 0.375 2.0 5.0
2 0.375 5.0 999.

// count 450
2 0.450 0.0 2.0
2 0.450 2.0 5.0
2 0.450 5.0 999.

// count 525
2 0.525 0.0 2.0
2 0.525 2.0 5.0
2 0.525 5.0 999.

// count pipe sizes that were missed
2 * 0.0 2.0
2 * 2.0 5.0
2 * 5.0 999.

// count all other missed pipes
* 0.0 999.
```
22.8.2 Network Report

After selecting the Network report option, the Report on Selected Items panel is displayed.

This is the same as the option Reports => Co-ord/ Brd-dst on the main menu.

For the given model, it prints out the string information for each string in the model.

If a sewer network model is given, each sewer string in the network model is reported on.

For further information, go to Coordinates or Bearing-Distance Report.
22.8.3 Excavation Quantities

Position of option on menu: Design => Drainage-Sewer => Reports => Excavation quantities

This routine uses 12d templates to calculate the excavation volume for all of the drainage strings in a model. An option to create section for a tin on top of the pipe is also available so that the drainage long sections can include hatching between the obvert of the pipe and the design tin under roads. Templates with names set to the pipe diameters (times 1000) are used for the calculations, thus trench shapes can be customised and over excavation for bedding materials can be included. Net area calculations to exclude pipe area are not supported.

Key points
1. One template for each pipe size (mm)
2. If obvert templates are used, add the prefix “obvert “ to the pipe size
3. Carefully consider the tin selected.

A template must exist for each pipe size in the model (pipe size x 1000). For example a 0.3m pipe will require a template to exist named 300. A 0.5ft pipe would require a template named 500. A sample template library is included in the 12d library in the file pipe_template.tpl. The templates are run along the strings and the total volumes are reported. Volumes for each strings are given in the report file.

If a tin is created from these strings then volumes by depth can be determined using Design=>Volumes=>Exact=>Tin to tin

On selecting the Excavation quantities option, the Drainage Excavation Quantities panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage model</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strings model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sections model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground surface tin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separation</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Section colour</td>
<td></td>
<td>yellow</td>
<td></td>
</tr>
<tr>
<td>Clean section/string models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stop section at edge of manhole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use obvert templates</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Model to contain all of the pit and pipe network to be worked on.

Strings generated from the templates will be stored in this model.
Sections model

Sections generated from the templates will be stored in this model.

Report name

Cut and fill volumes will be sent to this report.

Ground Surface Tin

Tins from which the volumes will be calculated.

Separation

distance between the sections

Sections colour

Sections generated from the templates will be assigned this colour (strings colours are defined in the templates).

Clean section/strings model

Delete the strings in these models before processing.

Stop section at edge of pit

Template are run from pit centre to centre if this is not selected. The templates stop at the edge of the pit if selected. This is often selected with the following option Use obvert templates.

Use obvert templates

Templates must be named with the prefix “obvert”. i.e. obvert 300. The template is still run along the invert of the pipe but the user now has a section “set” of templates that can be used to create a tin on top of the pipe as well as below.

An example report file follows.

```plaintext
--- BEGIN APPLY TEMPLATE REPORT ---

apply template to string report -

<table>
<thead>
<tr>
<th>string</th>
<th>tin</th>
<th>separation</th>
<th>left template</th>
<th>right template</th>
<th>cut volumes and areas are negative</th>
<th>fill volumes and areas are positive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

--- Beggining of the report ---

0.000 -1.434 0.000 -0.771 0.000 0.000 0.000
0.550 -1.367 0.000 -14.222 0.000 -14.992 0.000
10.000 -1.642 0.000 -15.293 0.000 -30.286 0.000
20.000 -1.416 0.000 -1.845 0.000 -32.130 0.000
21.313 -1.393 0.000 -0.794 0.000 -32.924 0.000
21.863 -1.493 0.000 0.000 -32.924 0.000

--- Total of the report ---

Total cut -32.924
Total fill 0.000
Balance -32.924
Excess of cut over fill 32.924
```
22.8.4 Pit Schedules

See Also

Selecting design string or tin?
Drainage overview

Usage

Position of option on menu:  Design => Drainage => Reports => Pit schedule

This routine prints the calculations from the last time Set Pit Details was selected in the Drainage Network Editor.

On selecting the Pit schedule option, the Manhole/Pit Schedule panel is displayed.

![Manhole/Pit Schedule Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage model name</td>
<td>input box</td>
<td>drainage network</td>
<td></td>
</tr>
<tr>
<td>Pit schedule file name</td>
<td>input box</td>
<td>pit report</td>
<td></td>
</tr>
<tr>
<td>Report Format</td>
<td>choice box</td>
<td>Road change,,Easting...</td>
<td></td>
</tr>
<tr>
<td>Data delimiter</td>
<td>choice box</td>
<td>Tab, Space</td>
<td></td>
</tr>
<tr>
<td>Repeat header for each line</td>
<td>tick box</td>
<td>selected</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td>Create the pit report</td>
<td></td>
</tr>
<tr>
<td>Finish</td>
<td>button</td>
<td>remove the panel from the screen</td>
<td></td>
</tr>
</tbody>
</table>
Notes:
The columns of data may be separated by spaces or a tab. (tab is used for spreadsheet transfers). The internal width and length data are retrieved from the drainage.4d file for the pit type specified. If you want a longer description for the pit then the type used inside 12d this can also be entered in the drainage.4d file. The remarks for each pit are entered as user defined pit attribute named remarks and may be set using the attribute editor (on the drainage menu) or via a spreadsheet.

Easting Northing Sample

<table>
<thead>
<tr>
<th>PIT SCHEDULE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pit No.</td>
<td>Pit TYPE</td>
<td>EASTING</td>
<td>NORTHING</td>
<td>WD</td>
<td>LEN</td>
<td>DIA</td>
<td>INV LEV</td>
<td>DIA</td>
<td>INV LEV</td>
<td>FIN</td>
</tr>
<tr>
<td>RL</td>
<td>DEPTH</td>
<td>REMARKS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>SA2</td>
<td>5302.458</td>
<td>7336.936</td>
<td>450.000</td>
<td>900.000</td>
<td>375</td>
<td>28.210</td>
<td>29.387</td>
<td>1.177</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>SA2</td>
<td>5264.372</td>
<td>7322.036</td>
<td>450.000</td>
<td>900.000</td>
<td>375</td>
<td>27.470</td>
<td>28.646</td>
<td>1.226</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>SA2</td>
<td>5224.155</td>
<td>7336.936</td>
<td>450.000</td>
<td>900.000</td>
<td>375</td>
<td>26.690</td>
<td>27.863</td>
<td>1.173</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>SA2</td>
<td>5187.910</td>
<td>7322.036</td>
<td>450.000</td>
<td>900.000</td>
<td>375</td>
<td>25.930</td>
<td>27.158</td>
<td>3.628</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>SA2</td>
<td>5157.411</td>
<td>7321.332</td>
<td>450.000</td>
<td>900.000</td>
<td>375</td>
<td>23.090</td>
<td>26.714</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Road Chainage Offset Example

DRAINAGE LINE A

<table>
<thead>
<tr>
<th>PIT</th>
<th>PIT LOCATION</th>
<th>LOCATION OFFSETS</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>EASTING</td>
<td>NORTHING</td>
</tr>
<tr>
<td>A/1</td>
<td>5354.629</td>
<td>7336.936</td>
</tr>
<tr>
<td>A/2</td>
<td>5340.691</td>
<td>7320.911</td>
</tr>
<tr>
<td>A/3</td>
<td>5293.458</td>
<td>7320.886</td>
</tr>
<tr>
<td>A/4</td>
<td>5250.131</td>
<td>7320.886</td>
</tr>
<tr>
<td>A/5</td>
<td>5217.194</td>
<td>7322.036</td>
</tr>
<tr>
<td>A/6</td>
<td>5183.458</td>
<td>7322.036</td>
</tr>
<tr>
<td>A/7</td>
<td>5152.699</td>
<td>7322.036</td>
</tr>
</tbody>
</table>

Notes
The Set pit details must be run at least once to before printing the report. If the pits are moved or the designed strings changed then this option must be rerun.

The easting northing data obtained for the road design string option is obtained by dropping the
pit centre perpendicular onto the selected road design string. This data is stored as pit attributes setout x and setout y. It is calculated when the Set Pit Detail is selected in the Drainage Network Editor.
22.8.5 Property Controls

**Position of menu:** Design => Drainage-Sewer => Reports => Property Controls

The property controls report contains information about all the property controls for the selected drainage strings, and if required, denote the critical property control for a lot.

On selecting Property controls, the **Property Controls Report** panel is displayed.

![Property Controls Report Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Format</td>
<td></td>
<td>ascii</td>
<td>ascii, Excel spread sheet</td>
</tr>
<tr>
<td>Report file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical property controls only</td>
<td></td>
<td>tick</td>
<td>if tick, only the critical property controls are reported</td>
</tr>
<tr>
<td>Process</td>
<td></td>
<td>button</td>
<td>run the option</td>
</tr>
</tbody>
</table>
22.8.6 Barwon Quantities

The report generated from this option includes:

- the lengths of each pipe type for each line and the total length for each pipe type for all pipes in the network.
- the quantity of concrete used for the manholes in the network.
- the number and type of house connections in the network, including caps, bends and bushes.

After selecting the Barwon quantities option, the Sewer Network Quantities Report panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network model</td>
<td>model containing the sewer strings.</td>
<td>available models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td>file box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
22.8.7 Barwon House Connections

**Position of menu:** Design => Drainage-Sewer => Reports => House connections

The house connections report contains information about all the house connections for the selected drainage (sewer) strings.

The house connection report includes for each house connection (branch) the:
- name of the sewer line
- downstream manhole for the house connection
- lot name
- house connection number and type
- chainage of the house connection
- the invert level at the end of the house connection (IL branch)
- the invert level of the house connection at the sewer pipe (IL sewer)
- the drop over the house connection (branch depth)

On selecting House connections, the **Sewer House Connections Report** panel is displayed.

![Sewer House Connections Report panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network model</td>
<td>model containing the sewer strings.</td>
<td>available models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td>name of the file for the report.</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report</td>
<td>run the option.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
22.8.8 Barwon Design Checks

The report generated from this option includes the design checks:

- Network validations (checks that there are strings, no closed loops)
- Manholes don't have negative drops
- Other sewer lines connecting in don't have negative drops
- Sewers flow downhill with a minimum grade
- Manholes are not too close together (i.e. on top of each other)
- A minimum cover for each sewer line
- Block controls are above the pipe invert level

After selecting the Design checks option, the Sewer Design Checks Report panel is displayed.

![Sewer Design Checks Report Panel]

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network model</td>
<td>Model containing the sewer strings.</td>
<td>available models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>Tin used for checking minimum cover against.</td>
<td>available tins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td>Name of the file for the report.</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report</td>
<td>Run the option.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
22.8.9 Barwon Services Report

For each sewer string in the network, this option generates a report which includes the
- section through any tins on the section view
- name and model of any services in the corridor defined by the section view
- co-ordinates and chainages of the parts of the service in the corridor, and the chainage and offset for
each of the point of the parts projected onto the sewer centre-line.
- clearance at the point where any service goes under or over the sewer string.

After selecting the Services report option, the Sewer Services Report panel is displayed

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network model</td>
<td></td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>model containing the sewer strings.</td>
<td></td>
</tr>
<tr>
<td>Section view</td>
<td></td>
<td>available section views</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>section view defining the corridor and service models.</td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td></td>
<td>file box</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the file for the report.</td>
<td></td>
</tr>
<tr>
<td>Report</td>
<td></td>
<td>button</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>run the option.</td>
<td></td>
</tr>
</tbody>
</table>
22.9 Drainage Plots

**Position of menu:** Design => Drainage-Sewer => Plots

Currently the Plots menu contains an option to produce a long section including any HGL values, flows and user defined attributes read in from other sources, and a second option to output the network to Melbourne Water’s sewer format.

The Plots walk-right menu is

![Drainage Network Plots](image)

The options Longsections and Melbourne Water will now be described in more detail.

For the option Set Current Storm, please continue to the section Set Current Storm.
Long sections, please continue to the section Drainage Longsections.
Melbourne Water, please continue to the section Melbourne Water.
Plan annotations, please continue to the section Plot Annotations.
Long plot cut labels and manholes, please continue to the section Long Plot

Cut Labels and Manholes.
22.9.1 Set Current Storm

Position of menu:  Design => Drainage-Sewer => Plots => Set Current Storm

This section of documentation is a work in progress and will be updated in subsequent releases.
Selecting Set Current Storm brings up the Set Current Storm panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage model</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Hydrology method</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storm</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
22.9.2 Drainage Longsections

Position of menu:  Design => Drainage-Sewer => Plots => Longsections

The Longsections option is used to generate the longsection plots for all lines in a drainage network.

Given the plot sheet size and the horizontal and vertical scales, the longsections for the drainage lines are plotted starting at the top of the sheet and moving across the sheet. Once one row is full, if there is room the plot moves down the page and begins a new row. When a plot sheet is full, a new plot sheet is automatically begun.

Hence the drainage lines are plotted one after another on one or more plotter sheets.

The drainage lines are plotted in string name alphabetical order.

The drainage longsection plot includes
- the manholes, drainage pipe and any house connections
- the height of the finished surface at the manhole
- manhole names and cover types
- distances between manholes
- the invert depth of the pipe on either side of a manhole
- the grades and types of the pipes
- any services in the corridor - including their name, invert level and distance from the nearest downstream manhole
- if the information exists, the velocity, flow, HGL values and diagram

After selecting the Longsections option, the New Plot Drainage Network panel is displayed.

The drainage long section plot is tailored by using the plot parameter file (.ppf file) given in the plot parameters field. A default .ppf file is set by pointing to it with the environment variable DRAINAGE_PPF_4D path name of default .ppf file

In the path name to the default .ppf file, $LIB is used to stand for the library folder set by LIB_4D. For example, "$LIB/drainage.ppf" is the file drainage.ppf in the library area.

The title button on the bottom of this panel controls the use of a title block file and the plotting of a border and two lines of title. If the Title button is selected, the drainage plot title panel is displayed.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Plot parameters</strong></td>
<td>input</td>
<td>* .ppf</td>
<td>file of plot parameters used for extra control of the long section plot.</td>
</tr>
<tr>
<td><strong>Plotter type</strong></td>
<td>input</td>
<td>hp</td>
<td>model, windows, hp, dxf, postscript, etc.</td>
</tr>
<tr>
<td><strong>Network model</strong></td>
<td>input</td>
<td></td>
<td>the model containing all the drainage lines for the network.</td>
</tr>
<tr>
<td><strong>Section view</strong></td>
<td>input</td>
<td></td>
<td>the section view to be used to define the vertical exaggeration, corridor widths, tins to section through, services models to section, etc.</td>
</tr>
<tr>
<td><strong>Plot file stem</strong></td>
<td>input</td>
<td></td>
<td>since more than one plot page may be produced, the plot file names are constructed from the stem plus a plot page sequence number, followed by the appropriate plotter type ending.</td>
</tr>
<tr>
<td><strong>Scale 1:</strong></td>
<td>input</td>
<td></td>
<td>horizontal scale for plotting the drainage long section. The vertical exaggeration is taken from the section view given in the section view field.</td>
</tr>
</tbody>
</table>
**Sheet size wd ht (mm)**
- **input**
  - available sheet sizes
  - the width and height values (separated by space) or the name of a user defined sheet size.

**X origin (mm)**
- **input**
  - the x position on the plot sheet for the bottom left hand corner of the longsection plots. Same as left_margin in the plot parameter file.

**Y origin (mm)**
- **input**
  - the y position on the plot sheet for the bottom left hand corner of the longsection plots. Same as bottom_margin in the plot parameter file.

**Text style**
- **input**
  - 1
  - available text styles
  - the default text style to use in the longsection plot.

**Plot ht (mm)**
- **input**
  - the maximum allowable height for a longsection plot for a drainage line. Datum breaks are applied to any part of the longsection that will not fit into the plot ht.

**Box text size (mm)**
- **input**
  - 3
  - size (in millimetres) to plot the chainages, heights etc. in the boxes in the plots of the drainage longsections.

**Box colour**
- **input**
  - cyan
  - available colours
  - colour used for the text and the boxes.

**Velocity**
- **tick box**
  - if tick, the velocity values for the pipes are drawn on the longsection plot.

**Flow**
- **tick box**
  - if tick, the flow values for the pipes are drawn on the longsection plot.

**Centre CH.**
- **tick box**
  - if tick, the road centre line chainages are drawn on the longsection plot.

**HGL vals**
- **tick box**
  - if tick, the HGL values for the pipes are drawn on the longsection plot.

**HGL diag**
- **tick box**
  - if tick, lines joining the HGL values for the pipes are drawn on the longsection plot.

**Drain No.**
- **tick box**
  - if tick, the drainage line names are drawn on the longsection plot.

**Plot**
- **button**
  - plot the drainage longsections for the drainage lines in the model given in the network model field.

The fields and buttons in the **title** tab are

**Use title file**
- **tick box**
  - if tick, a user defined title block file is used.

**Standard Title**
- **tick box**
  - if tick, the standard 12d Model border and two lines of title are placed on the bottom of the plot.

**Title file**
- **input**
  - *.tf
  - if non-blank and use title file is set to tick, then the file given in this field is used to generate a user defined title block for the plot.

**Title line 1/2**
- **input**
  - first/second line of title information
22.9.2.1 Drainage Longsection Plot Parameter File

The Longsections plot option is used to make special long section plots for a network of drainage strings.

Some of the look of the drainage long section plot can be controlled from the plot drainage network panel itself, however a wider selection of control parameters is available by using a drainage long plot, plot parameter file.

The drainage long section plot parameters are placed in a file with ending .ppf. Each parameter consists of a parameter name followed by one or more spaces and then the parameter value. There is only one parameter per line. Anything on a line after a double forward slash //</code> is considered to be a comment.

The set of all parameters for the drainage long section plot is enclosed within a set of curly brackets { } with the header

```
drainage_long_plot "plot set name"
```

before the curly brackets.

That is,

```
drainage_long_plot "plot set name" {
 plot parameters
 one per line
}
```

If there is more than one drainage_long_plot parameter set in the file, only the first set is used. There may also be parameter sets for other plot types such as section_x_plot in the same file. The other sets will be ignored when doing a drainage long section plot.

The plot parameters are documented in following groups:

For the Plot Sheet layout, please continue to the section **Plot Sheet Layout**.

Labelling the drainage string name, please continue to the section **Labelling the Drainage String Name on the Plot**.

Boxes area, please continue to the section **Boxes Area**.

Chainages and uprights, please continue to the section **Chainages and Uprights**.

Staggering, please continue to the section **Staggering of Chainages and Uprights**.

Below datum area, please continue to the section **Below Datum Area**.

Arrows area, please continue to the section **Arrow Areas**.

Grade arrows parameters, please continue to the section **Parameters for the Arrows for Grades of the Pipes**.

Pipe diameter arrows parameters, please continue to the section **Parameters for the Arrows for Diameters of the Pipes**.

Pipe velocity arrows parameters, please continue to the section **Parameters for the Arrows for Velocity in the Pipes**.

Pipe flow arrows parameters, please continue to the section **Parameters for the Arrows for Flow in the Pipes**.
Drainage line name arrows parameters, please continue to the section Parameters for the Arrows giving the Drainage Line Name.
User defined pipe arrows parameters, please continue to the section Parameters for the Arrows for User Defined Pipe Attributes.
Graph area parameters, please continue to the section Graph Area.
Top area parameters, please continue to the section Top Area.
Bubbles area parameters, please continue to the section Manhole name, Manhole Types and Surrounding Bubbles.
Change of direction parameters, please continue to the section Change of Direction Through Pits and Junctions.
Symbols at manhole parameters, please continue to the section Symbols at Manholes.
House connection parameters, please continue to the section Labelling House Connections.
Symbols at Property controls parameters, please continue to the section Symbols at Property Controls.
Property controls parameters, please continue to the section Labelling Property Controls.
Hatching cut and fill parameters, please continue to the section Hatching Cut and Fill Areas.
Labelling cuts parameters, please continue to the section Labelling Cuts of Drainage Through Strings in a Model.
Title block parameters, please continue to the section Title Block Information.
Panel modifying parameters, please continue to the section Parameters that Modify Fields In the Plot Drainage Network Panel.

22.9.2.1.1 Plot Sheet Layout
The plot sheet is considered to have only positive co-ordinates with the origin (0,0) in the left hand corner. The units for the plot are millimetres.

The overall size of the plot sheet is given by either a defined sheet size, or by the width and height of the plot given in millimetres and separated by one or more spaces.

```
sheet_size text // sheet name, or
"mm mm" // sheet size: width height
```

The sheet size name and width and heights can be specified by the user in a file named sheets.4d which is in the normal set up areas, or is pointed to by the environment variable

```
SHEET_SIZES_4D file // file of plotter sheets sizes
```

The plotting area is restricted to within the plot sheet by giving the margins

```
left_margin mm
right_margin mm
top_margin mm
bottom_margin mm
```

The drainage long section plot will break an individual plot up if it doesn't fit across the sheet. There can be one or more rows of plot on the same sheet.

The top row is done first, followed by the second top row, then the third and so on until the bottom row. If there is only one row, it is considered to be the bottom row.

When a sheet is full, a follow on sheet is created.

As soon as one drainage string is completed, the next drainage string in the network model is plotted beginning on the same row as the previous drainage string and with a horizontal gap of size horizontal_plot_gap between the plots. If there is not enough room on the row to start the next plot, it will begin on a new row.

The position of the left hand bottom corner of the first plot in the bottom row is given by the parameters, x_origin and y_origin which are the same as left_margin and bottom_margin respectively.
If there are two or more rows of plots, the position of the first plot in each row is given by adding multiples of the `plot_height` to the `y_origin` (bottom_margin).

- **network_model**: text // model of drainage strings
- **x_origin**: mm // Position of the left hand bottom, same as `left_margin`.
- **y_origin**: mm // corner of first plot in the bottom row, same as `bottom_margin`.
- **only_one_line**: 0 // more than one row on a sheet
- **plot_height**: mm // total height of a plot row. It includes the `vertical_plot_gap`.
- **horizontal_plot_gap**: mm // gap between plots on same row
- **vertical_plot_gap**: mm // gap between rows of plots, also the size of the top area

The drainage long plot itself consists of eleven areas. From the bottom up, they are drainage string name, boxes, below datum, arrow 1, bottom stagger, arrow 2, graph, arrow 3, top stagger, arrow 4, top.

The **drainage string name area** is where the name of the drainage string can be plotted.

The **boxes area** is where the chainages and various values for the drainage strings are labelled.

The **below datum area** is a region between the boxes area and the datum line.

The **arrow 1 area** is for drawing arrows where the arrows go between the staggered uprights and below the graph area. The datum line is at the bottom of the arrow 1 area.

The **bottom stagger area** is where the upright line staggers occur before going up from the boxes area to the graph area.
The **arrow 2 area** is for drawing arrows below the graph but where the arrows go between non-staggered uprights.

The **graph area** is the area where the actual plots of the strings are drawn.

The **arrow 3 area** is for drawing arrows above the graph area and where the arrows go between non-staggered uprights.

The **top stagger area** is where the upright line staggers occur above the graph area.

The **arrow 4 area** is for drawing arrows where the arrows go between the staggered uprights and above the graph area.

The **top area** is an annotation area above the arrow 4 area and is used for bubbles, manhole names (pit names), junctions, deflection angles, etc.

The areas and the information in them will now be described in more detail.
22.9.2.1.2 Labelling the Drainage String Name on the Plot

The plot can be labelled with the name of the drainage string under the boxes area. The name is made up of concatenation the text strings:

\[
\text{plot}\_\text{name}\_\text{pre}\_\text{text} \quad \text{drainage-string-name} \quad \text{plot}\_\text{name}\_\text{post}\_\text{text}
\]

The plot name is positioned under the boxes.

- plot\_name\_mode 0 // don't use the drainage string name
- plot\_name\_mode 1 // use the drainage string name in the // label

- plot\_name\_pre\_text text
- plot\_name\_post\_text text
- plot\_name\_textstyle textstyle
- plot\_name\_text\_size mm
- plot\_name\_text\_colour colour
- plot\_name\_x mm
- plot\_name\_y mm

The plot\_name\_x is measured from the beginning of the height boxes.
The default for plot\_name\_x is centred on the values area.
The plot\_name\_y is measured from the bottom of the box area with positive being down.

Example of Labelling Drainage String Name

<table>
<thead>
<tr>
<th>plot_name_pre_text</th>
<th>“Drainage Long Section Plot for String”</th>
</tr>
</thead>
<tbody>
<tr>
<td>plot_name_mode</td>
<td>1</td>
</tr>
<tr>
<td>plot_name_post_text</td>
<td>“”</td>
</tr>
<tr>
<td>plot_name_text_size</td>
<td>15</td>
</tr>
<tr>
<td>plot_name_text_colour</td>
<td>red</td>
</tr>
<tr>
<td>plot_name_textstyle</td>
<td>ISO</td>
</tr>
<tr>
<td>plot_name_y</td>
<td>30</td>
</tr>
</tbody>
</table>
22.9.2.1.3 Boxes Area

Many of the drainage string values (invert levels and depth, hgl values, natural and finished surface, etc.) can be labelled in the boxes area at the bottom of the drainage long section plot.

Each type of information is plotted in a row made up of a title, and the actual values given at the chainage of each pit in the drainage string.

Each row of information is surrounded by lines to form a box, and the stacked boxes form the boxes area at the bottom of the drainage plot.

The title for the information, is drawn in the title area of the boxes area and the values are drawn in the values area of the boxes area.

Consequently the boxes area is made up of rows of text consisting of:

    title               followed by the values along the drainage string.

The titles area for the left plot in the bottom row starts at the co-ordinate \((x_{\text{origin}},y_{\text{origin}})\) and each row is begun by adding the distance \(\text{plot}\_\text{height}\) to the \(y_{\text{origin}}\) (see previous section).

The width of the title area is given by the box_width parameter and the height of each box is given by box_height.

\[
\begin{align*}
\text{box\_width} & \quad \text{mm} \\
\text{box\_height} & \quad \text{mm}
\end{align*}
\]

The colour of the box line work is given by:

\[
\begin{align*}
\text{box\_colour} & \quad \text{colour}
\end{align*}
\]

A default text size and colour can be specified for the title text and the values, or sizes, colours and text styles can be given for each individual box (given later in this section).

\[
\begin{align*}
\text{title\_box\_text\_size} & \quad \text{mm} \\
\text{title\_box\_text\_colour} & \quad \text{colour} \\
\text{box\_text\_size} & \quad \text{mm} \\
\text{box\_text\_colour} & \quad \text{colour}
\end{align*}
\]

The values text is written at right angles to the bottom of the boxes. It can be either top or bottom justified with respect to the box (box_text_left_justify).

The values text can be on the left, right or centred on the uprights and is given by the parameter box_text_side.

The width of the values area is determined by the number of chainages to be labelled and whether the values are staggered to prevent over writing (see next section).
The default order of the boxes from the bottom up is
0. drainage string chainages
1. road centre line chainages - user choice
2. natural surface heights - user choice
3. finished surface heights - user choice
4. before pit and after pit invert levels
5. before pit and after pit hgl values - user choice
6. before pit and after pit depth to inverts - user choice

There are parameters to change the order for 1-6. *Drainage string chainages* is fixed at the bottom (box 0) but what is in the boxes above box 0 is can be set by the box_n parameters:

```plaintext
box_n number_from_list
```
// the n’th box above the drainage string
// chainages will contain given item number
// form the list.

For example, to have *finished surface heights* in the first box the drainage string chainages, use:

```plaintext
box_1 3 // the (1) will be replaced by (3)
```

The boxes (1), (2), (3) and (5) can be suppressed by the parameters

```plaintext
draw_centre_chainage 0/1 // 0 = don't have centre line chainages
```
The definition of depth to invert and whether box (6) is suppressed or not, are given by the parameter depth_mode:

- **depth_mode 0** // don’t draw depth to invert values
- **depth_mode 1** // draw depth to invert values to fs tin for drainage string
- **depth_mode 2** // draw depth to invert values to top of manhole for drainage string
- **depth_mode 3** // draw depth to invert values to ns tin for drainage string

The default for the number of decimal places used in the values in the boxes is:

- **number_of_decimals** integer // default number of decimal places

The text, size, colour and textstyle for the title text and values text for each box can be set by

### (0) Drainage String Chainages

- **plot_title_chainage_name** text // first line of title for chainages box
- **plot_title_chainage_name_2** text // second line of title for chainages box
- **chainage_title_colour** colour // colour of title
- **chainage_title_text_size** mm // size of title
- **chainage_title_textstyle** textstyle // textstyle of title
- **chainage_text_colour** colour // colour of values
- **chainage_text_size** mm // size of values
- **chainage_textstyle** textstyle // textstyle of values
- **chainage_decimals** integer // number of decimal places in chainage

### (1) Road Centreline Chainages

- **plot_title_centre_chainage_name** text // title for road centre
- **plot_title_centre_chainage_name_2** text // second line of title for road
- **chainage_title_colour_cl** colour // colour of title in cl box
- **chainage_title_text_size_cl** mm // size of title in cl box
- **chainage_title_textstyle_cl** textstyle // textstyle of title in cl box
- **chainage_text_colour_cl** colour // colour of cl values
- **chainage_text_size_cl** mm // size of values in cl box
- **chainage_textstyle_cl** textstyle // textstyle of values in cl box
- **chainage_cl_decimals** integer // number of decimal places in chainage cl

### (2) Natural Surface Values

- **plot_title_surface_name** text // title for the drainage ns values box
- **plot_title_surface_name_2** text // second line of title for drainage ns values
- **ns_title_colour** colour // colour of text
- **ns_title_text_size** mm // size of title in ns box
- **ns_title_textstyle** textstyle // textstyle of title
- **ns_text_colour** colour // colour of ns values
- **ns_text_size** mm // size of values

The text, size, colour and textstyle for the title text and values text for each box can be set by...
(3) finished surface values

- `plot_title_finished_name` (text): title for the drainage fs values box
- `plot_title_name_2` (text): second line of title for drainage fs values
- `fs_title_colour` (colour): colour of text
- `fs_title_text_size` (text): textsize for title
- `fs_text_colour` (colour): colour of ns values
- `fs_text_size` (mm): size of values
- `fs_textstyle` (text): textstyle of values
- `fs_decimals` (integer): number of decimal places in ns

(4) invert levels

- `plot_title_invert_name` (text): title for the invert levels box
- `plot_title_name_2` (text): second line of title for the invert levels box
- `il_title_colour` (colour): colour of text
- `il_title_text_size` (text): textstyle for title
- `il_text_colour` (colour): colour of il values
- `il_text_size` (mm): size of values
- `il_textstyle` (text): textstyle of values
- `il_decimals` (integer): number of decimal places in il

(5) hgl values

- `plot_title_hgl_name` (text): title for hgl values box
- `plot_title_name_2` (text): second line of title for hgl values box
- `hgl_title_colour` (colour): colour of text
- `hgl_title_text_size` (text): textstyle for title
- `hgl_text_colour` (colour): colour of hgl values
- `hgl_text_size` (mm): size of values
- `hgl_textstyle` (text): textstyle of values
- `hgl_decimals` (integer): number of decimal places in hgl

(6) depths

- `plot_title_depth_name` (text): title for depth of inverts box
- `plot_title_depth_name_2` (text): second line of title for depth of inverts box
- `depth_title_colour` (colour): colour of text
- `depth_title_text_size` (text): textstyle for title
- `depth_text_colour` (colour): colour of depth values
- `depth_text_size` (mm): size of values
- `depth_textstyle` (text): textstyle of values
- `depth_decimals` (integer): number of decimal places in depth
Drawing the Boxes

The bottom line from the boxes can be drawn or not drawn:

chainage_box_mode = 0  // don’t draw the bottom line
chainage_box_mode = 1  // draw all the box line work - default

draw_box_mode = 0  // don’t draw the title area box
draw_box_mode = 1  // draw the title area box, no lines - default
draw_box_mode = 2  // draw title box area with lines
22.9.2.1.4 Chainages and Uprights

The chainage box contains drainage string chainages for
(a) the chainages of each pit in the drainage string
(b) the chainages on the drainage string where any strings in models on the section view are cut by the drainage string (crossing services)

For a **pit**, the invert levels, depths, finished and natural surface levels, and hgl of pipes at a pit can all be labelled at the chainage of the pit.

For a **crossing service**, the level of the crossing service and the chainage on the drainage string where the crossing occurs are labelled.

**Note** - crossing services can also be labelled using cuts of drainage line through strings. However, this does not create a chainage in the chainage box.

Uprights, or leader lines, can be drawn from the chainage values at the bottom of the boxes to the top of the pit in the graph area, and from the top of the boxes to the top area.

Using the parameters `uprights_top_mode` and `uprights_bottom_mode`, it is possible to suppress the drawing from the top of the pit to the top area, and also from the top of the boxes to the bottom of the boxes.

```
uprights_top_mode = 0 // stop at top of pit
uprights_top_mode = 1 // go to top area (default)
uprights_bottom_mode = 0 // stop at top of boxes
uprights_bottom_mode = 1 // go to bottom of boxes (default)
```

Also uprights can be drawn from the chainage values bottom of the boxes to the crossing service in the graph area.
The chainage values at the uprights for the pits can be running chainage along the drainage string, pipe length chainages (i.e. the chainage starts at zero for each pipe) or both.

chainage_mode

0 //pipe length chainage
1 // running chainage
2 // both pipe length and running

If the chainage_mode includes "pipe length chainage" (modes 0 and 2), the pipe length can either be labelled with a 0.0 chainage at the start pit for the pipe and the pipe length at the end pit, or just have the length centred between the two pits.

centre_pipe_length

0 // default - 0 at start pit, length at end pit
1 // centre pipe length

The chainage values for the crossing services can be running chainage along the drainage string, chainage length from the previous pit (i.e. the chainage starts at zero at the previous pit) or both.

service_chainage_mode

0 //pipe length chainage
1 // running chainage
2 // both pipe length and running

The colour of the uprights for the pits and crossing services are given by:

manhole_line_colour colour // colour of uprights to the pits
service_line_colour colour // colour of upright to the crossing

// services

The crossing services are labelled with the drainage string chainage of the crossing point, the invert level of the service at the crossing and the name of the service which is made up of:

service diameter name of service invert level at the service at the crossing.

The service label is drawn the distance service_name_y below the crossing point:

service_name_y mm // def 1, distance of label below crossing point

The colours, text styles and sizes of the service information is specified by:

service_ch_text_colour colour // colour of services ch text
service_ch_text_size mm // size of services ch text
service_ch_textstyle mm // textstyle of services ch text

service_il_text_colour colour // colour of services il text
service_il_text_size mm // size of services il text
service_il_textstyle mm // textstyle of services il text

service_name_text_colour colour // colour of services name
service_name_text_size mm // size of services name
service_name_textstyle mm // textstyle of services name
service_name_decimals integer // number of decimal is il in name

A finished surface value or top of manhole value can also be written vertically along the uprights.
Whether the value is finished surface level or top of manhole level, the values position, size, colour, etc. is controlled by the parameters:

- **draw_fs_vertical**: 0 // don't draw fs vertical values
  1 // always draw values
  2 // only draw values when different -see // draw_fs_vertical_mode

- **draw_fs_vertical_mode**: 0 // the fs value is the value from the fs tin
  // for the drainage string.
  // When draw_fs_vertical is 1,
  // always draw the fs value.
  // When draw_fs_vertical is 2,
  // only draw fs value when it is
  // different from the top of manhole value
  1 // the fs value is the top of manhole
  // for the drainage string.
  // When draw_fs_vertical is 1,
  // always draw the fs value.
  // When draw_fs_vertical is 2,
  // only draw fs value when it is
  // different from the value of the fs tin.

<table>
<thead>
<tr>
<th>draw_fs_vertical</th>
<th>draw_fs_vertical_mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

- **fs_vertical_pre_text**: text // text before the vertical fs value
- **fs_vertical_post_text**: text // text after the vertical fs value
- **fs_vertical_decimals**: integer // number of decimals in vertical fs
- **fs_vertical_colour**: colour // colour of the vertical fs text
- **fs_vertical_size**: mm // size of the vertical fs text
- **fs_vertical_textstyle**: textstyle // textstyle of the vertical fs
- **fs_vertical_x**: mm // x adjustment to position of text
- **fs_vertical_y**: mm // y adjustment to position of text
22.9.2.1.5 Staggering of Chainages and Uprights

If the text values are placed at the real chainage positions at the bottom of the plot, text over writing can easily occur if the chainages are very close together.

To prevent such over writing, the text can be staggered.

That is, if the text is going to over write a previous text value, the next text value is actually moved along until there is no over writing.

Since the text is no longer at the correct chainage position, the uprights to the pits and services start at the text position and then bend back to the correct chainage position on the plot. The region where the bending occurs is called the stagger area.

For the drainage plot, there is an area below the graph where the uprights bend backwards from the staggered text position to the real chainage position (bottom stagger area).

And there is a second area above the graph where the uprights bend forwards from the real chainage position to the staggered text position (top stagger area).

Hence annotation above the top stagger area will line up with the staggered values below the bottom stagger area.

The stagger area below the graph area is defined by

- `stagger_height_1` mm // distance from the top of arrow_area_1 to the start of the staggers
- `stagger_height_2` mm // distance over which stagger occurs
- `stagger_gap_bottom` mm // distance from end of staggers to the bottom of arrow_area_2

The stagger area above the graph area is defined

- `stagger_gap_top` mm // distance from the top of arrow_area_3 to the start of the staggers
- `stagger_height_3` mm // distance over which stagger occurs
- `stagger_height_4` mm // distance from end of staggers to the bottom of arrow_area_4

The distance to be left for text to avoid over writing is:

- `horizontal_text_gap` mm // minimum distance to leave for text after pit values
- `service_text_gap` mm // minimum distance to leave for text after service values

When staggering occurs, it is possible for the values area to be longer than the graph area.
Drainage long section plot stagger areas
22.9.2.1.6 Below Datum Area

The **below datum area** is the region between the boxes area and the arrow_1 area. The datum line is drawn at the top of the below datum area.

The size of the below datum area is

\[
\text{datum\_gap} \quad \text{mm} \quad // \text{height of the below datum area}
\]

---

The datum value is placed above the datum line, preceded by a datum name on the left hand side of the title area.

Since the datum value is automatically calculated to try and fit the plot vertically into the graph area, the datum value can change along the plot. When a datum change occurs, the new datum value is written on the datum line at the relevant chainage position.

The datum name, text size, colour and position are controlled by:

- \text{datum\_name} \quad \text{text} \quad // \text{datum title}
- \text{datum\_title\_x} \quad \text{mm} \quad // \text{distance to write name from lhs}
- \text{datum\_title\_y} \quad \text{mm} \quad // \text{distance above datum line}
- \text{datum\_title\_textstyle} \quad \text{textstyle} \quad // \text{textstyle of name}
- \text{datum\_title\_text\_size} \quad \text{mm} \quad // \text{text size}
- \text{datum\_title\_colour} \quad \text{colour} \quad // \text{text colour}

The datum value, number of decimal places, text size, colour and position are controlled by:

- \text{datum\_decimals} \quad \text{integer} \quad // \text{number of decimal places in datum value}
- \text{datum\_x} \quad \text{mm} \quad // \text{x dist. to write value from manhole}
- \text{datum\_y} \quad \text{mm} \quad // \text{y dist. to write value above datum line}
- \text{datum\_text\_size} \quad \text{mm} \quad // \text{size of datum value}
- \text{datum\_textstyle} \quad \text{textstyle} \quad // \text{textstyle for datum}
- \text{datum\_text\_colour} \quad \text{colour} \quad // \text{colour of the datum text and line}
22.9.2.1.7 Arrow Areas

Apart from information labelled in the boxes and top areas, the drainage long section plot can place arrows between pits for other information such as:

(a) pipe grade or slope
(b) pipe diameter
(c) velocity
(d) flow
(e) drainage line name
(f) user defined pipe attributes

A specific arrow area is defined for each set of arrows.

The **arrow areas** are designed for drawing and labelling arrows between pits.

All the values refer to pipes connecting adjacent pits and the relevant pipe is indicated by drawing an arrow between the uprights from the chainage text to the pits.

Because staggering of the chainage text can occur, the position of the uprights to draw the arrows between can vary depending on whether the arrow is above or below a stagger area.

Hence, there are four arrow areas:

- **arrow area 1** which is below the graph and the bottom stagger area. The arrows go between the *staggered* chainage positions of the pits.

The datum line is at the bottom of arrow 1 area.

- **arrow area 2** which below the graph but above the bottom stagger area. Hence the arrows go between the non-*staggered* chainage positions of the pits.

- **arrow area 3** which is above the graph but below the top stagger area. The arrows go between the non-*staggered* chainage positions of the pits.

- **arrow area 4** is above the graph and the top stagger area. The arrows go between the *staggered* chainage positions of the pits.

The heights of the four areas (which can be zero) are defined by:

- `arrow_area_1 mm` // height of arrow_1 area
- `arrow_area_2 mm` // height of arrow_2 area
- `arrow_area_3 mm` // height of arrow_3 area
- `arrow_area_4 mm` // height of arrow_4 area

![Diagram showing arrow areas and their definitions](image-url)
The parameters for controlling the arrows between manholes and associated text for the values of pipe slope, pipe diameter, flow, velocity, drainage line name and user defined pipe attributes are now given.

Each set of parameters has an arrow_mode with the following values:

```plaintext
..._arrow_mode
0 // no arrow
1 // arrow
2 // line
3 // line with uprights at ends
4 // uprights, no line
5 // line with downrights
6 // downrights, no line
7 // line with up and downrights at ends
8 // up and downrights, no line
```

![Diagram showing different arrow modes](attachment:image.png)
22.9.2.1.8 Parameters for the Arrows for Grades of the Pipes

Parameters specifying the arrow area used and the position of the arrows.

- **draw_pipe_grade**: 0 // don’t draw pipe grade
  1 // draw pipe grade
- **pipe_grade_arrow_area**: m // the arrow area for the arrows
  m = 1,2,3 or 4
- **pipe_grade_y**: mm // distance that the arrow is above the
  // bottom of the arrow area.

For the arrow, the value of the grade can be specified as either **1 in** or **percent** grade:

- **percentage_grade**: 0 // the value is a "1 in" grade
  1 // the value is a percent grade

Parameters for the title text on the left hand side of the plot:

- **pipe_grade_title**: text //title on the left hand side of the arrow
- **pipe_grade_title_textstyle**: textstyle // textstyle of the title
- **pipe_grade_title_text_size**: mm // size of the title
- **pipe_grade_title_text_colour**: colour // colour of the title
- **pipe_grade_title_offset**: mm //distance to raise or lower the text
  // from the arrow position
- **pipe_grade_title_x**: mm // distance from the left hand side of the
  // plot

Parameters for the arrow type:

- **pipe_grade_arrow_mode**: 0 // no arrow
  1 // arrow
  2 // line
  3 // line with up and downrights at ends
  4 // up and downrights, no line
  5 // line with downrights
  6 // downrights, no line
  7 // line with up and downrights at ends
  8 // up and downrights, no line
- **pipe_grade_arrow_colour**: colour // colour of the arrow
- **pipe_grade_arrow_size**: mm // height of the arrow
- **pipe_grade_arrow_gap**: 0 // no gap in arrow
  1 // leave gap in arrow for text

Parameters for the text on the arrow:

- **pipe_grade_arrow_pre_text**: text // text before the arrows text
- **pipe_grade_arrow_post_text**: text // text after the arrows text
- **pipe_grade_arrow_decimals**: integer // The number of decimal places used
  // when writing out the pipe grade
  // If > 0, all trailing zeros after the
  // decimal place are removed.
  // If < 0, the absolute value is taken as
  // the number of decimal places and no
  // trailing zeros are removed after the
  // decimal point.
- **pipe_grade_arrow_textstyle**: textstyle // textstyle of arrow text
- **pipe_grade_arrow_text_size**: mm // size of the text
- **pipe_grade_arrow_text_colour**: colour // colour of the text
- **pipe_grade_arrow_text_offset**: mm // distance to raise or lower the text
  // from the arrow position
22.9.2.1.9 Parameters for the Arrows for Diameters of the Pipes

The diameter of the drainage pipes can be plotted between each pit.

Inside 12d Model, the pipe diameter is given a world units (usually metres), but on the diameter arrow, the diameter is multiplied by 1000 and written out as an integer value. This is normally millimetres.

For diameters entered in feet and the plot diameter to be in inches, the following parameter should be set

\[ \text{pipe\_diameter\_scale\_factor} = 12. \]  // default is 1000.

Parameters specifying the arrow area used and the position of the pipe diameter arrows:

- \( \text{draw\_pipe\_diameter} \): 0 // don’t draw pipe diameter
  1 // draw pipe diameter
- \( \text{pipe\_diameter\_arrow\_area} \): \( m \) // the arrow area for the arrows
  \( m = 1,2,3 \) or 4
- \( \text{pipe\_diameter\_y} \): mm // distance that the arrow is above the
  bottom of the arrow area.

Parameters for the title text on the left hand side of the plot:

- \( \text{pipe\_diameter\_title} \): \text
  // title on the left hand side of the arrow
- \( \text{pipe\_diameter\_title\_textstyle} \): \( \textstyle \)
  // textstyle of the title
- \( \text{pipe\_diameter\_title\_text\_size} \): mm // size of the title
- \( \text{pipe\_diameter\_title\_text\_colour} \): \( \text{colour} \)
  // colour of the title
- \( \text{pipe\_diameter\_title\_offset} \): mm // distance to raise or lower the text
  from the arrow position
- \( \text{pipe\_diameter\_title\_x} \): mm // distance from the left hand side of the
  plot

Parameters for the arrow type:

- \( \text{pipe\_diameter\_arrow\_mode} \): 0 // no arrow
  1 // arrow
  2 // line
  3 // line with uprights at ends
  4 // uprights, no line
  5 // line with downrights
  6 // downrights, no line
  7 // line with up and downrights at ends
  8 // up and downrights, no line
- \( \text{pipe\_diameter\_arrow\_colour} \): \text{colour} // colour of the arrow
- \( \text{pipe\_diameter\_arrow\_size} \): mm // height of the arrow
- \( \text{pipe\_diameter\_arrow\_gap} \): 0 // no gap in arrow
  1 // leave gap in arrow for text

Parameters for the text on the arrow:

- \( \text{pipe\_diameter\_arrow\_pre\_text} \): \text // text before the arrows text
- \( \text{pipe\_diameter\_arrow\_post\_text} \): \text // text after the arrows text

On the arrow, the pipe type can be also plotted after the \( \text{pipe\_diameter\_arrow\_post\_text} \):

- \( \text{pipe\_type\_mode} \): 0 // don’t include the pipe type
  1 // include the pipe type after the
  \( \text{post\_text} \)
- \( \text{pipe\_diameter\_arrow\_textstyle} \): \( \textstyle \)
  // textstyle of arrow text
- \( \text{pipe\_diameter\_arrow\_text\_size} \): mm // size of the text
- \( \text{pipe\_diameter\_arrow\_text\_colour} \): \( \text{colour} \)
  // colour of the text
- \( \text{pipe\_diameter\_arrow\_text\_offset} \): mm // distance to raise or lower the text
  from the arrow position
22.9.2.1.10 Parameters for the Arrows for Velocity in the Pipes

Parameters specifying the arrow area used and the position of the arrows.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>draw_pipe_velocity</td>
<td>0</td>
<td>// don’t draw pipe velocity</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>// draw pipe velocity</td>
</tr>
<tr>
<td>pipe_velocity_arrow_area</td>
<td>m</td>
<td>// the arrow area for the arrows</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// m = 1,2,3 or 4</td>
</tr>
<tr>
<td>pipe_velocity_y</td>
<td>mm</td>
<td>// distance that the arrow is above the bottom of the arrow area.</td>
</tr>
</tbody>
</table>

Parameters for the title text on the left hand side of the plot:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pipe_velocity_title</td>
<td>text</td>
<td>// title on the left hand side of the arrow</td>
</tr>
<tr>
<td>pipe_velocity_title_textstyle</td>
<td>textstyle</td>
<td>// textstyle of the title</td>
</tr>
<tr>
<td>pipe_velocity_title_text_size</td>
<td>mm</td>
<td>// size of the title</td>
</tr>
<tr>
<td>pipe_velocity_title_colour</td>
<td>colour</td>
<td>// colour of the title</td>
</tr>
<tr>
<td>pipe_velocity_title_offset</td>
<td>mm</td>
<td>// distance to raise or lower the text</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// from the arrow position</td>
</tr>
<tr>
<td>pipe_velocity_title_x</td>
<td>mm</td>
<td>// distance from the left hand side of the plot</td>
</tr>
</tbody>
</table>

Parameters for the arrow type:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pipe_velocity_arrow_mode</td>
<td>0</td>
<td>// no arrow</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>// arrow</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>// line</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>// line with uprights at ends</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>// uprights, no line</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>// line with downrights</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>// downrights, no line</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>// line with up and downrights at ends</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>// up and downrights, no line</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pipe_velocity_arrow_colour</td>
<td>colour</td>
<td>// colour of the arrow</td>
</tr>
<tr>
<td>pipe_velocity_arrow_size</td>
<td>mm</td>
<td>// height of the arrow</td>
</tr>
<tr>
<td>pipe_velocity_arrow_gap</td>
<td>0</td>
<td>// no gap in arrow</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>// leave gap in arrow for text</td>
</tr>
</tbody>
</table>

Parameters for the text on the arrow:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pipe_velocity_arrow_pre_text</td>
<td>text</td>
<td>// text before the arrows text</td>
</tr>
<tr>
<td>pipe_velocity_arrow_post_text</td>
<td>text</td>
<td>// text after the arrows text</td>
</tr>
<tr>
<td>pipe_velocity_arrow_decimals</td>
<td>integer</td>
<td>// The number of decimal places used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// when writing out the pipe velocity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// If &gt; 0, all trailing zeros after the decimal place are removed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// If &lt; 0, the absolute value is taken as the number of decimal places and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no trailing zeros are removed after the decimal point.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pipe_velocity_arrow_textstyle</td>
<td>textstyle</td>
<td>// textstyle of arrow text</td>
</tr>
<tr>
<td>pipe_velocity_arrow_text_size</td>
<td>mm</td>
<td>// size of the text</td>
</tr>
<tr>
<td>pipe_velocity_arrow_text_colour</td>
<td>colour</td>
<td>// colour of the text</td>
</tr>
<tr>
<td>pipe_velocity_arrow_text_offset</td>
<td>mm</td>
<td>// distance to raise or lower the text</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// from the arrow position</td>
</tr>
</tbody>
</table>
22.9.2.11 Parameters for the Arrows for Flow in the Pipes

Parameters specifying the arrow area used and the position of the arrows.

- **draw_pipe_flow**
  - 0 // don’t draw pipe flow
  - 1 // draw pipe flow

- **pipe_flow_arrow_area**
  - m // the arrow area for the arrows
    - m = 1, 2, 3, or 4

- **pipe_flow_y**
  - mm // distance that the arrow is above the
    - bottom of the arrow area.

Parameters for the title text on the left hand side of the plot:

- **pipe_flow_title**
  - text // title on the left hand side of the arrow

- **pipe_flow_title_textstyle**
  - textstyle // textstyle of the title

- **pipe_flow_title_text_size**
  - mm // size of the title

- **pipe_flow_title_text_colour**
  - colour // colour of the title

- **pipe_flow_title_offset**
  - mm // distance to raise or lower the text
    - from the arrow position

- **pipe_flow_title_x**
  - mm // distance from the left hand side of
    - the plot

Parameters for the arrow type:

- **pipe_flow_arrow_mode**
  - 0 // no arrow
  - 1 // arrow
  - 2 // line
  - 3 // line with uprights at ends
  - 4 // uprights, no line
  - 5 // line with downrights
  - 6 // downrights, no line
  - 7 // line with up and downrights at ends
  - 8 // up and downrights, no line

- **pipe_flow_arrow_colour**
  - colour // colour of the arrow

- **pipe_flow_arrow_size**
  - mm // height of the arrow

- **pipe_flow_arrow_gap**
  - 0 // no gap in arrow
  - 1 // leave gap in arrow for text

Parameters for the text on the arrow:

- **pipe_flow_arrow_pre_text**
  - text // text before the arrows text

- **pipe_flow_arrow_post_text**
  - text // text after the arrows text

- **pipe_flow_arrow_decimals**
  - integer // The number of decimal places used
    - when writing out the pipe flow
    - If > 0, all trailing zeros after the
      - decimal place are removed.
    - If < 0, the absolute value is taken as
      - the number of decimal places and no
        - trailing zeros are removed after the
          - decimal point.

- **pipe_flow_arrow_textstyle**
  - textstyle // textstyle of arrow text

- **pipe_flow_arrow_text_size**
  - mm // size of the text

- **pipe_flow_arrow_text_colour**
  - colour // colour of the text

- **pipe_flow_arrow_text_offset**
  - mm // distance to raise or lower the text
    - from the arrow position
### 22.9.2.1.12 Parameters for the Arrows giving the Drainage Line Name

Parameters specifying the arrow area used and the position of the arrows.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>draw_drainage_line</td>
<td>0</td>
<td>// don’t draw drainage line arrow</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>// draw drainage line arrow</td>
</tr>
<tr>
<td>drainage_line_arrow_area</td>
<td>m</td>
<td>// the arrow area for the arrows</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// m = 1,2,3 or 4</td>
</tr>
<tr>
<td>drainage_line_y</td>
<td>mm</td>
<td>// distance that the arrow is above the bottom of the arrow area.</td>
</tr>
</tbody>
</table>

Parameters for the title text on the left hand side of the plot:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>drainage_line_title</td>
<td>text</td>
<td>// title on the left hand side of the arrow</td>
</tr>
<tr>
<td>drainage_line_title_textstyle</td>
<td>textstyle</td>
<td>// textstyle of the title</td>
</tr>
<tr>
<td>drainage_line_title_text_size</td>
<td>mm</td>
<td>// size of the title</td>
</tr>
<tr>
<td>drainage_line_title_colour</td>
<td>colour</td>
<td>// colour of the title</td>
</tr>
<tr>
<td>drainage_line_title_offset</td>
<td>mm</td>
<td>// distance to raise or lower the text</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// from the arrow position</td>
</tr>
<tr>
<td>drainage_line_title_x</td>
<td>mm</td>
<td>// distance from the left hand side of the plot</td>
</tr>
</tbody>
</table>

Parameters for the arrow type:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>drainage_line_arrow_mode</td>
<td>0</td>
<td>// no arrow</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>// arrow</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>// line</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>// line with uprights at ends</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>// uprights, no line</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>// line with downrights</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>// downrights, no line</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>// line with up and downrights at ends</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>// up and downrights, no line</td>
</tr>
<tr>
<td>drainage_line_arrow_colour</td>
<td>colour</td>
<td>// colour of the arrow</td>
</tr>
<tr>
<td>drainage_line_arrow_size</td>
<td>mm</td>
<td>// height of the arrow</td>
</tr>
<tr>
<td>drainage_line_arrow_gap</td>
<td>0</td>
<td>// no gap in arrow</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>// leave gap in arrow for text</td>
</tr>
</tbody>
</table>

Parameters for the text on the arrow:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>drainage_line_arrow_pre_text</td>
<td>text</td>
<td>// text before the arrows text</td>
</tr>
<tr>
<td>drainage_line_arrow_post_text</td>
<td>text</td>
<td>// text after the arrows text</td>
</tr>
<tr>
<td>drainage_line_arrow_textstyle</td>
<td>textstyle</td>
<td>// textstyle of arrow text</td>
</tr>
<tr>
<td>drainage_line_arrow_text_size</td>
<td>mm</td>
<td>// size of the text</td>
</tr>
<tr>
<td>drainage_line_arrow_text_colour</td>
<td>colour</td>
<td>// colour of the text</td>
</tr>
<tr>
<td>drainage_line_arrow_text_offset</td>
<td>mm</td>
<td>// distance to raise or lower the text</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// from the arrow position</td>
</tr>
</tbody>
</table>
22.9.2.1.13 Parameters for the Arrows for User Defined Pipe Attributes

There can be up to twenty sets of parameters which are used to define arrows for user defined attributes on the pipes.

Each user defined attribute is referred to by a given user name and it is this user name that is specified by a parameter and links the set of parameters to the information in the drainage string.

Note: user defined attributes on drainage pipes are usually set by special macros.

The parameters for the n'th set (n=1,2, 20) are:

Parameters specifying the pipe attribute used for this set of arrows and the arrow area used.

- `draw_pipe_attr_n`: 0 // don’t draw nth set of arrows
  1 // draw the nth set of arrows
- `pipe_attr_n_name`: text // the name of the attribute to be labelled
  // on the n’th set of arrows
- `pipe_attr_n_arrow_area`: m // the arrow area for the arrows
  // m = 1,2,3 or 4
- `pipe_attr_n_y`: mm // distance that the arrow is above the
  // bottom of the arrow area.

Parameters for the title text on the left hand side of the plot:

- `pipe_attr_n_title`: text // title on the left hand side of the arrow
- `pipe_attr_n_title_textstyle`: textstyle // textstyle of the nth attribute’s title
- `pipe_attr_n_title_text_size`: mm // size of the nth attribute’s title
- `pipe_attr_n_title_colour`: colour // colour of the nth attribute’s title
- `pipe_attr_n_title_offset`: mm // distance to raise or lower the text
  // from the nth arrow position
- `pipe_attr_n_title_x`: mm // distance from the left hand side of the
  // plot

Parameters for the arrow type:

- `pipe_attr_n_arrow_mode`: 0 // no arrow
  1 // arrow
  2 // line
  3 // line with uprights at ends
  4 // uprights, no line
  5 // line with downrights
  6 // downrights, no line
  7 // line with up and downrights at ends
  8 // up and downrights, no line
- `pipe_attr_n_arrow_colour`: colour // colour of the nth arrow
- `pipe_attr_n_arrow_size`: mm // height of the nth arrow
- `pipe_attr_n_arrow_gap`: 0 // no gap in arrow
  1 // leave gap in arrow for text

Parameters for the text on the arrow:

- `pipe_attr_n_arrow_pre_text`: text // text before the arrows text
- `pipe_attr_n_arrow_post_text`: text // text after the arrows text
- `pipe_attr_n_arrow_decimals`: integer // Only if the attribute is a real number.
  // The number of decimal places used
  // when writing out the value of the
  // attribute.
  // If > 0, all trailing zeros after the
  // decimal place are removed.
  // If < 0, the absolute value is taken as
  // the number of decimal places and no
  // trailing zeros are removed after the
  // decimal point.
<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pipe_attr_n_arrow_textstyle</td>
<td>textStyle</td>
<td>textstyle of arrow text</td>
</tr>
<tr>
<td>pipe_attr_n_arrow_text_size</td>
<td>mm</td>
<td>size of the text</td>
</tr>
<tr>
<td>pipe_attr_n_arrow_text_colour</td>
<td>colour</td>
<td>colour of the text</td>
</tr>
<tr>
<td>pipe_attr_n_arrow_text_offset</td>
<td>mm</td>
<td>distance to raise or lower the text</td>
</tr>
</tbody>
</table>

// form the nth attribute’s arrow position
22.9.2.1.14 Graph Area

The **graph area** is the area where the actual plots of the drainage strings are drawn. The length of the graph area is determined by the length of the drainage string to be plotted, the horizontal scale (given by scale) of the plot and the sheet width.

```plaintext
scale value // 1:value - horizontal scale
// The vertical scale is determined by the
// horizontal scale and the vertical
// exaggeration for the section view.
```

The vertical exaggeration is taken from the section view specified for the plot by the parameter:

```plaintext
view_name text
```

The tins to be sectioned through by the drainage strings and any service models and corridor settings for the graph area are also taken from the specified section view.

The height of the graph is **calculated** by subtracting the height of the other nine boxes from the plot height.

If the plot will not fit horizontally into a row on the sheet, then the plot will be broken at an appropriate pit and the plot continued on another row.

Datum breaks at pits are used to try and fit the plot vertically into the graph area but if the plot still cannot fit, then it will be truncated at the bottom.

The types of strings that can be drawn in the graph area of the drainage long section plot are:

(a) drainage string  the strings from the network model
(b) tins           sections of the drainage string through any tins on the section view.
(c) hgl           hydraulic grade line values from the drainage string
(d) services      parts of strings from any models on the section view that cut the corridor for the section view.

Whether to draw the hydraulic grade line is controlled by:

```plaintext
draw_hgl_diag 0/1 // 1 = draw hydraulic grade line
```

The **colour** of the strings in the plot is the actual string colour for case (a) and (d), the colour of the tin used for the section in case (b) and user specified colour for (c).

```plaintext
hgl_colour colour
```

---

**Legend**

- **Title area**
- **Values area**
- **Boxes area**
- **Top area**
- **Arrow area 4**
- **Top stagger area**
- **Arrow area 3**
- **Graph area**
- **Arrow area 2**
- **Bottom stagger area**
- **Arrow area 1**
- **Below datum area**

---

**drainage long section plot**
22.9.2.1.15 Top Area

The top area is an annotation area above the arrow_4_area at the top of the plot.
It can be used for pit names, pit types, line names, junctions and deflection angles through pits.
The height of the top area is given by

\[
\text{vertical_plot_gap} \quad \text{mm} \quad \text{// size of the top area. If it is not large enough, the text will over write the plot in the row above.}
\]

A line can be drawn at the bottom of the top area:

\[
\text{draw_top_line} \quad 0/1 \quad \text{// 1= draw line at bottom of top area}
\]

\[
\text{// (i.e. top of arrow_4_area)}
\]
22.9.2.1.16 Manhole name, Manhole Types and Surrounding Bubbles

The drainage string name, the manhole name (pit number) and manhole type (pit type) can be drawn on the drainage long section plot, with or without a bubble around it.

The bubble text is made up of

```
line_name / pit_name pit_type
```

where the bits actually used are controlled by

- `draw_line_name` 0/1 // 1 = include line name. The "/" is only included if the line_name is drawn.
- `draw_pit_name` 0/1 // 1 = include pit_name
- `draw_pit_type` 0/1 // 1 = include pit type

The size, colour and text style of the bubble text is given by:

- `bubble_text_size` mm // size of text in bubble def angled_text_size
- `bubble_text_colour` colour // colour of text def angled_text_colour
- `bubble_textstyle` textstyle // textstyle for text def angled_text_textstyle
- `bubble_text_x` mm // horizontal distance from the default position (at the pit or in top area)
- `bubble_text_y` mm // vertical distance from the default position (at the pit or in top area)
- `bubble_pre_text` text // default ""
- `bubble_post_text` text // default ""
- `bubble_text_angle` value // default 0
- `bubble_text_justify` value // the default is centre justified

A bubble is drawn of radius `bubble_radius` is drawn around the bubble text.

If `bubble_radius` is zero, then no bubble is drawn.

If the `bubble_radius` is zero, the bubble text is still drawn but without the enclosing bubble.

```
bubble_radius mm // if non-zero a bubble of this radius is drawn around the text
bubble_colour colour // colour of bubbles
```

The "bubble" can be drawn as two semi-circles and two straight lines

```
bubble_length mm // length of the straight line in between the semi-circles
```

The bubble text (and bubble) can be positioned at the bottom of the top area, or can be placed a fixed distance above the top of the corresponding manhole.

If the bubble text is drawn at the bottom of the top area, the upright is automatically drawn up to the bubble text.

If the bubble text is drawn above the pit, it is positioned by the `distance_above_pit` parameter plus the top stagger distances, `stagger_gap_top`, `stagger_height_3` and `stagger_height_4`.

This is necessary because the bubble text may need to be staggered.

```
draw_text_at_pit 0 // draw bubble and/or text in the top
```
// area.
1
// draw it above the pit

distance_above_pit
mm
// distance to add to the top stagger area
// heights to draw the bubble above the
// pit.

uprights_top_mode
0/1
// 1 = draw line from pit to bubble. Used to be
// draw_line_to_text
22.9.2.17 Change of Direction Through Pits and Junctions

If there is a change of direction of the pipes of the plotted drainage string going through the pit, the deflection angle (in degrees, minutes and seconds) is drawn above the bubble text.

The deflection angle text is made up:

angled_pre_text  deflection angle  angled_post_text

Also any junctions at a pit in the plotted drainage string can be labelled with the name of the drainage strings coming into the pit, and the angle of the pipes at the junction.

Hence the junction text is made up of two lines:

junction_pre_text  line_name  junction_post_text
junction_angle_pre_text  junction_angle  junction_angle_post_text

If bubbles are drawn, the deflection angle and junction name and angle are drawn at the distance angled_text_offset above the bubble and with the distance angled_text_gap between the lines of information.

If bubbles are not drawn, the bubble text and the deflection angle and junction name and angle is placed the distance angled_text_offset above bottom of the top area. Each line of text is separated by the distance angled_text_gap.

The deflection angle and junction name and angle are drawn at an angle of angled_text_angle.

angled_text_offset  mm  // distance of text above bubble text
angled_text_gap  mm  // distance between text to the right
angled_text_angle  value  // angle of text

The pre and post text, colour, size and text style for the deflection angle of the drainage string pipes going through the pit are controlled by:

angled_pre_text  text  // default " "
angled_post_text  text  // default " "
angled_text_colour  colour  // colour of deflection angle text
angled_text_size  mm  // size of deflection angle text
angled_textstyle  textstyle  // textstyle of deflection angle text
The junction drainage string name can be included/not included in the first line of junction information:

```
junction_name_mode 0 // don’t include the junction string name
 1 // default - use junction string name
```

The pre and post text, colour, size and text style for the junction name and the angle that the junction makes at the pit are controlled by:

```
junction_pre_text text // default "JUNCTION "
junction_post_text text // default "
junction_text_colour colour // colour of junction name text
junction_text_size mm // size of junction name text
junction_textstyle textstyle // textstyle for junction name text
junction_angle_pre_text text // default "
junction_angle_post_text text // default "
junction_angle_text_colour colour // colour of junction angle text
junction_angle_text_size mm // size of junction angle text
junction_angle_textstyle textstyle // textstyle for junction angle text
```
22.9.2.18 Symbols at Manholes

Manholes can be labelled with symbols which depend on the manhole type. There can be up to twenty (20) sets of manhole symbols.

\[
\begin{align*}
\text{manhole\_symbol\_n\_type} & \quad mh\_type \\
& \quad // \text{manhole type to have symbols} \\
\text{manhole\_symbol\_n\_mode} & \quad 0 \\
& \quad // \text{cross} \\
& \quad 1 \\
& \quad // \text{up from centre of box} \\
& \quad 2 \\
& \quad // \text{up and down from centre of box} \\
& \quad 3 \\
& \quad // \text{square} \\
& \quad 4 \\
& \quad // \text{triangle, base at bottom} \\
& \quad 5 \\
& \quad // \text{circle} \\
& \quad 6 \\
& \quad // \text{use a 12d symbol}
\end{align*}
\]

\[
\begin{align*}
\text{manhole\_symbol\_n\_position} & \quad 1 \\
& \quad // \text{at top of manhole - default} \\
& \quad 3 \\
& \quad // \text{above top of boxes} \\
& \quad 4 \\
& \quad // \text{above highest point} \\
& \quad 100 \\
& \quad // \text{to primary string} \\
& \quad 101 \\
& \quad // \text{to first found tin}
\end{align*}
\]

\[
\begin{align*}
\text{manhole\_symbol\_n\_size} & \quad \text{mm} \\
& \quad // \text{size} \\
\text{manhole\_symbol\_n\_x} & \quad \text{mm} \\
& \quad // \text{x adjustment to position - default 0} \\
\text{manhole\_symbol\_n\_y} & \quad \text{mm} \\
& \quad // \text{y adjustment to position - default is 0} \\
\text{manhole\_symbol\_n\_style} & \quad \text{text} \\
& \quad // \text{the name of the linestyle (symbol)} \\
\text{manhole\_symbol\_n\_angle} & \quad \text{value} \\
& \quad // \text{default value is 0} \\
\text{manhole\_symbol\_n\_colour} & \quad \text{colour} \\
& \quad //
\end{align*}
\]

For example:

\[
\begin{align*}
\text{manhole\_symbol\_1\_type} & \quad "\text{CONC COVER}" \\
& \quad // \text{manhole type to use} \\
\text{manhole\_symbol\_1\_position} & \quad 1 \\
& \quad // \text{on top of manhole} \\
\text{manhole\_symbol\_1\_mode} & \quad 6 \\
& \quad // \text{use 12d symbol} \\
\text{manhole\_symbol\_1\_style} & \quad "\text{shrub}" \\
& \quad // \text{name of 12d symbol} \\
\text{manhole\_symbol\_1\_size} & \quad 1 \\
\text{manhole\_symbol\_1\_x} & \quad 0 \\
\text{manhole\_symbol\_1\_y} & \quad 0
\end{align*}
\]

22.9.2.19 Labelling House Connections

**NOTE** - house connections are only accessible by the Sewer module.

The house connections can be drawn from the pipe to the house connection level, with a line across the top (a T). The full width the T can be specified by the user.

\[
\begin{align*}
\text{draw\_house\_connections} & \quad \text{yes/no} \\
\text{house\_connection\_width} & \quad \text{value}
\end{align*}
\]

The lot name for the house connection and the connection type can be labelled above the house connection. The house connection label is made up as:

\[
\begin{align*}
\text{connection\_pre\_text} & \quad \text{lot\_name} & \quad \text{connection\_mid\_text} & \quad \text{connection\_type} & \quad \text{connection\_post\_text}
\end{align*}
\]

where lot\_name and connection\_type are stored with the house connection on the drainage
The parameters controlling the drawing of the house connection label are

- **house_connection_mode**: 0 // don’t label the house connection
  1 // label the house connection with name
     // and type(default)
  2 // label the house connection with name only
- **connection_pre_text**: text // default " "
- **connection_mid_text**: text // default " "
- **connection_post_text**: text // default " "
- **connection_text_colour**: colour // colour of connection label
- **connection_text_size**: mm // size of connection label
- **connection_textstyle**: textstyle // textstyle connection label
- **connection_text_x**: mm // x adjustment to position of text - def 0
- **connection_text_y**: mm // y adjustment to position of text - def 0
- **connection_text_justify**: text // default is Bottom_left
- **connection_text_angle**: value // default vertical 90
- **connection_text_position**: 1 // above point height value
  3 // above top of boxes
  4 // above highest point
  100 // to primary string
  101 // to first found tin

**Label connection type:**

(this is used when the house_connection_mode is turned off, only the connection type is labelled)

- **house_connection_type_mode**: 0 // default, don’t label connection type
  1 // label connection type
- **connection_type_text_x**: mm // x adjustment to position of text - def 0
- **connection_type_text_y**: mm // y adjustment to position of text - def 0
- **connection_type_pre_text**: text // text before type - def " "
- **connection_type_post_text**: text // text after type - def " "
- **connection_type_text_style**: text // def box_text_size
- **connection_type_text_colour**: colour // def box_text_colour
- **connection_type_textstyle**: text //
- **connection_type_text_justify**: text //
- **connection_type_text_angle**: value // def vertical 90
- **connection_type_text_position**: 1 // above point height value - default
  3 // above top of boxes
  4 // above highest point
  100 // to primary string
  101 // to first found tin

**Label the distance from the down stream pit to the house connection**

- **house_connection_ds_pit_mode**: 0 // default, don’t label chainage
  1 // label from down stream
  2 // label from up stream
  3 // label from left
  4 // label from right
- **connection_ds_pit_text_x**: mm // x adjustment to position of text
- **connection_ds_pit_text_y**: mm // y adjustment to position of text
- **connection_ds_pit_text_style**: text // ("" ) text before type
- **connection_ds_pit_text_post**: text // ("" ) text after type
- **connection_ds_pit_text_size**: mm // def box_text_size
- **connection_ds_pit_text_colour**: colour //def (box_text_colour
- **connection_ds_pit_textstyle**: text //
connection_ds_pit_text_justify = text // default Bottom_Left
connection_ds_pit_text_angle = value // default is vertical (90)
connection_ds_pit_text_position = 1 // above point height value - default
connection_ds_pit_text_position = 3 // above top of boxes
connection_ds_pit_text_position = 4 // above highest point
connection_ds_pit_text_position = 100 // to primary string
connection_ds_pit_text_position = 101 // to first found tin
connection_ds_pit_decimals = value // def number_of_decimals

Label the connection depth from the finished surface:

house_connection_depth_mode = 1 //default, label house connection depth
house_connection_depth_mode = 0 // don’t label house connection depth
connection_depth_text_x = mm // x adjustment to position of text - def 0
connection_depth_text_y = mm // y adjustment to position of text - def 0
connection_depth_pre_text = text // text before type - def " "
connection_depth_post_text = text // text after type - def " "
connection_depth_text_size = mm // default box_text_size
connection_depth_text_colour = colour // default box_text_colour
connection_depth_textstyle = text //
connection_depth_text_justify = text // default Bottom_left
connection_depth_text_angle = value // def is vertical (90)
connection_depth_text_position = 1 // above point height value - default
connection_depth_text_position = 3 // above top of boxes
connection_depth_text_position = 4 // above highest point
connection_depth_text_position = 100 // to primary string
connection_depth_text_position = 101 // to first found tin
connection_depth_decimals = value // default number_of_decimals

Label the finished surface:

house_connection_fs_mode = 1 //default, label house connection finished
house_connection_fs_mode = 0 // don’t label house con finished surface
connection_fs_text_x = mm // x adjustment to position of text - def 0
connection_fs_text_y = mm // y adjustment to position of text - def 0
connection_fs_pre_text = text // text before type - def " "
connection_fs_post_text = text // text after type - def " "
connection_fs_text_size = mm // default box_text_size
connection_fs_text_colour = colour // default box_text_colour
connection_fs_textstyle = text //
connection_fs_text_justify = text // default Bottom_left
connection_fs_text_angle = value // def is vertical (90)
connection_fs_text_position = 1 // above point height value - default
connection_fs_text_position = 3 // above top of boxes
connection_fs_text_position = 4 // above highest point
connection_fs_text_position = 100 // to primary string
connection_fs_text_position = 101 // to first found tin
connection_fs_decimals = value // default number_of_decimals

The invert level of the house connection can also be plotted. The house connection invert level label is made up as:

The invert level of the house connection can also be plotted. The house connection invert level label is made up as:

\[ \text{invert level} \text{ label} = \]
connection_il_pre_text  connection_invert_level  connection_il_post_text

The parameters controlling the drawing of the house connection invert level label are:

- **house_connection_il_mode**
  - 1 // default, label the house connection il
  - 0 // don’t label the house connection il

- **connection_il_text_position**
  - 1 // above point height value - default
  - 3 // above top of boxes
  - 4 // above highest point
  - 100 // to primary string
  - 101 // to first found tin

- **connection_il_text_x** mm // x adjustment to position of text - def 0
- **connection_il_text_y** mm // y adjustment to position of text - def 0
- **connection_text_gap** mm // distance from connection label and il label
- **connection_il_decimals** integer // def -3, number of decimal places in il value
  - >0 drop trailing zeros after decimal point
  - < 0 keep trailing zeros

- **connection_il_pre_text** text // default " ", text before type
- **connection_il_post_text** text // default " ", text after type
- **connection_il_text_colour** colour // colour of connection il - def box_text_colour
- **connection_il_text_size** mm // size of connection il - def box_text_size
- **connection_il_textstyle** textstyle // textstyle connection il
- **connection_il_text_justify** text //
- **connection_il_text_angle** value // (vertical 90)

---

**22.9.2.1.20 Symbols at Property Controls**

**NOTE** - property controls and house connections are only accessible by the **Sewer module**.

The position of the property controls can be drawn as circles (which will display as an oval depending on the vertical exaggeration) with the diameter of the property control.

- **draw_property_controls** yes/no

The position of the property control can also be indicated by placing a symbol at the property control.

The position of the property control at the drainage string can be labelled with symbols. There
can be up to twenty (20) sets of property control symbols.

- **property_control_symbol_n_mode**: 0 // cross
- 1 // up from centre of box
- 2 // up and down from centre of box
- 3 // square
- 4 // triangle, base at bottom
- 5 // circle
- 6 // use a 12d symbol

For example:

- `property_control_symbol_1_position` 0 // at bottom (invert) of property control
- `property_control_symbol_1_mode` 6 // use 12d symbol
- `property_control_symbol_1__style` "shrub" // name of 12d symbol
- `property_control_symbol_1_size` 1
- `property_control_symbol_1_x` 0
- `property_control_symbol_1_y` 0

### 22.9.2.1.21 Labelling Property Controls

**NOTE** - property controls and house connections are only accessible by the **Sewer module**.

The property control can be labelled with its name where the property control is at the drainage string. The property control name label is made up as:

- **property_control_pre_text**
- **property_control_name**
- **property_control_pre_post_text**

where **property_control_name** is the stored with the property control on the drainage string.

The parameters controlling the labelling the property control are

- **property_control_mode**: 0 // don’t label the property control with name
- 1 // label the property control with name
- **property_control_pre_text**
- **property_control_post_text**
- **property_control_text_colour**
- **property_control_text_size**
- **property_control_textstyle**
- **property_control_text_x**
- **property_control_text_y**
- **property_control_text_justify** // default is Bottom_left
Chapter 22  Drainage and Sewer

Drainage Plots

property_control_text_angle  value  // default vertical 90
property_control_text_position  1  // above pc centre height value
3  // above top of boxes
4  // above highest point
100  // to primary string
101  // to first found tin

Label the distance from the downstream pit to the property control:

property_control_ds_pit_mode  0  // default, don’t label chainage
1  // label from downstream
2  // label from upstream
3  // label from left
4  // label from right

property_control_ds_pit_text_x  mm  // x adjustment to position of text
property_control_ds_pit_text_y  mm  // y adjustment to position of text
property_control_ds_pit_pre_text  text  // ("" ) text before type
property_control_ds_pit_post_text  text  // ("" ) text after type
property_control_ds_pit_text_size  mm  // def box_text_size
property_control_ds_pit_text_colour  colour  // def (box_text_colour
property_control_ds_pit_textstyle  text  //
property_control_ds_pit_text_justify  text  // default Bottom_Left
property_control_ds_pit_text_angle  value  // default is vertical (90)
property_control_ds_pit_text_position  1  // above pc centre height value - default
3  // above top of boxes
4  // above highest point
100  // to primary string
101  // to first found tin

property_control_ds_pit_decimals  value  // def number_of_decimals

Label the depth from the finished surface to the invert level of the property control:

property_control_depth_mode  1  // default, label property control depth
0  // don’t label pc depth

property_control_depth_text_x  mm  // x adjustment to position of text - def 0
property_control_depth_text_y  mm  // y adjustment to position of text - def 0
property_control_depth_pre_text  text  // text before type - def " "
property_control_depth_post_text  text  // text after type - def " "
property_control_depth_text_size  mm  // def box_text_size
property_control_depth_text_colour  colour  // def box_text_colour
property_control_depth_textstyle  text  //
property_control_depth_justify  text  // default Bottom_Left
property_control_depth_angle  value  // default is vertical (90)
property_control_depth_position  1  // above pc centre height value - default
3  // above top of boxes
4  // above highest point
100  // to primary string
101  // to first found tin

property_control_depth_decimals  value  // def number_of_decimals

Label the finished surface:

property_control_fs_mode  1  // default, label pc finished surface
0  // don’t label pc finished surface

property_control_fs_text_x  mm  // x adjustment to position of text - def 0
property_control_fs_text_y  mm  // y adjustment to position of text - def 0
property_control_fs_pre_text  text  // text before type - def " "
property_control_fs_post_text  text  // text after type - def " "
property_control_fs_text_size  mm  // def box_text_size
property_control_fs_text_colour  colour  // def box_text_colour

Drainage Plots
The invert level of the property control at the drainage string can also be plotted. The property control invert level label is made up as:

property_control_il_pre_text  property_control_invert_level  property_control_il_post_text

The parameters controlling the drawing of the property control invert level label are:

property_control_il_mode  1  // default, label the pc il
                          0  // don’t label the pc il
property_control_il_text_position  1  // above pc centre height value - default
                                    3  // above top of boxes
                                    4  // above highest point
                                    100 // to primary string
                                    101 // to first found tin
property_control_il_text_x  mm  // x adjustment to position of text - def 0
property_control_il_text_y  mm  // y adjustment to position of text - def 0
property_control_text_gap  mm  // distance from pc name label and il label
property_control_il_decimals  integer  // def -3, number of decimal places in il value
                                    // >0 drop trailing zeros after decimal point
                                    // < 0 keep trailing zeros
property_control_il_pre_text  text  // default " ", text before type
property_control_il_post_text  text  // default " ", text after type
property_control_il_text_colour  colour  // colour of pc il - def box_text_colour
property_control_il_text_size  mm  // size of pc il - def box_text_size
property_control_il_textstyle  textstyle  // textstyle pc il
property_control_il_text_justify  text  //
property_control_il_text_angle  value  // (vertical 90)
22.9.2.1.22 Hatching Cut and Fill Areas

This option is used to hatch cut and/or fill areas between sets of tins.

For each set, the name of the two tins, the hatch linestyle, colour and separation and whether cut and/or fill regions are required are all user definable.

Up to twenty (20) separate sets of tins be hatched.

The parameters for labelling cuts and/or fill regions between tins are given by:

- **hatch_original_tin_n** (tin_name) // tin_name for original surface
- **hatch_new_tin_n** (tin_name) // tin_name for final surface
- **hatch_cut_separation_n** (mm) // distance between cut hatch lines
  - 0 // don't do cut hatching
- **hatch_cut_angle_n** (degrees) // angle in degrees of cut hatching
- **hatch_cut_colour_n** (colour) // colour of the cut hatching
- **hatch_cut_linestyle_n** (linestyle) // linestyle for cut hatching
- **hatch_cut_draw_sides_n** 1/0 // 1 = draw sides of cut regions
- **hatch_cut_draw_original_n** 1/0 // 1 = draw original tin in cut regions
- **hatch_cut_draw_new_n** 1/0 // 1 = draw new tin in cut regions
- **hatch_fill_separation_n** (mm) // distance between fill hatch line
  - 0 // don't do fill hatching
- **hatch_fill_angle_n** (degrees) // angle in degrees of fill hatching
- **hatch_fill_colour_n** (colour) // colour of the fill hatching
- **hatch_fill_linestyle_n** (linestyle) // linestyle for fill hatching
- **hatch_fill_draw_sides_n** 1/0 // 1 = draw sides of fill regions
- **hatch_fill_draw_original_n** 1/0 // 1 = draw original tin in fill regions
- **hatch_fill_draw_new_n** 1/0 // 1 = draw new tin in fill regions

**Notes**

(a) cut is when the new tin is below the original tin.
fill is when the new tin is above the original tin.

(b) cut hatching is turned off by setting hatch_cut_separation_n to 0.0.
fill hatching is turned off by setting hatch_fill_separation_n to 0.0.
22.9.2.1.23 Labelling Cuts of Drainage Through Strings in a Model

The cuts that the drainage string makes though any strings in user given models can be automatically labelled on the long section plots.

The height, chainage and name of the cut string can be labelled as well as a symbol drawn. The height of tins at the same offset value can also be labelled.

The chainage position for the labelling is the chainage of the cut string.

The height position for the labelling can be specified as the
(a) top of the boxes on the long section
(b) height value of the cut string
(c) height of the primary string
(d) height of a tin.

The actual position of the label is defined relative to the above point.

Note:

Only case (b) involves the actual height of the cut string. For all other cases, only the chainage of the cut string is used. Hence for all cases except (b), the string does need to have a sensible height to be used for cuts through strings.

For example, a boundary string may have null heights but only the chainage is required and the height of the tin at that chainage can be used as the height (case (d)).

Text justification refers to the actual position and is given by

```
“top-left” “top-centre” “top-right”
“middle-left” “middle-centre” “middle-right”
“bottom-left” “bottom-centre” “bottom-right”
```

A choice of six special symbols and/or or any 12d symbols can be drawn at the cut point.

The special 12d Model symbols of size one millimetre are drawn in a square box centred on (0,0) with sides of length two millimetres. That is, the box co-ordinates are (-1,-1), (1,1), (1,-1), (-1,-1).

The six special shapes are

```
+ | |
```

Up to twenty five (25) separate models of strings can be cut and labelled.
22.9.2.1.24 Parameters for Labelling Where the Drainage Line Cuts Strings in a Model

The method for specifying which strings are to be checked for cuts is by first specifying the model which contains the strings, and then a name mask which is used to restrict the strings in the model to only those whose name matches the name mask.

Up to twenty five different sets of models and name masks can be used so that different cut sets can be labelled in different ways.

The parameters for selecting and labelling the n’th set (where n can be from 1 to 25) of cuts of the design string with the strings in the model are given by:

- **cuts_n_model**
  - model_name // model of strings to be cut

The selection of the strings from the model model_name whose cut points are to be labelled is all the strings whose name satisfies the name mask cuts_n_mask:

- **cuts_n_mask**
  - name_mask // strings to check for cuts
  // and if a cut occurs,
  // parameters show how to
  // label the cut

where name_mask is a text string containing the name masks, each separated by one or more spaces, to test the string name against. Each mask can include wild cards and wild characters.

For example

- cuts_1_mask "ke*"
- cuts_1_mask "?bank*"

or, if both masks are required,

- cuts_1_mask "ke* ?bank*"

If cuts_n_mask is missing, then all strings in the model are used. This is equivalent to name_mask being ".*

All strings in the model cuts_n_model whose name satisfy the name mask cuts_n_mask are then checked for cuts with the drainage strings, and if a cut occurs, the cut point will be labelled according to the rest of the parameters in the n’th set.

The parameters for drawing a symbol at the cut points are

- **cuts_symbol_n_mode**
  - 0 // cross
  - 1 // up from centre of box
  - 2 // up and down from centre of box
  - 3 // square
  - 4 // triangle, base at bottom
  - 5 // circle
  - 6 // use a 12d symbol

If cuts_symbol_n_mode is 6, then the 12d symbol is given by

- **cuts_symbol_n_style**
  - plotsymbol // 12d symbol to draw at cut

**Important Note**

The plot symbol of name plotsymbol is defined in the file given by:
Drainage Plots

(a) the parameter `plot_symbols` in the ppf file

```
plot_symbols filename
```

**or if `plot_symbols` is not defined**, then

(b) in the file pointed to by the environment variable `PLOT_SYMBOLS_4D`

```
PLOT_SYMBOLS_4D filename // default plotsym.4d
```

**or if `PLOT_SYMBOLS_4D` is not defined**, then

(c) in the file `plotsym.4d`

which is searched for in the standard set up file sequence

**If none of the above files are defined**, or if the symbol does not exist in the above files, then it will be searched for in the standard 12d symbols file which is:

(d) either pointed to by the environment variable `SYMBOLS_4D`

```
SYMBOLS_4D filename // default symbols.4d
```

or if the environment variable `SYMBOLS_4D` does not exist, in the file, `symbols.4d`

The position of the symbol or plot symbol is given by:

```
cuts_symbol_n_position 1 // above point height value
3 // above top of boxes
100 // to primary string
101-500 // to tin1 or tin2, etc.
```

The symbol can be adjusted by the parameters:

```
cuts_symbol_n_x mm // offset adjustment to position
cuts_symbol_n_y mm // height adjustment to position
cuts_symbol_n_angle degrees // rotation about point
cuts_symbol_n_colour colour // colour of symbol
```

and for all values of `cuts_symbol_n_mode `other than 6:

```
cuts_symbol_n_size mm // size of symbol, 0 don't draw
```

The value of the chainage of the cut string can be labelled using the parameters

```
cuts_chainage_n_position 1 // above cut strings height value
3 // above top of boxes
100 // to primary string
101-500 // to tin1 or tin2, etc.
```

```
cuts_chainage_n_x mm // chainage adjustment to position
cuts_chainage_n_y mm // height adjustment to position
cuts_chainage_n_angle degrees // rotation about point
cuts_chainage_n_size mm // size of text, 0 don't label
cuts_chainage_n_colour colour // colour of text
cuts_chainage_n_textstyle text // textstyle of text chainage
cuts_chainage_n_pre_text text // text before the chainage value
cuts_chainage_n_post_text text // text after the chainage value
cuts_chainage_n_justification justification // justification of the text
cuts_chainage_n_no_decimals integer // number of decimals in chainage
The value of a **height** at the chainage of the point can be calculated and labelled using the parameters

- `cuts_height_n_mode`
 - `1` // use height of cut point itself
 - `3` // use real world height of position
 - `100` // above boxes
 - `101-500` // height of primary string
 - `101-500` // use height of to tin1 or tin2, etc.

- `cuts_height_n_position`
 - `1` // at points position
 - `3` // above top of boxes
 - `100` // to primary string
 - `101-500` // to tin1 or tin2, etc.

- `cuts_height_n_x`
 - `mm` // chainage adjustment to position

- `cuts_height_n_y`
 - `mm` // height adjustment to position

- `cuts_height_n_angle`
 - `degrees` // rotation about point

- `cuts_height_n_size`
 - `mm` // size of text, 0 don't label

- `cuts_height_n_colour`
 - `colour` // colour of text

- `cuts_height_n_textstyle`
 - `text` // textstyle of text height

- `cuts_height_n_pre_text`
 - `text` // text before the height value

- `cuts_height_n_post_text`
 - `text` // text after the height value

- `cuts_height_n_justification`
 - `justification` // justification of the text

- `cuts_height_n_no_decimals`
 - `integer` // number of decimals in height

A **label** which can include the **name** of the cut string is drawn by using the parameters

- `cuts_label_n_position`
 - `1` // above cut strings height value
 - `3` // above top of boxes
 - `100` // to primary string
 - `101-500` // to tin1 or tin2, etc.

- `cuts_label_n_mode`
 - `0` // don't include cut string name
 - `1` // include cut string name in label

- `cuts_label_n_x`
 - `mm` // chainage adjustment to position

- `cuts_label_n_y`
 - `mm` // height adjustment to position

- `cuts_label_n_angle`
 - `degrees` // rotation about point

- `cuts_label_n_size`
 - `mm` // size of text, 0 don't label

- `cuts_label_n_colour`
 - `colour` // colour of text

- `cuts_label_n_textstyle`
 - `text` // textstyle of text label

- `cuts_label_n_pre_text`
 - `text` // text before the string name

- `cuts_label_n_post_text`
 - `text` // text after the string name

- `cuts_label_n_justification`
 - `justification` // justification of the text
The cut point can be labelled with **chainage** of the cut point
height of the cut point
height of the x-section or tins at this offset
name of the string for the cut point

Any 12d symbol can be drawn at the cut point
the cut point
22.9.2.1.25 Title Block Information

The plot can have a standard 12d Model title block or a user defined title block.

The standard title block consists of a simple border around the plot and two lines of text in a box underneath the plot. For a user defined title block, all the line work and text is defined by the user.

Standard Title Block

For the standard 12d Model title block, there are extra parameters for two lines of text and text size and colour. The standard title block is turned on or off by the parameter plot_border.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>plot_border</td>
<td>yes/no // yes plots a standard title block</td>
</tr>
<tr>
<td>title_1</td>
<td>text</td>
</tr>
<tr>
<td>title_2</td>
<td>text</td>
</tr>
<tr>
<td>title_text_size</td>
<td>value</td>
</tr>
<tr>
<td>title_colour</td>
<td>colour</td>
</tr>
</tbody>
</table>

User Title Block

For the user defined title block, the title block drawing commands are kept in a file whose name is supplied by the user. The title block drawing commands are almost identical to the linestyle drawing commands and is given at the beginning of chapter Advanced Plotting.

Hence for a user defined title block, there are just two parameters - one to say a title block file is being used and the other to give the name of the title block file. The plot_border parameter should also be set to no so that the standard title block is not also drawn.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>use_title_file</td>
<td>yes/no // yes draws the title block given in title_file</td>
</tr>
<tr>
<td>title_file</td>
<td>filename</td>
</tr>
<tr>
<td>plot_border</td>
<td>no // turn off standard title block</td>
</tr>
</tbody>
</table>

Some special plot parameters are used to pass information down to variables in a user defined title block.

For example, inside the title block file it is possible to have runtime user defined text variables. The actual text values for these text variables are passed down to the title block file from the plot parameter file via the parameters user_text_n (n = 1,2,... 1000)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>user_text_n</td>
<td>text</td>
</tr>
</tbody>
</table>

The special plot parameters are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time_format</td>
<td>text // format for $time</td>
</tr>
<tr>
<td>user_text_n</td>
<td>text // where n = 1,2,... 1000</td>
</tr>
<tr>
<td>title_1</td>
<td>text // passed down to $title_1</td>
</tr>
<tr>
<td>title_2</td>
<td>text // passed down to $title_2</td>
</tr>
<tr>
<td>start_page_number</td>
<td>integer // used as the starting value for $page_number. If missing, $page_number starts at 1.</td>
</tr>
<tr>
<td>start_drawing_number</td>
<td>integer // added to $drawing_number in title block file. If missing, $drawing_number starts at 1.</td>
</tr>
<tr>
<td>drawing_number_prefix</td>
<td>text // passed down to $drawing_number_prefix</td>
</tr>
<tr>
<td>drawing_number_postfix</td>
<td>text // passed down to $drawing_number_postfix</td>
</tr>
</tbody>
</table>
22.9.2.1.26 Parameters that Modify Fields In the Plot Drainage Network Panel

A number of parameters match those in the plot drainage network panel.

When the plot parameter file is first read, any parameters in the panel will be replaced by the values of any corresponding parameters from the parameter file.

However, if the parameter is subsequently modified in the panel, the panel value will be the value used for the parameter.

The plot parameters that also occur in the plot drainage network panel are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>network_model</td>
<td>text</td>
</tr>
<tr>
<td>scale</td>
<td>value</td>
</tr>
<tr>
<td>plotter_type</td>
<td>text</td>
</tr>
<tr>
<td>plot_stem</td>
<td>text</td>
</tr>
<tr>
<td>view_name</td>
<td>text</td>
</tr>
<tr>
<td>sheet_size</td>
<td>text or "width height"</td>
</tr>
<tr>
<td>plot_height</td>
<td>mm</td>
</tr>
<tr>
<td>x_origin</td>
<td>mm</td>
</tr>
<tr>
<td>y_origin</td>
<td>mm</td>
</tr>
<tr>
<td>global_textstyle</td>
<td>textstyle</td>
</tr>
<tr>
<td>box_text_size</td>
<td>mm</td>
</tr>
<tr>
<td>box_colour</td>
<td>colour</td>
</tr>
<tr>
<td>plot_border</td>
<td>yes/no</td>
</tr>
<tr>
<td>title_1</td>
<td>text</td>
</tr>
<tr>
<td>title_2</td>
<td>text</td>
</tr>
<tr>
<td>title_text_size</td>
<td>value</td>
</tr>
<tr>
<td>title_text_colour</td>
<td>colour</td>
</tr>
<tr>
<td>use_title_file</td>
<td>yes/no</td>
</tr>
<tr>
<td>title_file</td>
<td>filename</td>
</tr>
</tbody>
</table>
22.9.3 Melbourne Water

Position of menu: Design => Drainage-Sewer => Plots => Melbourne Water

The Melbourne Water option is used to generate the longsection plots for all lines in a drainage network to the Melbourne Water sewer standards.

Given the plot sheet size and the horizontal and vertical scales, the longsections for the drainage lines are plotted starting at the top of the sheet and moving across the sheet. Once one row is full, if there is room the plot moves down the page and begins a new row. When a plot sheet is full, a new plot sheet is automatically begun.

Hence the drainage lines are plotted one after another on one or more plotter sheets.

The drainage lines are plotted in string name alphabetical order.

The drainage longsection plot includes:

- the manholes, drainage pipe and any house connections
- the height of the natural surface at the manhole
- manhole names and cover types
- distances between manholes
- the invert depth of the pipe on either side of a manhole
- the grades and types of the pipes
- any services in the corridor - including their name, invert level and distance from the nearest downstream manhole

After selecting the Melbourne Water option, the Melb plot drainage network panel is displayed.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot parameters</td>
<td>input</td>
<td></td>
<td>file of plot parameters used for extra control of the long section plot.</td>
</tr>
<tr>
<td>Plotter type</td>
<td>input</td>
<td>hp</td>
<td>hp, dxf, postscript, etc.</td>
</tr>
<tr>
<td>Network model</td>
<td>input</td>
<td></td>
<td>the model containing all the drainage lines for the network.</td>
</tr>
<tr>
<td>Section view</td>
<td>input</td>
<td></td>
<td>the section view to be used to define the vertical exaggeration, corridor widths, tins to section through, services models to section, etc.</td>
</tr>
<tr>
<td>Plot file stem</td>
<td>input</td>
<td></td>
<td>since more than one plot page may be produced, the plot file names are constructed from the stem plus a plot page sequence number, followed by the appropriate plotter type ending.</td>
</tr>
<tr>
<td>Scale 1:</td>
<td>input</td>
<td></td>
<td>horizontal scale for plotting the drainage long section. The vertical exaggeration is taken from the section view given in the section view field.</td>
</tr>
<tr>
<td>Sheet size wd ht (mm)</td>
<td>input</td>
<td></td>
<td>available sheet sizes</td>
</tr>
<tr>
<td>X origin (mm)</td>
<td>input</td>
<td></td>
<td>the width and height values (separated by space) or the name of a user defined sheet size.</td>
</tr>
<tr>
<td>X origin (mm)</td>
<td>input</td>
<td></td>
<td>the x position on the plot sheet for the bottom left hand corner of the long section plots.</td>
</tr>
</tbody>
</table>
Y origin (mm) input
the y position on the plot sheet for the bottom left hand corner of the longsection plots.

Drainage line ht (mm) input boxes boxes, centreline
the maximum allowable height for a longsection plot for a drainage line. Datum breaks are applied to any part of the longsection that will not fit into the drainage line ht.

Box text size (mm) input 3
size (in millimetres) to plot the chainages, heights, etc. in the boxes in the plots of the drainage longsections

Box colour input cyan available colours
colour used for the text and the boxes.

Plot button
plot the drainage longsections for the drainage lines in the model given in the network model field.

The fields and buttons in title tab are:

Use title file tick box
if tick, a user defined title block file is used.

Standard Title tick box tick
if tick, the standard 12d Model border and two lines of title are placed on the bottom of the plot

Title file input *.tf
if non-blank and use title file is set to tick, then the file given in this field is used to generate a user defined title block for the plot.

Title line 1/2 input first/second line of title information

Title height (mm) input 5
height (in millimetres) to draw the characters in the two lines of title information.

Title colour input cyan available colours
colour used for the border and the title information.

Please continue to the next section Melbourne Water Plot Parameter File.

22.9.3.1 Melbourne Water Plot Parameter File

The Melbourne Water plot option is used to make special long section plots for a network of new drainage strings to Melbourne Water sewer standards. Some of the look of the long section plot can be controlled from the Melb plot drainage network panel itself, however a wider selection of control parameters is available by using a Melbourne Water long plot, plot parameter file. Because the Melbourne Water format is so fixed, most of the parameter have sensible default values and can be left out. However, for completeness, all the parameters are given.

The Melbourne Water Sewer (MWS) long section plot parameters are placed in a file with ending .ppf. Each parameter consists of a parameter name followed by one or more spaces and then the parameter value. There is only one parameter per line.

Anything on a line after a double forward slash // is considered to be a comment.

The set of all parameters for the Melbourne Water sewer long section plot is enclosed within a
set of curly brackets \{ \} with the header

```plaintext
melb_water_sewer_long_plot "plot set name"
```

before the curly brackets.

That is,

```plaintext
melb_water_sewer_long_plot "plot set name" {
  plot parameters
  one per line
}
```

If there is more than one `melb_water_sewer_long_plot` parameter set in the file, only the first set is used.

There may also be parameter sets for other plot types such as `section_x_plot` in the same file. The other sets will be ignored when doing a Melbourne Water long section plot.

The plot parameters are documented in following groups:

For the **Plot Sheet layout**, please continue to the section **Plot Sheet Layout**.
- Chainages, staggering and uprights, please continue to the section **Chainages, Staggering and Uprights**.
- Boxes area, please continue to the section **Boxes Area**.
- Datum area, please continue to the section **Datum Value**.
- Arrows area, please continue to the section **Arrow Areas**.
- Graph area parameters, please continue to the section **Graph Area**.
- Top area parameters, please continue to the section **Top Area**.
- Manhole parameters, please continue to the section **Manholes**.
- Junctions parameters, please continue to the section **Junctions**.
- Services parameters, please continue to the section **Services**.
- Property controls and house connection parameters, please continue to the section **Property Controls and House Connections**.
- Symbols at manhole parameters, please continue to the section **Symbols at Manholes**.
- Hatching cut and fill parameters, please continue to the section **Hatching Cut and Fill Areas**.
- Labelling cuts parameters, please continue to the section **Labelling Cuts of Drainage Through Strings in a Model**.
- Title block parameters, please continue to the section **Title Block Information**.
- Panel modifying parameters, please continue to the section **Parameters that Modify Fields In the Melbourne Water Network Panel**.

22.9.3.1.1 Plot Sheet Layout

The plot sheet is considered to have only positive co-ordinates with the origin (0,0) in the left hand corner. The units for the plot are millimetres.

The overall size of the plot sheet is given by either a defined sheet size, or by the width and height of the plot given in millimetres and separated by one or more spaces.

```plaintext
sheet_size text // sheet name, or
"mm mm" // sheet: width height
```

The sheet size name and width and heights can be specified by the user in a file named sheets.4d which is in the normal set up areas, or is pointed to by the environment variable

```plaintext
SHEET_SIZES_4D file // file of plotter sheets sizes
```

The Melbourne Water long section plot will break an individual plot up if it doesn't fit across the sheet. There can be one or more rows of plot on the same sheet.
The top row is done first, followed by the second top row, then the third and so on until the bottom row. If there is only one row, it is considered to be the bottom row.

When a sheet is full, a follow on sheet is created.

As soon as one drainage string is completed, the next drainage string in the network model is plotted beginning on the same row as the previous drainage string and with a horizontal gap of size horizontal_plot_gap between the plots. If there is not enough room on the row to start the next plot, it will begin on a new row.

The position of the left hand bottom corner of the first plot in the bottom row is given by the parameters, x_origin and y_origin.

If there are two or more rows of plots, the position of the first plot in each row is given by adding multiples of the plot_height to the y_origin.

network_model text // model of sewer strings
x_origin mm // Position of the left hand bottom
y_origin mm // corner of first plot in the bottom row.
only_one_line 0 // more than one row on a sheet
1 // only one row of plot on a sheet
plot_height mm // total height of a plot row.
// It includes the vertical_plot_gap.
horizontal_plot_gap mm // gap between plots on same row
vertical_plot_gap mm // gap between rows of plots

A textstyle can be specified which is used for all the text in the plot.

global_textstyle textstyle //used for all plot text

The Melbourne Water long plot itself consists of nine areas. From the bottom up, they are boxes, arrow 1, bottom stagger, arrow 2, graph, arrow 3, top stagger, arrow 4, top.

The boxes area is where the chainages and various values for the drainage strings are labelled. The arrow 1 area is for drawing arrows where the arrows go between the staggered uprights and below the graph area. The datum line is at the bottom of the arrow 1 area.

The bottom stagger area is where the upright line staggers occur before going up from the boxes area to the graph area.

The arrow 2 area is for drawing arrows below the graph but where the arrows go between non-staggered uprights.

The graph area is the area where the actual plots of the strings are drawn. The arrow 3 area is for drawing arrows above the graph area and where the arrows go between non-staggered uprights.

The top stagger area is where the upright line staggers occur above the graph area.

The arrow 4 area is for drawing arrows where the arrows go between the staggered uprights and above the graph area.

The top area is an annotation area above the arrow 4 area and is used for manhole names, junctions, deflection angles, etc.

Although the arrow areas exist, the Melbourne Water plot does not have any arrows in them.
22.9.3.1.2 Chainages, Staggering and Uprights

All of the labelling of the Melbourne Water sewer plot is done at the chainages of the manholes on the drainage line. For example, the invert levels, depths and natural surface of pipes at a manhole are all labelled at the chainage of the manhole.

The labels for these values are done at an angle of zero degrees rather than ninety degrees for the sewer plots.

Uprights, or leader lines, are drawn from the values at the bottom of the plot to the manhole in the graph area.

If the text values are placed at the real chainage positions at the bottom of the plot, text over writing can easily occur if the chainages are very close together.

To prevent such over writing, the text can be staggered. That is, if the text is going to over write a previous text value, the next text value is actually moved along until there is no over writing.

Since the text is no longer at the correct chainage position, the uprights to the manholes and services start at the text position and then bend back to the correct chainage position on the plot. The region where the bending occurs is called the stagger area.

For the Melbourne Water plot, there is an area below the graph where the uprights bend backwards from the staggered text position to the real chainage position (bottom stagger area). And there is a second area above the graph where the uprights bend forwards from the real chainage position to the staggered text position (top stagger area).

Hence annotation above the top stagger area will line up with the staggered values below the bottom stagger area.

The stagger area below the graph area is defined by

- \(\text{stagger_height_1 mm} \) // distance from the top of \(\text{arrow_area_1} \)
- \(\text{stagger_height_2 mm} \) // distance over which stagger occurs
- \(\text{stagger_gap_bottom mm} \) // distance from end of staggers to the bottom of \(\text{arrow_area_2} \)

The stagger area above the graph area is defined

- \(\text{stagger_gap_top mm} \) // distance from the top of \(\text{arrow_area_3} \)
- \(\text{stagger_height_3 mm} \) // distance over which stagger occurs
- \(\text{stagger_height_4 mm} \) // distance from end of staggers to the bottom of \(\text{arrow_area_4} \)

The distance to be left for text to avoid over writing is:

- \(\text{horizontal_text_gap mm} \) // minimum distance to leave for text after manhole values
- \(\text{services_text_gap mm} \) // minimum distance to leave for text after service values

When staggering occurs, it is possible for the values area to be longer than the graph area.

The colour of the uprights that are drawn from the text to the manholes is given by:

- \(\text{manhole_line_colour colour} \) // colour of uprights to the manholes
22.9.3.1.3 Boxes Area

The drainage string values invert level, depth to invert and surface level can be labelled in the Melbourne Water plot with one line of title, and the actual values given at the chainage of each manhole in the drainage string.

The title or label for the strings, is drawn in the labels area of the boxes area and the values are drawn in the values area of the boxes area.

Consequently the boxes area is made up of rows of text consisting of:

labels followed by the values along the string.

Thus the boxes area is built up as a series of individual boxes and the boxes area is made up of two areas side by side - the labels area and the values area.

The order of the boxes from the bottom up is

(a) chainage values
(b) upstream and downstream depth to inverts
(c) upstream and downstream invert levels
(d) natural surface heights

The label text size and colour are specified by

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>plot_title_text_size</td>
<td>size of label text in boxes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plot_title_text_colour</td>
<td>colour of label text in boxes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The width of the label box is given by the box_width parameter and the height of each box is given by box_height.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>box_width</td>
<td>width of the label boxes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>box_height</td>
<td>height of each box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The label text for each box can be set by

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>plot_title_chainage_name</td>
<td>label for chainages box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plot_title_surface_name</td>
<td>label for the sewer ns values</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plot_title_invert_name</td>
<td>label for the invert levels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plot_title_depth_name</td>
<td>label for depth of inverts</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the Melbourne Water plots, there are also additional parameters for special Melbourne Water labels. They are

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>plot_title_item_name</td>
<td>label for item line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plot_title_d_and_g_name</td>
<td>label for diameter and grade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plot_title_detail_name</td>
<td>label for detail line at top of plot</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The pipe type can also be included with the diameter and grade values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>label_pipe_type</td>
<td>yes/no</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The labels area for the left plot in the bottom row starts at the co-ordinate (x_origin,y_origin) and each row is begun by adding the distance plot_height to the y_origin.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_origin</td>
<td>x coord of bottom lh corner of bot row</td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_origin</td>
<td>y coord of bottom lh corner of bot row</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The values area starts at the end of the label area.

As for the label boxes, the height of each individual box area is given by the box_height parameter.

The width of the heights area is determined by the number of chainages to be labelled and whether the values are staggered to prevent over writing.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>box_text_size</td>
<td>size of value text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>box_text_colour</td>
<td>colour of values in boxes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The colour of the box line work is given by:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>box_colour</td>
<td>colour of the lines in the boxes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The total height of the boxes area is simply given by number of boxes drawn multiplied by the height of one box).

The total width of the boxes area is the width of the labels area plus the width of the values area which depends on the amount of staggering that occurs.

22.9.3.1.4 Datum Value

The datum value is placed above the top of the natural surface heights box.

Since the datum value is automatically calculated to try and fit the plot vertically into the graph area, the datum value can change along the plot. When a datum change occurs, the new datum value is written on the datum line at the relevant chainage position.

The datum name, text size and colour are controlled by:

- **datum_name**
 - text
 - // text to write before the datum value

- **datum_text_size**
 - mm
 - // size of datum text and value

- **datum_colour**
 - colour
 - // colour of the datum text and line

- **datum_value_pre_text**
 - text
 - // text before the datum value

- **datum_value_post_text**
 - text
 - // text after the datum value

 // (default " m")

- **datum_value_decimals**
 - integer
 - // number of decimal places in the datum value.

 // If > 0, trailing zeros are removed.

 // If < 0, the absolute value is taken as the number of decimal places and no trailing zeros are removed.

22.9.3.1.5 Arrow Areas

The **arrow areas** were designed for drawing arrows between manholes and labelling them with values such as pipe slope, pipe diameter, flow, velocity and drainage line name.

These are not required for the Melbourne Water sewer plot.

However, values can still be given to defined the sizes of the arrow areas.

There are four arrow areas:

- **arrow_1_area** which is below the graph and the bottom stagger area. The arrows go between the staggered positions of the manhole chainages.

- The datum line is at the bottom of the arrow 1 area.

- **arrow_2_area** which below the graph but above the bottom stagger area. Hence the arrows go between the non-staggered chainage positions of the manholes.

- **arrow_3_area** which is above the graph but below the top stagger area. The arrows go between the non-staggered chainage positions of the manholes.

- **arrow_4_area** is above the graph and the top stagger area. The arrows go between the staggered chainage positions of the manholes.

The heights of the four areas (which can be zero) are defined by:

- **arrow_area_1**
 - mm
 - // height of arrow_1 area

- **arrow_area_2**
 - mm
 - // height of arrow_2 area

- **arrow_area_3**
 - mm
 - // height of arrow_3 area

- **arrow_area_4**
 - mm
 - // height of arrow_4 area
22.9.3.1.6 Graph Area

The graph area is the area where the actual plots of the drainage strings are drawn.

The length of the graph area is determined by the length of the drainage string to be plotted, the horizontal scale (given by scale) of the plot and the sheet width.

```
// 1:value - horizontal scale
// The vertical scale is determined by the
// horizontal scale and the vertical
// exaggeration for the section view.
```

The vertical exaggeration is taken from the section view specified for the plot by the parameter:

```
view_name  text
```

The tins to be sectioned through by the sewer strings and any service models and corridor settings for the graph area are also taken from the specified section view.

The height of the graph is calculated by subtracting the height of the other nine boxes from the plot height.

If the plot will not fit horizontally into a row on the sheet, then the plot will be broken at an appropriate manhole and the plot continued on another row.

Datum breaks at manholes are used to try and fit the plot vertically into the graph area but if the plot still cannot fit, then it will be truncated at the bottom.

The types of strings that can be drawn in the graph area of the sewer long section plot are:

(a) drainage string the strings from the network model
(b) tins sections of the drainage string through any tins on the section view.
(c) services parts of strings from any models on the section view that cut the corridor for the section view.

The colour of the strings in the plot is the actual string colour for cases (a) and (c), and the colour of the tin used for the section in case (b).

22.9.3.1.7 Top Area

The top area is an annotation area above the arrow_4_area at the top of the plot.

It can be used for manhole names, manhole types, pegs, junctions and deflection angles through manholes.

The height of the top area is given by

```
vertical_plot_gap  mm
```

// size of the top area. If it is not large enough the text will over write the plot in the row above.
22.9.3.1.8 Manholes
The manhole name, manhole type, special manhole symbol and the change of direction of the pipes going through the manhole can all be displayed at the top of the plot.

The manhole name and type are drawn first, followed by the angle of any change of direction of the pipes going through the manhole (the angle is in degrees, minutes and seconds) and finally any junction information.

The text is drawn at the distance \texttt{angled_text_y_offset} above the top of the plot, \texttt{angled_text_x_offset} to the right of the manhole position and each piece of information is spaced horizontally by the distance \texttt{angled_text_gap} to the right of the manhole name if the \texttt{angled_text_angle} is zero, or the distance \texttt{angled_text_gap} below the previous text if \texttt{angled_text_angle} is non-zero.

The size of the manhole names and type is given by \texttt{angle_text_size} and the size of the change of direction angle is given by \texttt{manhole_angle_text_size}.

The symbol at the manhole is controlled by the manhole name.

\begin{verbatim}
label_manhole_type \hspace{1em} yes/no // include manhole type
angled_text_size \hspace{1em} mm // size of manhole name text
manhole_angle_text_size \hspace{1em} mm // size of text for change of
\hspace{1em} angle through manhole
angled_text_x_offset \hspace{1em} mm // distance of text above top of the plot
angled_text_y_offset \hspace{1em} mm // distance of text to the right of manhole
angled_text_gap \hspace{1em} mm // distance of text to the right of previous
\hspace{1em} text
angled_text_angle \hspace{1em} value // angle of text
angled_text_colour \hspace{1em} colour // colour of text
\end{verbatim}

The symbol at the manhole is controlled by the manhole name.

\begin{verbatim}
manhole_symbol_n_size \hspace{1em} mm
manhole_symbol_n_colour \hspace{1em} colour
manhole_symbol_n_y \hspace{1em} mm // distance above top line
manhole_symbol_n_repeats \hspace{1em} integer // draw the symbol this
\hspace{1em} // many times with a
\hspace{1em} // decreasing size)
manhole_line_colour \hspace{1em} colour // colour of line through
\hspace{1em} // manhole
\end{verbatim}

22.9.3.1.9 Junctions
Any junctions at the manhole are also labelled with the name of the lines coming into the manhole.

The junction text is made up of two lines:

\begin{verbatim}
JUNCTION LINE \hspace{1em} line_name
angle of the junction
\end{verbatim}

The junction text is at the same height as the manhole and angle text and at a distance \texttt{angled_text_gap} to the right of the manhole and angle text, or a previous junction label. The size of the text is given by

\begin{verbatim}
junction_angle_text_size \hspace{1em} mm
\end{verbatim}

When a junction does occur, the incoming pipe is drawn at the correct position on the manhole of the main line.
22.9.3.1.10 Services

Any services in the corridor are drawn on the plot and if the service actually cuts the drainage string, then a line is drawn to the cut point and the line labelled with the service name. The name is drawn below the cut point and is right justified.

- `service_text_size mm` // size of the text for the service name
- `service_text_x_offset mm` // adjustment to the drawing position
- `service_text_y_offset mm` // for the service name
- `service_text_colour colour` // colour of the service name
- `service_line_colour colour` // colour of the line to the cut point

22.9.3.1.11 Property Controls and House Connections

The position of the property controls can be drawn on the plot and can have a user specified diameter.

- `draw_property_controls yes/no`
- `property_control_diameter value`

The house connections can be drawn from the pipe to the house connection level, with a line across the top (a T). The full width the T can be specified by the user.

- `draw_house_connections yes/no`
- `house_connection_width value`
22.9.3.1.12 Symbols at Manholes

Manholes can be labelled with symbols which depend on the manhole type. There can be up to twenty (20) sets of manhole symbols.

- **manhole_symbol_n_type**
 - `mh_type`
 - // manhole type to have symbols

- **manhole_symbol_n_mode**
 - `0`
 - // cross
 - `1`
 - // up from centre of box
 - `2`
 - // up and down from centre of box
 - `3`
 - // square
 - `4`
 - // triangle, base at bottom
 - `5`
 - // circle
 - `6`
 - // use a 12d symbol

- **manhole_symbol_n_position**
 - `1`
 - // at top of manhole - default
 - `3`
 - // above top of boxes
 - `4`
 - // above highest point
 - `100`
 - // to primary string
 - `101`
 - // to first found tin

- **manhole_symbol_n_size**
 - `mm`
 - // size

- **manhole_symbol_n_x**
 - `mm`
 - // x adjustment to position - default 0

- **manhole_symbol_n_y**
 - `mm`
 - // y adjustment to position - default is 0

- **manhole_symbol_n_style**
 - `text`
 - // the name of the 12d symbol

- **manhole_symbol_n_angle**
 - `value`
 - // default value is 0

- **manhole_symbol_n_colour**
 - `colour`
 - //

For example:

```plaintext
manhole_symbol_1_type "CONC COVER"  // manhole type to use
manhole_symbol_1_position 1  // on top of manhole
manhole_symbol_1_mode 6  // use 12d symbol
manhole_symbol_1__style "shrub"  // name of 12d symbol
manhole_symbol_1_size 1
manhole_symbol_1_x 0
manhole_symbol_1_y 0
```
22.9.3.1.13 Hatching Cut and Fill Areas

This option is used to hatch cut and/or fill areas between sets of tins.

For each set, the name of the two tins, the hatch linestyle, colour and separation and whether cut and/or fill regions are required are all user definable.

Up to twenty (20) separate sets of tins be hatched.

The parameters for labelling cuts and/or fill regions between tins are given by:

- `hatch_original_tin_n` `tin_name` // tin_name for original surface
- `hatch_new_tin_n` `tin_name` // tin_name for final surface
- `hatch_cut_separation_n` `mm` // distance between cut hatch lines
- `hatch_cut_angle_n` `degrees` // angle in degrees of cut hatching
- `hatch_cut_colour_n` `colour` // colour of the cut hatching
- `hatch_cut_linestyle_n` `linestyle` // linestyle for cut hatching
- `hatch_cut_draw_sides_n` `1/0` // 1 = draw sides of cut regions
- `hatch_cut_draw_original_n` `1/0` // 1 = draw original tin in cut regions
- `hatch_cut_draw_new_n` `1/0` // 1 = draw new tin in cut regions
- `hatch_fill_separation_n` `mm` // distance between fill hatch line
- `hatch_fill_angle_n` `degrees` // angle in degrees of fill hatching
- `hatch_fill_colour_n` `colour` // colour of the fill hatching
- `hatch_fill_linestyle_n` `linestyle` // linestyle for fill hatching
- `hatch_fill_draw_sides_n` `1/0` // 1 = draw sides of fill regions
- `hatch_fill_draw_original_n` `1/0` // 1 = draw original tin in fill regions
- `hatch_fill_draw_new_n` `1/0` // 1 = draw new tin in fill regions

Notes

(a) cut is when the new tin is below the original tin.
 fill is when the new tin is above the original tin.

(b) cut hatching is turned off by setting `hatch_cut_separation_n` to 0.0.
 fill hatching is turned off by setting `hatch_fill_separation_n` to 0.0.
22.9.3.1.14 Labelling Cuts of Drainage Through Strings in a Model

The cuts that the drainage string makes though any strings in user given models can be automatically labelled on the long section plots.

The height, chainage and name of the cut string can be labelled as well as a symbol drawn. The height of tins at the same offset value can also be labelled.

The chainage position for the labelling is the chainage of the cut string.

The height position for the labelling can be specified as the
(a) top of the boxes on the long section
(b) height value of the cut string
(c) height of the primary string
(d) height of a tin.

The actual position of the label is defined relative to the above point.

Note:
Only case (b) involves the actual height of the cut string. For all other cases, only the chainage of the cut string is used. Hence for all cases except (b), the string does need to have a sensible height to be used for cuts through strings.

For example, a boundary string may have null heights but only the chainage is required and the height of the tin at that chainage can be used as the height (case (d)).

Text justification refers to the actual position and is given by
- top-left
- middle-left
- bottom-left
- top-centre
- middle-centre
- bottom-centre
- top-right
- middle-right
- bottom-right

A choice of six special symbols and/or any 12d symbols can be drawn at the cut point.

The special 12d Model symbols of size one millimetre are drawn in a square box centred on (0,0) with sides of length two millimetres. That is, the box co-ordinates are (-1,-1), (1,1), (1,-1), (-1,-1).

The six special shapes are

Up to twenty five (25) separate models of strings can be cut and labelled.
22.9.3.1.15 Parameters for Labelling Where the Drainage Line Cuts Strings in a Model

The method for specifying which strings are to be checked for cuts is by first specifying the model which contains the strings, and then a name mask which is used to restrict the strings in the model to only those whose name matches the name mask.

Up to twenty five different sets of models and name masks can be used so that different cut sets can be labelled in different ways.

The parameters for selecting and labelling the n'th set (where n can be from 1 to 25) of cuts of the design string with the strings in the model are given by:

\[
\text{cuts}_n _ \text{model} \quad \text{model} _ \text{name} \quad // \text{model of strings to be cut}
\]

The selection of the strings from the model model_name whose cut points are to be labelled is all the strings whose name satisfies the name mask cuts_n_mask:

\[
\text{cuts}_n _ \text{mask} \quad \text{name} _ \text{mask} \quad // \text{strings to check for cuts}
\]

where name_mask is a text string containing the name masks, each separated by one or more spaces, to test the string name against. Each mask can include wild cards and wild characters.

For example

- cuts_1_mask "ke*"
- cuts_1_mask "?bank*"
- or, if both masks are required, cuts_1_mask "ke* ?bank*"

If cuts_n_mask is missing, then all strings in the model are used. This is equivalent to name_mask being ***.

All strings in the model cuts_n_model whose name satisfy the name mask cuts_n_mask are then checked for cuts with the drainage strings, and if a cut occurs, the cut point will be labelled according to the rest of the parameters in the n'th set.

The parameters for drawing a symbol at the cut points are

\[
\text{cuts}_n _ \text{symbol}_n _ \text{mode} \quad \text{cuts}_n _ \text{symbol}_n _ \text{style} \quad \text{plotsymbol} \quad // \text{12d symbol to draw at cut}
\]

0 1 2 3 4 5
predefined symbols for cut_symbol_n_modes 0 to 5

If cuts_symbol_n_mode is 6, then the 12d symbol is given by

- cuts_symbol_n_style plotsymbol // 12d symbol to draw at cut

Important Note
The plot symbol of name plotsymbol is defined in the file given by:

(a) the parameter plot_symbols in the ppf file

\[\text{plot_symbols filename} \]

or if plotSymbols is not defined, then

(b) in the file pointed to by the environment variable PLOT_SYMBOLS_4D

\[\text{PLOT_SYMBOLS_4D filename} \] // default plotsym.4d

or if PLOT_SYMBOLS_4D is not defined, then

(c) in the file plotsym.4d

which is searched for in the standard set up file sequence

If none of the above files are defined, or if the symbol does not exist in the above files, then it will be searched for in the standard 12d symbols file which is:

(d) either pointed to by the environment variable SYMBOLS_4D

\[\text{SYMBOLS_4D filename} \] // default symbols.4d

or if the environment variable SYMBOLS_4D does not exist, in the file, symbols.4d

The position of the symbol is given by:

\[\text{cuts_symbol_n_position 1} \] // above point height value
\[3 \] // above top of boxes
\[100 \] // to primary string
\[101-500 \] // to tin1 or tin2, etc.

The symbol can be adjusted by the parameters:

\[\text{cuts_symbol_n_x mm} \] // offset adjustment to position
\[\text{cuts_symbol_n_y mm} \] // height adjustment to position
\[\text{cuts_symbol_n_angle degrees} \] // rotation about point
\[\text{cuts_symbol_n_colour colour} \] // colour of symbol

and for all values of cuts_symbol_n_mode other than 6:

\[\text{cuts_symbol_n_size mm} \] // size of symbol, 0 don't draw

The value of the chainage of the cut string can be labelled using the parameters

\[\text{cuts_chainage_n_position 1} \] // above cut strings height value
\[3 \] // above top of boxes
\[100 \] // to primary string
\[101-500 \] // to tin1 or tin2, etc.

\[\text{cuts_chainage_n_x mm} \] // chainage adjustment to position
\[\text{cuts_chainage_n_y mm} \] // height adjustment to position
\[\text{cuts_chainage_n_angle degrees} \] // rotation about point
\[\text{cuts_chainage_n_size mm} \] // size of text, 0 don't label
\[\text{cuts_chainage_n_textstyle colour} \] // colour of text
\[\text{cuts_chainage_n_textstyle text} \] // textstyle of text chainage
\[\text{cuts_chainage_n_pre_text text} \] // text before the chainage value
\[\text{cuts_chainage_n_post_text text} \] // text after the chainage value
\[\text{cuts_chainage_n_justification justification} \] // justification of the text
\[\text{cuts_chainage_n_no_decimals integer} \] // number of decimals in chainage
The value of a height at the chainage of the point can be calculated and labelled using the parameters:

- **cuts_height_n_mode**: 1 // use height of cut point itself
- **cuts_height_n_mode**: 3 // use real world height of position
 - above boxes
- **cuts_height_n_mode**: 100 // height of primary string
- **cuts_height_n_mode**: 101-500 // use height of to tin1 or tin2, etc.

- **cuts_height_n_position**: 1 // at points position
- **cuts_height_n_position**: 3 // above top of boxes
- **cuts_height_n_position**: 100 // to primary string
- **cuts_height_n_position**: 101-500 // to tin1 or tin2, etc.

- **cuts_height_n_x**: mm // chainage adjustment to position
- **cuts_height_n_y**: mm // height adjustment to position
- **cuts_height_n_angle**: degrees // rotation about point
- **cuts_height_n_size**: mm // size of text, 0 don't label
- **cuts_height_n_colour**: colour // colour of text
- **cuts_height_n_textstyle**: text // textstyle of text height
- **cuts_height_n_pre_text**: text // text before the height value
- **cuts_height_n_post_text**: text // text after the height value
- **cuts_height_n_justification**: justification // justification of the text
- **cuts_height_n_no_decimals**: integer // number of decimals in height

A label which can include the name of the cut string is drawn by using the parameters:

- **cuts_label_n_position**: 1 // above cut strings height value
- **cuts_label_n_position**: 3 // above top of boxes
- **cuts_label_n_position**: 100 // to primary string
- **cuts_label_n_position**: 101-500 // to tin1 or tin2, etc.

- **cuts_label_n_mode**: 0 // don't include cut string name
- **cuts_label_n_mode**: 1 // include cut string name in label

- **cuts_label_n_x**: mm // chainage adjustment to position
- **cuts_label_n_y**: mm // height adjustment to position
- **cuts_label_n_angle**: degrees // rotation about point
- **cuts_label_n_size**: mm // size of text, 0 don't label
- **cuts_label_n_colour**: colour // colour of text
- **cuts_label_n_textstyle**: text // textstyle of text label
- **cuts_label_n_pre_text**: text // text before the string name
- **cuts_label_n_post_text**: text // text after the string name
- **cuts_label_n_justification**: justification // justification of the text
The cut point can be labelled with:
- **chainage** of the cut point
- **height** of the cut point
- **height** of the x-section or tins at this offset
- **name** of the string for the cut point

User defined symbols can also be drawn at the cut point.

Point where the drainage cuts a string

Tin (natural surface)

Drainage long section

Section view
22.9.3.1.16 Title Block Information

The plot can have a standard 12d Model title block or a user defined title block.

The standard title block consists of a simple border around the plot and two lines of text in a box underneath the plot. For a user defined title block, all the line work and text is defined by the user.

Standard Title Block

For the standard 12d Model title block, there are extra parameters for two lines of text and text size and colour. The standard title block is turned on or off by the parameter plot_border.

```
plot_border      yes/no // yes plots a standard title block
                 // default yes

  title_1    text
  title_2    text
  title_text_size  value
  title_colour   colour
```

User Title Block

For the user defined title block, the title block drawing commands are kept in a file whose name is supplied by the user. The title block drawing commands are almost identical to the linestyle drawing commands and is given at the beginning of chapter Advanced Plotting.

Hence for a user defined title block, there are just two parameters - one to say a title block file is being used and the other to give the name of the title block file. The plot_border parameter should also be set to no so that the standard title block is not also drawn.

```
use_title_file  yes/no // yes draws the title block given in title_file
                 // default no

title_file      filename

plot_border      no // turn off standard title block
```

Some special plot parameters are used to pass information down to variables in a user defined title block.

For example, inside the title block file it is possible to have runtime user defined text variables. The actual text values for these text variables are passed down to the title block file from the plot parameter file via the parameters user_text_n (n = 1,2,... 1000)

```
user_text_n    text
```

The special plot parameters are:

```
time_format    text // format for $time
user_text_n    text // where n = 1,2,... 1000
                 // passed down to $user_text_n

title_1        text // passed down to $title_1
title_2        text // passed down to $title_2

start_page_number   integer // used as the starting value for
                     // $page_number. If missing,
                     // $page_number starts at 1.

start_drawing_number   integer // added to $drawing_number in title
                         // block file. If missing,
                         // $drawing_number starts at 1.

drawing_number_prefix  text // passed down to
                         // $drawing_number_prefix

drawing_number_postfix text // passed down to
                         // $drawing_number_postfix
```
22.9.3.1.17 Parameters that Modify Fields In the Melbourne Water Network Panel

A number of parameters match those in the New Melb Plot Drainage Network panel.

When the plot parameter file is first read, any parameters in the panel will be replaced by the values of any corresponding parameters from the parameter file.

However, if the parameter is subsequently modified in the panel, the panel value will be the value used for the parameter.

The plot parameters that also occur in the Melb plot drainage network panel are:

- network_model text
- scale value
- plotter_type text
- plot_stem text
- view_name text
- sheet_size text or "width height"
- plot_height mm
- x_origin mm
- y_origin mm
- global_textstyle text/style
- box_text_size mm
- box_colour colour
- plot_border yes/no
- title_1 text
- title_2 text
- title_text_size value
- title_text_colour colour
- use_title_file yes/no
- title_file filename
22.9.4 Plot Annotations

See Drainage Long Plot PPF Editor.
22.9.5 Long Plot Cut Labels and Manholes

Position of menu: Design => Drainage-Sewer => Plots => Long plot cut labels and manholes

This section of documentation is a work in progress and will be updated in subsequent releases.

Selecting Long plot cut labels and manholes brings up the Create plot manholes and cut strings panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>function box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainage/Sewer model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuts reference strings</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manhole model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plot cuts label model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipe invert label offset</td>
<td>measure box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference line attribute name</td>
<td>name box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manhole error color</td>
<td>colour box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean model</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
22.10 More Drainage

Position of menu: Design => Drainage-Sewer => More

The More Drainage menu items contain the drainage import export routines and tools that enhance the basic drainage functions on the Drainage Sewer menu.

The More Drainage walk-right menu is:

![More Drainage Menu](image)

Frequently Asked Questions (FAQ)

Drainage Overview

The following are the basic steps from creating a urban drainage network to producing your plan/drainage longsection drawings and pit layout table. The optional catchment area models and bypass flow model will be discussed afterwards.

- Set drainage defaults
- Draw the drainage strings
- Set zero chainage to downstream end of the pipe string (Reverse drainage strings) (optional)
- Automatically assign pit names
- Define catchment areas (optional)
- Define Pit/manhole Inlet Capacities via Overland flow strings (optional)
- Hydraulic/hydrology calcs via spreadsheets, Drains, RAT2000, PCdrain, XP SWMM or ILSAX
- Drainage longsection plots
- Pit layout/construction schedules
- Manhole and Pipe Table of Quantities (summarise by type, depth and size)
- Drainage line excavation volume calculations
- Roadway flooded width calculations
Drainage Export and Import to Design Software

Copy/Paste from spreadsheets
Running Drains
Running PCdrain (Windows)
Running Micro Drainage - Win DES
Running XPSWMM
Running RAT2000

22.10.0.1 Training Course Notes

Stormwater Part 1, Stormwater Part 2 and Dynamic Stormwater Design training course notes (Adobe PDF format for printing) and sample 12d data sets are available on the Installation DVD and the 12d User Forum. The training course moves through a worked example in detail. The course notes are also included below for your reference.

Stormwater Part 1
Stormwater Part 2
Dynamic Stormwater Design
22.10.1 Drainage FAQ

What is pipe capacity?

Pipe capacity is full pipe flow with no pressurisation. The capacity figure should be used to help designers know if the friction loss in the pipe is greater or less than the pipe slope.

Case 1: Flow less than capacity....friction slope is less than pipe slope. except for maybe for pit losses, surcharging is not a problem

Case 2: Flow greater than capacity....friction slope is MORE than pipe slope. You can do this for a short length of pipe but watch out for surcharging because you cannot keep it up for too long without flooding occurring!

Why do the obvert/invert levels not change when I import data via the "pit/pipes interface"?

On the interface panel there is an Options button that displays a panel with the "hold obverts on import" option. The default is off but if it is selected the pipe obverts will not change even if import data has new levels. Note that the invert levels will change is the pipe diameters change.

Can I manually enter catchment areas in the drainage design programs?

Yes. The catchment strings are optional in 12d. If no catchment string has been linked to a manholes and there has been no manhole "area" attribute a default area of 0.0001 will be sent. When results are imported back into 12d the total areas from the design package will be saved in the manhole "area" attribute.

How do I include/exclude the hydraulic grade line on drainage longsections?

First, there must be HGL results. These may come from the 12d rational drainage design, imported from another design package (including spreadsheets) or manually entered as manhole/pipe attributes. If HGL results exists then they may be viewed in the section view of the drainage line.

Second, the HGL results may be added to the drainage longsection drawings by editing the plot parameter file (ppf) as shown below.
22.10.2 Creating Drainage Strings

Drainage strings may be created in 12d in a number of ways.

1. Import 2d strings from other drawing packages and convert them to drainage string inside 12d.
2. Draw the string in 12d using a design tin to the manhole cover levels and pipe inverts.
3. Enter the details in a spreadsheet format and paste the spreadsheet into 12d.

Regardless of the method, take the time to set your defaults before you start. You can always change the data later.
22.10.3 Set Drainage Flow Direction

Position of option on menu: **Design => Drainage-Sewer => More => Set flow directions**

The routine changes the strings drainage flow direction to either **same as string direction** or **opposite to string direction**. This setting affects the pipe grading, network connectivity and hydraulic calculations.

On selecting the **Set flow directions** option, the **Set Drainage Flow Directions** panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source of drainage strings</td>
<td>source box</td>
<td>Select the desired drainage strings</td>
<td></td>
</tr>
<tr>
<td>Flow direction</td>
<td>choice box</td>
<td>same as string direction, opposite to string direction</td>
<td></td>
</tr>
</tbody>
</table>

all drainage strings will have this flow direction set

<table>
<thead>
<tr>
<th>Run</th>
<th>button</th>
<th>set flow directions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finish</td>
<td>button</td>
<td>remove the panel from the screen</td>
</tr>
</tbody>
</table>
22.10.4 Create Network from Import

Position of option on menu: Design => Drainage-Sewer => More => Create network from import

This routine creates drainage strings from existing MicroDrainage WinDes (sws and fws) and xpsoftware xpswmm (xpx) files.

On selecting the Create network from import option, the Create Network from Import panel is displayed.

![Create Network from Import Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>File type</td>
<td>choice box</td>
<td>SWS</td>
<td>SWS, xpswmm</td>
</tr>
<tr>
<td>Drainage model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>File to import</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- File type: choice box
 - SWS (or FWS) for WinDes files, xpstorm files are the xpsoftware xpx files

- Drainage model: model box
 - the drainage strings created will be stored in this model.

- File to import: file box
 - select sws, fws or xpx file types

- Process: button
 - create import file and create strings

- Finish: button
 - remove the panel from the screen
22.10.5 Place Points

Position of option on menu: Design => Drainage-Sewer => More => Place points

This routine creates points along a string so that drainage pits can be placed at a fixed offset from an intersection. As this is a very common task it combines several standard 12d options into one step.

The user selects a point near where the pit it to be located. The routine finds the closest string on the working view that matches the String name filter and creates a temporary point on the string.

The Mode determines a reference point located on the string and a marker of length, distance, is created from the reference point towards the temporary point.

On selecting the Place points option, the Place point on string panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>choice box</td>
<td>From curve or end</td>
<td>From curve or end, From end, Nearest point</td>
</tr>
</tbody>
</table>

if From curve or end, the reference point is closest (by chainage) end of curve or end of string
if From end, the reference point is the closest (by chainage) end of the string is located
if Nearest point, the reference point is the closest vertex to the temporary point is located

Working view view box 1
strings on this view will be searched using the string name filter. The point model will also be added to this view.

String name filter input *
the closest string on the working view matching this filter will be selected

Distance input 1
the chainage distance from the reference point to the end of the marker (note that the marker is drawn as a straight line but the distance uses the chainage value).

Point Model model box drainage points
the marker points are placed in this model using the FLOW LINE linestyle

Pick point button
select a point near where the point marker is to be created. Only the x,y value is used from the selected point

Finish button

remove the panel from the screen
22.10.6 Drainage Pit and Pipe Locks

Position of option on menu: Design => Drainage-Sewer => More => Pipe locks

The routine locks/unlocks (sets to manual) the pit and pipe levels in a drainage network model. A function is created so that the locks can easily be applied or removed. This is often used for existing networks or by designers wishing to set all levels manually.

On selecting the Pipe locks option, the Pit and pipe locks panel is displayed.

![Drainage Locks panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>function box</td>
<td>Pipe locks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A function can be created to lock and unlock the drainage string properties (via attributes)</td>
</tr>
<tr>
<td>Invert action</td>
<td>choice box</td>
<td>Lock</td>
<td>Lock, Unlock, None, Default</td>
</tr>
<tr>
<td>Size action</td>
<td>choice box</td>
<td>Lock</td>
<td>Lock, Unlock, None, Default</td>
</tr>
<tr>
<td>Cover action</td>
<td>choice box</td>
<td>Manual</td>
<td>Manual, None, Default</td>
</tr>
</tbody>
</table>

Sets the pipe invert lock flags for the DNE
- if Lock, the flag is enabled
- if Unlock, the flags are cleared
- if None, the flags are left unchanged
- if Default, the flags are cleared (same as unlock)

Sets the pipe diameter, width and top width lock flags for the DNE
- if Lock, the flag is enabled
- if Unlock, the flags are cleared
- if None, the flags are left unchanged
- if Default, the flags are cleared (same as unlock)

Sets the mode for the cover levels (manual is the equivalent of locked)
if Manual, the mode is set to manual,
if None, the mode if left unchanged,
if Default, the field is cleared and the default setting becomes active

Grate action choice box Manual Manual, None, Default

Sets the mode for the grate levels (manual is the equivalent of locked)
if Manual, the mode is set to manual,
if None, the mode if left unchanged,
if Default, the field is cleared and the default setting becomes active

Drainage model model box

existing strings in this model are processed

Process button

Applies and removes the locks as indicated

Finish button

remove the panel from the screen
22.10.7 Delete All Attributes in a Model

Position of option on menu: Design => Drainage-Sewer => More => Delete All Attributes in a Model

This routine deletes all of the model, string, pit and pipe attributes in the selected model.

On selecting the Delete All Attributes in a Model option, the Delete Attributes panel is displayed.

![Delete Attributes panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model name</td>
<td>model box</td>
<td>existing model</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td>model, string, pit and pipe attributes will be deleted</td>
<td></td>
</tr>
<tr>
<td>Finish</td>
<td>button</td>
<td>remove the panel from the screen</td>
<td></td>
</tr>
</tbody>
</table>

More Drainage
22.10.8 Write Inlet Curves to Model

Position of option on menu: Design => Drainage-Sewer => More => Write inlet curves to model

This routine reads the inlet capacity curves from the drainage.4d file and creates plot strings. This tool is an efficient way to review the inlet capacity data in the file.

On selecting the Write inlet curves to model, the Drainage Inlet Curves to Model panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix for curves models</td>
<td>model box</td>
<td>CAP CURVES</td>
<td></td>
</tr>
<tr>
<td>All inlet curves for a manhole type will be placed in a model named with this prefix and the manhole type.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow scale factor</td>
<td>input</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Inlet and bypass flow values will be multiplied by this value before creating the strings.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth scale factor</td>
<td>input</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Depth values for sag curves will be multiplied by this value before creating the strings.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Only consider coord data</td>
<td>tick box</td>
<td>off</td>
<td></td>
</tr>
<tr>
<td>Inlet capacity curves may be expressed as formulas, curve coordinate or both. Selecting this box stops curves with only formulas from being plotted as strings.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean models before hand</td>
<td>tick box</td>
<td>on</td>
<td></td>
</tr>
<tr>
<td>The curve models are cleaned before the new strings are created</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Models and strings are created from the drainage.4d file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finish</td>
<td>button</td>
<td></td>
<td>remove the panel from the screen</td>
</tr>
</tbody>
</table>
22.10.9 Creating a drainage.4d file from the Drains database dump

Position of option on menu: Design => Drainage-Sewer => More => Drains to drainage.4d

On selecting the Drains to drainage.4d option, the Drains to drainage.4d panel is displayed.

Key Points

When you are finished, open the drainage.4d file and check the road grade and crossfall values for the ongrade curves!

1. If Drains is used to select the pit sizes then the 12d pit type must be the prefix of the Drains pit size (Pit Name road separators are used).

 If 12d is used to select the pit sizes to export to Drains, the Drains Pit Size and 12d Pit types have to match, exactly! The pit databases supplied by Drains often have road grade and/or crossfall attached to the end of the pit size. If pit sizes are to be sent from 12d, this must be removed! Find Prepare the Drains Pit Database for more details.

2. Select Copy Drains database (12d will search the usual locations for the Drains database).

3. Review the Drains pipe types and Drains pit families lists to ensure you have the correct database.

4. 12d pit groups are not used in Version 8.

5. Pit Name road separators can only be used if Drains is selecting the pit types. If 12d pit types are to be exported to Drains, this field should be left blank. If you change these entries you must press the enter key to update the 12d pit types list below.

6. Check the 12d pit types and if they are acceptable select Create drainage.4d.
The Details

YOU MUST RESTART 12D FOR THE NEW DRAINAGE.4D FILE TO BECOME ACTIVE!

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drains database file</td>
<td>file box</td>
<td>Drains Connection Data.txt</td>
<td></td>
</tr>
</tbody>
</table>

You must update this file from Drains before each use of this panel. Inside Drains select Project=>Overflow Route database. Then select OK and then YES. This will cause Drains to export the database to the file “Drains Connection Data.txt”.

Selecting Copy Drains database will cause the panel to search for the database dump in the folders C:\Program Files\Drains\Program and C:\Program Files\Drains\Demo\Program. If the Drains program is installed in another folder then you must browse for the file. The file will be read and the panel updated with either selection.

| Drainage.4d | file box | drainage.4d | |

The drainage.4d will be created in the 12d working folder unless otherwise specified. It will only be used for 12d projects in this folder.

| Pit families | choice box | Drains pit families | |

These are the Drains pit families that will be exported to the drainage.4d file. These will become the names on grade inlet capacity curves for all the pit sizes that belong to the family. The pit family name will be searched for words like grade, slope etc to try to determine the values for road grade and crossfall for the 12d capacity curves.

| Pipe type | choice box | Drains pipe types | |

These are the Drains pipe types that will be exported to the drainage.4d file.

| Pit group separator | input box | | |

Pit groups are not used in Version 8. These characters will be used to remove the road grade crossfall data from the Pit families above. The data before this character will become the 12d pit groups. Press Enter or select Read Drains database to create a new list of 12d pit groups.

| 12d pit groups | choice box | 12d pit groups | |

These are created from the Pit family list above by deleting all text after the Pit group separator.

Create drainage.4d button

Create a drainage.4d file.
22.10.10 Editing a drainage.4d file

Position of option on menu: Design => Drainage-Sewer => More => Edit drainage.4d

On selecting the Edit drainage.4d option, the Edit drainage.4d panel is displayed.

Select the Find button to search the 12d path for the current drainage.4d file. Select the More info button and then Edit to edit the file.
22.10.11 Drainage IO Defaults

22.10.11.1 Set zero chainage to downstream end of line (Reversing the strings)

Position of options on menu: Design => Drainage-Sewer => More => Reverse all strings

For drainage direction of flow see Reversing the strings

If desired, the reverse function may be used to move the zero chainage to the downstream end of the line. This should be done after entering all of the drainage strings and before naming the pits. From the main menu select Design=> Drainage-sewer => More => Reverse all strings

This will also change the drainage flow direction attribute from ascending chainage to descending chainage. Leave the Increment as 1.

Displaying the Auto Pit Names
22.10.12 Importing and Exporting

See Also

- Drainage overview
- Drainage Misc Utilities
- Spreadsheet clipboard
- Running Drains
- Running PCdrain (Windows)
- Running Micro Drainage - Win DES
- Running XPSWMM
- Running RAT2000

22.10.12.1 Spreadsheet clipboard

Spreadsheets are an effective method to manage the numerous variables urban drainage designers create in the modelling process. Spreadsheet data can be transferred to and from 12d in tab delimited files and stored within 12d as “user definable attributes”. These attributes are linked to the pit and pipes within a network. Drainage long section plots can display the pipe attributes in the “arrows” data area and pit attributes in the bubbles area. Drainage plan drawing can also show these pit and pipe attributes.

Drainage strings will be created if they do not exist in the model but pits cannot be added to existing strings.

See also

- 12d to spreadsheet transfers
- Spreadsheet to 12d update and create
- Spreadsheet options

22.10.12.2 12d to spreadsheet transfers

This interface is accessed the Import/Export button on the Drainage Network Editor.
22.10.12.2.1 Options

The Spreadsheet Options section allows the user to define the amount of data exported.

1. Select Spreadsheet clipboard
2. Leave as clipboard.txt to send the data to the windows clipboard as well as this file.
3. Mapping files are the most current 12d technology. Leave this selected.

These options are not used for spreadsheet export.

4. Usually leave this off! Select to export the junction pit at the end of all drainage lines (very rarely needed).
5. You may also select to limit the output if desired. If you like using spreadsheets for data entry, the PCdrain data and ILSAX data formats are useful for adding data for the first time for either program.
6. Select Run to place the data on the clipboard.

All Data: All of the 12d drainage string data and the user defined attributes will be exported to the clipboard in a tab delimited format. The 12d data names and the user defined attribute names will...
appear at the top of the spreadsheets columns.

ILSAX: For the ILSAX program, the spreadsheet column headings will change depending on the pipe and catchment indicators (P2 card) and the inlet type (P3 card). Therefore, use the ILSAX pipe editor macro to set up one pit/catchment for the type of data you wish to enter. Now when you export the pipe network data the column headings will include the names of the relevant parameters.

User defined below: The **Customised list file name** is used to define the drainage values, their order and format you desire.

The **customised list file** is a text file where each line contains a drainage variable or a spreadsheet IO command (blank lines are ignored unless preceded by the header command). The spreadsheet IO commands are all lower case and listed below:

- **header** to define a line of text to be exported
- **blank** to leave a blank column in the output
- **pit data** the following attributes are for the pit.
- **downstream pit data** the following attributes are for the downstream pit.
- **upstream pit data** the following attributes are for the upstream pit(s).
- **pipe data** the following attributes are for the pit’s outlet pipe
- **downstream pipe data** the following attributes are for the downstream pipe(s)
- **upstream pipe data** the following attributes are for the upstream pipe(s)
- **variable name** a 12d drainage variable names
- **factor** the following variable is multiplied by this factor
- **decimals** the following variable will export with these decimal places

The simplest way to create your own customised tab delimited file is to set the **Preset Output** field to **All data** and leave the **customised list file name** field blank. Selecting **Set**, **Finish** and then **Copy** from the main dialogue. The data will be placed on the clipboard and a **customised list file**, named **output_list.txt** will be created containing the names of all of the drainage variables in the 12d model. Use a text editor to add/or delete the variable names, change their order and/or add spreadsheet IO commands. **Save the file with a new name!** The **output_list.txt** file is overwritten on every export.

A listing of a customised list file follows. Note the words in the header file have a “tab” between them so that they will be spaces across the spreadsheet columns.

```plaintext
header
Pipe Details
header
Name Length U/S IL D/S IL Slope(%) Class Dia I.D. Rough Pipe Is No. Pipes
pit data
*pit name
pipe data
*length
low ch invert
high ch invert
factor
100
*grade
pipe type
factor
1000
diameter
```

After creating your customised list file, select **Options** again and change the **Preset Output** field
to **User Defined below** and enter the new **customised list file** name that you saved above. Select **Set** then **Finish** and finally **Copy** to put the formatted data onto the clipboard.

The data can be pasted into a spreadsheet program for checking or additional formatting.

CUSTOM FORMATED DATA MIGHT NOT BE PASTED BACK INTO 12d!

The data must be in the “12d drainage spreadsheet” format to be read into 12d.

Caution with pit names in the form 1-1 or 1/1. Some spreadsheets will interpret these values as dates. If you use these formats for your pit names you will have to paste command them in once, format the columns that contain the pits names as text data and then paste the information in again.

One final word on using the copy/paste commands in the Microsoft Excel program. The Paste Special command using the “Skip Blanks” option will allow you to copy a large block of 12d data (with blanks in it) on top your data so that your data is preserved where it coincides with the blanks. To use this option paste the data into a blank spreadsheet and then select copy again. The Paste special option with “Skip Blanks” will now be available.

22.10.12.2.2 Spreadsheet to 12d Update and Create

This item is accessed from the **Import/Export** button on the **Drainage Network Editor**.

The following panel will appear.
Tab delimited, "12d drainage spreadsheet" format or "from to" format data must be on the clipboard in order to update a 12d drainage model or create a new model. These format are described below.

22.10.12.2.3 Updating an Existing Model

The data usually is generated by 12d using the Export option, pasted into a spreadsheet and then copied back to the clipboard so that 12d can be updated.

When 12d exports the drainage model to a spreadsheet it includes a column for the unique string identifier and a unique pit identifier (unique to the drainage model not the 12d project). The names of the strings and pits may be changed via the spreadsheet if these columns are present at import time.

If the pit id column is not present, 12d will search the drainage model for a matching pit name. When the pit is a junction between drainage lines, only the trunk line will be the data updated.

22.10.12.2.4 Creating a New Model

It is possible to create a new string or an entire drainage network using this format. However, pits cannot be added to an existing string. The entire drainage string must be created at once. Two
formats are available, the “from-to pit” format and the “12d drainage spreadsheet” format.

At present the network editor must select a drainage string to become active. Therefore, if you
are not adding strings to a network, you will have to great a drainage network with one “dummy”
pit. Select this one “dummy” pit to activate the editor. After importing the data and the new
drainage lines are created the “dummy” pit may be deleted.

12d drainage spreadsheet Format

The top left cell in the clipboard data must be the text “12d” to specify this format. The minimum
amount of data required to create a new string is the string name, pit name, x and y coordinates. You
can add as much additional data as you have available. This would include pipe diameters inverts
etc. The pils must be listed from upstream to downstream order. If the string is to join a trunk line,
the junction pit must be included for both the tributary and the trunk line.

An example file exists called new_network.txt is supplied in the library. Open this file in a
spreadsheet or a text editor and copy it to the clipboard. Set the I/O Action to Import and select
Run. The new drainage lines will exist in the model currently being edited.

From-to Pit Format

The top left cell in the clipboard data must be the text “from to” to specify this format. The minimum
amount of data required to create a new string is the upstream pit name **pit name), the
downstream pit name (*ds pit name) and the x(x location) and y(y location) coordinates of the
upstream pit. If the string is to join a trunk line, the junction pit must be included for both the tributary
and the trunk line.

An optional column for the pit cover elev (cover elev) may be specified. Once the network has been
created additional pipe and pit data may be added using the “12d drainage spreadsheet” format
described above.

An example file exists called new_from_to_network.txt is supplied in the library. It is shown below.
Open this file in a spreadsheet or a text editor and copy it to the clipboard. Enter a new model name
in the Drainage model field and select paste. The new drainage model will now exist.

<table>
<thead>
<tr>
<th>from to</th>
<th>pit</th>
<th>pit</th>
<th>pit</th>
</tr>
</thead>
<tbody>
<tr>
<td>*pit name</td>
<td>*ds pit name</td>
<td>x location</td>
<td>y location</td>
</tr>
<tr>
<td>text</td>
<td>text</td>
<td>real</td>
<td>real</td>
</tr>
<tr>
<td>E/1</td>
<td>A/3</td>
<td>5309.458</td>
<td>7336.936993</td>
</tr>
<tr>
<td>E/1</td>
<td>A/4</td>
<td>5277.169</td>
<td>7336.936993</td>
</tr>
<tr>
<td>C/1</td>
<td>B/3</td>
<td>5251.238738</td>
<td>7423.99485</td>
</tr>
<tr>
<td>A/1</td>
<td>A/2</td>
<td>5364.629222</td>
<td>7336.936998</td>
</tr>
<tr>
<td>A/2</td>
<td>A/3</td>
<td>5340.019987</td>
<td>7322.039969</td>
</tr>
<tr>
<td>A/3</td>
<td>A/4</td>
<td>5293.458002</td>
<td>7322.039981</td>
</tr>
<tr>
<td>A/4</td>
<td>A/5</td>
<td>5250.182525</td>
<td>7322.039986</td>
</tr>
<tr>
<td>A/5</td>
<td>A/6</td>
<td>5217.194202</td>
<td>7322.039983</td>
</tr>
<tr>
<td>A/6</td>
<td>A/7</td>
<td>5183.458002</td>
<td>7322.039979</td>
</tr>
<tr>
<td>A/7</td>
<td></td>
<td>5152.698699</td>
<td>7322.039976</td>
</tr>
<tr>
<td>E/1</td>
<td>B/2</td>
<td>5389.42975</td>
<td>7422.289079</td>
</tr>
<tr>
<td>E/2</td>
<td>B/3</td>
<td>5264.638664</td>
<td>7393.947083</td>
</tr>
<tr>
<td>E/3</td>
<td>B/4</td>
<td>5249.730564</td>
<td>7394.207563</td>
</tr>
<tr>
<td>E/4</td>
<td>B/5</td>
<td>5249.730564</td>
<td>7351.201545</td>
</tr>
<tr>
<td>E/5</td>
<td>A/5</td>
<td>5233.426666</td>
<td>7336.936964</td>
</tr>
</tbody>
</table>

22.10.12.3 “12d drainage spreadsheet” Format

Each column of data is used for a 12d drainage variable or a user defined attribute. Each row
represents a pit and the downstream pipe (controlled by the direction of flow variable) within the drainage network. A sample is shown below.

<table>
<thead>
<tr>
<th>12d string Name</th>
<th>pit name</th>
<th>pit type</th>
<th>pit low ch invert</th>
<th>pit high ch invert</th>
<th>pit id</th>
<th>string id</th>
</tr>
</thead>
<tbody>
<tr>
<td>text</td>
<td>text</td>
<td>real</td>
<td>real</td>
<td>integer</td>
<td>integer</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>E/1</td>
<td>SA2</td>
<td>26.108</td>
<td>26.108</td>
<td>1</td>
<td>67389</td>
</tr>
<tr>
<td>E</td>
<td>A/3</td>
<td>SA2</td>
<td>27.7559</td>
<td>27.7559</td>
<td>2</td>
<td>67389</td>
</tr>
<tr>
<td>D</td>
<td>D/1</td>
<td>SA2</td>
<td>27.3961</td>
<td>27.3961</td>
<td>3</td>
<td>68100</td>
</tr>
<tr>
<td>D</td>
<td>A/4</td>
<td>SA2</td>
<td>26.8018</td>
<td>26.8018</td>
<td>4</td>
<td>68100</td>
</tr>
<tr>
<td>C</td>
<td>C/1</td>
<td>SA2</td>
<td>30.87</td>
<td>30.87</td>
<td>5</td>
<td>72072</td>
</tr>
<tr>
<td>C</td>
<td>B/3</td>
<td>SA2</td>
<td>29.563</td>
<td>29.563</td>
<td>6</td>
<td>72072</td>
</tr>
<tr>
<td>A</td>
<td>A/1</td>
<td>SA2</td>
<td>29.1026</td>
<td>29.1026</td>
<td>7</td>
<td>82469</td>
</tr>
<tr>
<td>A</td>
<td>A/2</td>
<td>SA2</td>
<td>28.7811</td>
<td>28.7311</td>
<td>8</td>
<td>82469</td>
</tr>
<tr>
<td>A</td>
<td>A/3</td>
<td>SA2</td>
<td>27.7652</td>
<td>27.7059</td>
<td>9</td>
<td>82469</td>
</tr>
<tr>
<td>A</td>
<td>A/4</td>
<td>SA2</td>
<td>26.8127</td>
<td>26.7518</td>
<td>10</td>
<td>82469</td>
</tr>
<tr>
<td>A</td>
<td>A/5</td>
<td>SA2</td>
<td>26.0867</td>
<td>26.0244</td>
<td>11</td>
<td>82469</td>
</tr>
<tr>
<td>A</td>
<td>A/6</td>
<td>SA2</td>
<td>25.3442</td>
<td>25.2942</td>
<td>12</td>
<td>82469</td>
</tr>
<tr>
<td>A</td>
<td>A/7</td>
<td>SA2</td>
<td>24.6672</td>
<td>24.6672</td>
<td>13</td>
<td>82469</td>
</tr>
<tr>
<td>B</td>
<td>B/1</td>
<td>SA2</td>
<td>31.2759</td>
<td>31.2759</td>
<td>14</td>
<td>192066</td>
</tr>
<tr>
<td>B</td>
<td>B/2</td>
<td>SA2</td>
<td>29.361</td>
<td>29.301</td>
<td>15</td>
<td>192066</td>
</tr>
<tr>
<td>B</td>
<td>B/3</td>
<td>SA2</td>
<td>29.123</td>
<td>29.073</td>
<td>16</td>
<td>192066</td>
</tr>
<tr>
<td>B</td>
<td>B/4</td>
<td>SA2</td>
<td>28.0444</td>
<td>27.8951</td>
<td>17</td>
<td>192068</td>
</tr>
<tr>
<td>B</td>
<td>B/5</td>
<td>SA2</td>
<td>26.3447</td>
<td>26.2947</td>
<td>18</td>
<td>192068</td>
</tr>
<tr>
<td>B</td>
<td>A/6</td>
<td>SA2</td>
<td>26.0744</td>
<td>26.0744</td>
<td>19</td>
<td>192068</td>
</tr>
</tbody>
</table>

Duplicate Definitions

Strings Variables such as “direction” are may be defined for numerous pits on the same string. Searching in a top down direction through the file, the last definition found for the string will be set.

Invert levels may be set via pipe data or pit data or combined. It is recommended that the user only use one method and not combine them. Both are exported so delete the ones you are not going to use. The variables are processed from left to right, so if duplicate definitions of an invert level or found the right most data will be set.

The format definition

1. Row 1, column 1 must contain either “12d”, or “from to”. Therefore, the first column must be a 12d drainage variable (cannot be a user defined attribute).

2. Row 1. The text <pit> at the top of the column indicates the column contains a user defined pit attribute and similarly <pipe> indicates a user defined pipe attribute.

3. Row 2. This row contains the names of the 12d drainage variable names and the pit/pipe attributes. All names are case sensitive so be careful where you use capital letters. A list of 12d drainage variables is found below.

Names beginning with an asterix (*) will not be processed (except pit/string names when unique identifiers are present in the data). 12d drainage variables names beginning with an asterix indicate that this data was calculated at export time and cannot be read back into 12d (for example, pipe length, pipe grade and deflection angle).

Prefixing an user defined attribute name with “DELETE ” (no quotes, note the space after the DELETE) will cause the attribute to be deleted from all pits/pipes within the model.
4. Row 3. The text in this row define the type of attribute to be stored within 12d. The only valid choices are:

 integer
 real
 text

 If you want to change an attribute type you must delete the attribute and create it again. If you simply change the attribute type in the third row then that attribute will not be updated.

5. Blank lines may be inserted as desired.

6. You are not required to fill in all of the cells in the spreadsheets. Blank cells are ignored (you must use a space to remove all data from text attributes (the space will not be stored).

7. Pipe names are included in the data so that they can be changed but they are not used to identify the pipe. Pipe data will always be assigned to the pipe following the pit in the direction of ascending chainage. If flow directions is ascending then the pipe data will be for the downstream pipe. If the flow direction is descending then the pipe data will apply to the upstream pipe.

22.10.12.4 12d Drainage Variable Names

<table>
<thead>
<tr>
<th>Manhole Variables</th>
<th>Pipe Variables</th>
<th>String Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>*string Name</td>
<td>pipe name</td>
<td>direction</td>
</tr>
<tr>
<td>*pit name</td>
<td>pipe type</td>
<td></td>
</tr>
<tr>
<td>pit type</td>
<td>low ch invert</td>
<td></td>
</tr>
<tr>
<td>pit diameter</td>
<td>high ch invert</td>
<td>string id</td>
</tr>
<tr>
<td>pit low ch invert</td>
<td>diameter</td>
<td></td>
</tr>
<tr>
<td>pit high ch invert</td>
<td>length</td>
<td></td>
</tr>
<tr>
<td>pit road chainage</td>
<td>*grade</td>
<td></td>
</tr>
<tr>
<td>pit road name</td>
<td>low hgl</td>
<td></td>
</tr>
<tr>
<td>*pit angle</td>
<td>high hgl</td>
<td></td>
</tr>
<tr>
<td>*pit drop</td>
<td>pit hgl</td>
<td></td>
</tr>
<tr>
<td>*pit depth</td>
<td>flow</td>
<td></td>
</tr>
<tr>
<td>*pit chainage</td>
<td>velocity</td>
<td></td>
</tr>
<tr>
<td>x location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>y location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cover elev</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*n elev</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*ns elev</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pit id</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
22.10.13 Quick Check Lists for Drainage Design Software

The drainage design software packages each have their specific requirements regarding the manhole types, names and then method they use to model pit inlet capacities. The following section details the specific requirement for each package.

See Drains Version 2+ Requirements and Notes
See PCdrain Requirements
See Running RATHGL/RAT2000 and XP-SWMM
See Micro Drainage - WinDes Requirements

22.10.13.1 Drains Version 2+ Requirements and Notes

See also Drainage overview

Basic Check List
1. All manholes must have a unique name (Manhole names cannot begin with "O ")
2. The pipe type used in 12d must exist in the Drains pipe database

Overland flow with Inlet Capacity Check List
1. Make sure you are using Drains Version 2-5 clipboard data. Inside Drains select Project=>Pit database. The pit family selection should be available. (CAP1 etc. is Version 1).
2. All Overflow route shapes, pit families and pit types used in 12d must exist in the Drains pit database
3. Overland flow lines must be within 1.0 metres/feet of the manhole
22.10.14 Running Drains - Version 2+

Key Points

The Drains database (each project has its own) and the 12d database (drainage.4d) must be synchronised (More).

12d Version 8 needs you to create a new drainage.4d file to include the new inlet capacity curves (pit groups are no longer used).

For pits with a bypass pit and road grade defined (non ILLUDAS), 12d selects pit families for Drains in the following way:

The users selects the pit type (Drains pit size) in 12d and 12d selects the ongrade or sag curve from the drainage.4d file (see inlet capacity calculations). The names of these curves are the Drains pit families. If there are no curves for the pit type in the drainage.4d file then the Drains pit type is exported as ILLUDAS with no family or size data.

If the 12d pit type is **Headwall** then the pit will be exported as a headwall.

Catchment lengths, slopes and roughness values are NOT exported in the Drains Rational format. The default values for these parameters are NOT exported in the Drains ILSAX format but the explicit settings from the catchment panel are exported. If used, Drains requires length, slope and roughness for both impervious (paved) and pervious (grass). Supplementary values must entered in Drains.

Data is copied from 12d to the Windows clipboard and then pasted into Drains. 12d can not delete any objects in Drains, it can only add and update.

When updating 12d from Drains, always copy the DATA to 12d before the results. 12d will update the network but will not add or delete pits.

If a new pit is added in Drains, the user will have the option to create it in 12d. If it is created only the pit will be added and not the pipes.

Why Do I get ILLUDAS pits?

The bypass pit is blank. There must bypass pit for the water to go to. Bypass flow strings must pass within 1 pit diameter (beware pits with zero manhole diameters) and you can enter them manually.

The pit type selected has no capacity curves in the drainage.4d file. The curve names become the pit family for the export to Drains. No pit family means ILLUDAS.

If you are intentionally using a drainage.4d file with NO inlet capacity curves, the pit families you set in Drains will be remembered by 12d when you import back into 12d. The inlet capacity curves will not be required for your next export to Drains.

Drains Interface Overview

The Drains program performs the rational or ILSAX hydrology calculations as well as hydraulic grade line calculations that determine pipe sizes and pipe invert levels.

The data sent to Drains includes

- pit names and types, easting and northing data with surface levels
- finished surface profile along the centre line of the pipes

Headwalls and their levels

- optional - bypass inlets, road grades/crossfalls and **SAG Inlet Calculations** (ponding volumes and depths). Pit family selection using road grade and crossfall data.

- optional - composite catchment area create from three 12d areas per inlet (must alter the mapping file)

- catchment characteristics, k values and overland travel times

- pipe sizes, type and invert levels
Data is copied from 12d to the Windows clipboard and then pasted into Drains (Edit=>Paste data from spreadsheet). 12d can not delete any objects in Drains, it can only add and update.

The Drains menu selection Run=>Design is used to design the network. Once the drainage network has been designed in Drains the updated design data (Edit=>Copy data to spreadsheet) and/or the hydraulic results (Edit=>Copy results to spreadsheet) are sent back to 12d via the clipboard.

Always copy the DATA to 12d before the results as the results are deleted inside 12d with every update of the data!

Catchment Data

Drains has one catchment per inlet and therefore only 12d’s catchment set one is used in the interface. The 12d catchment is split a pervious (grass) area and an impervious (paved) area using the percent impervious fraction. The rational and ilsax spreadsheet export formats (selected in the import/export panel) are different.

The Rational format of the Drains interface does not export Drains “more detailed data”. The ilsax format does support the “more detailed data” format but the user must define the length, slope and roughness in the catchment panel. No 12d DNE default data will be exported. As 12d does not have a supplementary area this data will have to be entered into Drains. Gutter lengths and slopes are calculated from the upstream section of the longest overland flow path entering the inlet.

Supplementary data entered in Drains will be remembered in 12d for the next export. The grassed percentage for the next export is calculated as the $(100 - \%\text{impervious}\ - \%\text{supplementary})$.

Synchronising the Drains database and the drainage.4d file.

The 12d pipe types are always used to interface with Drains. Ongrade or SAG pits will be created for export to Drains if the 12d pit has a bypass pit, road grade and a pit type with inlet capacity curves. If all three are not present it will be exported as an ILLUDAS pit.

Every Drains file begins with a default database and Drains uses that database for the life of the project. This database must by synchronised with the drainage.4d file in 12d to ensure the Drains pit families, pit sizes, pipe types and overflow route types match. Therefore it is highly recommended that copy of the drainage.4d file be kept in the 12d working folder.

The Drains and 12d data must match as follows.

<table>
<thead>
<tr>
<th>Drains database</th>
<th>drainage.4d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe type</td>
<td>Pipe type entries</td>
</tr>
</tbody>
</table>

Only if bypass flow is required

Drains database | drainage.4d |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pit size</td>
<td>Pit type</td>
</tr>
<tr>
<td>Pit family</td>
<td>ongrade or sag curve names</td>
</tr>
<tr>
<td>Overland route database</td>
<td>default in mapping file</td>
</tr>
</tbody>
</table>

Note: If Drains is to be used to select the pit size then an exact match in pit types is not required. For this case the 12d pit type need only be the prefix of the Drains pit size.

The following 6 steps will help ensure 12d is synchronised with Drains. More details are given in the sections below.

1)Prepare the Drains Pit Database

IF 12d is to select the Drains Pit Size, then the Drains Pit Size and 12d Pit types have to match, exactly! If Drains is used to determine the pit size then you may skip this step.

More Drainage
The pit databases supplied by Drains often have road grade and/or crossfall attached to the end of the pit size. **THIS EXTRA DATA MUST BE REMOVED!**

For example, in Drains database you may find the following

<table>
<thead>
<tr>
<th>Pit family</th>
<th>Pit size</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSW RTA SA Inlet, 3% crossfall, 1% grade</td>
<td>SA1 (Type 2) - 1% longitudinal grade</td>
</tr>
<tr>
<td>and</td>
<td></td>
</tr>
<tr>
<td>NSW RTA SA Inlet, 3% crossfall, 3% grade</td>
<td>SA1 (Type 2) - 3% longitudinal grade</td>
</tr>
</tbody>
</table>

The pit size for both is the same, SA1, but 12d can not tell this because of all the extra data at the end. In Drains, simply remove the extra information so that they are both **SA1**. If the network already exists in Drains, then Drains will automatically change the names of the sizes you have already selected. No time lost here.

Once you have changed the Drains pit size names, you are ready to use the **Drains to drainage.4d** routine to create a drainage.4d file that is synchronised with Drains.

2) Export the Drains database from your Drains file

Inside Drains Open your drains file or begin with a blank file. Select **Project=>Overflow Route database**. Then select **OK** and then **YES**. This will cause Drains to export the database to the file "Drains Connection Data.txt" and store it in the folder with the Drains program.

3) Create a drainage.4d file from the Drains file

From the 12d menu select **Design->Drainage-Sewer->More->Drains to drainage.4d**.

Select **Copy Drains database** to copy the file to the 12d working folder.

select **Create drainage.4d**. The Drains database dump file is copied to the 12d working folder and a drainage.4d file is created in the 12d working folder. **More details below.**

4) Edit the drainage.4d file

From the 12d menu select **Design->Drainage-Sewer->More->Edit drainage.4d**. Select **Find** then edit from the file **more info** button. Set the road grade and crossfalls for the 12d pit groups. **More details below.**

5) Restart 12d

From the 12d menu select **Project->Restart**.

6) Set the Overflow shape, Update Pit and Pipe types (Optional)

If the network has already been created using pit and pipe types that no longer exist in the drainage.4d file, they will have to be updated before the export to Drains can occur. You may update them using the drainage network editor (one at a time) or you may set all of the pit and pipes types to **one value** using this routine. Later you may change them individually using the **Drainage network editor**

This routine will also set a default overflow route shape for export (values can be modified in the Drains program if desired).

From the 12d menu select **Design->Drainage-Sewer->More->Drainage io defaults**. **More details below.**

Drains to drainage.4d file

Position of option on menu: **Design =>Drainage-Sewer =>More=>Drains to drainage.4d**

On selecting the **Drains to drainage.4d** option, the **Drains to drainage.4d** panel is displayed.
Key Points

When you are finished, open the drainage.4d file and check the road grade and crossfall values for the ongrade curves!

If Drains is used to select the pit sizes then the 12d pit type must be the prefix of the Drains pit size (Pit Name road separators are used).

If 12d is used to select the pit sizes to export to Drains, the Drains Pit Size and 12d Pit types have to match, exactly! The pit databases supplied by Drains often have road grade and/or crossfall attached to the end of the pit size. If pit sizes are to be sent from 12d, this must be removed! Find Prepare the Drains Pit Database for more details.

Select Copy Drains database (12d will search the usual locations for the Drains database).

Review the Drains pipe types and Drains pit families lists to ensure you have the correct database.

12d pit groups are not used in Version 8.

Pit Name road separators can only be used if Drains is selecting the pit types. If 12d pit types are to be exported to Drains, this field should be left blank. If you change these entries you must press the enter key to update the 12d pit types list below.

Check the 12d pit types and if they are acceptable select Create drainage.4d.

The Details

YOU MUST RESTART 12D FOR THE NEW DRAINAGE.4D FILE TO BECOME ACTIVE!

Field DescriptionType Defaults Pop-Up
Drains database filefile box Drains Connection Data.txt

You must update this file from Drains before each use of this panel. Inside Drains select Project=>Overflow Route database. Then select OK and then YES. This will cause Drains to export the database to the file “Drains Connection Data.txt”.

Selecting Copy Drains database will cause the panel to search for the database dump in the folders C:\Program Files\Drains\Program and C:\Program Files\Drains\Demo\Program. If
the Drains program is installed in another folder then you must browse for the file. The file will be read and the panel updated with either selection.

Drainage.4d file box drainage.4d

The drainage.4d will be created in the 12d working folder unless otherwise specified. It will only be used for 12d projects in this folder.

Pit families choice box Drains pit families

These are the Drains pit families that will be exported to the drainage.4d file. These will become the names on grade inlet capacity curves for all the pit sizes that belong to the family. The pit family name will be searched for words like `grade`, `slope` etc to try to determine the values for road grade and crossfall for the 12d capacity curves.

Pipe type choice box Drains pipe types

These are the Drains pipe types that will be exported to the drainage.4d file.

Pit group separator input box

Pit groups are not used in Version 8. These characters will be used to remove the road grade crossfall data from the **Pit families** above. The data before this character will become the **12d pit groups**. Press **Enter** or select **Read Drains database** to create a new list of **12d pit groups**.

12d pit groups choice box 12d pit groups

These are created from the Pit family list above by deleting all text after the **Pit group separator**.

Create drainage.4d button

Create a drainage.4d file.

Editing the Drainage.4d file

Position of option on menu: Design => Drainage-Sewer => More => Edit drainage.4d

On selecting the Edit drainage.4d option, the Edit drainage.4d panel is displayed.

Select the **Find** button to search the 12d path for the current drainage.4d file. Select the **More info** button and then **Edit** to edit the file.

The drainage.4d file contains Manhole and Pipe commands. 12d also uses the Manhole commands to specify a pit group by using the prefix "group". Details follow.

Headwalls

The pit type “Headwall” (case sensitive for Drains) is reserved for the inlet headwall for a conduit. Drains does not use this for an outlet headwall.

If the inlet type is On Grade or there is no bypass pit, the grate level is exported as the Drains surface level. If the Inlet type is marked as a SAG pit then the surface level will be calculated from the low point on the catchment string (catchment set #1). Also see **SAG Inlet Calculations**.

Pit Families

Version 2+ of the Drains clipboard interface uses a **pit family** to describe the kerb shape and optionally, the name include the road crossfall and/or grade attached as a suffix.

An example pit group is the drainage.4d file is shown below. 12d uses the road grade and/or the road crossfall to select which pit family should be sent to Drains. In this example the road crossfall would not be used in selecting the pit family.

It is up to the user to decide the grade when the next pit family should be used. In this case the threshold value for the gutter grade is set midway between the published values of the inlet curves. For example at a gutter grade of 2% 12d starts sending the **NSW RTA Pits - 3% slope**
pit family.
The pit families listed on the right must match exactly with those in the Drains pit database.

Pit Types and Pit Sizes
Each Drains pit family has several pit sizes. The Drains pit sizes link to the 12d pit types and therefore all Drains pit sizes should exist in the 12d drainage.4d file.

The pit size will be read back from Drains into 12d as the pit type so that it can be placed on the drainage long sections and pit schedules. If no matching pit type is found in 12d then a character will be dropped off the end of the Drains pit size and 12d will be searched for the new shorter pit type. This will be repeated till a match is found (or there are no more characters in the Drains pit size).

Pipe Types
The pipe type selected in 12d must exist in the pipe database inside Drains. Simple “2” for class 2 or “RCP” do not exist in Drains.

Setting the Overflow Route, the Pit and Pipe types
Position of option on menu: Design => Drainage-Sewer => More => Drainage IO Defaults

On selecting the Drainage IO Defaults option, the Drainage IO Defaults panel is displayed.

The routine changes ALL of your pit and pipe types in a model to a single value. If you have changed your drainage.4d file after creating you drainage network, the pit and pipe types you originally selected may no longer be valid (i.e. in the drainage.4d file).

Field DescriptionType Defaults Pop-Up
Design Programchoice Drains Drains, PCdrain
Drainage modelfile
12d pipe types choice values from drainage.4d
12d manhole types choice values from drainage.4d
Default pit group choice values from drainage.4d
Default road shape
Drains database file C:\Program Files\Drains\Program
Drains pipe types Database not loaded
Drains Overflow Route Shapes Database not loaded

Set all pipe types will set all pipes in the model to this value
12d pit types choice values from drainage.4d

Set all pit types will set all pits in the model to this value

Default pit groups choice values from drainage.4d

pit definitions in the drainage.4d file that have group as a prefix are included.

Default road shape choice values from drainage.4d
type the desired name or if using Drains select the desired shape from the **Drains Overflow route shapes**.

Drains Tab

Drains database file

pressing enter in this field will start a search for the Drains database dump. The search path is the specified folder, C:\Program Files\Drains\Program then C:\Program Files\Drains\Demo\Program. If the file is found the choice fields below are populated. **It is highly recommended that this file be in the 12d working folder.**

Drains pipe types choice I values from Drains file

the pipe types are retrieved from the last Drains database dump. Changing this value will update the **12 pipe types** above.

Drains Overflow Route Shapes choice values from Drains file

the overflow route shapes are retrieved from the last Drains database dump. Changing this value will update the **Default road shape** above.

Set all pipe types button

all pipe types in model are set to this value

Set all pit types button

all pit types in model are set to this value

Set defaults button

the defaults for the **Drains Overflow Route Shapes** and **12d pit group** are set

Finish button

removes the panel

Drains Version 2+ Requirements

Pit Names

The 12d pit names cannot be more than 9 characters long. 12d uses 2 additional characters to the pit name at export time create names for the pipes, overflow routes and catchments. For example pit “A-1” will have a bypass route “F A-1”, a catchment “C A-1” and a downstream pipe “P A-1”.

Bypass Flow (Overland Flow Routes)

There are 3 requirements for Drains bypass flow (bypass pit, pit inlet capacity curve and road grade/crossfall).

Select a **pit type** that has ongrade or sag inlet capacity curves defined in the drainage.4d file. The Drains and 12d databases must be in sync.

Bypass strings in the **Bypass route model** specified (Network editor->Global->Utility Models->Bypass flow model. For more details see Bypass Flow.

Road grade and crossfall calculated (Network editor->Global->Utility Models->Road design file)
The overland flow strings are not allowed to pass through the outlet pit on the network.

SAG Inlet Calculations

SAG inlets are inlets where the water ponds at the surface rather than flowing past. If a SAG inlet
has a catchment string the overflow depth and volume are calculated. The catchment string from Set #1 is draped onto the design tin and the lowest point in found on the draped string (stored as a 12d pit attribute overflow level. The storage volume inside the string up to this point is measured and stored as a 12d pit attribute overflow volume from level. and are subtracted from the to determine

The Max Ponding Depth = overflow level - grate level

If the manual flag is selected for the "sag pit pond depth", 12d will NOT calculate the value but will use the value entered by the user. 12d will check if a volume has been calculated before or imported from Drains. If the volume exists then it is exported. If it does not exist, this ponding depth will be used calculate the ponding level (depth + grate level). The ponding level will be used to calculate a ponding volume from the design tin and the catchment boundary.

If you want to manually delete this volume and force 12d to recalc to volume using the user defined level, delete the pit attribute, "overflow volume from level". To delete the attribute use Strings->Properties->Attributes, select the pit, go to the pit tab, right mouse select the row with this attribute and select delete).

Results

Drains exports the maximum data from all of the rainfall events analysed. Therefore, ensure you analyse only the rainfall events desired before coping the results to the clipboard. To verify the data that is being sent to 12d, copy the data into a spreadsheet so you can view it there first. The pit sizes selected in Drains will be stored in 12d as the pit type. Therefore the pit sizes in Drains should exist as pit types in the drainage.4d file. If pit families are changed in Drains the pit group in 12d will be updated by search for the pit family in the drainage.4d file.

12d to Drains

Setup your drainage network models and ensure they have been assigned pit names.

Copy the data to the clipboard

From the Drainage network editor select the Import/Export button.

The following interfaces dialogues will appear.
More Drainage

From within the Drains program select **Edit => Paste data from spreadsheet**. If you paste the data into a Drains project that has a hydrological model and rainfall data already defined the project will be ready to run.

Use the Drains Run=> Standard design to design your pipe sizes and invert levels. The Run=> Advanced Design will select the size of the pits as well.

Drains to 12d Update

The following steps are required to update the 12d model with the Drains hydraulic results and changes to the pipe sizes and inverts.

To update the pipes and invert levels in 12d, select **Edit -> Copy Data to Spreadsheet** from the Drains menu.

From within the 12d Drainage network editor select **Import/Export**.
IMPORTANT: THE DATA MUST BE PASTED BEFORE THE RESULTS!

12d erases the hydraulic and hydrology data when the physical data is updated. Therefore, always paste the data before the results.

Drains Mapping File

The rational format and the ilsax format have separate mapping files.

The Drains spreadsheet format consists of sections starting with a header, then the data area and ending with a blank line. The mapping file defines the format of the section headers and the format of the data within the sections.

Select Import

This will ignore the invert levels read from Drains and the current pipe obverts will remain fixed.

Plan and long section drawings may be created at the import time so that you can see the results on the drawings.

Select Run to update the drainage model. To see the changes in the section views you will have to select Regen on the section view toolbar.

To return to the network editor select Edit.
The headers in the mapping file define the exact text to be exported in the Drains section headers. During an import the first 4 columns of the Drains header are compared to the headers in the mapping file to determine which section is being read. The data format line is then used to decode the the data.
22.10.15 PCdrain Requirements

See also Drainage overview

Basic Check List
1. All manholes must have a unique name
2. Only one outlet allowed in the drainage model
3. First export should have “Export default catchment/pit/overland parameters” selected
4. Pit types in used in 12d must exist in the PCdrain Inlet gully file selected.

Overland flow with Inlet Capacity Check List
1. A gutter profile named “4d” must exist in PCdrain before the interchange file is read. This gutter profile may be created in PCdrain from the menu selection Data=>Gutter profiles then New.
2. Overland flow lines must be within 1.0 metres/feet of the manhole

Data is exchanged to and from PCdrain via the interchange (*.int) file. Gutter profiles and inlet type must be specified in PCdrain before the interchange file is read into PCdrain.

The data sent to PCdrain includes
- pit names and types, easting and northing data with surface levels
- pipe deflection angles at pits
- finished surface profile along the centre line of the pipes
- optional - crossing services - level, size and location along the pipes
- optional - bypass inlets, road grades and SAG inlet ponding depths
- optional - up to 2 catchment areas per inlet
- optional - default catchment characteristics, k values and overland travel times
- optional - pipe sizes and invert levels

22.10.15.1 PCdrain Requirements

Pit names
The pit name from 12d is assigned to both the structure and catchment name in PCdrain. These names cannot exceed 7 characters.

Pit type
The 12d pit type is transferred to the structure type in PCdrain. These names must match those specified in the PCdrain Inlet charts selected (Data=>Inlet charts). Select the desired inlet charts BEFORE importing the interchange file.

12d pit types with an “S” in the name are treated by 12d and PCdrain as a SAG inlet pit. 12d will strip off all characters after the “S” before adding the ponding depth. If a catchment string in set #1 is available for the SAG pit then the ponding depth will be calculated. The 12d pit type will remain unchanged. A typical example would be a pit type “ITC” with the sag tick box on would become “ITC0.100” if a ponding depth of 0.1 was calculated.

Bypass Flow
When a catchment string is specified for the pit, the maximum depth before bypass flow commences is calculated. The lowest point on the catchment string is determined by draping it
onto the drainage strings tin. The maximum depth before bypass is calculated pit setout level less the setout to grate offset less the lowest point on the catchment string.

PCdrain differentiates between pits (no surface inflow) and gully pits via the 12d pit type. The bypass flow strings can only be drawn within 1 pit diameter of the gully pits. Keep the bypass flow strings away from the PCdrain pits.

Catchments

Again, since PCdrain differentiates between inlets and manholes (using the 12d pit type), ensure that catchments are only drawn for gully inlet and NOT manholes.

12d to PCdrain Pit Data

<table>
<thead>
<tr>
<th>12d</th>
<th>PCdrain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pit-Setout-East (Northing)</td>
<td>Table 1- Easting (Northing)</td>
</tr>
<tr>
<td>Pit-bypass-bypass pit</td>
<td>Table 1 - Bypass structure</td>
</tr>
<tr>
<td>Pit-Main-grate Level</td>
<td>Table 5- Surface Level Overrider</td>
</tr>
<tr>
<td>Pit-Bypass-Road Grade (%)</td>
<td>Table 5- Road grade over rider</td>
</tr>
<tr>
<td>Pit-Setout-Chainage</td>
<td>Table 5- Road Chainage</td>
</tr>
<tr>
<td>Pit-Setout-Offset</td>
<td>Table 5- Road offset</td>
</tr>
<tr>
<td>Pipe-Main-length</td>
<td>Table 7 - Pipe length</td>
</tr>
<tr>
<td>Pipe-Main-diam</td>
<td>Table 7 - Pipe1 size</td>
</tr>
<tr>
<td>Pipe-Main-# pipes</td>
<td>Table 7 - Pipe1 number of conduits</td>
</tr>
<tr>
<td>Pipe-Design-Alignment Modes</td>
<td>Table 7 - Alignment of conduits</td>
</tr>
<tr>
<td>Pit-Main-Ku(Kw)</td>
<td>Table 8 - Ku (Kw)</td>
</tr>
<tr>
<td>Pipe-Main-US invert</td>
<td>Table 9 - Upstream level of pipe</td>
</tr>
<tr>
<td>Pipe-Main-DS invert</td>
<td>Table 9 - Downstream level of pipe</td>
</tr>
</tbody>
</table>

12d to PCdrain Catchment Data

<table>
<thead>
<tr>
<th>Pervious Impervious</th>
<th>12d</th>
<th>PCdrain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>Area</td>
<td>Catchment Area</td>
</tr>
<tr>
<td>Total</td>
<td>Area (set 2)</td>
<td>Catchment Area2</td>
</tr>
<tr>
<td>Pervious</td>
<td>C minor and Major</td>
<td>Minor coef; Major coef</td>
</tr>
<tr>
<td>Pervious</td>
<td>C minor and Major (set 2)</td>
<td>Minor coef2; Major coef2</td>
</tr>
<tr>
<td>Pervious</td>
<td>Tc minor (Direct method only)</td>
<td>Time of concentration overrider</td>
</tr>
<tr>
<td>Pervious</td>
<td>Length</td>
<td>Length of overland flow</td>
</tr>
<tr>
<td>Pervious</td>
<td>Slope</td>
<td>Grade of overland flow</td>
</tr>
</tbody>
</table>
22.10.15.2 12d to PCdrain

1. Export the data to PCdrain selected via the Network editor

 Design=>Drainage-Sewer=>Drainage Network Editor

 After selecting the drainage network, select the **Import/Export** button and the following dialogue will appear.

 ![Image of Import/Export dialogue]

 Select the **Run** button and the interface file will be created.

2. Launch the PCdrain for Windows program. If you have a project set up with the design parameters, rainfall data, inlet charts and gutter profiles then open it now and skip to step 8. Otherwise continue with step 5.

3. The Design Parameters can be set as desired with the menu selection **Data=>Design Parameters**.

4. Select the rainfall data using the **Data=>Rainfall** menu selection.

5. Select the inlet charts using the **Data=>Inlet Charts** menu selection. The pit types specified in 12d must be included in these settings.

6. At least one gutter profile in PCdrain needs to be defined. These are set through the menu selection **Data=>Gutter Profiles**. The default gutter section name (**Road ID**) from 12d is **4d** and therefore it is recommended you create a profile with this name and your own description. If you have changed the profile names in 12d (through the spreadsheet interface or the Attribute editor) these new profile names will have to exist in PCdrain.

7. Save this file now so that you can retrieve it later if required. It can be used as a starting template for new jobs.

8. **File=>Import** from the menu. Select the file exported in step 1. The information from 12d may be viewed by selecting **Data=>Network** and then selecting the desired tabs.

9. The HGL level and the pipe elevation at the outlet should be set using the menu selection **Data=>Outlet**.

10. If you have not exported pipe data then the pipe size must be determined. Use the menu selection **Process=>Select Pipe Sizes**.

22.10.15.3 PCdrain to 12d

Export the results to 12d using the **File=>Export** menu selection. Note the name of the interchange file you are creating as you will need to enter it inside 12d.

<table>
<thead>
<tr>
<th>Impervious</th>
<th>12d</th>
<th>PCdrain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impervious</td>
<td>Length</td>
<td>Length of gutter</td>
</tr>
<tr>
<td>Impervious</td>
<td>Slope</td>
<td>Grade of Gutter</td>
</tr>
</tbody>
</table>
Return to 12d and select **Import/Export** from the network editor and the following dialogue will appear,

- Select **PCdrain Int (Windows)** from the drop down list.
- Select the output file name you created in PCdrain.
- Select **Run** and the file will be read into 12d and the drainage network will be updated. To see the changes in a section view, select **Regen**.

A listing of the data imported is stored on the 12d output window.

Inlets that have been specified as SAG inlets will have the ponding depth removed from the end of the PCdrain structure type before the data is stored as the 12d pit type.

22.10.15.4 RAT2000 Requirements

See also [Drainage overview](#).

Basic Check List

1. All manholes must have a unique name (they become nodes in RAT2000)
2. Only one outlet allowed in the drainage model
3. First export should have “Export default catchment/pit/overland parameters” selected
4. First export should have “Export pipe diameters and Inverts” selected
5. Outlet conditions must be set in RAT2000.
6. Start-up data may be specified in the file `drainage startup.xpx` (the standard 12d system file path will be searched).

Overland flow with Inlet Capacity Check List

1. Overland flow lines must be within 1.0 metres/feet of the manhole
2. If inlet capacity curves are to be used then the curve name must match the 12d pit type with the road grade/crossfall data added.
23.0 Running RAT2000

Data is exchanged to and from RAT2000 via the interchange (*.xpx) file. The data exported from the 12d drainage model is appended to the xpx startup data specified in the file drainage startup.xpx (the standard 12d system file path will be searched). This file may be edited using a text editor or you may create your own default file by exporting your RAT2000 global data this file.

RAT2000 Requirements

Manhole names

All manholes will become nodes in RAT2000 and therefore they must have a unique name inside 12d.

Manhole Types

The manhole types are used to determine the pit inlet capacities if overland flow routes are selected. Fixed inlet capacities values may be set in the drainage.4d file while inlet capacities curves must be included in the drainage_startup.xpx file. The range of available curves for 12d to choose from are set in the drainage.4d file and the curves are determined using the pit type, road grade and road crossfall.

Pipe Types

Pipe types are not transferred to RAT2000.

Overland Flow

When an overland flow model is selected the pit inlet capacities and bypass routes are calculated.

23.1 12d to RAT2000

1. Export the data to RAT2000 by selecting

 Design=>Drainage-Sewer=>More=>Pit/Pipe Design Interface

The following dialogue will appear.
23.2 Updating an existing RAT2000 file

Adding new Nodes and Pipes

If new manholes and pipes have been added to 12d then these new entities will now be included in the xpx file and imported into the RAT2000 project. 12d identifies the nodes in XP by the node names. Therefore if nodes names are changed in either program then they must be manually changed in both programs.

If a manhole is to be inserted in an existing link then the existing link must be deleted in RAT2000 so that the new links and manholes may be created in the void.

WARNING! If the tick box *Export catchment/pit/overland flow default data* is selected for the update then any changes to these defaults in RAT2000 will be lost. Two options are available to the user.

Option 1 - Preferred method if updating pipe lengths, invert levels for your design.
De select the tick box and export the data. The new node and links created in RAT2000 will not have all the defaults set but the existing nodes and links will not have revisions to defaults overwritten.

Option 2 - Preferred method if you have created numerous new links and nodes.

Leave the tick box selected but export the RAT2000 to a temporary xpx file first. This will save the existing setting. After RAT2000 is launched and loaded with the new data, import your temporary xpx file you just created to restore the original data.

Deleting Nodes and Pipes

If a node or link is to be deleted then delete the entity from both 12d and RAT2000.

23.3 RAT2000 Results to update 12d

If RAT2000 is launched automatically using option 1 above then as soon as RAT2000 is exited an interface file is automatically created (using the same name as the import xpx file). This file will now be read back into 12d to update the pipe network and import hydraulic results for drainage longsection plots.

Return to 12d and select

 Design=>Drainage-Sewer=>More=>Pit/Pipe Design Interface

The following dialogue will appear,
23.3.0.1 XP SWMM Program Requirements

See also Drainage overview

Basic Check List

1. All manholes must have a unique name (they become nodes in XP SWMM)
2. Only one outlet allowed in the drainage model
3. First export should have “Export default catchment/pit/overland parameters” selected
4. First export should have “Export pipe diameters and Inverts” selected
5. Outlet conditions must be set in XP SWMM.
6. Start-up data (run times and hydrology data) may be specified in the file master_drainage.xp (the standard 12d system file path will be searched).
23.3.1 Running RATHGL/RAT2000 and XP-SWMM

The drainage design with all three of the XP software programs follows the same methodology. The process is substantially automated with the XP-SWMM program so that the XPX file is automatically read by XP-SWMM and automatically created when leaving XP-SWMM.

Drainage design with XP programs includes the following steps.

1. 12d creates an XPX file that is read by the XP programs.
2. The XP program is then run in the design mode to determine the pipe sizes and invert levels.
3. If bypass and overland flows are to be modelled then the inlet capacities need to be defined and then run the XP program in the Full Analysis Model.
4. The XP program creates an XPX file for 12d to import.

23.4 xpstorm and xpswmm bypass requirements

12d will select the inlet capacity curves for the xp programs when the following bypass settings are complete.
1. The 12d pit type determines the inlet capacity values or curves to be selected from.

2. The bypass pit must be defined for the pit. If the bypass pit follows the pipe network a xp-multi link with a natural channel is created. Otherwise a xp single link is created. The default xp natural shape is “Road Section”

3. The Ongrade/SAG pit on the Main tab determines whether depth or approach curves are exported to (details below).

4. If ongrade is selected then the 12d inlet capacity curves may be selected by road grade, crossfall, both or neither. (details below).

5. The 12d choke factors will be exported as the xp inlet efficiency factor \((1 - 12d \text{ choke})\)
The numbers below relate the same numbers in the 12d panels above.

1. Inlet capacity is turned on when 12d has a bypass inlet.
2. 12d **Ongrade** inlets export as **Rated by Approach Flow** and 12d **SAG** inlets export a **Rated By Approach Depth** with depth calculated by **Node Storage Characteristics**.
3. 12d **Inlet Capacity Curve names**

 Below is an extract from the drainage.4d file for Canberra rating curves.

 4. The minor/major selection is the 12d export panel determines the efficiency factors that are exported/

 Efficiency factor = 1.0 - 12d choke.
1. The manhole is the inlet type selected above.

2. cap_config G forces the inlet to be used as qa 12d ongrade inlet. An S would be SAG and an M a manhole.

3. The curve name indicated here is exported as the xp inlet capacity curve.

4. The curve name will be exported starting at road grade of 0. Since one curve has a road grade value all curves must have a road grade value and the user must have a road grade calculated on the 12d bypass tab.

23.5 12d to the XP Programs
The x,y pit layouts and the cover/surface levels are obtained from your drainage network while the catchment and overland flow data comes from the models specified in the drainage interface dialogue.

The steps required to transfer the data to the XP programs are as follows.
1. Setup your drainage network models.

2. To create the XPX file for XP programs start the Drainage Network Editor and select Import/Export

The following interfaces dialogues will appear.

Select XPSWMM or RAT HGL from the drop down list.
Enter the name of the xpx file to be created.

Select Export

Not used at this time.

Finally, Select the Run button to create the file.

If exporting to RAT-HGL the following dialogue will appear.

If you are using old versions of RAT-HGL (1996 or earlier) select use Local otherwise select 4D units (eastings and northings).

Select process.

3. The XP SWMM program will automatically startup and load the XPX file.

From within RAT-HGL, either select File => New and follow the input prompt or load a file that contains all of the pit inlet rating curves, hydrological and design data without a pipe network. Many users have such RAT-HGL files setup so as to streamline the design process.

The xpx file for RAT2000 will have the file startup.xpx added to it so that you may include all the startup global data that you require. The Fixed inlet capacities and rating curve names indicating road grade and crossfall may be set in the drainage.4d file. The format for these names is pit name-crossfall-road grade (ex SA2-3-4). These curves must exist in this file.

4. To read in the pipe file created above, select Special => Import Data and select the xpx data file. Warnings will be given stating that several fields are inactive. This is expected as more data is sent to RAT-HGL than is needed at this time. Select the Close Square on the Help title area and the pipe network and catchments should now appear on the screen.

5. If you want RAT-HGL to redesign you network, change the analysis mode to Design mode by
selecting **Special=>Job Control** and **Select Design mode**. Do not do this if you want to analyse the network you layed out in 12d (used for existing systems).

6. Select the rainfall events to design/analyse and the **LB** (twice) on **OK** to return to the layout. Now select the outlet and enter the starting tailwater levels.

7. Now you can run RAT-HGL (**Special =>Solve**).

23.6 XP Programs to 12d

Once you have your design finished, the following steps are required to update your 12d model. Your design may contain several return periods in the analysis (Rp1 to Rp7) but 12d reads only the results from Rp1. The following table is taken from the RATHGL output file (*.out extension) and the results indicated are read back into 12d via the xpx file.
In addition to the results, the following input data is read back into the 12d model so that it may be exported back to RATHGL in the future (if required). 100% of your RATHGL data is not included in the XPX formats and the contents of the XPX file will depend upon your design mode. Therefore, use caution if you read an XPX file into an existing RATHGL model and check your data once inside RATHGL.

1. From within RAT-HGL, produce an XPX file for 12d to read by selecting Special=>Export Data and following the default prompts.

2. From within 12d, select the Import/Export button on the Drainage Network Editor. The fol-
lowing panel will appear.

Select to select RATHGL or XP-SWMM.

Select the file name specified in step 1.

Select Import.

Select Run to update the drainage model and import hydraulic/hydrological results.
23.6.1 Running Micro Drainage - WinDes

See also Drainage overview

Basic Check List

1. All manholes must have a unique name (they become nodes)
2. Only one outlet allowed in the drainage model
3. First export should have “Export default catchment/pit/overland parameters” selected
4. First export should have “Export pipe diameters and Inverts” selected
5. Outlet conditions must be set in Win DES.

23.7 Micro Drainage - WinDes Requirements

Pit - Pipe names

The pipe names are used in the WinDes interface NOT the pit names. Therefore the pipes are often named separately to follow the WinDES required naming convention.

12d string names

The trunk line drainage string must be named “1” and then moving from upstream to down stream the branch line strings increase 2,3,4 etc. If the branch lines have sub branches then they are named in a similar upstream to downstream sequence. The sub branch string are named before moving downstream on the trunk line. If this string numbering system is not followed 12d will renumber the strings and request the user to run the drainage misc utilities to rename the pipes and pits.

12d pipe names

The trunk line pipe segments start at the upstream end at 1.000 and increase downstream (1.001, 1.002 etc). The assign pit names will automatically name the pits for you if you have followed the string naming convention discussed above. “Number of digits” must be set to 3 to ensure the leading zeros are used.
The panel below shows the naming convention.

![Drainage Network Editor: Set Pit Names](image)

12d pit names

The pit names may be set to any desired naming convention. Using the same names as the pipes makes the pit/pipe identification easier for the user but it is not required. As of April 2007 the maximum length is 8 characters but Windes is planning to remove this restriction.

The *.sws or *.fws files may be open directly inside WinDes.

23.8 Global /default variable mapping

The default 12d drainage mapping file maps the following Windes data
23.9 Additional Notes

Pipe Resizing

Pipes are automatically resized when opened in Windes and the sizes used are from the specified *.pip file (standard.pip by default).

When locked pipe sizes are sent to Windes the pipe sizes can be increased but not made smaller.

Pit Resizing

Pit diameters are automatically updated by Windes depending on the size of the attached pipes. This resizing is determined by the Windes file, standard.mhs.

23.10 Open channel drainage design.

Win Des can (hydraulically) model any shape of conduit. The conduits are given numbers between 1 and 100. 12d selects these conduits by setting the pipe type to WINDES (case sensitive) and pipe diameter to the WinDes conduit number divided by 1000. (examples 0.032 indicates WinDes conduit 32).

12d can create the conduit shape by applying a template to the drainage string. The user must create a template with the same name as the WinDes shape number (32 for example). The templates are created from the main menu

Design->Template->Create Edit

For more information about template design please refer to the 12d training manual.

Once the template has been created it is applied to the drainage string to create the cross sections and strings to represent the conduit shape.

From the main menu Design->Drainage-Sewer->User->Drainage Volume Calculations

For more information see Drainage line excavation volume calculations.
23.10.1 Drainage Excavation Quantities

Position of option on menu: Design => Drainage => Reports => Excavation Quantities

See Also
Drainage overview

This routine uses 12d templates to calculate the excavation volume for all of the drainage strings in a model. An option to create section for a tin on top of the pipe is also available so that the drainage long sections can include hatching between the obvert of the pipe and the design tin under roads.

Templates with names set to the pipe diameters (times 1000) are used for the calculations, thus trench shapes can be customised and over excavation for bedding materials can be included. Net area calculations to exclude pipe area are not supported.

Key points
1. One template for each pipe size (mm)
2. If obvert templates are used, add the prefix “obvert “ to the pipe size
3. Carefully consider the tin selected.

A template must exist for each pipe size in the model (pipe size x 1000). For example a 0.3m pipe will require a template to exist named 300. A 0.5ft pipe would require a template named 500. A sample template library is included in the 12d library in the file pipe_template.tpl.

The templates are run along the strings and the total volumes are reported. Volumes for each strings are given in the report file.

If a tin is created from these strings then volumes by depth can be determined using Design=>Volumes=>Exact=>Tin to tin

On selecting the Excavation quantities option, the Drainage Excavation Quantities panel is displayed.

The fields and buttons used in this panel have the following functions.
### Field Description	Type	Defaults	Pop-Up
Drainage model | input box | |
Model to contain all of the pit and pipe network to be worked on.

Strings model | model box | |
Strings generated from the templates will be stored in this model

Sections model | model box | |
Sections generated from the templates will be stored in this model

Report name | input box | |
Cut and fill volumes will be sent to this report

Ground Surface Tin | tin box | |
Tins from which the volumes will be calculated

Separation | real box | |
Distance between the sections

Sections colour | colour box | |
Sections generated from the templates will be assigned this colour (strings colours are defined in the templates)

Clean section/strings model | tick box | |
Delete the strings in these models before processing.

Stop section at edge of pit | tick box | |
Template are run from pit centre to centre if this is not selected. The templates stop at the edge of the pit if selected. This is often selected with the following option Use obvert templates.

Use obvert templates | tick box | |
Templates must be named with the prefix “obvert”, i.e. obvert 300. The template is still run along the invert of the pipe but the user now has a section “set” of templates that can be used to create a tin on top of the pipe as well as below.

An example report file follows.
Sectional Information

<table>
<thead>
<tr>
<th>Chainage</th>
<th>Cut Area</th>
<th>Fill Area</th>
<th>Cut Vol</th>
<th>Fill Vol</th>
<th>Cut Volume</th>
<th>Fill Volume</th>
<th>Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>-1.434</td>
<td>0.000</td>
<td>-0.771</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.550</td>
<td>-1.367</td>
<td>0.000</td>
<td>-14.222</td>
<td>0.000</td>
<td>-0.771</td>
<td>0.000</td>
<td>-0.771</td>
</tr>
<tr>
<td>10.000</td>
<td>-1.642</td>
<td>0.000</td>
<td>-15.293</td>
<td>0.000</td>
<td>-14.992</td>
<td>0.000</td>
<td>-14.992</td>
</tr>
<tr>
<td>20.000</td>
<td>-1.416</td>
<td>0.000</td>
<td>-1.845</td>
<td>0.000</td>
<td>-30.286</td>
<td>0.000</td>
<td>-30.286</td>
</tr>
<tr>
<td>21.313</td>
<td>-1.393</td>
<td>0.000</td>
<td>-0.794</td>
<td>0.000</td>
<td>-32.130</td>
<td>0.000</td>
<td>-32.130</td>
</tr>
<tr>
<td>21.863</td>
<td>-1.493</td>
<td>0.000</td>
<td>-15.924</td>
<td>0.000</td>
<td>-32.924</td>
<td>0.000</td>
<td>-32.924</td>
</tr>
</tbody>
</table>

Total Cut: -32.924
Total Fill: 0.000
Balance: -32.924
Excess of Cut over Fill: 32.924
23.10.2 Attribute Editor

Position of option on menu: Design => Drainage => More => Top Ten attributes editor

Most of the detailed catchment data is stored within 12d as user defined attributes. These attributes are automatically created by 12d when required but you are free to change them or add more as desired. The attributes may be exported to a spreadsheet and edited and then imported back into 12d or edited inside 12d using this panel.

See Also

Drainage overview

Usage

From the menu select Design => Drainage => More => Top ten attribute editor

The fields and buttons used in this panel have the following functions.

Field Description	Type	Defaults	Pop-Up
pick string | button | |
used to pick the initial string in a model

string-pit-pipe | choice box | string,pit.pipe |
select the type of attribute to be displayed. Pit and pipe attributes are only available for drainage strings.

attribute name | input box | |
3 top 10 attributes lists are maintained (pit, pipe and string). The attributes that you can select from are all of the attributes that exist on all of the strings in the model. If the attribute does not exist for the
string/pit/pipe that you are displaying the data field will display Not found.

type choice box Text, Real, Integer

for existing attributes this will display Text, Real or Integer.
When defining a new attribute select the type of data to be stored in the attribute.

data input box

the data stored in the attribute is displayed/edited/created in this field.

<= prev button

move to next string in the model
 pit on the string
 pipe on the string

next => button

move to next string in the model
 pit on the string
 pipe on the string

process button

updates the attributes displayed in the dialogue.

Notes:

First LB select Pick to select the string that contains the user attributes. All catchment data is stored with the pits in drainage strings. The strings will be highlighted in white when they are selected.

To access the pit attributes LB this field then select Pit. A circle will be drawn around the pit selected.

LB the Attribute Name field and then select from the list of existing user defined attributes. These attributes include all of the attributes in the model that the string exists in. They may not be defined for the string you are editing. If the string does not have that attribute defined not found will be displayed in the Data field.

To change the value for the attribute enter the new value in the data field. If the attribute does not exist, deleting the not found text and adding data will create it. The following message will be displayed whenever you are creating a new attribute.
23.10.3 Delete All Attributes in a Model

Position of option on menu: Design => Drainage => More => Delete all attributes in a model

See Also
Drainage overview

This option deletes all model, string, pit and pipe attributes in the model specified. This option allows the user to "start from scratch" while maintaining the drainage, catchment and bypass flow strings.

Usage
From the menu select Design => Drainage => More => delete all attributes in a model

![Delete Attributes dialog box]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model name</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

the model specified will have all of its attributes and all of the strings attributes deleted

Process button

Deletes all of the attributes

Notes: THERE IS NO UNDO!
23.10.4 Flooded Width Flow Analysis and HEC-RAS

Position of option on menu: Design => Drainage-Sewer => Calc flooded widths

The Calculate Flooded width procedure creates cross sections along the bypass flow paths and then calculates the flooded width at each section using Manning’s normal depth calculations. A HEC-RAS project (same name as the bypass flow string) is also created for each line. The flooded width is indicated on each section as a blue line if it is less than a user defined width and a red line if the flooded width exceeds the limit. Details of the calculations such as the velocity, depth, wetted perimeter and slope can be exported to a spreadsheet for further analyse (velocity times depth calculations for example). The discharges imports from the urban stormwater design packages are shown in the following table.

<table>
<thead>
<tr>
<th>Design Program</th>
<th>Discharge Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCdrain</td>
<td>Minor ARI</td>
</tr>
<tr>
<td>Drains</td>
<td>Maximum flow event analysed</td>
</tr>
<tr>
<td>ILSAX</td>
<td>Maximum flow event analysed</td>
</tr>
<tr>
<td>RAT HGL</td>
<td>First return period analysed</td>
</tr>
</tbody>
</table>

The user defines the length of these sections and the interval at which they are to be spaced. 12d calculates the normal flow depth interpolating the pit approach and bypass flows from the hydrology models (ILSAX, Drains, PC Drains or RAT HGL). The cross sections are taken perpendicular to the flow line and the slope is for the normal depth calculations is determined using the distance along the flow line and the change in elevation between the two lowest points in the primary flow channel. The flow line need not intersect the low points on the section but the flow line does mark the primary flow channel. If the depth of the flow exceeds the banks of the primary channel, then all adjacent flow channels will be considered as active flow area.

On selecting the Calc flooded widths, the Drainage flooded width panel is displayed.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Models and tin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainage network</td>
<td>model box</td>
<td>drainage</td>
<td></td>
</tr>
<tr>
<td>Existing drainage strings must have approach and bypass flow pit attributes. See doco below</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overland flow model</td>
<td>model box</td>
<td>bypass</td>
<td></td>
</tr>
<tr>
<td>Cross sections are cut perpendicular to these existing strings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS tin</td>
<td>tin box</td>
<td>design</td>
<td></td>
</tr>
<tr>
<td>This tin is used to cut the cross sections and to determine the slope for normal depth calcs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xsection model</td>
<td>model box</td>
<td>fwsections</td>
<td></td>
</tr>
<tr>
<td>Model is cleaned before processing. Calculated values such as velocity and slope are stored with these strings.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flooded width bars model</td>
<td>model box</td>
<td>fw bars</td>
<td></td>
</tr>
<tr>
<td>Model is cleaned before processing. Blue or yellow strings with levels indicate normal depth flooded widths.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warning bars model</td>
<td>model box</td>
<td>fw warnings</td>
<td></td>
</tr>
<tr>
<td>Model is cleaned before processing. Strings created when vel x depth exceeds limit.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Variables

<table>
<thead>
<tr>
<th>Variables</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max flooded width</td>
<td>input</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>the limit where the blue flooded width bars turn red</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manning’s n</td>
<td>input</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>The n value to be used in the normal depth calculations.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow correction factor</td>
<td>input</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>The is the factor described in ARR 1987 for calculating depths of flow in gutter channels.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance between sections</td>
<td>input</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>The interval at which cross sections and therefore flooded width will be calculated along the flow path.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section Length</td>
<td>input</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>The length of each cross section. The cross section will be centred on the overland flow path.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trim sections at levee</td>
<td>tick box</td>
<td>off</td>
<td></td>
</tr>
<tr>
<td>Trims the cross section at the crest on either side of the flow channel. A levee point is the crest in the cross section found as you move away from the flow line location.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levee tolerance</td>
<td>input</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>
The amount the cross section needs to drop as you move away from the centre line in order to identify a levee.

VxD warning limit

input 0.6

The velocity times depth limit that when exceeded will cause a flooded width bar to be generated in the warning bars model.

VxD warning colour

colour box orange

Colour of the velocity x depth bars

Process

button

Clean output models, calculate flooded width and create HEC-RAS projects named from the string names.

Finish

button

remove the panel from the screen

23.11 Limitations where overland flow lines join

Where overland flow lines converge at an inlet, 12d does not know the flow split between the 2 approaching paths. Therefore, 12d uses the total flow from all lines as the flow at the inlet for each line. This may overestimate the flooded width along the flow lines at these points.

23.12 Limitations at SAG pits

The flow width are not shown adjacent the sag inlets. The depth of flow due to ponding and the approach flow coming from several directions may overestimated flooded width in these areas. Therefore not flood depths are calculated approaching SAG inlets.

Summary Tables

The hydraulic calculations and warning messages are stored as string attributes on the flooded width bars. If these attributes are exported to a spreadsheet via the clipboard a summary table my be created. To copy these attributes to the clipboard select

File IO->User->String attributes-properties to/from clipboard

The **string model** may be either the flooded width bars or the warning bars. Both models of strings contain attributes on the strings.

The prefix selection and prefix exclusion are filters for reducing the number attributes that are exported to the clipboard.
23.13 Cross Sections, Discharges and Warnings

The analyse flooded width will proceed along each flow path and identify every pit on the line. Cross sections will be constructed in the model with the length and interval entered in the input dialogue. These cross sections may be plotted using the main menu selection Plot=>Xplot=>Xplot. The Sort Sections must not be selected for these sections to be plotted.

Discharges will be determined for each cross section by linearly interpolating the discharge using distance between the pits. The bypass discharge (pit attribute - calculated bypass flow) will be taken from the upstream pit and the approach discharge (pit attribute - calculated approach flow) from the downstream pit.

The slope is calculated by subtracting the lowest points nearest to the centre line and dividing the cross section separation. The levee tolerance is NOT used for locating this point thus any rise in section moving away from the centre line marks the end of the low point search in that direction.

12d will give warning messages in the output window when it encounters the following conditions and these messages will be stored as string attributes on the flooded width strings. Descriptions of these messages follow.

Inverts do not go downhill

12d locates the lowest point (adjacent to the flow line without moving over a local crest) on each cross section to calculate the slope between the cross sections. This message indicates that the downstream minimum elevation is higher than the upstream minimum elevation.

Sometimes flow lines will go uphill. If you have specified an overflow from a SAG location then the flow line will go uphill until it crosses the overflow crest.

If the flow line is not supposed to be going uphill at this section, check to see where the flow line intersects the cross section located upstream of the one identified in the warning message. If it is in a local sag point that is not the lowest point on the section, move the flow line.

The program will use a slope of 0.5% to calculate a width at this location. This results in very wide flooded width sections to draw the user’s attention to the problem area.

Vertical Walls Assumed at the Ends of the Cross Sections

If the depth of flow exceeds the ground surface elevation at the ends of the cross section a warning message the warning message shown above is shown. The cross sections causing the warning follows.

The vertical wall is placed at cross section chainage –20. Note that the flow line is always at chainage 0.
23.13.1 Convert Drainage String to Polyline

Position of option on menu: Design => Drainage => More=> Convert drainage string to polyline

See Also

Drainage overview

All drainage strings in the specified model are exported to a 12da file. When this 12da file is imported back into 12d Model the strings will be converted to polylines. Import the strings using

File_io=>Data Input=>12da/4da data

Specify a prefix for the model when it is read back in. Otherwise the strings will be placed in the same model as the originals.

Usage

From the menu select Design => Drainage => More=> Version 6=> Convert drainage string to polyline

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage model name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4D ascii file name</td>
<td></td>
<td>Drainage data,4da</td>
<td></td>
</tr>
</tbody>
</table>
drainage model name
input box
Drainage model containing the drainage strings

12da file name
input box
drainage data.4da
A temporary file that will hold the converted string data.

process
button
Exports the drainage strings and converts the file to polylines.
23.13.2 Drainage.4d file

A sample pit entry in the drainage.4d file is as follows:
Enhancements have been made if exporting to the Drains program. See Pit Families and Pit Groups
The drainage.4d file controls many of the settings for the pit and pipes types inside 12d. This section details the format of the drainage.4d file. Changes to this file take effect only after 12dmodel has been restarted. If there are any errors in the drainage.4d file they will be listed in the output window at startup (just after the shp file listing). The error in the drainage.4d file is generally located just above the line indicated in the output window.

All text to the right of the // is ignored by 12d (comments). There are pit and pipe type definitions. Because of historic reasons the pit types are defined using a Manhole command.

Many of the settings in the drainage network editor (DNE) can be controlled by the pit types and the pipe types defined in the drainage.4d file. The special manhole attributes defined below control these fields.

The original drainage.4d file is found in the “program files\12d\12dmodel\10.00\set_ups” directory. Do NOT change this file. Copy it into your user folder “\12d\10.00\User” and edit it there. Files in the user directory are used by preference and they are never over written by a 12d update.

Two Point Dynamic Profiles

If at any time you want to obtain a temporary section view, 12d has a dynamic profiling capability (2 point profile). First, add your tin design model to the section view.

Next RB on the section view title area and then LB select 2 points. The following panel will appear.

Select Start_End pts to begin and then pick/accept a point on a Plan View Now as you move your cursor the section view will be dynamically updated (the dynamic box should be checked on and a surface tin model added to the section view). When you obtain the cross section you want LB select then accept (MB) the second point.

LB select Finish when done.
23.13.3 ILSAX Editors

Position of menu: Design => Drainage => More => ILSAX Editors

The ILSAX editors walk-right menu is

See ILSAX Pipe/Catchment Editor
See ILSAX Rainfall File Editor

23.13.3.1 ILSAX Pipe/Catchment Editor

Position of option on menu: Design => Drainage => More => ILSAX editor => ILSAX pipe editor

See Also
ILSAX Rainfall File Editor
Drainage overview

The ILSAX pipe data editor allows the user to edit pipe and catchment parameters. Most commonly used functions are supported but some of the less used functions are not included at this time. The same names have been used as those in the ILSAX drainage manual for easy reference.

Unlike the rainfall editor, all of the data in the pipe data editor is stored with the drainage string as user attributes. These user attributes can be changed using the editor (recommended for the novice user) or they may be output to a spreadsheet, changed and then read back into 12d.

CAUTION: If the drainage string is deleted then all of the attributes are deleted at the same time.

Usage

The ILSAX pipe data editor is accessed by selecting Design => Drainage-Sewer => More => ILSAX Editors => ILSAX Pipe file editor. The following dialogue will appear.

The panel to the left is only and example of what the editor panel may look like. This dialogue will change in size and complexity depending on the check boxes selected. The left side of the dialogue is reserved for pipe and pit data while the right side contains catchment data. The first step is to select the drainage string to be edited. Click on Pick drainage string and then select the drainage string from one of the views.

There are two ways to move between pits. The Prev pit and Next pit will move the user between the pits with the current pit name been shown in the Change pit name field. Do not use the Change pit name
field to move between pits. It will not work! This field is used to manually change the pit name. Entering the **pit number** and pressing **Enter** is the second method for selecting pits. This is a good way to move between pits on long drainage lines (from pit 20 to pit 1 for example).

The **pipe diameter** will change the diameter of the pipe leaving the pit in the direction of increasing chainage. Note that the invert level of the pipe will remain fixed as the obvert level changes.

The most common **Design mode** is 1 for design. This ignores the present pipe size and resizes the pipe as required.

When the **Inlet capacity** and **Bypass pit** tick boxes are checked, additional fields are added to the dialogue. These will be discussed in the section 5.0 above.

The **Catchment Detailed** and **Comprehensive** tick boxes also add additional fields to the dialogue. Again, the ILSAX drainage manual contains detailed descriptions of these parameters.
23.13.3.2 ILSAX Rainfall File Editor

Position of option on menu: Design => Drainage => More => ILSAX Editor => ILSAX rainfall file editor

The ILSAX rainfall file editor assists in the creation and editing of the ILSAX rainfall files. It is truly a file editor and no data is stored inside the 12d Model. Most common features of the ILSAX rainfall file are included but some have been omitted as they have been rarely used. The files can be created using the editor and then manually edited using a word processor if required.

See Also

ILSAX pipe editor
Drainage overview

Usage

This panel is accessed from the menu selection Design => Drainage => More => ILSAX editors => ILSAX rainfall file editor

The Rainfall file name must be specified before the Read or Write buttons will operate. If you want to create a file, fill in the Rainfall file name field and then LB select Write to save the data.

Intermediate Files and Separate Rain/pipe files must be ticked to have ILSAX run within 12d. The minimum value for Num Rainfall Events is 1.

The remaining data in the left column is the data for the ILSAX R3 and R4 cards and the data in the right column is the data for the ILSAX R2, R6, R6B and R8 cards. Please refer to the ILSAX manual for a description of these values. The fields are not in the same order as the ILSAX files but instead the fields at the top of the column are those changed most frequently between rainfall events.

The Prev Rainfall and Next Rainfall buttons select the rainfall events up to the number specified.
in Num rainfall events. If you wish to add or decrease the number of events analysed change the Num rainfall events value.

CAUTION: the Finish button does not perform a save so make sure you click **Write** before Finish.

The fields and buttons used in this panel are described in the ILSAX users manual.
23.13.4 PCdrain to 12d pit converter

Position of option on menu: Design => Drainage Sewer => More=>Create Pit type from PC Drain gully files

This option is used to read a PCdrain gully file and create the same pit type in the 12d drainage.4d file. The sag pits in the gully file have an “S” added as a suffix as they are imported. Important: 12d must be restarted to see the new pit types.

See Also

Drainage overview

Usage

This panel is accessed from the menu selection Design => Drainage Sewer => More=>Create Pit type from PC Drain gully files

![PC Drain to 12d pit converter](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCdrain pit file</td>
<td>file box</td>
<td>the PCdrain gully file to be imported into 12d</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td>import the data file</td>
<td></td>
</tr>
<tr>
<td>Finish</td>
<td>button</td>
<td>removes the dialogue from the screen</td>
<td></td>
</tr>
</tbody>
</table>
23.13.5 Calc pit overflow areas

Position of option on menu: Design => Drainage Sewer => More=>Calc pit overflow areas

This option is used to graphically display the overflow storage volume at a sag pit. The following pit attributes must exist for the flood extents to be calculated.

- **overflow volume**: value greater than zero required.
- **sag pit**: must be equal to 1.
- **catchment model id**: set by labelling catchments
- **catchment string id**: set by labelling catchments

The maximum storage volume is read from the drainage pit attribute "overflow volume". This may be entered manually using the **Attribute Editor** or it will be created when data is read from the drainage design programs Drains or XP SWMM design programs.

This routine locates the lowest point on the catchment string by draping the string on the tin specified and adds the overflow limit specified to this value. This becomes the **overflow limit**.

The volume at this level is calculated and the compared to the overflow volume read from the user defined attribute. If the overflow volume is less than the volume in the catchment then the routine iterates to find the flood level for the overflow volume.

If the overflow volume is greater than the volume in the catchment, the results depend on the **Use overflow limit** tick box.

If the box is selected, the overflow limit (calculated above) is reported at the flood level in the catchment.

If the tick box is not selected, the routine iterates to find the flood level where the storage equals the overflow volume read. This option allows the user to see the maximum flood level should the catchment low point become blocked.

See Also

Drainage overview

Usage

This panel is accessed from the menu selection **Design => Drainage Sewer => More=>Calc pit overflow areas**

![Pit Volume Calculator](image)

The fields and buttons used in this panel have the following functions.
<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage model</td>
<td>model box</td>
<td>all pits in this model that have a non zero "overflow volume" and "sag pit" set to 1 will be processed</td>
<td></td>
</tr>
<tr>
<td>Flood limits model</td>
<td>model box</td>
<td>flood limits strings will be created in this model</td>
<td></td>
</tr>
<tr>
<td>Surface Tin</td>
<td>tin box</td>
<td>ground surface tin used to calculate the volumes and flood limits</td>
<td></td>
</tr>
<tr>
<td>Flood limits colour</td>
<td>colour box</td>
<td>flood limits strings will be created using this colour</td>
<td></td>
</tr>
<tr>
<td>Clean limits model</td>
<td>tick box</td>
<td>if selected all strings in the Flood limits model will be deleted before the calculations commence.</td>
<td></td>
</tr>
<tr>
<td>Use overflow limit</td>
<td>tick box</td>
<td>if the elevation calculated from the storage volume is higher than the lowest point on the catchment string then the allowable surcharge value below will be added to the lowest point on the catchment string and this elevation will be used to determine the flooding limits</td>
<td></td>
</tr>
<tr>
<td>Allowable surcharge</td>
<td>real box</td>
<td>this value is used only if Use overflow limit is ticked. Its purpose is described in the field above.</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td>executes the option.</td>
<td></td>
</tr>
<tr>
<td>Finish</td>
<td>button</td>
<td>removes the dialogue from the screen</td>
<td></td>
</tr>
</tbody>
</table>
23.13.6 Drainage to Zip

Position of option on menu: Design => Drainage-Sewer => More => Drainage to zip

This zip routine is intended for support purposes only. It will save your project! This function zips up project views and only the models and files related to the drainage model.

On selecting the Drainage to zip option, the Drainage to Zip panel is displayed.

![Drainage to Zip panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage model</td>
<td>This model and the related models through the drainage network editor will be zipped into one file.</td>
<td>model box</td>
<td>drainage.zip</td>
<td></td>
</tr>
<tr>
<td>Zip file</td>
<td>This zip file is intended to be sent to support personnel.</td>
<td>file box</td>
<td>drainage.zip</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>Saves the project and creates the zip file</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finish</td>
<td>remove the panel from the screen</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.12d Model Drainage Modules and Work Flow

12d Model has a suite of drainage modules for stormwater design. This course covers the items listed below on this page except 24, 25 and 28.

1.1 Drainage Module

Part A - Locate Structures and Connect the Pipe Network

1. Obtain/create Survey data and design surfaces (TINs) for pipe and manhole levels,
2. Identify overland flow paths and drainage inlet structure locations,
3. Set drainage default for the pits and pipes (most common settings, they may be changed later).
4. Read a drainage model template file containing you default and global settings.
5. Create the drainage strings in 12d or convert strings from CAD.
6. Assign pit names using the DNE. This allows easy reference to the structures.
7. Change pit and pipe types where they are different from the default values
8. Link the drainage model to the road design models for an integrated design.
9. Check and adjust horizontal alignment of the pipes and pits.
10. Set the vertical alignment using the DNE (set pit details and regrade pipes).
11. Check for service clashes and adjust vertical as required.

Part B - Hydrology and Hydraulic Data Preparation

12. Set catchment areas, % impervious, C and tc values for hydrology,
13. Set grate levels, Ku methods (pit and culverts), pipe roughness etc for hydraulic design
14. Draw/create bypass flow paths if bypass/inlet capacity calcs are required.
15. user defined export and update interfaces with Drains, PCdrain, Micro drainage-WinDes, RAT2000 and XP SWMM/STORM.

Part C - Design Documentation

16. Print pit schedules and plan/long section drawings for construction,
17. Import and Export the network to spreadsheets,
18. Calculate network quantities (by depth ranges) for costing and system checks,
19. Calculate earthwork excavation volumes,
20. Repeat as required for design changes,
21. And of course peer review at various points of design,
22. Electronic models for survey setout.

1.2 Drainage Analysis Module

Part D - Rational Hydrology, Surface Flow Calculations and Pipe Hydraulics

23. Calculate rational hydrology peak discharges,
24. Normal depth surface flow hydraulics using channel sections cut from the ground surface. Results are shown in plan, section and 3d views (and reports) with warnings given for exceeding max widths, channel capacity and velocity x depth hazard conditions,
25. inlet capacities at sag and on grade locations determine bypass and pipe flows,
26. HG1 calculations use pipe and manhole losses (Ku/Kw). Pipe are sized using either freeboard or flow depth methods. This includes full culvert design with backwater and inlet control calculations.

27. Review results in plan drawings, long sections and printed reports,

28. Analysis of the major flood event and checks for surface flow and hazard conditions.

1.3 Dynamic Drainage Module - Unsteady flow analysis

This module uses ILSAX and SCS hydrology together with the solution of the unsteady flow equations to analyse the network. Inlet capacity charts are used to analyse surface and subsurface HG1 lines. Natural channel shapes and elevation-area curves for basin are created directly from the ground surface. User defined reports are created via the spreadsheet interface.

1.4 TUFLOW and Roadflow Modules

These modules use the TUFLOW engine (1D/2D hydrodynamic computational engine) for simulating free-surface water flow for urban waterways, rivers, floodplains, estuaries and coastlines. Using tools including 12d grid tins and the 12d TUFLOW control file editor the 12d, TUFLOW input data is created, edited and viewed all within 12d. This module may be combined with the dynamic drainage module for a coupled 1D/2D analysis to include pipes and culverts.
2.12d Model Stormwater Courses

In these documents, the generic term pit refers to manholes, inlets and catch basins. When the term manhole is used on the 12d menu system it refers to any type of pit.

2.1 Stormwater Design Part 1

These notes are for this course designed to cover creating drainage networks, rational method design and reporting.
- create a super tin for pipe cover and pit cover levels,
- set Defaults and layout a drainage network from CAD and in 12d,
- use the 12d Drainage Network Editor to assign names to the pit/pipes, avoid service clashes, grade pipes, align obverts, minimise depth and many other design tools,
- designate catchment areas and produce catchment plans,
- run the 12d storm rational hydrology and hydraulics engine,
- transfer data to and from electronic spreadsheets to enable the user to easily review the data and add user defined data to the 12d pipe network. This data may include such data as pipe bedding types and trench width,
- create a drainage template containing customised default design parameters,
- create pit setout schedules to export to spreadsheets or word processors for final formatting,
- produce long section drainage profiles including HGL data, flows, invert levels and service crossings,
- create plan drawings with pipe sizes, flows, pit symbols, linestyles for pipe sizes, design parameters for pit and pipes and user defined data,
- locate pits/manholes at exact chainage and offset locations.

2.2 Stormwater Design - Part 2

This course continues on with surface flow analysis, inlet capacity and bypass flow and customising the 12d drainage setup file (pit and pipe type database).
- customising the drainage.4d file Drainage Definitions - Manholes and Pipes,
- 12d storm analysis with inlet capacity calculations and bypass flow,
- flooded width analysis and flooding at SAG pits,
- drainage trench excavation volume calculations,
- pipe and pit quantity calculations/reports,
- open channel calculations,
- adjusting pit locations for changes in horiz road geometry
- analysing the major flood events,
- creating drainage symbols with grates and upstream side inlets,
- detailed drainage plan labelling and long sections with hatching under roads.

2.3 Stormwater Basin Design Hydraulics and Hydrology

- The course discusses unsteady flow hydraulics and their use in the design of storage basins and tanks.
3. Using the Course Notes

Areas marked in yellow (grey for black and white prints) are the exact steps required to complete the tasks. The numbers in the panels are the order to preform the tasks and they are always written to the right of the button, drop down or data field.

The additional text explains in more detail the tasks you are preforming.
4. Customising 12d Model Drainage

12d Drainage has a series of files that customise your drainage components and design process. These includes:

- drainage.4d (required)
 - manhole types and properties
 - pipe types and properties

- drainage model template
 - contains global and default settings for the drainage network. Including references to the following files.

- cover files
 - specify pipe cover for each pipe type

- grade file
 - specify pipe/channel slope by height

- drop file
 - specify drop across manholes by deflection angle

- catchment file
 - specify polygons for 3 land use types

- road design file
 - link manholes to strings to determine x,y,z coordinates

- services file
 - specify clearance tolerances for models of service crossing.

The drainage.4d file has been configured for the training version. However, when you start working on your projects you may want to customise the drainage module. More - Customising the drainage module

The drainage.4d file is the required drainage setup file that contains:

- manhole and inlets with wall thickness and inlet capacity curves for ongrade and sag conditions

- pipe types (RCP, Class 2 etc.) with nominal pipe diameters and wall thicknesses,

- user defined attributes lists to be assigned to the network via pit and pipe types.

- manhole and pipe type parameters are used to control settings in the DNE. This allows the user to set numerous properties by selecting only the pit or pipe type. More.
5. Survey data and design surfaces (TINs)

We will start a 12d project from the beginning by first creating the project and then reading in the survey and design data. The data can then be triangulated so that we have a final surface to measure pipe cover from and set structure cover levels to.

Start up the 12d model by selecting the 12d icon from your desktop.

The project selection panel will appear. The bottom corner of the panel is shown below.

1) **LB** to browse to the working folder indicated.
2) Type a project name for your work *Stormwater Part 1 all* for example.
3) Select **Proceed**.

Alternate Step 2. If you do not want to create the tin or roadway then select the existing project *Stormwater Part1* found in the courses\drainage folder. Skip to the section *Drainage Overland Flow Investigation* or go straight to *Read in a drainage model template*.

12d will first look in your working folder for any input data files and output files will be created here unless you specify another folder. 12d stores it’s data in a folder not a single file. Therefore, a folder named *Stormwater Part 1 all* will be created when you select **Proceed**.

12d model will load and you will see the following panel.
5.1 Importing the Raw Survey Data

You have created a new project into which we will import the survey data. From the main menu select:

File I/O->Data Input->12da/4da data

1) LB the folder icon to display the file list. Select the file existing survey.
2) LB Read to read the data
3) LB Finish to remove the panel

The data will appear on a new plan view.

Enter data as desired. This data is both for reference and can be included on your drawings.
Later these details can be changed via Project=>Management=Details Editor
5.2 Creating the existing Ground Surface

From the main menu select

Tins=>Create=> Triangulate data

Now we will display the z values for the survey data.

1) LB the toggle button
2) LB Z values

Use your mouse wheel to zoom in and read the z values. Press Ctrl and Middle mouse drag to pan

1) Type a name for the function to make it easy to recalculate later in new data arrives.
2) Type a new tin name then press Enter
3) Type grass2 instead of green. This will look better in the visualisation.
4) LB Remove Bubbles so that breaklines will attempt not to form triangles back onto themselves (if the breakline is a contour, this removes contour bubbles).

Preserve strings will make one side of a triangle follow the string thereby preserving the levels along the string.

Weed tin removes all duplicate points from the tin database.

The Cell method is a good speed enhancement for data that is in a grid type pattern.

Triangle data is used for string that form triangles (tins imported from other programs).
5.3 Viewing the Ground Surface Tin

The tin will be shown with the tin edges turned on. This is the default when you have all tin display modes turned off.

The tin will be stored in the model tin existing. A tin, like all 12d strings, must be stored in a model. 12d prefixes all its tins with tin for data management.
Display Contours
1) LB the toggle button
2) LB Tin contours.

The contours are displayed with their default colours and increment (1 unit).

Display Flow
1. LB the toggle button
2. LB Tin flow.
Flow arrows are now visible at the centre of every triangle.

To plot flow arrows, create them in a model using Tins->Tin analysis->Flow arrows

Change Contour Intervals and Colours
1) LB the View menu button
2) Walk right (do not LB select) on settings.
3) Walk right on Tins.
4) LB Contours

4) LB Contours

ShortCut! Press F11 to display the Menu shown in step 4
Change the Flow Arrow Length and Colour

Select the Menu button on the plan view tool bar and then walk right on.

Settings=>Tins=>Flow Arrows and the following dialog will appear. Remember to walk right!

5.4 Inquiring about Heights on the Surface

The elevation anywhere on the tin can be obtained by simply moving the pointer over the desired spot. To obtain the tin elevations select,

Tins=>Inquire=>Height

If you do not select a tin, the last tin added to the view will have its height displayed. You will see the data
in the panel change as you move the pointer around the screen. You may explicitly select a tin if another tin is desired.

Move the panel to the bottom right corner of the screen and leave it there.

5.5 Viewing the Surface Tin in a 3d Perspective

To create a 3d perspective view select

View=>New=>Perspective Open GL

1) Add the model tin existing to the view.
2) Toggle the contours on.
3) Toggle the shading on (note that the contours are no longer seen).
4) Use the Orbit control (planet on the toolbar) and zoom wheel to move around the view.

5.6 Reducing the number of points for the 12d Practice Version

We can delete the survey data to save space for those using the practice version of 12d. If you have a full version of 12d this is not required. From the main menu select.

Models=>Delete=>Delete a Model

and the following dialog will appear.

1) LB the model icon and select EXISTING SURVEY
2) LB Delete and then confirm each panel
3) LB Finish

The model is now in the 12d trash can (see bottom right corner of the 12d screen).

5.7 Importing the Road Design Centre lines

Repeat the process of importing 12da data.

File I/O->Data Input->12da/4da data
5.8 Using Create Roads

We are going to create the roadways from the road centre lines (vertical grading has already been done). First we will need the road templates that we will read from a templates file.

File IO=>Templates input

Now we are ready to create the road strings and design tin.

Design=>Roads=>Create=>Create Roads - Manager
1. LB **Function** and select the **create roads** function. This has all of the road design details included in it.

2. LB the **Create** button

3. LB the **Finish** button.

4. Add **tin design** onto the plan view.

To view the road strings, add on all of the **road ** models to view 3. To view the tin add on the **tin design** model. You can also add the **tin design** model onto the perspective view. **Important:** On the OpenGL perspective view, 12d will show the tin data with the greatest z values (when viewed from the top side). Rename view 3 to roads to help organise your work.
5.9 Creating a Super Tin from the Survey and Design Data.

The drainage fs tin may be used to set pipe invert, pit levels, sag catchment overflow points and catchment slopes for tc strings. Therefore, the tin often needs to include several tins combined into one tin. To create a tin that is the combination of the survey data and the road design data you will need to create a 12d super tin. From the main menu

Tins=>Create=>supertin

- The order of the tins is very important. Tin 1 is the first to be drawn then tin 2 is drawn. i.e. wherever tin 2 exists it will be used. If there is no tin 2 at a location then tin 1 will be used.

5.10 Changing the Colour of a Tin

To emphasise the super tin is just the tins “glued” together, we will change the colour of the existing tin and see how the super tin changes colour as well.
Toggle the **Tin solid** on and note the colours of the super tin.

Tins=>Colour=>Colour of tin
1. LB tin icon and select the **existing** tin
2. LB colour icon and select **dark green**
3. LB Colour
4. LB Finish
6. Drainage Overland Flow Investigation

Where a drainage designer chooses to start their design is depends a great deal on the project and the designer. Identifying overland flow routes, with the crest and sag points, is essential because it is on these routes that the inlets are to be placed. Inlet structures are then placed at the critical locations (sag points, flattening of grades, intersections, upstream of pedestrian crossings etc.). and then the spacing of additional inlets is determined by the size of the catchments. Finally, the pipe drainage system can be created linking the drainage structures.

Following is a list of 12d tools to identify surface flow routes:

- Change the Flow Arrow Length and Colour
- Downhill Strings
- Locating Crests and Sag Points
- Rain drop

6.1 Downhill Strings

Roads are generally designed with a flow path in the cross section shape. In this example the roadway has a dual crossfall with kerb and gutters. We will use the downhill strings option to locate all the invert strings, change their line style to a flow arrow, split them at their crest and sag points and ensure the chainage increases in the downhill direction.

From the main menu select

Design->Drainage-Sewer->Downhill strings

1. type Road*Strs (it is case sensitive). These are the models that contain all of the road strings. Road 1 Strs for example.
2. type *inv. The road string models have a linv and rinv string for the invert of the kerb and gutters.
3. type dr overland flow to create a model for the new strings
4. Select Run
5. add the model dr overland flow onto the roads view.

6.2 Locating Crests and Sag Points

This step will place tick marks at the crest and sag points of your kerb strings and label them with the levels.

Strings =>Label => Chainages
Add all of the models beginning with Road onto plan view 1.

1. Select the filter button
2. Select the View tab
3. Select the Roads view
4. Select the String Info tab
5. Type *inv to so that the linv and rinv strings will be selected.
6. Select Filter Select to select the inv strings to be labelled.
7. Select crests/sags from drop down list.
8. Enter a model to contain the text labels. A ,1 after the model name, requests that the model be added to view 1. This saves you adding the model to the view later to see the labels.

9. Select icon to define the text style.

10. Untick **Chainages**

11. Tick **Heights**

12. Select **Label**

13. Select **Marks** tab

14. Select the model used above for the tick marks.

15. **LB** to select **ticks centred** from the drop down list.

16. 10m marks stand out well on the screen.

17. Set colour to **yellow**

18. Select **Label** to create the labels.
6.3 Creating a Filter Favourite

![Image of Label Chainages on String]

1. Before closing the panels, create a filter favourite that can be used later. Select the Star button.

2. Select [Create].

3. Type drainage invert.

4. Select Create.

5. Select Finish. The favourite is now created for later use.

Select Finish to remove the panel.

Now add the model dr crests and sags onto the roads view.

6.4 Rain drop

The raindrop routine will create a line from a selected point and follow either up or down the tin.

From the main menu select

Design->Drainage-Sewer->Rain drop

Try selecting several points on the tin to see the flow lines that are created.
7. Setting Drainage Defaults (Initial Settings)

Before creating drainage strings in 12d we should set default values for the pit and pipes. These defaults are only used as initial settings for new manholes and pipes. This ensures that most of the pit and pipes will have the desired type, size etc and then we only need to modify the pit and pipes that are different to the default values. The defaults for the drainage network are accessed through three panels; pipe defaults, manhole defaults and Tin defaults.

7.1 Tin Default

The 12d drainage module is designed so that no levels need to be manually entered into the drainage system (although they can be and locked if desired). The primary source for these levels is a design tin but levels from design strings and polygons can be used as well.

Design => Drainage-Sewer => Defaults => Tin

The default TIN is used to set the initial manhole cover level and the pipe invert levels (via pipe cover or depth settings discussed later). Super tins may be used if you want to place manholes on both the existing and the design ground surface (see Creating a Super Tin from the Survey and Design Data).

1. LB the tin icon and select the combined tin.
2. LB the Set button
3. LB the Finish button.

If you place a pit outside the tin boundary:
1. then no elevation will be set for the top of the pit, (it can be set later manually or by linking it to a road design string).
2. Pipe invert levels cannot be set using the default cover. Pipe invert levels must be set manually as 12d cannot automatically determine cover levels without a TIN.
3. Finally, if you are exporting to an external drainage design program that accepts surface levels along the string, then an error message will be displayed at export time. The message will say that the surface level string is shorter than the pipe length.

7.2 Manhole (Pit) Defaults

Design => Drainage-Sewer => Defaults => Manholes

Notes on pit Diameters

The pit diameter/size is specified in metres/feet not mm/inches. The size of the pit is generally set in the drainage.4d file as either circular (mhdiam) or rectangular (mhsiz). If both commands are specified then the mhsiz command takes precedence. Plan drawings may use a symbol via the drainage plot annotations. The Diameter is used for:
1. for visual service clash identification in long section drawings,
2. to clip the pipe lines drawn in the plan annotations so that symbols can be inserted in the space created,
3. maximum distance the bypass flow strings can be drawn from an inlet centre.

The minimum drop will be used to set the invert level of the outlet pipe relative to the invert level of the inlet pipes. The drop should always be entered as a positive value. The DNE has many more options for aligning the pipe inverts at the pits. The drop may vary with the pipe deflection angle via the DNE->Defaults->Pipe->Drop file.

Setting the default name to New is a good reminder that you have not confirmed the pit type. Use the Set Pit Names function on the DNE to assign the pit names.

The pit type list is obtained from the drainage.4d file. Set this to the most common pit type and then later change the ones that are different using the DNE.

You must click the Set button to set the default values. Finish alone will not set the defaults.

7.3 Pipe Defaults

The pipe diameter is set in metres or feet not mm or inches. Set this to a common pipe diameter for your project then alter other pipes or change to box culverts in the DNE.

Pipe Thickness for Pipe Cover

When 12d set the pipe inverts it checks the minimum cover from the top of the pipe to the finished ground surface at the ends of the pipe. Pipe thickness is changed by pipe type as defined in the drainage.4d file.

Cover = surface level - thickness - diameter(height) - invert

If the grade of the pipe is less than the minimum grade, the grade of the pipe is increased. The DNE has a pipe grade file where the minimum grade may be changed via the pipe diameter.

Finally, 12d checks if there is anywhere along the pipe length that has less than the minimum cover. If there is such a low point in the design surface, the pipe is shifted vertically downwards to achieve the cover.
required. The **DNE** has a pipe cover file that will change the pipe cover via the pipe type. If the pipe type is not found in this file then this minimum cover will be used. Circular pipes have the cover checked along the centre line and box culverts along the centre line and edges.

When using the 12d editors to change the pipe diameters the invert levels will remain fixed and the obverts will change. The inverts may be reset using **Regrade Network** on the **network editor**.

The list of available pipe types is set in the **drainage.4d** file.

7.4 String Colour and pit Label Text Size/location (string defaults)

12d can automatically label the pits at a fixed offset from the pit using **view text** OR you can use the **network editor** **Plot** to create text labels that can be moved/rotated etc.

For view text, the default line colour and text size are set by selecting

Project=>Management =>Defaults

The following panel will appear.

```markdown
1. LB **colour** icon to set the default colour of the drainage string and man-hole labels.
2. Type the height of the text in pixels
3. LB the **Set** button. This will set the defaults for this project only.
4. LB the **Finish** button.
```

The manhole label textstyle and offset may be changed via the **DNE->Global->display tab**
Optionally, you may LB the Write button to set the defaults for other projects. The following panel will appear. Selecting Current folder will save ALL these defaults for projects in this working folder only. The defaults set in the user or setups directories will not be used if you select this option.

Selecting User folder will save your defaults so that all other 12d projects will use these defaults. This is the most common option (unless your network administrator has not given you write access to this folder (check Properties in windows explorer).

Select Write then Finish
8. Creating Drainage Strings

We are now going to create a culvert to cross road 3.

Key Points

1. Before creating the drainage strings, read in a drainage model template (Design->Drainage-Sewer->Create->Create/Read template) so that all of DNE settings will set. There is a sample one in the 12d library (drainage_template_QLD.12da). If you forget, do it later but READ A TEMPLATE FILE. We will create one at the end of this course.

2. You will be placing centre of the culvert headwall. The headwall centre is the selection point for the pit. Pipes can be connected this pit Use setout strings for construction setout points!

3. Drawing all drainage lines in the same direction may help you keep your drainage work organised. Either draw all string uphill to downhill (flow same as string direction) OR downhill to uphill (flow opposite to string direction). You can mix the flow directions if desired.

4. The Drainage Network Editor Regrade Pipes is the key to setting pipe invert levels! Use this after modifying the drainage plan layout as it will update all initial grading described below.

However, 12d will perform an initial grading as you draw the string. If you choose opposite to string direction then will need to select Pipe=>Default Grading then Grade to achieve this initial estimate. If you create branch lines before the trunk lines the initial grading will ensure the trunk line inverts remain below the branch line. Regardless, the DNE regrade pipes will sort the grading for all strings in the model.

8.1 Read in a drainage model template

A drainage model template contains your favourite global and default settings for the DNE. These settings are stored as model attributes and the template may be read before or after the drainage strings have been created. Caution: existing default and global setting may be overridden.

You can create your own templates as well. After you have completed a drainage job and all of your global and default settings are set, create a template to save in your user library.

From the main menu select

Design => Drainage-Sewer => Create => Create/Read template

1. Leave as Read.
2. Type drainage to create a new model for the drainage strings
3. LB the folder icon, then lib to locate drainage_template_QLD.12da
4. LB Process to create the model and import the default and global settings.

8.2 Creating the Drainage Strings in 12d

12d has a routine that creates a culvert very quickly. Design->Drainage-Sewer->Create->Culvert. It will also add a channel to the outlet as well! Try this, then the general method discussed below. The culvert is placed in a model culvert and the levels are all set to the manual mode.
A drainage string is created by selecting

Design => Drainage-Sewer => Create->Create

The initial manhole and pipe types will those set in **Setting Drainage Defaults (Initial Settings)**.

1. Type a string name (used for pit naming later).
2. Type a new model name for the network.
3. LB the **Colour** icon and select colour (optional).
4. Leave unless drawing in uphill direction.
5. From the default, leave as is.
6. Existing tin can be used for long section dwg levels.
7. Select if creating more than 1 string.
8. LB the **Create** button, the menu below will appear.

If you have already created a drainage string, click the **Same as** button and select the drainage string to obtain the panel values from that string. After selecting the string, change the string **Name**.

We are going to initially place our head walls on edge of the batters and then fine tune the location later.

To create your first manhole select

1. **Edits => Add/Append MH**. A +MH will appear with your pointer. Refer to the plan below for the headwall locations.
2. LB and accept for the upstream (east) and downstream (west) headwalls.
3. LB the **Finish** button after the last headwall is placed.
8.3 Change Pit and Pipe Types and Sizes

We will use the DNE to change the structures to inlet and outlet headwalls and the pipe to a box culvert.

The drainage network editor is accessed through the main menu by selecting

Design=>Drainage-Sewer=>Network Editor

The bottom section of the network editor panel is shown below. You can change tabs but no data can be entered in the panel until a drainage pit or pipe has been selected and accepted.

The action buttons on the drainage editor now become active.

The pit closest to the point selected is highlighted with a circle and an arrow shows the direction of flow and the pipe being edited (see image below). When the outlet is selected there is no arrow. If the arrow is in the wrong direction or the outlet is at the upstream end of the string see Flow in the Wrong Direction to correct this.
1. Select the **Pit** Tab

2. Note the **Pit type** is already **HW** as we set this as the default. The type may be used to set pit properties. See [Drainage Definitions - Manhole Types](#) in 12d help. If you did not set this as your default ([Manhole (Pit) Defaults](#)) then change it now.

3. Diameter/length is in the direction of the road once it is linked otherwise it is east-west. Width is 90 degrees to this, if width is blank the pit is circular.

4. Select **Apply** to see the changes.

1. Select the **Pipe** Tab

2. Change the **Pipe type** to **BC** (for box culvert). This may be used to set some of the pipe properties. See [Drainage Definitions - Pipe Types](#) in 12d help.

3. Change **Diam/height** to 0.375 and width to 0.600. If width is blank the pipe is circular.
A popup will appear indicating that the pipe thickness will be changed because the pipe type has a different thickness setting in the drainage. Select **Stop asking for this session** and then click **Update**.

8.4 Flow in the Wrong Direction

The direction of flow is used by 12d to determine which end of the string is the outlet and therefore the direction of decreasing invert elevations when regrading the string.

The direction of flow will be indicated with the arrow on the pit when using the **DNE**. No arrow will appear if the outlet is selected. If you find the arrow is pointing in the wrong direction there are 2 methods to access the flow directions.

Method 1: Use the **DNE** to select the string with the flow in the wrong direction and then select the **String Editor** button. From the menu select **Utility->Properties**. Change the **Flow direction** value to the other value. Select **OK** then **Save & Finish**. Now use the **Pick** button to select the drainage network again.

Method 2: Use the **Strings->Properties->String** option from the main menu. Select the string and then change the **Flow direction** value to the other value.
9. Drainage Strings Levels

The **DNE** quickly sets the levels for your drainage network. All the levels can be calculated by the **DNE** or locked with user specified values.

9.1 Pit Levels

Pits have 4 levels:

1. the cover level is used in plotting and pit depth calculations. This is also the maximum obvert level drawn for all connecting pipes.
2. the grate level is used for the freeboard measurements, the surcharge to bypass level and the reference level for pond flooding depths.
3. the setout level is used for survey setout to construct the pit.
4. the sump level (bottom of the pit) is used in plotting and for depth calculations. If set to floating mode, it is calculated from the lowest pipe invert connected to the pit plus the sump offset.

The grate level is the most important level in 12d hydraulics and will be discussed more in those sections.

9.2 Pipe Levels

Pipes have the upstream and downstream invert levels that can set by the minimum grade and cover criteria (see **Vertical Alignment - Pipes**). The invert drop across a pit can also be fixed or change with the deflection angle. At this time we are only concerned with the pipe cover and grade.

9.3 Section View of a Drainage String

Create a section view to profile the drainage string.

From the main menu select

View->Create->Section view

1. Type **Drainage**
2. Select the **Create** button
9.4 Set Pit Details

Selecting Set Pit Details will set the pit levels and setout coordinates for all of the pits in the network using either the default settings for the model or the explicit settings for the pit (if used). Other attributes are set as well but they will be discussed later. A prompt box appears asking you to confirm. Select Yes.
9.5 Regrade Pipes

Selecting the **Regrade Pipes** button sets the pipe inverts for all of the pipe in the network using either the default settings for the model or the explicit settings for the pipe (if used). A prompt box appears asking you to confirm. Select **Yes**. To toggle off/on the confirm request **RB Regrade Pipes**.

Minimum grade and cover are checked and trunk lines are lowered to accept incoming branch lines. Grade is calculated using either the pit centre to centre distance or the end of pipe to end of pipe distance (DNE- >Global **Use end to end pipe length**). Default pipe cover and grade are set on the **DNE Defaults-Pipe** tab and if not found there the **Drainage->Defaults-Pipe** settings are used.

Invert alignment is based on the pipe cover, the pipe minimum grade and the drop across the pit (see **Pipe Grade Modes**). The tin specified in the **Global-Main Finished Surface Tin** box is used for these calculations. Since every pipe that enters the pit may have a different drop mode, the drop mode is set on the downstream end of the pipe, NOT the pit.

If the inverts are locked on the **Pipe** tab then some the design criteria may not be able to be achieved. Messages in the output window will indicate these problems.

Now we will regrade the culvert checking the cover only under the roadway. First select the upstream (east) headwall.

1. Select the **Pipe** tab
2. Select the **Design** tab
3. Type **0.6** to over ride the default cover we set earlier (this is the minimum distance measured from the top of the pipe).
4. Type **2.5** for the Skip cover distances (US and DS). These distances are measured from the ends of the pipe. This will stop 12d from checking the cover in these areas.
5. Select **Regrade Pipe** to reset the inverts.

For circular pipes, the cover is checked along the centre line of the pipe. For box culverts the cover is also measured along the sides. The wall thickness is set via the pipe type and diameter from the drainage.4d file.
9.6 Setout Strings to Align the Headwalls with the Roadway

Now link the headwalls to the roadway so they are perpendicular to the batter slope.

![Diagram of drainage network editor with steps highlighted]

1. Select Global
2. Select Utility Models
3. Type road strings
4. Select the folder icon then Open

![Diagram of road design file with steps highlighted]

1. RB in the Road Strings Model cell and select Road 3 Strs model
 - type *bok so that the headwall will be linked to the closest lbok or rbok string.
 - type 10 as the max distance to search for a string
2. LB Write to save the file
3. Select Finish
4. Select Set Pit Details to create the links to the road strings.

Note: The obvert of the pipe will never be drawn above the grate levels. If the cover or grate level is below the pipe invert you will get an X pipe. Set pit details will recalculate the pit levels and Regrade pipe to set the inverts.
The culvert headwalls now align with the roadway instead of east-west.

Now confirm the manhole link to the road strings (setout strings).

9.7 Adjust Pipe Length

Now adjust the culvert length to an even number of pipe lengths.

DNE string links exist until you manually clear them or you delete the string.
OR you clear the link by RB on the manual pick and select Clear,
OR you clear all road string links via Global->Utility Models->Clear Road Links.
We have a good link so do not do this at this time.

From the main menu select

Design->Drainage-Sewer->More->Extend pipe/culvert
As the culvert appears to be too long we will shorten it to 10 standard lengths (half on both ends).

1. Pick and accept the culvert
2. Change **End to extend** to **high chainage**
3. Change **Standard length** to 2.46
4. Change **Gap length** to 0.010
5. Change **Num pipes** to 11 and press enter. The new length is displayed
6. Select **Process**
7. Select **Finish**

After selecting process, the section view will need updating. Also the pit cover levels are set to the pipe invert level. The next time you press **Set pit details** in the DNE they will be reset using the selected method.
10. Importing Drainage Layouts from AutoCAD

We are now going to import a pipe layout that was drawn in CAD along with the overland flow routes and catchment areas (These could have been created in 12d as well). When these were drawn the following rules were followed:

1. Strings are drawn where the pipes are NOT to setout x,y locations,
2. Polylines are used in AutoCAD,
3. Lines drawn from upstream to downstream (direction of flow),
4. A vertex was placed at every pit location.

To import the AutoCAD drawing, from the main menu select

File IO->Data Input=>DWG/DXF/DXB

1. Select 2012 support
2. LB the folder icon and select the drainage data.dwg file
3. Type a prefix for the models. It will help organise the layers from AutoCAD as every layer goes into a separate model in 12d. Specifying a prefix causes all of the layer names to be prefixed with this text and therefore kept together in the model list. The prefix used is dwg<space>.
4. Enter the null value 0 (no level in CAD value)
5. LB Read button. If you select the Read button more than once the data will be imported again and you will get duplicate, triplicate...etc data.
6. LB Finish

The models that have been created are,

dwg Catchs Future
dwg Catch Lots
dwg Catch Reserve
dwg Catch Roads
dwg network

dwg network is a drainage layout that we will use to locate the pits in our drainage design.

10.1 Checking the String Direction of CAD Network Strings

A quick way to check the direction of the strings imported from CAD is to change the linestyle to a style that indicates the direction.

From the main menu select,

Utilities->A-G->Change
10.2 Create the drainage strings from the CAD strings

Before creating the drainage strings, [Read in a drainage model template] so that all of DNE settings will be set. If you forget, do it later but [READ A TEMPLATE FILE]. If the drainage strings are going to be added to a model that already has the global and default settings set, these strings will use those model settings.

12d will convert the import strings into 12d drainage strings. The default pipe, pit and tin data will be used to set the levels for the network. Do not use the other string convert commands found on the menu system.

Most of the pits will be grated roadway side entry pits (AL2D). Set this pit type as the default.

Design => Drainage-Sewer => Defaults => Manholes

1. LB the Type drop down and select AL2D.
2. LB the Set button.
3. LB the Finish button.

Next from the menu select

Design => Drainage-Sewer => Create => Create from strings

The following panel will appear.
1. Select the existing \textit{dwg network} model
2. Select the \textit{combined} tin. The cover level for the manholes will be obtained at the manhole centres from this tin.
3. Leave as \textit{same as string direction}. The strings were drawn in the same direct as the flow in th CAD program.
4. Select the existing \textit{drainage} model. If this model was not created from the read drainage model template function then you could type the name now and the model would be created.
5. \textbf{Clean drainage model} when selected will delete all strings in the model before the new drainage strings are created.
6. \textbf{Process} create the drainage strings
7. \textbf{Finish} closes the panel

The imported strings must all be drawn in the same direction. Either all in the direction the water flows or all opposite the direction of flow.

- Pits are created at all vertices on the strings.
- Trunk lines must have a vertex where the branch lines join.

Delete the new plan that was created and observe the new drainage strings created (road view).
11. Horizontal Alignment and Drainage String Edits

11.1 Road design strings (centre line) for Adjust Pit Locations

During the design process, roadways are often moved slightly, requiring the pit location to be adjusted. Linking the inlets to the road design strings enables 12d to quickly adjust these locations and create a report of the pit requiring adjustment.

The Adjust Pit Locations routine will move the centre of the pit perpendicularly to a layout string or offset from a road setout string.

Layout strings do not need to be set up in advance but they do not allow for an offset.

Road design strings need to be setup in the DNE but allow an offset from the setout string that can vary with the pit type. Often large pits will be offset more into the footpath or roadway.

Road and layout strings can be used at the same time. If no road string is found, a layout string will be searched for.

In this example, we are going to use the road setout strings not layout strings. We have already linked the culvert headwalls to the road design strings on Road 3. We will now do the same for the roadway inlets so they will align with the roadway and we can offset the centre of the pit a fixed distance from the setout string. This will require a link to the road centre line as well. A positive offset is away from the centre line and negative towards the centre line.

Start the DNE and select the network.

1. Select Global
2. Select Utility Models
3. Select the folder icon then Open
To confirm that the inlets were linked to setout (*bok) and centre line strings,

1. RB in the Road Strings Model cell and select Road 2 Strs model
 type *bok so that the inlets will be linked to the closest lbok or rbok string.
 type 3 as the max distance to search for a string
2. press enter until row 3 is added
3. type * for Centre String ID.
 This wild card will allow a string with any name (blank will not work).
 type 10 as the max distance to search for a string
4. LB Write, then Replace to save the file
5. Select Finish then Set Pit Details to create the links to the road strings.
6. Regrade pipe to set the inverts.

11.2 Log Lines with the Drainage Network Editor

Double clicking on a log line in the Output window will take the DNE directly to the pit the message refers to!

Selecting Set Pit Details and messages are created in the Output Window for information and error checking. If the line of text begins with an exclamation mark it is a log line.
1. Double click on the word PROBLEM.

No road setout string has been found because we have not included the model Road 1 Strs in the Road strings file found on the Global->Utility Models tab of the DNE. The *bok strings in the Road 2 Strs and Road 3 Strs were more than the search distance away.

1. Note: the DNE (if open) moves to inlet NEW.
2. Select the Pit tab
3. Select the Setout tab.
4. Note that the Setout string field is blank

1. Add the new row and complete with the data as you have done before.
2. After Writing the file select Set Pit details.
3. Confirm that I-11 now has a setout string.
11.3 Adjust Pit Locations

Now we can offset the inlets from the bok setout strings. Close the DNE and then from the main menu select,

Design->Drainage-Sewer->Adjust pit locations

1. Select the model drainage.
2. Ensure Use road strings is selected.
3. RB and select AL2D pit type
4. Type 0.450 for the offset away from the road centre line
5. Layout strings and layout search distance are not being used at this time.
6. Select Process and redraw the plan view to see the new pit locations.
7. Select Finish

The message box indicates that 13 of the 18 pits were adjusted. Check the output window for a list of the pits that were adjusted. If no road string is found then the layout string is searched for. Since we did not use layout strings we get the warning messages for 3 of the pits. Note: You will not have pit names assigned yet (Set Pit names (and pipes)) so your names will be just NEW.

WARNING: Adjust Pit Locations - pit "I-07" found no perpendicular layout string within the specified search distance.
INFO: Adjust Pit Locations - pit "I-04" adjusted by 2.610 units.
WARNING: Adjust Pit Locations - pit "I-08" found no perpendicular layout string within the specified search distance.
INFO: Adjust Pit Locations - pit "I-05" adjusted by 2.610 units.
INFO: Adjust Pit Locations - pit "I-06" adjusted by 2.610 units.
INFO: Adjust Pit Locations - pit "I-07" adjusted by 2.610 units.
INFO: Adjust Pit Locations - pit "I-08" adjusted by 2.610 units.
WARNING: Adjust Pit Locations - pit "I-10" found no perpendicular layout string within the specified search distance.
INFO: Adjust Pit Locations - pit "I-09" adjusted by 2.610 units.
INFO: Adjust Pit Locations - pit "I-10" adjusted by 2.610 units.
WARNING: Adjust Pit Locations - pit "I-11" found no perpendicular layout string within the specified search distance.
WARNING: Adjust Pit Locations - pit "I-12" found no perpendicular layout string within the specified search distance.
11.4 Manual Horizontal Alignment - Moving, Adding and Deleting Pits

The most common functions for adjusting the horizontal alignment of manholes and pipes are found on the Strings->Points Edit menu.

The **Append, Between, Delete, Insert and Move** commands are the most common.

The **Move** command has extra options for moving junction pits. Selecting **All points with the same coordinate** will move all points on the view that are at the same x,y coordinate. The point selected will move first and the others will follow **after** the new location has been accepted. **Restrict to selected model** will stop data from other models at the same location from being moved.

The second option

Strings->Edit

... gives you all the same commands and more but requires you to select a string first and the edit commands will be restricted to the selected string.
12. Completing the Intersection Drainage Design

When placing inlets around an intersection, it is often required to place the centre of the inlet a specified distance from the curve so that the grate and/or the side inlet will be located on the straight section of kerb. If there is a pedestrian crossing, the inlet should be placed at a specified distance upstream to be clear of the crossing.

12.1 Placing Marker Points around the Intersection

The place points routine is a fast way to place inlet location markers at a specified location from the curved section of the kerb.

From the main menu select

Design->Drainage-Sewer->More->Place points

1. Select the Roads view as it contains the inv strings where we want the pipes.
2. Type *inv so the linv and rinv strings can be selected.
3. Type the distance from the end of the string or the start of curve where the pit is to be placed.
4. Select Pick point and then snap near where the pit is to be placed. The routine will find the closest *inv string and then search for the closest end or curve. It will then measure from the point towards your initial snap to create the marker (see magenta arrows below).
5. Repeat for the remaining 3 ends of the kerb returns.

12.2 Option 1 (Connection at Manhole in the Road)

The option below has been selected for you to complete so that it has 2 inlets and a manhole. Use the tools you have learnt thus far to create the drainage string and assign the pit names. Special care is required when creating a junction pit (10) shown below. There must be a pit on the trunk line where the branch line connects and there branch line must point snap onto the centre of the trunk line pit (see Junction Pits).
12.3 Option 2 (Connection pipe under the footpath)

Some road authorities prefer not to have a manhole in the intersection. Move the connection pit to the inlet to the west and delete the manhole.

A check list is on the following page once you have completed the layout.

12.4 Intersection Check List

1. Did you place the pipes in the correct location so that the correct cover could be measured?
2. When placing the manhole did you use the RB and Perpendicular to place the manhole?
3. Did you use Strings->Points Edit->Insert to add a pit to the trunk line at the junction location?
4. Did you assign a unique string number to the new string so that the set pit names routine would run?
5. Did you select Set Pit Details in the DNE to ensure the cover, grate and setout data was correctly calculated?
6. Did you check the output window for problem messages? Did you fix them?
7. Did you recalc the function \textit{Adjust pits} so that the inlets are 0.450 behind the bok string. Below are 2 other methods for placing pits that you may find useful.

12.5 Offsets from strings

As an alternative to the place points above you can use the snaps CAD to place the pits “on the fly”. Once the points move has been started use the RB and select \texttt{Snaps Cad=>Points=>Locate Offset}. Follow the prompts given in the message area (bottom left corner of the screen). You will need experience with the 12d “directional pick” to use this capability.

12.6 Placing pits at specific Easting Northing Locations

For locating pits at specific x, y coordinates, simply start typing the x coordinate instead of clicking onto a location. An input panel will appear for you to enter the x and y coordinate separated by a space.
13. Manholes - A Closer Look

A manhole is made up of 3 points; the centre of the manhole and the pit-pipe connection points. The pipe exists as the connection between two manholes. The pipe may have a horizontal radius but not vertical.

13.1 Pit-Pipe Connection Points

The default mode has the pipes align between the centres of the manholes. The pit-pipe connection points are at the intersection of the manhole interior wall and the centre of the pipe (see below).

These connection points may be moved by enabling Use pit connection points on the DNE->Global->Main tab. All pits have their connection point initially set to Points. This setting is found on the DNE->Pits->Setout tab.

Pit connection points may be moved via Strings->Points Edit->Move (except for Centre mode described below). If a pipe is manually moved to a new connection point, it will be locked to the connection point and will not move if the pit or neighbouring pit is moved.
13.1.1 Pit Connection Point Modes

Centre (rectangle and circular) - This mode is the same as having the **Use connection points** turned off. The connection points will be located on the inside perimeter of the pit wall with the centre line of the pipe intersecting the centre of the pit. In this mode, the connection points may not be adjusted.

Points (rectangle) - A connection point is created at the mid point of each internal side of the pit. This may be changed for a **Pit type** by using the **con_points** command in the drainage.4d file. In this mode, the pipe ends will snap to the connection points. It is possible to place more than one pipe on the same connection point (the elevation of the pipes is not checked for clashes).

Points (circular) - The connection point may be moved anywhere around the pit internal wall as there are no connection points on the circular pits. Again, it is possible to place more than one pipe on the same connection location (the elevation of the pipes are not checked for clashes). If the manhole centre is moved the connection point locks are removed.

Perimeter (rectangular and circular) - Same as **Points** (circular) above.

Unrestricted (rectangular and circular) - There are no constraints on the location of the pit connection points. This mode is intended for irregular shapes such as GPT structures and stormwater basins.

1. Close the DNE to unlock the drainage strings.
2. Use **Strings->Points Edit->Move** to move the junction pit you added to complete the intersection westward to the inlet.
3. Use **Strings->Points Edit->Move** to move the ends of the pipes as shown. Note that the pipes snap to the centre of the edges.
13.2 Junction Pits

Key Points

1. The branch line must **Point Snap** onto the centre of a pit on the trunk line.
2. Both strings must be in the same model.
3. The downstream end of the string (depends on flow direction) must join onto the trunk line.

When creating a junction, pit turn the point snap on and the line snap off (the F3 and F4 keys are convenient for this). Zoom into the pit so that you can snap the being moved onto the centre of the stationary pit.

Recall a pit contains three points; one at each pit pipe connection points and one at the pit centre. You want to snap onto at the pit centre for a junction pit. In the figure below, the blue line is being placed to join the white line. Note that the diamond indicates that there is a point snap as well as the information panel.
13.3 Drainage Section Views (downhill left to right OR right to left)

The long section views and the profile plots are running downhill from left to right. If you want them downhill from right to left use the reverse function.

To reverse only one string, from the main menu select Strings=>Points Edit=>Move to move the branch string pit the “downstream end” of the branch line must be the junction pit.

1. The centre of the pits did not align. Use Strings=>Points Edit=>Move to move the branch string pit the “downstream end” of the branch line must be the junction pit.

2. The branch string and the trunk string have not been created in the same drainage model. From the main menu select Strings=>Inquire (F2) and select the strings to check their models. If this is the problem, use Strings=>Edit=>Change and specify the correct drainage model (enter the model BEFORE picking the string) or Strings=>Edit=>Duplicate to duplicate one of the strings into the correct model.

If you cannot see your branch lines joining in the section view, check the following:

1. The centre of the pits did not align, Use Strings=>Points Edit=>Move to move the branch string pit the “downstream end” of the branch line must be the junction pit.

2. The branch string and the trunk string have not been created in the same drainage model. From the main menu select Strings=>Inquire (F2) and select the strings to check their models. If this is the problem, use Strings=>Edit=>Change and specify the correct drainage model (enter the model BEFORE picking the string) or Strings=>Edit=>Duplicate to duplicate one of the strings into the correct model.

13.3 Drainage Section Views (downhill left to right OR right to left)

The long section views and the profile plots are running downhill from left to right. If you want them downhill from right to left use the reverse function.

To reverse only one string, from the main menu select

Strings => Strings Edit => Reverse

and pick the drainage strings to reverse. This will also change the drainage flow direction attribute from same as string direction to opposite to string direction.

To reverse all of the strings in a model select the Reverse all strings option,

Design => Drainage-Sewer => More => Reverse all strings
13.4 Drainage Split and Join

In this example, we are going to **split** the string shown in white below at IN14 (your pit are still NEW) so that we can **join** the west end (IN14 to IN16) to the trunk line on the southern side of the road (cyan). This will allow us to produce a long section that will extend the full length of the road 2 to the headwall outlet.

Use the **String split/join** from the Drainage menu not the one on the **Strings->Strings edit**.

Split Option

The split must be done at a pit.
1. A new name for the upstream string (optional). Leave it blank.
2. A new name for the downstream string (optional) Leave it blank.
3. LB the **Split** button and then select the pit where the split is to occur. (IN14).

Join Option

This routine will add a new pipe between the 2 strings if required. When **Join US to DS** is selected, the properties and attributes of the upstream string and pit at the join will transfer to the new joined string. **Join DS to US** will cause the properties and attributes to come from the ds string. Upstream and downstream is determined by the flow direction.

1. Select the **Join US to DS** button.
2. Pick and accept the cyan drainage string, then the IN14 to IN16 string (follow the messages in the 12d message area).
14. Drainage Network Editor (DNE)

We have had a brief introduction to the DNE when we worked with the culvert. We will now look at many more of the DNE capabilities.

Read in a drainage model template! There is no need to set all of your global and default settings each time you start a new job. If we had not already read in a template we would do it now. Templates are a way to store all of your [Network Editor - Global, Default Settings and Explicit Settings](#).

The drainage network editor is used to automatically or manually change the properties of your drainage network. These abilities include:

- **Vertical Alignment - Manholes**
- **Set Pit names (and pipes)**
- **Service and Utility Clashes**

Hydrology

- **Catchment Areas**
- **Catchment Areas and Percent Impervious**
- **Coefficients of Runoff**
- **Times of Concentration**
- **Tc Path Strings**
- **Bypass flow routes**

Hydraulics

- **Cover RL, Grate RL, Setout RL and Sump RL modes.**
- **Culvert Hydraulics and Tailwater**
- **Pit Losses Ku, and Direct Flow**
- **Pipe Friction Method, Roughness Values and Direct pipe flow**
- **Design mode, Freeboard Limit and Flow-depth limit**
- **Pipe Size Design**
- **Pipe Design Parameters - Sizes, Invert alignment, Min Cover, Max Height**

The DNE also links your drainage model to your 12d design models.

The drainage network editor is accessed through the main menu by selecting

Design=>Drainage-Sewer=>Network Editor
The bottom section of the network editor panel is shown below. You can change tabs but no data can be entered in the panel until a drainage pit or pipe has been selected.

The pit closest to the point selected is highlighted with a circle and an arrow shows the direction of flow and the pipe being edited (see image below). When the outlet is selected there is no arrow. The option buttons on the drainage editor now become active.

1. Pick and accept a drainage string and the network will be loaded into the panel (only drainage strings may be picked).

The pit closest to the point selected is highlighted with a circle and an arrow shows the direction of flow and the pipe being edited (see image below). When the outlet is selected there is no arrow. The option buttons on the drainage editor now become active.

14.1 Update from drainage.4d

We have set our default diameter as 1m and default manhole as AL2D. In the drainage.4d file the AL2D manhole is defined having a diameter/length of 0.93m and a width of 0.85m. When you select one of the manholes the DNE finds the difference and asks you if you want to update the manhole diameter.

1. Select **Update from drainage.4d**. The manhole diameter will now be changed to 0.93 for this manhole.
2. If you select **Stop asking for this DNE session** first, you will not be prompted before the DNE updates the manhole data.
3. Selecting **Set Pit details** will update all manhole diameters in the network.

A surveyor who received a 12da file of the drainage network without the drainage.4d file would select **Keep stored data**.
14.2 Moving through the Drainage Network

There are 3 ways to change pits in the network editor. The Next-Previous (chainage NOT flow direction or east west) buttons will work if you are on the Defaults, Global or Results tabs. If the editor finds an error on a pit, it will take you to the error and you must correct the error before moving to the next pit.

Try all 3. The GoTo List will be interesting as we have not assigned pit names yet.

14.3 Auto-Apply, Auto-Pan, Auto-Profile and Auto-Redraw

To tell if these buttons are on or off you need to know your computer display settings. For Windows 7, the default is Blue for on.

With Auto-Apply (A) enabled, data is saved when any of the 15 lower buttons are pressed except Finish and Help.

Auto-Pan is always active and any plan view showing the active drainage network selected will always auto pan if the selected pit is not in the view.

With the Auto-Profile (P) enabled, the same will happen for the section view.

With Auto-Redraw (R) enabled, the editor will regenerate the section view when changes are made in the vertical. This saves selecting Regen on the section views.

14.4 Set Pit names (and pipes)

Pit names are used to identify and label the pits for access. The DNE Goto drop down and outlout window loglines (warning/problem messages) become much more meaningful. Storm analysis requires that unique pit names be set.
Use the DNE to manually change single pit names (in the Pit field) or quickly change all the names using the Set Pit Names button. The Set Pit Names button requires unique string names. To view string names on the plan view, go to the Plan View tool bar and select Toggle=>Names. If they do not appear see Displaying View Text.

Models->String Info table is a fast was to view all the string names in the model. Double clicking on the lines will launch an editor to change the string names. The DNE also sorts the strings based on these names and this controls the plotting order.

The string names may be changed in the String field when the Catchment, Pit or Pipe tabs are selected at the top of the DNE. The string names must be unique.

14.5 Set Pit Names using Pit Type

We can customise the pit name prefix, suffix, numbering sequence etc for each pit type. Currently all of the pits have the default pit type. We will now change the outlet pit type to HW and then rename the pits.

1. Select Set Pit Names and the following panel will appear.

1. Select Sequential Numbering to number the manholes starting at First Pit Number.
2. Change the Default naming parameters. Map pit numbers to letters causes the first pit to be A instead of 1. Min digits in pit numbers set to 2 causes 1 to be 01.
3. Run will update the quick text pit names on the plan view. Try other settings! You may find you want to change some of the string names back in the network editor.
4. Back to the Editor return to the main editor panel.

Reverse order starting numbering at the high chainage end of the string instead of the low chainage.
1. Move to the outlet using any of the 3 methods.
2. Change the Pit type to HW
3. LB Select Pit Names

1. Type the file name for the pit naming scheme. An example may be found in the library if desired.
2. LB the folder icon and select Open.
14.6 Change Pit Name Textstyle and Offset

The textstyle and offset for the pit name is set on the Global->Display tab of the DNE. It is always shown as pixel text size and cannot be changed to world.
1. Select the **Pit label textstyle** icon and then the **Arial 2 centre** favourite.

2. Type the new **Height (u)** as **12** pixels.

3. Select **Set**.

4. Select **Finish**.

5. Select **Apply** from the bottom of the DNE to see the new textstyles.
15. Vertical Alignment - Manholes

The diagram below shows the properties of a manhole. The RL levels may be set manually or calculated via the their associated mode and the **Set Pit Details** button. The **Grate RL** is used by 12d hydraulics when determining the freeboard level, bypass flows, inlet capacity values at sag inlets and depth of flooding at sag inlets.

The **Setout RL** is the level used by surveyors to setout the pit.

15.1 Cover RL, Grate RL, Setout RL and Sump RL modes

The default values for the RL modes are set on the **DNE->Defaults->Pits** tab.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow direction</td>
<td>String property</td>
</tr>
<tr>
<td>Cover RL</td>
<td>DNE->Pit->Main</td>
</tr>
<tr>
<td>Grate RL</td>
<td>DNE->Pit->Main</td>
</tr>
<tr>
<td>Setout RL</td>
<td>DNE->Pit->Setout (not shown)</td>
</tr>
<tr>
<td>Pit thickness</td>
<td>Drainage.4d via type</td>
</tr>
<tr>
<td>Pit depth</td>
<td>Calculated value</td>
</tr>
<tr>
<td>Upstream pipe invert</td>
<td>DNE->pipe->design</td>
</tr>
<tr>
<td>Pit drop</td>
<td>Defaults (manhole) or DNE->Default->Pipes Drop file</td>
</tr>
<tr>
<td>Downstream pipe invert</td>
<td>DNE->pipe->design</td>
</tr>
<tr>
<td>Sump offset</td>
<td>DNE->Pit->Main</td>
</tr>
<tr>
<td>Sump RL</td>
<td>DNE->Pit->Main</td>
</tr>
<tr>
<td>Pit bottom thickness</td>
<td>Drainage.4d via type</td>
</tr>
</tbody>
</table>
These may be explicitly for an individual pit on the DNE->Pit->Main and Setout tabs

RL Modes

Cover RL
Only available for Grade and Setout RL modes. z value will be the same as the cover RL.

FS Tin
z value from the pit centre x,y location on the DNE->Global->Main->FS tin.

NS Tin
z value from the pit centre x,y location on the DNE->Global->Main->NS tin.

Setout String
z value from the string found by dropping the pit centre x,y location perpendicularly onto the setout string (DNE->Pit->Setout->Setout string) and then moving the distance DNE->Pit->Setout->Setout adjustment S_{xy}.

$S_z + Setout String
z value as for the Setout String plus the value DNE->Pit->Setout->Setout adjustment S_z.

Max Obvert
z value of the maximum pipe obvert of all the connecting pipes.

DS Invert
z value

Sump Invert
Only available for Setout RL. z value from DNE->Global->Main->Sump RL

Manual
z value is entered in the RL field to the right of the mode (field becomes active when this is selected).

floating
Only available for Sump RL mode. z value is of the minimum pipe invert of all connecting pipes plus the value DNE->Pit->Main->Sump offset

RL modes for the entire model may be set via

Design->Drainage-Sewer->More->Pipe Locks

This routine has lock modes for pipes as well.
16. Vertical Alignment - Pipes

The pipe invert levels may be set manually or calculated using the DNE->Regrade Pipes button.

Pipe invert mode may be set to locked for the entire model via Design->Drainage-Sewer->More->Pipe Locks

There are many controls to guide 12d in the setting of the pipe inverts and the user may over constrain the network so that no solution is possible. If the minimum cover, grade or drop criteria cannot meet the criteria you have set, a problem message will be in the output window.

16.1 Minimum Cover

The minimum cover can be set via the pipe type and the pipe cover file (optional). If the pipe type is not found in the pipe cover file then the Defaults-Pipes-Cover for the project is used.

16.2 Minimum Grade

Pipe grade has been traditionally measured based on the horizontal distance from pit centre to pit centre. However, this causes issues with surveyors when they use electronic models to set out the drainage pipes. All drainage pipes lengths can now be calculated from the horizontal distance between inside pit edges (or pit connection point for the unrestricted pit connection mode). The alternate pipe length results in a different pipe grade to be calculated in 12d. This option is set one the DNE->Global->Main Use Actual Pipe Lengths.
16.3 Pipe Grade Modes

Minimum Depth The cover sets the inverts at each end of the pipe and then the downstream invert is lowered if the minimum grade is not achieved.

Minimum grade The pipe is set to the min grade and then lowered to meet the cover requirements.

Grade from DS Warning! Minimum cover may not be maintained in this mode. Each pipe has its downstream (ds) invert level set via its **DS pipe alignment** mode. If the downstream pit is the outlet then the cover is used to set the invert level. The upstream invert is set using the minimum grade.

Const Depth Channel Warning! Minimum cover, minimum grade and pit alignments are not used in this mode. The obvert of the pipe is set to the finished tin level at the pit centre.

16.4 Downstream Alignment Modes

The amount of the drop is determined first from the **Drop file** and then if required from the manhole default settings for the project. How the drop value is applied is set via the **DS align mode**.

Inverts are moved down, if required, according to the setting in **DS align mode**.

Min drop ensures that the inverts drop a minimum of the drop but may be more.

Min drop<DS-Dia ensures that the inverts drop a minimum of the drop but may not be more than the downstream pipe diameter. This restricts the max drop so that the water jet will not completely impact the opposite wall of the pit.
OL-OL Drop uses the drop value for the obverts. If the downstream pipe is a smaller, then the drop will be applied to the inverts so that water will not be trapped in the pit. If the downstream pipe is larger then the obverts will be aligned as long as the min drop is maintained on the inverts.

IL-IL Drop uses the drop value for the inverts.

The **Drop file** contains the drops that change with the pipe deflection angle. A sample file is included in the library.

If only one drop value is to be used set the deflection angle to 180 degrees.

After setting the pit and pipe levels, add the model **tin combined** to the **Drainage** section view. The trunk profile will be similar to the following. Select the toggle button, to toggle on the grades (and pipe lengths).
To inquire about the cover on a pipe use the following option.

Tins->Inquire->Depth from string

1. LB to select the tin
2. LB to select the string.
3. Move the pointer in plan or section to monitor the data.

The DNE calculates cover from the top of the pipe NOT the obvert so cover may appear incorrect. Also for box culverts, cover is measured at the edges as well as the centre of the pipe. Finally for multiple pipes, each pipe is checked for cover.
17. Service and Utility Clashes

We will import some services from a 12da file. From the main menu select,

File I/O->Data Input->12da/4da data

1. LB the Folder icon
2. Select the service file
3. LB the Read button.
4. LB the Finish button.
5. Add the model services onto the plan and section views.

12d service clash routines notify the user of crossing services but not parallel services that are close to each other. The clearance values are vertical distances at the centre line of the drainage and service strings. The minimum clearance may be less than the vertical clearance if the drainage or services are on very steep slopes.

To view parallel services, add the services model onto a section view, profile a drainage string and then set the corridor value for the section view.

Settings->Corridor and then set the Width left and Width Right to the desired clearance. If the service can be seen then it is within the tolerance. 11 is used in this example only so that you can see the service on the other side of the road.

Use the Next and Prev button to switch drainage strings.
To obtain a report of all strings inside or crossing the drainage string profiled, select the View menu button then Utilities->Report

1. Select the Global tab
2. Select Utilities Model tab
3. Type services to create a new services file.
4. Select Open from the icon list.
In the **Service model** column RB to select the model. Enter **Minimum Clearance** for the services in this model. Include an extra amount for the thickness of the drainage pipe. If the service model contains other drainage/sewer strings you must add the thickness of these pipes as well.

If different clearances are required for different services then place the services in different models. Warnings will be issued when you **Regrade Pipes, Set Pit details, Import** or **Storm Analysis**. Cover levels or fixed inverts can be used to avoid the services.

To quickly move to the section view of the string, Double click on the message in the output window (note the red! mark). The **DNE** will move to the pipe and with auto profile button enables the section view will update to this string.

The most common method to avoid the clash is to increase the **Pipe cover limit** for this pipe segment so that the pipe is pushed down.

If the clash problem is above the pipe then the **Max pipe height** may be used and multiple pipes are selected.

This method is preferred over locking the inverts as this leaves more flexibility for aligning the inverts.

Often changing the **Grade mode** to **Min grade** on a branch line will raise the downstream invert. This may allow the entire trunk line to rise and thus reduce excavation costs. This is especially true if the service clash is near the upstream end of the pipe.
Once the invert levels have been reset by selecting Regrade pipes, the output window will indicate the final clearance.

After a pipe design run in Storm Analysis, details of the service clash data will again be listed in the output window.
18. Drainage Plan Plots

The drainage plan plots create detailed drawings with symbols for the pits, linestyles for the pipes and string names ready to export to the desired layers in CAD. Pipes levels are 3d and setout points ready for downloading to survey total stations are prepared.

18.1 Labelling the Pits and Pipes

Plan plots are used to label the pits and the pipes. Drainage Plan Annotations may be accessed from one of three locations. The third is the most common.

Location 1: From the plan toolbar

![Select the plot button and then Drainage plan](image)

Note (The following panel has been reduced in size).

![Drainage Plan Plot PPF Editor](image)

1. Select a ppf file from the library
2. **LB Read**
3. Select your drainage model
4. Type a model name for the new labels.
5. Select **Plot**
6. Select **Finish**

Now add the drainage labels model onto the plan view.

Location 2: The Plot Button on the Drainage Network Editor

The following panel will be displayed. This option can plot both the long section and plan at the same time. Select a ppf file from the library (drainage_design).
1. Enter a model for the plan annotations.
2. Select **Full clean model beforehand** if you have not manually moved any of your manhole labels.
3. Turn off the long section plot for now.
4. Select **Plot**.
5. Select **Back to Editor**
6. Now add the **Model for plan annotations** onto the plan view.
7. Note: if you rename the manholes you will need to replot these labels!

Note that **Full clean of model beforehand** was not selected. The drainage plan plot does a smart clean where it deletes and reprints text that has not been manually moved and updates text that has been moved.

The text properties can all be customised using the plot parameter file but this will be discussed later in the plotting section. These labels are **not** automatically updated when you change the names or pipe diameters. You must rerun the plot routine to update the labels.

18.1.1 Turn off View Text Pit Labels
To turn off the automatic view text pit labels for this view select **Toggle=>Text** and then walk right to select the drainage model. Do not click on **Text**, rather walk right. If you click **Text** you will toggle on/off all of your text on the view, not just the drainage model.
18.1.2 Moving Text

The labels created may be manually moved using the **CAD toolbar** but if the model is relabelled the text will return to its original location! Text moved via the **Drafting->Multi string translate** will remain in the moved position when **Smart Clean** is selected in the Plan Annotation panel.

Before selecting text turn on your **text snap**.

To move a single line of text use the **CAD** toolbar. Select the **Move text justify** button. To use this toolbar you must **DRAG** the **Create text** button to the right

and then release when the pointer is on the **Move Text Justify Point**.

To move a pre-defined **Group** of text select
Drafting->Multi string translate

Select **Group** and then pick and accept one of the text items in the group. Move it to its new location and accept.
19. Construction Setout

Pits are setout on the construction site using a variety of techniques. The DNE creates a construction setout point \((x,y,z)\) that can either be located at the pit centre or the pit centre can be dropped perpendicularly onto a design string for the xy location. The z value for the setout point has a number of modes as described below. Road centre line chainage may also be calculated.

In the diagram below the setout point is lip of kerb. The setout x,y location level z will be obtained from the setout string and the pipe will be shown at its proper position so that the pipe cover is calculated correctly.

Pipes are setout using the pit connection points and the invert levels.

Design->Drainage-Sewer->Convert to Pts and Lines will create 12d super strings with the pipe attributes on them.

Setout reports can be created and the drainage plan plot generates strings for the surveyor to download to the instruments.
19.1 Pit Setout (xy)

Setout xy mode - Pit centre is the centre point of the manhole (the intersection of the joining pipes). Often the setout point for a manhole or catch basin is not the centre of the manhole but rather a point on the kerb or back on the foot path. The setout string option will drop the centre point of the manhole onto the closest string in the Road design model list specified on the Global->Utility models tab.

Setout z mode options are listed in the panel. This levels are used in the pit schedules.

There are currently 9 modes for determining the pit setout levels.

Cover RL - this ensures the level is the same as the Cover RL (not available for Cover level).

FS tin -The level is obtained from the finished surface tin at the pit centre.

NS tin -The level is obtained from the existing surface tin at the pit centre.

Setout String - The pit centre is dropped perpendicular onto the setout string and the level is obtained from the elevation on the string.

Sz + Setout String an offset is added to the level from Setout string described above.

Max Obvert- all connecting pipes, usually open channels, are checked for the highest obvert.

DS Invert - the invert of the outlet pipe (there is only one).

Sump Invert - the lowest pipe invert plus the Sump offset.

Manual - The user must manually type in the cover levels (rarely used as a default).

Explicit settings for the setout strings and the auto calculated values are found on the Pit-Setout tab. If the manual mode is selected the Easting and Northing locations may be picked in plan view or typed into the input boxes.

19.2 Pit Setout (z) Level

The setout level defines the level to be printed in the pit setout tables and in the drainage longsection plots. The FS Tin selection obtains the level from the FS tin, specified on the Global-Main tab, at the centre point of the pit. The Setout String location obtains the z level from the setout string as described in the section above. Explicit settings and the auto calculated value are found on the Pit-Setout tab.

19.3 Road Centre Line Chainage

If Road chainage mode is set to Centre string, then the Centre String ID in the Road design file (shown above) is used to select the road string to measure the chainage and offset from. The values and explicit settings for the road chainage and offset are found on the Pit->Setout tab.

19.4 Pipe Setout

Pipe setout is along the centre line of pipes.
19.5 Plan Plots for Surveyors

Use the drainage plan plot routine to create survey setout point for each pit and strings for each pipe with the invert levels. If \textit{drainage_setout} is not in your library, start with \textit{drainage_inverts}.

1. Select \textit{drainage_setout} ppf from the library
2. LB Read
3. LB Drainage Plan Plot branch
4. Select the existing \textit{drainage} model
5. ensure NOT selected
6. Select \textit{Pipes} branch and note Trim mode
7. Select Maintenance holes->MH setout points branch
8. Note: \textit{Draw setout points} is selected.
9. String names are sent to the survey instruments so select this.
10. Select Plot
11. Add \textit{drainage setout} model onto a plan view

19.6 Construction Manhole/Pit Schedules

Manhole/pit schedules or construction tables are generated in tab or space delimited formats.

This routine does not recalculate the setout locations. Similar to plotting, it prints the results of the last time the calculation were done (DNE->Set Pit Details).

Position of option on menu: Design => Drainage => Reports => Pit schedule

This routine prints the calculations from the last time Set Pit Details was selected in the Drainage Network Editor.

On selecting the Pit schedule option, the Manhole/Pit Schedule panel is displayed.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage model name</td>
<td>input box</td>
<td>drainage network</td>
<td>(model containing the drainage strings)</td>
</tr>
<tr>
<td>Pit schedule file name</td>
<td>input box</td>
<td>pit report</td>
<td>(file to be created)</td>
</tr>
<tr>
<td>Report Format</td>
<td>choice box</td>
<td>Road change., Easting...</td>
<td>file format</td>
</tr>
<tr>
<td>Data delimiter</td>
<td>choice box</td>
<td>Tab, Space</td>
<td>(tab delimiters are best for spreadsheets and space for some text editors)</td>
</tr>
<tr>
<td>Repeat header for each line</td>
<td>tick box</td>
<td>selected</td>
<td>when selected, the column headings will be printed each drainage line</td>
</tr>
</tbody>
</table>

Process button
Create the pit report

Finish button
remove the panel from the screen

Notes:
The columns of data may be separated by spaces or a tab. (tab is used for spreadsheet transfers). The internal width and length data are retrieved from the drainage.4d file for the pit type specified. If you want a longer description for the pit then the type used inside 12d this can also be entered in the drainage.4d file. The remarks for each pit are entered as user defined pit attribute named remarks and may be set using the attribute editor (on the drainage menu) or via a spreadsheet.

Easting Northing Sample

<table>
<thead>
<tr>
<th>Pit</th>
<th>Type</th>
<th>EASTING</th>
<th>NORTING</th>
<th>WD</th>
<th>LEN</th>
<th>DIA</th>
<th>INV LEV</th>
<th>DIA</th>
<th>INV LEV</th>
<th>FIN RL</th>
<th>DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>SA2</td>
<td>5302.458</td>
<td>7336.936</td>
<td>450.000</td>
<td>900.000</td>
<td>375</td>
<td>28.210</td>
<td>29.387</td>
<td>1.177</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>SA2</td>
<td>5264.372</td>
<td>7322.036</td>
<td>450.000</td>
<td>900.000</td>
<td>375</td>
<td>27.470</td>
<td></td>
<td>28.646</td>
<td>1.226</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>SA2</td>
<td>5224.155</td>
<td>7336.936</td>
<td>450.000</td>
<td>900.000</td>
<td>375</td>
<td>26.690</td>
<td>27.863</td>
<td>1.173</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>SA2</td>
<td>5187.910</td>
<td>7322.036</td>
<td>450.000</td>
<td>900.000</td>
<td>375</td>
<td>25.930</td>
<td></td>
<td>27.158</td>
<td>3.628</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>SA2</td>
<td>5157.411</td>
<td>7322.036</td>
<td>450.000</td>
<td>900.000</td>
<td>375</td>
<td>23.090</td>
<td></td>
<td>26.714</td>
<td>3.624</td>
<td>outlet to existing</td>
<td></td>
</tr>
</tbody>
</table>
system

NOTE:
1. ALL SETOUT POINTS QUOTED TO CENTRE OF PIT

Road Chainage Offset Example

<table>
<thead>
<tr>
<th>DRAINAGE LINE A</th>
<th>PIT LOCATION</th>
<th>LOCATION OFFSETS</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>EASTING</td>
<td>NORTHING</td>
</tr>
<tr>
<td>A/1</td>
<td>5354.629</td>
<td>7336.936</td>
</tr>
<tr>
<td>A/2</td>
<td>5340.691</td>
<td>7320.911</td>
</tr>
<tr>
<td>A/3</td>
<td>5293.458</td>
<td>7320.886</td>
</tr>
<tr>
<td>A/4</td>
<td>5250.131</td>
<td>7320.886</td>
</tr>
<tr>
<td>A/5</td>
<td>5217.194</td>
<td>7322.036</td>
</tr>
<tr>
<td>A/6</td>
<td>5183.458</td>
<td>7322.036</td>
</tr>
<tr>
<td>A/7</td>
<td>5152.699</td>
<td>7322.036</td>
</tr>
</tbody>
</table>

Notes

The Set pit details must be run at least once to before printing the report. If the pits are moved or
the designed strings changed then this option must re rerun.

The easting northing data obtained for the road design string option is obtained by dropping the
pit centre perpendicular onto the selected road design string. This data is stored as pit attributes
setout x and setout y. It is calculated when the Set Pit Details is selected in the Drainage
Network editor.
20. DNE and Rational Hydrology

The rational methods uses the formula \(Q = CIA/360 \)

where

- \(A \) = catchment area (hectares)
- \(C \) = runoff coefficient
- \(I \) = rainfall intensity (mm/hr)
- 360 = conversion factor to \(m^3/s \) for area (ha) and rainfall (mm/hr)

The rainfall intensity requires the input/calculation of the time of concentration (tc) for the catchment and then a return period to be used in the IFD table (see 12d Rational Method Hydrology - Drainage Rainfall Editor).

The total area entered/measured may be split into impervious and pervious and analysed separately.

If you use a single composite C value for your catchments, enter a %impervious of zero and ignore the impervious settings.

Many authorities increase the C values for major storms. If you do not then enter the same C for minor and major. Similarly Tc values are sometimes reduced for major storms so you have the option to enter a minor and major C value. An example is provided below.

<table>
<thead>
<tr>
<th>Total Area</th>
<th>%imp</th>
<th>Cminor</th>
<th>Cmajor</th>
<th>Tc minor</th>
<th>Tc major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impervious</td>
<td>Area*%imp</td>
<td>0.9</td>
<td>0.92</td>
<td>5 min</td>
<td>5 min</td>
</tr>
<tr>
<td>Pervious</td>
<td>Area-imp area</td>
<td>0.3</td>
<td>0.31</td>
<td>10 min</td>
<td>10 min</td>
</tr>
</tbody>
</table>

20.1 Network Editor - Global, Default Settings and Explicit Settings

This section will discuss the Global, Defaults and explicit setting for the hydrology parameters. Design values for the hydrology and hydraulics calculations are set

- either globally (one value for the entire network)
- or via defaults.

Defaults values may be overridden by explicit settings found on the top level catchment, pits or pipes tabs. Explicit over ride catchment settings need only be specified if the default value is not desired. Only fill them in if you want to use a value different than the default. The tool tip will indicate the default values.

Default values must be entered for all of the fields for Set 1. Set 2 and Set 3 blank default values will use the defaults you have used in Set 1.

20.1.1 Catchment Areas and Percent Impervious

There is no default catchment area to apply to all catchments. You may type in the catchment area or create a string where 12d will measure the plan area (Drawing Catchment Strings in 12d).

The percent impervious will split the catchment area into the pervious and impervious sub catchments. Separate C and tc values are used for the pervious and impervious areas. The default percent impervious for the various sets are entered on the Defaults->Catchment Defaults and the explicit settings are on the Catchment tab. The percent impervious is used also used to determine the composite C value if using the ARR 1987 method for calculating runoff coefficients.
20.1.2 Coefficients of Runoff

Global Settings

Runoff C methods include **Direct**, **Direct * Fy**, **ARR 1987**, **QUDM 2007** and **ACT**.

Direct: There is a global impervious C value for minor and major storms. This can only be set once. The C values for the pervious areas may be changed for every catchment in your model.

Direct * Fy: For urban areas in Australia the flood frequency factors (fy) are constant for urban hydrology. You are required to enter the f10 values, the same value for minor and major. For rural areas the direct method is required.

ARR 1987: The composite C value is calculated using the 1hr-10yr intensity, the percent impervious, ARR frequency factors and the return period specified when hydrology runs are made. **You must enter the 1hr-10yr intensity value. No C values are entered if this method is used!**

QUDM 2007: Similar to the ARR 1987 method (except when the %impervious for the catchment = 0.0). The **Veg/Soil** type must be entered for the catchment via the default catchment tab.

Default Settings

![Diagram of Runoff C methods and settings](image)
Explicit Settings

20.1.3 Times of Concentration
There are several methods for entering times of concentration for the catchment areas (see list below). Since each catchment may use a different tc method, all of the tc parameter fields on the defaults tab are active and required. They must be filled in even if you do not plan on using that value.

1. **Direct method** requires minor and major tc values.

2. **Friend, Kinematic Wave, Bransby Williams** and **QDUM** methods require the retardance, length and slope of the catchments to be entered. Default values must be entered but the optional explicit settings for slope and length can be entered on the catchment tabs or a catchment characteristic strings may be drawn (see Catchment Tc path strings). The length of this string is used for the length parameter and the design tin is used with the string to calculate the slope using the equal area method.

3. Data for the remaining methods is entered in a similar fashion.

20.2 Catchment Areas

Key Points

1. You do not have to draw catchment strings. You can enter the catchment areas manually (ha or acres).
2. When drawing catchment polygons, start near the inlet for auto linking.
3. 3 catchment sets are available and all catchment polygons must be in these models.
5. Network Editor Set Catchment button links the polygons and calculates the areas
6. Once a string has been linked to a inlet, it will remain linked until it is deleted or the link has been cleared (Clear Catchment Links on the Globals->Utility Models tab).
8. Manholes (set via cap_config in drainage.4d or Inlet config on the Pit->Main tab cannot have linked catchments.
9. Use the CAD polygon tool for drawing catchments OR close the string for sag pits
10. You can disable the auto selection of a string via Right mouse on the pick button then select Clear.

The catchment strings may be drawn in a CAD package and then imported into 12d or drawn inside 12d. The strings may be easily drawn in 12d with the tin contours and/or flow arrows displayed in the plan view.

When a catchment string is created to define the area for an inlet then all other data entry types will be ignored and the area from the string will be used.

There are 3 sets of catchments and it is up to the user to decide how they are to be used. Each set has its own percent impervious. The most common is to use the sets as land use types (roads, lots and park land for example). Another frequently used option is to use set 1 for all the impervious areas and set 2 the pervious and set 3 for special areas. The 3 catchment sets are drawn in three different models.

If exporting to external drainage design programs, the package may not accept all three sets so check the interface notes before defining the catchments.

Set Catchments - Auto Linking

In each set/model, 12d will automatically link the catchment string to the inlet that is closest to vertex 1 on your catchment string. This is the preferred method. If this is not possible, then an inlet may be manually linked to a catchment string using the Catchment manual link. More on catchment links may be found in Catchment string links.

Also see Checking the Automatic Catchment Linking

Start the Drainage network editor and move to the Global Tab and then the Utility Models sub tab.
The **Auto-rename catchment polygons** will set the name of the catchment string to the pit name that it is linked to. If it is not linked to any inlet it will be named “not used”. The model can be checked for **not used** strings by selecting **Models->String Info Table**. The catchment will also be filled with the **Error colour** if a catchment string is not linked.

1. Type a filename for the catchment file
2. LB **More info** button and then select **Open**
3. RB to select the catchment model for set 1 (used in the **CAD control bar** above). Every inlet can have up to 3 catchments, row 1 is catchment set 1, row 2 for catchment set 2 and row 3 for catchment set 3. Often the sets are used as catchment types. for example
 Set 1 - Roads, Set 2 Lots and Set 3 Parks
4. Optional - RB to select a fill colour for the catchments
5. LB **Write** to save the file
6. LB **Finish**
7. Type a new model name for the catchment labels (optional)
8. LB **More info** button to select textstyle (required if **Labels model** is used)
Label Catchments

Finally select Set catchments. This will link the catchments to the inlets and label the catchments. Now add the mode-labels onto the plan view.

Adding the edges to the fills
To view the edges go to the View Menu button and select Settings->Faces
1. LB Draw Edges
2. LB Set
3. LB Finish

There are some cases where linking the closest inlet to vertex 1 is not feasible. In these cases you may manually link the inlet to a catchment.

20.3 Drawing Catchment Strings in 12d
There are 2 catchments on the south east side of the road that have not be drawn. Use the CAD polygon tool to draw the catchments
Before creating the catchment string set the CAD control bar data.
Type the name of a model for the catchment strings

Now to create the catchment string use the Create line string button on the CAD toolbar.

DRAG the Create line button and release at the Create Line String button.

The first point should always be placed near the inlet. 12d will assume that the catchment will drain to the inlet closest to this first point.

Draw the catchment strings with the accuracy you feel appropriate. Catchment strings for sag pit or drawn along a crest lines so take extra care near the crest low points where the water may overflow and bypass. Continue selecting and accepting the points on the catchment string and the press **ESC** to finish creating this string. You are now ready to create the next catchment string.

Sag inlet catchments: DO NOT START AT THE INLET, just start nearer to this inlet than any other! If you start at the inlet then move out to the crest of the catchment, the catchment overflow level cannot be determined from the catchment string.

CAD tips

Use the CAD toolbar eye dropper to load the properties from an existing catchment polygon.

Try CAD trace instead of CAD polygon to trace around edges of existing catchment areas. It is at the end of the CAD string fly out. Follow the directions in the 12d message area (bottom left of window).

Trace begins as normal string draw, select t to start the trace, pick the start point on a string then pick the end point of the trace, (if the trace is going the wrong way select f or b).

Now you can select another string to trace or select p to return to pick mode. select c to close and finish and you are off creating another catchment string.

Once the catchments are drawn they become linked to the drainage network in the **Drainage network editor**. We will label the catchment with the inlet name and area at the same time.
20.4 Splitting Catchment Strings to Insert an Inlet

The catchment for the northwest sag pit needs to be split into 2 catchments for the inlet labelled I-9.

We will use mostly CAD tools except for Strings->Strings edit->Split. The trick is to roll the mouse roller ball once whenever you need to redraw the screen.

1. Cad String->Close to close the string. (roller ball!)
2. Strings->Strings Edit->Split, select string at split point (string area will go solid white - accept) roller ball!
3. repeat for south side
4. CAD vertex->Append select the string away from the split point, roller ball and draw the new catchment boundary. Single ESC to finish this string.
5. CAD vertex->Append select the string away from the split point, roller ball and trace the new catchment boundary. Double ESC to finish this string and end appending

Catchment manual link

The manual links are used when the first point on the catchment string is closest to the wrong inlet. Note that the following restrictions still apply.

1. The string selected for catchment 1 must be in the model for set 1. To check if you have selected a valid string select the Set Catchments button.

2. If the catchment string has already been linked to another inlet (automatic or manual) then the new link will be created and the old link erased.

3. If you change the catchment model for one of the sets on the Network Editor->Global->Utility Models->catchments than all of the manual links in that set will be erased.
Verifying the Automatic Catchment Linking

The automatic inlet-catchment linking is easily checked by after selecting the Set Catchments button on the network editor by any or all of the following:

1. Specifying a Catchment labels model with Labels textstyle on the Global->Utility models tab and .
 The catchment is indicated when the inlet is selected using the network editor. Since there may be three catchments per inlet the catchment data last viewed in the editor is the catchment that is highlighted.

2. Selecting the Auto-rename catchment polygons on the Global->Utility Models tab will set the name of the catchment string to the pit name that it is linked to. If it is not linked to any inlet, it will be named “not used”. The model can be checked for not used strings by selecting Models->String Info Table.

3. The unlinked catchment strings will be filled with the Error colour on the Global->Utility models tab.

1. Change to the Catchment tab. Move to the desired inlet. I-9 in the plan above. The inlet will be circled in the plan view and its name shown in the Current Pit field.

2. LB Set 1 then LB the Catchment polygon button and pick the desired catchment string.
 NOTE! If you decide to enter a value and NOT use the selected string RB on the button and select Clear.
 If the Auto apply tick box is not selected then you will have to select the Apply button for the manual link to become active.

3. LB Set Catchments button. A prompt box appears asking you to confirm. Select Yes. To toggle off/on the confirm request RB Set Catchments. The measured catchment area will be shown in the Catchment area field using the units specified in the Global-Utility models-Units field.

4. Repeat these steps for the sag pit to the west.
Reseting All Catchment links to Start Over

There may be occasions where you will want to clear all of the catchment links and begin with a fresh start. Select **Clear Catchment Links** on Network Editor->Global->Utility Models.

20.5 Tc Path Strings

These strings are used to calculate the time of concentration for the impervious and pervious areas. For each catchment set, they are drawn in two models; one for the impervious paths and one for pervious paths. The models are specified using the **Catchment file** field on the network editor (Global->Utility model tab). The 3 rows in the catchment file correspond to the 3 catchments available for each inlet. Therefore it is possible to have a maximum of 6 Tc paths models!

Key Points

1. Each Catchment set may have 2 Tc paths models. Pervious and impervious paths are kept in separate models.
2. End the Tc path string near the inlet that it is to be linked to.
3. Enter the paths models via **Catchment file** field on the (Global->Utility model tab)
4. You must select a Tc method (explicit or implicit) via the **Defaults->Catchments** tab or the **Catchments Tabs**. Just specifying the models is NOT enough!
5. Select **Set Catchments** to perform the calculations of length and slope.

The tc strings can be drawn in the same way as the catchment strings but make sure that you change the model name first! The tc string model is then entered in either the impervious or pervious paths model columns (You could have up to 6 tc string models!).
20.5.1 Catchment slope (equal area)
The length of this string is used for the length parameter and the design tin is used with the string to calculate the slope using the equal area method. These strings are drawn from upstream to downstream, finishing nearest to the inlet they are to be linked to.

1. Change the Cad toolbar model to `dr Catch Reserve tc` and the line type to FLOW LINE
2. Use Cad line->Cad line to draw the flow path from the culvert inlet up to the top of the catchment.
3. Use Cad string->Reverse to that the string is in the same direction as the flow.

1. Change the Cad toolbar model to `dr Catch Reserve tc` and the line type to FLOW LINE
2. Use Cad line->Cad line to draw the flow path from the culvert inlet up to the top of the catchment.
The equal area slope is calculated when Set Catchments is selected. The slope string be profiled, with tin combined added to the view, to see the slope and the equal areas (see below) above and belong the tin.
21. Network Editor - Hydraulics

This section will discuss the hydraulic Global, Defaults and explicit settings for the hydraulic parameters. The explicit settings for the parameters described on the defaults tab will also be found on the Pit or Pipe tabs.

21.1 Grate Levels

Important! Get the Grate level correct! The freeboard is measured from this level and if you do bypass cals the water will bypass if the hgl reaches this level. If the grate level is at or below the obvert of the pipe then the pit cannot surcharge and the pipe cannot flow full (it is an open channel). The grate level should not exceed the cover level except for pressurised, bolt down manholes and culvert headwalls.

Special Structures

- **Bolt down manholes** will have the grate level above the cover level. The height above the cover will determine the hydraulic head required to "pop" the cover off and begin surcharging.

- **Headwalls** cover levels are often the top of the headwall structure and and the grate level is set to the highest point of the channel before bypass begins.

21.2 Outlet and Tailwater Conditions

The most downstream pit on each network requires tailwater conditions. Often the invert level on the downstream end of the last pipe also needs to have the invert level locked to either discharge into a waterway or join into an existing drainage system. When the most downstream pit is selected the following fields will become active on the DNE Pit-Main tab. If these field are not active and you think you are at the outlet see Flow in the Wrong Direction.

Minimum will use the least of the Critical or Normal depths. If a fixed level is available for the minor and/or major storms, these value may be entered here.

The Ko is the loss coefficient for the exit losses into the downstream system. A value of 1 is typical for discharging into a pond or creek, or a Ku value for the pipe configuration in the pit the network is joining.

21.3 Culvert Hydraulics and Tailwater

To set the tailwater conditions for the culvert we created at the beginning of the course, select the outlet...
In part 2 of the course we add an open channel to calculate a realistic tailwater for the culvert.

21.4 Pit Losses Ku, and Direct Flow

The Q_{dg} (direct flow) (ems/cfs) is water flowing into the manhole. It is added to the approach flow and is subject to pit inlet capacity. This field will be disabled on the pit tab if the inlet type is set to a manhole.
The Pit loss Ku is used to model the energy losses through the pits and inlet control on culvert inlets. Three Ku methods are available, Direct (user entered), Ku,Kw via charts (may be negative), or Ku,Kw >0 via charts where all negative values are changed to zero. The remaining methods specify various headwall types for culverts. These will use inlet control curves and backwater energy loss coefficients.

Ku config has 4 options: Preferred, Good, Fair and Poor. The settings have no effect for 100% grate flow, straight through and 90° bends. For pipes with bends they determine the charts to use. The following are guidelines in selecting the Ku config.

- Preferred: water impacts the opposite wall where it exits
- Good: water impacts the side wall where it exits
- Fair: water impacts the side wall and exits on the end
- Poor: water impacts the opposite wall of the pit and exits on the side wall.

21.5 Introduction to 12d Ku/Kw Calculations

The following description is a very general overview of the Ku calculations in 12d. For a detailed description please see the 12d forum site http://forums.12dmodel.com/.

When 12d uses the Ku and Kw Charts, the values of upstream pipe angle, (Qgrate/Qoutlet), (Upstream diameter/outlet diameter) and (pit depth/outlet diameter) are calculated and used in the Ku/Kw charts. Three cases exist which determine which chart is used.

Case 1 - Pits with 100% Grate Flow

The angle between the ground approach flow and the exit pipe is measured. Charts, compiled from Sangster et al (1958) are used; G1 is used for angles less than 15 degrees (rare) and G2 for angles > 15 degrees. 12d’s names G1 and G2 can be referenced to other publications in the table below.

Case 2 - Pits with More than 50% Through Flow

12d has 10 charts (T1-T10) compiled from the Hare (1981) and cross referenced to the QUDM and ACTDS Charts. In general T10 charts have greater losses than T1 charts.

<table>
<thead>
<tr>
<th>Ku Config</th>
<th>0°</th>
<th>22.5°</th>
<th>45°</th>
<th>67.5°</th>
<th>90°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferred</td>
<td>T1</td>
<td>T1</td>
<td>T4</td>
<td>T8</td>
<td>T10</td>
</tr>
<tr>
<td>Good</td>
<td>T1</td>
<td>T1</td>
<td>T5</td>
<td>T8</td>
<td>T10</td>
</tr>
<tr>
<td>Fair</td>
<td>T1</td>
<td>T3</td>
<td>T6</td>
<td>T9</td>
<td>T10</td>
</tr>
<tr>
<td>Poor</td>
<td>T1</td>
<td>T3</td>
<td>T7</td>
<td>T9</td>
<td>T10</td>
</tr>
</tbody>
</table>

12d Chart Cross References

<table>
<thead>
<tr>
<th>12d Pit Config</th>
<th>G1</th>
<th>G2</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
<th>T9</th>
<th>T10</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUDM Ku Chart #</td>
<td>32</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>37</td>
<td>37</td>
<td>38</td>
<td>40</td>
<td>42</td>
<td>44</td>
<td>46</td>
</tr>
<tr>
<td>QUDM Kw Chart #</td>
<td>32</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>36</td>
<td>37</td>
<td>37</td>
<td>39</td>
<td>41</td>
<td>43</td>
<td>45</td>
<td>47</td>
</tr>
<tr>
<td>ACTDS Ku Chart #</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>13</td>
<td>14</td>
<td>10</td>
<td>9</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>7</td>
</tr>
<tr>
<td>ACTDS Kw Chart #</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>13</td>
<td>15</td>
<td>10</td>
<td>9</td>
<td>17</td>
<td>19</td>
<td>21</td>
<td>23</td>
<td>8</td>
</tr>
<tr>
<td>ACTDS Pit Type #</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>11</td>
<td>12</td>
<td>8</td>
<td>7</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>6</td>
</tr>
</tbody>
</table>

Case 3 - Pits with between 0 and 50% Through Flow

With the flow condition between grate flow and through flow, a K value interpolation is performed based on the percentage through flow.
21.6 Pipe Friction Method, Roughness Values and Direct pipe flow

The default roughness and pipe roughness method are set here (Colebrook (mm) or Manning).

Qdp (direct pipe flow is flow) at the upstream end of the pipe that is included in the pipe flow calculations but is not included in the upstream pit losses nor restricted by the pits inlet capacity.

The ranges for pipe peak velocities are used for checking purposes only. If the velocities are outside this range, warning messages will be given in the output window.

21.7 Design mode, Freeboard Limit and Flow-depth limit

The Design mode has 4 options.

Pressurised Pipe: Freeboard Design does not use partial depths in the pipes and pipe sizes selected by checking the pit freeboard.

Part-full Pipe: Freeboard Design is similar to option 1 except gradual varied flow and hydraulic jumps are calculated in the pipes. Critical depth is the minimum depth at the upstream end of the pipe.

Part-full Pipe: Flow-depth Design is the similar to option 2 except the pipe sizes are selected by checking the normal depth in the pipe against the Flow-depth limit. Freeboard is also checked in this mode and if required the pipe will increase in size.

Open Channel: Freeboard Design is similar to option 2 except depths at the upstream end of the pipe may be less than critical depth for steep pipes (supercritical flow at the entrance).

The Freeboard limit is used for all Design modes. The freeboard is measured down from the grate level (Cover RL plus Grate offset).

The Flow-depth limit at pipe entrance (%) is used in Design mode 3. If the flow depth in the pipe is
greater than this value the pipe size is increased.

21.8 Pipe Design Parameters - Sizes, Invert alignment, Min Cover, Max Height

The invert levels during design are controlled by the pipe sizes, max pipe height, min pipe cover and invert alignment mode.

21.9 Pipe sizes, Max pipe height and Multiple Pipes and Box Culverts

The 12d design engine will select pipe sizes from the file specified on the Drainage Network Design panel, Preferred pipes file field list. See selecting pipe sizes. However, the maximum pipe height allowed before multiple pipes are used and the selection of box culverts is set on the pipe->main and pipe >design tabs respectively.

Num of specifies the number of identical pipes. The pipe flow is divided by this value when calculating losses.

To specify a box section in your network, select the pipe and enter a width for the pipe.

A Top width is used for trapezoidal channels. Note that if the hgl exceeds the top of the channel it will have friction on the soffit just as a box culvert.

For box culverts, the design engine increases the widths and maintains the height through the available sizes. Once the maximum height has been reached, the next culvert height and minimum width is checked.
21.10 Pipe Size Design

On the **Pipe** tab the **Lock Pipe size** prevents the 12d design engine from resizing the pipe. **Min pipe height** can be set for each pipe segment (there is no default for this value).

![Pipe Design Tab](image)

Specifying a minimum pipe size may speed up 12d design. The starting value for pipe sizing will not be less than this value. That includes all downstream pipes as well. So if you know that the pipe needs to be this size or bigger, enter it here.

Max pipe height can be set for each pipe segment (there is no default for this value). If the 12d design engine requires a larger pipe, then multiple pipes will be selected.

21.11 Calculate Bypass flow routes

This option is required for pit inlet capacity calculations and is covered in the Stormwater Part 2 training. As an introduction, the bypass strings determine the downstream bypass inlet for each inlet. Inlet capacity is determined from commands in the drainage.4d file. Road grade and crossfall measurements require the inlet to be linked to a setout string and pond depth measurements require a link to catchment string.
22. Drainage Design in 12d Drainage Design

12d has a sophisticated rational method hydrology and hydraulic grade line pipe design engine. In addition it has the capability to export this data to several other popular drainage packages. Regardless of the design method selected, the drainage network in 12d is updated from the design so that drainage plans, long sections and pit schedules can be quickly produced.

22.1 12d Rational Method Hydrology - Drainage Rainfall Editor

The Drainage Rainfall Editor is used to input rainfall IFD data using several methods. The data is stored in hydro files (each file is for a specific location) that can be shared between 12d projects. The data is edited using an editor similar to those used for the plot parameter files (ppf). Seven methods for entering/calculating the rainfall intensities are shown in the panel below. From the main menu select, Design->Drainage-Sewer->Rainfall EditorData is entered using one (or more if desired) input methods and then saved by entering a Meteorology file name and selecting Write. The standard 12d system file search paths are used (project folder, user library folder and then library folder).

Select the folder icon and then walk right on the Lib item to display a list of sample files. Select a file the select Read. YOU MUST SELECT THE READ BUTTON!

22.1.1 IFD Tables

IFD tables are often available from meteorological services. The table input format follows. The first row is used to define up to 9 return periods and the following rows list the rainfall intensities for the duration entered in the first column.

Hint: to increase the size of the grid control select another method, ARR 1987 for example, and then select IFD table again.
22.1.2 Australian Rainfall and Runoff 1987 Method

The rainfall intensities and other factors from Volume 2 of ARR 1987 are entered in this table.
22.1.3 Australian Rainfall and Runoff 1977 Method
The seven coefficients for each return period from ARR 1977 are entered in this table.

<table>
<thead>
<tr>
<th>Return Period</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1</td>
<td>-0.653</td>
<td>-0.0475</td>
<td>0.02647</td>
<td>0.00124</td>
<td>-0.002107</td>
<td>0.0002041</td>
<td></td>
</tr>
<tr>
<td>2 2</td>
<td>-0.6689</td>
<td>-0.0541</td>
<td>0.02994</td>
<td>0.001906</td>
<td>-0.002457</td>
<td>0.000239</td>
<td></td>
</tr>
<tr>
<td>3 5</td>
<td>-0.7178</td>
<td>-0.0741</td>
<td>0.0451</td>
<td>0.003726</td>
<td>-0.0041352</td>
<td>0.0004227</td>
<td></td>
</tr>
<tr>
<td>4 10</td>
<td>-0.75</td>
<td>-0.0853</td>
<td>0.0462</td>
<td>0.005528</td>
<td>-0.0039794</td>
<td>0.0003366</td>
<td></td>
</tr>
<tr>
<td>5 20</td>
<td>-0.7471</td>
<td>-0.0926</td>
<td>0.04868</td>
<td>0.006337</td>
<td>-0.0044</td>
<td>0.0003738</td>
<td></td>
</tr>
<tr>
<td>6 50</td>
<td>-0.7659</td>
<td>-0.1036</td>
<td>0.0523</td>
<td>0.007596</td>
<td>-0.0048175</td>
<td>0.0003939</td>
<td></td>
</tr>
<tr>
<td>7 100</td>
<td>-0.7775</td>
<td>-0.1095</td>
<td>0.05478</td>
<td>0.008397</td>
<td>-0.0049816</td>
<td>0.0003921</td>
<td></td>
</tr>
</tbody>
</table>

22.2 Drainage Network Design
The Storm Analysis button on the Network Editor executes the 12d drainage design, plots the drainage long section and plan annotation and prepares the hydrology and hydraulic design tables.

From the Drainage Network Editor select Storm Analysis. The following design panel will appear.
Storm Analysis Factors

The valid ARI will depend on the method selected but you cannot extrapolate beyond your data. Select the folder icon on the Rainfall location file and then walk right on the Lib line to select one of the rainfall files in the 12d library. If the file has only one type of rainfall definition then the Rainfall method field will be completed. Otherwise select the Rainfall method desired.

Storm event type determines which set of design values (minor or major) will be used for this run. Pipe travel time method should be set to the authorities requirements.

Enable the 12d rational method engine partial area calculations by selecting the Partial area effects box.

Network Design Factors

Modify Pipe Sizes

These values control the values to be designed in the run. Consider bypass flows causes the engine to use the bypass flow routes and inlet capacity data from the drainage.4d file.

Ensure Pipe Q < Qcap will increase the pipe size if this criteria is violated.

Modify pipe inverts will allow the design engine to shift the inverts if required (usually pipe size changes).

If Modify pipe sizes is selected then a files containing the available pipe sizes must be supplied. The pipe sizes in this file are in the Units specified in the drainage network editor. To create a new file, enter the file name and then select the folder icon followed by the Edit line. The following panel will appear.
The Upsize only selection will stop pipes in the system from being reduced in the design. Regardless of this selection, the 12d design engine will not allow a smaller pipe to be selected in the downstream direction.

22.3 Pipe Sizes too Large?

A few comments on why you may have large pipes in your design.

If one pipe is sized large then 12d will not allow a smaller pipe downstream. So when pipes seem large, check the most upstream large pipe. HGL restraints will require you to look downstream of the large pipe.

Check List

1. High roughness values, accidentally setting roughness to Manning with a 0.6 roughness value (Colebrook)!
2. Grate levels not set correctly. Freeboard is measured from these levels.
3. Pipe min pipe cover set very close to freeboard.
4. Selecting Ensure Q<Qcap in the storm analysis dialogue. This is required by some authorities but can cause larger pipes in flat areas.
5. NOT selecting Modify pipe sizes in the storm analysis dialogue. 12d will not change the pipe size.
6. Selecting Only allow pipes to upsize in the storm analysis dialogue. 12d will not check if a smaller pipe will do.

Generate Results in Plan

This selection automatically runs the drainage plot annotation function. A Drainage plan ppf must be entered and samples are supplied in the 12d library. A Model for plan results is required if this option is selected. The Full clean model before hand tick box forces the model to be cleaned before the labels are created. When not selected a “Smart clean” is performed.

Generate Results in Long Section

This selection automatically runs the drainage long section plotter. A Drainage long section ppf is required and examples are found in the 12d library. A Model stem for long section results is required if this option is selected. In almost all cases the Clean model before hand tick box should be selected.
Generate hydrology report

The **hydrology report** may be formatted for inserting into a 12d model/text editor (formatted) or spreadsheet (comma or tab delimited). In almost all cases **Overwrite existing report file** will be selected.

22.4 The Run Button and HGL data on the Section View

When the Run button is selected the discharges are calculated, the HGL check is performed and the pipes sizes and inverts are designed (if selected). The plan and long section drawings will also be updated with the new data (if selected).

The HGL values will also be available on the 12d section views when profiling the drainage strings. The colour of the HGL line may be changed via the view’s menu button then **Settings >Drainage**.

22.5 Importing Text into a 12d model

Formatted text may be inserted into a 12d model by selecting
Drafting->Text and Tables->Create edit paragraph text

Change to File.
Select the folder icon and then pick the formatted text file. It will be displayed then select Set.
Next select the location in plan for the text.
The font selected must be a fixed space font or the data will not align properly.
Select the Font to display the following panel.

Enter a Text Model for the report.
The Text Style must be a fixed space font.
Select Set then Finish.
Now add the Text Model onto the

Generate hydraulic report

The hydraulic report may be formatted for inserting into a 12d model/text editor (formatted) or spreadsheet (comma or tab delimited). In almost all cases Overwrite existing report file will be selected.

If you want both the hydrology and hydraulic report in the same file, enter the same file name in both file fields but turn off the Overwrite existing report file for the hydraulic report.
22.5.1 Design Results
Results from the design runs are shown in several forms:
1. Hydrology and hydraulic reports
2. Drainage plan annotations
3. Drainage long sections
4. Hydraulic Grade line on the Section view
5. Output window data - Service/utility clashes
Samples of the hydrology and hydraulics report are shown below.
<table>
<thead>
<tr>
<th>Pit</th>
<th>Pit Type</th>
<th>Easting</th>
<th>Northing</th>
<th>Setout</th>
<th>Out</th>
<th>Level</th>
<th>Catch</th>
<th>Time</th>
<th>Intensity</th>
<th>Tc</th>
<th>I</th>
<th>Runoff</th>
<th>Area</th>
<th>Full</th>
<th>Full</th>
<th>Full</th>
<th>Full</th>
<th>Partial</th>
<th>Partial</th>
<th>Partial</th>
<th>Partial</th>
<th>Approach</th>
<th>Flow Qc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A2</td>
<td>5349.23</td>
<td>7322.04</td>
<td>30.09</td>
<td>IF</td>
<td></td>
<td>IF</td>
<td>10.00</td>
<td>163.00</td>
<td>0.75</td>
<td>0.00683</td>
<td>0.0962</td>
<td>0.0732</td>
<td>23.1</td>
<td>0.0631</td>
<td>0.0701</td>
<td>39.7</td>
<td>39.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>204.00</td>
<td>0.90</td>
<td>0.0745</td>
<td>0.0670</td>
<td>0.0670</td>
<td></td>
<td>0.0670</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A2</td>
<td>5305.31</td>
<td>7322.04</td>
<td>29.08</td>
<td>IF</td>
<td></td>
<td>IF</td>
<td>10.00</td>
<td>151.00</td>
<td>0.75</td>
<td>0.00459</td>
<td>0.0044</td>
<td>0.0532</td>
<td>23.7</td>
<td>0.0623</td>
<td>0.0500</td>
<td>38.4</td>
<td>38.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>204.00</td>
<td>0.80</td>
<td>0.0551</td>
<td>0.0470</td>
<td>0.0470</td>
<td></td>
<td>0.0470</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A2</td>
<td>5208.65</td>
<td>7322.04</td>
<td>27.86</td>
<td>IF</td>
<td></td>
<td>IF</td>
<td>10.00</td>
<td>151.00</td>
<td>0.75</td>
<td>0.00455</td>
<td>0.0040</td>
<td>0.2470</td>
<td>21.3</td>
<td>0.0620</td>
<td>0.0551</td>
<td>25.5</td>
<td>25.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>204.00</td>
<td>0.90</td>
<td>0.0496</td>
<td>0.0431</td>
<td>0.0431</td>
<td></td>
<td>0.0431</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>A2</td>
<td>5156.75</td>
<td>7322.04</td>
<td>26.78</td>
<td>IF</td>
<td></td>
<td>IF</td>
<td>10.00</td>
<td>163.00</td>
<td>0.75</td>
<td>0.00186</td>
<td>0.0389</td>
<td>0.4586</td>
<td>207.6</td>
<td>0.0194</td>
<td>0.4252</td>
<td>240.9</td>
<td>240.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>204.00</td>
<td>0.80</td>
<td>0.4664</td>
<td>0.4197</td>
<td>0.4197</td>
<td></td>
<td>0.4197</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A2</td>
<td>5314.17</td>
<td>7336.94</td>
<td>29.32</td>
<td>IF</td>
<td></td>
<td>IF</td>
<td>10.00</td>
<td>163.00</td>
<td>0.75</td>
<td>0.0184</td>
<td>0.0138</td>
<td>0.1831</td>
<td>73.8</td>
<td>0.0689</td>
<td>0.1862</td>
<td>88.8</td>
<td>88.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>204.00</td>
<td>0.90</td>
<td>0.1659</td>
<td>0.1493</td>
<td>0.1493</td>
<td></td>
<td>0.1493</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
More Drainage

Model Reference Manual

Page 5492

<table>
<thead>
<tr>
<th>Pipe</th>
<th>Type</th>
<th>Length</th>
<th>Size</th>
<th>Area</th>
<th>Grade</th>
<th>Full-area</th>
<th>T</th>
<th>Full-area</th>
<th>I</th>
<th>Full-area</th>
<th>Q<sub>1</sub>-<sub>T</sub></th>
<th>Part-area</th>
<th>T</th>
<th>Part-area</th>
<th>I</th>
<th>Part-area</th>
<th>Q<sub>1</sub>-<sub>T</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 2</td>
<td>2</td>
<td>45.50</td>
<td>500</td>
<td>0.071</td>
<td>2.15</td>
<td>46.6</td>
<td>10.00</td>
<td>160.00</td>
<td>0.0077</td>
<td>0.372</td>
<td>33.3</td>
<td>5.00</td>
<td>294.00</td>
<td>0.0766</td>
<td>0.0701</td>
<td>0.074</td>
<td></td>
</tr>
<tr>
<td>2 to 3</td>
<td>2</td>
<td>59.65</td>
<td>450</td>
<td>0.109</td>
<td>2.16</td>
<td>46.6</td>
<td>10.37</td>
<td>140.70</td>
<td>0.0028</td>
<td>0.504</td>
<td>38.9</td>
<td>5.13</td>
<td>292.40</td>
<td>0.6239</td>
<td>0.5183</td>
<td>313.2</td>
<td></td>
</tr>
<tr>
<td>3 to 4</td>
<td>2</td>
<td>40.91</td>
<td>450</td>
<td>0.159</td>
<td>2.15</td>
<td>46.5</td>
<td>10.60</td>
<td>150.25</td>
<td>0.0097</td>
<td>0.794</td>
<td>351.0</td>
<td>5.30</td>
<td>290.25</td>
<td>0.8451</td>
<td>0.7974</td>
<td>421.4</td>
<td></td>
</tr>
<tr>
<td>5 to 6</td>
<td>2</td>
<td>10.44</td>
<td>450</td>
<td>0.197</td>
<td>1.22</td>
<td>12.0</td>
<td>10.00</td>
<td>249.00</td>
<td>0.546</td>
<td>0.496</td>
<td>207.6</td>
<td>5.00</td>
<td>294.00</td>
<td>0.4923</td>
<td>0.4992</td>
<td>299.7</td>
<td></td>
</tr>
<tr>
<td>6 to 3</td>
<td>2</td>
<td>31.81</td>
<td>500</td>
<td>0.071</td>
<td>1.86</td>
<td>55.3</td>
<td>15.00</td>
<td>160.50</td>
<td>0.1049</td>
<td>0.193</td>
<td>73.0</td>
<td>5.00</td>
<td>294.00</td>
<td>0.1721</td>
<td>0.1505</td>
<td>69.5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pipe</th>
<th>Capacity</th>
<th>Q<sub>1</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 2</td>
<td>53.7</td>
<td>384.3</td>
<td>0.22</td>
<td>0.54</td>
<td>2.80</td>
<td>1.08</td>
<td>2.54</td>
<td>36.05</td>
<td>26.68</td>
<td>27.69</td>
<td>29.00</td>
<td>1.10</td>
<td>0.0</td>
<td>6.194</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 to 3</td>
<td>31.0</td>
<td>564.6</td>
<td>0.69</td>
<td>1.97</td>
<td>2.64</td>
<td>1.05</td>
<td>2.64</td>
<td>24.07</td>
<td>26.72</td>
<td>26.94</td>
<td>27.60</td>
<td>1.10</td>
<td>0.0</td>
<td>6.024</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 to 4</td>
<td>42.1</td>
<td>564.0</td>
<td>0.77</td>
<td>2.61</td>
<td>3.78</td>
<td>2.71</td>
<td>3.71</td>
<td>27.88</td>
<td>26.32</td>
<td>26.24</td>
<td>26.78</td>
<td>1.10</td>
<td>0.0</td>
<td>6.069</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 to 6</td>
<td>57.8</td>
<td>495.6</td>
<td>0.61</td>
<td>1.97</td>
<td>2.50</td>
<td>1.07</td>
<td>2.57</td>
<td>25.32</td>
<td>27.35</td>
<td>27.69</td>
<td>25.55</td>
<td>1.10</td>
<td>0.0</td>
<td>5.069</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 to 3</td>
<td>36.0</td>
<td>312.3</td>
<td>0.61</td>
<td>1.23</td>
<td>2.45</td>
<td>1.51</td>
<td>2.94</td>
<td>26.49</td>
<td>27.10</td>
<td>26.61</td>
<td>27.88</td>
<td>1.10</td>
<td>0.0</td>
<td>6.195</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pipe</th>
<th>US</th>
<th>Flow Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 2</td>
<td>2.00</td>
</tr>
<tr>
<td>2 to 3</td>
<td>2.00</td>
<td>0.62</td>
</tr>
<tr>
<td>3 to 4</td>
<td>2.00</td>
<td>0.06</td>
</tr>
<tr>
<td>5 to 6</td>
<td>2.00</td>
<td>0.25</td>
</tr>
<tr>
<td>6 to 3</td>
<td>2.00</td>
<td>0.16</td>
</tr>
</tbody>
</table>
23. Create a Drainage Model Template (Saving Defaults and Globals)

A drainage model template contains your favourite global and default settings for the DNE. These settings are stored as model attributes and the template may be read before or after the drainage strings have been created. Caution: existing default and global setting may be overridden.

You can create your own templates as well. Now that you have completed a drainage job and all of your global and default settings are set, create a template to save in your user library.

From the main menu select

Design => Drainage-Sewer => Create => Create/Read template

1. Change to Write.
2. Select drainage for your existing network
3. LB the folder icon, then user_lib, type a name for the template the select Open
4. LB Process to create the drainage model template for your next project.
24. Drainage Data Input and Output to Spreadsheets

Spreadsheets are an effective method to manage the numerous variables urban drainage designers create in the modelling process. Spreadsheet data can be transferred to and from 12d in tab delimited files and stored within 12d as “user definable attributes”. These attributes are linked to the pit and pipes within a network. Drainage long section plots can display the pipe attributes in the “arrows” data area and pit attributes in the bubbles area. Drainage plan drawing can also show these pit and pipe attributes.

Drainage strings will be created if they do not exist in the model but pits cannot be added to existing strings.

See also

12d to spreadsheet transfers
Spreadsheet to 12d update and create
Spreadsheet options

24.1 12d to spreadsheet transfers

This interface is accessed the **Import/Export** button on the Drainage **Network Editor**.

1. Select Spreadsheet clipboard
2. Leave as **clipboard.txt** to send the data to the windows clipboard as well as this file.
3. Mapping files are the most current 12d technology. Leave this selected.
 These options are not used for spreadsheet export.
4. Usually leave this off! Select to export the junction pit at the end of all drainage lines (very rarely needed).
5. You may also select to limit the output if desired. If you like using spreadsheets for data entry, the PCdrain data and ILSAX data formats are useful for adding data for the first time for either program.
6. Select Run to place the data on the clipboard.
25. Long Section Plotting

Detailed description of the 12d drainage long section plotting may be found in the 12d Reference manual. The long section plots are customised using the drainage plot parameter files (drainppf). Title blocks, user defined text may be added and then plotted directly or to various file formats (dwg, dgn etc.). From the main menu

Design=>Drainage-Sewer=>Plots=>Longsections

See Also

Set Pit Details to set road chainage and name data

1. To access the drainppf files supplied select the icon and then walk right on Lib to select this drainppf file.
2. Select Read
3. Enter a new name for this drawing
4. select Write. This will save the setting we are about to make should you want to replot this long section.
5. This section view determines the additional models (such as services) to show plot. These are referred to as corridor models. The vertical exaggeration is also obtained from this view.

6. The network model field will be completed with the model of the string being profiled. If this is not your drainage network model then select it now.

7. When Plotter Type is set to model then plot file stem is the model name prefix for plots that will be created. The first sheet of plots will be in model plot1, the second in plot2 etc.
8. Select + on the Plot sheet layout branch and then select Other parameters.

9. The plot height determines how much room is left vertically for the actual plot. This specifies the total height of the plot. 12d then constructs the box area and arrow area on the bottom and then arrow area on the top. The amount left over is used for the long section itself.

To stop datum breaks from occurring increase this height, increase your plot scale or decrease your vertical exaggeration. If there is too much white space in the graph area then reduce this value.
10. The **Drainage plot** + **title block** + **User title info** allow you to enter the text for the title block.

11. The list displayed is retrieve from the **title file** selected above. Enter the data for the plot.

12. Select **Write** to save the changed to the local drainppf file you entered earlier.

13. Select **Plot** and the plots will be send to the **plot file stem** entered. These models may be added (one at a time) to a plan view to inspect them before plotting to paper or exporting to other drawing packages.
26. More Information

This section provides detailed description of items introduced previously in the training notes.

26.1 Linking to Strings in General

Many pit properties may be calculated from strings linked to the pit. The following rules apply to all strings linked via the DNE.

1. The selection of strings is limited to the models specified on the DNE->Utility Model tab.

2. When no link exists for the pit, the closest string matching the selection criteria will be chosen. If a link exists, then no new string will be searched for. Even if the search criteria changes or a closer string is created. The link must be deleted before new links are searched for.

3. The link will not be broken unless:
 - another string is manually selected
 - the link is manually Cleared with the RB on the manual string select
 - the string is deleted (manually or when a recalc is done on template applies),
 - the model links are reset on the DNE->Utility Model tab,
 - the model is removed from the DNE->Utility Model tab.

4. Once link is broken the calculated values will be kept unchanged, with the exception of bypass pits.

26.2 Catchment string links

Each catchment set has its own model of catchment strings and the sets are linked independently.

If the area (in ha) is present in the area field, no new string link be searched for.

Vertex number 1 on the catchment string determines which pit the string will link to. If vertex 1 of several catchment strings are closest to the same pit. Only the closest string will link and the remaining will not be used for any other pit.

After the catchment string link is created, the vertices are re arranged so that the vertex closest to the pit becomes vertex.

26.3 Road string links

Road strings have a name and maximum search distance criteria and there is no limit to how many pits link to a single road string. The closest string matching the string name criteria (in the road string file) and within the search distance will be selected. Note that once the string link is established, changing the criteria will NOT break the link.

26.4 Bypass string links

Pits marked with an Inlet type of Manhole on the DNE->Pit->Main tab ignore the bypass strings. Bypass strings must pass within 1 manhole diameter to be linked.
27. Training Check List

Network plan - convert from strings
 - insert, append, delete and move pits

Network Vertical - Set Pit Details and Regrade pipes
 - Pipe alignment modes

Set Pit Names

Catchments - draw, label, link and check
 - tc strings

Hydrology - Area, Tc, C values with defaults

Hydraulics - setout to grate
 - method (pipe full or HGL)
 - available pipe sizes and box culverts

Services - over and under drainage pipes

Road strings - rotate symbols
 - x,y and/or z for setout
 - road grade and crossfall for inlet capacity
 - road chainage from centre line

12d design engine understanding the reports

Setout pit schedules - easting, northing and road centre line

Drawings Long Section plotting
 Plan drawings

Kerb Strings - select by name
 - crests and sags

THE END
1.0 Stormwater Design Part 2- Introduction

The Stormwater Design Course Part 1 and this manual, the Stormwater Design Part, describe the functions and processes of the 12d drainage module. In these documents, the generic term pit refers manholes inlets, catch basin and manholes.

The Stormwater Design Course - Part 1 Notes contain:

- create a super tin for pipe cover and pit cover levels,
- set Defaults and layout a drainage network from CAD and in 12d,
- use the 12d Drainage Network Editor to assign names to the pit/pipes, avoid service clashes, grade pipes, align obverts, minimise depth and many other design tools,
- designate catchment areas and produce catchment plans,
- run the 12d storm rational hydrology and hydraulics engine,
- transfer data to and from electronic spreadsheets to enable the user to easily review the data and add user defined data to the 12d pipe network. This data may include such data as pipe bedding types and trench width,
- create a drainage template containing customised default design parameters,
- create pit setout schedules to export to spreadsheets or word processors for final formatting,
- produce long section drainage profiles including HGL data, flows, invert levels and service crossings,
- create plan drawings with pipe sizes, flows, pit symbols, linestyles for pipe sizes, design parameters for pit and pipes and user defined data,
- locate pits/manholes at exact chainage and offset locations.

This manual, the Stormwater Design Course - Part 2, is intended to describe the additional features of 12d Model drainage and discuss the customisation of the package. This will include

- customising the drainage.4d file Drainage Definitions - Manholes and Pipes,
- 12d storm analysis with inlet capacity calculations and bypass flow,
- flooded width analysis and flooding at SAG pits,
- drainage trench excavation volume calculations,
- pipe and pit quantity calculations/reports,
- open channel calculations,
- adjusting pit locations for changes in horiz road geometry
- analysing the major flood events,
- creating drainage symbols with grates and upstream side inlets,
- detailed drainage plan labelling and long sections with hatching under roads.
2.0 Starting with a Basic Drainage Network

In this document, the generic term pit refers to manholes, inlets, catch basin and manholes. When the term manhole is used on the 12d menu system it refers to any type of pit. Pit types, dimensions and inlet capacities of the pits are set in the Drainage.4d setup file/database.

These course notes assume that you have completed the Stormwater Design Course and that you have experience creating 12d Model drainage networks with catchments areas. You may continue this project or begin with a completed drainage design found in the folder \12d\10.00\Courses\Drainage_Analysis

The project name is Local Road Complete.

3.0 Setup Files and Their Locations

The drainage.4d setup/database file contains the pit and pipe types (RCP, Class 2 etc.). The drainage.4d setup/database file can also control many of the settings in the drainage network editor (DNE). Changing the pit/pipe type in the DNE will result in your favourite settings being applied thus minimising user input errors.

The pit types may optionally include:
- DNE field controls, including internal pit dimensions (diameter or length and width)
- pit wall thicknesses that vary with depth,
- pit connection points (locations where the pipes joint the pit),
- inlet capacities for sag and on grade inlet pits.
- detailed pit type descriptions to be inserted into your pit schedules
- user defined attributes.

The pipe types may optionally include:
- DNE field controls, including internal nominal and actual pipe sizes with wall thickness,
- user defined attributes.

For PCdrain and Drains users there are routines to read your gully pit/database files and create the Drainage.4d setup file/database.

The Drainage.4d setup file/database may be customised for any additional inlet capacity data you may have. REVIEW THIS DATA CAREFULLY!
4.0 Bypass Flow

Bypass flow strings are used to trigger the bypass calculations in the network editor and are used as a centre line for flooded width calculations.

The 12d storm analysis, and many of the design programs 12d exports to, allow for bypass flow. Bypass flow involves the calculation of pit inlet capacity for on-grade or sag inlets. These capacities are based on the pit type and may use either ponding depths (sag inlets) or on the road grade and/or crossfall upstream of the inlet (on grade inlets).

4.1 Key Points

1. Draw an bypass flow string in the direction of flow so that it passes within 1 pit diameter of an inlet. At sag locations the string should show the direction of flow during bypass conditions. When bypass flow strings join they must join within 1 pit diameter of an inlet (pits with inlet config set to Manhole are not considered inlets). If flooded with calculations are to calculated the string should located in the flow channel. Enter the model name in the Bypass flow model field on the Global->Utility Models tab.

Note: if there is no bypass flow string within 1 pit diameter then 100% of the approach flow will enter into the pit.

2. Many bypass strings may join at an inlet but only one bypass string should leave each inlet.

3. Set the pit type. (Pit Type on the Pit tab). With a bypass string within 1 pit diameter of the pit centre, no water will enter the pit unless the pit type has inlet capacity data defined in the Drainage.4d setup file/database.

4. Set the Inlet config on the Pit->Main tab (Manhole, On-grade or Sag pit). This selection will be disabled if cap_config parameter sets the inlet type in the Drainage.4d setup file/database. Manholes have no inlet capacity and are not considered inlets, on-grade inlets capture the water as it passes the inlet while SAG inlets trap the water flowing in from all directions (until the pond depth overflows at the low point of the catchment string).

5. On grade pits may require road grade and/or crossfall data for inlet capacity. They may be entered manually or calculated using the road strings. A setout string link is required to measure road grade. If road crossfall measurement is needed then the centre string is also required. These strings are specified using the Road design file on the Global->Utility Models tab (see Stormwater Part 1 manual).

6. Sag inlets require a pond depth either manually entered or calculated by 12d. Pond depth calculations require a link to a catchment string to locate the overflow point and correct grate level (Grate rl mode).

7. Press the Set Pit Details button. Road grades, crossfalls, pond depths and bypass pits will now be found on the Pit->Bypass tab of the Network Editor. Measurement markers are created in the construction drainage data model.

8. Bypass pits may be cleared using Clear Bypass Links on theGlobals->Utility Models tab

9. Storm Analysis must have Consider Bypass Flows selected on the Main tab.

10. Calculate overland flood extents is optional on the Flood Extents tab of Storm Analysis.
4.2 Creating Overland Flow Strings using Downhill Strings

The bypass flow string must be within 1 pit diameter of the drainage pit in be considered on the bypass flow path. If the bypass flow string is to be used for flooded width calculations in the future, the string must also be drawn in the main flow area of the cross section. At sag locations the bypass flow strings indicate the direction the water flows when it overtops the overflow point. This string usually goes uphill to this overflow point.

The downhill string function quickly creates bypass flow strings from road design strings. The remaining tasks will be the bypass flow at intersections and areas off the roadways.

This routine copies strings to a single model using a string name mask to select the strings from a collection of models (using a model name mask). These strings will have their name, line style and colour changed. The line style is usually FLOW LINE so that you may see the direction of the string (downhill). The strings are split at crests (identified using a levee tolerance). They may also optionally be split at drainage string inlet location to allow easy modification using the drainage utility string editor.

From the main menu select

Design->Drainage-Sewer->Downhill strings

1. type `Road*Strs` (it is case sensitive). These are the models that contain all of the road strings. `Road 1 Strs` for example.

2. type `*inv`. The road string models have a `linv` and `rinv` string for the invert of the kerb and gutters.

3. If the crest height on one side is less than this amount it will not be split.

4. Tick the box and select the drainage model. This will help with the drainage utility editor later.

5. type `dr overland flow` to create a model for the new strings

6. Select Run

7. add the model `dr overland flow` onto the roads view.

4.3 Creating Overland Flow Strings at Intersection and Sag Locations

Use the **CAD toolbar** to create the overland/bypass flow paths the flow crosses the road.
Starting at the upstream end. LB select an insertion point and MB or press return to accept the selection (the line style is shown after the point is accepted).

Do not stop drawing until you reach another sag or ongrade inlet (not a manhole). Overland flow lines often overlap as you see in the drawing above. If you stop short of the inlet, the bypass pit for the upstream inlet will be LOST.

Continue drawing until you reach the end of the flow path. Press ESC to finish drawing the string. Frequently you will draw an overland flow path uphill and away from a sag inlet. It will usually go through the low point on the catchment crest and then downhill to the next inlet. No do this where road 2 intersects road 1 (see below).
4.4 Creating Overland Flow Strings for Culverts

Culverts placed at sag location in the road will generally how the overflow across the crown of the road and the upstream headwall grate level will be set the sag low point elevation of the road crown. For headwalls, there usually is not grate so this becomes the reference elevation for bypass.

The culvert in our example is not at a sag in the roadways so the water will overflow the southern side of the channel, cross the footpath, and flow down the roadway. We need to set the grate level to the bypass level along this path.

To draw the string, start at the top of the catchment so that the **flooded width calculations** in the approach channel will use the correct flows. Finish at I-3!

You could use the **CAD string->Copy** option to copy the tc string that was drawn in the model **dr Catch Reserve tc** and then **CAD vertex->Append** to add onto the downstream end of the new string and then **CAD vertex->Move** to adjust where need.
There is a low point where the south side of the channel joins the road (see red arrow). This overflow area will need to have erosion protection and detailed grading. Let's assume that the overflow area is regraded with a crest RL30.1. The grate level needs to be set to this value.

4.5 Set Inlet type to Sag or On grade

12d supports Manhole, on-grade and SAG configurations. The inlet configuration is set on the Pit->Main. This setting can be locked to the Pit type in the Drainage.4d setup file/database using the cap_config command. The remaining bypass data is found on the Pit->Bypass tab.

Pits Inlet config setting:

- **Manholes** will not receive bypass flow and cannot have catchments assigned to them.
- **On-grade** pits are pits where the water will flow past the pit if not captured (velocity and momentum are important for these inlets). Approach flow, road grade and road crossfall generally determine the inlet capacity equations/curves.
- **Sag pits** are located at sag locations where the water will pond around the pit if there is not enough inlet capacity (generally the water will stop at these locations and flow into the inlet). There is only one inlet capacity curve/equation per inlet and the ponding depth is used to determine the inlet capacity.

To view the inlet capacity curves used in this project, try Viewing Inlet Capacity Curves.

In this example the pit types have been set to an on grade grated, side entry inlet. We will now change the pit types for the manhole and the sag inlets.

Not all sag locations on a roadway behave hydraulically like a sag inlet. In general the flow should approach the inlet and not bypass over it. Sometimes the inlet acts as a sag inlet at low flows but like an on grade at design flows.
4.6 Set Pit Details - Calculate the Bypass Flow Data

Once the first Key Points of bypass flow are complete, you are ready to calculate the bypass flow data. Select Set Pit Details and then select a pit on a bypass flow string. The bypass data is found on the Pit Main and Pit->Bypass tabs.

1. Move to inlet marked I-16 above and select SAK2D for the pit type (you may be asked to confirm the changes from the drainage.4d file).
2. Note the Inlet config has been changed to Sag pit and it cannot be changed. This has been set in the drainage.4d file.

1. Select MH1050 for the Wipit type (you may be asked to confirm the changes from the drainage.4d file).
2. Note the Inlet config has been changed to Manhole, the Diameter/length to 1.05 and the Width has been cleared. These changes are set in the drainage.4d file.
The downstream pit will now show in the **Bypass pit** field. If the bypass string does not go to another inlet (the network outlet is never an inlet) then the **Bypass pit** will be marked as **LOST**.

Always confirm bypass pits set to LOST are correct. An incorrect bypass to LOST would mean water is leaving your system when it should be included in the calculations.

If a setout string was found (see **Pit->Setout** tab), the **Road grade** will appear in grey. You may override this value by selecting the **Manual** tick box beside the value and entering your own value. If a road centre string was selected, the **Road xfall** field will also have a value.

If **Sag pit** was selected and a catchment string was selected, the **Max pond depth** will be displayed. The catchment strings from all 3 sets are draped onto the finish surface tin and the low point located. The **Max pond depth** is calculated as

Max pond depth = catchment string low point - Grate RL.
Negative Pond Depths

Negative pond depths are usually caused by one of two errors in input. The first may be that the grate level is too high. Often this happens when the Grate RL mode on the Pit->Main tab has not be set correctly or if Sz + setout string option is used the Sz value on the Pit->Setout tab has been entered correctly.

The second common error is that the catchment string has not been drawn around the crest of the catchment. The lowest section of the catchment string must be drawn carefully because it is the lowest point on the string that determines the overflow elevation. If in doubt, profile the catchment string with the design tin shown in the section view. Double check were the low point is.

4.7 Checking locations for measuring road grade, crossfall and max ponding depth

Strings indicating the location of inlet capacity parameters are generating in the construction drainage data model when Set Pit Details is selected.

The location of the low point, from all 3 catchment set polygons, is shown as a green vertex (plus sign).

Trouble finding the small green +? Select Models->String info table and select the sag marker line in the table. A large cross hair will show you the location in plan views.

Verification strings in the same model confirm the locations where the road grade and crossfall have been measured. To check these strings add the construction drainage data model to the plan view. The following image shows a close up of the verification strings at a pit.
The default location of the road grade measurement is one pit diameter upstream of the setout point, along the setout string. The road crossfall is measure one pit diameter away from the setout point towards the road centreline. These are 3d super strings and therefore you may profile them in the section view. With the grades toggled on (check under **Toggle**) you can verify the slopes.

The location of the road grade and crossfall measurements can be changed in the **road design file**. The distance upstream to measure the road grade is controlled by the **Grade offset** column one the rows where the setout strings are defined. The road crossfall is controlled by the **Xfall offset** column on the rows where the road centre lines are defined. The distance the measurements are taken is controlled by the **Slope measurement distance**.

The green line indicates where road grade was measured and the magenta line indicates where the road cross fall was measured.
Important Notes

1. If no bypass flow string is supplied for a pit, the inlet capacity is set to 100%.
2. If you have a problem with the inlet capacity calculations, check the Storm Analysis hydrology report for details.

4.8 Viewing Inlet Capacity Curves

The inlet capacity information is stored in the drainage.4d file. We will now plot the inlet capacity curves in 12d. This will confirm what is in the drainage.4d but changing these plots will not change the inlet capacity calculations.

Put a z before CAP CURVES in the panel below. This will generally put these files at the end of your model list so they are not in the way when you are working.

From the main menu select

Design->Drainage-Sewer->More->Write inlet curves to model

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix for curves models</td>
<td>model box</td>
<td>CAP CURVES</td>
<td></td>
</tr>
<tr>
<td>Flow scale factor</td>
<td>input</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Depth scale factor</td>
<td>input</td>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>
Inlet and bypass flow values will be multiplied by this value before creating the strings.

Depth scale factor input 1000

Depth values for sag curves will be multiplied by this value before creating the strings.

Only consider coord data tick box off

Inlet capacity curves may be expressed as formulas, curve coordinate or both. Selecting this box stops curves with only formulas from being plotted as strings.

Clean models before hand tick box on

The curve models are cleaned before the new strings are created.

Run button

Models and strings are created from the drainage.4d file

Finish button

remove the panel from the screen
5.0 12d Storm Analysis Bypass and Flooded Width Calculations

Once the bypass pits are selected and the Drainage.4d setup file/database has been setup for bypass flow the storm analysis engine must have this feature enabled. Select Consider bypass flow.

Excess Flow

The Q_x value controls how excess flow is handled in the bypass flow calculations. If the hgl at the pit reaches the grate level then no more water can enter the pit even if there is inlet capacity. The flow that will not enter the pit is considered excess flow. When a value greater than zero is entered here, the inlet will initially have its inlet capacity restricted by this value. Upstream inlets are done first as this may reduce the hgl in the downstream system. The system is automatically rerun adjusting the flows by this amount each time.

If the inlet capacity is reduced to zero and the hgl is still above the pit then water is removed from the pit and considered as Q_s (surcharge flow). In the hydraulic reports this value is found as a negative Inlet Flow Q_i.

Overland Flow Calculations

The storm analysis engine will calculated flooded widths from normal depths along the flow path and ponding extents at SAG inlets. A bypass flow model (Global-Utility Models tab) is required for these calculations.

The Utility String Editor should be used where bypass flow strings combine at a pit. Without using this editor it is assumed that 100% of the catchment flow flows down each bypass flow string thereby overestimating the flooded widths.

The Utility String Editor could be used to change the Manning’s along the string (approach channels to culvert for example) or the maximum flooded width warning limit (before a pedestrian crossing or a highway off-ramp).

The models and the default input data for these calculations are entered on the Flood Extents tab.
Select **Calculate overland flooded extents** to activate the fields on the panel.

Model for sag ponds is used to hold strings that indicate the extent of flooding at the pits marked as SAG inlets. The total approach flow is used with the cap_curve_sag in the Drainage.4d setup file/database to determine the depth of flooding above the grate level. A closed contour at this flood elevation is then selected near the centre of the inlet. A super string is then created at this level with the colour and **fill blend** transparency selected (1.0 is solid).

Model for flooded width holds the strings indicating the normal depth - flooded width calculation results. These strings are created with a fixed elevation of the flood level. The strings will have string attributes with all of the calculations details.

Calculations

1. Cross sections are cut perpendicular to the overland flow string at the interval **X-section separation**
ration with a length of X-section length. No calculations are done for sect of the bypass flow string with in Model of exclusion zones polygon.

2. The x-section string is then trimmed using the Trim settings. The section above had a x-section length of 20 and was trimmed at the levee. The levees setting has the routine search for levee (high points) on either side of the low point near the bypass flow string. The levee points are found if sections drops more than the Levee tolerance value after the high point is found.

3. The flow for the section is calculated using the bypass flow string chainage to interpolate between the upstream bypass flow and the downstream approach flow. The percentage of catchment flow used in the calculation of the approach flow for this bypass string may be changed using the Utility String Editor.

4. The slope of the surface near the bypass flow line is measured for each section. If the slope is less than Min longitudinal grade (%) then this cross section is skipped in the calculations.

5. Manning n value is the default roughness used in the calculations. This value may be changed at any vertex along the bypass flow string using the Utility String Editor.

6. The flow’s calculated at the indicated level are multiplied by the Manning’s Q correction factor. A factor of 0.8 would cause the flooded widths to increase and the road capacity to decrease.

7. The maximum depth calculated will be at the point where water overflows the edges of the section (Road capacity) unless Contain overflow within levees is selected. This will cause frictionless vertical walls to be placed at the ends of the section so that higher water level may be calculated when the flow is greater that the road capacity.

Warning Models

Model for W warnings will contain copies of the flooded width strings with the colour selected if the flooded width is greater than the default Max W value.

Model for D*V warnings will contain copies of the flooded width strings with the colour selected if the depth * velocity is greater than the Max D*V value.

Model for Q warnings will contain copies of the flooded width strings with the colour selected if the flow is greater than the capacity of the section. The capacity is the flow where the water over tops one of the sides of the section.
6.0 Utility String Editor

Position of option on menu: Design => Drainage-Sewer => Utility String Editor

This editor is used to edit properties of the strings used by the DNE. Properties always change at an existing vertex.

Cross Section Strings (Manning’s n) - set the left and right bank n values. The centre n value is assigned by the DNE.

Flooded Width Values on Bypass Flow Strings - the default setting of the bypass flow strings when used to calculate flooded widths in the Drainage Analysis. Changes are in effect until the end of the string or it has been re specified at vertex at a higher chainage.

Vertex labels are created whenever properties are set (Textstyle is required).

Usage

First the string is selected at the vertex where the values are to be assigned. Next select the purpose of the string (cross section or bypass) to unlock the appropriate fields. A textstyle favourite is required as the vertex is labelled with the assigned values. Enter the values into the fields and then select Set to set the values as vertex attributes and create the label as a vertex annotation.

On selecting the Utility String Editor option, the Drainage Utility String Editor panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex index</td>
<td>vertex</td>
<td>selected vertex</td>
<td></td>
</tr>
</tbody>
</table>

Once the string is selected use this to move between vertices
Style for Vertex Labels

A label is created on the vertex using this textstyle favourite

Left bank Input

mannings n value, to delete clear and select set

Right bank Input

mannings n value, to delete clear and select set

Max Flooded within Input

This changes the threshold were warning bars are created during flooded width calculations. It remains in effect till the next change or the end of the bypass flow string.

Qdc percentage Input

This changes the percentage of the Qdirect+Qcatchment that is used to interpolate the discharges during flooded width calculations. It is generally set on the first vertex past upstream pit and remains in effect till the next change or the end of the bypass flow string. The flow changes from the bypass flow at the upstream pit to this value/100*(Qdirect+Qcatchment).

Manning’s n Input

This changes the Manning’s n value used for during flooded width calculations. It remains in effect till the next change or the end of the bypass flow string.

Pick button

Use this button to select the string. Select near the vertex you want assign the values to.

Set button

Creates the attributes and the label on the vertex.

Finish button

Removes the panel from the screen.

Help button

Launches the 12d help
In the example above, The Qdc is set to 80% at the eastern end of the catchment. The Qdc is set to 2% for the water overtopping the road. The 18% of the area is not considered large enough to do the flooded width calculation for. If desired, another bypass flow string approaching from the east could be drawn but the final bypass string to the west (direction during bypass should remain).
7.0 Drainage.4d setup file/database

The drainage.4d file controls many of the settings for the pit and pipes types inside 12d. This section details the format and features of the drainage.4d file. Changes to this file take effect only after 12dmodel has been restarted.

7.1 Editing the drainage.4d file

When 12d Model starts up, it checks to see if an environment variable called DRAINAGE_4D exists and if it does, then the file it points to is used to provide the available types of manholes (maintenance holes) and pits. If the environment variable is not set, then 12d Model searches for a file called drainage.4d in the standard 12d Model search sequence for set up files.

12d model ships a drainage.4d file in the "program files\12d\12dmodel\10.00\set_ups" folder. Do NOT change this file. Copy it into your user folder "\12d\10.00\User" and edit it there. Files in the user folder are used by preference and they are never over written by a 12d update.

File Format

1. spaces in text - any text string that includes spaces or only numbers, must be enclosed in double quotes ".
2. comments - anything after // until the end of the line is ignored.
3. blank lines - blank lines are ignored

Duplicate definitions are not allowed. ie. you cannot have 2 manhole types with the same name.

From the main menu select

- Design->Drainage-Sewer->More->Edit drainage.4d

1. Select the Find button to search the 12d path for the current drainage.4d file.
2. If the file is found in the setups folder, select Copy to working folder and then Find again.
3. Now that the file is found in the working folder, select the More info button (the folder) and then Open to edit the file.

You must restart 12d for these changes to become active. Select Project->Restart!

At startup, refer to the output window for any error messages. 12d will print the line number where it gave up. When looking in the long list of files, the drainage.4d file is loaded after the shp files. Sometimes one error will result in many other errors to follow so fix the first one, save your changes and restart again.
7.2 Creating and Modifying Manhole Types

We will now create a new manhole type for an enlarged grated inlet. For training purposes we will do it in steps restarting 12d model between each step.

1. Create a new manhole type
2. Add manhole commands to set the size and manhole thickness
3. Add manhole commands to create pit connection points where 2 pipes may be connected on the long side.
4. Add manhole commands to set the manhole level modes
5. Add a manhole command to create a user defined attribute.

7.2.1 Create a new manhole type

The order the manhole commands appear in the file is the order they appear in the type drop down list in the DNE.

1. Go to the bottom of the file and type the following.
 Manhole "AK2D enlarged" {
 }
2. Save the file
3. In 12d model close the Edit drainage.4d panel.
4. From the 12d model main menu select Project=>Restart
5. Check the output window for errors (just below the shp files.. there are easy to find as there are so many of them. Your should see the message
 File found <C:\12d\10.00\Courses\drainage\drainage.4d>
6. With the DNE, change inlet I-5 to the new manhole type AK2D enlarged. Note that you are free to change the diameter/length, width and many of the other DNE Pit field.s

 Manhole must be capitalised.
 Use “ (double quotes) not the single ‘ OR 2 single side by side ‘.
 Use {} NOT () or []

7.2.2 Add manhole commands to set the size and manhole thickness

The mhsize command sets the DNE length and width fields (rectangular manhole) and locks them from being changed.

mhdiam is used to set the diameter (circular manhole) and clear the width,

The mhthickness command block sets the manhole wall thickness. The diam_thickness command has the manhole depth followed by the wall thickness. The line diam_thickness may be repeated if you want the pit wall thickness to change if the depth becomes greater than the specified value. Depth is measured from the cover level to the sump level.

The indenting is not required but makes the commands easier to read.
1. add a few blank lines between the braces in your new manhole definition and type the new commands shown in bold.

 Manhole "AK2D enlarged" {
 mhsiz 1.86 0.835
 mhthick {
 diam_thick 0.000 0.150
 }
 }

2. Save the file
3. From the 12d model main menu select Project=>Restart
4. Check the output window for errors.

7.2.3 Add manhole commands to create extra connection points

With connection points enabled on the DNE->Global tab, a connection point is created at the mid points of the internal sides of the manhole. Additional connection points may be added with their offsets from the manhole centre.

1. add a few blank lines before the last brace in your new manhole definition and type the new commands shown in bold.

 Manhole "AK2D enlarged" {
 mhsiz 1.86 0.835
 mhthick {
 diam_thick 0.000 0.150
 }

 con_points "AL2D" {
 con_point 0.930 0.000
 con_point -.045 0.4175
 con_point .045 0.4175
 con_point -.093 0.000
 con_point -.045 -.04175
 con_point .045 -.04175
 }
 }

2. Save the file
3. From the 12d model main menu select Project=>Restart
4. Check the output window for errors.
5. Use Strings->Points Edit->Move to move the end of the pipe that connects to I-5. You will see that it will snap to 2 points on the long side and 1 point on the short sides.
7.2.4 Add manhole commands to set the manhole level modes

We will now set the construction setout point and grate level to be obtained from the road setout string, the cover level to be 0.150 higher than the grate and a sump depth of 200mm.

1. add a few blank lines before the last brace in your new manhole definition and type the new commands shown in bold.

Manhole "AK2D enlarged" {
 mhsize 1.86 0.835
 mhthickness {
 diam_thickness 0.000 0.150
 }
 con_points "AL2D" {
 con_point 0.930 0.000
 con_point -.465 0.4175
 con_point .465 0.4175
 con_point -0.930 0.000
 con_point -.465 -0.4175
 con_point .465 -0.4175
 }
 attribute_integer "cover rl mode" 8
 attribute_real "setout adjustment z" 0.150
 attribute_integer "grate rl mode" 1
 attribute_real "sump offset" -0.200
 attribute_integer "setout xy mode" 1
 attribute_integer "setout z mode" 1
}

2. Save the file
3. From the 12d model main menu select Project=>Restart
4. Check the output window for errors.
5. Use the DNE to select the i-5 inlet. You will be prompted to verify that you want the design parameters to change for each attribute you have added.
7.2.5 Add manhole commands to create a user defined attribute

We will now create a manhole text attribute called “reference dwg” that we can add our drainage plan plot.

1. add a few blank lines before the last brace in your new manhole definition and type the new commands shown in bold.

 Manhole "AK2D enlarged" {
 mhsize 1.86 0.835
 mhthickness {
 diam_thickness 0.000 0.150
 }
 con_points "AL2D" {
 con_point 0.930 0.000
 con_point -.465 0.4175
 con_point .465 0.4175
 con_point -0.930 0.000
 con_point -.465 -.04175
 con_point .465 -.4175
 }
 attribute_integer "cover rl mode" 8
 attribute_real "setout adjustment z" 0.150
 attribute_integer "grate rl mode" 1
 attribute_real "sump offset" -0.200
 attribute_integer "setout xy mode" 1
 attribute_integer "setout z mode" 1
 attribute_text "reference dwg" "Dwg 47.1 Rev A"
 }

2. Save the file
3. From the 12d model main menu select Project=>Restart
4. Check the output window for errors.
5. Use the DNE to select the pit. This will set the attribute for this manhole. The Set Pit details would do this for all manholes in the model.
6. Select Apply or more to another pit.
7. Use Strings->Properties->Attributes to select the manhole and on the pit table you will find the new attributes “reference dwg”.

7.3 Pit Inlet Capacities

The pit inlet capacity tables contained within the Drainage.4d setup file/database are used by the 12d drainage modules and exported to other design packages in different ways but with a common philosophy.

These tables may be plotted in 12d Model using Viewing Inlet Capacity Curves.

7.3.1 On grade pits

The grade and crossfall values for the tables are threshold values, i.e. the next set of capacity factors/curves will not be used until the measured crossfall and grade are equal to or exceed the
threshold values for the curves. Curves with the same crossfall threshold are grouped together and the correct group is selected first. The road grade is then used to select the curve within the crossfall group.

Each inlet selects one road grade curve from the drainage.4d file. 12d Model does not interpolate between the curves.

Some simple sample pit definitions follow to demonstrate how the pit inlet capacities are calculated. The drainage.4d file supplied in the library has extensive curve data from model testing.

Manhole "SEP 25" {
 mhsize 1.200 0.900
 mhdesc "SEP with 25 l/s"
 mhnotes ""
 mhgroup "SA"
 cap_multi 1.0
 cap_fixed 0.025
}

Manhole "SEP 50 percent" {
 mhsize 1.200 0.900
 mhdesc "SEP with 50%"
 mhnotes ""
 mhgroup "SA"
 cap_multi 1.0
 cap_percent 50.
}

Manhole "SEP Grade x 10" {
 mhsize 1.200 0.900
 mhdesc "SEP with 25 l/s"
 mhnotes ""
 mhgroup "SA"
 cap_curve_grade "curve 1" {
 road_grade 0.0
 cap_multi 1.0
 cap_fixed 0.010
 }
 cap_curve_grade "curve 2" {
 road_grade 2.0
 cap_multi 1.0
 cap_fixed 0.020
}
7.3.2 Exporting Inlet Capacity to External Programs

Drains Version 1 and ILSAX

The cap1, cap2, cap3 and cap4 values are used to describe the inlet capacity of the pit as described in their user manuals.

Drains Version +

The 12d inlet curve names are exported to Drains as the pit family.

xpswmm, xpstorm and RAT-HGL

If cap2, cap3 and cap4 are all equal to zero then a fixed inlet capacity equal to cap1 will be exported to RAT-HGL. If the sum of these three values is greater than zero then a pit type will be created in the format of pit_type-crossfall-roadgrade. For example SA2-3-2 for a SA2 pit with a road crossfall of 3% and a road grade of 2%. A rating curve with this name will have to exist inside RAT-HGL. 12d has no way of transferring the rating curve itself into RAT-HGL.

PC Drain

Similar to RAT-HGL, PC Drain has its own rating curves defined internally. The road grade is sent as a separate piece of data to PC Drain so that the pit inlet capacity may be determined.

PC Drain places a suffix code in the pit type to specify that the pit is a SAG pit. For example an 9S.03 indicates that pit type 9 is a sag pit and the maximum depth before bypassing is 30mm. 12d model does this automatically when exporting.

7.3.3 Add manhole commands for inlet capacity

Manhole inlet configuration and bypass pit entries determine if these inlet capacity commands are used. Both may be set in the Drainage Network Editor.

cap_config

The inlet configuration may be set via the following command

```
cap_config x
    Mode x
    Manhole m
    Ongrade g
    Sag s
```
Inlet Capacity Equation

The inlet capacity equation is built up with 3 optional components (single polynomial + curve polynomial + curve coordinates). Generally, only one of the 3 components is used for each manhole type but they may all be used if desired.

\[
\text{inlet capacity} = \text{inlet efficiency} \times \text{inlet multiplier} \times \left[\text{single polynomial} + \text{curve multiplier} \left(\text{curve polynomial} + \text{curve coordinates} \right) \right]
\]

An inlet efficiency (choke factor) is specified in the Drainage Network Editor. An inlet efficiency (choke factor) of 0 would stop all water from entering the inlet.

Curve Coordinates (On grade and SAG)

For on-grade and sag inlets, the inlet capacity may be determined by entering coordinates along the inlet capacity curve. These coordinates are usually obtained from hydraulic model studies or analytical methods such as HEC-22.

For on grade inlets, the coordinates are Qapproach and Qin, and the curves may change with road grade and cross fall threshold values. The inlet capacity curves are never extrapolated.

Example

Manhole "Ongrade Inlet A" {
 cap_config G
 cap_curve_grade "0.5G" {
 road_grade 0
 coord 0.000 0.000
 coord 0.060 0.060
 coord 0.140 0.112
 coord 0.260 0.174
 coord 0.430 0.244
 coord 0.500 0.270
 }
 cap_curve_grade "1G" {
 road_grade 0.75
 coord 0.000 0.000
 coord 0.060 0.060
 coord 0.140 0.108
 coord 0.260 0.164
 coord 0.430 0.227
 coord 0.500 0.248
 }
}

For sag inlets, the coordinates are Depth (base units) and Qin, and there is only one curve. Each curve has a curve multiplier specified with a cap_multi parameter (discussed below).
Example

Manhole "SAG Inlet A" {
 cap_config S
 cap_curve_sag "SAG" {
 coord 0.000 0.040
 coord 0.045 0.101
 coord 0.070 0.151
 coord 0.095 0.245
 coord 0.120 0.302
 coord 0.170 0.347
 coord 0.220 0.371
 coord 0.270 0.391
 }
}

Inlet Curve Block Commands

Inlet curve blocks may be specified for both on-grade or sag inlets. Inside the curve block you may include the Polynomial Inlet Capacity Commands and Coordinate Inlet Capacity Commands.

 cap_curve_grade "unique name for the pit type" {
 road_grade x.xx
 road_xfall x.xx
 }

 cap_curve_sag "unique name for the pit type" {
}

Inside the cap_curve_grade block the road grade and road crossfall threshold values (percent) may be set. The road grade and crossfall are calculated by the Drainage Network Editor. When the 12d analysis engine selects the inlet curve, all curves with the same road_xfall are grouped together and then within the crossfall group the road_grade curves is selected. The inlet curve with the maximum grade threshold that is less than or equal to the road grade is selected.

Rules for 'cap_curve_grade' entries:
- Only applicable to on-grade pits.
- All cap_curve_grade names must be unique within a Manhole block.
- If both 'road_grade' and 'road_xfall' entries are omitted, only one cap_curve_grade entry is allowed within a pit.
- The cap_curve_grade 'coord' entries (if used) must be in order of increasing Qa.

 cap_curve_sag "unique name for the pit type" {
}

Rules for 'cap_curve_sag' entries:
- Only applicable to sag pits.
- Only one cap_curve_sag entry is allowed within a pit, and it must have a valid name.

Coordinate Inlet Capacity Commands

The coord command must be used inside the cap_curve_grade or cap_curve_sag grouping.

 coord x.xx y.yy

x.xx must be in increasing order.

For cap_curve_grade group, the coord command has the parameters Qapproach and Qin.

For cap_curve_sag group, the coord command has the parameters Depth and Qin.

Please continue to the next section Drainage Definitions - Pipe Types.
7.4 Drainage Definitions - Pipe Types

Pipe types may be used to set the following pipe properties via the DNE.

- Pipe nominal/actual diameters and thickness
- Roughness method and value
- Rational method design mode and design percent depth
- Minimum pipe height for the rational design engine
- User defined pipe attributes

Each definition (pipe block) in the file begins with the key word `Pipe`, followed by the pipe type and then curly braces `{ }`. The order that the definitions appear in the file determines the order they appear in the drop down lists inside 12d Model.

The minimum requirement for a pipe type definition is

Pipe “name” {
}

}
7.4.1 Pipe Thickness

pipethickness {
 diam_thickness x.xxx y.yyy a.aaa b.bbb c.ccc d.ddd
}

- x.xxx: nominal diameter choices will appear in the DNE->Pipe->Diameter drop down
- y.yyy: internal diameter (base units) will be entered into the DNE->Pipe->Diameter field
- a.aaa: optional top thickness (base units) 0.000 if omitted
- b.bbb: optional bottom thickness (base units) top thickness if omitted
- c.ccc: optional left thickness in direction of chainage (base units) top thickness if omitted
- d.ddd: optional right thickness in direction of chainage (base units) top thickness if omitted

An example pipe definition follows.

Pipe "2" {
 // HUMES class 2 rubber ring joint pipe thicknesses
 pipethickness {
 // nominal_diam internal_diam top [bottom] [left] [right] (looking in the direction of chainage)
 diam_thickness 0.225 0.229 0.025
 diam_thickness 0.300 0.300 0.031
 diam_thickness 0.375 0.375 0.035
 diam_thickness 0.450 0.450 0.042
 diam_thickness 0.525 0.534 0.041
 diam_thickness 0.600 0.610 0.044
 diam_thickness 0.675 0.685 0.048
 diam_thickness 0.750 0.760 0.052
 diam_thickness 0.825 0.838 0.054
 diam_thickness 0.900 0.910 0.066
 diam_thickness 1.050 1.070 0.075
 diam_thickness 1.200 1.220 0.076
 diam_thickness 1.350 1.370 0.077
 diam_thickness 1.500 1.524 0.095
 diam_thickness 1.650 1.676 0.095
 diam_thickness 1.800 1.828 0.102
 }
}

7.4.2 Pipe Attributes

attribute_integer "attribute name1" x x is an integer value (no decimal, stored exactly by computers)
attribute_real "attribute name2" x.xxx x is a real value (used to store numbers with decimals or
 very large or very small numbers
attribute_text "attribute name3" "text" text is a series of words or numbers not intended for calculations

The following special attribute commands create/modify an attribute as described above but these attributes also control calculations performed by the set pit details button on the Drainage Network Editor. The DNE fields will be locked when these attributes are defined for the selected pipe type. If these attribute are not defined for the selected pipe type the DNE field will not be locked and remain unchanged.

roughness_n x.xx> DNE field ->Pipe=>Main=>Roughness
DNE field ->Pipe=>Main=>Roughness type (set to Manning)
roughness_k x.xx DNE field ->Pipe=>Main=>Roughness
Colebrook k roughness value in millimetres
DNE field ->Pipe=>Main=>Roughness type (set to Colebrook)

attribute_real x.xx DNE field ->Pipe=>Design=>Min pipe height
min height in base units

attribute_integer "design size mode" x DNE field ->Pipe=>Design=>Design mode

Mode
Pressurised Pipe: Freeboard design 0
Part-full Pipe: Freeboard design 1
Part-full Pipe: Flow depth design 2
Open Channel: Freeboard design 3

attribute_real "design percent depth" x.xx DNE field
Pipe=>Design=>Flow-depth at pipe entrance

An example of these setting follows:

Pipe "CHNL GRASS EXISTING 1" { //Open Channel 1
 roughness_k 0.040
 attribute_integer "design size mode" 3 // open channel mode
}
8.0 Open Channel Flow

12d can model flow in open channels a trapezoidal sections. Suggestions for drainage network editor settings are listed below.

Generally, simple channels leading into a pipe network are often not modelled as open channels. The flooded width calculations can perform flooded width calcs (normal depth however) along the channel and the depth at the headwall is calculated using the headwall ku method.

If gradually varied depth/backwater calculations are desired then the channel will need to be modelled as a drainage string. Also if the pipes discharge into a channel then this channel will also need to be modelled as a drainage string.

Key points

The pit grate level must always be at or above the top of the open channel conduit.

Changes in vertical grade and horizontal alignment require a pit in the drainage string. The pit diameter is usually set to zero.

Channels may exist in the tin or you may be proposing a channel to be cut into the tin. The grading and grate level modes will be different for each case. These channel type will be referred to as “Existing” or “Proposed”

Pit-Main Tab

1. Selecting the CHNL auto pit type changes many setting in the DNE.
 - **Cover RL mode** is changed to Max obvert.
 - **Grate RL mode** is changed to Max obvert.
 - **Pit diameter** of diameter of zero. This will result in a single line on the drainage long sections instead of a pit.
 - **Ku method** is set to Direct and a Ku of 0 for the channel change of grade points (pits).
 - **Inlet config** - On-grade pit - it has a 200% inlet capacity. The 200% inlet capacity is in case a
choke factor is accidentally applied.

2. Select the Pit Setout tab

Pit-Setout Tab

- **Setout xy mode** is set to Pit centre
- **Setout z mode** is set to Sump Invert which is the lowest of the channel inverts if Sump offset = 0(Main tab).

3. The **Chainage mode** may be be changed to No Road if the channel centre line is not to be used for setout. If the default was Centre string this will stop the Problem message saying the centreline string is not found.
4. Change to the **Pipe->Main** tab

5. Change the **Pipe type** to **CHNL GRASS PROPOSED**. This changes the following:
 - the **Roughness type** to **Manning**
 - the **roughness** for the open channel to 0.040

6. Set the **Height**, **Top width** and **Bottom width** of the channel.

Note: The pipe type can now be changed back to channel if you needed to alter any of the locked settings. Selecting the **CHNL GRASS PROPOSED** first set most of the setting correctly as a good starting point.
Pipe-Design Tab

7. Change to the **Pipe->Design** tab
8. Set the **Align mode** to “IL-IL drop”
9. Set the **Align drop** value to 0 (unless you are designing drop structures for your channel.
10. **Min Grade %** for open channels is usually much less than pipes.

Note: The **Design mode** has been changed to “**Open Channel: Freeboard Design**”. This will allow supercritical flow to continue through the channel junctions. Often the Freeboard limit will be different for a channel than the pipe system.
9.0 Major Flood Events

To keep the results file from the minor event copy the drainage models using

Save your project. The following routine copies the models that are saved on disk!

Models->Utilities->Copy Project Models

1. Select your current project
2. **Type** the name of your drainage model followed by the wildcard*
3. **Type** the new name for your minor results followed by the wildcard*
4. Tick the models that you want to copy
5. Select **Copy**
6. Select **Finish**
Now that the minor results are safely stored away, edit the drainage model using the DNE. For major flood events the user may desire to use an alternative set of values for

- Catchment tc,
- Catchment C,
- Pit direct inflow (Qdi),
- Pipe direct inflow (Qpi),
- Pit choke factor for ongrade inlets,
- Pit choke factor for SAG inlets,
- Outlet tailwater levels.

These controls are found on the Storm Analysis Panel, Main tab.

1. Ensure you have selected the **drainage** model and then go to **Storm analysis**.
2. Type the new return period.
3. Select the **major** storm setting.
4. Turn off the **Modify pipe inverts** and **Modify pipe sizes**.
5. Change the name of your report files by adding **100** after drainage.

You are now ready to analyse the major event and check the surface flooding conditions.
10.0 Excavation Quantities

Sample templates are included in the 12d library (pipe template.tpl). The templates from this template library may be added to your project using

```
Design=>Templates=>Utilities=>Input.
```

Usage

Access this report from the menu selection

```
Design => Drainage => Reports => Excavation Quantities
```

This routine uses 12d templates to calculate the excavation volume for all of the drainage strings in a model. An option to create section for a tin on top of the pipe is also available so that the drainage long sections can include hatching between the obvert of the pipe and the design tin under roads.

Templates with names set to the pipe diameters (times 1000) are used for the calculations, thus trench shapes can be customised and over excavation for bedding materials can be included. Net area calculations to exclude pipe area are not supported.

Key points

1. One template for each pipe size (mm)
2. If obvert templates are used, add the prefix “obvert “ to the pipe size
3. Carefully consider the tin selected.

A template must exist for each pipe size in the model (pipe size x 1000). For example a 0.3m pipe will require a template to exist named 300. A 0.5ft pipe would require a template named 500. A sample template library is included in the 12d library in the file `pipe_template.tpl`.

The templates are run along the strings and the total volumes are reported. Volumes for each strings are given in the report file.

If a tin is created from these strings then volumes by depth can be determined using `Design=>Volumes=>Exact=>Tin to tin`

On selecting the Excavation quantities option, the Drainage Excavation Quantities panel is displayed.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage model</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strings model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sections model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report name</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground Surface Tin</td>
<td>tin box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separation</td>
<td>real box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sections colour</td>
<td>colour box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean section/strings model</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stop section at edge of pit</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Model to contain all of the pit and pipe network to be worked on.

Strings generated from the templates will be stored in this model

Sections generated from the templates will be stored in this model

Cut and fill volumes will be sent to this report

tins from which the volumes will be calculated

Distance between the sections

Sections generated from the templates will be assigned this colour (strings colours are defined in the templates)

Delete the strings in these models before processing.
Template are run from pit centre to centre if this is not selected. The templates stop at the edge of the pit if selected. This is often selected with the following option Use obvert templates.

Use obvert templates tick box

Templates must be named with the prefix “obvert”. i.e. obvert 300. The template is still run along the invert of the pipe but the user now has a section “set” of templates that can be used to create a tin on top of the pipe as well as below.

An example report file follows.

```
----------------------------- BEGIN APPLY TEMPLATE REPORT ------------------------------
apply template to string report -
  string  E
  tin     design
  separation  10.000
left template  375
right template 375
  fill volumes and areas are negative
  fill volumes and areas are positive

chainage  -----sectional information-----  -----intermediate information---  -----accumulative information-------
  0.000  -1.434  0.000  -0.771  0.000  0.000  0.000  0.000
  0.550  -1.367  0.000  -14.222  0.000  -14.992  0.000  -14.992
  10.000  -1.642  0.000  -15.293  0.000  -30.286  0.000  -30.286
  20.000  -1.416  0.000  -1.845  0.000  -32.130  0.000  -32.130
  21.313  -1.393  0.000  -0.794  0.000  -32.924  0.000  -32.924
  21.863  -1.493  0.000  -0.794  0.000  -32.924  0.000  -32.924

  total cut                          -32.924
  total fill                          0.000
  balance                          -32.924
  ie excess of cut over fill            32.924

----------------------------- END APPLY TEMPLATE REPORT ------------------------------
```
11.0 Network Quantities Report

This panel is accessed from the menu selection

Design => Drainage Sewer => Reports=> Network Quantities

Key points
1. Items are counted/totalled by depth and optionally type.
2. The routine will not "double count" items even if the ranges overlap.
3. Types are case sensitive, types with spaces in the name must be enclosed in quotes and the wild card * may be used.
4. Use vertically offset tins and "banded" depth ranges to get quantities under roads, foot paths etc. This is discussed later in detail.
5. Erase count file fields if the items are not to be counted.

On selecting the **Network quantities** option, the **Drainage quantities** panel is displayed.

![Drainage Quantities Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data String source</td>
<td>Choice</td>
<td></td>
<td>usually the entire model is selected but view is also available for combining models</td>
</tr>
<tr>
<td>Pipe size filter</td>
<td>Choice</td>
<td></td>
<td>diameter or pipe size attribute</td>
</tr>
<tr>
<td>MH config file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipe config file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HC config file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HC pit config file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HC jump ups config file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report Unused Ranges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report Types</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The second item in a count line is used to filter by diameter (in meters/ft) or the pipe size attribute. The
diameter can only be used when no box culverts or trapezoidal channels are used. The *pipe size attribute* is the label generally used in the plan plots. This is the pipe size in mm/inches (375), for box culverts width x height (750x375) and for trapezoidal channels TopwidthBottomwidthxHeight (T5000B1000x500).

Tin

This tin will be used for the pipe and pit depths.

MH config file

This file specifies the types and depth ranges for the pits. Details of this file are contained below.

Pipe config file

This file specifies the types and depth ranges for the pipes. Details of this file are contained below.

HC config file

This file specifies the types and depth ranges for the house connections. Details of this file are contained below.

HC pit config file

This file specifies the types and depth ranges for the HC pits. Details of this file are contained below.

HC jump ups file

This file specifies the types and depth ranges for the house connections jump ups. Details of this file are contained below.

Report file

a sample report file is given below.

Report unused ranges

*the depth ranges for the pit/pipe/house connections are defined in the *.4d files. Selecting this option will cause the depth ranges in the file to be printed even if there are no pit/pipe/house connections in these depth ranges (zero quantity values will be shown).*

Report types

*Selecting this option will cause the pit/pipe/house connection types used in the model types to be listed (even if quantities are not requested in the *.4d files). Since this is a complete of the type used in the model, the list informs the user what types have not been included in the quantity calculation.*

Count

executes the option.

Finish

removes the dialogue from the screen

The *.4d files listed above are contained in the 12d library directory. Each line is the file performs a count (count lines). No items are counted twice. Therefore, if an item is counted its type and then a count line is found the wild card is used for the type, the type already counted will not be included in the count.

The format for a count line is three or four values (space delimited) per line. Size is optional.
<type (from drainage.4d)> <size> <starting depth> <ending depth>

Notes:

All types with spaces in the name must be enclosed in quotes. The wild card * may be used.

The size is optional and if omitted the all sizes will be counted in this group (do not use the * for a wild card).

The starting depth and ending depth are required for all count lines.

Quantities Under Roads and Footpaths

By creating super tins with vertically offset sections, quantities under roads, footpaths etc. can be determined, for example.

Offset your road design tin up by 1000m (Tins->Utility->Translate/Copy) and then use the depth range 1000-1999 for pipes under roads.

Create a tin from the footpaths only, null by angle length with a small length to remove the road and then offset it vertically by 2000m. The depth range 2000-2999 is not the quantities under the footpath.

Sample count lines

// sum concrete cover manholes is various ranges

"CONC COVER" 0.0 1.6
"CONC COVER" 1.5 3.0
"CONC COVER" 3.0 999.9 // this is expected to be zero
"CONC COVER" -999.0 0.0 // trap errors

// any that are not Concrete cover will be counted here

* 0.0 1.6
* 1.6 3.0
* 3.0 999.9
Manhole Quantities

CONC COVER	0.00	1.60	13	16.506
CONC COVER	1.60	3.00	1	1.510
CONC COVER	3.00	999.9	0	0.000
CONC COVER	-999.0	0.0	0	0.000
*	0.00	1.60	0	0.000
*	1.60	3.00	0	0.000
*	3.00	999.9	0	0.000

total length = 18.016

Types Used

CONC COVER

Diameters Used

1.100

Sample count lines for pipes follow.

```
// sum class 2 pipes by diameter and for various ranges
// count 375
2 0.375 0.0 2.0
2 0.375 2.0 5.0
2 0.375 5.0 999.

// count 450
2 0.450 0.0 2.0
2 0.450 2.0 5.0
2 0.450 5.0 999.

// count 525
2 0.525 0.0 2.0
2 0.525 2.0 5.0
2 0.525 5.0 999.

// count pipe sizes that were missed
2 * 0.0 2.0
2 * 2.0 5.0
2 * 5.0 999.

// count all other missed pipes
* 0.0 999.
```

Since the **Report unused ranges** tick box was selected, these lines were printed even though there were no pits in the data ranges.

This data results from selecting the **Report types** tick box.
12.0 Exporting to Drainage Design Software Packages

12d contains most of the data required for your drainage design packages. However, each packages has specific design variables that 12d does not have access too. The design process is intended to export your data from 12d to the design package, design the drainage system and then read the results back into 12d for your long sections.

If pits/pipes are to be added/deleted from your network during the design process you are safest to add/delete the pit/pipe to 12d and to your design package separately.

Not recommended and as a poor alternative, you have the option of reading the results back into 12d, adding/deleting the pits/pipes and then exporting the data to a new drainage project in your drainage design software. As 12d does not have access to all of the data in the design packages this method is not recommended!

Some of the drainage design programs offer a third option that allows you to import data “on top of” an existing project thereby merging and over writing the existing data. Be sure to contact the drainage software supplier to obtain exact details of how the merging process is performed.

The interface is run by selecting Import/Export from the Drainage Network Editor

Design->Drainage-Sewer->Network Editor
The **Drainage model** is the model currently being edited.

The **I/O format** selects which external program the 12d is interfacing with. Some programs use the windows clipboard and others use files. If the clipboard is used the data will also be written to a file by 12d in case you need to take the data to another computer.

Export enables the export fields below and exports when **Run** is selected.

The **Export options** have slightly different effects depending on the **I/O format** (program) selected above. Therefore they will be discussed later with the various formats.

Export pipe diameters and inverts is generally select for existing systems only. If your design program will set invert levels and pipe sizes then turn this tick box off for new systems. Some design programs will require initial inverts and pipe sizes. In this case this box should be selected on the first export.

Export default catchment/pit parameters is generally selected for the first export. For subsequent exports turn this selection off and then only the catchment areas (if the model is supplied above) will be exported.
13.0 Drainage Data Input and Output to Spreadsheets

Spreadsheets are an effective method to manage the numerous variables urban drainage designers create in the modelling process. Spreadsheet data can be transferred to and from 12d in tab delimited files and stored within 12d as “user definable attributes”. These attributes are linked to the pit and pipes within a network. Drainage long section plots can display the pipe attributes in the “arrows” data area and pit attributes in the bubbles area. Drainage plan drawing can also show these pit and pipe attributes.

Drainage strings will be created if they do not exist in the model but pits cannot be added to existing strings.

See also

12d to spreadsheet transfers
Spreadsheet to 12d update and create
Spreadsheet options

13.1 12d to spreadsheet transfers

This interface is accessed the **Import/Export** button on the Drainage **Network Editor**.

1. Select Spreadsheet clipboard
2. Leave as **clipboard.txt** to send the data to the windows clipboard as well as this file.
3. Mapping files are the most current 12d technology. Leave this selected.
4. Usually leave this off! Select to export the junction pit at the end of all drainage lines (very rarely needed).
5. You may also select to limit the output if desired. If you like using spreadsheets for data entry, the PCdrain data and ILSAX data formats are useful for adding data for the first time for either program.
6. Select Run to place the data on the clipboard.
13.1.1 Options

The **Spreadsheet Options** section allows the user to define the amount of data exported.

All Data: All of the 12d drainage string data and the user defined attributes will be exported to the clipboard in a tab delimited format. The 12d data names and the user defined attribute names will appear at the top of the spreadsheets columns.

ILSAX: For the ILSAX program, the spreadsheet column headings will change depending on the pipe and catchment indicators (P2 card) and the inlet type (P3 card). Therefore, use the ILSAX pipe editor macro to set up one pit/catchment for the type of data you wish to enter. Now when you export the pipe network data the column headings will include the names of the relevant parameters.

User defined below: The **Customised list file name** is used to define the drainage values, their order and format you desire.

The **customised list file** is a text file where each line contains a drainage variable or a spreadsheet IO command (blank lines are ignored unless preceded by the header command). The spreadsheet IO commands are all lower case and listed below:

- **header** to define a line of text to be exported
- **blank** to leave a blank column in the output
- **pit data** the following attributes are for the pit.
- **downstream pit data** the following attributes are for the downstream pit.
- **upstream pit data** the following attributes are for the upstream pit(s).
- **pipe data** the following attributes are for the pit’s outlet pipe
- **downstream pipe data** the following attributes are for the downstream pipe(s)
- **upstream pipe data** the following attributes are for the upstream pipe(s)
- **variable name** a 12d drainage variable names
- **factor** the following variable is multiplied by this factor
- **decimals** the following variable will export with these decimal places

The simplest way to create your own customised tab delimited file is to set the **Preset Output**
field to All data and leave the customised list file name field blank. Selecting Set, Finish and then Copy from the main dialogue. The data will be placed on the clipboard and a customised list file, named output_list.txt will be created containing the names of all of the drainage variables in the 12d model. Use a text editor to add/or delete the variable names, change their order and/or add spreadsheet IO commands. Save the file with a new name! The output_list.txt file is overwritten on every export.

A listing of a customised list file follows. Note the words in the header file have a “tab” between them so that they will be spaces across the spreadsheet columns.

<table>
<thead>
<tr>
<th>header</th>
<th>Pipe Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>header</td>
<td>Name Length U/S IL D/S IL Slope(%) Class Dia I.D. Rough Pipe Is No. Pipes</td>
</tr>
<tr>
<td>pit data</td>
<td>*pit name</td>
</tr>
<tr>
<td>pipe data</td>
<td>*length low ch invert high ch invert</td>
</tr>
<tr>
<td>factor</td>
<td>100 *grade</td>
</tr>
<tr>
<td>pipe type</td>
<td>factor 1000 diameter</td>
</tr>
</tbody>
</table>

After creating your customised list file, select Options again and change the Preset Output field to User Defined below and enter the new customised list file name that you saved above. Select Set then Finish and finally Copy to put the formatted data onto the clipboard.

The data can be pasted into a spreadsheet program for checking or additional formatting.

CUSTOM FORMATED DATA MIGHT NOT BE PASTED BACK INTO 12d!

The data must be in the “12d drainage spreadsheet” format to be read into 12d.

Caution with pit names in the form 1-1 or 1/1. Some spreadsheets will interpret these values as dates. If you use these formats for your pit names you will have to paste command them in once, format the columns that contain the pits names as text data and then paste the information in again.

One final word on using the copy/paste commands in the Microsoft Excel program. The Paste Special command using the “Skip Blanks” option will allow you to copy a large block of 12d data (with blanks in it) on top your data so that your data is preserved where it coincides with the blanks. To use this option paste the data into a blank spreadsheet and then select copy again. The Paste special option with “Skip Blanks” will now be available.

13.1.2 Spreadsheet to 12d transfers

This item is accessed from the Import/Export button on the Drainage Network Editor.
The following panel will appear.

![Diagram of the Drainage Network Editor: Import/Export panel]

The following panel will appear.

Tab delimited, “12d drainage spreadsheet” format or “from to” format data must be on the clipboard in order to update a 12d drainage model or create a new model. These format are described below.

13.1.3 Updating an Existing Model

The data usually is generated by 12d using the **Export** option, pasted into a spreadsheet and then copied back to the clipboard so that 12d can be updated.

When 12d exports the drainage model to a spreadsheet it includes a column for the unique string identifier and a unique pit identifier (unique to the drainage model not the 12d project). The names of the strings and pits may be changed via the spreadsheet if these columns are present at import time.

If the pit id column is not present, 12d will search the drainage model for a matching pit name. When the pit is a junction between drainage lines, only the trunk line will be the data updated.
13.1.4 Creating a New Model

It is possible to create a new string or an entire drainage network using this format. However, pits cannot be added to an existing string. The entire drainage string must be created at once. Two formats are available, the “from-to pit” format and the “12d drainage spreadsheet” format.

At present the network editor must select a drainage string to become active. Therefore, if you are not adding strings to a network, you will have to create a drainage network with one “dummy” pit. Select this one “dummy” pit to activate the editor. After importing the data and the new drainage lines are created the “dummy” pit may be deleted.

12d drainage spreadsheet Format

The top left cell in the clipboard data must be the text “12d” to specify this format. The minimum amount of data required to create a new string is the string name, pit name, x and y coordinates. You can add as much additional data as you have available. This would include pipe diameters inverts etc. The pits must be listed from upstream to downstream order. If the string is to join a trunk line, the junction pit must be included for both the tributary and the trunk line.

An example file exists called new_network.txt is supplied in the library. Open this file in a spreadsheet or a text editor and copy it to the clipboard. Set the I/O Action to Import and select Run. The new drainage lines will exist in the model currently being edited.

From-to Pit Format

The top left cell in the clipboard data must be the text “from to” to specify this format. The minimum amount of data required to create a new string is the upstream pit name "*pit name), the downstream pit name (*ds pit name) and the x(x location) and y(y location) coordinates of the upstream pit. If the string is to join a trunk line, the junction pit must be included for both the tributary and the trunk line.

An optional column for the pit cover elev (cover elev) may be specified. Once the network has been created additional pipe and pit data may be added using the “12d drainage spreadsheet” format described above.

An example file exists called new_from_to_network.txt is supplied in the library. It is shown below. Open this file in a spreadsheet or a text editor and copy it to the clipboard. Enter a new model name in the Drainage model field and select paste. The new drainage model will now exist.
13.2 “12d drainage spreadsheet” Format

Each column of data is used for a 12d drainage variable or a user defined attribute. Each row represents a pit and the downstream pipe (controlled by the direction of flow variable) within the drainage network. A sample is shown below.

<table>
<thead>
<tr>
<th>from to</th>
<th>pit</th>
<th>pit</th>
<th>x location</th>
<th>y location</th>
<th>cover elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>E/1</td>
<td>A3</td>
<td>5309.456</td>
<td>7336.935993</td>
<td>29.2173</td>
<td></td>
</tr>
<tr>
<td>D/1</td>
<td>A4</td>
<td>5277.189</td>
<td>7336.935993</td>
<td>28.5011</td>
<td></td>
</tr>
<tr>
<td>C/1</td>
<td>B3</td>
<td>5251.236738</td>
<td>7423.99485</td>
<td>31.5257</td>
<td></td>
</tr>
<tr>
<td>A/1</td>
<td>A2</td>
<td>5354.629222</td>
<td>7336.935998</td>
<td>30.2115</td>
<td></td>
</tr>
<tr>
<td>A/2</td>
<td>A3</td>
<td>5340.019987</td>
<td>7322.036996</td>
<td>29.89</td>
<td></td>
</tr>
<tr>
<td>A/3</td>
<td>A4</td>
<td>5263.450002</td>
<td>7322.036991</td>
<td>28.8652</td>
<td></td>
</tr>
<tr>
<td>A/4</td>
<td>A5</td>
<td>5250.182525</td>
<td>7322.036966</td>
<td>27.9127</td>
<td></td>
</tr>
<tr>
<td>A/5</td>
<td>A6</td>
<td>5217.194202</td>
<td>7322.036963</td>
<td>27.1867</td>
<td></td>
</tr>
<tr>
<td>A/6</td>
<td>A7</td>
<td>5163.459002</td>
<td>7322.036979</td>
<td>26.4442</td>
<td></td>
</tr>
<tr>
<td>A/7</td>
<td></td>
<td>5152.698693</td>
<td>7322.036975</td>
<td>26.7572</td>
<td></td>
</tr>
<tr>
<td>E/1</td>
<td>B2</td>
<td>5299.42975</td>
<td>7422.289079</td>
<td>32.7197</td>
<td></td>
</tr>
<tr>
<td>E/2</td>
<td>B3</td>
<td>5264.638654</td>
<td>7393.947083</td>
<td>30.7948</td>
<td></td>
</tr>
<tr>
<td>E/3</td>
<td>B4</td>
<td>5249.730564</td>
<td>7384.207593</td>
<td>30.4167</td>
<td></td>
</tr>
<tr>
<td>E/4</td>
<td>B5</td>
<td>5249.730564</td>
<td>7351.201545</td>
<td>29.1444</td>
<td></td>
</tr>
<tr>
<td>E/5</td>
<td>A5</td>
<td>5233.426666</td>
<td>7336.935684</td>
<td>27.544</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12d</th>
<th>pit</th>
<th>pit</th>
<th>pit type</th>
<th>pit low ch invert</th>
<th>pit high ch invert</th>
<th>pit id</th>
<th>string id</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E/1</td>
<td>SA2</td>
<td></td>
<td>28.108</td>
<td>28.108</td>
<td>1</td>
<td>67369</td>
</tr>
<tr>
<td>E</td>
<td>A3</td>
<td>SA2</td>
<td></td>
<td>27.7559</td>
<td>27.7559</td>
<td>2</td>
<td>67369</td>
</tr>
<tr>
<td>D</td>
<td>D/1</td>
<td>SA2</td>
<td></td>
<td>27.3961</td>
<td>27.3961</td>
<td>3</td>
<td>68100</td>
</tr>
<tr>
<td>D</td>
<td>A4</td>
<td>SA2</td>
<td></td>
<td>26.8018</td>
<td>26.8018</td>
<td>4</td>
<td>68100</td>
</tr>
<tr>
<td>C</td>
<td>C/1</td>
<td>SA2</td>
<td></td>
<td>30.67</td>
<td>30.67</td>
<td>5</td>
<td>72072</td>
</tr>
<tr>
<td>C</td>
<td>B3</td>
<td>SA2</td>
<td></td>
<td>29.563</td>
<td>29.563</td>
<td>6</td>
<td>72072</td>
</tr>
<tr>
<td>A</td>
<td>A/1</td>
<td>SA2</td>
<td></td>
<td>29.1023</td>
<td>29.1026</td>
<td>7</td>
<td>82469</td>
</tr>
<tr>
<td>A</td>
<td>A/2</td>
<td>SA2</td>
<td></td>
<td>28.7811</td>
<td>28.7811</td>
<td>8</td>
<td>82469</td>
</tr>
<tr>
<td>A</td>
<td>A/3</td>
<td>SA2</td>
<td></td>
<td>27.7652</td>
<td>27.7659</td>
<td>9</td>
<td>82469</td>
</tr>
<tr>
<td>A</td>
<td>A/4</td>
<td>SA2</td>
<td></td>
<td>26.6127</td>
<td>26.7510</td>
<td>10</td>
<td>82469</td>
</tr>
<tr>
<td>A</td>
<td>A/5</td>
<td>SA2</td>
<td></td>
<td>26.0667</td>
<td>26.0244</td>
<td>11</td>
<td>82469</td>
</tr>
<tr>
<td>A</td>
<td>A/6</td>
<td>SA2</td>
<td></td>
<td>25.3442</td>
<td>25.2842</td>
<td>12</td>
<td>82469</td>
</tr>
<tr>
<td>A</td>
<td>A/7</td>
<td>SA2</td>
<td></td>
<td>24.6572</td>
<td>24.6672</td>
<td>13</td>
<td>82469</td>
</tr>
<tr>
<td>B</td>
<td>B/1</td>
<td>SA2</td>
<td></td>
<td>31.2759</td>
<td>31.2759</td>
<td>14</td>
<td>192066</td>
</tr>
<tr>
<td>B</td>
<td>B/2</td>
<td>SA2</td>
<td></td>
<td>29.351</td>
<td>29.301</td>
<td>15</td>
<td>192066</td>
</tr>
<tr>
<td>B</td>
<td>B/3</td>
<td>SA2</td>
<td></td>
<td>29.123</td>
<td>29.073</td>
<td>16</td>
<td>192066</td>
</tr>
<tr>
<td>B</td>
<td>B/4</td>
<td>SA2</td>
<td></td>
<td>28.0444</td>
<td>27.8951</td>
<td>17</td>
<td>192066</td>
</tr>
<tr>
<td>B</td>
<td>B/5</td>
<td>SA2</td>
<td></td>
<td>26.3447</td>
<td>26.2947</td>
<td>18</td>
<td>192066</td>
</tr>
<tr>
<td>B</td>
<td>A6</td>
<td>SA2</td>
<td></td>
<td>26.0744</td>
<td>26.0744</td>
<td>19</td>
<td>192066</td>
</tr>
</tbody>
</table>
Duplicate Definitions

Strings Variables such as “direction” are may be defined for numerous pits on the same string. Searching in a top down direction through the file, the last definition found for the string will be set.

Invert levels may be set via pipe data or pit data or combined. It is recommended that the user only use one method and not combine them. Both are exported so delete the ones you are not going to use. The variables are processed from left to right, so if duplicate definitions of an invert level or found the right most data will be set.

The format definition

1. Row1, column 1 must contain either “12d”, or “from to”. Therefore, the first column must be a 12d drainage variable (cannot be a user defined attribute).
2. Row 1. The text <pit> at the top of the column indicates the column contains a user defined pit attribute and similarly <pipe> indicates a user defined pipe attribute.
3. Row 2. This row contains the names of the 12d drainage variable names and the pit/pipe attributes. All names are case sensitive so be careful where you use capital letters. A list of 12d drainage variables is found below.

Names beginning with an asterix (*) will not be processed (except pit/string names when unique identifiers are present in the data). 12d drainage variables names beginning with an asterix indicate that this data was calculated at export time and cannot be read back into 12d (for example, pipe length, pipe grade and deflection angle).

Prefixing an user defined attribute name with “DELETE ” (no quotes, note the space after the DELETE) will cause the attribute to be deleted from all pits/pipes within the model.
4. Row 3. The text in this row define the type of attribute to be stored within 12d. The only valid choices are;

 integer
 real
 text

 If you want to change an attribute type you must delete the attribute and create it again. If you simply change the attribute type in the third row then that attribute will not be updated.

5. Blank lines may be inserted as desired.
6. You are not required to fill in all of the cells in the spreadsheets. Blank cells are ignored (you must use a space to remove all data from text attributes (the space will not be stored).
7. Pipe names are included in the data so that they can be changed but they are not used to identify the pipe. Pipe data will always be assigned to the pipe following the pit in the direction of ascending chainage. If flow directions is ascending then the pipe data will be for the downstream pipe. If the flow direction is descending then the pipe data will apply to the upstream pipe.
13.3 12d Drainage Variable Names

<table>
<thead>
<tr>
<th>Manhole Variables</th>
<th>Pipe Variables</th>
<th>String Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>*string Name</td>
<td>pipe name</td>
<td>direction</td>
</tr>
<tr>
<td>*pit name</td>
<td>pipe type</td>
<td></td>
</tr>
<tr>
<td>pit type</td>
<td>low ch invert</td>
<td></td>
</tr>
<tr>
<td>pit diameter</td>
<td>high ch invert</td>
<td>string id</td>
</tr>
<tr>
<td>pit low ch invert</td>
<td>diameter</td>
<td></td>
</tr>
<tr>
<td>pit high ch invert</td>
<td>*length</td>
<td></td>
</tr>
<tr>
<td>pit road chainage</td>
<td>*grade</td>
<td></td>
</tr>
<tr>
<td>pit road name</td>
<td>low hgl</td>
<td></td>
</tr>
<tr>
<td>*pit angle</td>
<td>high hgl</td>
<td></td>
</tr>
<tr>
<td>*pit drop</td>
<td>pit hgl</td>
<td></td>
</tr>
<tr>
<td>*pit depth</td>
<td>flow</td>
<td></td>
</tr>
<tr>
<td>*pit chainage</td>
<td>velocity</td>
<td></td>
</tr>
<tr>
<td>x location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>y location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cover elev</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*rs elev</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*ns elev</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pit id</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
14.0 Detailed Drainage Plan Drawing - Creating MH Symbols

There are many methods to create the drainage symbols and one is presented here. The pit symbol is drawn so that the symbol “sits on” the road string that it aligns with (the road string is the y reference). For drawing lintels and grates, assume the road is downhill to the right. See diagram below.

Two symbols are required, one for the left side of the road and one for the right side (referred to as the mirror symbol in the plan ppf). 12d checks the downhill direction of the road strings when using these symbols to determine which is the left and right side of the road.

Either draw your own symbol or import the symbols using File IO>Data Input->4ds/12da data and selecting the file inlet symbols.12da

To create the symbol in 12d draw the left pit symbol in a model by itself. The pit should “sit on” the zero “y” grid line. A 900 wide by 600 long inlet with a 1.2m lintel is shown above.

From the main menu, select Project->Tree

Expand Project then expand Symbols and finally select Create Symbol.
Write will add the new symbols to the symbols.4d file so that they will be available to other projects.

Leaving this panel open as we will need it after we create the mirror image of the pit.

To create the mirror image of the symbol about the x axis use the CAD mirror about X axis command. 12d will require you do this one string at a time. Version 7 does not mirror into a new model so you will want to duplicate the pit symbol model first using Utilities->A-G->Duplicate.

Now repeat the process of creating the right side mirrored symbol. Note that the location of the pit centre is now negative and add the suffix mirrored to the symbol name.

Do not forget to select Write again to save the symbols to the symbols.4d file.
These symbols can now be used in the **Maintenance hole** tab of the Drainage Plan Plot ppf editor. If your version of 12d supports, **native-size symbol**, in the ppf editor then use this mode. If not, select scalable symbol and enter the size equal to the full width of the symbol (height if it is greater).
15.0 User Defined Attributes

These drainage attributes are automatically created by 12d when required but you are free to change them or add more as desired. The attributes may be exported to a spreadsheet and edited and then imported back into 12d. To edit/add the user defined attributes within 12d select either

\textbf{Strings=>Properties=>Attributes} or \textbf{Strings=>User=>Attribute Editor}. This second editor is described below.

First Select \textbf{Pick} to select the string that contains the user attributes (the drainage string). The strings will be highlighted in white when they are selected.

All catchment data is store with the pits in drainage strings. To access the pit attributes, select the drop down icon and then select \textbf{pit}. A circle will be drawn around the pit selected. \textbf{Next} and \textbf{Prev} will now move you from pit to pit.

Select the drop down icon and then select the \textbf{Attribute Name} from the list of existing user defined attributes. These attributes include all of the attributes in the model that the string exists in.

They may not be defined for the pit you are editing. \textbf{Not found} will be displayed in the \textbf{Data} field if the pit does not have that attribute defined.

To change the value for the attribute enter the new value in the \textbf{data} field. If the attribute does not exist, deleting the \textbf{not found} text and adding data will create it. The message on the right will be displayed whenever you are creating a new attribute.
15.1 Drainage Pit attributes 2010

Pit attributes are created and/or updated when the user selects **Set Pit Details.**

- **Pit length** real 0 mhsise (first value) from drainage.4d file
- **Pit width** real 0 mhsise (second value) from drainage.4d file
- **Pit group** text mhsigroup from drainage.4d file
- **Cover RL** real 446.685248
- **Grate level** real 446.685248
- **Setout Z** real 446.685248
- **Setout X** real 299643.648
- **Setout Y** real 6563620.716
- **Setout distance** real 0
- **Pit name** text 1-3
- **Pit type** text SA2
- **Pit diameter** real 1.1
- **Pit chainage** real 118.61441375
- **Pit centre X** real 299643.648
- **Pit centre Y** real 6563620.716
- **Pit centre Fs level** real 446.685248
- **Pit centre ns level** real 446.685248
- **DS Invert** real 445.307 upstream invert level of exit pipe
- **DS Pit** text 1-2 ds pit along the pipe network
- **Sump level** real 445.307
- **Pit depth** real 1.378

Extra Attributes from Pit - Main Tab

- **Cover RL Mode** integer 1
- **Design Freeboard** real 0.4
- **Direct Flow** real 0.02
- **Grate RL Mode** integer 1
- **Inlet Type** integer 0
- **Ku** real 0.2
- **Ku Config** integer 1
- **Ku Method** integer 1
- **Kw** real 0.22
- **Sump Offset** real -0.2

Extra Attributes from Pit-Setout Tab

- **Road Chainage** real 10
- **Road Chainage Mode** integer 2
- **Road Name** text My Road
- **Road Offset** real 12
- **Setout Adjustment** real -1
- **Setout Adjustment Z** real 0.045
setout xy mode integer 0
setout z mode integer 8

Extra Attributes from Pit-Bypass Tab
bypass pit text 12.4P
choke major real 0.8
choke minor real 0.7
choke pog major real 0.8
choke pog minor real 0.7
inlet capacity curvetext Sutherland - 3% crossfall
manual pit grade integer 1
manual pit xfall integer 1
pit grade real 1
pit xfall real 3

Extra Attributes from Pit-Notes Tab
reamrks text constructed by others

Setout string selected
design model id uid 52
design string id uid 61
pit symbol angle real 81.48609728
pit symbol bearing real 8.51390272
pit symbol bearing dmstext 8°30'50"
pit grade real 4.00 if bypass pit present

Centre line string selected (with bypass and setout)
pit xfall real 3.00 if bypass pit present
centre model id uid 52
centre string id uid 92
mirror pit integer 1 mirror symbol required for plotting

Bypass Pit entered
bypass pit text 1-2 next pit along bypass string
inlet type integer 1
choke major real 0.8 ongrade or sag choke (see sag setting)
choke minor real 1 ongrade or sag choke (see sag setting)
inlet capacity curvetext SA2 3% Grade
calculate if pit grade and/or pit xfall present
(pit type - inlet cap curves determines which are required)
pit grade real 4.00 if setout string selected
pit xfall real 3.00 if centre line string selected
The following require the bypass string (manual entry of bypass pit is not enough).

- **bypass distance**: real 33.995 distance to bypass pit
- **gutter length**: real 99.79 dist. up the bypass string to next pit or end of string (longest bypass route if multiple)
- **gutter grade**: real 2.70 (us pit fs levels - ds pit fs levels) / gutter length

Catchment Tab data
- **area**: real 0.1
- **percent impervious**: real 60

Pervious Area only
- **c major pervious**: real 0.9
- **c minor pervious**: real 0.8

For both pervious and impervious (change pervious to impervious)
- **catchment grade pervious**: real 1
- **catchment length pervious**: real 900
- **catchment roughness pervious**: real 0.1
- **tc major pervious**: real 5
- **tc method pervious**: text Kinematic Wave
- **tc method pervious**: text Direct
- **tc minor pervious**: real 5

Export Pit Attributes (calculated when Export selected on Import/Export button))
- **inlet type**: integer updated to include 5 for headwalls
- **ds pit string id uid**: drainage string id for the ds pit
- **ds pit index**: integer index number of the ds pit (counter along the string)
- **area impervious**: real %impervious * area for set 1
- **area pervious**: real %pervious * area for set 1
- **area impervious2**: real %impervious * area for set 2
- **area pervious2**: real %pervious * area for set 2
- **area impervious3**: real %impervious * area for set 3
- **area pervious3**: real %pervious * area for set 3
- **pcdrain pit type**: type pit type with the pcdrain suffix (S + pond depth)

Export Pipe Attributes (calculated when Export selected on Import/Export button))
- **locked diameter**: real pipe diameter (exists only if pipe locked)
- **locked invert us**: real pipe us invert (exists only if us invert locked)
- **locked invert ds**: real pipe ds invert (exists only if ds invert locked)
- **windes diameter**: real if pipe type is WINDES, value is neg diameter
- **roughness n**: real if “roughness type” is Manning then roughness value otherwise it is 0
roughness k real if “roughness type” is Colebrook then roughness value otherwise it is 0

15.2 Drainage Pipe attributes

Set Pit Details
invert us real 28.47
invert ds real 28.422
diameter real 0.225
pipe size text 225
pipe type text 2
roughness text text n=0.010
calculated pipe length real 9.58175349
calculated pipe grade real 0.50095215
calculated pipe grade 1 in real 199.6198644
calculated us deflection real 71.75414547
calculated ds deflection real -36.3032794
pipe name text 12.5P to 12.4P
minimum cover real 1.04113728
calculated drop real 0.03

Additional Pipe Attributes created via Pipe Tab setting
design alignment mode integer 0
design cover real 0.4
design cover mode integer 0
design drop real 0.03
design grade real 0.1
design size mode integer 0
diameter real 0.225
direct pipe flow real 0.01
lock ds il integer 1
lock size integer 1
lock us il integer 1
max height real 0.6
min height real 0.3
remarks text extra pipe notes
roughness real 0.012
roughness type text Manning
width real 0.225
width top real 6

15.3
16.0 Detailed Drainage Plan Drawing

12d drainage has the capability to create detailed drainage plan drawings with the following features:

- Create symbols at the inlets and the type of symbol is controlled by the inlet type (given when you create the inlet).
- Create text labels for inlet types and user defined pit attributes
- Draw lines with line styles and colours to represent pipe sizes
- Create text labels for pipe diameters, inverts and user defined pipe attributes
- Create text labels for house connection types, invert levels and chainages
- Indicate direction of flow on pipes.

An example is shown below

Usage

This option is accessed from the menu selection

Design => Drainage-Sewer => Plots => Plan Annotations
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot parameter file</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optional - no dpf is required.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The default settings will create a schematic drainage drawing. A custom dpf may be selected if desired.</td>
<td></td>
</tr>
<tr>
<td>Load design details from</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>data source for drainage strings to be labelled</td>
<td></td>
</tr>
<tr>
<td>Save plot annotations to</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>labels to be created are stored here, Undo will remove the labels created</td>
<td></td>
</tr>
<tr>
<td>Clean plot model beforehand</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
smart clean will update text that has been moved and clean the rest. Full clean will all text from the plan annotations model.

Set colour as string name tick box
when selected the string colour will be used for the string name (to be used for DWG/DXF export using map files)

Plot button
Creates the labels in the model specified

Find button
used to locate plot parameter input boxes using Version 5 plot parameter names

IMPORTANT! to turn off any data change the text height to zero.

Select Maintenance holes from the tree to set the symbols to be used for the various pit types.
Select the MH type as desired and use **scalable symbol** and **setout point**. For the symbols enter the names that you used when you created the symbols.
Plotting a symbol at the pit setout point is a good confirmation of the data printed in the setout reports. The settings to create this symbol are shown on the left.
17.0 Drainage Long Section Plotting - Hatching Under Roads

The drainage long section plotting has been discussed in the Intro Drainage Course. Here we will discuss the technique for hatching under roads and/or footpaths.

The following steps are required.

1. Run the Excavation volumes routine using the obvert templates to create sections and strings for a tin on top of the pipe (obvert tin). Select **Stop section at end of manhole** to prevent the pits from being hatched.

2. Create the obvert tin from the strings and sections then and null by angle length with a small length value so that the tin is nulled near the pits.

3. Create a design tin that extends to the limit of the roads.

4. Use the hatching section of the drainage long section plot to select the hatching style.

17.1 Creating the Obvert strings.

Run the Drainage Plan Plot by selecting Plot from the Drainage Network Editor.

Select the drainage_design.ppf file from the library.
Select the folder icon then **Open** the pfp.
Confirm that the **Pipe string level mode** is set to **pipe obverts** and that all symbols with elevations are not used. This include:

- MH setout points,
- Flow arrows,
- Pit symbols

Now plot the drawing and we will use the pipe strings at the obvert level to create a tin.
17.2 Create and Null the Obvert tin

To create the obvert tin select.

Tins->Create->Triangulate Data

Enter a **New tin name** as desired.

![Triangulate a Data Source](image)

Select the **Data** tab.
Select the plot model created above.

The tin will now only exist on top of the pipe and it is ready to use for hatching.
17.3 Create a Roads Only Tin

The design tin is already nulled to remove the long triangles. If the footpaths were to be excluded from the tin then they should be removed from the road design strings. You could run a template that did not include the footpath and has a **Final Maximum slope width** of zero or just copy the desired road strings to one model and remove unwanted strings. We will use the later techniques.

Add all of the road string and kerb return models onto one view and then select

Utilities->A-G->Change

View select the view that contains all of the road strings

Copy to model type the name of a model for all of the road strings.

Select **Change** copy the strings.
Now to create the tin select Tins->Create->Triangulate data

Select the Filter icon at the end of the selection strip. Now select the Model tab and select the Name of the model that holds all of your road and kerb strings road strings only (tab not shown here).

Select the String Info tab and enter the name of the strings that you want to remove from the road only model. In this case it is path.

Select Filter Select to select these strings.

Select the second Target button Move to model and select the model trash and then select Change.

Repeat this for string names int.

We are now ready to triangulate the road only tin.
Enter a function name (optional) and **New tin name** and then select the **Data** tab.

Model - Select the model containing the road only strings.

Length - Select a length just greater than the width of half the road so that the tin will not be nulled from the end of the roads.

Select **Triangulate**.
Chapter

Page 5573

17.4 Use the Hatching Feature in Drainage Longsections

We are now ready to create the drainage longsection plots. Set up a section view with the a string in the drainage model profiled, the vertical exaggeration set, the desired tins displayed and the service models added. From the main menu select,

Design->Drainage-Sewer->Plots->Longsections

![Drainage Plot PPF Editor](image)

From the **Plot parameter file** field select a drainage longsection ppf from the library and then select **Read**.

In the **View to load details from** field select the section view you have setup for the drainage long section.

Now select **Hatching cut/fill**
Define set is set to 1.

Original tin is set to the obvert tin.

New tin is set to the road only tin.

Now select the + beside the Hatching cut/fill and then select fill.

Use set # is entered as 1. Fill separation, hatch angle, colour and linestyle selected as desired.

Draw sides of tin, Draw original tin and Draw new tin are not required unless you want these
extra line in the drawing.
Select **Plot** and add the plot model **drainage LS plot1** onto a PLAN view to preview the drawing.

The hatching is shown to the left at a 2mm spacing with the tins and sides not drawn.
18.0 Flooded Width Analysis and HEC RAS

There are 2 flooded width methods in the drainage module. The first can be used with any of the external drainage packages and the second is part of the 12d storm analysis. The first is found on the main menu

Design->Drainage-Sewer->Calc flooded widths

The name of the overland flow string becomes the name of the HECRAS project.
1.0
1.0 Dynamic Stormwater Design

This manual, the **Dynamic Stormwater Design**, describes how to use 12d model to calculate catchment hydrographs and perform unsteady flow hydraulic computations on drainage networks. The rainfall runoff and loss methods supported include the time area unit hydrograph (ILSAX) with Horton infiltration (from runoff), and the New Zealand SCS hydrology method.

The starting point for this manual is a 12d drainage network already constructed with catchment areas assigned, inlet and manhole properties set and vertical grading applied. These tasks are described in detail in the [Stormwater Part 1 Design Course](#). The network will have open channels, bypass flow routes and pits with inlet capacity settings as described in [Stormwater Part 2 Design Course](#).

This manual, **Dynamic Stormwater Design Course** contains:

- review and modifying the 12d hydro file with respect to IFD data, rainfall temporal patterns, infiltration loss methods (horton and SCS curve numbers),
- selecting the hydrological runoff method (Ilsax2 or NZ SCS) and the infiltration loss method,
- using cross section shapes cut from the tin for bypass flow paths and open channels
- running the analysis and reviewing the graphical output, plan and long section plots and the custom spreadsheet reports.
- create parallel pipes with different sizes and invert levels,
- adding and initial sizing of storage basin with fixed discharge,
- discuss graphical basin links,
- create outlet structures including, culverts, weir spillways, orifice controls, bubble up pits,
- underground storage tanks,
- bypass over road crown

2.0 Starting with a Basic Drainage Network

In this document, the generic terms **pit** or **manhole** refer to inlets, catch basins and manholes. The exception to this is when referring to inlet types in the Drainage Network Editor (DNE). The term **manhole** specifically refers to an inlet with zero inlet capacity. Pit types, dimensions and inlet capacities are set in the drainage.4d file.

These course notes assume that you have completed the Stormwater Design Course and that you have experience creating 12d model drainage networks with catchments areas. This course will begin with a completed drainage design found in the directory

```
\12d\9.00\Courses\drainage\basins
```

The project name is **basins**.
3.0 Hydro-Rainfall File with Infiltration

Access the rainfall editor from the main menu

Design->Drainage-Sewer->Rainfall Editor

Key Points

1. Several rainfall files are shipped in the 12d library as examples.
2. One of the 3 Intensity method MUST be entered. Do not leave blank rows in the IFD Table.
3. All dynamic drainage runs require temporal patterns.
4. Dynamic drainage (ILSAX 2) requires Horton losses
5. Dynamic drainage (NZ SCS) requires SCS losses
6. Rainfall data is in mm/hr NOT mm (important for NZ)
7. Tailwater series are time versus elevation data for outlets.
8. Initial and continuing losses are not supported in release V9c1e

3.1 Intensity Frequency Duration (IFD) Data

The **IFD table** method is the most common (refer to figure above). The rainfall intensity is entered in mm/hr for metric data and in/hr for US units. The top row is the return period in years and the first column is the rainfall duration in minutes. The top left corner cell is always zero.

When using the TP 108 method for the Auckland region, the 24hr rainfall depth is extracted from the Appendix A and then converted to mm/hr before entering it into the IFD table. Thus only 2 lines may exist in the 12d grid.

Note that areal reduction factors must be accounted for by the user as they are not included in the 12d rational hydrology engine.
3.2 Rainfall Temporal Patterns

Temporal patterns are referred to as storms in dynamic drainage. Several example hydro files are included in the 12d library. These examples have the temporal patterns for the minor and major storms in the 8 zones of Australia.

Temporal patterns are not required for the SCS NZ method as the standard 24 hour temporal pattern from TP108 is built into the 12d analysis engine.

The **Run storm**, **Zone filter**, **From ARI** and **To ARI** columns are used determine which storms are analysed (run). The **Run storm** column must be checked for that temporal pattern to be analysed. Many storms may be selected.

The **Zone filter** is optional. Entering a value here will allow the selected storms to be further filtered. A **Zone filter** field (accepts wild card characters) is found on the DNE Global tab that is used to determine which of the selected storms (paragraph above) are analysed.

The **ARI** field on the Run panel is used with the **From ARI** and **To ARI** columns. The value on the run panel must be within the From-To range for the storm to be analysed.

The **Duration** column determines the total length of the storm. This value divided by the **Interval** must be a whole number and this number determines the number of % values to be entered to the right of the **Interval column**. The total of the percentage must equal 100.

3.3 Horton Losses

The pervious portion of the catchments used in the **ILSAX 2** analysis will have a loss type defined describing the soil type. The loss type is defined in the DNE Default->catchment and catchment tabs.
These soil types use the classifications of Terstriep and Stall (1974), based on the system developed by the U.S. Department of Agriculture. The default values entered from the library represent the soil types of

1. Type A - low runoff potential, high infiltration rates (consists of sand and gravel
2. Type B - moderate infiltration rates and moderately well-drained
3. Type C - slow infiltration rates (may have layers that impede downward movement of water)
4. Type D - high runoff potential, very slow infiltration rates (consists of clays with a permanent high water table and a high swelling potential)

Numbers are assigned to each soil type to allow interpolation between the defined soil types. When interpolated values are used they must be included in the list (2.5 and 3.5 for example). Interpolated values do not need loss data entered. If loss data is entered for the interpolated names then this data will be used rather than an interpolation occurring. If any loss data is entered then all of the values must be entered.

Four preset AMC points are defined in the rainfall file to mark AMC conditions ranging from dry (AMC1) to saturated (AMC4). The required data for each line is the Initial loss rate, Final loss rate, decay rate and 4 antecedent moisture conditions (AMCs). The AMC values are entered in depth of rainfall (mm) they represent the total rainfall prior to the start of the temporal pattern.

The AMC point numbers are set once for all catchments on the DNE Global tab. Value between 1 and 4 (decimal value are permitted) are entered for the minor and major events.

3.4 SCS NZ Losses (Initial Abstraction and Curve Numbers)

The SCS NZ method uses Initial abstraction (Ia) and the curve number (CN) to determine the losses for the catchments. Names are given to the SCS curve numbers in the rainfall file. These names and Ia (entered as storage values) and selected in the DNE catchment data.

A curve number of 0 results in zero runoff while a CN=100 results in 100% runoff. TP 108 recommends the selection of the curve number by identifying 1) the soil type and 2) the land use. A CN=98 an Ia=0 are recommended for impervious areas.
4.0 Rational to Dynamic ILSAX2 in the DNE

The user does not have to start with the rational hydrology method but since this method has a pipe sizing algorithm it is often run first. The following steps will prepare a drainage network for dynamic hydrology.

Changing to ILSAX 2 is done on the DNE Global->Main tab.

4.1 Infiltration Losses

If this is the first time in this project you have switched to ILSAX2 you will be prompted for the default infiltration loss. These loss types are retrieved from the rainfall location file (Horton losses) specified above. Select one of these and then select **Update All**. These losses are only applied to the previous percentage of the catchment.
4.2 Storage Losses
Both the impervious and pervious portions of the catchments have storage losses. This amount of rainfall depth (in mm) is removed from the start of the rainfall pattern. The default values are entered on the **Defaults Catchments** Tab.
5.0 Rainfall Runoff Calculations

12d currently supports 2 rainfall runoff methods.

See ILSAX 2
See SCS NZ

5.1 ILSAX 2

The ILSAX mode 2 uses a triangular shaped unit hydrograph with the time to peak equal to the recession time. The time to peak equals the tc value throughout the 12d DNE.

5.2 SCS NZ

The SCS NZ uses a unit hydrograph as described in TP 108 Table 4.1 (hydrograph number of 3/4). 12d calculates the time to peak value (tp) = 2/3 the time of concentration (tc).

The %impervious value is used to create a composte CN and a composite initial abstraction Ia

One of the optional tc methods uses the equation derived from a regression analysis of Auckland catchments (BCHF, 1999c). On the Defaults->Catchments->Set 1 tab set the Impervious and Pervious Tc methods to NZ Auckland TP108. The default length and slope values will be used unless they are specified for each catchment.
6.0 Dynamic Hydraulics

As with the rational method hgl calculations it is essential that the pit grate levels are entered correctly. With no bypass specified, water is lost from the analysis when the hgl exceeds the grate level. When bypass is specified the water will not be lost until the level exceeds the highest bank of the bypass section shape (see below).

12d uses the St Venant unsteady flow and continuity equations to solve for the flows in the pipe network. With these equations it is the water level in the pits that determines how much flow travels through the conduits. The hgl is not calculated from the flows. Viewing the results from this perspective will help immensely.
6.1 Flows in and out of the Pits

The diagram below shows the possible flows through a pit. When bypass is used, there are 2 hgl levels; one level for all of the conduits with inverts at or above the grate level and another for conduits with inverts below the grate level.

The pit inlet capacity and choke factors determine the amount of approach flow that is captured. If the HGL of the subsurface reaches the grate level, the captured flow becomes zero and only the surface hgl is used to determine the flows in all conduits. When the hgl drops below the grate again, 2 hgl levels will again be used.

The continuity balance is monitored during analysis and the results of this check are stored as a model attribute “dynamic/xx/calculated hydraulic continuity error percent” where xx is the duration of the storm. A detailed output file is also created for each storm analysed. The file name begins with the name of the drainage model and ends with the storm duration (plus the extension rpt).

6.2 Default Bypass Section Shapes and Slopes

In the rational method, bypass flows (water that could not enter the inlet because of either inlet constrictions or hgl levels) were bypassed to the Bypass pit. With the dynamic analysis, a channel
shape is required so that the hgl levels and the storage effects can be modelled. If all of the bypass routes have the same shape then you need only cut one default shape and it will be used for all routes. However you can enter a shape string for every bypass route if desired.

The bypass distance is determined from the length of the bypass flow string and the channel has a constant grade. If a changing grade or channel shape is required then the bypass should be to a drainage line modelled as a natural channel (see section further in the notes).

The invert elevations of the bypass channel are set by the grate elevation of the upstream and downstream pits. However, when the bypass is to the pit LOST then there is no downstream grate level so the slope of the bypass channel will be defined. The Lost grade value is specified here as 1%. 12d needs this to determine the water forces try to hold the water into the bypass channel.

The Manning’s n value is the default for the entire section. If left and right bank n values are desired they are entered on the Bypass Shape tab.

6.3 Create and Editing Channel Shapes

The channel shape may be entered manually or created by drawing a string perpendicular to the flow path and 12d will cut section from the finished surface tin. It is recommended that you keep you section shape strings in one model for data management purposes. The strings are drawn from left to right looking in the direction the bypass string (the direction of flow). To create this string enter the new model name in the CAD Control Bar. Entering a name for the string is optional. If only 2 points are to be used for the shape string then use the Create Line button from the CAD tool bar.

![Image of Drainage Network Editor interface with highlighted Bypass Shape tab and fields filled with data such as Distance, Manings n, and Lost grade.](image-url)
After drawing the string it needs to be selected via the Bypass section location pick button (see below). Once picked and accepted, select Set Pit Details to have the bypass shape cut from the finished surface tin specified on the Global tab. This shape may be seen on the Bypass Shape tab and the chainage elevation data displayed.

The elevations on this graph are not used. The data is relative to the lowest elevation on the section. This becomes level 0.0 for the shape and the channel inverts added to determine the final elevation.

Left and right bank n values may also be entered if desired. They Left n is used to the left of the Left bank chainage and the Right n is used to the right of the Right bank chainage. The centre chainage is entered on the Default->Pits->Main tab.
If you manually change any of the chainages and elevations they will be lost the next time you select **Set Pit Details**. To prevent this RB select the **Bypass section location** and select **Clear**. Now there is no string so the data cannot be recalculated.

6.4 Explicit Bypass Section Shapes and Slopes

We will now explicitly define a bypass flow shape for bypass link. Water flow across the crown of the road should not use a kerb and gutter shape. Instead we need the shape and invert elevation for the road crown that the water will overtop.

To create a shape string for the bypass across road 2, draw the string from east to west (left to right looking in the direction of flow).
Now select the bypass shape for crossing the crown of the road. Select the **Set Pit Details** button to have 12d calculate the bypass shape from the finished surface tin. Change to the Bypass Shape tab to see the shape. Note the **bypass pit** and **Distance** fields will already be completed from the bypass flow string calculations. Entering a manning’s n value is optional.

You will also note that there are 2 other bypass flow routes that can be used. To use these the bypass pit and distances will need to me manually set. The hgl above the grate determines the head that will drive the water down the various channels.
The enlarge the plot RB select inside the graph area and select **Maximise** from the menu. Note the lowest level on the section shape is approximately 25.5. This is the grate level of the pit. Press **Esc** or select the title area to close the graph. Left and right channel n values with their chainages may be entered in the fields below the graph. If these values are left blank the n value from the centre of the channel will be used, NOT the n values from the default bypass channel shape.

If this bypass shapes was to be used in the model now, the bypass channel would go from one grate level to the other without any reference to the crown of the road level. To model the flow path from the crown of the road to the pit 3.5S we will raise the upstream invert level to the road crest level (25.790).
Select the **Apply** button to store the changes and note that the lowest point of the bypass shape graph is now raise the 25.79.

See [Create and Editing Channel Shapes](#) for details about manually entering data or changing the shape.
7.0 Running Dynamic Drainage

The dynamic engine analyses the network but does not design the components. Multiple storm patterns may be run simultaneously and the results from individual storms as well as the worst case from all currently analysed storms is saved. The results may be viewed graphically or in user defined reports. If your computer has a multiple core processor each storm will be processed by different processors and 12d will accumulate the results as the storms finish analysing.

7.1 Storm Analysis

Select the Storm Analysis button. To generate plan labels for the worst case dynamic results select the drainage_dynamic_design ppf file from the library. Also change the name of the Model for plan results so that you can keep the results from previous rational hydrology runs. Select the Run button.

A process window will be launched for each storm analysed and the status will be printed in the output window. Always watch this window for messages. Below are message from a sample run,

===> Checking Storm: 1
===> Storm: 1 OK
===> Updating Catchment Attributes
===> Updating Node Attributes
===> Updating Link Attributes
===› Updating Model Attributes
Elapsed Time: 6.67 secs
Run finished normally.

A run with errors would have a message like the following:

Dynamic Drainage Analysis (Build 5.1.026)
Dynamic Runoff Method: ILSAX 2
ari0.0
zone: 0
1 TP_Durations: 25.00
===› Solving Storm: 1
ERROR: Bypass section not defined for conduit: 7/A-SEP_to_6/A-SEP(S)
Model failed to solve.

7.2 Reviewing Results - Plan Labels
As with the rational method, the plan plots indicate the peak values. If multiple storms are run then this pfp file will print the max from all storms run.

So that the dynamic results are not mixed with the rational results, the worst case results are stored with the prefix **dynamic**. Results from individual storms have the prefix **dynamic/xx** where xx is the max time of the rainfall event.

For example the pipe attribute for the maximum pipe flow

calculated pipe max flow	rational hydrology result
dynamic/calculated pipe max flow	worst case dynamic result
dynamic/calculated pipe max flow critical storm	storm where above results occurred
dynamic/25/calculated pipe max flow	25 min storm dynamic result
dynamic/calculated pipe max flow	worst case dynamic result
7.3 Reviewing Results - Graphs

Graphs indicating the results are created on the **Graphs** tab of the DNE. These graphs are a sampling of the time step results and usually does not include all time steps. Therefore, if the peak indicated in the attributes occurs between 2 plot points the peak may not be on the graph.

Select the **Storm event** to view. Nothing is displayed yet. When **All** is selected, the results from all the storms analysed in the last run are displayed. Graphs types that display more than one line will not be displayed when all is selected. There will be far too many lines on the plot to properly identify them.

Now select the data to view using the drop down boxes or by selecting the below and pressing enter. For example the **Rainfall/Runoff**.
The panel cannot be resized but it can be maximised via the right mouse menu. ESC returns to smaller view. The peak from the plot data (not the attribute) is indicated at the top of the graph.

You can zoom into the graph areas by dragging a rectangle inside the graph area. You must right mouse select and choose **Undo Zoom** to return to the full plot.

The available graphs are:

Catchment graph types (used in conjunction with **Sub catchment** selection)

Rainfall/runoff

The **Total rainfall** is the rainfall intensity calculated from the IFD data, the return period and the temporal patterns.

Excess rainfall (ILSAX 2) is the water that is left over after the rainfall losses infiltrate into the soil.

For the impervious area, excess rainfall = total rainfall - storage

For the pervious area, excess rainfall = total rainfall - storage - infiltration

Runoff starts when the excess rainfall depth exceeds the storage depth and the intensity is greater than the infiltration. Most frequently runoff starts from the impervious area first, (no infiltration, small storage and short tc) and then from the pervious area.

- **Runoff** The runoff component of the **Rainfall/runoff** graph (good for all storms).
- **Rainfall** The rainfall component of the **Rainfall/runoff** graph (good for all storms).
- **Losses** These are the horton infiltration losses that are subtracted from the pervious component of the catchment (good for all storms).
Pit graph types

12d analysis has 2 systems for conveying flow. The **surface system** created with bypass flow strings (open channels with their inverts at the pit grate levels) and the **link system** created with the 12d drainage strings.

Grate & Invert Depths:
- The top is the **Grate depth** showing the depth of flow in the surface channel measured from the grate level. The bottom is the **Invert depth** showing the depth in the link system above the pit invert.

Grate & Invert Elevations:
- Shows both the bypass and link system water elevations. Good to see when the link elevation reaches the grate level to stop the inflow of water through the grate.

All Inflows & Outflows: (Inflows are + and outflows are - (S means surface)
- Flows for each link and bypass are listed separately.
 - **Local** is the total **Catchment** flow from all 3 catchment sets plus direct flow,
 - **In**: Links and surfaces flows entering the pit.
 - **Out**: Links and surfaces flows leaving the pit.

Total Inflows and Outflows:
- **Local**: the total **Catchment** flow from all 3 catchment sets plus direct flow,
 - **Inflow to Invert**: the sum of **In**: (links) + **Captured flow** This is the total inflow into the pit for the link system.
 - **Outflow from Invert**: the sum of **Out**: (links) This is the total outflow from the pit for the link system.
 - **Approach Flow**: the sum of the **Local** + **In**: (surface)
 - **Captured Flow**: determined from the **Approach Flow** (on grade pits) or **Grate Depth** (sag pits)
 - **Bypass Flow**: Approach flow - Captured Flow

Depth above Invert see invert depth above

Depth above Grate see grate depth above

Elevation - see Invert elevation above

Elevation Bypass Flow - see Grate elevation above

Basin volume - only available on pits with basin curve data.

Catchment Flow - Total of **Runoff** for Sets 1, 2 and 3.

Link Inflow and Captured Inflow: surface and link pit elevations, **Link Inflow** (see **Inflow to invert** above) and **Captured Inflow** (see **Captured Flow** above)

Link Outflow: see **Outflow from Invert** above

Approach Flow: see above

Bypass flow: see above

Inflow: see **Link Inflow** above

Overflow - the flow that is lost from the drainage system when the hgl exceeds the maximum level at the pit.
- The maximum level at the pit is largest of
 1) the cover level,
2) the grate level + depth of bypass channel
3) the maximum storage level in the basin storage data.

Ku - the link flow, upstream velocity, Ku and head loss of the primary outgoing link.

Pipe graph types (link system)

Dynamic Section: a section view of the entire string showing the hgl in the links and surface channels. The lower dashed line connect the grate levels and the upper shows the top of the surface channels. If the hgl goes above the top of the surface channel water will be lost from the system.

All Link Results 3 charts: The colour of the right axis label is the same as the graph line it represents.
- **HGL US, HGL DS** (left axis)
- **Depth** (right axis) - depth at the mid point of the link
- **Capacity** (left axis) - the ratio of the current pipe flow / (pipe full, HGL at grade capacity)
- **Froude Number** (right axis) - Froude number at the mid point of the link
- **Flow** (left axis) flow in the link
- **Velocity** (right axis) - velocity at the mid point of the link

Bypass graph types (bypass system)

same results graphs as for the **pipe graph types** above
8.0 Adding Storage Basins

Storage basins are created by adding an elevation versus area curve at a pit. Without the area curve the default area of a pit is defined by the diameter or the length, width settings in the drainage.4d file.

The elevation area curve may be entered manually for initial estimates or measured from the finished surface tin (inside a string defining the extent of the basin).

The outlet structure is the link exiting the basin pit. This is often a weir, orifice or discharge limiting pipe.

An optional basin link may be used to separate the outflow structure from the basin pit. This allows the user to place the outlet structures in their correct position. The basin link is only a graphical link and often has its diameter set to zero to help indicate that it is not a hydraulic component of the system.

8.1 Selecting the Basin Location

The node modelling the basin is the outlet of the pipe or channel discharging into the basin. The pit becomes a basin when the user enters elevation versus area curve for the basin or selects a polygon around the top of the basin. With the polygon method, 12d will create the elevation versus area curve from the finished surface tin. We will use an existing string from the survey data but you may easily create your own polygon around the top of the basin.

For an initial sizing you only need to enter the basin invert elevation and area into the grid.

If the outlet pipe has an upstream invert level below the lowest basin curve entry, this lower section of the pit will use the default pit area.
8.2 The Outlet Structure and the Basin Link
The basin outlet generally includes more than one structure. Typical arrangements include a low flow pipe that restricts the outflow from the basin and a high flow spillway used in larger events. Every outlet structure is linked to the basin pit with a basin link. Often the outlet structure is a fair distance from the basin pit and we want the outlet structures drawn in their correct location. IF the diameter of the basin link is set to zero it joins the basin pit to the outlet structure but preforms no hydraulic function in the model.

The minimum elevation in the elevation data becomes bottom of the basin and the outlet invert cannot be below this level. If there is a drop pit for the outlet then ensure that the base of the drop pit is first elevation in the basin data. The area will be the area of the pit. The second entry will be the top of pit level with the same pit area.

8.3 Creating the Basin link
The pipe downstream of a basin pit is a basin link. When the diameter is set to zero, the data set on this link is for graphical presentation and has no hydraulic function.
For clarity in the section view we will set the levels to the bottom elevation of the basin and set a zero pipe diameter to make the link as unobtrusive as possible.

Locking the link inverts will ensure the invert elevations are not changed with a regrade pipe selection. Remember this is a graphical link and the values do not affect the hydraulic calculations.
8.4 Data for the Outlet Control Pipe

For initial sizing of the basin you can set the diameter of the pipe to 0.001m so that no flow goes through it. Now enter a negative pipe direct flow and this will become the constant outflow from the basin (usually set to your pre-development peak discharge). Once you size the basin, return here, remove the negative flow and select a pipe size to yield similar results.

The upstream invert is being set to the bottom of the basin and then we will lock this invert. We will leave the engine to set the DS invert level.

The length will depend of your drawing.
8.5 Adding a Second Outlet Structure (Spillway Weir)

A second drainage string will be needed for the spillway. Again it will start with a basin link and then have a weir section. From the main menu select

Design->Drainage-Sewer->Create

Select the Same as button and pick a drainage string in the model. This will fill in all of fields. Name must be unique so change this data. Finally select Create.

Then select Add/Append MH from the menu.

The plan view below shows the basin link and the spillway weir location. Draw the string in the direction of flow and ensure you start with a point snap on end of the channel.

Once the string has been created the pit data at the upstream side of the weir need to be set.
On the Pit->Main tab we are going to set the cover level at the highest expected water level in the basin. The grate level will have the same level as the cover level. The Pit type does not affect the calculations for the weir.

We have also assigned a name to this pit.
On the pipe-main tab we will see the US invert level to weir crest level (20.0). The DS Invert is set the same but will have no affect on the calculations. The Diam/Height determines when the weir will start acting as an orifice. Generally used in underground storage tanks. In this case we will set it to a value higher than the expect flow depth (1.0 m). The Width is the dimension of the weir perpendicular to the flow. The Disch Coef is optional as the default will be used if it is blank.

The tailwater levels are now set to the expected levels for the minor and major events.

Enter a name for the outlet.
9.0 Natural Section Shapes

The channel shape may be cut from the design tin by drawing a string at the desired location. It is a standard convention to draw it from left to right looking in the direction of flow.

In this example we are going to connect the end of the culvert to a channel down to the spillway and then eastward to the end of the project. Set the Defaults, **Pit Type** to *chnl auto* and **Pipe Type** to *CHNL GRASS EXISTING 1* with a **height** of 4.0. This height will not affect the calculations but will show the approximate channel top in the section view. This will mean you no not have to change them later.

Use the **Points Edit->Append** to add the extra links as shown below. Ensure that the centre of the drainage string is in the lowest part of the channel. Finally, extent the spillway to the channel.

Enter the model name **dr natural shapes** into the CAD toolbar model field before drawing this string.

Once you have drawn the string you can select it from the **Pipe->Channels** tab. Selecting **Set Pit Details** will have the shape cut from the design tin and displayed in the grid and graph area. If you do not want the shape cut from the tin you can just enter the shape in the grid area. Once again the shape obtains its elevation by setting the lowest point onto the invert elevations.
Left and right bank chainages and n values may be entered if desired. If blank the link’s n value will be used. There is no default left and right bank n values.
10.0 Orifice Control on a Pipe

Use the Strings->Points Edit->Insert command to add a pit upstream of the outlet pipe. This new pipe will be set to an orifice to control the flow entering the pipe.

Lock the invert levels so that the orifice will not move in elevation,
11.0 Storage Tanks as Basin or Pipe

A storage tank may be modelled as a box culvert or as a basin but do not do both as this will double count the storage. To model the tank using basin areas Set conduit type to a Basin link and set the pipe diameter to a value that is meaningful for the long section appearance. Once it is marker as a basin link it will not affect the calculations.
11.0.1 Drainage Utility Program

Position of option on menu: Design => Drainage-Sewer => More => Misc. utilities

The Drainage utility program contains functions to significantly reduce the time required to perform drainage tasks. These tasks include:

Assign Pit names

To use the export routines, every pit in 12d must have a pit name. This selection automatically creates the pit names for the entire model or selected strings. Examples of pit names are 1,2,3..., A1,A2,A3..., Pit 3-A, Pit 3-B.

Reset pit cover levels

This selection sets the cover levels for the manholes to the design tin or design strings. The user will be prompted for each manhole to select a tin level, a string level (if a design string model is supplied) or keep a manually set level. The tin/string/manual selection will be stored and the levels reset now and whenever the pit/pipe interfaces exports the data (unless this last option has been manually turned off).

Regrade pipe levels

The selection applies the default grading rules (cover level) to reset the pipe invert levels for the entire network. Manhole cover levels are not changed during this function.

Label Catchments and Label drainage network

This selection quickly creates labels for a drainage and catchment plan. The pits are labelled with their name, the pipes with their diameters and the catchments with their area and the pit they drain to. These labels must be updated using this selection whenever the catchment or network is changed. To turn off the automatically drawn pit names in the current view select Menu=>Settings=>Text=>Toggle and select the drainage model.

Analyse Flooded Width

This is the only hydraulic calculation that takes place in 12d. The normal depth along the bypass flow paths is calculated using discharges imported from hydrology/hydraulic packages including spreadsheets. This flooded width is drawn to scale at intervals along the bypass flow path and colour coded (blue if less than a specified limit and red if greater than the limit).

See Also

Drainage overview

Usage

This panel is accessed from the menu selection

Design => Drainage-Sewer => More => Misc. utilities
The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>drainage model</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>catchment area model</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assign pit names</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>design tin</td>
<td>tin box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>design model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **drainage model**

 Model to contain all of the pit and pipe network to be worked on.

- **catchment area model**

 Model to contain the catchments strings for the Drainage Model above

- **Assign pit names**

 This button launches a dialogue for setting the names for the pit and pipes in the network model.

- **design tin**

 This optional field allows the user to specify a new tin for the surface levels of the pits. If you are using road grade and cross fall for pit inlet capacity it is preferable leave this blank and to link the pits to a string using the design model field below. If some or all of the pits are linked to strings in the design model below, they will still use the strings selected.

- **design model**

 This model contains the strings for the pit cover levels (the string directions are also used for road grade and cross fall). If this model is changed you will be prompted to select new strings to link the pits to.
Reset pit cover levels button

This button will reset the pit levels to the design strings in design model or to the tin specified in design tin above. The first time this is selected you will be prompted to choose whether to set the pit cover level to the design tin or a string in the design model. more about design strings

Regrade pipe levels button

The selection applies the default grading rules (cover level) to reset the pipe invert levels.

network labels model model box drainage labels network

Model to contain the network labels for the Drainage Model above. This model is cleaned out each time Label drainage network is selected.

catchment labels model model box drainage labels catchment

Model to contain the catchment labels for the Catchment Area Model above. This model is cleaned out each time Label catchments is selected.

catchment units choice box ha, acres

Conversion factors of 10,000 will be used for ha and 43560 for acres.Not that not all design packages support both units.

text parameters input box

Select the + to access the text parameters (colour, size, alignment etc.) for the text created with Label Catchment or Label drainage network

label catchments button

This selection creates labels indicating the catchment name and area in the units specified above.

CAUTION: If you change you catchment strings or rename you pits you must run this routine to update the labels.

label drainage network button

This selection creates labels indicating the pipe size and pit name for the network model.

CAUTION: If you change you change the pipe sizes or rename you pits you must run this routine to update the labels.

analyse flooded width button

This selection launches the dialogue for analysing the flood along bypass flow paths. The bypass flows must be imported from your design package/spreadsheet before running this selection.

11.0.1.1 Set Pit Names

The Set pit name selection names the pits and pipes for the drainage model (both pits and pipes can be named). Three numbering schemes are available:

- drainage strings names are used as the prefix followed by the pit number (ex A-1)
- drainage strings names are used as the suffix followed by the pit number (ex 1/A)
- the pits are sequentially numbered. (ex 1,2,3,...)
The names can have pre-text added to the beginning of the pit name and a separator between the string name and the pit number (/- etc.) if desired.

Design Program Notes:

PCdrain users: Since catchments contain only 3 characters do not use separators. Using the letters A-Z for strings and numbers 1-99 will give you 26 strings and up to 99 pits on each string. Using the numbered stem works very well in PC Drain.

Micro Drainage users: Pits and pipes are numbered separately in Micro drainage. The pipes must use the numbered sequence with the most upstream pipes numbered with the smallest numbers. Number of digits must be set to 3.

ILSAX users: You must use alphabetic characters for your string names and no more than 3 characters

See Also

Labelling a drainage network
Displaying the Auto Pit Names
Drainage overview

Usage

The selection is found on the drainage network editor and is accessed through the main menu by selecting

Design=>Drainage-Sewer=>Drainage Network=>Drainage=>Network editor

Select the Set Pit Names button and the following panel will appear.

![Drainage Network Editor: Set Pit Names](attachment:image.png)

The fields and buttons used in this panel have the following functions:
<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Model box</td>
<td>drainage model from main dialogue</td>
<td></td>
</tr>
</tbody>
</table>

Naming Method

- **Pit num - String name** for string A pit 1 the name is 1A
- **String name - Pit num** for string A pit 1 the name is A1
- **Sequential numbering** the strings names are sorted alpha-numerically and the pits are numbered starting at **First pit number**

Pre text

input box
this text will precede the pit name (ex Pit A01)

String/pit separator

input box
the character that separates the string name from the pit number. For example if pit names A/01, A/02 etc. where desired a "/" would be entered. You may omit the separator if none is desired.

First Pit Number

integer box
the starting pit number on the drainage lines. For drainage strings with the flow direction set as descending chainage the first pit is the junction pit.

Min digits in pit numbers

integer box
a non zero value will pad the pit numbers with leading zeros. (ex if 2 is entered, pit 1 is not A/1 but rather A/01)

Reverse numbering order

tick box
Unselected, pit **First pit number** is at the low chainage end of the line. Selected, pit **First pit number** is the second pit from the high chainage end of the line.

Number pits

tick box
the pits are assigned names. This allows the pit and pipes to be names differently.

Number pipes

tick box
the pipes are assigned names. This allows the pit and pipes to be names differently.

Run

button
name the pits/pipes. The pit at the high chainage of the string is not labelled. The only time you will need to name this pit is when it is the outlet from the system.

Back to Editor

button
return to the network editor.

Help

button
display this page.
11.0.2 Drainage Input/Output Interface

Position of option on menu: Design => Drainage => More=> pit/pipe design interface

See Also

Drainage overview
Drainage Misc Utilities
Spreadsheet clipboard
Running Drains
Running PCdrain (Windows)
Running Micro Drainage - Win DES
Running XP SWMM
Running RAT2000

Usage

This panel is accessed from the menu selection Design => Drainage => More=>Version 6=>Pit/pipe design interface

The fields and buttons used in this panel have the following functions.

Field Description Type Defaults Pop-Up
import/export format <c> input box XP SWMM Spreadsheet clipboard,
select the drainage design program to export/import to.

drainage model
Required Model to contain all of the pit and pipe network to be exported/imported. Also see Drawing the Drainage Network

file name
Required file to be read or written to. If a clipboard format is chosen for import/export format above then the data will also be written to this file on a Copy selection

catchment area model
Optional model to contain the catchments strings for the Drainage Model above. Also see Designating Catchment Areas

catchment units <c>
ha, acres

Conversion factors of 10,000 will be used for ha and 43560 for acres. Not that not all design packages support both units.

catchment characteristics model
Optional strings in this model will be used to define the catchment slope and width (XP SWMM only)

bypass flow model
Optional model to contain the bypass flow strings for the Drainage Model above. Also see Creating Bypass Flow Strings

road design string model
Required if bypass flow model is specified above. Also see Pit Inlet Capacity, road grade/crossfall and Bypass routes

services model
Optional if the strings in this model cross the drainage network the crossing data (drainage chainage, invert elevation and thickness) will be sent to the design package

additional services model list (file)
Optional if your services lie in more than one model then enter a text file name here and then select edit from the fields file icons. Type the names of all of the service models and then save the file.

project description
Optional this description will be sent to the design program

export pipe diameters and inverts
tick box
Select this tick box to export the pipe diameters and inverts. see also Quick Check Lists for Drainage Design Software

Export default catchment/pit parameters

- **Tick box**
 - **Tick** selected all default catchment parameters are exported
 - **Not selected** only catchment area is exported if **catchment area model** is specified above. see also Quick Check Lists for Drainage Design Software

Options

button

several calculations are preformed before all exports. Advanced users may turn some off for large models (100’s of pits). The option to re-link your pits to new design strings is also included here. More options

Write/Copy

button

This will create/over write the file specified above in **file name**. If **Copy** button is present the data will also be placed on the windows clipboard as Tab delimited text.

Read/Paste

button

Read will read the file specified above in **file name**. **Paste** read the data from the windows clipboard. Both selections will update the drainage strings in the model specified above in **drainage model**. If the **Spreadsheet clipboard** import is selected and the strings are not present in the model they will be created.

11.0.2.1 Options
Selecting the Options button brings up the dialogue to the left. Additional choices may be present at the bottom of the dialogue depending on the Import/Export Format that you selected on the main dialogue:

Catchment areas when selected the catchment areas are linked to the drainage pits and the areas recalculated. See also Designating Catchment Areas.

Re-link pits to road strings-tin when selected a dialogue for each pit will be presented asking which design string or tin to link the pit to. See also Selecting design string or tin.

Calculate bypass flow routes when selected will calculate the downstream bypass pit, road grade and crossfall and inlet capacities. See also Pit Inlet Capacity, road grade/crossfall and Bypass routes.

Calculate now will calculate the selected option immediately and return the user to the main dialogue.

Set will set the options but no calculations will be performed until a Write or Copy is selected from the main dialogue.

Finish removes the panel from the screen.
21 Rivers

Position of menu: Design=>Rivers

The Rivers option is used to prepare data for analysis packages and examine the results from the analysis.

The Rivers walk-right menu is:

See Also

Frequently Asked Questions (Rivers)
River Interface Models
HEC-RAS Interface
XP-SWMM Interface
XP SWMM Culverts
MIKE11 Interface
UNET Interface
ISIS Interface
River Mapper
Presenting Water Level Results
How to for Rivers
Rivers beta menu
21.1 River Interface Models

The River interface strings are split into different models depending on the strings function. Also the string names are used to define names of entities such as cross sections and reservoirs when they are exported. Following is a list of the river interface string types:

River strings
Source strings
Reservoir Strings
Spill Strings
21.1.1 River Strings

The river centre line and bank are defined by the strings in the River strings model. The centre line string is used to:

- measure the centre line distance between the sections,
- mark to zero chainage (or starting chainage) on the cross section, and
- if automatic source strings are created they will be perpendicular to this string
- define culvert locations and sizes (XP SWMM only)

The left and right bank strings are used to:

- measure the bank distances between the sections and
- mark the cross section chainage where the conveyance (usually roughness) changes

The names of the strings must be left bank, right bank and centre line river name, reach name (centre may be spelled center).

The left bank is on the left side of the river looking downstream and the right bank is on the right (looking down stream). These strings need not touch each other and may extend from one river reach to another.

HEC RAS and UNET

The centre line string must begin at the downstream end of the river. The modelling convention for these programs is to have the low chainage at the downstream end. You may use super, 2D, 3D or alignment strings in this model. If you put other strings in this model you will receive warning messages saying that these strings will not be used.

Each reach of the river MUST have its own centre line string and they must "touch" each other to create a river confluence.

A sample of a river strings model for HEC RAS with one confluence is shown below. The line style for the centre line is not required. It is used only to show the direction of the centre line string.

Notes:

left bank strings are shown in red, right bank in blue and centre line strings in yellow and green. The line style for the centre line strings is Drainage_4D->Flow line. This is not required but shows the direction of the string. The string labels were created with Strings->Label->User-
>Label strings with names.

Centre line string direction is very important!

- HEC RAS, UNET, XP SWMM start at the **DOWN**stream end of the river
- ISIS and Mike 11 start at the **UP**stream end of the river

ISIS and MIKE11

The centre line strings are drawn starting **upstream** for the ISIS and Mike 11 programs.
21.1.2 Source Strings

Cross sections are created at the location of the **source strings**. These source strings are initially created at a user defined spacing and section length using any one of the river interfaces writers. The user may alter these sections as desired. These may be shortened if they intersect at sharp bends in the river; they may be extended at extremely wide river sections or extra points may be added so that the section is no longer a straight line.

Source strings can be deleted and additional sections can be added by creating new source strings. The **Create source strings** tick box on the interface panel must **NOT** be selected to use the customised strings.

A quick way to manually create 2 point string is via the CAD tool bar.

A sample of source strings (shown in magenta) is presented below. The source strings may run in any direction except for Mike11. In Mike11, the cross sections will be created in the same direction as the source strings. For all other interfaces the low chainage will be used for the left bank (section viewed looking downstream).
21.1.3 Reservoir Strings

The reservoir strings may define inline reservoirs or offline storage. The elevation of the first point on the string sets the maximum level to be used in the stage storage curve. 12d will determine the minimum level inside the reservoir string and then calculate the volumes at a 1m (2 foot for imperial units) increment. The default increment may be changed by creating a string attribute "stage increment" (see stage increment).

Inline reservoirs are "touched" by centre line strings both upstream and downstream. Offline storage areas are linked to the cross sections via Spill strings.

Other features of the reservoir strings are

- Auto height
- XP SWMM catchment parameters

A sample drawing showing an inline reservoir in cyan (1-277) follows. Note that the river centre line touches the reservoir string both upstream and downstream. The left and right bank strings may continue straight through the reservoir.

A sample drawing of an offline reservoir follows (the reservoir string is shown in green). Note that the spill string (black) starts at the source string (point 1), then follows the section line to be cut and exported (points 2 to 5) and ends by touching the off line reservoir string at point 6. The river strings do not touch the offline storage strings.
Chapter 21 Rivers

River Interface Models
21.1.4 Spill strings

Spill strings are strings that link offline storage areas to a cross section (see drawing above). The string must begin by "touching" the source string and then proceed to the first point on the spill section. During the export the first point will NOT be exported as part of the spill section. After defining the end of the spill section the last point on the string must "touch" the reservoir string. Again this last point will NOT be exported as part of the spill section.

The default roughness for the spill section is the "left n" from the main export panel, the default slope is 0.5% and the default length is 100. See the manual setting table for manual override settings.

XPSWMM Only. 2 point culvert strings (6 max) may be draw across the spill string to create a multi conduit. The culvert strings should be drawn in the same direction as the spill string so that the upstream and downstream inverts follow in the same direction.
21.1.5 Define Culvert Locations

12d allows culverts to be included as a segment of a super string. The XP SWMM rivers interface allows culverts in 2 models. In the spill string model, multiple two point superstring may cross a spill string to indicate a culvert through the embankment. In the river string model a segment of the river centre line may marked as a culvert. For parallel culverts, segment attributes must be used. If a source string crosses the same segment than a multi-link with both the culvert and the natural section will be exported.

Important note: Version 10.0 of xpswmm (at the time of writing) will only use inlet control curves on culverts with positive slopes.

Adding a Culvert to a super string

1. **Super strings only!**
 - Convert string to a super string (if required)
 - Strings->Convert

2. **Mark the ends of the culvert.**
 - Add a vertex at the upstream and downstream end of the culvert (Toggle vertices on if desired)
 - String->Points Edit->Insert

3. **Mark the segment as a culvert or pipe**
 - Use the super string segment editor to set the culvert data.
 - Strings->Properties->Segments (all) and change Segment properties to use **culvert each segment** (box) or **pipe each segment** (round). Note that if there is one box culvert on the centre line then all must be box culverts. If you need pipes and box culverts combined, set the width to zero for pipes.
 - Also set the Justify mode to indicate the type culvert levels you wish to specify.

If there are two (max is 7) culverts at this location that have different inverts or sizes add the following user defined attributes to the segment. The comment attributes are printed by the Culvert Table routine and are used to label the culvert as well. If there are a number of identical culverts, the attributes "number of pipes" (integer) can be set to a value greater than 0. Additional attributes to customise the culvert are listed at the end of this section. Default mannings n are 0.024 for pipes (corrugated metal) and 0.012 for box (concrete).
4. Conduit Factors are automatically set. Circular pipes are set to "Headwall (circular corrugated metal)" and box culverts are set to "45 deg Wingwall Flares (Rect, Conc)". Expansion and contraction energy loss coefficients have default values of 1.0 and 0.5 respectively but these may be changed using the attributes indicated below.

![Super Segment Properties](image1)

5. **Set the upstream and downstream levels**
Select a vertex at the end of segment, ensure the **height mode** is **each vertex** and set the height. Use the **Next** or **Prev button** to move to the other end of the culvert and set its height as well.

![Super Vertex Properties](image2)
Additional Culvert Segment Attributes (Spill and River strings)

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Attribute Name</th>
<th>Type</th>
<th>Typical Data Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culvert entrance loss</td>
<td>entrance loss</td>
<td>Real</td>
<td>0.5</td>
</tr>
<tr>
<td>Culvert exit loss</td>
<td>exit loss</td>
<td>Real</td>
<td>1.0</td>
</tr>
<tr>
<td>Mannings n</td>
<td>roughness</td>
<td>Real</td>
<td>0.014</td>
</tr>
<tr>
<td>Multiple identical culverts</td>
<td>number of pipes</td>
<td>Integer</td>
<td>2</td>
</tr>
</tbody>
</table>

Centre Line Culvert Segment Attributes (River strings)

The attribute name has the culvert number as a suffix. i.e. (height 2)

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Attribute Name</th>
<th>Type</th>
<th>Typical Data Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter/height</td>
<td>height n</td>
<td>Real</td>
<td>0.5</td>
</tr>
<tr>
<td>Box culvert width</td>
<td>width n</td>
<td>Real</td>
<td>1.0</td>
</tr>
<tr>
<td>Upstream invert</td>
<td>us invert n</td>
<td>Real</td>
<td>20.2</td>
</tr>
<tr>
<td>Downstream invert</td>
<td>ds invert n</td>
<td>Real</td>
<td>20.1</td>
</tr>
<tr>
<td>Culvert length</td>
<td>length n</td>
<td>Real</td>
<td>10.2</td>
</tr>
</tbody>
</table>
21.2 Culvert Table

Position of option on menu: **Design=>Rivers=>XP SWMM interface=>Culvert table**

This option is used to create a table of the culverts created along the centre line of the river and to label the invert levels and comment for the first culvert on each segment (some segments may include attributes for more than on culvert). A sample is shown below.

![Culvert Table Sample](image)

See Also

Defining culvert locations

Usage

![Culvert Table Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>River string source</td>
<td>input</td>
<td>view</td>
<td>string,model/view</td>
</tr>
<tr>
<td>String,Model,View</td>
<td>various</td>
<td></td>
<td>centre line string selection</td>
</tr>
<tr>
<td>Output file</td>
<td>File box</td>
<td></td>
<td>text file to contain the table</td>
</tr>
<tr>
<td>Include format codes</td>
<td>tick box</td>
<td></td>
<td>format codes are used to format tables in 12d...not desired for other programs</td>
</tr>
</tbody>
</table>
Label string tick box

The invert labels and the pipe size will be added as vertex and segment text

Process button

does the option.

Finish button

removes the dialogue from the screen
21.3 HEC-RAS Interface

Position of menu: Design=>Rivers=>HEC-RAS interface

The HEC-RAS interface creates the HEC-RAS project files ready to open and run. This includes the project, plan, flow and geometry files. Water levels are read back into 12d where they may be viewed in a 3D perspective view to easily identify extents of flooding.

The HEC-RAS walk right menu is,

See also
- River and Source Strings
- Create HEC-RAS files
- Read HEC-RAS results
- Presenting Water Level Results
- Import cross sections (GIS file)
- Read HECRAS Interp sections
- Read HEC2 Data
- How to for Rivers
- Frequently Asked Questions (Rivers)

Exporting to HEC-RAS

The HEC-RAS project is created from a surface tin (representing the river bed and overbanks) and a model containing strings identified by their names “left bank”, “right bank and the name prefix, “centre line”. Any additional strings in the specified model will be ignored (warning messages will be given when you run the macro that any additional strings are being ignored). The low chainage (often zero) of the centre line strings must be at the downstream end of the reaches.

Cross sections are created at the location of the source strings. These source strings are initially created using the HEC-RAS option at a user defined spacing and section length. The user may alter these sections as desired. These may be shortened if they intersect at sharp bends in the river; they may be extended at extremely wide river sections or extra points may be added so that the section is no longer a straight line.

Source strings can be deleted and additional sections can be added by creating new source strings. The Create source strings tick box on the interface panel must NOT be selected to use the customised strings.

Presenting HEC-RAS Results in 12d

After the HEC-RAS analysis is complete the water level results are read back into 12d. Water level strings are created with the plan shape of the cross sections at the elevation retrieved from the HEC-RAS results. These strings are then triangulated to create a water surface tin from which the water level boundaries are determined. These results can then be shown in plan, long section, cross section and in 3D perspectives.

More details
21.3.1 HEC-RAS Write Panel

Position of option on menu: Design=> Rivers=>HEC-RAS interface=>Create HEC-RAS project

The HEC-RAS interface creates the HEC-RAS project files ready to open and run. This includes the project, plan, flow and geometry files. Water levels are read back into 12d where they may be viewed in a three dimension perspective view to easily identify extents of flooding.

See also

River and Source Strings
HEC-RAS Interface overview
Read HEC-RAS results
Presenting Water Level Results
How to for Rivers
Frequently Asked Questions (Rivers)

Usage

The HEC-RAS panel for creating the HEC-RAS project follows.

![HEC-RAS Interface Writer](image)

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT MODELS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
River strings model
Model containing the centre line, left bank and right bank strings. The centre line strings must begin downstream and proceed upstream. The name of the river may follow the words “Centre line” (note the ending space). For example the centre line string may be named “Centre line Parramatta River, downstream reach”. The comma separates the river name from the reach name. If no comma is included then the river name is repeated for the reach name.

Confluences are modelled by using a separate string for all reaches. Thus a system with a branch is modelled with three strings. The branch will be one string and the main reach will have a downstream string and an upstream string. The reaches must touch at the confluence.

The distance from the start of the upstream strings to the first cross section is used to model the confluence length.

The left and right bank strings need not be separate strings (see figure below).

Source string model
New source strings will be created in this model or existing source strings are contained in the model. See Create source strings tick box below.

Rename Source Strings
If selected the source strings will be a name using the chainage along the river centre line. The number of decimals and the Centre line chainage factor (ft to miles or m to km) are specified below.

Centre Line Chainage Factor
The cross section names are created by dividing the chainage on the centre line by this factor. Typically 1000 is used to convert metres to kilometres and 5280 to convert feet to miles.

Number of decimals
When Rename source strings is selected, the source strings name will have the specified number of decimals.

CREATE SOURCE STRNGS OPTIONS

Create Source Strings
When selected existing source strings are deleted and new ones created perpendicular to the centre line at the specified spacing and length. Once you have created the sources strings they can be easily modified. On the Strings->Points Edit menu you will find the selections Move (to move the end points), Insert (to insert additional points).

Distance between sections
The distance between the cross sections. At present no check is made for overlapping cross sections around river bends.

Section Length
The length of the cross section with zero chainage at the mid point.

CROSS SECTION DATA

Cross section model
The cross sections created and exported are stored in this model.

Surface Tin (not the model)
Tin or super tin to create the cross sections from (remember a tin is like a string. It is placed in a model.).

Levee Tolerance
Real box
If the surface level drops more than this amount while moving away from the channel centre line then the crest is marked as a levee. A value of zero means that no levees are marked.

Delta Y tolerance
Real box
This value filters out points on the cross section. Imagine a tube of this diameter passing over the cross section. The tube is elongated until one point lies outside the tube. The tube is shortened to the previous point and then all points inside the tube are deleted from the cross section. The tube then moves on to the next point. The filtered (smoothed) and original sections are kept for comparison. The final water tin is created from the ground tin and therefore the boundary string is located using the unfiltered section.

STARTUP DATA

Manning’s n
Real box
Manning’s n values for the left, right and centre channel sections.

Discharge
Real box
This discharge is used at the upstream end of all reaches. If you have multiple river branches, you can set the flow for each branch inside HEC-RAS or inside 12d. This can be changed at each section. See manual settings.

Units
Choice box
This selection will set the default units for the project being created.

Project file name
Input box
The HEC-RAS project name. Remember HEC-RAS (2.0 or earlier) is limited to 8 characters only. If the total path name is too long HEC-RAS will not analyse the project.
21.3.2 HEC-RAS Read Panel

Position of option on menu: Design=>Rivers=>HEC-RAS interface=>Read HEC-RAS reports

After the HEC-RAS analysis is complete the water level results are read back into 12d. Water level strings are created with the plan shape of the cross sections at the elevation retrieved from the HEC-RAS results. These strings are then triangulated to create a water surface tin.

See also

HEC-RAS Interface overview
Create HEC-RAS files
Presenting Water Level Results
How to for Rivers
Frequently Asked Questions (Rivers)

Usage

The HEC-RAS read panel follows.

EXISTNG DATA

River strings model Model box
The river strings model specified in the write panel.

Cross Section model Model box
The cross section model specified in the write panel. This must be specified but is only used when reading the *.rep file types (see File format below). The interface will search the string names in this model for the cross sections specified in the HEC-RAS report. A match is successful if the HEC-RAS
cross section chainage and the string name are within the tolerance specified below in Chainage tolerance.

Shape string model Model box

For meandering rivers, the cross sections (shown in green above) may not be at a close enough spacing to create a water surface that follows the river. 2D shape strings (shown in red above) can be created to create a water surface (shown in blue above) to follow the river. Note that water levels are extended when the shape strings are in a junction area or past the end of a reach.

Ground surface tin Tin box

If a boundary string model is specified below, the intersection of this ground surface and the water surface will be determined. The strings will be stored in the model from the boundary string model field.

File format Choice box

The GIS format should be used in most cases. The rep format is used for reading the HECRAS report files with the “Standard Table 1” selected in HECRAS.

HEC-RAS report file name File box

The HEC-RAS report file (GIS format) is created using the HEC-RAS menu selection

File=>Export GIS data

The HEC-RAS report file (REP format) created using the HEC-RAS menu selection
File=>Generate Report

The report must include the Standard Table 1.

RESULTS DATA

Water surface tin model Model box
The model to contain the new water surface tin.

Water surface tin Tin box
The name of the water surface tin to be created.

Water level results model Model box
The model where the water surface strings will be created at each cross section and shape string.

Boundary string model Model box
The model to contain the intersection strings between the water and ground surfaces specified above. If left blank no intersection strings will be calculated.

PARAMETERS

Chord Length Model box
This value set the spacing for the points on the water level strings (both cross section and shape strings). It is recommended that you use a length of no more than half of your average cross section and shape string lengths. A large value in this field may result in unexpected water level profiles for meandering rivers.

Centre line chainage factor Model box
This data is only required if the Shape string model is used. The shape string names are created by dividing the chainage on the centre line by this factor. Typically 1000 is used to convert metres to kilometres and 5280 to convert feet to miles.

Chainage Tolerance Real box
This is the tolerance used when the cross section chainage from the HEC-RAS report is compared with the cross section string names. A value of 0.00001 is excellent if you have not altered the cross section names in 12d or HEC-RAS.

However, if you have altered chainage names then you may have to increase the value of the tolerance. Suppose the tolerance is set to 0.001 and the water level for section 0.056 is read from the HEC-RAS report file. The interface will search for the first string with a name between 0.055 and 0.057. If you chose to great of a tolerance then more than one water level result will match a 12d cross section and a warning message will be given.

If you have one specific cross section that you would like to have a different tolerance set for (maybe only one section is giving you troubles), use the Attribute Editor (Strings->User->Attribute Editor), select the cross section string and create a real type attribute named tolerance set to the tolerance desired.
21.3.3 Import cross sections (GIS file)

Position of option on menu: Design=>Rivers=>HEC-RAS interface=>Import cross sections (gis file)

This option is used to import HEC RAS cross sections, interpolated cross sections, source strings (Cut lines), river centre lines and storage area boundaries into 12d. Note that the imported data will be given the X,Y coordinates used in the HECRAS project.

See Also
- River and Source Strings
- HEC-RAS Interface
- How to for Rivers
- Frequently Asked Questions (Rivers)

Usage

This panel is accessed from the menu selection

Design => Rivers => HEC-RAS Interface=>Import cross sections (GIS file)

![HEC RAS GIS Reader](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>River strings model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source string model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross section model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage area model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEC RAS GIS File</td>
<td>File box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section colour</td>
<td>colour box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **River strings model**: The imported centre line strings will be stored in this model (REACH: CENTERLINE: data). If blank these string will not be imported.
- **Source string model**: The imported source strings will be stored in this model (CROSS-SECTION: CUT LINE: data). If blank these string will not be imported.
- **Cross section model**: The imported cross section strings will be stored in this model (CROSS-SECTION: SURFACE LINE: data). If blank these string will not be imported.
- **Storage area model**: Storage area boundaries will be stored in this model (strings not supported in 12d V7 interface). If blank these string will not be imported.
- **HEC RAS GIS File**: The GIS file generated from HEC RAS (*.RASexport.sdf)
- **Section colour**: Colour box
Cross sections will be created using this colour unless the section name contained illegal characters.

Clean model tick box

If selected all strings in the Cross section model will be deleted before the cross sections are imported.

Process button

Executes the option and the number of string imported will be reported in the message area.

Finish button

Removes the dialogue from the screen.

Notes:

The RASexport.sdf file is created from HEC RAS using File->Export GIS Data. From this panel the desired data to be exported may be selected. In this example all three Geometry tick boxes have been selected.
21.3.4 Read HEC-RAS interp sections

Position of option on menu: Design=>Rivers=>HEC-RAS interface=>Read HEC-RAS interp section

This option is used to import HEC RAS interpolated cross sections (names begin with *) based on their distance along the left and right bank strings.

The low chainage must be at the downstream end for both the "left bank" and "right bank" strings.

See Also

River and Source Strings
HEC-RAS Interface
How to for Rivers
Frequently Asked Questions (Rivers)

Usage

This panel is accessed from the menu selection
Design => Rivers => HEC-RAS Interface=>Read HEC RAS Interp sections

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>River strings model</td>
<td>the centre line, left and right bank strings must exist in this model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chainage tolerance</td>
<td>existing cross sections must be located in 12d model. This value is the tolerance used when the HEC RAS cross section names are compared to the 12d string names.</td>
<td>Real box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Original cross section model</td>
<td>the HEC RAS cross section names will be compared with the string names in this model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interp cross section model</td>
<td>the imported cross section strings will be stored in this model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEC RAS G01 File</td>
<td>the G01 (geometry) file used by HEC RAS to store the data in raw format. This is not the GIS format.</td>
<td>File box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process button</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
executes the option.

Finish button
removes the dialogue from the screen
21.3.5 Read HEC2 Data

Position of option on menu: Design=>Rivers=>HEC-RAS interface=>Read HEC2 data

This option is used to import HEC2 cross sections into 12d. Since the file does not contain any easting and northing data, the cross sections will be lined up vertically and will have to be placed manually inside 12d.

See Also
River and Source Strings
HEC-RAS Interface
Moving Strings ragg
How to for Rivers
Frequently Asked Questions (Rivers)

Usage

This panel is accessed from the menu selection
Design => Rivers => HEC-RAS Interface=>Read HEC2 Data

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross section model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the cross section created will be placed in this model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEC2 cross section</td>
<td>File box box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the HEC2 cross section data file to be read</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>read the data and create the cross sections.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finish</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>removes the dialogue from the screen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
21.4 XP-SWMM Interface

Position of menu: Design=>Rivers=>XP SWMM interface

The XP-SWMM interface launches your XP-SWMM program and loads either a default xp file from the set_ups path (master_rivers.xp) or your existing project. The 12d data is automatically imported in the XP-SWMM project (via a *.xpx file) to either create a new river reach or update an existing reach. Water levels are read back into 12d where they may be viewed in a 3D perspective view to easily identify extents of flooding.

The XP-SWMM walk right menu is,

See also

River and Source Strings
Defining Centre Line Culverts
XP SWMM Culverts
Spill strings
Hydrology Data
Create XP-SWMM files
Read XP-SWMM results
Presenting Water Level Results
How to for Rivers
Frequently Asked Questions (Rivers)

Exporting to XP-SWMM

The XP-SWMM project is created from a surface tin (representing the river bed and overbanks) and a model containing strings identified by their names “left bank”, “right bank and the name prefix, “centre line”. Any additional strings in the specified model will be ignored (warning messages will be given when you run the macro that any additional strings are being ignored). The low chainage (often zero) of the centre line strings must be at the downstream end of the reaches.

Cross sections are created at the location of the source strings. Source strings can be deleted and additional sections can be added by creating new source strings. The Create source strings tick box on the interface panel must NOT be selected to use the customised strings.

Presenting XP-SWMM Results in 12d

After the XP-SWMM analysis is complete the water level results are read back into 12d. Water level strings are created with the plan shape of the cross sections at the elevation retrieved from the XP-SWMM results (xpx file). These strings are then triangulated to create a water surface tin from which the water level boundaries are determined. These results can then be shown in plan, long section, cross section and in 3D perspectives.

More details
21.4.1 XP-SWMM Write Panel

Position of option on menu: Design=>Rivers=>XP SWMM interface=>Create xpx file and run XP SWMM

The XP-SWMM interface creates the XP-SWMM project files ready to open and run. This includes the project, plan, flow and geometry files. Water levels are read back into 12d where they may be viewed in a three dimension perspective view to easily identify extents of flooding.

See also

River and Source Strings
Hydrology Data
XP-SWMM Interface overview
Read XP-SWMM results
Presenting Water Level Results
How to for Rivers
Frequently Asked Questions (Rivers)

The source strings define the location where cross sections are cut from the ground surface TIN. A node is created in XP-SWMM at this location and the cross section shape is used to the next downstream node (no cross section is created at the most downstream source string).

The centre line and overbank channel lengths are measured in the downstream direction. XP SWMM link and node input panels are displayed below with the relationship to the 12d Model described.
XP SWMM Link Data

cross section chainage at intersection of left and right bank strings
max elev - min elev at upstream cross section

n values from 12d panel
channel lengths measured along river strings

Minimum cross section elev from upstream node.
Minimum cross section elev from downstream node.
XP SWMM Node Data

The slope of the conduit/link is calculated by assuming that its invert matches vertically with the invert of the downstream link. The overflow levels at the nodes are calculated by determining the lowest of the bank levels for the upstream and downstream links. The least of the overflow depths at the nodes is then used as the link diameter.
Usage

The XP-SWMM panel for creating the XP-SWMM project follows.
The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>River strings model</td>
<td>Model box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Model containing the centre line, left bank and right bank strings. **The centre line strings must begin downstream and proceed upstream.** The name of the river may follow the words “Centre line” (note the ending space). For example the centre line string may be named “Centre line Parramatta River, downstream reach”. The comma separates the river name from the reach name. If no comma is included then the river name is repeated for the reach name.

The left and right bank strings need not be separate strings (see figure below). |

| **Source string model** | Model box | | |
| New source strings will be created in this model or existing source strings are contained in the model. See **Create source strings** tick box below. |

| **Create Source Strings** | Tick box | not selected | |
| When selected existing source strings are deleted and new ones created perpendicular to the centre line at the specified spacing and length. Once you have created the sources strings they can be easily modified. On the **Strings->Points Edit** menu you will find the selections **Move** (to move the end points), **Insert** (to insert additional points). |

| **Distance between sections** | Real box | | |
| The distance between the cross sections. At present no check is made for overlapping cross sections |
around river bends.

Section Length

Real box

The length of the cross section with zero chainage at the mid point.

Cross section model

Model box

The cross sections created and exported are stored in this model.

Centre Line Chainage Factor

Real box

The cross section names are created by dividing the chainage on the centre line by this factor. Typically 1000 is used to convert metres to kilometres and 5280 to convert feet to miles.

Number of decimals

Integer box

The cross section names are created with this many decimals. CAUTION XP SWMM only allows 10 characters for the names and each link name begins with "Lx-" That leaves 7 characters for the chainages.

Surface Tin (not the model)

Tin box

Tin or super tin to create the cross sections from (remember a tin is like a string. It is placed in a model.).

Levee Tolerance

Real box

Not implemented in XP-SWMM.

Manning's n

Real box

Manning’s n values for the left, right and centre channel sections.

Delta Y tolerance

Real box

This value filters out points on the cross section. Imagine a tube of this diameter passing over the cross section. The tube is elongated until one point lies outside the tube. The tube is shortened to the previous point and then all points inside the tube are deleted from the cross section. The tube then moves on to the next point. The filtered (smoothed) and original sections are kept for comparison. The final water tin is created from the ground tin and therefore the boundary string is located using the unfiltered section.

Discharge

Real box

This discharge is used at the upstream end of all reaches. If you have multiple river branches, you can set the flow for each branch inside XP-SWMM or inside 12d. This can be changed at each section. See manual settings

Units

Choice box

This selection will set the default units for the project being created.

Project file name

Input box

The XP-SWMM *.xp name to be created or updated. An xpx file will also be created using this name to transfer the data.

After selecting the Process button the cross section strings will be created and exported to a xpx file (using the project file name as the stem. Never included ".xpx" in the project file name) The xpx file will be over written without any warning. This is only used as a temporary transfer file.
12d needs to know where XP SWMM program and the XP SWMM working directory are. The system file that contains these locations is called XPSWMM.4d. (See System file path for its location). The file contents are as follows:

- Line 1 the XP SWMM working directory
- Line 2 the full path to the XP SWMM program
- Line 3 the destination of the hydro.ini file when it is created

IMPORTANT: include the final "\" on lines 1 and 3.

The XPSWMM.4d file as supplied follows;

```
c:\xps\xp-swmm\work\n
c:\xps\xp-swmm\xpswmp32.exe

c:\xps\xp-swmm\n```

Next 12d will check for an XP project in your XP SWMM work directory (project file name + ".xp"). If it does not exist the file Master_rivers.xp will be copied from the System file path to your XP SWMM working directory. If a wp file already exists in your working directory you will see the following options dialogue.

![XP SWMM interface]

Create xpx file and run XP SWMM
Read XP SWMM xpx results file
Culvert Table

The default is to update the wp file. Nodes and links in the file with the same names as in the export will be updated. If they do not exist they will be added. The import will NOT delete any nodes or links inside XP SWMM. This option is often used to merge rivers data with urban drainage data.

The overwrite option will copy the Master_river.xp file into the working directory and overwrite the existing file.

In either of the two cases the xpx file will be imported after XP SWMM has started. When you exit your XP SWMM session regardless of whether or not you save the XP file the XPX file will be exported over writing the original export file from 12d.

Your third option if not to run XP-SWMM at all and work with the XPX file as you see fit.
21.4.1.1 Export Details

The following diagram displays how the values from 12d are exported to XP-SWMM.

At every source string location a node is created in XP-SWMM. The cross section geometry is then used for the downstream reach and is exported looking in the downstream direction.

The node name is set manually or calculated inside 12d by obtaining the centre line chainage at the intersection with section string. This value is divided by the Centre line chainage factor and rounded to the Number of decimals specified in the 12d export dialogue box. This value is then prefixed with the reach index followed by a dash. The downstream link name is set to the node name prefixed with "L". If you are planning to merge the river file with an XP SWMM drainage network then you will want to manually set the node names to the drainage pit names for the most upstream and most downstream source strings.

When selecting the Number of decimals in the 12d export dialogue, ensure that the total link name generated does not exceed the XP limit of 10 characters.

The section number variable is not exported to XP-SWMM.

Where the centre line cross the section in 12d is marked as zero chainage in XP-SWMM. The left overbank (-17.373) and the right overbank (9.898) are determined by the intersection of the left and right bank strings with the section. The n values are the values that are entered in the 12d export dialogue box. The maximum depth is calculated by subtracting the lowest elevation from the greatest elevation for both this cross section and the downstream cross section. The minimum of the two values is used.

The channel length is determined by subtracting the downstream section’s centre line chainage from the current section centre line chainage. The Centre line chainage factor is NOT used in this calculation.

Upstream elevation is obtained by calculating the minimum elevation at the current section and the downstream elevation is the same value for the downstream cross section. The channel slope is calculated using these elevations and the channel length above.

The horizontal distortion factor and section vertical shift are set to zero. A section coordinate point is generated every time the source string crosses a 12d triangle edge, at the centre line and the left/right bank locations.
The spill crest level at the node is set to the maximum level on the cross section. Constant inflow is zero unless the node is the most upstream section on the reach are the flow value for the source string has been set manually see manual settings.

21.4.1.2 Hydrology Data

Hydrology data may be exported to the runoff layer of XP SWMM for both the reservoir strings and the source strings. There are 2 requirements to enable the hydrology.

21.4.1.2.1 Key Points

1. If you plan to use storage areas, you need to draw reservoir strings (all in one model) and each should have a name (to become the XP SWMM node name).

2. You must create a file named "hydrology.txt" and store it in the project working folder. This file will contain the default xpx variable names. These defaults may be over ridden using the same xpx variable name as a string attribute on the source/reservoir string (see format below).

3. The reservoir or source string must have an integer string attribute named "xpx r rfcmnt" with a value greater than 0 (max of 5). Use the Strings->Properties->Attributes or Strings->User->Attribute Editor to create/change this attribute.

4. Total area for the reservoir strings is calculated at each export time.

21.4.1.2.2 Hydology.txt file format

The file is tab delimited and each line consists of three pieces of data: the XPSWMM variable name, the default value, and the type of data (integer, real or text).

You enter the xpx variable name

Any of these default values may be specified using a string attribute on the reservoir or source string. The attribute name must be of the same type as defined in the hydrology.txt file. If data for a second XP SWMM catchment is desired add a " 2" to the end of the attribute name. Up to 5 catchments are allowed in XP SWMM.

A sample hydrology.txt file follows:
// SCS hydrology screen
R_CN    85    real
R_TC    60    real
R_SHF   256   integer
R_SHAPE 0    integer
R_IADEPTH0.04  real
R_IAFRAC0 0.2 real
R_IA 1    integer
CNTLS 5    integer
R_FSCS 1    integer

// sub catchment screen
R_RAINSEL:"SCS Type II FL Mod." text
R_INFILSEL '"text
R_GWTAG 0    integer

// runoff node screen
R_WAREA 1. real
R_WIMP 1. real
R_WIDTH 1. real
R_WSLOPE 1. real

21.4.1.2.3 Attribute name format for string attributes.
The attribute name is the XP variable name prefixed by "xpx " with the underscore character in the xpx variable replaced by a space. For example the xpx variable "R_RAINSEL" would be set using the attribute name "xpx R RAINSEL".

21.4.1.3 Exporting River Junctions
River junctions are defined by the intersection of the centre line strings in 12d. The cross section immediately downstream of the intersection becomes the junction node. It is used as the downstream cross section for all upstream branches. The channel length for the last link on the tributary is set to the distance the centre line string extends beyond the cross section. The distance downstream along the main branch is NOT INCLUDED!
21.4.2 XP-SWMM Read Panel

Position of option on menu: Design=>Rivers=>XP SWMM interface=>Read XP SWMM xpx results file

After the XP-SWMM analysis is complete and the XP-SWMM program is closed the water level data is written to an xpx file that 12d will read. Water level strings are created with the plan shape of the cross sections at the elevation retrieved from the XP-SWMM results. These strings are then triangulated to create a water surface tin.

See also

XP-SWMM Interface overview
Create XP-SWMM files
Presenting Water Level Results
How to for Rivers
Frequently Asked Questions (Rivers)

Usage

The XP-SWMM read panel follows.

![XP-SWMM Interface Reader](image)

**River strings model**

*Model box*

*The river strings model specified in the write panel.*

**Cross Section model**

*Model box*

*The cross section model specified in the write panel. The interface will search the string names in this model for the cross sections specified in the XP-SWMM report. A match is successful if the XP-SWMM cross section chainage and the string name are within the tolerance specified below in Chainage tolerance.*
**Shape string model**  
For meandering rivers, the cross sections (shown in green above) may not be at a close enough spacing to create a water surface that follows the river. 2D shape strings (shown in red above) can be created to create a water surface (shown in blue above) to follow the river. Note that water levels are extended when the shape strings are in a junction area or past the end of a reach.

**Centre line chainage factor**  
This data is only required if the Shape string model is used. The shape string names are created by dividing the chainage on the centre line by this factor. Typically 1000 is used to convert metres to kilometres and 5280 to convert feet to miles.

**Ground surface tin**  
If a boundary string model is specified below, the intersection of this ground surface and the water surface will be determined. The strings will be stored in the model from the boundary string model field.

**XP-SWMM report file name**  
The XP-SWMM xpx file created automatically created when closing XP-SWMM or via the XP-SWMM menu selection

File=>Export Data
**Water surface tin model**  Model box

*The model to contain the new water surface tin.*

**Water surface tin**  Tin box

*The name of the water surface tin to be created.*

**Water level results model**  Model box

*The model where the water surface strings will be created at each cross section and shape string.*

**Boundary string model**  Model box

*The model to contain the intersection strings between the water and ground surfaces specified above. If left blank no intersection strings will be calculated.*

**Chord Length**  Model box

*This value set the spacing for the points on the water level strings (both cross section and shape strings). It is recommended that you use a length of no more than half of your average cross section and shape string lengths. A large value in this field may result in unexpected water level profiles for meandering rivers.*

**Chainage Tolerance**  Real box

*This is the tolerance used when the cross section chainage from the XP-SWMM report is compared with the cross section string names. A value of 0.00001 is excellent if you have not altered the cross section names in 12d or XP-SWMM.*

However, if you have altered chainage names then you may have to increase the value of the tolerance. Suppose the tolerance is set to 0.001 and the water level for section 0.056 is read from the XP-SWMM report file. The interface will search for the first string with a name between 0.055 and 0.057. If you chose to great of a tolerance then more than one water level result will match a 12d cross section and a warning message will be given.

If you have one specific cross section that you would like to have a different tolerance set for (maybe only one section is giving you troubles), use the Attribute Editor (Strings->User->Attribute Editor), select the cross section string and create a real type attribute named tolerance set to the tolerance desired.
21.5 MIKE11 Interface

Position of menu:  Design=>Rivers=>Mike11 interface

The MIKE 11 interface creates the MIKE 11 project files including *.bnd11, *.hd11, *.nwk11, sim11 and the cross section data text file (to be imported into *.xns11). Water levels are read back into 12d where they may be viewed in a 3D perspective view, on cross sections and on river profiles. Plan drawings easily identify extents of flooding and all data can be plotted onto engineering drawings.

The Mike11 walk right panel is,

See also

River and Source Strings
MIKE11 Interface Overview
MIKE 11 Write Panel
MIKE 11 Read Panel
Presenting Water Level Results
How to for Rivers
Frequently Asked Questions (Rivers)

Exporting to MIKE 11

The MIKE 11 project is created from a surface tin (representing the river bed and overbanks) and a model containing river centre line strings (identified by the name prefix, “centre line”). The low chainage (often zero) of the centre line strings must be at the upstream end of the reaches.

Cross sections are created at the location of the source strings. These source strings are initially created using the MIKE 11 option at a user defined spacing and section length, imported from drawing packages or manually created in 12d. The user may alter these sections as desired. They may be shortened if they intersect at sharp bends in the river; they may be extended at extremely wide river sections or extra points may be added so that the section is no longer a straight line.

Source strings can be deleted and additional sections can be added by creating new source strings. The Create source strings tick box on the interface panel must NOT be selected to use the customised strings.

Presenting MIKE 11 Results in 12D

After the MIKE 11 analysis is complete the maximum water level results are read back into 12d. Water level strings are created with the plan shape of the cross sections at the elevation retrieved from the MIKE 11 results. These strings are then triangulated to create a water surface tin.

How the water level boundaries are determined
21.5.1 MIKE 11 Write Panel

Position of option on menu: Design=>Rivers=>Mike11 interface=>Create Mike11 files

The MIKE 11 interface creates the MIKE 11 project files including *.bnd11, *.hd11, *.nwk11, *.sim11 and the cross section data text file (to be imported into *.xns11). Water levels are read back into 12d where they may be viewed in a 3D perspective view to easily identify extents of flooding.

See also
- River and Source Strings
- MIKE 11 Read Panel
- Presenting Water Level Results
- How to for Rivers
- Frequently Asked Questions (Rivers)

Usage

12d creates most of the files necessary to run MIKE11. The exception to these are the time series files (both water level and discharge data). The simulation file created assumes that these files will have the same name as the centre line strings used in 12d. For example, if you name your centre line string centre line Major River then your time series files will be named Major River-H.DFS0 for the tail water conditions and Major River-q.dfs0 for your discharges.

The *.bnd11, *.hd11, *.nwk11 and *.sim11 files are created by appending 12d data to default data found in the following files.

cross_sections.4d
hd11-end.4d
hd11-header.4d
nwk11-header.4d
nwk11-options.4d
sim11-header.4d
sim11-period.4d

The user need not modify these files unless they would like to change the default values used when first creating the MIKE11 project. If you plan to modify these files, they are found in the 12d setups directory. Before modifying they should be copied to the 12d user directory (global defaults) or into the current project directory if they are project specific.

The MIKE 11 panel for creating the MIKE 11 project follows.
The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>River strings model</strong></td>
<td>Model box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Model containing the river centre line strings. The centre line strings must begin upstream and proceed downstream.* The name of the river must follow the words “centre line” (note the ending space). The name of the river may follow the words “Centre line” (note the ending space). For example the centre line string may be named “Centre line Parramatta River, downstream reach”. The comma separates the river name from the reach name. If no comma is included then the river name is repeated for the reach name.

Confluences are modelled by using a separate string for all reaches. Thus a system with a branch is modelled with three strings. The branch will be one string and the main reach will have a downstream string and an upstream string. The reaches must touch at the confluence.

| **Source string model** | Model box   |          |        |

New source strings will be created in this model or existing source strings are contained in the model. See Create source strings tick box below.

<table>
<thead>
<tr>
<th><strong>Create Source Strings</strong></th>
<th>Tick box</th>
<th>not selected</th>
</tr>
</thead>
</table>

When selected existing source strings are deleted and new ones created perpendicular to the centre line at the specified spacing and length. Once you have created the sources strings they can be easily modified. On the Strings->Points Edit menu you will find the selections Move (to move the end points), Insert (to insert additional points).
Distance between sections Real box
The distance between the cross sections. At present no check is made for overlapping cross sections around river bends.

Section Length Real box
The length of the cross section with zero chainage at the mid point.

Cross section model Model box
The cross sections created and exported are stored in this model.

Centre Line Chainage Factor Real box
The cross section names are created by dividing the chainage on the centre line by this factor. Typically 1000 is used to convert metres to kilometres and 5280 to convert feet to miles.

Surface Tin (not the model) Tin box
Tin or super tin to create the cross sections from (remember a tin is like a string. It is placed in a model.).

Bank Marker Tolerance Real box
If the surface level drops more than this amount while moving away from the channel centre line then the crest is used as a Bank Marker. A value of zero means that no bank marks are created.

Delta Y tolerance Real box
This value filters out points on the cross section. Imagine a tube of this diameter passing over the cross section. The tube is elongated until one point lies outside the tube. The tube is shortened to the previous point and then all points inside the tube are deleted from the cross section. The tube then moves on to the next point. The final water tin is created from the ground tin and therefore the boundary string is located using the unfiltered section.

Manning’s n Real box
Manning’s n values for the channel sections.

Initial depth Real box
This depth is added to the minimum elevation on the cross section and is used as the starting water level for the cross section.

Units Choice box
This selection will set the default units for the project being created.

Project file name Input box
The MIKE11 project name. All of the MIKE11 files will begin with this name and the appropriate extensions added.
21.5.2 Running MIKE11

Three steps are required to run MIKE11 with the files 12d creates.

1. Create your time series files.
2. Inside MIKE11, create a new cross sections file and import the cross sections.
3. Open the simulation file, and load the network file to have the grid points calculated.
21.5.3 Creating Time Series Files

Your time series files must be named with the prefix of the river string name. For example if your centre line string in 12d was named centre line Major River your time series files need to named Major River-H.DFS0 for the tail water conditions and Major River-q.dfs0 for your discharges.

The standard time series dates are from 12:00 to 12:30 on 01 January 2000 with a one minute time step. If other periods are desired, you can either change the file sim11-period.4d in the 12d library before running the interface or change the dates inside MIKE11 after you read in the data. DO NOT USE THE ORIGINAL FILES! Copy the file you are changing into the 12d user directory and modify it there. 12d will look for the file here first.
21.5.4 Importing Cross Sections

From the MIKE11 main menu select **File->new** and then under Mike11 select **cross sections** from the dialogue box.

From the main menu select **File->Import->Import Raw data & Recompute**. Select the *.txt file with the **Project file stem** you specified in the 12d-Mike11 Write Panel. Now save this file with the same **Project file stem** (MIKE11 adds the .xns11 extension).
21.5.5 Calculating Grid Points

From the main menu select File->Open and select the *.sim11 file with the Project file stem you have specified in 12d. On the Input tab property sheet select Edit beside the Network file. Press Ctrl+T to take you into the table editing mode and then select the Grid Points tab property sheet. On the sheet select Generate Grid Points and then save the file.

You should now get the “Green lights” on the Start property sheet of the simulation file editor.
21.5.6 MIKE 11 Read Panel

Position of option on menu:  Design=>Rivers=>Mike11 interface=>Read Mike11 results (max)

After the MIKE 11 analysis is complete the water level results are read back into 12d. Water level strings are created with the plan shape of the cross sections at the elevation retrieved from the MIKE 11 results (maximum water level).

Water levels are interpolated to create water level strings at the shape string locations. Note that water levels are extended when the shape strings are in a junction area or past the end of a reach. These strings are then triangulated to create a water surface tin.

The MIKE11 executable file, `res11read.exe` must be found in the directory `c:/mikezero/bin` so that 12d can read the Mike11 binary data files.

See also

MIKE11 Interface Overview
Presenting Water Level Results
MIKE 11 Write Panel
How to for Rivers
Frequently Asked Questions (Rivers)

Usage

The MIKE 11 read panel follows.

![MIKE 11 Interface Reader](image)

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>River strings model</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Cross Section model</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Shape Section model</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Centile Line ordination Factor</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Ground Surface tin</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Mike11 report file name</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Water Surface tin</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Water Surface tin model</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Water level results model</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Boundary strings model</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Chord length</td>
<td>10</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Chainage tolerance</td>
<td>0.0001</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Process</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finish</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
River strings model  Model box

The river strings model specified in the write panel.

Cross Section model  Model box

The cross section model specified in the write panel. The interface will search the string names in this model for the cross sections specified in the MIKE 11 report. A match is successful if the MIKE 11 cross section chainage and the string name are within the tolerance specified below in Chainage tolerance.

Shape string model  Model box

For meandering rivers, the cross sections (shown in green above) may not be at a close enough spacing to create a water surface that follows the river. 2D shape strings (shown in red above) can be created to create a water surface (shown in blue above) to follow the river. Note that water levels are extended when the shape strings are in a junction area or past the end of a reach.

Centre line chainage factor  Model box

This data is only required if the Shape string model is used. The shape string names are created by dividing the chainage on the centre line by this factor. Typically 1000 is used to convert metres to kilometres and 5280 to convert feet to miles.

Ground surface tin  Tin box

If a boundary string model is specified below, the intersection of this ground surface and the water surface will be determined. The strings will be stored in the model from the boundary string model.
field. Super tins cannot be used for this function. A composite tin is required for the tin-tin intersect.

**MIKE 11 report file name**  Input box

*This is the binary data file that will be converted to an ASCII text file and read by 12d. The maximum water levels at each cross section will be extracted from the file.*

**Water surface tin**  Tin box

The name of the water surface tin to be created.

**Water surface tin model**  Model box

*The model to contain the new water surface tin.*

**Water level results model**  Model box

*The model where the water surface strings will be created at each cross section and shape string.*

**Boundary string model**  Model box

*The model to contain the intersection strings between the water and ground surfaces specified above. If left blank no intersection strings will be calculated.*

**Chord Length**  Model box

*This value sets the spacing for the points on the water level strings (both cross section and shape strings). It is recommended that you use a length of no more than half of your average cross section and shape string lengths. A large value in this field may result in unexpected water level profiles for meandering rivers.*

**Centre Line Chainage Factor**  Real box

*The cross section names are created by dividing the chainage on the centre line by this factor. Typically 1000 is used to convert metres to kilometres and 5280 to convert feet to miles.*

**Chainage Tolerance**  Real box

*This is the tolerance used when the cross section chainage from the MIKE 11 results file is compared with the cross section string names. If a Centre line chainage factor of 1 is used a value of 0.1 is appropriate. If a Centre line chainage factor of 1000 or 5280 is used a Chainage tolerance of 0.00001 is more appropriate.*

However, if you have altered chainage names then you may have to increase the value of the tolerance. Suppose the tolerance is set to 0.001 and the water level for section 0.056 is read from the MIKE 11 report file. The interface will search for the first string with a name between 0.055 and 0.057. If you chose to great of a tolerance then more than one water level result will match a 12d cross section and a warning message will be given.

If you have one specific cross section that you would like to have a different tolerance set for (maybe only one section is giving you troubles), use the Attribute Editor (Strings->User->Attribute Editor), select the cross section string and create a real type attribute named tolerance set to the tolerance desired.
21.6 Presenting River Water Level Results

Topics

- How the water level boundaries are determined
- Defining the Water Surface Boundaries
- Trimming the Water Surface Tin and Islands
- Colouring the Ground Surface
- Colour by Depth
- Depth Contours
- Colour the ground surface by elevation

See also

- River and Source Strings
- XP-SWMM Interface
- HEC-RAS Interface
- MIKE11 Interface
- ISIS Interface
- How to for Rivers
- Frequently Asked Questions (Rivers)
21.6.1 How the water level boundaries are determined

For meandering rivers, the cross sections (shown in green above) may not be at a close enough spacing to create a water surface that follows the river. 2D shape strings (shown in red above). Note that water levels are extended when the shape strings are in a junction area or past the end.
of a reach, can be created to create a water surface (shown in blue above) to follow the river.

The water surface is draped over the ground surface and the boundary strings (strings defining the edges of the water surface – shown in yellow above) are created. They may be used to trim the water surface or shade your ground surface tin for flood inundation mapping. Boundary strings also include islands! Shading the river bed blue, in a 3D perspective view, is an effective way to show the water level extents and still view the shape of the river bottom (it has the effect of very clean water that you can see through!).
21.6.2 Sample Presentations and Drawings

The water surface may be

- contoured (elevation),
- depth contours created,
- water surface coloured by depth (shown above),
- cross sections plotted
- and longitudinal profiles drawn (shown below).
- All of these results can be plotted complete with your customised drawing sheets.
- Finally, you may walk down the water course in the perspective view (and record this to an Windows AVI file).

![Plan 1](image)

Close up view of cross section labels with water levels
Chapter 21  Rivers

Presenting River Water Level Results
Close up of text (user chooses wording, size, colour, text style etc.)

The tin created can be viewed in a perspective view and sections taken where desired. A sample perspective view follows.
Example of cross sections long sections and depth colouring see the HEC-RAS Interface topic.
21.6.3 Defining the Water Surface Boundaries

The water surface and its boundary is created by 12d. The first step is to trim the water surface back to the boundary strings. Since the water boundary does not generally form a closed polygon (the left and right river boundaries will need to be joined at one end of the river) use the Strings=>Strings Edit=>Join to connected strings.

If the water surface reached the edges of you cross sections then there will be numerous breaks in the boundary string. The best solution is to extend the cross sections and/or add additional shape strings. If it is not a major error in modelling then the break in the boundary can be joined using the Strings=>Strings Edit=>Join.

If boundary strings are created outside that water level boundaries they should not be used in this area. Boundary strings should only be used inside the area defined by your water level results.
21.6.4 Trimming the Water Surface Tin and Islands

Use the Triangle=>Null=>by polygons selection to null triangles inside the polygon you have created above.

Select your water surface tin and change the Poly mode to Outside. Now select the Poly button and pick the boundary string. The triangles outside the polygon will now be nulled.

If you have some islands in the model then change the Poly mode to Inside and select the islands.

If you have numerous islands, say more than 10 it may be easier to copy all of the islands into one model using the fence command (Utilities->Fence->Fence).

The Model to fence is the boundary strings model and the Model for fence inside is the new model to contain the islands. The Exclude model containing fence should not be ticked. Select Poly and then pick the boundary string. All of the islands inside the boundary string will not be copied to the islands model.
21.6.5 Colouring the Ground Surface with Flood Zones

The boundary strings can also be used to colour the ground surface. Colouring the river bed blue is an effective way to show the water level extents and still view the shape of the river bottom (the effect of very clean water that you can see through!).

First, define the water surface boundaries (see above). Next re-triangulate the ground tin so that it includes the boundary string model (Triangles=>Edit=>Tin). Next select Triangles=>Colour=>Colour within polygon. The following panel will appear.

Select your ground tin and the desired colour. Next select the Poly button and pick the boundary string to be coloured inside. If islands exist change, change the colour (to a ground colour) and then select the island string.
21.6.6 Colour by Depth

The water surface can be coloured by depth. This function calculates the depth between the water surface and the ground surface and creates "faces" of different colours. The colours to be used are specified in a depth range file. This option requires the purchase of the Volumes Option.

From the main menu select Options->Volumes->Exact->Tin to tin.

Original tin this is your ground survey tin
New tin this is your water surface tin
Range file two range files are supplied. One with a range from 0 to 5 and another from 0 to 50. The library contains a spreadsheet the can quickly create other range files or you may edit the using the built in range editor.

To use the built in range file editor select + beside you range file then edit.
You may change the range value and the colours as desired. Be sure to select **Write** to save the changes before selecting **Finish**.

See also Range File Creation

**Plan View to paint** you can paint a current view without saving the face data. This is a good option if you wish to take a quick look at the depth colours in one area.

**Model for faces** the faces can be stored in a model. Note that faces consume a great deal of hard disk space. Therefore you may consider colouring one area at a time using the **Poly** option.

**Poly** If your water surface tin is very large than you may want to only colour a portion of the tin. You must create a polygon (Strings->Create->2d) and then pick this polygon. When your select **Volume** only the area inside the polygon will be coloured.

**Volume** select this button to colour the surface.
21.6.7 Depth Contours

Once you have the tin coloured by depth you might want to add depth contours. From the main menu select Options->Tin->Analysis->Depth Contours. This option requires the purchase of the tin Analysis module.

![Image of depth contours]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original tin</td>
<td>this is your ground survey tin</td>
</tr>
<tr>
<td>New tin</td>
<td>this is your water surface tin</td>
</tr>
<tr>
<td>Model for depth strings</td>
<td>this is the model for your depth contours</td>
</tr>
<tr>
<td>Colour for cut strings</td>
<td>this must be selected but we will not use this colour</td>
</tr>
<tr>
<td>Colour for zero strings</td>
<td>the zero string will be the same as our boundary strings</td>
</tr>
<tr>
<td>Colour for fill strings</td>
<td>this is the colour for the depth contours</td>
</tr>
<tr>
<td>Start level</td>
<td>enter a zero for this value</td>
</tr>
</tbody>
</table>
Presenting River Water Level Results

End level: enter a level greater than the greatest depth.

Interval: enter the contour interval as desired.

2d/3d strings: 2d strings.

Calculate: this will create your contour strings.

Adding Values to the Contours

Since there are numerous ways to label the contours, it is performed as a separate step. From the main menu select Strings->Label->Contours.

Contour method: the example above uses Line removal and Centred line read from below. This copies the contour lines themselves and inserts a break in the line.

Start distance: this is usually left as zero. It changes the start point for the first label on each contour.

Separation: this determines the spacing of the contour labels.
21.6.8 Colour the ground surface by elevation

With the water surface coloured by depth, you may want to colour the ground surface by elevation.

This colouring may be done from either From the main menu select Options->Volumes->Exact->Tin to height or Triangles->Colour->Tin height colour.

Options->Volumes->Exact->Tin to height

Options->Volumes->Exact->Tin to height requires the purchase of the Volumes module. First select Triangles->Tin info from the main menu and then select you ground surface tin. You will want to copy the minimum z level from this pane.

Now from the main menu select Options->Volumes->Exact->Tin to height
Select your ground surface to colour and enter the minimum elevation (from above) into the Height field. The Range file "$LIB/ground_colouring_green.drf" is found in the library.

**Plan View to paint**  you can paint a current view without saving the face data. This is rarely used in this case.

**Model for faces**  the faces can be stored in a model. Note that faces consume a great deal of hard disk space. Therefore you may consider colouring one area at a time using the Poly option.

**Poly**  If your ground surface tin is very large than you may want to only colour a portion of the tin. You must create a polygon (Strings->Create->2d) and then pick this polygon. When your select Volume only the area inside the polygon will be coloured.

**Volume**  select this button to colour the surface.
21.7 UNET Interface

**Position of menu:** Design=>Rivers=>UNET interface

The UNET interface creates the *.cs file. Water levels are read back into 12d where they may be viewed in a 3D perspective view to easily identify extents of flooding.

The UNET walk right menu is,

![UNET interface](image)

*UNET interface*  
Create UNET CSECT file  
Read UNET results

**See also**

- River and Source Strings  
- Reservoir Strings  
- Create UNET files  
- Read UNET results  
- Presenting Water Level Results  
- How to for Rivers  
- Frequently Asked Questions (Rivers)
21.7.1 UNET Write Panel

Position of option on menu:  Design=>Rivers=>UNET interface=>Create UNET CSECT file

The UNET interface creates the UNET *.cs file. Water levels are read back into 12d where they may be viewed in a three dimension perspective view to easily identify extents of flooding.

See also

River and Source Strings
UNET Interface Overview
Read UNET results
Presenting Water Level Results
How to for Rivers
Frequently Asked Questions (Rivers)

Usage

The UNET panel for creating the UNET project follows.
21.7.2 UNET Read Panel

Position of option on menu: Design=>Rivers=>UNET interface=>Read UNET reports

After the UNET analysis is complete the water level results are read back into 12d. Water level strings are created with the plan shape of the cross sections at the elevation retrieved from the UNET results. These strings are then triangulated to create a water surface tin.

See also

UNET Interface Overview
Create UNET files
Presenting Water Level Results
How to for Rivers
Frequently Asked Questions (Rivers)

Usage

The UNET read panel follows.

The UNET file format consists of a line number, section name and elevation separated by at least 1 space. An example follows:

1 0.25  118.24
2 0.50  118.25
3 0.75  118.30
4 1.00  118.40
21.8 ISIS Interface

Position of menu:  Design=>Rivers=>ISIS interface

The ISIS interface creates *.dat input file. Water levels are read back into 12d where they may be viewed in a 3D perspective view to easily identify extents of flooding.

The ISIS walk right menu is,

See also

River and Source Strings
Reservoir Strings
Spill strings
Create ISIS files
Read ISIS results
Presenting Water Level Results
How to for Rivers
Frequently Asked Questions (Rivers)

Exporting to ISIS

The ISIS project is created from a surface tin (representing the river bed and overbanks) and a model containing river strings identified by their names “left bank”, “right bank and the name prefix, “centre line”. Any additional strings in the specified model will be ignored (warning messages will be given when you run the macro that any additional strings are being ignored). The low chainage (often zero) of the centre line strings must be at the upstream end of the reaches.

Cross sections are created at the location of the source strings. These source strings are initially created using the ISIS option at a user defined spacing and section length. The user may alter these sections as desired. These may be shortened if they intersect at sharp bends in the river; they may be extended at extremely wide river sections or extra points may be added so that the section is no longer a straight line.

Source strings can be deleted and additional sections can be added by creating new source strings. The Create source strings tick box on the interface panel must NOT be selected to use the customised strings.

Reservoir Strings are 2d strings that define the extents of the reservoir. The volume is calculated in increments of 1 or the value set in the attribute stage increment for this string. The volumes start from a level with zero volume to the level set for the 2d reservoir string.

The reservoir strings may define inline reservoirs or offside storage. Inline reservoirs are "touched" by centre line strings both upstream and downstream. Offline storage areas are linked to the cross sections via spill strings.

Spill strings are 2d strings that link offline storage areas to a cross section. The string must begin by "touching" the source string and then proceed to the first point on the spill section. During the export the first point will NOT be exported as part of the spill section. After defining the end of the spill section the last point on the string must "touch" the reservoir string. Again this last point will NOT be exported as part of the spill section.

Presenting ISIS Results in 12d
After the ISIS analysis is complete the water level results are read back into 12d. Water level strings are created with the plan shape of the cross sections at the elevation retrieved from the ISIS *.zzr file. These strings are then triangulated to create a water surface tin from which the water level boundaries are determined. These results can then be shown in plan, long section, cross section and in 3D perspectives.

More details
21.8.1 ISIS Write Panel

Position of option on menu: Design=>Rivers=>ISIS interface=>Create ISIS file

The ISIS interface creates the ISIS project files ready to open and run. This includes the project, plan, flow and geometry files. Water levels are read back into 12d where they may be viewed in a three dimension perspective view to easily identify extents of flooding.

See also

River and Source Strings
ISIS Interface overview
Read ISIS results
Presenting Water Level Results
How to for Rivers
Frequently Asked Questions (Rivers)

Usage

The ISIS panel for creating the ISIS project follows.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

ISIS Interface

Page 5691
River strings model  
Model containing the centre line, left bank and right bank strings. The centre line strings must begin downstream and proceed upstream. The name of the river may follow the words “Centre line “ (note the ending space). For example the centre line string may be named “Centre line Parramatta River, downstream reach”. The comma separates the river name from the reach name. If no comma is included then the river name is repeated for the reach name.

Confluences are modelled by a using a separate string for all reaches. Thus a system with a branch is modelled with three strings. The branch will be one string and the main reach will have a downstream string and an upstream string. The reaches must touch at the confluence.

The distance from the start of the upstream strings to the first cross section is used to model the confluence length.

The left and right bank strings need not be separate strings (see figure below).

Source string model  
New source strings will be created in this model or existing source strings are contained in the model. See Create source strings tick box below.

Create Source Strings  
When selected existing source strings are deleted and new ones created perpendicular to the centre line at the specified spacing and length. Once you have created the sources strings they can be easily modified. On the Strings->Points Edit menu you will find the selections Move (to move the end points), Insert (to insert additional points).

Distance between sections  
The distance between the cross sections. At present no check is made for overlapping cross sections around river bends.

Section Length  
The length of the cross section with zero chainage at the mid point.

Storage strings  
These 2d strings define the extents of the storage area. For more details see Reservoir strings.

Spill strings  
These 2d strings define the location to cut the spill section and start end points define the cross section and reservoir, respectively. For more details see Spill strings.

Cross section model  
The cross sections created and exported are stored in this model.

Centre Line Chainage Factor  
The cross section names are created by dividing the chainage on the centre line by this factor. Typically 1000 is used to convert metres to kilometres and 5280 to convert feet to miles.

Number of decimals  
The cross section names are created with this many decimals. CAUTION XP SWMM only allows 10 characters for the names and each link name begins with "Lx-" That leaves 7 characters for the chainages.
Surface Tin (not the model)

Tin or super tin to create the cross sections from (remember a tin is like a string. It is placed in a model.).

Bank Marker

Not currently implemented in ISIS

Delta Y tolerance

This value filters out points on the cross section. Imagine a tube of this diameter passing over the cross section. The tube is elongated until one point lies outside the tube. The tube is shortened to the previous point and then all points inside the tube are deleted from the cross section. The tube then moves on to the next point. The filtered (smoothed) and original sections are kept for comparison. The final water tin is created from the ground tin and therefore the boundary string is located using the unfiltered section.

Manning’s n

Manning’s n values for the left, right and centre channel sections.

Initial depth

Not currently implemented in ISIS.

Discharge

This discharge is used at the upstream end of all reaches. If you have multiple river branches, you can set the flow for each branch inside ISIS or inside 12d. This can be changed at each section See manual settings

Units

This selection will set the default units for the project being created.

Project file name

The ISIS project name. The extension "dat" will automatically be added for you.
21.8.2 ISIS Read Panel

Position of option on menu:  Design=>Rivers=>ISIS interface=>Read ISIS results

After the ISIS analysis is complete the water level results are read back into 12d. Water level strings are created with the plan shape of the cross sections at the elevation retrieved from the ISIS results. These strings are then triangulated to create a water surface tin.

See also

ISIS Interface overview
Create ISIS files
Presenting Water Level Results
How to for Rivers
Frequently Asked Questions (Rivers)

Usage

The ISIS read panel follows.

River strings model  Model box

The same river strings model specified in the write panel. The river strings are used to sort the cross section and the shape strings. The left and right bank strings are used to check the direction of the strings.

Cross Section model  Model box

The same cross section model specified in the write panel. The interface will match the ISIS label and
the string name (without the "SECT "). If the ISIS labels were created by 12d then an exact match should result.

However, if the ISIS file was not created by 12d, the file can still be mapped by manually creating cross section strings (2d or 3d strings). See Mapping non 12d and historical water level data.

Shape string model Model box
For meandering rivers, the cross sections (shown in green above) may not be at a close enough spacing to create a water surface that follows the river. 2D shape strings (shown in red above) can be created to create a water surface (shown in blue above) to follow the river. Note that water levels are extended when the shape strings are in a junction area or past the end of a reach.

Reservoir Model box
Reservoir strings are assigned elevations from the ISIS zzr file. This model is the same as the storage area strings specified in the write panel.

Centre line chainage factor Model box
This data is only required if the Cross sections have been manually created and have no names yet. See Mapping non 12d and historical water level data.

ISIS results file name File box
The ISIS zzr file is automatically generated by ISIS.
Ground surface tin  Tin box
If a boundary string model is specified below, the intersection of this ground surface and the water surface will be determined. The strings will be stored in the model from the boundary string model field.

Water surface tin model  Model box
The model to contain the new water surface tin.

Water surface tin  Tin box
The name of the water surface tin to be created.

Water level results model  Model box
The model where the water surface strings will be created at each cross section and shape string.

Boundary string model  Model box
The model to contain the intersection strings between the water and ground surfaces specified above. If left blank no intersection strings will be calculated.

Chord Length  Model box
This value set the spacing for the points on the water level strings (both cross section and shape strings). It is recommended that you use a length of no more than half of your average cross section and shape string lengths. A large value in this field may result in unexpected water level profiles for meandering rivers.

Chainage Tolerance  Real box
This tolerance is not used for the standard 12d cross section names. However, if the cross section names have been created manually and they can be converted to a real number then this is the tolerance used to match the cross section label from the ISIS report to the cross section string names. A value of 1.0 to 10. is common. See Mapping non 12d and historical water level data for more details.

A sample of the *.zzr file that is read by 12d follows.
A sample of the zzr file that is read follows.

Maxima and minima of all variables from
time  0.000 hours to time  30.000 hours

*************************
maxima of all variables
*************************
Label12  Flow  Stage Frdoue no  Velocity  Umode  Ustate
WY201013  y  0.470  87.305  0.033  0.076  7.916  0.000
WY202013  y  0.470  87.288  0.162  0.297  2.335  0.000
WY203013  y  0.470  87.054  0.682  0.794  4.000  0.800
WY204013  y  0.470  86.804  0.671  1.002  0.562  0.000
21.9 How to for Rivers

This section lists specific tasks for the rivers interface. Worked examples are contained in the courses directory of 12jobs and training manuals are found in the documentation directory on the 12d Model distribution CD.

- Change manual override settings for river strings via attributes
- Manually set a cross section name
- Specify a local inflow at a cross section
- Change the stage increment for reservoir strings
- Boundary Strings are broken. How do I stop this?
- Plot river xsections with the river sections names?
21.9.1 Manual Override settings

Many of the automatic settings can be overridden using string attributes via the String Attribute Editor. To use the editor

1. Select the river or source string to add/edit the attribute for
2. In the Attribute Name column use the selection list to find the attribute to change. If it is not listed then type the attribute name into one of the boxes.
3. Change the attribute Type to Integer/Real/Text as required
4. Type the attribute value into the Data field (erase the not found if required).
5. Select Process, Next, Previous or Pick string. Selecting Finish will NOT save the attribute.

You will be prompted that you will create a new attribute if you have typed in a new attribute for that string.

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node/cross section name</td>
</tr>
<tr>
<td>Set a local inflow for this section</td>
</tr>
<tr>
<td>Storage curve increment</td>
</tr>
<tr>
<td>Water level string tolerance when comparing numeric string names to data file names</td>
</tr>
<tr>
<td>Custom n values</td>
</tr>
<tr>
<td>Culvert n value</td>
</tr>
<tr>
<td>Culvert entrance loss</td>
</tr>
<tr>
<td>Culvert exit loss</td>
</tr>
<tr>
<td>Culvert length</td>
</tr>
<tr>
<td>Multiple identical culverts</td>
</tr>
<tr>
<td>Chanel length of a spill string</td>
</tr>
<tr>
<td>Channel roughness</td>
</tr>
<tr>
<td>Channel slope %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>String Type</th>
<th>Attribute Name</th>
<th>Type</th>
<th>Typical Data Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>source strings</td>
<td>node name</td>
<td>Text</td>
<td>A1</td>
</tr>
<tr>
<td>source string</td>
<td>flow</td>
<td>Real</td>
<td>10.2</td>
</tr>
<tr>
<td>storage area strings</td>
<td>stage increment</td>
<td>Real</td>
<td>1.0</td>
</tr>
<tr>
<td>cross sections before importing</td>
<td>tolerance</td>
<td>Real</td>
<td>0.01</td>
</tr>
<tr>
<td>source strings</td>
<td>left n, right n, centre n</td>
<td>Real</td>
<td>0.03</td>
</tr>
<tr>
<td>centre line and culverts in spill</td>
<td>roughness</td>
<td>Real</td>
<td>.013</td>
</tr>
<tr>
<td>centre line and culverts in spill</td>
<td>entrance loss</td>
<td>Real</td>
<td>0.5</td>
</tr>
<tr>
<td>centre line and culverts in spill</td>
<td>exit loss</td>
<td>Real</td>
<td>1.0</td>
</tr>
<tr>
<td>centre line and culverts in spill</td>
<td>length</td>
<td>Real</td>
<td>8.0</td>
</tr>
<tr>
<td>centre line and culverts in spill</td>
<td>number of pipes</td>
<td>Integer</td>
<td>2</td>
</tr>
<tr>
<td>spill strings</td>
<td>length</td>
<td>Real</td>
<td>30</td>
</tr>
<tr>
<td>spill strings</td>
<td>roughness</td>
<td>Real</td>
<td>0.02</td>
</tr>
<tr>
<td>spill strings</td>
<td>slope</td>
<td>Real</td>
<td>0.5</td>
</tr>
</tbody>
</table>
21.9.2 Boundary Strings are broken. How do I stop this?

The boundary strings will be broken into sections when the boundary string goes outside the area defined by the cross sections. See below.

In these two cases the water level has not exceeded the extents of the cross sections but the boundary strings (black) has gone outside the limits of the water level strings (magenta). **Shape strings** are used to expand the area of the water levels between the sections. The water level assigned to the shape string is a linear interpolation between the upstream and downstream cross section water levels. The interpolation is prorated using the distance along the centre line of the river.

Important! water levels are extended when the shape strings are in a junction area or past the end of a reach.

Shape strings are 2d strings. The direction is not important except for Mike11 models. For Mike11 they must be in the same direction as the cross section strings (usually left bank to right bank). The following drawing shows the boundary string when 2 shape strings have been added (green).
21.10 Mapping non 12d and historical water level data

12d can map water levels from river engineering models that were not created by 12d. If the water level results are in the standard HECRAS GIS, HECRAS report, ISIS zzr, UNET, XP SWMM xpx or Mike11 binary file then the standard 12d readers can be used. If the data is historical or not in any of the standard format the River Mapper feature can be used.
21.10.1 River Mapper

Position of option on menu:  \textbf{Design=>Rivers=>River Mapper}

River cross section water level data in an text file may be mapped and displayed using the 12d River Mapper interface. 2d strings are created by the user with the plan shape of the cross sections. 12d assigns water levels from a text file to these strings. These strings are then triangulated to create a water surface tin.

See also

\textbf{Presenting Water Level Results}
\textbf{How to for Rivers}
\textbf{Frequently Asked Questions (Rivers)}

Usage

The steps are as follows:

1. Create the \textbf{river strings} (centre line, left bank and right bank).
2. Create 2d \textbf{source strings}. Use your name for the cross section as the string name. 12d will match the water levels in the file to this string using the name as the key. If you do not assign a name the interface will assign names to strings according to the chainage along the centre-line and the value of \textbf{Centre line chainage factor}.
3. From the \textbf{Design->Rivers} menu select \textbf{River Mapper}.
4. Fill in the fields in the dialogue for the rivers strings (step 1 above) and the cross sections (step 2 above).

\begin{center}
\includegraphics[width=0.5\textwidth]{river_mapper.png}
\end{center}

\textbf{River strings model}  \hspace{2cm} \textbf{Model box}
The river strings model specified in the write panel.

**Cross Section model**  
Model box

The cross section model specified in the write panel. The interface will search the string names in this model for the cross sections specified in the HEC-RAS report. A match is successful if the HEC-RAS cross section chainage and the string name are within the tolerance specified below in **Chainage tolerance**.

**Shape string model**  
Model box

For meandering rivers, the cross sections may not be at a close enough spacing to create a water surface that follows the river. 2D shape strings can be created (automatically or manually) to create a water surface to follow the river. Note that water levels are extended when the shape strings are in a junction area or past the end of a reach.

**Centre line chainage factor**  
Model box

If you assigned the source/cross section string a name in Step 2 this field is not used. Otherwise, the centre line chainage and the Centre line chainage factor are used to name your source string/cross sections in 12d. The cross sections will be named in the same units as the 12d data if a Centre line chainage factor of 1 is specified. If your existing data uses cross section names in your data file are in kilometres and your 12d data in meters, you will want to use a Centre line chainage factor of 1000. If your existing data cross section names are in miles and your 12d data is in feet then a Centre line chainage factor of 5280 would be used.

**Mapper results file name**  
File box

The report is a tab (or space) delimited text file (usually created by a text editor or spreadsheet). The format is

```
cross section name <tab> water level elevation
```

each section name with its water level must be on a separate line. For example.

```
Section A 2.31
Section B 2.32
```

If the names contain letters (abc..) then the section name must match the 12d string names exactly (case sensitive). If the names are real numbers than a tolerance for the matching (global and string specific) can be set (see parameters).
1.0 Rivers Rename and Move Cross Sections

Position of option on menu: Design => Rivers => Xsections rename and move

River cross section names begin with the river reach number followed by the cross section chainage. To plot these x sections they need to be renamed to the 12d chainage standard. This routine gets the cross section model name moves the cross section to a model with the name as a prefix followed by the reach number. The reach number is removed from all of the cross section name.

On selecting the Xsections rename and move option, the panel is displayed.

These defaults are used when creating a manhole in a drainage string. The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross section model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean existing models</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finish</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cross section model

This model holds the cross sections created by one of the river interface routines. The name of this model will be used as the prefix for the new models to hold the renamed cross sections.

Clean existing models

When selected the models that the cross sections are to be moved to will be cleaned before the supplied cross sections are moved into them.

Process

Moves and renames the cross sections

Finish

Remove the panel
1.1 12d System Path

When looking for system files 12d first checks your local project directory (the directory that hold the *.project folder), and then the system folders. Unless you have changed these folders in your env.4d file the path is first "program files\12d\12dmodel\5.00\user" and then "program files\12d\12dmodel\5.00\set_ups". In summary:

1. local project directory (the directory that hold the *.project folder
2. program files\12d\12dmodel\5.00\user
3. program files\12d\12dmodel\5.00\set_ups

Never modify the files in set_ups. Copy them to the user directory and make your changes there. Here they are safe from being changed during future 12d updates. The only time you will want files in the local project directory is when you have some project specific data. Master_drainage.xp and Master_rivers.xp are good examples of such cases.

More on System files
Attribute Editor
1.1.1 FAQ Rivers

XP SWMM does not start or gives errors when starting from 12d
22 Pipeline

Position of menu:  Design =>Pipeline

The Pipeline option is used to place large diameter pipelines.

The pipeline is very similar to an alignment string in that it is defined by separate horizontal and vertical geometries.

The major differences between a pipeline and an alignment is that a pipeline has a diameter and normally uses circular curves in the vertical geometry rather than the parabolic curves used for alignments.

The pipeline is entered by placing the invert (bottom) of the pipe. Hence in a plan view, the horizontal geometry places the centre of the pipeline. The vertical geometry of the pipeline is for the invert (bottom) of the pipeline.

Note

A pipeline string is not the same as a pipe string. A pipe string is only a 3d string with a diameter.

The Pipeline walk-right menu is

For the option Create, go to 22.1 Create
   Editor  22.2 Editor
   Defaults  22.4 Defaults
   Plots  22.5 Plots
   Reports  22.6 Reports
22.1 Create

Position of option on menu: Design => Pipeline => Create

The Create option is used to produce new pipelines. If a pipeline string already exists, the Edit option is used to modify it.

On selecting the Create option, the Create Pipeline String panel is displayed.

To create a new pipeline string, the pipeline's name, model, colour, style, spiral type and pipe diameter, plus the standard length of pipes used to make up the pipeline are entered into the appropriate fields and the Create button selected.

As for a 3d string, to create a new pipeline string with some of the same name, colour, model, style etc. as an existing string (not necessarily a pipeline), the same as button is chosen and the appropriate string selected.

The Create Pipeline String panel is then removed and the Pipeline Edit menu and Pipeline Edit Info panel fired up.

The Pipeline Edit menu contains all the options for creating/editing a pipeline string. The Pipeline Edit Info panel contains information areas.

The Pipeline Edit menu and Pipeline Edit Info panel are
As for an alignment string, to create a new pipeline string the user selects the Append=>HIP’s option from the Pipeline Edit menu and start placing points in a plan view.

Since the Pipeline Edit menu and Pipeline Edit Info panel are the same as those used when editing a pipeline string, the options will be discussed in the following sections under the pipeline Edit option.

For information on pipeline editing, please continue to the section 22.3 Pipeline Editor.
22.2 Editor

Position of option on menu:  Design =>Pipeline =>Editor

This is the same option as Editor from the Strings walk-right menu on the 12d Model menu.

The string editor is used to modify any 12d Model strings. After selecting the Editor option, the Edit String panel is placed on the screen to record any error messages.

![Edit String panel](image)

The option is already in the Pick mode (the Pick & Edit button only needs to be selected if the pick was cancelled) and the user simply picks and accepts the string to be edited.

From the picked string's type, the editor is able to determine the edits that apply to the string and list them in the string's Edit menu.

If a pipeline string is selected, the Pipeline Edit menu and Pipeline Edit Info panel (as shown in the previous section) are placed on the screen.

The individual edit operations for a pipeline string will now be discussed in detail.

Please continue to the next section 22.3 Pipeline Editor.
22.3 Pipeline Editor

Position of option on menu:  
Design => Pipeline => Editor

A pipeline string is defined by specifying both the horizontal and vertical geometry of the invert (bottom of the pipeline) as separate operations.

The horizontal geometry consists of a series of \((x,y)\) points (called horizontal intersection points) and circular curves applied to the intersection points.

Vertical geometry also consists of a series of points but they are defined with respect to the plan length of the string (chainage) and height. Hence, the vertical geometry is defined by a series of (chainage,height) points (called vertical intersection points) and circular curves applied to the vertical intersection points.

The horizontal geometry is usually defined in a plan view and the vertical geometry in a section view. Hence the pipeline string editor can edit information for the string on both plan and section views.

**Note:** the string can only be edited on a section view if the string is also profiled on the section view.

On selecting a pipeline string the Pipeline Edit menu and Pipeline Edit Info panel are placed on the screen.

The Pipeline Edit menu is

<table>
<thead>
<tr>
<th>Menu Item</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Append</td>
<td>append or prepend an IP</td>
</tr>
<tr>
<td>Move</td>
<td>move an IP or TP</td>
</tr>
<tr>
<td>Insert</td>
<td>insert an IP</td>
</tr>
<tr>
<td>Between</td>
<td>insert on IP-IP line</td>
</tr>
<tr>
<td>Delete</td>
<td>delete an IP</td>
</tr>
<tr>
<td>Extend</td>
<td>extend an IP</td>
</tr>
<tr>
<td>Height</td>
<td>modify the strings z-value</td>
</tr>
<tr>
<td>Curves</td>
<td>circular curves, spirals</td>
</tr>
<tr>
<td>Parabolas</td>
<td>VG only, radius or length</td>
</tr>
<tr>
<td>Utilities</td>
<td>interval, start chainage, validate, clear etc.</td>
</tr>
<tr>
<td>Utilities 2</td>
<td>set diameter and pipe length</td>
</tr>
<tr>
<td>Info</td>
<td>toggle edit info panel</td>
</tr>
<tr>
<td>Undo / Redo</td>
<td>undo and redo</td>
</tr>
<tr>
<td>Quit</td>
<td>quit the edit session</td>
</tr>
<tr>
<td>Save &amp; Finish</td>
<td>finish the create</td>
</tr>
</tbody>
</table>

and the Pipeline edit info panel is
To edit the selected pipeline string, simply select the required edit option from the list of all possible edits in the pipeline edit menu.

The edit is cancelled by selecting the cancel option. The edited string is restored to its pre-edit state and the option terminated.

The edit is finished and the new string placed in the given model when the finish option is chosen. The edit option then terminates.

When either quit or finish is selected, a yes-no-cancel panel is displayed and the user must confirm the selection.

The pipeline edit info panel is used to display information and messages during editing of the pipeline string.

The main message area indicates the purpose of the mouse buttons at each step.

Message area 1 displays the current pipeline edit option and message area 5 indicate the next step in the edit option.

Message areas 2 and 3 are used to display information about the string as the cursor is moved near the string and the string points. For example, for the closest IP, the (x,y,z) position and radius of the IP is displayed in area 2, and in area 3 the bearing-in, bearing-out and deflection angle for the adjacent IPs.

Message area 4 displays the cover above the pipeline and the vertical, horizontal and combined joint deflection.

Most of the options are identical to the edit options for an alignment string and will not be discussed in detail again. The options that are only applicable to a pipeline string will be fully described.

22.3.1 Append

22.3.1.1 HIPs

In a plan view, the append=>HIPs option is used to create the first horizontal point in a new pipeline string, to append a new horizontal intersect point to the end of the string or to prepend a new horizontal intersection point to the beginning of the string. The horizontal geometry is for the centre of the pipe in plan.

22.3.1.2 VIPs

In a section view, the append=>VIPs option can be used to create and edit the vertical geometry of the picked string if the string is a primary string on any section view. This can be achieved by using either the VG edit or the profile option from the section view View ops menu. The vertical geometry is for the invert (bottom) of the pipe.
The **append** option is the same as **append** for an alignment string and will not be described further.

### 22.3.2 Move

The **move** option can be used for moving individual horizontal and vertical intersection and tangent points.

The option acts on the horizontal geometry if the point to move is selected in a plan view, or the vertical geometry if the point to move is selected in a section view.

The **move** option is the same as **move** for an alignment string and will not be described again.

### 22.3.3 Insert

The **insert** option is designed to place a new intersection point in a string between two adjacent horizontal or vertical intersection points (note that the inserted point does not have to be on the line joining the two intersection points).

The **insert** option is the same as **insert** for an alignment string and will not be described again.

### 22.3.4 Between

The **between** option is similar to the **insert** option except the inserted point **does** have to be on the line joining the two intersection points. To accomplish this, the cursor position is automatically projected onto the IP-IP line to give the new IP point position.

The **between** option is the same as **between** for an alignment string and will not be described again.

### 22.3.5 Delete

The **delete** option is used to delete horizontal or vertical intersection points from the string.

The **delete** option is the same as **delete** for an alignment string and will not be described again.

### 22.3.6 Extend

The extend option is used to move an intersection point along the line joining the intersection point to its neighbouring intersection point.

The **extend** option is the same as **extend** for an alignment string and will not be described again.

### 22.3.7 Height

The height option is used to modify the height of a vertical intersection point in the string.

The **height** option is the same as **height** for an alignment string and will not be described again.

### 22.3.8 Curves

The **curves** option allows the user to add circular curves of a given radius to a either horizontal or vertical intersection points.
The \textit{curve} option is the same as \textit{curve} for an alignment string and will not be described again.

22.3.9 Parabolas

The \textit{parabolas} option is for adding parabolic curves to the \textit{vertical geometry}. For pipelines, circular curves are normally used on vertical curves.

The \textit{parabolas} option is the same as \textit{parabolas} for an alignment string and will not be described again.

22.3.10 Utilities

The Alignment Utilities walk-right menu contains a number of useful miscellaneous options for the pipeline string. The menu is

Each of these options is the same as for an alignment string and will not be discussed again.

22.3.11 Utilities 2

The \textit{utilities 2} walk-right menu contains options to modify the diameter of the pipeline and to set the standard length of the pipes used to construct the pipeline.

The \textit{utilities 2} walk-right brings up the Pipeline Utilities menu:
22.3.12 Diameter

The Diameter option is used to change the diameter of the pipeline string.
After selecting the option, an enter value typed-input box is displayed on the screen containing the pipeline’s current diameter.
The new diameter is entered into the typed-input box, terminated with <return>.
The typed-input box then disappears and the option terminates.

22.3.13 Length

The Length option is used to change the length of the standard pipe used to construct the pipeline string.
The length of the pipes used in constructing the pipeline string is used for calculating joint deflections along the pipeline.
After selecting the option, an enter value typed-input box is displayed the pipeline's current standard pipe length.
The new length is entered into the typed-input box, terminated with <return>.
The typed-input box then disappears and the option terminates.

22.3.14 Info

The pipeline edit info panel is toggled on/off by the info option in the pipeline edit menu.

22.3.15 Quit and Finish

Even after points are created for the new string, the create process can be aborted by selecting the quit option from the pipeline edit menu. The option then terminates and no string is created.
The create process is completed and the new string created and placed in the given model when the finish option is chosen from the pipeline edit menu.
When either the finish or quit option is selected, a yes-no-cancel panel is displayed and the user must confirm the selection.
22.4 Defaults

Position of menu:   Design =>Pipeline =>Defaults

The defaults menu sets default depth to tin and joint deflection angle.

The default walk-right menu is

For the option Depth to tin, go to
Joints

22.4.1 Depth to Tin

Position of option on menu:   Design =>Pipeline =>Defaults =>Depth to tin

On selecting the tin option, the pipeline tin defaults panel is displayed.

This panel is for setting the default terrain tin which is used to calculated the cover above the pipeline.

22.4.2 Joints

Position of option on menu:   Design =>Pipeline =>Defaults =>Joints

On selecting the joints option, the pipeline joint defaults panel is displayed.

This panel is for setting the maximum joint deflection for the individual pipes that make up the pipeline.
22.5 Plots

Position of menu: Design => Pipeline => Plots

Currently the plots menu contains only one option and it is used for producing longsection plots of major pipelines.

The plots walk-right brings up the pipeline plots menu:

[Pipeline Plots]
[Longsections]

This option will now be described in more detail.

Please continue to the next section 22.5.1 Longsections.

22.5.1 Longsections

Position of option on menu: Design => Pipeline => Plots

Position of option on menu: Plot => Pipeline Plot PPF Editor

For more information please go to the section 26.7 Pipeline Plot PPF Editor

Continue to the next section 22.6 Reports.
22.6 Reports

Position of menu: Design => Pipeline => Reports

The Reports walk-right menu contains reports for joint deflections along the pipeline and crest and sag points.

For the option Deflection, go to 22.6.1 Deflection
Crest/sag points 22.6.2 Crest/Sag Points

22.6.1 Deflection

Position of option on menu: Design => Pipeline => Reports => Deflection

The deflection report gives the horizontal, vertical and combined joint deflections along the pipeline.

After selecting the Deflection option, the Pipeline Joint Deflection Report panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report file</td>
<td>name of the file for the report</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td></td>
<td>input</td>
<td>interval, critical, summary</td>
<td></td>
</tr>
</tbody>
</table>

If interval - reports the joint deflection at the interval given plus any horizontal or vertical intersection points without curves on them

If critical - only reports points where the deflection is greater than the value given in the pipeline joint defaults panel.

If summary - gives the maximum joint deflections

Interval input 10
the chainage distance between points along the pipeline where joint deflections are to be reported

Pick & Report button
pick the pipeline string to report on.

22.6.2 Crest/Sag Points

Position of option on menu: Design => Pipeline => Reports => Crest/Sag Points

After selecting the Crest/sag points option, the String Crest/Sag Points Report panel is displayed.

This is the same option as the Reports => Strings => Crest/sag points.

For more information please go to 22.6.2 Crest/Sag Points.

For each selected string, the string's crest/sag points are written to the report file given in the report file field of the panel.
Position of menu: Design => Volumes

For tins, 12d Model provides two distinct methodologies for calculating volumes: End Area and Exact. See 23.1 Definition of Cut and Fill and 23.2 End Area and Exact Volumes.

For both the end area and exact cases, the volumes are broken up into cut and fill volumes. By using an approximation method, volumes can be calculated between two tins for a given height range.

Exact volumes can also be calculated for closed trimeshes.

The Volumes walk-right menu is

For the options see:
- End area: 23.3 End Area
- Exact: 23.4 Exact
- Trimesh: 23.5 Trimesh
- Grid cell: 23.6 Grid Cell
- Stockpile: 23.7 Stockpile
- Tin to tin ht range: 23.8 Tin to Tin by Height Range
- Cut/fill text in poly: 23.9 Create Cut/Fill Text Within Polygon
23.1 Definition of Cut and Fill

**Cut** is defined to be where ever the new surface or given height is **below** the original surface. That is, you have to **cut** to get from the original surface to the new surface. The sign of cut quantities is set via the **Cut volume sign** field from the **Default settings** tab of the Defaults panel (Utilities=>Defaults) and the default for cut volume sign is positive.

**Fill** is defined to be where ever the new surface or given height is **above** the original surface. That is, you have to **fill** to get from the original surface to the new surface. The sign of fill quantities is the opposite to the value for cut and cut is set via the **Cut volumes sign** field from the **Default settings** tab of the Defaults panel (Utilities=>Defaults). The default for fill is **negative**.

Go to the next section [23.2 End Area and Exact Volumes](#) or return to [23 Volumes](#).
23.2 End Area and Exact Volumes

In the **End Area** methods using tins, the sections are *automatically* created through the tins. From the sections, cut and fill areas for the sections and the cut and fill volumes between the sections are calculated. End Area is an approximation method. For more information on the end area volume calculations, go to the section 23.2.1 *Theory of End Area Volumes*.

For **Exact** volumes, the volume between a tin and a plane or between two tin is determined by working out the exact geometrical shapes between the tins and summing their volumes. Unlike the end area methods which are approximations, the Exact method calculates the exact volume. For more information on the exact volume calculations, go to the section 23.2.2 *Theory of Exact Volumes*.

The only method that is not an approximation is **Exact** Volumes.

But even these volumes should always be double checked by using an End Area with parallel sections. And a couple of different angles of the sections should be used to make doubly sure that the End Area method is good.

The next best after **Exact** are the **End Area** method with **parallel sections**.

The worst approximations are **End Area** methods where the **sections are NOT parallel**. For example when calculating volumes using the sections along an alignment with curves.

With the End Area approximation methods, how good the approximation also depends on what the data is like. If the calculation is along an alignment then how good the approximation is will also vary depending on how tight the curves on the alignment are, the distribution of cut and fill with respect to the alignment, whether the alignment is in the middle of the sections etc.

However with all the End Area section methods, you should always look at the generated sections through the tins to make sure they have all worked correctly.

Exact volumes are more accurate than End Area volumes. However, for most End Area calculations with parallel sections and a small distance between sections, the results are the same to any reasonable degree of accuracy.

The reason for having both methods available in 12d Model is

(a) to provide an independent check on the volumes produced
(b) each method produces a different breakup of the volumes.

In the **End Area** method, cut and fill volumes are produced on a section by section basis. This is needed for applications such as mass-haul calculations.

For the **Exact** method, cut and fill volumes are easily calculated between different **depth** values. This is useful for applications such as depth (isopach) analysis.

For both the end area and the exact method, 12d Model provides options to calculate the volume

(a) between a surface (tin) and a fixed height (z-value)

and

(b) the volume between two surfaces (tins) - an original surface (tin) and a new surface (tin).

**NOTE**: For the **end area volumes**, sections are automatically generated and used for the calculations. You **do not** need to generate the sections separately.

For checking purposes, each of the End Area volumes options can keep the generated sections so that they can be checked.
For more information on the End Area volume calculations, go to the section 23.2.1 Theory of End Area Volumes.

For information on the End Area options, please go to the section 23.3 End Area.

For more information on the Exact volume calculations, go to the section 23.2.2 Theory of Exact Volumes.

For information on the Exact volume options, please go to the section 23.4 Exact.
### 23.2.1 Theory of End Area Volumes

In the **end area** method of calculating volumes, sections are automatically generated through the tins. For each section, cut and fill areas are calculated and then cut and fill volumes are calculated from the cut and fill areas. For the definition of cut and fill, please go to the section [23.1 Definition of Cut and Fill](#).

For the end area method, 12d Model provides options to calculate the volume between a surface (tin) and a fixed height (z-value) and the volume between two surfaces (tins).

In the **end area** methods of calculating volumes, sections can be generated through a tin or tins at either a **given angle** or at right angles to a **selected** string.

When using the **sections along a string** options, it is possible for a generated section to be broken into more than one part and a parameter exists to only use those sections that contain the selected string.

For each generated section, the **cut** and **fill** areas are calculated and then the volumes between the two sections using either the **average end** (see [23.2.1.1 Average End Area Formula](#)) or the **two section prismoidal** methods (see [23.2.1.2 Two Section Prismatic Formula](#)).
NOTE: For the end area volumes, sections are automatically generated and used for the calculations. You do not need to generate the sections separately.

See
- 23.2.1.1 Average End Area Formula
- 23.2.1.2 Two Section Prismoidal Formula
23.2.1.1 Average End Area Formula

Using the Average End Area method the volume between two consecutive sections is calculated by the formula

\[ \text{Volume of cut between the two sections} = \frac{D 	imes (C_1 + C_2)}{2} \]

where

- \( D \) = distance between the two sections
- \( C_1 \) = area of cut for the first section
- \( C_2 \) = area of cut for the second section

The **Total cut volume** is the sum of the cut volumes between each pair of sections.

Similarly

\[ \text{Volume of fill between the two sections} = \frac{D 	imes (F_1 + F_2)}{2} \]

where

- \( D \) = distance between the two sections
- \( F_1 \) = area of fill for the first section
- \( F_2 \) = area of fill for the second section

The **Total fill volume** is the sum of the fill volumes between each pair of sections.

Go to the next section 23.2.1.2 Two Section Prismoidal Formula or return to 23.2.1 Theory of End Area Volumes.

23.2.1.2 Two Section Prismoidal Formula

The two section prismoidal method, as its name suggests, is a modification of the standard prismoidal method but it uses only two sections rather than the three sections required by the standard prismoidal method.

Using the Two Section Prismoidal method the volume between two consecutive sections is calculated by the formula

\[ \text{Volume of cut between the two sections} = \frac{D 	imes (C_1 + C_2 + \sqrt{C_1 \times C_2})}{3} \]

where

- \( D \) = distance between the two sections
- \( C_1 \) = area of cut for the first section
- \( C_2 \) = area of cut for the second section

The **Total cut volume** is the sum of the cut volumes between each pair of sections.

Similarly

\[ \text{Volume of fill between the two sections} = \frac{D 	imes (F_1 + F_2 + \sqrt{F_1 \times F_2})}{3} \]

where

- \( D \) = distance between the two sections
- \( F_1 \) = area of fill for the first section
- \( F_2 \) = area of fill for the second section

The **Total fill volume** is the sum of the fill volumes between each pair of sections.

For the definition of cut and fill, please go to the section 23.1 Definition of Cut and Fill.

For information on the end area options, please go to the section 23.3 End Area.

For information on the theory for exact volumes, please continue to the section 23.2.2 Theory of Exact Volumes.
23.2.2 Theory of Exact Volumes

This method calculates the exact volume between two triangulated surfaces (tins), or between one triangulated surface and a plane of constant height.

The volumes are calculated by mathematically subdividing the triangles from both tins into areas that contain only one triangle from each tin.

In three dimensions, these areas represent well defined polygons with the plane of the triangle from one tin as its top and the plane of the triangle from the other tin as its bottom.

For each small area, the cut and fill volume between the two tins can be calculated exactly. The total cut and fill volume between the two tin is simply the sum of the cut and fill volumes for each small area.

For the definition of cut and fill, please go to the section 23.1 Definition of Cut and Fill. For information on the exact volume options, please go to the section 23.4 Exact.

The calculated volumes by the exact method can be produced and reported on over user supplied depth ranges. Similarly, a view can be coloured on a depth basis using the same range file.

IMPORTANT NOTE - the volume totals are only calculated for the depths in the range file. If the depth ranges does not cover the entire depth difference between the tins then the totals...
which are the sum of the different depth ranges will **not** be the same as the volumes between the two tins.

For information on the theory for end area volumes, please go to the section 23.2.1 Theory of End Area Volumes.
23.3 End Area

Position of menu: Design => Volumes => End area

These volumes are calculated using the end area method. For more information on the end area volume calculations, go to the section 23.2.1 Theory of End Area Volumes.

The options tin to height and tin to tin use parallel sections defined at a user supplied angle and separation distance, to calculate the end areas.

The options string tin to height and string tin to tin use sections defined at right angles to a user selected string, for their end area volume calculations. The distance between sections is supplied by the user.

The options sections to height and sections to sections use sections already created to calculate volumes using end areas.

In all the volume options, the sections are restricted to a user defined polygon.

12d Model reports on the cut, fill and balance for each of the sections used in the calculations and also the total cut, fill and balance.

In the report, the sign for cut (negative or positive) is given by the cut volume sign from the Defaults panel (fill will have the opposite sign).

The End area walk-right menu is

![End Area Volumes menu]

- end area volumes between surface and height
- between surfaces
- along string between surface and height
- along string between surfaces
- between a model of sections and height
- between two models of sections
- between a model of sections and a tin
- for one or more material layer(s)

Each option in this menu will now be described.

For the options see

- 23.3.1 End Area - Tin to Height
- 23.3.2 End Area - Tin to Tin
- 23.3.3 End Area - String Tin to Height
- 23.3.4 End Area - String Tin to Tin
- 23.3.5 End Area - Sections to Height
- 23.3.6 End Area - Sections to Sections
- 23.3.7 End Area - Tin to Sections
- 23.3.8 End Area - Material Section to Section

For more information on the end area volume calculations, go to the section 23.2.1 Theory of End Area Volumes.
23.3.1 End Area - Tin to Height

Position of option on menu:  Design => Volumes => End Area => Tin to height

The Tin to height option is used to find volumes between an existing surface and a user supplied height. The volumes can only be calculated within a user supplied polygon.

For more information on the end area volume calculations, go to the section 23.2.1 Theory of End Area Volumes.

On selecting the Tin to height option, the End Area Volume From Tin to a Height panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>input</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>name of the tin for which the volume between it and a height (z value) will be calculated.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the volume is calculated between the tin and the value in this field.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Angle for sections

**input** 90.0 0,45,90

*angle* (in degrees) of the lines to section along.

### Dist between sections

**input** 10.0 1,10,100

*distance* between the lines to section along.

### Model for sections

**input** available models

If non-blank, the sections though the tin used for the end area calculations are retained and placed in the model given in this field. The sections are given the same colour as the tin.

If blank, the sections are not kept.

### Difference model

**input** available models

If non-blank, the sections which are the difference between the tin sections and the height are retained and placed in the model given in this field.

If blank, the sections are not kept.

### Difference colour

**input** available colours

*colour* for the difference sections strings

### Clean sections models beforehand

**tick box**

If tick, the model of sections and difference sections are cleaned out before the option runs.

### Poly

**poly string-select**

If selected, the string, rectangle or lasso used as the bounding polygon for the volume calculations.

### Report file

**input** *.rpt*

Name of the file to contain the volume report. If the file already exists, the report will be appended to the file. If no name is given, no report is produced.

### Report mode

**input** summary summary, full

If *full*, the cut and fill details for every section are included.

If *summary*, just the cut and fill totals are given.

### Volume mode

**choice box** Average end area average end area, prismaticald - 2 sections

The two methods in 12d for calculating volumes using areas of sections. For more information on each method, go to [23.2.1.1 Average End Area Formula](#).

### Volume

**button**

*The* volume between the tin and the height (z-value) within the selected bounding polygon is calculated by the end area method. The sections through the polygon will be calculated along straight lines at the angle given by the *angle* field and at a separation given by the *dist* field. The sections are made against the tin given in tin field.

### How to Use the Panel and Panel Messages

(a) Select the bounding string by choosing Poly and picking the required string.

(b) Volume processing begins on selecting the Volume button.

Progress messages - sent to the panel message area calculating volumes

Completion message - sent to the panel message area c cut volume f fill volume bal total (balance) volume

<Esc> can be used to terminate the option during volume calculations.

Continue to the next section [23.3.1 End Area - Tin to Height](#) or return to [23.3 End Area](#).
23.3.2 End Area - Tin to Tin

Position of option on menu: Design => Volumes => End Area => Tin to tin

The Tin to tin option is used to find volumes between an existing and a new surface. The volumes can only be calculated within a user supplied polygon.

The Tin to tin option is used to find volumes between an existing and a new surface. The volumes can only be calculated within a user supplied polygon.

For more information on the end area volume calculations, go to the section 23.2.1 Theory of End Area Volumes.

On selecting the Tin to tin option, the End Area Volume Between Tins panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Tin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New tin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle for sections</td>
<td></td>
<td>90°</td>
<td></td>
</tr>
<tr>
<td>Dist between sections</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Original tin sections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New tin sections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference colour</td>
<td></td>
<td>cyan</td>
<td></td>
</tr>
<tr>
<td>Use Extrapolated Areas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Original Extrapolated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Extrapolated Sections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extrapolated Colour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean sections models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>beforehand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report mode</td>
<td></td>
<td>summary</td>
<td></td>
</tr>
<tr>
<td>Volume mode</td>
<td></td>
<td>Average</td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions.
Original tin

name of the original tin for determining volumes.

New tin

name of the new tin for determining volumes.

Angle for sections

angle (in degrees) of the lines to section along.

Dist between sections

distance between the lines to section along

Original tin sections

if not blank, the sections though the original tin used for the end area calculations are retained and placed in the model given in this field. The sections are given the same colour at the original tin. If blank, the sections are not kept.

New tin sections

if not blank, the sections though the new tin used for the end area calculations are retained and placed in the model given in this field. The sections are given the same colour as the new tin. If blank, the sections are not kept.

Difference model

if not blank, sections which are the depth from the original tin to the new tin are created and placed in the model given in this field. That is, the value on the difference section is:

\[ z_{\text{diff}} = z_{\text{value of original section}} - z_{\text{value of new tin}}. \]

Hence triangulating the difference sections and contouring them will give you the depths isopachs between the two tins. If blank, the sections are not kept.

Difference colour

colour for the difference sections strings

Use extrapolated areas

tick box not tick

If not tick, areas (and hence volumes) are only calculated where both sections exist. Hence the sections are limited to where both occur. If tick, when the sections are not the same length, the end points of the above and below sections are connected thereby extrapolating the smaller section. This method is not recommended since data does not exist.

Original extrapolated sections model

if non-blank, the extrapolated sections created from the Original sections are placed in this model. If blank, the extrapolated sections for the original sections are not kept.

New extrapolated sections model

if non-blank, the extrapolated sections created from the New sections are placed in this model. If blank, the extrapolated sections for the new sections are not kept.

Extrapolated colour

colour box available colours

colour for the extrapolated sections

Clean sections models beforehand

tick box

If tick, the model of sections and difference sections are cleaned out before the option runs.
Poly  
poly string-select
  if selected, the string, rectangle or lasso used as the bounding polygon for the volume calculations.

Report file  
input  *.rpt
  name of the file to contain the volume report. If the file already exists, the report will be appended to the file. If no name is given, no report is produced.

Report mode  
input  summary  summary, full
  if full, the cut and fill details for every section are included. If summary, just the cut and fill totals are given.

Volume mode  
choice box  Average end area  average end area, prismoidal - 2 sections
  the two methods in 12d for calculating volumes using areas of sections. For more information on each method, go to 23.2.1.1 Average End Area Formula

Volume  
button
  The volume between the new and the original tins within the selected polygon string is calculated by the end area method. The sections through the polygon selected by poly will be calculated along straight lines at the angle given by the angle field and at a separation given by the dist field. The sections are made against the tins given by the original and the new tin fields.

How to Use the Panel and Panel Messages
(a)  Select the bounding polygon string by choosing Poly and picking the required string.
(b)  Volume processing begins on selecting the volume button.
  Progress messages - sent to the panel message area calculating volumes
  Completion message - sent to the panel message area
  c cut volume  f fill volume  bal total (balance) volume

<Esc> can be used to terminate the option during volume calculations.

Continue to the next section 23.3.3 End Area - String Tin to Height or return to 23.3 End Area.
23.3.3 End Area - String Tin to Height

**Position of option on menu:** Design => Volumes => End Area => String tin to height

The volume options already described calculate the volumes by forming parallel sections through the tin and then using the end area method between adjacent sections.

In many situations, the sections to be used are defined to be at right angles to a user selected string. This method is commonly used in road calculations.

The options **String tin to height** and **String tin to tin** both use sections defined at right angles to a user selected string for the end area volume calculations. For both options, the volumes can only be calculated within a user supplied polygon.

It optionally uses the whole section within the polygon or only the part of the section that contains the string.

For more information on the end area volume calculations, go to the section 23.2.1 Theory of End Area Volumes.

On selecting the **String tin to height** option, the **Volume Along a String to a Height** panel is displayed.
The fields and buttons in this panel are used as follows.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>String for Tin to Ht</strong></td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a string is selected to be used to define the sections used in the end area calculations. The sections are taken at right angles to this string.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Tin</strong></td>
<td>input</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>name of the tin for which the volume between it and a height (z-value) will be calculated.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Use string height</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if <strong>tick</strong>, the height used for the area calculations is taken at each section from the user selected string. If <strong>not tick</strong>, the height given in the <strong>height</strong> panel field is used in the area calculations.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Height</strong></td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>if <strong>Use string height</strong> is set to <strong>no tick</strong>, the volume is calculated between the tin and the value in this field.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Start chainage</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if non blank, the chainage of the first section to use for volume calculations. If blank, start with the section with the lowest chainage.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>End chainage</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if non blank, the chainage of the last section to use for volume calculations. If blank, end with the section with the highest chainage.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dist between sections input 10 1,10,100
distance between the sections taken at right angles down the user selected string.

Model for sections input available models
if non-blank, the sections though the tin used for the end area calculations are retained and placed in the model given in this field. The sections are given the same colour as the tin.
If blank, the sections are not kept.

Difference model input available models
if non-blank, the sections which are the difference between the tin sections and the height are retained and placed in the model given in this field.
If blank, the sections are not kept.

Difference colour input available colours
colour for the difference sections strings

Clean sections models beforehand tick box
if tick, the model of sections and difference sections are cleaned out before the option runs.

Report file input *.rpt
name of the file to contain the volume report. If the file already exists, the report will be appended to the file. If no name is given, no report is produced.

Report mode input summary summary, full
if full, the cut and fill details for every section are included.
If summary, just the cut and fill totals are given.

Volume mode choice box Average end area average end area, prismoidal - 2 sections
the two methods in 12d for calculating volumes using areas of sections. For more information on each method, go to 23.2.1.1 Average End Area Formula

String segment only tick box
if tick, only the part of the section within the polygon that contains the selected string is used.
If not tick, the whole section within the polygon is used (see 23.2.1 Theory of End Area Volumes).

Volume correction for curves tick box
if tick, volume corrections are made when going around curves.

Poly poly string-select
if selected, the string, rectangle or lasso used as the bounding polygon for the volume calculations.

Volume button
The volume between the tin and the height (z-value) within the selected polygon is calculated by the end area method. The sections through the tin are calculated at right angles to the selected string at a separation given by the dist field. The section strings are placed in the model given in the model field.

How to Use the Panel and Panel Messages
(a) Select the bounding polygon string by choosing Poly and picking the required string.
(b) Select a string to define the sections string by choosing String button
(c) Volume processing begins on selecting the volume button.
    Progress messages - sent to the panel message area
    calculating volumes
    Completion message - sent to the panel message area
c cut volume f fill volume bal total (balance) volume

<Esc> can be used to terminate the option during volume calculations.

Continue to the next section 23.3.4 End Area - String Tin to Tin or return to 23.3 End Area.
23.3.4 End Area - String Tin to Tin

**Position of option on menu:** Design => Volumes => End Area => String tin to tin

In this option, the sections generated for collating areas and volumes are defined to be at right angles to a *user selected string*. This method is commonly used in road calculations.

It optionally uses the *entire* section within the polygon or only the sections or part of sections that contain the user selected string.

For more information on the end area volume calculations, go to the section [23.2.1 Theory of End Area Volumes](#).

---

On selecting the *String Tin to Tin* option, the **Volume Along a String Between Tins** panel is displayed.
The fields and buttons in this panel are used as follows.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>String for tin to tin</td>
<td>string select</td>
<td></td>
<td>the string for defining the sections used in the end area calculations. The sections are taken at right angles to this string.</td>
</tr>
<tr>
<td>Original tin</td>
<td>input</td>
<td>available tins</td>
<td>name of the original tin for determining volumes.</td>
</tr>
<tr>
<td>New tin</td>
<td>input</td>
<td>available tins</td>
<td>name of the new tin for determining volumes.</td>
</tr>
<tr>
<td>Start chainage</td>
<td>input</td>
<td></td>
<td>if non blank, the chainage of the first section to use for volume calculations. If blank, start with the section with the lowest chainage.</td>
</tr>
<tr>
<td>End chainage</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
if non blank, the chainage of the last section to use for volume calculations.
If blank, end with the section with the highest chainage.

Dist between sections input 10.0 1,10,100
distance between the lines to section along

Original tin sections input available models
if non-blank, the sections though the original tin used for the end area calculations are retained and placed in the model given in this field. The sections are given the same colour at the original tin.
If blank, the sections are not kept.

New tin sections input available models
if non-blank, the sections though the new tin used for the end area calculations are retained and placed in the model given in this field. The sections are given the same colour as the new tin.
If blank, the sections are not kept.

Use extrapolated areas tick box not ticked
if not ticked, areas (and hence volumes) are only calculated where both sections exist. Hence the sections are limited to where both occur.
If tick, when the sections are not the same length, the end points of the above and below sections are connected thereby extrapolating the smaller section. This method is not recommended since data does not exist.

Original extrapolated sections model model box available models
if non-blank, the extrapolated sections created from the Original sections are placed in this model.
If blank, the extrapolated sections for the original sections are not kept.

New extrapolated sections model model box available models
if non-blank, the extrapolated sections created from the New sections are placed in this model.
If blank, the extrapolated sections for the new sections are not kept.

Extrapolated colour colour box available colours
colour for the extrapolated sections

Difference model input available models
if non-blank, the sections which are the difference of the original and the new sections are retained and placed in the model given in this field.
If blank, the sections are not kept.

Difference colour input available colours
colour for the difference sections

Clean sections models beforehand tick box
if ticked, the model of sections and difference sections are cleaned out before the option runs.

Report file input *.rpt
name of the file to contain the volume report. If the file already exists, the report will be appended to the file. If no name is given, no report is produced.

Report mode input summary summary, full
if full, the cut and fill details for every section are included.
If summary, just the cut and fill totals are given.

Volume mode choice box Average end area average end area, prismatical - 2 sections
the two methods in 12d for calculating volumes using areas of sections. For more information on each
method, go to 23.2.1.1 Average End Area Formula

String segment only  
tick box 
ticked 

if ticked, only the part of the section within the polygon that contains the selected string is used. 
If not ticked, the whole section within the polygon is used (see 23.2.1 Theory of End Area Volumes).

Volume correction for curves  
tick box 

if ticked, volume corrections are made when going around curves.

Poly  
poly string-select 

if selected, the string, rectangle or lasso used as the bounding polygon for the volume calculations.

Volume  
button 

The volume between the original and new tins within the selected bounding polygon is calculated by 
the end area method. The sections through the tins are calculated at right angles to the selected string 
at a separation given by the dist field.

How to Use the Panel and Panel Messages 
(a) Select the bounding polygon string by choosing Poly and pick the required string. 
(b) Select the string to define the sections string by choosing String for tin to tin 
(c) Volume processing begins on selecting the Volume button. 

Progress messages - sent to the panel message area 

calculating volumes

Completion message - sent to the panel message area 

cut volume f fill volume bal total (balance) volume

<Esc> can be used to terminate the option during volume calculations.

Continue to the next section 23.3.4 End Area - String Tin to Tin or return to 23.3 End Area.
23.3.5 End Area - Sections to Height

**Position of option on menu:** Design => Volumes => End Area => Sections to height

The *Sections to height* option is used to find volumes between sections that already exist (in a given model) and a user supplied height. The volumes can be restricted to be within a user supplied polygon.

Normally the *Sections to Height* method is not used since if the tin exists, the option Design => Volumes => End Area => Tin to height automatically generates sections through the tin at the required interval.

**WARNING:** The *Sections to Height* method can **not** be used when there are cases of two sections being on the same line.

For more information on the end area volume calculations, go to the section 23.2.1 Theory of End Area Volumes.

On selecting the *Sections to height* option, the End Area Volume from Tin to a Height panel is displayed.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sections</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the model containing the sections for which the volume between them and a height (z value) will be calculated.</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the volume is calculated between the sections and the value in this field.</td>
<td></td>
</tr>
<tr>
<td>Difference model</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if non-blank, the sections which are the difference between the given sections and the height are retained and placed in the model given in this field. If blank, the sections are not kept.</td>
<td></td>
</tr>
<tr>
<td>Difference colour</td>
<td>input</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>colour for the difference sections strings</td>
<td></td>
</tr>
<tr>
<td>Clean sections models beforehand</td>
<td>tick box</td>
<td>if ticked, the model of sections and difference sections are cleaned out before the option runs.</td>
<td></td>
</tr>
<tr>
<td>Poly</td>
<td>poly string-select</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if selected, the string, rectangle or lasso used as the bounding polygon for the volume calculations.</td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td>input</td>
<td>*.rpt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the file to contain the volume report. If the file already exists, the report will be appended to the file. If no name is given, no report is produced.</td>
<td></td>
</tr>
<tr>
<td>Report mode</td>
<td>input</td>
<td>summary</td>
<td>full</td>
</tr>
<tr>
<td></td>
<td></td>
<td>if full, the cut and fill details for every section are included. In summary, just the totals are given.</td>
<td></td>
</tr>
<tr>
<td>Volume mode</td>
<td>choice box</td>
<td>Average end area</td>
<td>average end area,</td>
</tr>
</tbody>
</table>
prismoidal - 2 sections

the two methods in 12d for calculating volumes using areas of sections. For more information on each method, go to 23.2.1.1 Average End Area Formula

Volume correction for curves  tick box

if ticked, volume corrections are made when going around curves.

Volume  button

the volume between the model of sections and the height (z-value) within the selected bounding polygon is calculated by the end area method.

<Esc> can be used to terminate the option during volume calculations.

Continue to the next section 23.3.6 End Area - Sections to Sections or return to 23.3 End Area.
23.3.6 End Area - Sections to Sections

Position of option on menu: Design => Volumes => End Area => Sections to sections

The Sections to sections option is used to find volumes between two models of sections. The volumes can be restricted to be within a user supplied polygon. Note that there needs to be matching sections in the two models of section.

Normally the Section to Sections method is not used since if the tin exists, the option Design => Volumes => End Area => Tin to tin automatically generates sections through the two tins at the required interval.

WARNING: The Section to Sections method can not be used when there are cases of two sections being on the same line.

For more information on the end area volume calculations, go to the section 23.2.1 Theory of End Area Volumes.

On selecting the Sections to sections option, the End Area Volume Between Sections panel is displayed.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Original sections</strong></td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>name of the original model of sections for determining volumes.</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>New sections</strong></td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>name of the new model of sections for determining volumes.</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Difference model</strong></td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>if non-blank, the sections which are the difference of the original and the new sections are retained and placed in the model given in this field. If blank, the sections are not kept.</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Difference colour</strong></td>
<td>input</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>colour for the difference sections strings</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Use extrapolated areas</strong></td>
<td>tick box</td>
<td>not tick</td>
<td></td>
</tr>
<tr>
<td><strong>if not tick, areas (and hence volumes) are only calculated where both sections exist. Hence the sections are limited to where both occur.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>If tick, when the sections are not the same length, the end points of the above and below sections are connected thereby extrapolating the smaller section. This method is not recommended since data does not exist.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Original extrapolated sections model</strong></td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td><strong>if non-blank, the extrapolated sections created from the Original sections are placed in this model. If blank, the extrapolated sections for the original sections are not kept.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>New extrapolated sections model</strong></td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
</tbody>
</table>
if non-blank, the extrapolated sections created from the New sections are placed in this model.
If blank, the extrapolated sections for the new sections are not kept.

**Extrapolated colour**
- Colour box
- Available colours
  - Colour for the extrapolated sections

**Clean sections models beforehand**
- Tick box
  - If ticked, the model of sections and difference sections are cleaned out before the option runs.

**Poly**
- Poly string-select
  - If selected, the string, rectangle or lasso used as the bounding polygon for the volume calculations.

**Report file**
- Input
  - Name of the file to contain the volume report. If the file already exists, the report will be appended to the file. If no file name is given, the report is not produced.

**Report mode**
- Input
  - Summary
  - Summary, Full
    - If full, the cut and fill details for every section are included.
    - If summary, just the cut and fill totals are given.

**Volume mode**
- Choice box
  - Average end area
  - Average end area, prismoidal - 2 sections
  - The two methods in 12d for calculating volumes using areas of sections. For more information on each method, go to [23.2.1.1 Average End Area Formula](#).

**Volume correction for curves**
- Tick box
  - If ticked, volume corrections are made when going around curves.

**Volume**
- Button
  - The volume between the original model of sections and the new model of sections within the selected bounding polygon is calculated by the end area method.

<Esc> can be used to terminate the option during volume calculations.

Continue to the next section [23.3.7 End Area - Tin to Sections](#) or return to [23.3 End Area](#).
23.3.7 End Area - Tin to Sections

Position of option on menu:  Design => Volumes => End Area => Tin to sections

The Tin to sections option is used to find volumes between a tin and a model of sections. The volumes can be restricted to be within a user supplied polygon.

Normally the Tin to Sections method is not used since if the tin for the sections exists, the option Design => Volumes => End Area => Tin to Tin automatically generates sections through the two tins at the required interval.

**WARNING:** The Tin to Sections method can *not* be used when there are cases of two sections being on the same line.

WARNING - these sections will give INCORRECT volumes. Do not use the option for this case

These sections will give correct volumes

For more information on the end area volume calculations, go to the section 23.2.1 Theory of End Area Volumes.

Selecting Tin to sections brings up the End Area Volume from Tin to Sections panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the original tin to use for determining volumes.</td>
<td></td>
</tr>
<tr>
<td>New sections</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the new model of sections for determining volumes.</td>
<td></td>
</tr>
<tr>
<td>Difference model</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if non-blank, the sections which are the difference of the original and the new sections are retained and placed in the model given in this field. If blank, the sections are not kept.</td>
<td></td>
</tr>
<tr>
<td>Difference colour</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>colour for the difference sections strings</td>
<td></td>
</tr>
<tr>
<td>Tin sections</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if non-blank, the sections cut through the Original tin are placed in this model. If blank, the sections through the Original tin are not kept.</td>
<td></td>
</tr>
<tr>
<td>Tin sections colour</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>colour for the sections cut through the Original tin</td>
<td></td>
</tr>
<tr>
<td>Use extrapolated areas</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if not ticked, areas (and hence volumes) are only calculated where both sections exist. Hence the</td>
<td></td>
</tr>
</tbody>
</table>
sections are limited to where both occur.

If ticked, when the sections are not the same length, the end points of the above and below sections are connected thereby extrapolating the smaller section. This method is not recommended since data does not exist.

**Original extrapolated sections model**

model box  available models

If non-blank, the extrapolated sections created from the Original sections are placed in this model. If blank, the extrapolated sections for the original sections are not kept.

**New extrapolated sections model**

model box  available models

If non-blank, the extrapolated sections created from the New sections are placed in this model. If blank, the extrapolated sections for the new sections are not kept.

**Extrapolated colour**

colour box  available colours

colour for the extrapolated sections

**Clean sections models beforehand**

tick box

if ticked, the model of sections and difference sections are cleaned out before the option runs.

**Poly**

poly string-select

if selected, the string, rectangle or lasso used as the bounding polygon for the volume calculations.

**Report file**

input

name of the file to contain the volume report. If the file already exists, the report will be appended to the file. If no file name is given, the report is not produced.

**Report mode**

input  summary  summary, full

If full, the cut and fill details for every section are included. If summary, just the cut and fill totals are given.

**Volume mode**

choice box  Average end area  average end area, prismoidal - 2 sections

the two methods in 12d for calculating volumes using areas of sections. For more information on each method, go to 23.2.1.1 Average End Area Formula

**Volume correction for curves**

tick box

if ticked, volume corrections are made when going around curves.

**Volume**

button

The volume between the original model of sections and the new model of sections within the selected bounding polygon is calculated by the end area method.

<Esc> can be used to terminate the option during volume calculations.

Continue to the next section 23.3.8 End Area - Material Section to Section or return to 23.3 End Area.
23.3.8 End Area - Material Section to Section

**Position of option on menu:**  Design => Volumes => End Area => Material section to section

The Material section to section option calculates the volumes for one or more material layers where a material layer is given by two models of sections representing the top (First model) and the bottom (Second model) of the material layer.

The cut and fill volumes for each material layer is written to a table on the panel, and optionally to a report.

This option uses models of sections already created by other options such as Apply MTF or Tins => Sections => X sections

The cut and fill volumes are calculated using the **End Area** method (see 23.2.1 Theory of End Area Volumes).

Selecting Material section to section brings up the Material Volume Report (Section to Section) panel
Volumes are End Area and a comparison is made by using the distance between ALL the sections specified.

The chainage limits for the volume calculations are defined by the smallest chainages on the sections in the First and Second Models, or by the Optional Section Start Chainage and Optional Section End Chainage ranges given in the panel.

The First and Second Models used over these limits, must have matching sections, and no large gaps in either model.

If the chainage limit in the smaller model falls within the limits of the chainages in the larger model and no optional chainages are used, then the chainage limit of the smaller model is used.

In this case no interpolation is done up to the start or after the end of the smaller model chainage limits, in relation to the larger model.

However, if there is a large chainage gap in the smaller model then some interpolation will be done between the first and last section in this area, in relation to the larger model.

The latter is not desirable and the optional chainage ranges should be used to take into account the chainage gap in the smaller model.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function Name</td>
<td>function box</td>
<td></td>
<td>if non-blank entry used as the name of a function that can be used in chains etc</td>
</tr>
<tr>
<td>Report File</td>
<td>file box</td>
<td>available *.csv files</td>
<td></td>
</tr>
</tbody>
</table>
if non-blank entry used as the report file in a csv format

Report Description input
if non-blank entry used a descriptive heading in the report

Optional Chainages Grid

Section Start Chainage real
if non-blank entry used as the start chainage in the report

Section End Chainage real
if non-blank entry used as the end chainage in the report

Report Options Grid

Material Description input
if non-blank entry used as a description for a material, such as "Asphalt Surface" in the report

First Model model
if non-blank entry this section model is used in the volume calculations

Second Model model
if non-blank entry this section model is used in the volume calculations

Cut m³
field for display of results only, after the "Write" button is used.

If more than one <Optional Chainage Grids> are used, then the values displayed represents the accumulative cut for that material

Fill m³
field for display of results only, after the "Write" button is used.

If more than one <Optional Chainage Grids> are used, then the values displayed represents the accumulative fill for that material

Write button
the end area volumes is run for each of the Optional Chainage ranges or for the extents of the smaller model, if no optional chainages are specified

The volumes are calculated for each material using a chain from the Library. This can be verified in the output window.

Starting chain: Vol Sect to Sect.chain

Return to 23.3 End Area.
### 23.4 Exact

**Position of menu:**  Design => Volumes => Exact

These volumes are calculated by dividing the tins up into small prisms whose volumes can be calculated exactly. For more information on the exact volume calculations, go to the section

[23.2.2 Theory of Exact Volumes](#)

In the exact volume options, the volumes calculations can be restricted to a user defined polygon or if no polygon is provided, the volumes will be only be calculated for the regions where both the triangulations exist.

With the exact method, volumes can easily be calculated for depth bands from

(a) the given height to the tin for "tin to height" volumes

or

(b) the new tin to the original tin for "tin to tin" volumes.

Hence for the calculations, a range file can be supplied giving depth pairs and 12d Model will report the cut, fill and balance for each of the depth pairs and also the total of the cut, fill and balance for all the pairs.

In the report, the sign for cut (negative or positive) is given by the cut volume sign from the default settings panel (fill will have the opposite sign).

The range file consists of a list of depth ranges and colours, one set per line, in the format

```
lower_depth upper_depth depth_colour
```

This line represents all depths satisfying

```
lower_depth <= depth < upper_depth.
```

For each range in the file, the total cut and fill volumes for the depth range will be reported on, and the depth_colour can be used to colour all areas on a plan view satisfying the range.

**IMPORTANT NOTE - when are depth file is used,** the volume totals are only calculated for the depths in the range file. If the depth ranges does not cover the entire depth difference between the tins then the totals which are the sum of the different depth ranges will not be the same as the volumes between the two tins or the volumes from a tin to a height.

**Example of a Depth Range File**

```
// depth range file
// format: lower_depth upper_depth colour_for_depth_range
// depth is measured positive down and negative up.

-20 -10 red // colour red where the depth is greater or equal to -20 and less than -10
-10 0 magenta // colour magenta where the depth is greater or equal to -10 and less than 0
0 10 green // colour green where the depth is greater or equal to 0 and less than 10
10 20 "dark green" // colour dark green where depth is >=10 and less than 20
```

The Exact walk-right menu is
The options in this menu will now be described.

For the option see

23.4.1 Exact - Between Heights
23.4.2 Exact - Removal Calcs
23.4.3 Exact - Storage Calcs
23.4.4 Exact - Tin to Height
23.4.5 Exact - Tin to Height 2
23.4.6 Exact - Tin to Height Curve
23.4.7 Exact - Tin to Tin
23.4.8 Exact - Tin to Tin 2
23.4.9 Exact - Balanced Volumes

For more information on the exact volume calculations, go to the section 23.2.2 Theory of Exact Volumes
23.4.1 Exact - Between Heights

Position of option on menu:  Design =>Volumes =>Exact =>Between heights

This panel is used to calculate the volume between two heights on a given tin.

The calculations can be restricted to within a polygon, or if no polygon is selected, the entire tin is used.

For more information on the exact volume calculations, go to the section 23.2.2 Theory of Exact Volumes.

On selecting the Between heights option, the Exact Volume Between Heights panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>input</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>input</td>
<td>fill</td>
<td>cut, fill</td>
</tr>
<tr>
<td>Height min/max</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan view to point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poly</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The name of the tin for which the volume between two heights will be calculated.

If fill, the fill volume between the two heights is calculated.

If cut, the cut volume between the two heights is calculated.

Volume is calculated between the height min and the height max values.

Increment
the volumes between the height min and height max are reported on and is broken up into intervals
given by the increment value.

Plan view to paint
input available views
if non-blank, the region used for calculations will be painted in the given plan view. The colour will be
green if type is fill, or red if type is cut.

Report file
input *.rpt
name of the file to contain the volume report. If the file already exists, the report will be appended to
the file. If no name is given, no report is produced.

Poly
poly string-select
if selected, this string is used as the bounding polygon for the volume calculations.

Volume
button
The volume between the height min and height max for the tin within the selected bounding polygon is
calculated by the exact method.

<Esc> can be used to terminate the option during volume calculations.

Continue to the next section 23.4.2 Exact - Removal Calcs or return to 23.4 Exact.
23.4.2 Exact - Removal Calcs

**Position of option on menu:**  Design => Volumes => Exact => Removal calcs

For a user specified range of heights, this option will calculate the cut volume from each height to a given tin, plus the plan and slope areas for the region of the tin exposed by cutting to the height.

The calculations can be restricted to within a polygon, or if no polygon is selected, the entire tin is used.

For more information on the exact volume calculations, go to the section 23.2.2 Theory of Exact Volumes

On selecting the **Removal calcs** option, the **Removal Calculations** panel is displayed.

![Removal Calculations panel](Image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>input</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Height min/max</td>
<td>input</td>
<td>if blank, the tin's minimum/maximum z-value is used.</td>
<td></td>
</tr>
<tr>
<td>Increment</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan view to paint</td>
<td>input</td>
<td>available views</td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td>input</td>
<td>*.rpt</td>
<td></td>
</tr>
<tr>
<td>Poly</td>
<td>poly string-select</td>
<td></td>
<td>if selected, this string is used as the bounding polygon for the volume calculations.</td>
</tr>
<tr>
<td>Volume</td>
<td>button</td>
<td></td>
<td>calculate the cut volumes from the tin to the height for the required heights in the height min and height</td>
</tr>
</tbody>
</table>


max range.

<Esc> can be used to terminate the option during volume calculations.

Continue to the next section 23.4.3 Exact - Storage Calcs or return to 23.4 Exact.
23.4.3 Exact - Storage Calcs

Position of option on menu: Design => Volumes => Exact => Storage calcs

For a user specified range of heights, this option will calculate the fill volume from each height to a given tin, plus the plan and slope areas for the region of the tin covered by filling to the height. The calculations can be restricted to within a polygon, or if no polygon is selected, the entire tin is used.

For more information on the exact volume calculations, go to the section 23.2.2 Theory of Exact Volumes

On selecting the Storage calcs option, the Storage Calculations panel is displayed.

![Storage Calculations Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>name of the tin used in the volume calculations.</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Height min/max</td>
<td>if non-blank, the minimum/maximum value of the height range to calculate volumes to. if blank, the tin's minimum/maximum z-value is used.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increment</td>
<td>increment between the heights to calculate the volumes to.</td>
<td>input</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Plan view to paint</td>
<td>if non-blank, the region used for calculations will be painted green in the given plan view.</td>
<td>view box</td>
<td>available views</td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td>name of the file to contain the volume report. If the file already exists, the report will be appended to the file. If no name is given, no report is produced.</td>
<td>file box</td>
<td>*.rpt</td>
<td></td>
</tr>
<tr>
<td>Poly</td>
<td>if selected, this string is used as the bounding polygon for the volume calculations.</td>
<td>poly string-select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>calculate the fill volumes from the tin to the height for the required heights in the height min and height max range.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
<Esc> can be used to terminate the option during volume calculations.

Continue to the next section 23.4.4 Exact - Tin to Height or return to 23.4 Exact.
23.4.4 Exact - Tin to Height

Position of option on menu: Design => Volumes => Exact => Tin to height

This panel is used to calculate the volume between a tin and a given height.

The calculations can be restricted to within a polygon, or if no polygon is selected, the entire tin is used.

The calculated volumes can be produced and reported over user supplied depth ranges. Similarly, a view can be coloured on a depth basis using the same range file.

IMPORTANT NOTE - the volume totals are only calculated for the depths in the range file. If the depth ranges does not cover the entire depth difference between the tin and the height then the totals which are the sum of the different depth ranges will not be the same as the volume between the tin and the height.

For more information on the exact volume calculations, go to the section 23.2.2 Theory of Exact Volumes.

On selecting the Tin to height option, the Exact Volume From Tin to a Height panel is displayed.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>input</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>name of the tin for which the volume between it and a height (z value) will be calculated.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the volume is calculated between the tin and the value in this field.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range file</td>
<td>input</td>
<td>*.drf</td>
<td></td>
</tr>
<tr>
<td>if non-blank, the user supplied depth range file is used to split up the volumes report and define the depth colours used for painting a view.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan view to paint</td>
<td>input</td>
<td>available views</td>
<td></td>
</tr>
<tr>
<td>if non-blank, the given plan view will be painted according to the depth colours given in the range file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poly</td>
<td>poly string-select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if selected, this string is used as the bounding polygon for the volume calculations.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for faces</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>if non-blank, faces will be created with colours according to the range colours given in the range file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean faces models beforehand</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, the model of faces is cleaned out before the option runs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td>input</td>
<td>*.rpt</td>
<td></td>
</tr>
<tr>
<td>name of the file to contain the volume report. If the file already exists, the report will be appended to the file. If no name is given, no report is produced.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The volume between the tin and the height (z-value) for the given range file within the selected bounding polygon is calculated by the exact method. If a range file does not exist, the volumes between the tin and the height is calculated.

<Esc> can be used to terminate the option during volume calculations.

Continue to the next section 23.4.5 Exact - Tin to Height 2 or return to 23.4 Exact.
23.4.5 Exact - Tin to Height 2

**Position of option on menu:**  Design => Volumes => Exact => Tin to height 2

This panel is used to calculate the volume between a tin and a given height but the calculations are restricted to only the regions defined by another tin rather than to a polygon. The calculated volumes can be produced and reported over user supplied depth ranges. Similarly, a view can be coloured on a depth basis using the same range file.

**IMPORTANT NOTE** - the *volume totals* are *only* calculated for the *depths in the range file*. If the depth ranges *does not cover* the entire depth difference between the tin and the height then the totals which are the sum of the different depth ranges will *not* be the same as the volume between the tin and the height.

For more information on the exact volume calculations, go to the section 23.2.2 Theory of Exact Volumes

On selecting the *Tin to height 2* option, the *Exact Volumes to Height 2* panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Range file</td>
<td>input</td>
<td>*.drf</td>
<td></td>
</tr>
<tr>
<td>Plan view to paint</td>
<td>view box</td>
<td>available views</td>
<td></td>
</tr>
<tr>
<td>Model for faces</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
</tbody>
</table>

*name of the tin for which the volume between it and a height (z value) will be calculated.*

*the volume is calculated between the tin and the value in this field.*

*if non-blank, the user supplied depth range file is used to split up the volumes report and define the depth colours used for painting a view.*

*if non-blank, the given plan view will be painted according to the depth colours given in the range file.*

*if non-blank, faces will be created with colours according to the range colours given in the range file.*
Clean faces models beforehand  tick box
  if ticked, the model of faces is cleaned out before the option runs.

Report file  file box  *.rpt
  name of the file to contain the volume report. If the file already exists, the report will be appended to the file. If no name is given, no report is produced.

Poly tin  tin box  available tins
  name of the tin to define the regions that the volume calculations are restricted to.

Volume  button
  The volume between the tin and the height (z-value) for the given range file within the selected bounding polygon is calculated by the exact method. If a range file does not exist, the volumes between the tin and the height is calculated.

<Esc> can be used to terminate the option during volume calculations.

Continue to the next section 23.4.6 Exact - Tin to Height Curve or return to 23.4 Exact.
23.4.6 Exact - Tin to Height Curve

**Position of option on menu:** Design => Volumes => Exact => Tin to ht curve

This panel is used to calculate the volume between a tin between heights and writes out a report on the volumes.

For more information on the exact volume calculations, go to the section 23.2.2 Theory of Exact Volumes.

On selecting the Tin to ht curve option, the Tin to Height Curve panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>Height min</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height max</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increment</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output file</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start Excel</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td>Poly</td>
<td>select</td>
<td>select</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>button</td>
<td>calculate</td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section 23.4.7 Exact - Tin to Tin or return to 23.4 Exact.
23.4.7 Exact - Tin to Tin

**Position of option on menu:** Design => Volumes => Exact => Tin to tin

This panel is used to calculate the volume between two tins using the exact method.

The calculations can be restricted to within a polygon, or if no polygon is selected, the overlapping sections of the two tins is used.

The calculated volumes can be produced and reported on over user supplied depth ranges. Similarly, a view can be coloured on a depth basis using the same range file.

**IMPORTANT NOTE** - the volume totals are only calculated for the depths in the range file. If the depth ranges does not cover the entire depth difference between the tins then the totals which are the sum of the different depth ranges will not be the same as the volumes between the two tins.

For more information on the exact volume calculations, go to the section 23.2.2 Theory of Exact Volumes

On selecting the Tin to tin option, the Exact Volume Between Tins panel is displayed.
Cut is defined to be where ever the new tin is **below** the original tin. Fill is defined to be where ever the new tin is **above** the original tin.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Original/New Tin</strong></td>
<td>tin box</td>
<td>available tins</td>
<td>name of the original/new tin for determining volumes.</td>
</tr>
<tr>
<td><strong>Range file</strong></td>
<td>input</td>
<td>* .drf</td>
<td>if non-blank, the user supplied range file is used to split up the volumes report and define the depth colours used for painting a view.</td>
</tr>
<tr>
<td><strong>Plan view to paint</strong></td>
<td>input</td>
<td>available views</td>
<td>if non-blank, the given plan view will be painted according to the depth colours given in the range file.</td>
</tr>
<tr>
<td><strong>Model for faces</strong></td>
<td>input</td>
<td>available models</td>
<td>if non-blank, faces will be created with colours according to the range colours given in the range file.</td>
</tr>
<tr>
<td><strong>Clean faces model beforehand</strong></td>
<td>tick box</td>
<td></td>
<td>if ticked, the model of faces is cleaned out before the option runs.</td>
</tr>
<tr>
<td><strong>Report file</strong></td>
<td>input</td>
<td>* .rpt</td>
<td>name of the file to contain the volume report. If the file already exists, the report will be appended to the file. If no name is given, no report is produced.</td>
</tr>
</tbody>
</table>

**Polygon options**

- **Use a polygon** radio button
- **Polygon** poly string select
if Use a polygon is selected, then the selected string is used as the bounding polygon for the volume calculations.

**Use a model of polygons** radio button

**Model**

model box available models

if Use a model of polygons is selected, then this model is used and each string in the model is used as a bounding polygon and the volume calculated.

**Volume** button

The volume between the two tins for the given range file within the selected bounding polygon is calculated by the exact method. If a range file does not exist, the volumes between the two tins is calculated.

<Esc> can be used to terminate the option during volume calculations.

Continue to the next section [23.4.8 Exact - Tin to Tin 2](#) or return to [23.4 Exact](#).
23.4.8 Exact - Tin to Tin 2

Position of option on menu: Design => Volumes => Exact => Tin to tin 2

This panel is used to calculate the volume between two tins using the exact method but the calculations are restricted to only the regions defined by another tin rather than to a polygon.

The calculated volumes can be produced and reported on over user supplied depth ranges. Similarly, a view can be coloured on a depth basis using the same range file.

IMPORTANT NOTE - the volume totals are only calculated for the depths in the range file. If the depth ranges does not cover the entire depth difference between the tins then the totals which are the sum of the different depth ranges will not be the same as the volumes between the two tins.

For more information on the exact volume calculations, go to the section 23.2.2 Theory of Exact Volumes.

On selecting the Tin to tin option, the Exact Volume Between Tins 2 panel is displayed.

Cut is defined to be where ever the new tin is below the original tin. Fill is defined to be where ever the new tin is above the original tin.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original/New Tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the original/new tin for determining volumes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range file</td>
<td>input</td>
<td>*.drf</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if non-blank, the user supplied range file is used to split up the volumes report and define the depth colours used for painting a view.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan view to paint</td>
<td>input</td>
<td>available views</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if non-blank, the given plan view will be painted according to the depth colours given in the range file.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for faces</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if non-blank, faces will be created with colours according to the range colours given in the range file.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean faces model beforehand</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
if ticked, the model of faces is cleaned out before the option runs.

**Report file**

file box

*.rpt

name of the file to contain the volume report. If the file already exists, the report will be appended to the file. If no name is given, no report is produced.

**Poly tin**

tin box

available tins

name of the tin to define the regions that the volume calculations are restricted to.

**Volume**

button

The volume between the two tins for the given range file within the selected bounding polygon is calculated by the exact method. If a range file does not exist, the volumes between the two tins is calculated.

<Esc> can be used to terminate the option during volume calculations.

Continue to the next section [23.4.9 Exact - Balanced Volumes](#) or return to [23.4 Exact](#).
23.4.9 Exact - Balanced Volumes

**Position of option on menu:** Design => Volumes => Exact => Balanced volumes

On selecting the **Balanced volumes** option, the **Balances Volumes** panel is displayed.

![Balances Volumes Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>Available tins</td>
<td></td>
</tr>
<tr>
<td>Poly</td>
<td>polygon box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulking factor</td>
<td>measure box</td>
<td>Available measures</td>
<td></td>
</tr>
<tr>
<td>Minimum slope</td>
<td>measure box</td>
<td>Available measures</td>
<td></td>
</tr>
<tr>
<td>Maximum slope</td>
<td>measure box</td>
<td>Available measures</td>
<td></td>
</tr>
<tr>
<td>Increment slope</td>
<td>measure box</td>
<td>Available measures</td>
<td></td>
</tr>
<tr>
<td>Start direction</td>
<td>measure box</td>
<td>Available measures</td>
<td></td>
</tr>
<tr>
<td>End direction</td>
<td>measure box</td>
<td>Available measures</td>
<td></td>
</tr>
<tr>
<td>Increment angle</td>
<td>measure box</td>
<td>Available measures</td>
<td></td>
</tr>
<tr>
<td>Model for results</td>
<td>model box</td>
<td>Available models</td>
<td></td>
</tr>
<tr>
<td>Balance</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Return to [23.4 Exact](#).
23.5 Trimesh

Position of menu:  Design => Volumes => Trimesh

These volumes are calculated for trimeshes.

The Trimesh walk-right menu is

- Trimesh Volumes
- Trimesh volume and area report
- Trimesh volume along a string report

For the options see:

- 23.5.1 Trimesh Volume and Area Report
- 23.5.2 Trimesh Volume Along a String

Or Return to 23 Volumes.
23.5.1 Trimesh Volume and Area Report

**Position of option on menu:**  Design => Volumes => Trimesh => Trimesh volume report

This option calculate the volume of closed trimeshes, and user selected combinations of closed trimeshes.

On selecting Trimesh volume report, the Trimesh Volume Report panel is displayed.

![Trimesh Volume Report panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source type</strong></td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data to search - for a full description go to <a href="#">4.19.3 Data Source</a></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Data source</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source of trimeshes to calculate the volumes for.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Individual trimesh</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>if ticked</em>, the volume for each individual trimesh will be written to the XML file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Sum by name</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>if ticked</em>, the sum of the volumes for trimeshes with the same name will be written to the XML file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Sum by model</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>if ticked</em>, the sum of the volumes for trimeshes in the same model will be written to the XML file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Sum by name and model</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>if ticked</em>, the sum of the volumes for trimeshes in the same model will be written to the XML file.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**Report type**  
choice box  
original xml, <Customize>  
output format for the report.

For information on setting up custom reports from the generated XML file using xslts, see 4.30 Setting Up XML Reports.

**Report file**  
file box  
an XML file will be created and a report of this name, and of the type given by Report type will be generated from the XML file. If the file already exists, a panel with Replace and Cancel buttons will be displayed.

**Report**  
button  
the volumes of the various combinations of trimeshes are calculated and written to the XML file.

Continue to the next section 23.5.2 Trimesh Volume Along a String or return to 23.5 Trimesh.
23.5.2 Trimesh Volume Along a String

**Position of option on menu:** Design => Volumes => Trimesh => Trimesh volumes along a string

This option calculates the volume of closed trimeshes between chainages on a selected string.

**Warning:** The volumes can only be calculated for trimeshes that in plan, the section line only cuts the trimesh twice. So in plan, the trimesh can't be a U or an S shape.

Selecting Trimesh volumes along a string report displays the Trimesh Volumes Along a String Report panel:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centreline string</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source for trimeshes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start chainage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End chainage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chainage interval</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chainage reference</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cut limit</td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions.
the string for defining the sections to be used in the volume calculations. The sections are taken at right angles to this string.

Data source type

Model

Data to search for trimeshes - for a full description go to 4.19.3 Data Source.

Data source

input

source of trimeshes to calculate the volumes along a string for.

Start chainage

input

if not blank, the chainage of the first section to use for volume calculations.

If blank, start at the beginning of the selected string.

End chainage

input

if not blank, the chainage of the last section to use for volume calculations.

If blank, end at the end of the selected string.

Chainage interval

real box 10

the chainage distance between the lines to section along.

Cut limit

real box 50

the plan distance that the section goes out from the selected string.

Report type

choice box original xml, <Customize>

output format for the report.

For information on setting up custom reports from the generated XML file using xslts, see 4.30 Setting Up XML Reports.

Report file

file box

an XML file will be created and a report of this name, and of the type given by Report type will be generated from the XML file. If the file already exists, a panel with Replace and Cancel buttons will be displayed.

Report

button

the volume of each trimesh is calculated between each pair of sections and written to the XML file.

Continue to the next section 23.6 Grid Cell or return to 23.5 Trimesh.
23.6 Grid Cell

Position of option on menu:  Design => Volumes => Grid cell

This panel is used to calculate the cut and fill volume between two tins using the exact method and then creating text for each rectangular cells of user defined sides covering the tins.

The rectangular cells (grid) can be drawn and the text of the cut and fill values for each grid cell and z-values at the cell corners. The total cut and fill can also be created at the bottom of the grid.

Cut is defined to be where ever the design tin is below the natural surface tin. Fill is defined to be where ever the design tin is above the natural surface tin.

For more information on the exact volume calculations, go to the section 23.2.2 Theory of Exact Volumes

On selecting the Grid cell option, the Grid Volumes panel is displayed.

![Grid Volumes Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Natural surface/Design surface</strong></td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td>name of the original/new tin for determining volumes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Calculate tins min, max</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
when selected, the minimum and maximum x and y values to define the grid cells are calculated and written to the grid x and y minimum and maximum panel fields.

**Grid xmin xmax** input

the minimum and maximum x values to define the grid cells. The two values are separated by one or more spaces.

**Grid ymin ymax** input

the minimum and maximum y values to define the grid cells. The two values are separated by one or more spaces.

**X/Y grid size** input

the X/Y size of the grid cell.

**Label tin z’s** tick box ticked

if ticked, create text values for the z-values from the tins for each of the grid cell corners. The natural surface z value is followed by a N and is placed above and to the right of the corner point. The design surface z value is followed by a D and is placed below and to the right of the corner point.

**Draw grid** tick box ticked

if ticked, the grid is drawn.

**Label total cut/fill** tick box ticked

if ticked, label the total cut, fill and balance at the left hand bottom corner of the grid.

**Cut/Fill/Grid/Z text colours** colour box

colours to use for the cut, fill and z-values and the grid lines.

**Num decimals for z’s** input 3

number of decimal places in the z values.

**Z text size (w)** input

size in world units for the text of the z values.

**Num decimals for volumes** input 0

number of decimal places in the cut and fill volumes.

**Volume text size (w)** input

size in world units for the text of the volumes.

**Model for grid and text** model box available models

model to place all the text and grid lines in.
Report file input *.rpt
name of the file to contain the volume report. If the file already exists, the report will be appended to
the file. If no name is given, no report is produced.

Process button
calculate the grid volumes and grid lines.

Undo button
undo the last set of text and grid lines created whilst the panel was up.

Continue to the next section 23.7 Stockpile or return to 23 Volumes.
23.7 Stockpile

**Position of option on menu:** Design => Volumes => Stockpile

On selecting the Stockpile option, the Stockpile Calculations panel is displayed.

![Stockpile Calculations panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source type</strong></td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data selection type - for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Data source</strong></td>
<td>data source for strings to create the stockpile.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Volumes</strong></td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td>if ticked, calculate and report the volumes of the stockpiles.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Surface area</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if ticked, calculate and report the surface area of the stockpiles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Model for tins</strong></td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
</tbody>
</table>
name of the model to place the stockpile tins in.

**Model for text**  model box  available models
  name of the model to place the text in.

**Base string name**  name box  bsp  available names
  Name of the string to use as the base of the stockpile.

**Report file**  file box  *\.rpt
  name of the file to contain the volume report.

**View to add**  view box  available views
  view to add the model of text to.

**Textstyle data**  textstyle data box  text favourites
  text setup - for a full description go to 4.6.12 Textstyle Data and Textstyle Info.

**Decimal places**  number box
  number of decimal places for the volumes in the report.

**Stockpile number**  number box
  number of stockpile to use in the report.

**Process**  button
  calculate the volume and/or surface area of the stockpile.

Continue to the next section 23.8 Tin to Tin by Height Range or return to 23 Volumes.
23.8 Tin to Tin by Height Range

**Position of option on menu:** Design => Volumes => Tin to tin ht range

This option is used to calculate the cut and fill volume between two tins breaking the cut and fill volumes up by height ranges.

An approximate method is used which uses the z-value of the tin at a point as the representative of the height for a cell of user specified size "delta x" by "delta y" centred on the point. By making delta x and delta y small, the volumes become more accurate but the computation time increases.

Please note that the volume totals are only for the heights in the range file. If the height ranges don’t cover the entire height difference, then the totals will not be the volumes between the two tins.

Cut is defined to be where ever the new tin is below the original tin. Fill is defined to be where ever the new tin is above the original tin.

In the volumes report, the sign for cut (negative or positive) is given by the cut volume sign from the default settings panel (fill will have the opposite sign).

The height range file consists of a list of height ranges and colours, one set per line, in the format

```
lower_height upper_height height_colour
```

This line represents all heights satisfying

```
lower_height <= height < upper_height.
```

For each range in the file, the total cut and fill volumes for the height range will be reported on. The colour is ignored in this option.

**Example of a Height Range File**

```
// height range file
// format: lower_height upper_height colour_for_height_range

110 120 green // colour green where the height is greater or equal to 110 and less than 120
120
120 220 "dark green" // colour dark green where height is >= 120 and less than 220
```

On selecting the tin to tin ht range option, the tin to tin by height range panel is displayed.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original/New tin</td>
<td>tin box</td>
<td>available tins</td>
<td>name of the original/new tin for determining volumes.</td>
</tr>
<tr>
<td>Delta x/Delta y</td>
<td>input</td>
<td>1</td>
<td>x/y size of the cell to consider to be of the height.</td>
</tr>
<tr>
<td>Select polygon</td>
<td>string select</td>
<td></td>
<td>optional. If selected, the volumes are restricted to being inside this polygon.</td>
</tr>
<tr>
<td>Range file</td>
<td>input</td>
<td>*.drf</td>
<td>if non-blank, the user supplied height range file is used to split up the volumes report. Note that the volume totals are only for the heights in the range file.</td>
</tr>
<tr>
<td>Report file</td>
<td>report file</td>
<td>*.rpt</td>
<td>if non-blank, the name of the file to contain the volume report. Note that the volume totals are only for the heights in the range file.</td>
</tr>
<tr>
<td>Volume button</td>
<td></td>
<td></td>
<td>calculate the volumes.</td>
</tr>
</tbody>
</table>

Continue to the next section 23.9 Create Cut/Fill Text Within Polygon or return to 23 Volumes.
23.9 Create Cut/Fill Text Within Polygon

**Position of option on menu:** Design => Volumes => Cut/fill text in poly

This option is used to calculate the cut and fill volume between two tins within a polygon and writing the cut and fill values to a model. The Exact or End Area method can be used for the volume calculations.

Selecting Cut/fill text in poly brings up the **Create Cut/Fill Text within Polygon** panel is displayed.

![Create Cut/Fill Text within Polygon panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Polygon</strong></td>
<td>poly string</td>
<td>select</td>
<td>the volumes are restricted to being inside this polygon.</td>
</tr>
<tr>
<td><strong>Original/New tin</strong></td>
<td>tin box</td>
<td>available tins</td>
<td>name of the original/new tin for determining volumes.</td>
</tr>
<tr>
<td><strong>Textstyle info</strong></td>
<td>textstyle info box</td>
<td></td>
<td>textstyle info to use for the cut and fill text</td>
</tr>
<tr>
<td><strong>Units</strong></td>
<td>input</td>
<td></td>
<td>text to place after the cut/fill values</td>
</tr>
<tr>
<td><strong>Precision</strong></td>
<td>input</td>
<td>3</td>
<td>number of decimal places to use for the cut/fill values</td>
</tr>
<tr>
<td><strong>Calc. type</strong></td>
<td>choice box</td>
<td>Exact</td>
<td>use either Exact or End Area for the volume calculations</td>
</tr>
</tbody>
</table>

Create Cut/Fill Text Within Polygon
Angle input
angle for sections when End Area is used

Separation input
distance between sections when End Area is used

Model for text model box available models
model to place to cut and fill text in.

Create button calculate the volumes and text.

Return to 23 Volumes.
24 Drafting

The Drafting menu contains options to create data for plots.

The Drafting menu is on Main menu and on 12d Model menu and floating Drafting menu.

For Bearing/distance labelling go to

- 24.1 Bearing/Distance Labelling
- 12.13.35.5 Line Marking
- 25.7.1 Create/Edit Title Block File
- 24.4 Create Crosses at String Points
- 24.5 Create Cut/Fill Symbols
- 24.6 Create World Grid
- 24.7 Create/Edit Dimensions
- 24.8 Chainage/Offset Label Inquire
- 24.9 Display Colours, Textstyles and Linestyles
- 24.10 Draw Symbols for Alignment String
- 24.11 Polygon Hatching
- 24.16 Text and Tables
- 24.13 North Point Insertion
- 17.18.3 Setout Lip Line
- 24.15 Scalebar
- 24.16 Text and Tables
24.1 Bearing/Distance Labelling

Position of option on menu: Drafting => Bearing/distance labelling

This option is used to label a selected line or arc segment with bearing, distance information and arc length information. If the line or arc length is below a given value, the label information is added to a short segment table.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>bd annotation file</td>
<td>file box</td>
<td>*.bdf files</td>
<td>file containing values for the text parameters.</td>
</tr>
<tr>
<td>Read</td>
<td>button</td>
<td></td>
<td>read the file given in the “bd annotation file” field.</td>
</tr>
<tr>
<td>Save</td>
<td>button</td>
<td></td>
<td>save the current text parameter settings to the file given in the “bd annotation file” field.</td>
</tr>
<tr>
<td>Save as</td>
<td>button</td>
<td></td>
<td>save the current text parameter settings in a file.</td>
</tr>
<tr>
<td>Bearing parameters</td>
<td>input box</td>
<td>none/complete bearing parameters incomplete</td>
<td>if none, don’t label bearings.</td>
</tr>
</tbody>
</table>
If complete, all the bearing parameters have been set.
If incomplete, not all the bearing parameters have been set so the labels can’t be created.

Create bearing text

tick box

if tick, bearings are labelled.

Distance parameters

input box

none/complete bearing parameters incomplete

if none, don’t label distances.
If complete, all the distance parameters have been set.
If incomplete, not all the distance parameters have been set so the labels can’t be created.

Create distance text

tick box

if tick, distances are labelled.

Label all segments

tick box

if tick, all segments of the selected element are labelled.
If not-tic, only the selected segment is labelled.

label style

input box b/d, d/b, /bd b/d /db, bd, db

defines how to label the bearing and distances. For example, d/b means distance above the line and bearing below the line. Bearing or distance is only labelled if the appropriate flags are set.

Add text models to view

tick box

if tick, all models containing text are added to the view containing the selected segment.

Minimum length

input box 0

if non-zero, then if the length of the segment is less than this value, then it is given a short segment number and added to the short segment table.

Next short segment no.

input box 1

the next number to use for short segments.

Pick

button

select the segment to be labelled.

Undo

button

undo the last set of created labels.
24.2 Line Marking

Position of option on menu: Drafting => Create line marking
This option creates a title block file from a model of data. It has already been documented as
View => Visualisation => Line marking
in the section 12.13.35.5 Line Marking.

24.3 Create Titleblock

Position of option on menu: Drafting => Create title block
This option creates a title block file from a model of data. It has already been documented as
Plot => Create title block file
in the section 25.7.1 Create/Edit Title Block File.
24.4 Create Crosses at String Points

Position of option on menu: Drafting => Create crosses for strings

This panel is used to create crosses at the points of strings. The cross is made up of two 2d strings with the intersection of the two strings being the (x,y) position of the point in the string. The option is mainly used to create crosses to send to packages that don’t support a cross at a point.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source</strong></td>
<td>data source</td>
<td>Model</td>
<td>String, Model, View</td>
</tr>
<tr>
<td><strong>Model/View/String</strong></td>
<td>data source</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Model for crosses</strong></td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td><strong>Colour for crosses</strong></td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td><strong>Cross size (w)</strong></td>
<td>input box</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Run button
run the option

Undo button
undo the last set of crosses created whilst the panel has been up.
24.5 Create Cut/Fill Symbols

Position of option on menu:  Drafting => Create cut/fill symbols

This option is used to create cut and fill symbols (tadpoles) between strings or the names of the points across x-sections. The choice of symbols and the points they go between is controlled by a parameter file.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference string</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use X-section model</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td>X-section model</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Model for symbols</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Clean model for symbols first</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td>Colour for symbols</td>
<td>input</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td>Parameter file</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use max symbol width</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max symbol width</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

string used to define chainage and perpendicular

if ticked, the points on the cross-sections in the model are used as the names to create symbols between.

model of cross sections used if “Use X-section model” is ticked.

model for the created cut-fill symbols

if ticked, the Model for symbols will be cleaned before the new symbols are created and added.

colour for the created cut-fill symbols

file specifying what symbols are drawn between what strings (or points on x-sections).

if tick, the symbols are only stretched to the maximum size given in the “Max symbol width” field.
maximum distance in world units to stretch the symbol.

**Process** button

Run the option.

**Undo** button

undo the last set of cut-fill symbols created by running the panel. The “Undo” function is lost once the option is finished.

**Notes:**

// Sample file for plotting symbols to denote cut/fill slopes
// All lines starting with // are comments. Blank lines are ignored
//
// The file layout is:

// ch_start ch_end ch_inc side str1 str2 symbol1 %1 symbol2 %2
//
// eg 110 150 10 L "trial1->c1" "trial->c2" tadpole 100 tadpole 50
//
// ch_start defines the start chainage
// ch_end defines the end chainage
// ch_inc defines the chainage increment
// side is one of L, R or LR (left, right, both)
// str1 is the name of the string (or point on x-section) to start tadpole
// str2 is the name of the string (or point on x-section) to end tadpole

// If strings are used, the string model name must be contained in the
// string definition i.e. in the format “model->string_name”
//
// The symbols drawn between the strings (or points) alternate between
// symbol1 and symbol2 and the symbols are drawn as the
// given percentages %1 and %2 respective of the distance
// between the strings (points).

// The symbol can be one of "
// tadpole     - predefined tadpole shape
// line       - predefined batter tick
// "model=xxxxx" - where model "xxxxx" contains 3d strings
// defining the symbol shape. This is as per
// user-defined batter symbols in 4D.
// NB. only 3d strings are supported in the macro

// Example

    0 700 10 LR "road str->c2" "road str->c3" tadpole 100 tadpole 50
    0 700 10 LR "road str->c4" "road str->c5" line 90 line 50
    0 700 10 LR "road str->f2" "road str->f3" "model=symbol" 100 tadpole 50
    0 700 10 LR "road str->f4" "road str->f5" line 90 line 50
24.6 Create World Grid

Position of option on menu:   Drafting => Create world grid

This option is used to create a grid, identical to the one drawn on a plan view, but in world units. This can then be output to CAD systems that do not allow grids to be easily created.

Selecting the Create world grid option, brings up the Create World Grid panel:

![Create World Grid Panel](image)

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clip mode</td>
<td>choice box</td>
<td>rectangle, view</td>
<td></td>
</tr>
</tbody>
</table>

If rectangle, icons appear for drawing a rectangle, a rotated rectangle or selecting a plot frame.

Selecting the rectangle and rotated rectangle icons require the user to draw the rectangle to define the area to produce the grid for.

Selecting the plot frame icon requires the user to select a plot frame and the view area from the plot frame defines the area to produce the grid for.
If view, a View Box appears and a view is selected to define the area to produce the grid for.

**Draw mode**

- choice box
- full lines
- full lines, crosses, marks
  
  the type of the grid being drawn - full lines, crosses or marks.

If full lines, then solid lines are drawn at the grid x and y spacing.
If crosses, then crosses of size cross/mark size are drawn at the intersection of the grid x and y spacing.
If marks, then solid lines size cross/mark size are drawn at the beginning/end of the grid at the x and y spacing.

**Cross/mark size**

- input
  
  size in world units of the grid crosses/marks.

**Grid East (x)**

- Interval input
  
  the distance between the East (x) grid lines. If this value is zero, the x grid lines will not be drawn.

- Text mode input
  
  the x (East) grid lines can be labelled with their x value. If the grid lines are labelled, the labels can be drawn on the top, the bottom or both ends of the x-grid lines.

  if off, no text is created for the x-grid lines.

  If bottom, text is created only at the bottom of the x-grid lines.

  If top, text is created only at the top of the x-grid lines.

  If top & bottom, text is created at the top and bottom of the x-grid lines.

- Pre*postfix input
  
  if non blank, pre*post text to use for the labels on the x-grid lines.

  prefix/postfix (pre*post) to be applied to the value of x (East). If pretext only, just give the text. If post text is required, precede it by a *. For example E*m will place E before the x value and m after the number.

**Grid North (y)**

- Interval input
  
  the distance between the North (y) grid lines. If this value is zero, the y grid lines will not be drawn.

- Text mode input
  
  the y (North) grid lines can be labelled with their y value. If the grid lines are labelled, the labels can be drawn on the top, the bottom or both ends of the y-grid lines.

  if off, no text is created for the y-grid lines.

  If left, text is created only at the left of the y-grid lines.

  If right, text is created only at the right of the y-grid lines.

  If left & right, text is created at the left and right of the y-grid lines.

- Pre*postfix input
  
  if non blank, pre*post text to use for the labels on the y-grid lines.

  prefix/postfix (pre*post) to be applied to the value of y (North). If pretext only, just give the text. If post text is required, precede it by a *.

**Output settings**
| Grid colour | colour box available colours | colour for the grid lines. |
| Textstyle data | textstyle box | textstyle data (height, angle etc) for the text for the grid labels. |
| Grid model | model box available models | model for the grid lines and text. |
| Create border | tick box tick | if tick, a rectangle around the area to create the grid for, is created. |
| Create | button | create the grid according to the values given in the panel. |
24.7 Create/Edit Dimensions

Position of option on menu: Drafting => Create/edit dimensions

This option is used to create and edit dimensions.

This option is currently under development.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>read in an existing range file.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Write button

write out the data in the pages to the given range file.
24.8 Chainage/Offset Label Inquire

Position of option on menu:  Drafting => Chainage/offset label inquire

This option is used to calculate and label the perpendicular distance from a selected point to a selected centreline, and the chainage of the point dropped perpendicularly onto the centreline.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line colour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linestyle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol colour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chg dec places</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset dec places</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Label method</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prefix chainage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prefix offset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textstyle data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centreline</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**Model for labels**  
model box  
Label chg off  
available models  
if non-blank, create text for the calculated offset and chainage values and place it in this model.

**Line colour**  
yellow  
available colours  
colour of the line drawn.

**Linestyle**  
linestyle box  
hidden2  
available linestyles  
text style for the text.

**Symbol colour**  
cyan  
available colours  
colour of the symbol drawn at the point.

**Symbol size**  
0.5  
size (in world units) of the symbol drawn at the point.

**Label method**  
choice box  
Chng/Offset  
Chng/Offset, Offset/Chng  
method of labelling the line from a selected point to the dropped point.

**Prefix chainage**  
Ch  
prefix for the chainage value.

**Prefix offset**  
Off  
prefix for the offset value.

**Textstyle data**  
textstyle data box  
available text data  
textstyle, size, colour etc. for the text.

**Centreline**  
string select  
select the string to use for the calculation of chainage and offset.

**Pick**  
button  
pick a position and the offset from the position to the position dropped perpendicularly onto the selected Centreline is calculated, plus the chainage on the Centreline of the dropped point. The values are reported in the panel’s message area and if Model for labels is non-blank, text of the values is created and place in the model.
24.9 Display Colours, Textstyles and Linestyles

**Position of option on menu:** Drafting => Display colours, text and line styles

This option creates a model to display either all the colours, linestyles or textstyles defined for a project.

![Display Colours, Textstyles and Linestyles](image)

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Display</strong></td>
<td>choice</td>
<td>colours</td>
<td>colours, textstyles, linestyles</td>
</tr>
<tr>
<td><strong>Model for the display</strong></td>
<td>model box</td>
<td>available modes</td>
<td>model to create the display in.</td>
</tr>
<tr>
<td><strong>Number of rows</strong></td>
<td>input</td>
<td>20</td>
<td>the display is created by first doing a column of the given “Number of rows” and then moves on to another column until all the data is drawn.</td>
</tr>
</tbody>
</table>

**Process**

button

run the option.
24.10 Draw Symbols for Alignment String

Position of option on menu:  Drafting => Draw symbols for alignment

This panel is used to create symbols (butterflies and dumbbells) at the spiral-tangent, spiral-curve and curve tangent points.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>type of data to create symbols for.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model/View/String</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data source to create symbols for.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour of symbols</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>colour to use for the created symbols.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scale of symbols</td>
<td>input box</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>scale of the created symbols.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for symbols</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>model to put the created symbols into.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>run the option.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undo</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>undo the last set of symbols created whilst the panel has been up.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
24.11 Polygon Hatching

Position of option on menu: Drafting => Hatch polygon

This option is used to create hatching within a user selected string. A function is created so that the hatching can be recalced if the string is modified.

Selecting Hatch polygon brings up the Polygon Hatching panel.

![Polygon Hatching panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function name</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hatch model</td>
<td>input box</td>
<td></td>
<td>model to place the hatching in.</td>
</tr>
<tr>
<td>Hatch colour</td>
<td>colour box</td>
<td>red</td>
<td></td>
</tr>
<tr>
<td>Hatch x/y spacing (m)</td>
<td>input box</td>
<td>10</td>
<td>distance in world units between the x/y hatching lines.</td>
</tr>
<tr>
<td>Hatch angle</td>
<td>input box</td>
<td>0</td>
<td>angle of the hatch lines.</td>
</tr>
<tr>
<td>Hatch linestyle</td>
<td>input box</td>
<td>1</td>
<td>linestyle for the hatch lines.</td>
</tr>
<tr>
<td>Solid hatch</td>
<td>tick box</td>
<td></td>
<td>if ticked, a solid fill of the given hatch colour is used.</td>
</tr>
<tr>
<td>Hatch polygon</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
select the string to hatch.

**Preview** button

draw the hatching to see if it is correct - the hatching function has not been defined.

**Set** button

define the hatching function with the values given in the panel fields.
24.12 Translate Strings

**Position of option on menu:** Drafting => Multi string translate

This panel is used to translate strings selected by name group of a window. Selecting Multi string translate brings up the Translate Strings panel.

![Translate Strings panel](image)

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>button select a single string to translate.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>button select a string and all strings with the same name on the view will be translated.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group</td>
<td>button select a string and all strings with the same group on the view will be translated.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Window</td>
<td>button click and release to define the first point of the window and then move the cursor and click and release to define the second point of the window. A position is then selected and as the cursor is moved, all strings in the view that are totally inside the window are translated and placed at the next selected position.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undo</td>
<td>button undo the last set of strings translated whilst the panel has been up.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
24.13 North Point Insertion

Position of option on menu: Drafting => North arrow

This option creates a point with a textstyle of the north point arrow. Selecting North arrow brings up the North Point Insertion panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linestyle</td>
<td>input box</td>
<td>4dnorth</td>
<td></td>
</tr>
<tr>
<td>Linestyle for the north point arrow - leave as 4dnorth.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size factor</td>
<td>input box</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Factor the north arrow by this value.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>either type in an x y position or click on &quot;+&quot; and use Pick xyz to locate the north arrow.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>View to add</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>View to add the arrow to.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create the north point arrow in the model North Point.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

24.14 Quarter Points
Position of option on menu:  Drafting => Quarter points bubbles and table

This option is used to create bubbles and/or a report for the critical horizontal and vertical points and quarter points (by chord or by chainage) for any arcs in an alignment string.

This option has already been documented as

Survey => Setout => Setout lip line

in the section 17.18.3 Setout Lip Line.
24.15 Scalebar

**Position of option on menu:**  Drafting => Scale bar

This option is used to create a scale bar. Selecting Scale bar brings up the Create Scalebar panel.

![Create Scalebar Panel]

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Model for scalebar</strong></td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td><em>model to place the scalebar in.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Add to view</strong></td>
<td>input box</td>
<td>available views</td>
<td></td>
</tr>
<tr>
<td><em>if non-blank, the model is added to this view.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Scale 1:</strong></td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>scale to create the scale bar at.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Scale description</strong></td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>description to write under the scale bar.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Insertion point</strong></td>
<td>pick ops</td>
<td>pick ops</td>
<td></td>
</tr>
<tr>
<td><em>position to place the left hand bottom corner of the scale bar at.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Process</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>run the option.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
24.16 Text and Tables

Position of menu:  Drafting => Text and Tables

The Text and Tables menu contains options to create text data and tables for plots.

The Text and Tables menu is

![Text and Tables Menu]

For the option **Defaults**, go to 24.16.1 Defaults - Text
- Create quick text 24.16.2 Quick Text Input
- Create/edit paragraph text 24.16.3 Text Creation/Edit
- Table create/edit 24.16.4 Table Create/Edit
- Information Leader 24.16.5 Leader Create (Information)
- Leader create 24.16.6 Leader Text Creation
- Leader edit 24.16.7 Leader Edit
- Replace text 24.16.8 Replace Text
- Reverse bearing 24.16.10 Reverse Bearing
- Short segment table 24.16.11 Short Segments Table
- Short segment report 24.16.12 Short Segment Report
- Short segment table utilities 24.16.13 Short Segments Table Utilities
- Alignment/super alignment table 24.16.14 Alignment & Super Alignment

**Table**
- Tabulate alignment - IP’s, TC’s 24.16.15 Tabulate Alignment - IP’s and CT’s
- Tabulate alignment - elements 24.16.16 Tabulate Alignment - Elements
- Tabulate kerb return 24.16.17 Tabulate Kerb Return
- Tabulate range file 24.16.18 Tabulate Range File
- Tabulate symbols/linestyle legend 24.16.19 Symbol / Linestyle Legend -

**Tabulation**
- Text file input same option as 24.16.3 Text Creation/Edit
24.16.1 Defaults - Text

**Position of option on menu:** Drafting => Text and Tables => Defaults

This option is used to project text defaults that are used with the "Fonts" button on many of the text options.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Text model</strong></td>
<td>model box</td>
<td>Text</td>
<td>available models</td>
</tr>
<tr>
<td>default model to place the text in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Text colour</strong></td>
<td>colour box</td>
<td>cyan</td>
<td>available colours</td>
</tr>
<tr>
<td>default colour for text.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Text size</strong></td>
<td>input box</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>default size for text.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Text width</strong></td>
<td>input box</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>default x-factor text.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Text angle</strong></td>
<td>input box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>default angle for text.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Text style</strong></td>
<td>input box</td>
<td>iso</td>
<td></td>
</tr>
<tr>
<td>default text style.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Text justify</strong></td>
<td>input box</td>
<td>bottom-left</td>
<td></td>
</tr>
<tr>
<td>default text justification.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Set defaults</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>set the project defaults.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
24.16.2 Quick Text Input

**Position of option on menu:**  Drafting => Text and Tables => Create quick text

The quick text option creates lines of text using the text defaults. The text can be edited and modified using the create/edit paragraph text.

![Text Input](image)

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Text box</strong> button</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>type the text to be created into the text box.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Place text</strong> button</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>pick a position to become the justification point for the first line of text.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
24.16.3 Text Creation/Edit

**Position of option on menu:** Drafting => Text and Tables => Create/edit paragraph text

The option creates and edits a paragraph of text created with this option or the quick text option.

![Image of Text Creation/Edit panel]

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text Input Type</td>
<td>method of creating text - type in a paragraph or read from a file</td>
<td>choice box</td>
<td>paragraph, file</td>
<td></td>
</tr>
</tbody>
</table>

- **Paragraph**
  - *Create* button: select create to bring up the text box to type text into.
  - *Edit* button: select edit to pick and edit existing text.

- **Text file**
  - *Name of the file to read in.*

- **Text parameters**
  - **Box/Shadow/None**
    - *Radio button* box
      - *If box is ticked,* draw a box around the text.
      - *If shadow is ticked,* draw shadowed box around the text.
      - *If none is ticked,* don’t draw a box around the text.
  - **Box colour**
    - *Colour box* orange
Colour of the box around the text

**Shadow colour**

- Colour box: orange

Colour of the shadow around the box around the text

**Location x y z**

- X, y, z box: pick ops menu

*Pick the position for the text.*

**Font**

- Button: bring up the values for the text - e.g. model, colour, size etc.

**Inquire**

- Button

**Process**

- Button: create the text and place it at the given location.
24.16.4 Table Create/Edit

Position of option on menu: Drafting => Text and Tables => Table Create/edit

*This option is currently under development*

This option reads in a csv file and loads the data into a grid on the panel. The data can be edited in the grid and then a table produced in a model.

An existing table in a model can also be selected and the data read into the grid on the panel. The data can then be edited and the table updated.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>file to read in and display in the grid on the panel.</td>
<td>file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read</td>
<td>read the specified file in and display it in the grid on the panel.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td></td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
write the data in the grid on the panel to the specified file.

**Table settings**

create the text and place it at the given location.
24.16.5 Leader Create (Information)

Position of option on menu: Drafting => Text and Tables => Information leader

This option creates a leader that can extract and list certain information about the string selected. Information such as AREA, STRING LENGTH, SEGMENT LENGTH and GRADE can be displayed.

A choice list is available and can be partially user defined.

General notes can also be placed that do not extract information from any string selected.

Leaders can be moved along the string they relate to, and subsequent information values updated.

Selecting the Information leader option brings up the Leader Create (Information) panel:

![Leader Create (Information) panel]

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leader Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information Leader</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linestyle</td>
<td></td>
<td>LEADER ARROW 500</td>
<td></td>
</tr>
<tr>
<td>Leader Colour</td>
<td></td>
<td>white</td>
<td></td>
</tr>
<tr>
<td>Leader Model</td>
<td></td>
<td>12D LEADER INFO</td>
<td></td>
</tr>
<tr>
<td>Textstyle data</td>
<td></td>
<td>&quot;ISO&quot; left bottom white 2.5 0 1</td>
<td></td>
</tr>
<tr>
<td>Information Type (# subs)</td>
<td></td>
<td>GENERAL</td>
<td></td>
</tr>
<tr>
<td>Global Text Angle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add Leader Cog</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leader Text</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Place Leader</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flip Text</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+/- Cog</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edit Leader</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Update Text</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leader Start Options</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pick Point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid Point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centroid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auto Update Leader Model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undo Last</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Save Style</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rot / Move</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Help</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Leader Type

Information Leader tick box ticked
If ticked, information or general notes can be created.

Label Map / Ver Text Leader tick box not ticked
If ticked, any vertex text or text created via the Label Map File can be converted into a leader, allowing the text to be moved but still have the leader at the original location.

Linestyle linestyle box LEADER ARROW 500 available linestyles
If non-blank, entry used as leader arrow scale.

Leader Colour colour box white available colours
If non-blank, entry used as leader colour.

Leader Model model box 12D LEADER INFO available models
If non-blank, entry used as leader model.

Textstyle data input "ISO" white 2.5 available Textdata
If non-blank, entry used as text properties.

Information Type (# subs) choice box GENERAL available choices
If non-blank, entry used as type of information leader. The list is generated from a defaults file in the library.

Global Text Angle real GENERAL
If non-blank, entry used as angle for text during placement of leader.

Add Leader Cog tick box ticked
If ticked, leader cog will be added.

Leader Text
From the choice above, default text is placed in the Leader Text box on the panel.
Any calculated information value, such as AREA, LENGTH will be substituted for the # that may appear in the Leader Text.

Place Leader button
Select a position along a string that suits the type of information selected from the choice box (segment for SEGMENT LENGTH, a vertex for XYZ COORDS, etc.).

General notes (i.e. notes without the # in the Leader Text) may be placed using the cursor position as well.

Placement of the leader is controlled by the Leader Start Options.

Flip Text button
Select an information leader already placed. Upon accepting the string, the text will be flipped to the opposite side of the leader.

+- Cog button
Select an information leader already placed. Upon accepting the string, the cog will be added or removed.

Edit Leader button
Select an information leader already placed to edit the text. The text will be displayed in the edit box.

Update Text button
If selected, the text will be updated on the selected leader.

**Leader Start Options**

**Pick Point**  
*Click box*  
*If ticked, the start of the leader will be at the selection point.*

**Mid Point**  
*Click box*  
*If ticked, the start of the leader will be at the mid point of the string selected or segment selected, depending on the Information Type.*

**Centroid**  
*Click box*  
*If ticked, the start of the leader will be at the centroid of the string selected.*

**Suppress any Original Vertex Text (Set Ht to 0)**  
*Click box*  
*Available only for the leader option Label Map / Ver Text Leader, where the vertex text on the original string selected can be invisible by setting its height to zero.*

**Auto Update Leader Model**  
*Button*  
*If selected and the string the leader is linked to has changed, and/or the leader is moved to another position on the string, information in the leader relating to the string will be updated.*

**Undo Last**  
*Button*  
*If selected, will undo the last leader placed.*

**Save Style**  
*Button*  
*Writes out a default file to the .project folder using the current Information type displayed (e.g. STRING_LENGTH) as part of the file name.*

**STRING_LENGTH_LEADER_TEXTSTYLE.def**

Example data written to file:

- **Text_Style**: "ISO"
- **Text_Colour**: 7
- **Text_Whiteout_Colour**: 0
- **Text_Border_Colour**: 0
- **Text_Size**: 2.500
- **Text_Units**: paper
- **Text_Angle**: 0.0000

This file can be copied to a user_lib area for use in other projects.

**Rot / Move**  
*Button*  
*This option is two-fold depending on where you select the leader.*

*If the leader is selected at the arrow or first vertex, then the Move command is activated.*

*If moving the leader from, say, one radius segment to another radius segment, then the leader only needs to be placed close to the segment, as the Auto Update Leader Model will lock it onto the segment and in this case update the radius value.*

*If the leader is selected anywhere else, then the Rotate command is activated.*

*The leader rotates about the arrow insertion point.*
Example of Library Defaults file:

Info_Leader_Create_Panel.def

Leader_Style          "LEADER ARROW 500"
Leader_Colour         7
Leader_Model          "12D LEADER INFO"
Text_Style            ISO
Text_Colour           7
Text_Whiteout_Colour  -1
Text_Border_Colour    -1
Text_Units            "Paper"
Text_Size             "2.500"
Text_Angle            "0"
AREA                  "Area #"             "2"
CENTROID_X_Y          "Centroid:\n#"      "3"
CIRCLE_WITH_TEXT      "1"
GRADE_1_IN            "Grade: 1 in #"      "2"
GRADE_PERCENT         "Grade: #"            "2"
LEVEL                 "S.L. #"                "3"
SEGMENT_BEARING       "Bearing #"            "2"
SEGMENT_LENGTH_BEARING "#"                 "2"
SEGMENT_LENGTH        "Seg Length #m"        "3"
SEGMENT_LENGTH_3D     "Seg Length 3d #m"      "3"
SEGMENT_RADIUS        "R #"                 "2"
STRING_LENGTH         "Length #m"            "3"
STRING_LENGTH_3D      "Length 3d #m"          "3"
STRING_NAME           "Control Line #"        "2"
TIN_LEVEL             "S.L. #"               "3"
TIN_DEPTH             "Depth #"               "3"
XY_COORDS             "Coords:\n#"                "3"
XYZ_COORDS            "Coords:\n#"                "3"
USER_STRING_ATTRIBUTE "#"                   "2"
USER_VERTEX_ATTRIBUTE "#"                   "2"
USER_SEGMENT_ATTRIBUTE "#"                   "2"
USER_VERTEX_TEXT      ""                     "2"
USER_SEGMENT_TEXT     ""                     "2"
NOTE_PROP_MEDIAN      "Proposed Median"
NOTE_PROP_ROUNDABOUT  "Proposed Roundabout"
NOTE_PROP_ISLAND      "Proposed Traffic Island"
NOTE_REMAIN           "Existing Kerb\nto remain"
NOTE_TAKE_UP          "Take up existing\nkerb and channel"
NOTE_REMOVE           "Remove existing\npipes"
NOTE_KERB_STD_SWG     "Refer to Std Dwg\nfor Kerb Types"
NOTE_REMOVE_PP        "Remove existing power pole"
NOTE_PROP_CULVERT     "Proposed Culvert"
NOTE_MATCH_EXISTING   "Match into existing"
Area syntax special:

**AREA**

"Area #"  "2"

Drop down Display Text which can be set as "Area *ha" to define hectares Decimal places

**TIN_DEPTH**

"Depth #"  "2"

Drop down Display Text which can be set as "Depth *mm" to define millimetres Decimal places

Attributes syntax special:

**USER_STRING_ATTRIBUTE** "#"

**USER_VERTEX_ATTRIBUTE** "#"

**USER_SEGMENT_ATTRIBUTE** "#"

Drop down Display Text of "#" that will be substituted with attr value

Note: An attribute with the name "Leader" can be set on any string, for any of the above attributes.

It will appear automatically in the choice box along with any others set here
24.16.6 Leader Text Creation

Position of option on menu:  Drafting => Text and Tables => Leader create

This option is used to create leader lines and text.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leader arrow size</td>
<td>input box</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>length (in world units) of the head of the arrow of the leader line.</td>
<td></td>
</tr>
<tr>
<td>Leader colour</td>
<td>colour box</td>
<td>cyan</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>colour of the leader line or arrow</td>
<td></td>
</tr>
<tr>
<td>Text side</td>
<td>choice box</td>
<td>Right</td>
<td>Right, Left</td>
</tr>
<tr>
<td></td>
<td></td>
<td>side of the leader line to create the text.</td>
<td></td>
</tr>
<tr>
<td>Add cog</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if tick, add a cog to the leader line.</td>
<td></td>
</tr>
<tr>
<td>Font</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>brings up panel for defining information about the text (size, model colour etc.).</td>
<td></td>
</tr>
<tr>
<td>Leader</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>create the leader by first picking the point for the arrow end and then the point for the opposite end where the text goes. Once the second point is place, the &quot;Leader Text Input&quot; panel is displayed for entering five lines of text.</td>
<td></td>
</tr>
</tbody>
</table>
24.16.7 Leader Edit

**Position of option on menu:**  Drafting => Text and Tables => Leader edit

This option is used to edit leader lines and text.

![Leader Text Edit](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Line 1-5</strong></td>
<td>input box</td>
<td>lines of text from the selected leader.</td>
<td></td>
</tr>
<tr>
<td><strong>Leader arrow size</strong></td>
<td>input/output box</td>
<td>length (in world units) of the head of the arrow of the leader line.</td>
<td></td>
</tr>
<tr>
<td><strong>Leader colour</strong></td>
<td>colour box</td>
<td>cyan</td>
<td>colour of the leader line or arrow</td>
</tr>
<tr>
<td><strong>Text side</strong></td>
<td>choice box</td>
<td>Right</td>
<td>Right, Left</td>
</tr>
<tr>
<td><strong>Add cog</strong></td>
<td>tick box</td>
<td>tick</td>
<td>if tick, add a cog to the leader line.</td>
</tr>
<tr>
<td><strong>Rotate leader</strong></td>
<td>tick box</td>
<td>tick</td>
<td>if tick, the leader arrow remains fixed when the leader is moved.</td>
</tr>
<tr>
<td><strong>Pick</strong></td>
<td>button</td>
<td>select the leader to be modified.</td>
<td></td>
</tr>
<tr>
<td><strong>Font</strong></td>
<td>button</td>
<td>brings up panel for defining information about the text (size, model colour etc.).</td>
<td></td>
</tr>
</tbody>
</table>
**Move** button

move the select leader and its associated text. If "rotate leader" is ticked, then the leader arrow head is left fixed.

**Set** button

redefine the leader line and text with the current values in the panel fields.
24.16.8 Replace Text

**Position of option on menu:** Drafting => Text and Tables => Replace text

**Position of option on menu:** Utilities => H-Z => Find/replace text

This option is used to find and replace text in text strings, 4d string, super strings for vertex and segment text.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>source of data to be processed</strong> - for a full description go to 4.19.3 <a href="#">Data Source</a>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>data source for text to search and change.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Find what</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>text to search for.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replace with</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>text to replace the searched text with</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Match whole words</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **if not tick, text is selected if the "find text" is only part of the text.**
|                       |           |          |        |
| Match case              | tick box   |          |        |
| **If tick, only find the text when the text is exactly the same as the "find text", not just a part of the text.**
|                       |           |          |        |

If not tick, case is ignored when trying to find a match.
If tick then case is not ignored when trying to find a match.

**Regular expressions** tick box

If tick then the **Find what** text can contain regular expressions.

If not tick, the **Find what** text is not considered to contain regular expressions.

**New** button

after selecting new the parameters for the find and replace can be changed.

**Find** button

find the search text. The text is highlighted and centred in the view.

**Find Next** button

find the next occurrence of the search text.

**Replace** button

replace the text.

**Replace all** button

replace all occurrences of the text.
24.16.9 Find and Replace Text

Position of option on menu: Drafting => Text and Tables => Replace text

This option is used to find and replace text.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source</td>
<td>data source type</td>
<td>input box</td>
<td>string, model, view</td>
<td></td>
</tr>
<tr>
<td>Model name</td>
<td></td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search for</td>
<td>text to search for</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replace with</td>
<td>if non-blank, text to replace the searched text with</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Find</td>
<td>find the search text</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next</td>
<td>find the next occurrence of the search text.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replace</td>
<td>replace the text.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replace all</td>
<td>replace all occurrences of the text.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
24.16.10 Reverse Bearing

Position of option on menu: Drafting => Text and Tables => Reverse bearing

This section of documentation is a work in progress and will be updated in subsequent releases.
24.16.11 Short Segments Table

Position of option on menu:  Drafting =>Text and Tables =>Short segment table

This panel is used to create a short segment table.

This option is still under development.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source</td>
<td></td>
<td>input box</td>
<td>model</td>
<td>model, string, view</td>
</tr>
<tr>
<td>Model of numbers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table for</td>
<td></td>
<td>choice box</td>
<td>lines</td>
<td>lines, arcs, lines and arcs</td>
</tr>
<tr>
<td>Model for table</td>
<td></td>
<td>model box</td>
<td>Table</td>
<td></td>
</tr>
<tr>
<td>Text size</td>
<td></td>
<td>input box</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Text colour</td>
<td></td>
<td>colour box</td>
<td>red</td>
<td></td>
</tr>
<tr>
<td>Text units</td>
<td></td>
<td>choice box</td>
<td>world</td>
<td>world, pixels</td>
</tr>
<tr>
<td>Text style</td>
<td></td>
<td>input box</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
textstyle for the created text.

**Table position**

Input box for the location for the top left hand corner of the table. Either type in an x y position or click on "+" and use "Pick xyz" to locate the table.

**Add table to view**

Check box to add the model containing the table to the view.

**View to add**

Input box for the view to add the table to.

**Process**

Button to create and place the short segment table.

**Undo**

Button to undo the last short segment table created whilst the panel has been up.
24.16.12 Short Segment Report

Position of option on menu: Drafting => Text and Tables => Short segment report

This panel is used create a report on the short segments.

This option is still under development

![Report Short Segments](image)

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source</td>
<td>input box</td>
<td>model</td>
<td>model, string, view</td>
<td></td>
</tr>
<tr>
<td>Model of numbers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report type</td>
<td>formatted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td>report box</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Data source**

*data to process and report on the short segments.*

**Model/string/View of numbers**

*name of the report file.*

**Process**

*create the short segment report*
24.16.13 Short Segments Table Utilities

Position of option on menu:  Drafting => Text and Tables => Short segment table utilities

This panel is used to modify an existing short segments table.

This option is still under development.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick a table</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text size</td>
<td>input box</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Text colour</td>
<td>colour box</td>
<td>red</td>
<td></td>
</tr>
<tr>
<td>Text units</td>
<td>choice box</td>
<td>world</td>
<td>world, pixels</td>
</tr>
<tr>
<td>Text style</td>
<td>input box</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Table position</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following notes apply:

- **Text units**: units for the text size - default is world units.
- **Move**: move the selected table to the new location.
- **Delete**: delete the selected table.
24.16.14 Alignment & Super Alignment Table

Position of option on menu:  Drafting => Text and Tables => Alignment/Super alignment table

This option is used to create a report and/or a table in a model for an alignment and super alignment string in an IP or element format.

This option is under development.
24.16.15 Tabulate Alignment - IP’s and CT’s

Position of option on menu:  Drafting => Text and Tables => Tabulate alignment - IP’s TC’s

This option is used to create a report and/or a table in a model of an alignment string in an IP and tangent point format.

The table is created by a function so that if the alignment string changes, the table can be easily recalced.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function name</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference string</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>select the string to create the table and/or report for.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chainage interval</td>
<td>input box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if zero, only information on the tangent and intersection points is given. If non-zero, the chainage interval to use to report the information about the reference string. The horizontal tangent and intersection points are included.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start/End chainage</td>
<td>input box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>start/end chainage to use. If 0, the start/end chainage is used.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location x y z</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>location for the top left hand corner of the table. Either type in an x y position or click on '+' and use 'Pick xyz' to locate the table.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if non blank, name of the report file. If blank, don’t create the report.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Font button

brings up panel for defining information about the text (size, model colour etc.).

Process button

process the reference string and create the report. The table is not yet created.

Place text button

create the table and place it at the given location.
24.16.16 Tabulate Alignment - Elements

Position of option on menu: Drafting => Text and Tables => Tabulate alignment - elements

This option is used to create a report and/or a table in a model of an alignment string in an horizontal element format.

The table is created by a function so that if the alignment string changes, the table can be easily recalced.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function name</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference string</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTP IP tolerance +/-</td>
<td>input box</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Location x y z</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional heading</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Font</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The function name is the name of the function to be used in the reference string. The reference string is the string to create the table and/or report for. The CTP IP tolerance is the tolerance for the curve. The location is the location for the top left hand corner of the table. The report file is the name of the report file. The additional heading is additional information for the heading above the table. The font button brings up a panel for defining information about the text (size, model colour etc.). The process button processes the reference string and creates the report. The table is not yet created.
Place text button

create the table and place it at the given location.
24.16.17 Tabulate Kerb Return

Position of option on menu: Drafting => Text and Tables => Tabulate kerb return

This option creates a table for a kerb return.

![Kerb Alignment Tabulation](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function name</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chg interval type</td>
<td>choice box</td>
<td>by number (Arc)</td>
<td>by number (Arc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>by distance (Arc)</td>
<td>by special chg file</td>
</tr>
<tr>
<td></td>
<td></td>
<td>by number (Chord)</td>
<td></td>
</tr>
<tr>
<td>Interval number</td>
<td>input box</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTP IP tolerance +/-</td>
<td>input box</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>xxxx</td>
<td></td>
</tr>
<tr>
<td>Interval number</td>
<td>input box</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>xxxx</td>
<td></td>
</tr>
<tr>
<td>Location x y z</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>location for the top left hand corner of the table. Either type in an x y position or click on &quot;+&quot; and use &quot;Pick xyz&quot; to locate the table.</td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if non blank, name of the report file.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If blank, don't create the report.</td>
<td></td>
</tr>
<tr>
<td>Heading</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
heading above the table.

Font button

brings up panel for defining information about the text (size, model colour etc.).

Process button

process the reference string and create the report. The table is not yet created.

Place text button

create the table and place it at the given location.
24.16.18 Tabulate Range File

**Position of option on menu:** Drafting => Text and Tables => Tabulate range file

This option creates a table for a range file.

![Range File Tabulation](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range type</td>
<td>choice box</td>
<td>slope percent xfall</td>
<td>slope percent xfall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>slope 1 v in, slope degrees</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>depth, aspect, height</td>
<td></td>
</tr>
<tr>
<td>Range file</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range units</td>
<td>input box</td>
<td>text to place beside each line of upper and lower values.</td>
<td></td>
</tr>
<tr>
<td>Heading</td>
<td>input box</td>
<td>heading to place at the top of the table.</td>
<td></td>
</tr>
<tr>
<td>Location x y z</td>
<td>input box</td>
<td>location for the top left hand corner of the table. Either type in an x y position or click on &quot;+&quot; and use &quot;Pick xyz&quot; to locate the table.</td>
<td></td>
</tr>
<tr>
<td>Font</td>
<td>button</td>
<td>brings up panel for defining information about the text (size, model colour etc.).</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td>create and place the range table.</td>
<td></td>
</tr>
</tbody>
</table>
24.16.19 Symbol / Linestyle Legend - Tabulation

**Position of option on menu:**  
Drafting => Text and Tables => Tabulate symbol/linestyle legend

This option can create a legend showing features and their associated linestyle, colour, symbol etc.

There are 3 distinct parts to the macro. Once a data selection is chosen, the data can be analysed by either using a map file or the data features themselves.

**Map File Extraction:**
If specified, the 12d Map File is read and data sorted by string name (Name column).
If the Extract Data button is clicked, the Map File Extraction grid is populated.
The Description column is used in the legend and is controlled by the Mode selected, either Model Name or Comment.

**Data only Extraction:**
If no map file is specified, then the data is sorted in relation to Name, Linestyle, Colour and Weight.
If the Extract Data button is clicked, the Data Only Extraction grid is populated.
The Description column is used in the legend and is controlled by the Mode selected: Model Name, String Name, Linestyle, Symbol, Ver attr + Name, Name +Ver Attr.

Once a mode is selected, clicking the Update button will update the Description field.

**Symbol Tabulation:**
This tabulation is for symbols, e.g. survey station points.
The table is in the format of Name, Easting, Northing & Level.
The title of the Name column can be changed.
The data to be tabulated is given by the Tabulation by choice box. It can be either tabulating the Point ID or the Vertex Text.

The fields and buttons used in this panel have the following functions:
### Legend / Tabulation Parameters

**Data Source Legend**  
*selection*  
*model, view, string*  
*selection data to extract legend information*

**Map File**  
*input*  
*if non-blank, then the map file is used with the data selection to sort and populate the <Map File Extraction> grid*

**Model**  
*input*  
*model name for legend tabulation*

**Textstyle**  
*input*  
*text parameters for all text*

**Location x y z**  
*xyz box*  
*insertion point for top left corner of legend*

**Heading**  
*input*  
*if non-blank, heading placed at top of legend*

**Line spacing**  
*real 2*  
*spacing for adjustment of lines of text*

**Feature Column Width**  
*real 12.5*  
*width for display of sample line and symbol in legend*

**Line Colour**  
*input red available colours*  
*the colour of separation lines in the tabulation*

**Symbol Size Default**  
*real 5*  
*default size for symbols in table*

**Rows per table**  
*integer*  
*if blank, the legend table will be created vertically*  
*if non-blank, more than one legend may be created, arrayed in either horizontal or vertical*  
*the format is: +ve number for Horizontal array -ve number for Vertical array*

**Extract Data**  
*button*  
*Sorts the source data and populates either the Map File Extraction grid or Data only Extraction grid*

**Create Legend**  
*button*  
*Creates the tabulation using all parameters set in the general tab*

**Undo Last**  
*button T*  
*his undo is only available while the panel is still open and only works on the last table created.*  
*Once the panel is finished all tables can be accessed via the normal 12d undo.*

**Move Table**  
*button*  
*Any Legend Tabulation can be moved for clarity (Esc or rmb to cancel)*

---

### Symbol Tabulation

**Data Source Tabulation**  
*selection*
selection data to extract tabulation information

**Model**
- model box
  - model name for symbol tabulation

**Textstyle**
- textstyle box
  - text parameters for all text

**Location x y z**
- XYZ box
  - insertion point for top left corner of tabulation

**Heading**
- input
  - if non-blank, heading placed at top of tabulation

**Line colour**
- colour box
  - red
  - available colours
  - the colour of separation lines in the tabulation

**Line spacing**
- real
  - 2
  - spacing for adjustment of lines and text

**Station name**
- input
  - STN
  - maximum 8 characters

**Tabulation by**
- choice box
  - Point ID
  - Point ID / Vertex Text
  - value used to define symbol e.g. Survey Station may use point ID < 901 >

**Process**
- button
  - processes the data

**Create Tab**
- button
  - creates the symbol tabulation using the above parameters.
24.16.20 Text File Input

**Position of option on menu:** Drafting => Text and Tables => Text file input

This option has already been documented as 24.16.3 Text Creation/Edit

Drafting => Text and Tables => Create/edit paragraph text
25 Plots

Position of menu: It is on the main menu as Plot.
The Plots walk-right menu is:

- plot an existing ppf
- edit an existing ppf
- Plot sheet set up and plot
- create/edit/plot plot frames
- Long section plot manager
- plotting set ups
- old plotting options
- Plots User menu

The options 25.2 Plot Binary PPFs and 25.3 Edit Binary PPFs are both walk-right menus which list all the binary PPFs in the project and the when the PPF is double-clicked, it is Plotted/Edited.

For the options see:
- 25.1 Plot and PPF Editors
- 25.2 Plot Binary PPFs
- 25.3 Edit Binary PPFs
- 25.4 Plot Sheet
- 25.5 Plot Frames
- 25.6 Long Plot Manager
- 25.7 Plotting Setups
- 25.8 Old Plotting
25.1 Plot and PPF Editors

Position of menu:  Plot => Plot and PPF editors
The Plot and PPF editors walk-right menu is

- Cross sections
- Long sections
- Plot frames
- Drainage
- Drainage plan
- Melbourne Water
- Pipelines
- Convert ascii to binary
- Copy title data

For the options see:

- 26.3 Section X Plot PPF Editor
- 26.4 Long Plot PPF Editor
- 26.9 Plot Frame and PPF Editor
- 26.5 Drainage Long Plot PPF Editor
- 26.8 Drainage Plan Plot PPF Editor
- 26.6 Melbourne Water Plot PPF Editor
- 26.7 Pipeline Plot PPF Editor
- 26.10 Convert Ascii PPF to Binary
- 26.11 Copy Title Data
25.2 Plot Binary PPFs

The binary PPFs can have enough information in them to totally generate the plot from the ppf.
The options in this section will run the selected (binary) ppfs and generate the plot as defined by all the plot parameters in the ppf file.
The plot the ppf, just walk right on the appropriate plot type and a walk-right menu will appear with the existing binary ppfs included in the project, and a [Lib] and [User Lib] to display the ppfs in these two library areas.
When a file is selected from the list, it is then used to generate a plot.

Go to the next section 25.3 Edit Binary PPFs or return to 25 Plots.

25.3 Edit Binary PPFs

The options in this section will bring up the selected (binary) ppfs into the appropriate PPF Editor.
The edit the ppf, just walk right on the appropriate plot type and a walk-right menu will appear with the existing binary ppfs included in the project, and a [Lib] and [User Lib] to display the ppfs in these two library areas.
When a file is selected from the list, it is then opened in the appropriate PPF Editor.

Go to the next section 25.4 Plot Sheet or return to 25 Plots.
25.4 Plot Sheet

Position of menu:   Plot => Plot sheet

The *Plot sheet* option is for defining the layout of plotting areas on a sheet of paper and to produce a pdf file of what is on the sheet of paper.

That is *Plot Sheet* is for setting up plot compositions. For V11 it is only for setting up areas from plan views.

The *Plot Sheet* menu is:

![Plot Sheet Menu]

See

25.4.1 Plot Sheet Create
25.4.2 Plot Sheet Edit
25.4.3 Plot Sheet Plot
25.4.4 Plot Sheet Delete
25.4.1 Plot Sheet Create

**Position on menu:**   Plot \(\Rightarrow\) Plot sheet \(\Rightarrow\) Create

*Plot sheet create* is for creating a new plot sheet file.

Selecting *Create* brings up the *Create Plot Sheet File* panel.

![Create Plot Sheet File Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot sheet file</td>
<td>file box</td>
<td>*.*12dpsf files</td>
<td>*.*12dpsf files</td>
</tr>
</tbody>
</table>

*name for the file to create.*

*This file name must not already exist in the working folder.*

<table>
<thead>
<tr>
<th>Create</th>
<th>button</th>
</tr>
</thead>
</table>

*when pressed, a new plot sheet file is created with the name given in the *Plot sheet file* field and then the *Plot Sheet Create/Editor* panel is started with that file as the Plot Sheet File being edited. See 25.4.2.1 Plot Sheet Create/Edit.*

Go to the next section 25.4.2 Plot Sheet Edit or return to 25.4 Plot Sheet.
25.4.2 Plot Sheet Edit

Position on menu:  Plot => Plot sheet => Edit

The Edit option works in two ways - you can click on Edit itself or walk right on Edit and see a list of all the plot sheet files in the working folder.

The Edit walk right lists all the plot sheet files is the working folder.

Selecting a plot sheet file from the list, or from another area, brings up the Plot Sheet Create/Editor panel already loaded with the selected plot sheet file. See 25.4.2.1 Plot Sheet Create/Edit.

By clicking on Edit itself, the Edit Plot Sheet File panel is brought up.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot sheet file</td>
<td>name for the plot sheet file to edit. This file name must exist in the working folder.</td>
<td>file box</td>
<td>*.12dpsf files</td>
<td></td>
</tr>
<tr>
<td>Edit</td>
<td>when pressed, the existing plot sheet file with the name given in the Plot sheet file field is edited and the Plot Sheet Create/Editor panel is started with that file as the Plot Sheet File being edited. See 25.4.2.1 Plot Sheet Create/Edit.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go to the next section 25.4.2.1 Plot Sheet Create/Edit or return to 25.4 Plot Sheet.
25.4.2.1 Plot Sheet Create/Edit

The Plot Sheet Create/Edit panel is for creating/editing the layout of plotting areas on a sheet of paper, and then to produce a pdf file of what is on the sheet of paper.

If the Plot Sheet Create option was used, then the Plot Sheet Edit panel is brought up with the new file loaded but there is nothing defined for the Plot Sheet.

If the Plot Sheet Edit option was used, then the Plot Sheet Edit panel is brought up with the existing file loaded so there will already be some information defined on the Plot Sheet.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot sheet file</td>
<td>file box</td>
<td></td>
<td>*.12dpsf files</td>
</tr>
</tbody>
</table>

name for the file to save/read in the information for a plot sheet layout.

Read button
read in the plot sheet file given in the Plot sheet file field and load the information into the panel.
For any Frames in the file, a Plot Frame is created, and a model and the Plot Frame added to the
model. If a view has been recorded for that model when the plot sheet file was written, and that view currently exists, then the model is added to that view.

**Write** button
write out the current information defined in the panel to a plot sheet file with the name given in the **Plot sheet file** field.

**Plot Sheet Area**
the black area represents the sheet of paper being plotted (the **Plot Sheet**) with (0,0) in the bottom left hand corner of the plot sheet.

The areas where plotting will occur on the Plot Sheet are defined by **Frames** and each created Frame is displayed in the black area. A Frame contains all the information for producing the plot inside the area of the Frame.

For example, a Frame may be a **Plan Frame** and defines an area of a Plan View to plot. The Frame then needs a Scale to give the Frame a world size, a rotation and a World Coordinate to fully define a region to plot. Using these values, a Plot Frame is then created and linked to the Frame. The Plot Frame is added to a Plan View to define which data is to be plotted inside the Frame.

**Title block** button
brings up the Title Block section of a Plot Frame.

After the title block information has been filled in, the **Set** button must be pressed and then **Finish** to remove the panel.

If the title block file (tbf file) includes the Sheet size, then that size is automatically used to set the sheet size for the **Sheet Size** button.

If a user title block has been selected, the text and line work in the title block will be drawn in the Plot Sheet Area so that you see where to add Frames to the Plot Sheet without overwriting the title block. No
substitution is made for the $ text variables in the title block file.

Sheet size button

brings up a Sheet size box for entering the size of the size of the Plot Sheet. Once a size has been typed in, or selected from the pop up, the Plot Sheet Area is drawn with an aspect ratio to match the selected paper size.

If there is a Sheet size in the selected user title block file, the Sheet size is automatically set to that size and the Sheet Size button does not need to be used.

Create frame button

this button is used to define a Frame in the plot sheet area. After clicking the button, two points are selected in the plot sheet area to define the area on the plot sheet that the Frame will plot to.
Currently all created Frames are Plan Frames so after the Frame is created, the **Create Frame for Plan Plot** panel is displayed. See [25.4.2.1.1 Create Frame for Plan Plot](#).

**Edit frame** button

- this button is used to edit an existing Frame in the plot sheet area.
- After clicking the button, a Frame is selected by clicking LB **anywhere inside** the Frame in the Plot Sheet Area.
- When the Frame has been tentatively picked with the LB but not yet accepted, **Resize** grips are displayed on the four corners and on the four sides of the Frame. These grips are used to resize the Frame, and hence the associated plotting area.
- Plus when the cursor is over the edge of a Frame, a **Translate** grip is displayed. The **Translate** grip is used to move the Frame around in the Plot Sheet Area.
How the *Resize* grips extend the plotting area depends on **Make centre of frame the origin**.

*If Make centre of frame the origin is ticked* then no matter which resize grip is used, the resulting plotting area is still *centred* on the **World Coordinate**.

*If Make centre of frame the origin is not ticked* then the plotting area is extended in the direction indicated by the Resize grip and the **World Coordinate** may be changed.

If you haven’t accepted the Frame after the Resizing and Translating, then you can pick another Frame to resize or translate by simply clicking LB inside the new Frame.

When a Frame is accepted after a tentatively pick, then the **Create Frame for Plan Plot** panel is displayed so that the Frame properties can be modified. See 25.4.2.1.1 Create Frame for Plan Plot.

After the **Create Frame for Plan Plot** panel has been finished, the **Edit** is still active and another Frame can be selected to edit.

**Translate Plot Frame** button

This button is used to change the value of the **World Coordinate** of a Frame by dynamically translating the **Plot Frame** that corresponds to the Frame.

After clicking the button, a Frame is selected by clicking LB anywhere inside the Frame in the Plot Sheet Area and then accepting the pick.

When the Frame is accepted, a **Translate a Frame** panel is displayed showing the value of the **World coordinate** for the Frame. Then when you move the cursor onto a Plan View which has the **Plot Frame** associated with the selected Frame on it, the **World Coordinate** of the Plot Frame and Frame are changed to the current cursor position. This continues until a new **World Coordinate** is selected on the Plan View.
Once the Frame is translated then you can pick another Frame to translate.

**Rotate Plot Frame button**

This button is used to change the value of the Rotation of a Frame by dynamically rotating the Plot Frame that corresponds to the Frame.

After clicking the button, a Frame is selected by clicking LB anywhere inside the Frame in the Plot Sheet Area and then accepting the pick.

When the Frame is accepted, a Rotate a Frame panel is displayed showing the value of the Rotation for the Frame. Then when you move the cursor onto a Plan View which has the Plot Frame associated with the selected Frame on it, the Rotation of the Plot Frame and Frame are changed to the rotation defined by the current cursor position. This continues until a cursor position is accepted and that defines the new Rotation for the Plot Frame and Frame.
Once the Frame is rotated then you can pick another Frame to rotate.

**Delete Frame** button

This button is used to delete a Frame in the **Plot Sheet**. The associated Plot Frame and model containing the Plot Frame are also deleted.

After clicking the button, a Frame is selected by clicking LB anywhere inside the Frame in the Plot Sheet Area and then accepting the pick.

When the Frame is accepted, the Frame is deleted, and its associated Plot Frame and the model containing the Plot Frame are also deleted.

Once a Frame is deleted, another Frame can then be selected to delete.

**Utilities** button

This button brings up the **Plot Sheet Utilities** panel to change the settings for the Plot Sheet.
Background colour  
the colour for the background of the Plot Sheet drawing area. "Grey 105" is a good colour to use because both blank and white strings are visible when drawn on "Grey 105".

Highlight colour  
the colour to highlight the Frames in the Plot Sheet Drawing Area when they are selected.

Frame default colour  
the colour to draw the Frames borders in the Plot Sheet drawing area.

Frame assist on  
if ticked, when a new Frame is being created or an existing Frame moved in the Plot Sheet Area, when the cursor it is near the side of another Frame then guide lines are drawn in the Plot Sheet Area to help in placing the new Frame to be on the same horizontal or vertical line as the sides of existing frames.

Auto bring view to top?  
if ticked, when the buttons Edit Frame or Delete Frame, or Plot Frame Move or Plot Frame Rotate, are selected and a Frame then selected, the View that the corresponding Plot Frame is on is brought to the top so that the View is not obscured by other Views.

Display drawing area  
if ticked and the title block file has a drawing area defined, the n it is shown in the Plot Sheet Area.

The drawing area of the title block when the buttons Edit Frame or Delete Frame, or Plot Frame
Fields and Buttons Under the Plot Sheet Area

PDF file file box *.pdf files

name of the file to write the pdf plot out to.

Plot button

generate a pdf plot with the name given in the PDF file field.

Finish button

when the Finish button is selected, all the Plot Frames and the models containing the plot frames, that have been created by Plot Sheet are deleted.

Go to the next section 25.4.2.1.1 Create Frame for Plan Plot or return to 25.4 Plot Sheet.
25.4.2.1.1 Create Frame for Plan Plot

The **Frame Create** panel defines the information required to create a plan plot in the Frame.

The size of the Frame in **millimetres** is known from the Plot Sheet and so with a **Scale**, the Frame then defines a rectangle in world units (metres).

A **World Coordinate** for one point in the Frame and a **Rotation** then fully defines a world rectangle.

A **Plot Frame** of a given name can then be created and added to a view to represent the information to be plotted in the Frame.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame name</td>
<td>text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>the name for the frame. It must be unique amongst all the Frames for the Plot Sheet.</strong> A name is automatically generated but it can be changed as long as it is still unique for the Plot Sheet. <strong>A Plot Frame</strong> will be created with the name of the plot sheet file (without the .12dpsf) followed by a space and the <strong>Frame name</strong>. A <strong>model</strong> will also be created with the name &quot;<strong>PF</strong>&quot; followed by the Plot Frame Name. The Plot Frame will be added to this model.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frame colour</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>the colour for the frame, and also for the Plot Frame that is created.</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scale 1:</td>
<td>measure box</td>
<td>available measures</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>scale for the plan plot.</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotation</td>
<td>measure box</td>
<td>0 degrees</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>available measures</strong> angle of rotation for the plot frame. The angle is in degrees and is measured in a counter clockwise direction from the positive x axis. <strong>Make centre of frame the origin?</strong> if <strong>ticked</strong>, the <strong>World coordinate</strong> is taken to be the world coordinate for the <strong>centre</strong> of the Frame.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Frame Create Panel](image-url)
If not ticked, the World coordinate is taken to be the world coordinate for the bottom left hand corner of the Frame.

World coordinate

input

xyz ops menu

x_origin  y_origin  z_origin

this is a point in world units to be used as either the centre, or the bottom left hand corner, of the Frame. The values can either be typed in as three values separated by spaces, or selected by clicking LB on the xyz ops icon and then picking a point in a plan view.

When the World coordinate is selected from a plan view, then after the Set button is clicked, the plot frame is created, added to the created model, and the model added to the view that the world coordinate was selected from.

Draw viewport

tick box ticked

if ticked, when a plot is generated, a box is drawn around the Frame.

Set

button

when Set is pressed, a Plot Frame of the name plot sheet file (without the .12dpsf) followed by a space and the Frame name is created. A model, with the name "PF " followed by the Plot Frame name, is then created and the Plot Frame is added to this model.

The model containing the Plot Frame is then added to the plan view that the World coordinate was selected from.

Go to the next section 25.4.3 Plot Sheet Plot or return to 25.4 Plot Sheet.
25.4.3 Plot Sheet Plot

**Current position on menu**: Plot ➝ Plot sheet ➝ Plot

*Plot sheet plot* is for plotting a plot sheet file that is on disk without having to bring up the plot sheet file in the *Plot Sheet Editor*.

The *Plot* walk right operates in three ways.

1. The *Plot* walk-right displays a list of all the plot sheet files (*.12dpsf files) and by double clicking on a plot sheet file in the list, the plot sheet file will be run and the associated plots produced.

2. If the walk right *Plot ➝ Plot sheet ➝ Plot* is being displayed from the *Main Menu* on the top of *12d Model*, then clicking on the name *Plot* on the *top of the walk right* will bring up the *Plot Plot Sheet File* panel.

![Plot Sheet File Panel](image1)

Selecting the name of the plot sheet file in the field *Plot sheet file* and then pressing *Plot* will generate the plot.

3. If the walk right is being displayed from a pinned menu, then clicking on *Plot* on the *Plot Sheet menu without walking right* will also bring up the *Plot Plot Sheet File* panel.

![Plot Sheet File Panel](image2)

Again as in the previous case, selecting the name of the plot sheet file in the field *Plot sheet file* and then pressing *Plot* will generate the plot.

Go to the next section 25.4.3 Plot Sheet Plot or return to 25.4 Plot Sheet.
25.4.4 Plot Sheet Delete

Position on menu: Plot -> Plot sheet -> Delete

Plot sheet Delete is for deleting a plot sheet file from disk.

Selecting Delete brings up the Delete Plot Sheet File panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot sheet file</td>
<td>file box</td>
<td>*.12dpsf files</td>
<td></td>
</tr>
</tbody>
</table>

name for the file to be deleted.

Delete button

delete the file given in the Plot sheet file field.

Return to 25.4 Plot Sheet.
25.5 Plot Frames

Position of menu:  Plot ➔ Plot frames

Although plan view plots can be generated in 12d Model by plotting the contents of the plan view with the Plot option, the plot will only have a simple title block.

To create plan plots of an arbitrary size, rotation and scale and with complex title blocks, 12d Model uses plot frames.

Basically a plot frame consists of a sheet size (in mm), margins within the sheet and a scale for the plot. This will define a plotting area in world coordinates (the plot frame).

The plot frame can be arbitrarily positioned and rotated on a plan view.

The Plot frames walk-right menu is

- create a plot frame
- edit an existing plot frame
- change name, model and colour of a plot frame
- copy a frame
- plot one or many plot frames
- rotate a plot frame
- translate a plot frame
- delete a plot frame
- more plot frame options

For the option Create, go to

- 25.5.1 Plot Frame Create
- 25.5.2 Plot Frame Editor
- 25.5.3 Plot Frame Change
- 25.5.3 Plot Frame Change
- 26.9 Plot Frame and PPF Editor
- 25.5.6 Plot Frame Rotate
- 25.5.7 Plot Frame Translate
- 25.5.8 Plot Frame Delete
- 25.5.9 More Plot Frames
25.5.1 Plot Frame Create

Position of option on menu:  Plot => Plot frames => Create

On selecting the Create option, the New Plot Frame Create panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title file</td>
<td>title file box</td>
<td>all title files</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>name box</td>
<td>available names</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td>Scale 1:</td>
<td>measure box</td>
<td>available measures</td>
<td></td>
</tr>
<tr>
<td>Sheet size wd ht (mm)</td>
<td>choice box</td>
<td>available sheet sizes</td>
<td></td>
</tr>
<tr>
<td>Rotation angle</td>
<td>measure box</td>
<td>0 degrees</td>
<td></td>
</tr>
<tr>
<td>Origin</td>
<td>input</td>
<td>xyz ops menu</td>
<td></td>
</tr>
</tbody>
</table>

name for the title file to use when plotting the plot frame. The title block file can contain default information for the rest of the panel fields. See 26.2.6.5 Values Used for Defaults when Creating Plot Frames

name for the plot frame.

the model for the plot frame.

the colour for the plot frame.

scale for the plot.

the width and height values (separated by spaces) or the name of a user defined sheet size.

angle of rotation for the plot frame.
origin (in world units) for the corner of the plot frame - given as three values separated by spaces. The values can either be typed in, or selected by clicking LB in the origin panel view and getting up the xyz ops menu and selecting the pick xyz option.

**Draw viewport border**
- tick box: ticked
  - if ticked, plot the box around the plotting area (viewport).

**Draw Frame border**
- tick box: not ticked
  - if ticked, plot the box around the frame.

**Create**
- button
  - create the plot frame and then put up the plot frame edit panel for the created plot frame.

**Same as**
- button
  - after picking the Same as button, an existing plot frame is selected and its information is used to fill in the above panel fields.

**Margin tab**

**Left/right margin (mm)**
- 10.0
  - the left/right hand side margin between the sheet and the plotting area inside the sheet.

**Bottom/top margin (mm)**
- 10.0
  - the bottom/top margin between the sheet and the plotting area inside the sheet.

**How To Use the Option**

The plot frame contains all the information required to define the physical area in real world units to be plotted, the position on the sheet of the area being plotted, the plotter type and the plot file name.

Once the frame is created, the New Plot Frame Edit panel for the created plot frame is automatically placed on the screen so that the frame’s position can be adjusted using the Translate and Rotate buttons.

Go to the next section 25.5.2 Plot Frame Editor or return to 25.5 Plot Frames.
25.5.2 Plot Frame Editor

Position of option on menu: Plot => Plot frames => Editor

The plot frame editor is used to edit existing plot frames. It is automatically placed on the screen when a plot frame is created so that the frame’s position can be adjusted using the Translate and Rotate buttons.

On selecting the Editor option, the New Plot Frame Edit panel is displayed.

Most of the fields and buttons used in this panel are the same as the New Plot Frame Create panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title file</td>
<td>title file box</td>
<td>title file box</td>
<td>all title files</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>name box</td>
<td>name box</td>
<td>available names</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>model box</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>colour box</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td>Scale 1:</td>
<td>measure box</td>
<td>measure box</td>
<td>available measures</td>
<td></td>
</tr>
</tbody>
</table>

name for the title file to use when plotting the plot frame. The title block file can contain default information for the rest of the panel fields. See 26.2.6.5 Values Used for Defaults when Creating Plot Frames.

name for the plot frame.

the model for the plot frame.

the colour for the plot frame.

scale for the plot.
**Sheet size wd ht (mm)** choice box available sheet sizes
the width and height values (separated by spaces) or the name of a user defined sheet size.

**Rotation angle** measure box 0 degrees available measures
angle of rotation for the plot frame.

**Origin** input

\[ x_{\text{origin}} \quad y_{\text{origin}} \quad z_{\text{origin}} \]

origin (in world units) for the corner of the plot frame - given as three values separated by spaces. The values can either be typed in, or selected by clicking LB in the origin panel view and getting up the xyz ops menu and selecting the pick xyz option.

**Draw viewport border** tick box ticked
if ticked, plot the box around the plotting area (viewport).

**Draw Frame border** tick box not ticked
if ticked, plot the box around the frame.

**Pick** button
select the plot frame to be edited.

**Set** button
update the plot frame with the information in the above panel fields.

**Translate** button
after picking the Translate button, the plot frame will move with the cursor until a point is selected to give the final position of the plot frame.

**Rotate** button
after picking the Rotate button, the plot frame is further rotated around the left hand corner of the sheet, by the angle made between the rotation point and the current cursor position. The plot frame will continue to rotate until a point is selected to fix the rotation angle.

**Margin tab**

- **Left/right margin (mm)** 10.0
the left/right hand side margin between the sheet and the plotting area inside the sheet.

- **Bottom/top margin (mm)** 10.0
the bottom/top margin between the sheet and the plotting area inside the sheet.

Go to the next section 25.5.3 Plot Frame Change or return to 25.5 Plot Frames.
25.5.3 Plot Frame Change

Position of option on menu: Plot -> Plot frames -> Change

The change option is used to modify a plot frame's name, model or colour.

On selecting the change option, the Plot Frame Change panel is displayed.

![Plot Frame Change Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>New name</td>
<td>name box</td>
<td>available names</td>
<td>if non-blank, then the name of the selected plot frame will be changed to the name given in the new name field.</td>
<td></td>
</tr>
<tr>
<td>New model</td>
<td>model box</td>
<td>available models</td>
<td>if non-blank, then the selected plot frame will be moved to the model given in the new model field.</td>
<td></td>
</tr>
<tr>
<td>New colour</td>
<td>colour box</td>
<td>available colours</td>
<td>if non-blank, then the colour of the selected plot frame will be changed to the colour given in the new colour field.</td>
<td></td>
</tr>
</tbody>
</table>

Pick button
select the plot frame to be changed.

Change button
update the plot frame with the information in the above panel fields.

Go to the next section 25.5.4 Plot Frame Copy or return to 25.5 Plot Frames.
25.5.4 Plot Frame Copy

Position of option on menu: Plot => Plot frames => Copy

The copy option is used to make a copy of a plot frame. On selecting the Copy option, the Plot Frame Copy panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model for frame</td>
<td>model box</td>
<td>available models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dx dy</td>
<td>input</td>
<td>xyz ops menu</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Model for frame**: If blank, then the model of the copied plot frame will be the same as that of the picked frame. If non-blank, then the copied plot frame will be placed in the model given in the model for frame field.
- **dx dy**: Translation in world units to apply to the copied plot frame - given as two values separated by spaces.
- **Pick**: Select the plot frame to be copied - the copy will be made as soon as the selected plot frame is accepted.

Go to the next section 25.5.5 Plot Frame Plot or return to 25.5 Plot Frames.
25.5.5 Plot Frame Plot

**Position of option on menu:**  Plot => Plot frames => Plot

The Plot option is an alternative way of bringing up the Plot Frame PPF Editor panel. See [26.9 Plot Frame and PPF Editor](#).

Go to the next section [25.5.6 Plot Frame Rotate](#) or return to [25.5 Plot Frames](#).
25.5.6 Plot Frame Rotate

Position of option on menu: Plot => Plot frames => Rotate

The Rotate option is used to rotate a plot frame about a selected point.

On selecting the Rotate option, the Plot Frame Rotate panel is displayed.

![Plot Frame Rotate Panel]

The buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotate button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

after picking the Rotate button, the user is first asked to select a plot frame to rotate, and then to selected a point to rotate about. Once the rotation point has been selected, the plot frame is further rotated by the angle made between the rotation point and the current cursor position. The plot frame will continue to rotate until a point is selected to fix the rotation angle.

The option then repeats.

Go to the next section 25.5.7 Plot Frame Translate or return to 25.5 Plot Frames.
25.5.7 Plot Frame Translate

Position of option on menu: Plot -> Plot frames -> Translate

The Translate option is used to translate a plot frame.

On selecting the Translate option, the Plot Frame Translate panel is displayed.

The button used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After picking the Move button, the user is first asked to select a plot frame to translate. Once the plot frame has been selected, the plot frame will move with the cursor until a point is selected to give the final position of the plot frame.

The option then repeats.

Go to the next section 25.5.8 Plot Frame Delete or return to 25.5 Plot Frames.
25.5.8 Plot Frame Delete

**Position of option on menu:**  Plot => Plot frames => Delete

The `Delete` option just gets up the standard **String Delete** panel which can be used to delete plot frames as well as strings. See [14.19 Delete](#).

Go to the next section [25.5.9 More Plot Frames](#) or return to [25.5 Plot Frames](#).
25.5.9 More Plot Frames

Position of menu: Plot => Plot frames => More

This menu contains options to create plot frame seeds, insert plot frame seeds into a view and create plot frames along a string.

The More Plot Frames walk-right menu is

```
<table>
<thead>
<tr>
<th>More Plot Frames</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot frames along string</td>
</tr>
<tr>
<td>Plot frame insert</td>
</tr>
<tr>
<td>Plot frame seed create</td>
</tr>
</tbody>
</table>
```

Each option in this menu will now be described.

For the option *Plot frames along string*, go to

- 25.5.9.1 Create Plot Frames along String
- 25.5.9.2 Insert Plot Frame
- 25.5.9.3 Create Plot Frame Seed
25.5.9.1 Create Plot Frames along String

Position of option on menu:  Plot => Plot frames => More => Plot frames along string

On selecting the plot frames along string option, the create plot frames along string panel is displayed.

![Create Plot Frames along String Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Alignment string</strong></td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Seed plot frame</strong></td>
<td>plot frame select</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Overlap chainage distance</strong></td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td><strong>Start/End chainage</strong></td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td><strong>Chainege increment</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Model for frames</strong></td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
</tbody>
</table>

**Process** button  
create the plots frames along the selected string.

**Undo** button  
undo the last set of plot frames created whilst this panel is up.

Go to the next section 25.5.9.2 Insert Plot Frame or return to 25.5.9 More Plot Frames or 25.5 Plot Frames.
25.5.9.2 Insert Plot Frame

Position of option on menu:  Plot => Plot frames => More => Plot frame insert

On selecting the Plot frame insert option, the Plot Frame Insert panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot frame to insert</td>
<td>plot frame seeds</td>
<td></td>
<td>plot frame from the seed library to insert.</td>
</tr>
<tr>
<td>Location</td>
<td>xyz box</td>
<td>xyz ops menu</td>
<td>the bottom left hand corner of the plot frame in inserted at this location.</td>
</tr>
<tr>
<td>Scale</td>
<td>radio buttons</td>
<td>1: 250</td>
<td>1: 250, 1: 500, 1:1000, User scale to use for the inserted plot frame.</td>
</tr>
<tr>
<td>Plotter frame &lt;0,0&gt;</td>
<td>tick box</td>
<td>not ticked</td>
<td>if ticked, the bottom left hand corner of the plot frame is placed at (0,0).</td>
</tr>
<tr>
<td>User scale 1:</td>
<td>measure box</td>
<td>available views</td>
<td>if User is selected for Scale, then the required scale is entered here.</td>
</tr>
<tr>
<td>View to add</td>
<td>view box</td>
<td>available views</td>
<td>if non-blank, add to plot frame to this view.</td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td>insert the selected seed plot frame at the given location at the given scale.</td>
<td></td>
</tr>
</tbody>
</table>

How To Use the Option

The selected plot frame is inserted at the given location with the given scale.

Go to the next section 25.5.9.3 Create Plot Frame Seed or return to 25.5.9 More Plot Frames or 25.5 Plot Frames.
25.5.9.3 Create Plot Frame Seed

Position of option on menu: Plot => Plot frames => More => Plot frame seed create

On selecting the Plot frame seed create option, the Plot Frame Seed Create panel is displayed.

![Plot Frame Seed Create Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick</td>
<td>string select</td>
<td>pick the plot frame to add to the plot frame seed library.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td>add the selected plot frame to the plot frame seed library.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How To Use the Option

The plot frame contains all the information required to define the physical area in real world units to be plotted, the position on the sheet of the area being plotted, the plotter type and the plot file name.

The Plot Frame Seed Create panel adds selected plot frames to a library of plot frame seeds. The seeds from the library can be inserted in a plan view using the Insert plot frame seed option.

Return to 25.5.9 More Plot Frames or 25.5 Plot Frames.
25.6 Long Plot Manager

Position on menu:  Plot ➞ Long plot manager

This section of documentation is a work in progress and will be updated in subsequent releases.

Selecting Long plot manager brings up the Longsection PPF Manager panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read File Options</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project PPFs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other PPF</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copy File Options</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base PPF</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New PPF</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal Scale</td>
<td>measure box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Exaggeration</td>
<td>measure box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datum</td>
<td>measure box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing Tin</td>
<td></td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td>Manual Datum</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td>Plot selections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plot type</td>
<td></td>
<td>model</td>
<td></td>
</tr>
</tbody>
</table>

Long Plot Manager
Global Textstyle
Plot Selections
String to Plot
Plot File Stem
Plotter type

General Parameters - Box Position & Size
Position Choice
Def Box Size
Plot Size
Active
Title 1
Title 2

Box Parameters
Global Title and Values Text Parameters
Title Text Textstyle
Title Text Colour
Title Text size (mm)
Values Text Textstyle
Values Text Colour
Values Text size (mm)
Values Decimal places

Datum/Box Parameters
Datum Name
Datum Textstyle
Datum Colour
Datum Text size (mm)
Datum Decimal places
Box Colour
Uprights Colour

Box Parameters - Chainage & Design
Chainages - Title Parameters
Title line 1
Title line 2
Textstyle
Colour
Text size (mm)
Chainages - Value Parameters

Decimal places

Textstyle textstyle box
Colour colour box
Text size (mm) measure box

Chainage Plot Interval measure box

Design - Title parameters

Title line 1 name box
Title line 2 name box
Textstyle textstyle box
Colour colour box
Text size (mm) measure box

Design - Value Parameters

Decimal places

Textstyle textstyle box
Colour colour box
Text size (mm) measure box

Box Parameters - Natural Surface & Depths

Natural Surface Tin - Title parameters

Title line 1 name box
Title line 2 name box
Textstyle textstyle box
Colour colour box
Text size (mm) measure box

Natural Surface Tin - Value Parameters

Decimal places

Textstyle textstyle box
Colour colour box
Text size (mm) measure box

Depth Cut/Fill - Title Parameters

Title line 1 name box
Title line 2 name box
Textstyle textstyle box
Colour colour box
Text size (mm) measure box

Depth Cut/Fill - Value Parameters
Decimal places
Textstyle textstyle box
Colour colour box
Text size (mm) measure box
Tin Plot Colour colour box

Box Parameters - Volumes Cut/Fill
Volume Titles - Title Parameters
Title line 1 name box
Textstyle textstyle box
Colour colour box
Text size (mm) measure box
Volume Titles - Cut Title Parameters
Title line 1 name box
Textstyle textstyle box
Colour colour box
Text size (mm) measure box
Volume Titles - Fill Title Parameters
Title line 1 name box
Textstyle textstyle box
Colour colour box
Text size (mm) measure box
Volume Values - Cut Values Parameters
Textstyle textstyle box
Colour colour box
Text size (mm) measure box
Decimal places
Volume Values - Fill Values Parameters
Textstyle textstyle box
Colour colour box
Text size (mm) measure box
Decimal places
Vol Report file box
Sample Interval measure box

Box Parameters - Offset Strings
Offset String 1 - Title Parameters
Title line 1 name box
Title line 2
Textstyle
colour
Text size (mm)

Offset String 1 - Value Parameters
Decimal places
Textstyle
colour
Text size (mm)

Offset String 2 - Title Parameters
Title line 1
textstyle
colour
Text size (mm)

Offset String 2 - Value Parameters
Decimal places
textstyle
colour
Text size (mm)

Offset String 1
select

Offset String 2
select

Box Parameters - X & Y Coords

X Coords - Title Parameters
Title line 1
textstyle
colour
Text size (mm)

X Coords - Value Parameters
Decimal places
textstyle
colour
Text size (mm)

Y Coords - Title Parameters
Title line 1
Title line 2
Textstyle
Colour
Text size (mm)

Y Coords - Value Parameters

Decimal places
Textstyle
Colour
Text size (mm)

Box Parameters - Super & Offset String Chgs

Superelevation - Title Parameters

Title line
Textstyle
Colour
Text size (mm)

Superelevation - Selection Parameters

Super Draw Mode
X Sect Model
Super Left Hinge
Super Left Edge
Super Right Hinge
Super Right Edge

Offset String (Shift) - Title Parameters

Title line 1
Title line 2
Textstyle
Colour
Text size (mm)

Offset String (Shift) - Value Parameters

Decimal places
Textstyle
Colour
Text size (mm)

Chainage Offset String
Manager Defaults
Position Choice
Def Box Size
Title 1
Title 2
Read Def button
Write Def button

Buttons at bottom
Read button
Copy button
Update button
Plot button
Preview button

Go to the next section 25.7 Plotting Setups or return to 25 Plots.
25.7 Plotting Setups

Position of menu: Plot ➞ Plotting setups

The Plotting setups walk-right menu is:

- Create/edit title block file
- Read title block file
- Pen mapping – colours.4d
- Plotter mapping editor
- Pixels to mm
- Hardware arcs
- Default DPI
- Interface colours
- ACAD plot map file
- DWT plot template file
- DGN plot seed file

For the options, go to:

- 25.7.1 Create/Edit Title Block File
- 25.7.2 Read Title Block
- 25.7.3 Pen Mapping
- 25.7.4 Plotter Mapping File Editor
- 25.7.5 Pixels to mm
- 25.7.6 Hardware Arcs
- 25.7.11 DGN Plot Seed File
- 25.7.8 Default DPI
- 25.7.9 ACAD Plot Map File
- 25.7.10 DWT Plot Template File
- 25.7.11 DGN Plot Seed File
25.7.1 Create/Edit Title Block File

Position of option on menu: Plot => Plotting setups => Create/edit title block file
Position of option on menu: Drafting => Create title block file

This option is used to create a title block file from string data in a model or a view. If it is a model, the model attributes can also contain information that is used for creating plot frames. For example, Sheet size, left/right margins, etc.).

The data in the model/view should be set up with (0,0) representing the left hand bottom of the plotting sheet and the units in model/view represent millimetres on the paper. So text should be defined with World units and a metre in world units is taken to be a millimetre in the title block itself. That is, a text size 5 world units will plot as 5 mm.

For more information and the format of the title block file, go to the section 26.2.6 Title Block.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Model/View</td>
<td>model/view box</td>
<td>available models/views</td>
<td></td>
</tr>
</tbody>
</table>

the data in this model/view is written to the title block file to be used as the linework and text in a title block.

The Set button is used to create model attributes for the information in the Plot frame parameters.
section, so if the Set button is to be used, then only a Data Model can be used here.

Plot frame parameters
these parameters are written to an info block in the title block file and are only used when defining a plot frame using the option Plot =>Plot frames =>Create. The parameters can also be written as attributes in the Data Model using the Set button.

Name
if not blank, the name to use for the plot frame.

Model
model box available models
if not blank, model for the plot frame.

Colour
colour box available colours
if not blank, colour for the plot frame.

Scale 1:
input
if not blank, scale for the plot frame

Sheet size
input available sheet sizes
if not blank, sheet size for the plot frame

Angle
angle box
if not blank, angle of the plot frame - measured anticlockwise from the positive x-axis

Left margin, Right margin, Top margin, Bottom margin
margins for the plot frame

Draw viewport border
 tick box tick
if ticked, a border is drawn around the view port in the colour of the plot frame.

Title block file
file box *.tbf files
name of the file to contain the title block information.

Set
button
save the plot frame parameters as attributes in the Data model.

Write
button
run the option – create the title block file.

Go to the next section 25.7.2 Read Title Block or return to 25.7 Plotting Setups or 25 Plots.
25.7.2 Read Title Block

Position of option on menu: Plot => Plotting setups => Read title block file

The Read title block file option is for reading in a title block file and placing the lines, arcs and text defined in the title block file into a given model.

On selecting the Read title block file option, the Read Title Block File panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format</td>
<td>choice box</td>
<td>tbf, tf</td>
<td></td>
</tr>
<tr>
<td>specify if the format of the file is the V7 title block file (.tbf) or the older format (.tf).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File</td>
<td>file box</td>
<td>name of title block file to read in.</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>model to place the title block in when it is read. Any plot frame parameters in the info block of the title block file are set as attributes for this model. Hence these parameters can be written out again to a new title block file if the model in used as the Data Model when creating a title block file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean model data</td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td>if ticked, the data in the model given in the Model field will be cleaned prior to reading in the title block file. If not ticked, the data in the model given in the Model field will not be cleaned prior to reading in the title block file. The data is appended to the existing model data.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>read in the title block file and place the information in the given model.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go to the next section 25.7.3 Pen Mapping or return to 25.7 Plotting Setups or 25 Plots.
25.7.3 Pen Mapping

This option brings up the Edit Colours panel which has a column Pen No. that is used as the default pen number that a colour is mapped to.

The individual colour-to-pen numbers may be overridden by a pen mapping file.

For more information on this option, go to the section 4.22 Colours.

Go to the next section 25.7.4 Plotter Mapping File Editor or return to 25.7 Plotting Setups or 25 Plots.
25.7.4 Plotter Mapping File Editor

Position of option on menu: Plot => Plotting Setups => Plotter mapping file editor

The Plotter Mapping Editor is used to create a plotter mapping file (pmf file) which is used when making a plot from 12d Model. The plotter mapping file defines:

(a) the mapping from 12d Model colours to the plotter pens
(b) the rgb (colours) and weights for the plotter pens

When defining Plotters Different plotter mapping files are used for different plotter configurations. For example, different plotter mapping files would be used when plotting the same plot in 12d Model to a mono-colour plotter or to a colour plotter.

For plotting to a mono-colour plotter, 12d Model colours would be mapped to the one black pen but with possible different weights for different colours. So only one pen colour would be needed and its colour would be set to black (Red 0, Green 0 and Blue 0).

For plotting to a colour plotter, 12d Model colours could be mapped to different colours and weights on the plotter.

The text definition of the plotter mapping file is given in the next section 25.7.5 Pixels to mm.

On selecting the Plotter mapping editor option, the Create Plotter Mapping File panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map file</td>
<td>file box</td>
<td>* .pmf file</td>
<td></td>
</tr>
</tbody>
</table>

*the plotter mapping file to be created/edited.*
Read button  
read in the plotter mapping file given in Map file.

Write button  
write out to plotter mapping information in the panel to the file given in Map file.

Default tab

Red/Green/Blue input  
the value between 0 and 255 of red/green/blue to be used for the default pen colour.

Weight input  
the default pen weight.

12d Colour mapping tab

12d Colour colour box  
the 12d colour to define the pen mapping for.

Use Pen Number integer box  
the number of the pen on the plotter for the 12d colour to be mapped to.

Weight real number box  
the weight to use for the plotter pen for the given 12d colour.

Define Pen Colours tab

Pen Number integer box  
the number of the plotter pen to define the colour for.

Red/Green/Blue input  
the value between 0 and 255 of red/green/blue to be used for the colour of the plotter pen.

Go to the next section 25.7.5 Pixels to mm or return to 25.7 Plotting Setups or 25 Plots.
25.7.5 Pixels to mm

**Position of option on menu:** Plot => Plotting setups => Pixels to mm

To plot an object, it must be possible to calculate the size in millimetres that the object will have in the plot.

However, in 12d Model it is possible for text and linestyles to be defined in the screen unit pixels, and since the size of a pixel varies between screens, there is no direct millimetre equivalent for a pixel.

To allow text and linestyles with only a pixel size to be plotted, a factor to convert pixels to millimetres is used.

When plotting, all text and linestyles defined only in pixel units are multiplied by the pixels-to-millimetre factor to determine its size in the plot.

On selecting the Pixel to mm option, the Pixels to Millimetres Plot Factor panel is displayed.

![Pixels to Millimetres Plot Factor panel](image)

To define a new factor, simply type the value into the Factor field and select Set.

The pixel-to-millimetres value is stored for the project.

For a new project, the initial value is loaded from the Defaults file and is defined in the file by

```
PIXELS TO MM PLOT FACTOR value
```

For information on the Defaults file, see 39.2.7.3 Defaults File (defaults.4d).

Go to the next section 25.7.6 Hardware Arcs or return to 25.7 Plotting Setups or 25 Plots.
25.7.6 Hardware Arcs

Position of option on menu: Plot => Plotting setups => Hardware arcs

When plotting arcs, the arc can either be broken into a series of straight lines within 12d Model, or plotted using the arc command (if it exists) for the relevant plotter.

The initial default for hardware arcs is set by the environment variable HARDWARE_ARCS_4D, but this can be overridden by the option Plots => Plotter setups => Hardware arcs.

This option allows the user to choose whether

(a) the plotter arc command is used (hardware arcs)

or

(b) before plotting, the arc is broken into a series of lines.

On selecting the hardware arcs option, the Draw Hardware Arcs panel is displayed.

To use hardware arcs in plots, simply change the Draw arcs in hardware tick box to tick and select Set.

Go to the next section 25.7.7 Interface Colours or return to 25.7 Plotting Setups or 25 Plots.
25.7.7 Interface Colours

**Position of option on menu:** Plot => Plotting setups => Interface colours

When drawing interface strings in 12d Model, cut areas are denoted in red, fill areas in green and sections on the surface in yellow (and yellow if the section became undefined).

However, when plotting it is convenient to map the interface colours to other colours.

This panel is used to define new colours for the interface colours, and the new colours are then mapped to pens using the pen mapping table or plotter mapping file.

On selecting the interface colours option, the plotting colours for interface string panel is displayed.

![Plotting Colours for Interface Strings](image)

To define new colours, simply type the values into the appropriate panel fields and select Set.

**Note** - the new interface colours are not used for displaying interface strings in 12d Model, only for plotting.

Go to the next section 25.7.8 Default DPI or return to 25.7 Plotting Setups or 25 Plots.
25.7.8 Default DPI

**Position of option on menu:**  Plot =>Plotting setups => Default DPI

The *DPI* value give the default dots per inch that is used for plotting rasters.

On selecting Default DPI, the Default Raster DPI panel is displayed.

![Default Raster DPI Panel](image)

To define a new Default DPI, simply type the value into the DPI panel fields and select Set.

Go to the next section 25.7.9 ACAD Plot Map File or return to 25.7 Plotting Setups or 25 Plots.
25.7.9 ACAD Plot Map File

Position of option on menu: Plot -> Plotting setups -> ACAD plot map file

When plotting to AutoCAD, an AutoCAD map file can be used which uses the 12d Model colour of an entity in the plot as a key to mapping the entity into AutoCAD.

On selecting the ACAD plot map file option, the AutoCAD Map File Create/Edit panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map file</td>
<td>file box</td>
<td></td>
<td>* .amf files</td>
</tr>
<tr>
<td>Read</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12d Colour</td>
<td>colour box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acad Layer</td>
<td>text box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The definition of the amf file is given in 43.2.1.2 Definition and Example of a .tbl File

the 12d colour to match against. This can include wild cards * and wild characters ?.

the name for the file to save/read in an AutoCAD mapping file.

read in the amf file given in the Map file field and load the information into the panel.

write out the current information defined in the panel to an amf file with the name given in the Map file field.
Acad Colour text box
the AutoCAD colour. This can only be a number between 0 and 256 or BYLAYER.
This can be BYLAYER which will be for AutoCAD BYLAYER.
Use * for the 12d Model colour.

Acad linestyle text box
the AutoCAD line type.
This can be BYLAYER which will be for AutoCAD BYLAYER.
Use * for the 12d Model linestyle.

Acad Textstyle text box
Not currently used. The AutoCAD text style.
Use * for the 12d Model text style.

Comment text box
comment about this line of data.

Go to the next section 25.7.10 DWT Plot Template File or return to 25.7 Plotting Setups or 25. Plots.
25.7.10 DWT Plot Template File

Position of option on menu: Plot =>Plotting Setups =>DWG plot template file

When creating plot files in AutoCAD format, an AutoCAD template file can be used.

On selecting the DWT plot template file option, the AutoCAD Plotter Drawing Template File panel is displayed.

To define an AutoCAD plot seed file to use for AutoCAD plotting, simply select either DWG or DXF for the File format, type the file name into the plot seed file panel field and select set.

25.7.11 DGN Plot Seed File

Position of option on menu: Plot =>Plotting Setups =>DGN plot seed file

When creating plot files in Microstation DGN format, a Microstation DGN seed file can be used.

A DGN seed file can be pointed to by the environment variable DGN_PLOT_SEED_FILE_4D and a folder containing the seed files can be pointed to with the environment variable MS_SEEDFILES_4D.

The Microstation seed file can also be set by this option.

On selecting the DGN plot seed file option, the DGN Plot Seed File panel is displayed.

To define a Microstation IGDS plot seed file to use for Microstation plotting, simply type the file name into the Plot seed file panel field and select Set.

Return to 25.7 Plotting Setups or 25 Plots.
25.8 Old Plotting

**Position of menu:** Plot ➝ Old plotting

The Old plotting walk-right menu is

```
Old Plotting
Edit a ppf ➝
Plot a ppf ➝
X plot
Long plot
Long Section Plot Many
Drainage/Sewer
Melbourne Water
Pipeline
Edit title block alias data
Create plot frame
Edit plot frame
Plot plot frame
```

For the option *Edit a ppf*, go to

- 25.8.1 *Edit a ppf*
- 25.8.2 *Plot a ppf*
- 25.8.3 *X Plot*
- 25.8.4 *Long Plot*
- 25.8.5 *Plot Many Long Sections*
- 22.9.2 *Drainage Longsections*
- 22.9.3 *Melbourne Water*
- 22.5 *Plots*

*Edit title block alias data* 25.8.9 *Edit Title Block Alias Data*

*Create plot frame* 25.8.10 *Create Old Plot Frame*

*Edit plot frame* 25.8.11 *Editor Old Pot Frame*

*Plot plot frames* 25.8.12 *Plotting Old Plot Frames*
25.8.1 Edit a ppf

**Position of option on menu:** Plot => Old plotting => Edit a ppf

The *Edit a ppf* option is used to edit V5 text plot parameter files (*.ppf) with the editor pointed to by the `EDITOR_4D` environment variable.

The *Edit a ppf* walk-right menu provides a list all the plot parameter files (files ending in .ppf) in the current folder.

When a file is selected from the list, it is loaded into the editor pointer to by the environment variable `EDITOR_4D`. 

![Edit a ppf menu](image)
25.8.2 Plot a ppf

Position of option on menu: Plot => Old plotting => Plot a ppf

The V5 text PPFs for long section, cross section and plot frames can have enough information in them to totally generate the plot from the pff. The plot a pff option is used to plot such a plot parameter file (*.ppf).

The Plot a pff walk-right menu provides a list all the plot parameter files (files ending in .ppf) in the current folder.

When a file is selected from the list, it is then used to generate a plot.

Note - the plot parameter file is defined in 44 Text Plot Parameters.
25.8.3 X Plot

Position of option on menu: 
Plot => Old plotting => X plot

The X plot option is used to make the traditional pages of cross-section plots, that is, stacked x-sections, with offsets and elevations labelled for each cross section string, and elevations displayed for each of the tins on the section view.

For 12d Model V5, each string to be plotted is assumed to be on a straight line in plan. Hence the cross section is taken as a straight line from the first point of the string to the last point of the string. The chainage of the first point of the string is used as the offset.

For 12d Model V6 and above, sections do not have to be a straight line in plan. The chainage of the first point of the string is used as the offset.

The format of the x-section plot is partially controlled by fields in the Section X Plot panel but more extensive control is possible using a plot parameter file (*.ppf). The plot parameter file is fully documented in the 44.2 Cross Section Plot Parameter File section of the Appendix, 44 Text Plot Parameters.

The cross section plot is tailored by using the plot parameter file (.ppf file) given in the plot parameters field. A default .ppf file is set by pointing to it with the environment variable

```
X_SECTION_PPF_4D pathname of default .ppf file
```

In the pathname to the default .ppf file, $LIB is used to stand for the library folder set by LIB_4D. For example, “$LIB/cross.ppf” is the file cross.ppf in the library area.

Which x-sections are to be plotted is specified by giving the model containing the appropriate cross sections. Sections are also drawn through any triangulations and service items on the section view. Vertical exaggeration, services and corridor settings are taken from a plot parameter file or from the settings for the section view.

X-sections can be labelled with either the offset from the centreline and heights for each of the x-section points, or simply the position of the centre-line.

The required page size is given, plus the scale (the vertical exaggeration is taken from the view settings) and the sections are then plotted in columns on the plotter page. Once a page is full, a new plot page is automatically begun.

The stacked x-section plots in each column can be lined up by their centre-lines.

After selecting the X plot option, the Cross Section Plot panel is displayed.

The Title button on the bottom of this panel controls the use of a title block file and the plotting of a border and two lines of title. If the title button is selected, the Cross Section Plot Title panel is displayed.
The fields and buttons used in the first panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Plot parameters</strong></td>
<td>file box</td>
<td>X_SECTION_PPF.4D</td>
<td>available *.ppf files</td>
</tr>
</tbody>
</table>

File of plot parameters used for extra control of the x section plot. The default .ppf file is pointed to by the environment variable X_SECTION_PPF_4D.

For more information on the x section plot parameters, please go to the section 44.2 Cross Section Plot Parameter File in the Appendix 44 Text Plot Parameters.

| Plot parameters write                  | file box    | available *.ppf files  |                          |

File to write a copy of the plot parameters necessary to regenerate the plot.

| Section view                          | input/output | current view           | available views          |

Section view to use for plot definitions such as the tins to profile, the models of services, corridor width and vertical exaggeration.

| Model of X-sections                   | model box    | available models       |                          |

The model containing all the x-sections to be plotted. The x-sections are plotted in the same order as they are in the model.

Each string to be plotted is assumed to be on a straight line in plan. Hence the cross section is taken as a straight line from the first point of the string to the last point of the string. The chainage of the first point of the string is used as the offset.
Plotter type
------------------------
**input**  
**hp**  
**hp, dxf, postscript etc.**

*file format for the plot output.*

Plot file stem
------------------------
**input**  
since more that one plot page may be produced, the plot file stem plus a plot page sequence number followed by the ending for the plotter type is used as the plot file names.

Start/end chainage
------------------------
**input**  
the plots cover the chainage range for the cross sections given by the start and end chainage fields. If the start/end chainage is blank, the star/end chainage of the x-section strings are used.

Sheet size wd ht (mm)
------------------------
**choice box**  
**available sheet sizes**

must contain the width and height values (separated by space) or the name of a user defined sheet size.

Scale 1:
------------------------
**input**  
horizontal scale for plotting the x-sections.

Label type
------------------------
**choice box**

if **boxes**, the offset from the centreline and heights for each point in the x-section will be plotted in the traditional offset/height boxes.

if **centre line**, only the position of the centre-line and the height of the section at that point will be drawn.

Text style (mm)
------------------------
**input**  
1  
text style to be used in the x section plot boxes or centreline labelling.

Text ht (mm)
------------------------
**input**  
3  
height (in millimetres) to plot the offset and heights in the boxes in the plots of the x-sections

Offset colour
------------------------
**colour box**  
**red**  
**available colours**

colour used for the offset text and the boxes.

Primary string
------------------------
**tick box**  
ticked  
if **ticked**, the string from the model of x-sections (the primary string) is plotted.

Sort sections
------------------------
**tick box**  
ticked  
if **ticked**, the strings from the model of x-sections are sorted by chainage along the design string.

Absolute extensions
------------------------
**tick box**  
not ticked  
**If ticked**, the sections are only drawn from the centreline out to the left and right extension distances. **if not ticked**, the left and right extension values are added to the section left and right widths, and the section is taken between the extended values.

Line up CL's
------------------------
**tick box**  
ticked  
**if ticked**, the centre-lines are lined up under each other for each plot in a column.

LHS extension
------------------------
**input**  
0  
distance to extend the x-section to the left.

RHS extension
------------------------
**input**  
0  
distance to extend the x-section to the right.

Plot
------------------------
**button**  
write out the plots for the x-sections given in the model of x-sections field.

Title tab
------------------------
**panel for defining information in the title block.**
Chapter 25  Plots

The fields and buttons in Title tab are:

- **Use title file** tick box not ticked
  
  *if ticked, a user defined title block file is used.*

- **Standard Title** tick box ticked
  
  *if ticked, the standard 4D Solutions border and two lines of title are placed on the bottom of the plot*

- **Title file** file box available *.tf files
  
  *if non-blank and use title file is set to tick, then the file given in this field is used to generate a user defined title block for the plot.*

- **Title line 1/2** input
  
  *first/second line of title information*

- **Title height (mm)** input 5
  
  *height (in millimetres) to draw the characters in the two lines of title information.*

- **Title colour** input cyan available colours
  
  *colour used for the border and the title information.*
25.8.4 Long Plot

**Position of option on menu:** Plot => Old plotting => Long plot

The Long plot option is used to make traditional long section plots with string chainages and elevations labelled for the primary string and elevations and depths displayed for each of the tins on the section view.

The format of the long section plot is partially controlled by fields in the section long plot panel but more extensive control is possible using a plot parameter file (*.ppf). The plot parameter file is fully documented in the 44.3 Long Section Plot Parameter File section.

After selecting the Long plot, the Long Section Plot panel is displayed.

The long section plot is tailored by using the plot parameter file (.ppf file) given in the plot parameters field. A default .ppf file is set by pointing to it with the environment variable

```
LONG_SECTION_PPF_4D pathname of default .ppf file
```

In the pathname to the default .ppf file, $LIB is used to stand for the library folder set by LIB_4D. For example, "$LIB/long.ppf" is the file long.ppf in the library area.

The title button on the bottom of this panel controls the use of a title block file and the plotting of a border and two lines of title. If the title button is selected, the section long plot title panel is displayed.

The pagination button on the bottom of this panel controls whether the long section plot is broken into pages, by a chainage length or millimetres of plot.

If the pagination button is selected, the Section long plot pagination panel is displayed.
## Old Plotting

### Long Section Plot

<table>
<thead>
<tr>
<th>Plotting</th>
<th>Title</th>
<th>Pagination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plot parameters write</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section view</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plotter type</td>
<td>hp</td>
<td></td>
</tr>
<tr>
<td>Plot file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start chainage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End chainage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chainage increment</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Sheet size wd ht (mm)</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>Scale 1</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Plot primary string</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Use HG VG for min max</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Label depths</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Text style</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Box text ht (mm)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Box colour</td>
<td>cyan</td>
<td></td>
</tr>
<tr>
<td>Distum value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>button</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot</td>
<td>Finish</td>
</tr>
<tr>
<td>Help</td>
<td></td>
</tr>
</tbody>
</table>
The fields and buttons used in the two panels have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot parameters</td>
<td>file box</td>
<td>LONG_SECTION_PPF_4D*.ppf</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>file of plot parameters used for extra control of the long section plot. The default .ppf file is pointed to by the environment variable LONG_SECTION_PPF_4D. For more information on the long section plot parameters, please go to the section 44.3 Long Section Plot Parameter File in the Appendix.</td>
<td></td>
</tr>
<tr>
<td>Plot parameters write</td>
<td>file box</td>
<td>* .ppf</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>file to write a copy of the plot parameters necessary to regenerate the plot.</td>
<td></td>
</tr>
<tr>
<td>Section view</td>
<td>input/output</td>
<td>current view</td>
<td>available section views</td>
</tr>
<tr>
<td></td>
<td></td>
<td>section view to use for plot definitions such as the tins to profile, the models of services, corridor width and vertical exaggeration.</td>
<td></td>
</tr>
<tr>
<td>Plotter type</td>
<td>input</td>
<td>hp</td>
<td>hp, dxf, postscript etc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>file format for the plot information.</td>
<td></td>
</tr>
<tr>
<td>Plot file</td>
<td>file box</td>
<td>*.hp etc.</td>
<td></td>
</tr>
</tbody>
</table>
name of the file to write out the long section plot to.

Start/end chainage  
input

the plot covers the chainage range given by the start and end chainage fields. If the start/end chainage is blank, the start/end chainage of the primary string is used.

Chainage increment  
input 100

chainage increment to label the long plot with chainage and height values.

Sheet size wd ht (mm)  
input available sheet sizes

The width and height values (separated by space) or the name of a user defined sheet size.

Scale 1:  
input

horizontal scale for the plot. The vertical scale is taken from the ppf or the section view.

Plot primary string  
tick box ticked

if ticked, the primary string is plotted along with any horizontal geometry displayed in the section view.

Use HG VG for min, max  
tick box ticked

if ticked, the chainage range available for plotting is from the minimum of the horizontal geometry (HG) and the vertical geometry (VG) to the maximum of the HG and VG. Useful for kerb returns.

If not ticked, the chainage range available for plotting is from the minimum of the horizontal geometry (HG) to the maximum of the HG.

Label depths  
tick box ticked

if ticked, label in boxes at the bottom of the plot, the distance between the primary string and the tins.

Text style  
input 1

text style to be used in the long section plot boxes.

Box text ht (mm)  
input 3

height (in millimetres) to plot the chainage and elevations in the boxes in the long section plot.

Box colour  
colour box cyan available colours

colour used for the chainage text and the boxes.

Datum value  
input

if non-blank, the value to be used as a datum. If blank, then a suitable datum value will be calculated.

Offset model  
input available models

if non-blank, then all the strings in the offset model will be projected onto the primary string and drawn and labelled on the long section plot.

Title tab  
brings up the section long plot title panel.

Use title file  
tick box not ticked

if ticked, a use supplied title block file is used.

Standard Title  
tick box ticked

if ticked, the standard 4D Solutions border and two lines of title are placed on the bottom of the plot.

Title file  
file box available *.tf files

if non-blank and use title file is set to tick, then the file given in this field is used to generate a user defined title block for the plot.

Title line 1/2  
input

first/second line of title information
Title height (mm) input 5

Height (in millimetres) to draw the characters in the two lines of title information.

Title colour colour box cyan available colours

Colour used for the border and the title information.

Pagination tab

Brings up the section long plot pagination panel.

Pagination tick box ticked

If ticked, the long section plot is broken into separate plots of length given in the length field, from the start chainage to the end chainage. If the overlap field is non-zero, then each page of the long section plot also includes the overlap value of the end of the previous page of plot.

The units for length and overlap can be either chainage distance or millimetres on the plot page.

Hence apart from the first page and possibly the last page, the plot will have a total length given by the sum of the length and the overlap panel fields.

Pagination mode input chainage chainage, millimetres

The units for length and overlap can be either chainage distance or millimetres on the plot page.

If pagination mode is set to chainage, the units are chainage distance.

If pagination mode is set to millimetres, the units are millimetres on the plot.

Length measure box 600

If pagination is set to ticked, the length of new plot to be included in the current plot.

Overlap measure box 25

If pagination is set to ticked, the length of the previous plot page to be included in the current plot.

Plot button

Write out the plot for the long section plot between the chainages given in the start and end chainage fields. The format of the file is given by the plotter type.
25.8.5 Plot Many Long Sections

**Position of option on menu:** Plot => Old plotting => Long Section Plot Many

The Long Section Plot Many option is used to plot individual long section plots for each string selected by the Data source.

On selecting the Long Section Plot Many option, the Section Long Plot Many panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data to plot</td>
<td>- Data source type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plot parameters</td>
<td>file box</td>
<td>* .ppf files</td>
<td></td>
</tr>
<tr>
<td>Section view</td>
<td>view box</td>
<td>available views</td>
<td></td>
</tr>
<tr>
<td>Plotter type</td>
<td>input</td>
<td>hp</td>
<td>available plotters</td>
</tr>
<tr>
<td>Plot file</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When the Plot button is selected, individual long section plots will be created for all the strings selected in the data source field.
25.8.6 Drainage/Sewer Plot

**Position of option on menu:** Plot => Old plotting => Drainage/Sewer

The Drainage/Sewer option is for creating drainage and/or sewer long-section plots.

The option has already been described under Design => Drainage-sewer => Plots.

See [22.9.2 Drainage Longsections](#).

25.8.7 Melbourne Water Sewer Plot

**Position of option on menu:** Plot => Old plotting => Melbourne Water

The Melbourne Water option is for creating sewer long-section plots to Melbourne Water specifications.

The option has already been described under Design => Drainage-sewer => Plots.

See [22.9.3 Melbourne Water](#).
25.8.8 Pipeline Plot

**Position of option on menu:**  Plot => Old plotting => Pipeline

The Pipeline option is for creating pipeline long-section plots.

Given the plot sheet size and the horizontal and vertical scales, the longsections for the pipelines are plotted starting at the top of the sheet and moving across the sheet. Once one row is full, if there is room the plot moves down the page and begins a new row. When a plot sheet is full, a new plot sheet is automatically begun.

The pipeline plots include

- the horizontal and vertical joint deflection at any vertical intersection points which have no curves on them
- the natural surface height and chainage at any pegs or positions from the specials model, plus the invert level and depth to pipe at the position
- for any services which cuts the pipeline, the name, diameter, invert level, the distance along the pipeline of the cut point plus the invert level and depth of the invert for the pipeline and the cut point.

After selecting the Pipeline option, the Plot Pipeline Network panel is displayed.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Plot parameters</strong></td>
<td>input</td>
<td></td>
<td>* .ppf</td>
</tr>
<tr>
<td>file of plot parameters used for extra control of the long section plot.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Plot type</strong></td>
<td>input</td>
<td>hp</td>
<td>hp, dxf, postscript etc.</td>
</tr>
<tr>
<td>format for the plot output.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Network model</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the model containing the pipelines to be plotted.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Section view</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the section view to be used to define the vertical exaggeration, corridor widths, tins to section through, services models to section etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Plot file stem</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>since more that one plot page may be produced, the plot file stem plus a plot page sequence number followed by .plt is used as the plot file names.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Specials model</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>model of text strings which are used as extra labels for the plots.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Peg interval</strong></td>
<td>input</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>
| if the specials model is blank, the pipelines are labelled with the text **peg** at the peg interval along the
pipeline.

Scale 1:  
horizontal scale for plotting the pipeline long sections. The vertical exaggeration is taken from the section view given in the section view field.

Sheet size wd ht (mm)  
input  
available sheet sizes

if non-blank, the width and height values in millimetres (separated by space) or the name of a user defined sheet size.
If blank, the sheets size is calculated to fit the long section plot.

Pipeline line ht (mm)  
input  
the maximum allowable height for a longsection plot for a pipeline line. Datum breaks are applied to any part of the longsection that will not fit into the pipeline line ht.

Start plot chainage  
input  
If blank, the start chainage of the pipelines is used; if non blank, the plots start at this chainage for each pipeline.

End plot chainage  
input  
If blank, the end chainage of the pipelines is used; if non blank, the plots finishes at this chainage for each pipeline.

Plot  
button  
write out the pipeline longsection plots for the pipelines in the model given in the network model field.
The fields and buttons for margin tab:

**Left/right margin (mm)** 10.0

the left/right hand side margin between the sheet and the plotting area inside the sheet.

**Bottom/top margin (mm)** 10.0

the bottom/top margin between the sheet and the plotting area inside the sheet.

The fields and buttons for the title tab:

**Use title file** tick box

*if ticked, a user defined title block file is used.*

**Use Standard title** tick box tick

*if ticked, the standard border and two lines of title are placed on the bottom of the plot*

**Title file** input *.tf

*if non-blank and use title file is set to tick, then the file given in this field is used to generate a user defined title block for the plot.*

**Title line 1/2** input

*first/second line of title information*

**Title height (mm)** input 5

*height (in millimetres) to draw the characters in the two lines of title information.*

**Title colour** input cyan available colours

*colour used for the border and the title information.*
25.8.9 Edit Title Block Alias Data

**Position of option on menu:** Plot => Old Plotting => Edit title block data

NO LONGER USED IN V7

This panel is used to easily change to data in your drawing title blocks (set values for the user_text_n field in a title file).

The **Title block ppf** is the ppf that is created by the panel. You may want to create a title block ppf for every drawing you create. This way you can easily re-plot a drawing with the same title block data. This is the ppf name that you will use in the future plot panels when you are ready to plot using the title block.

The **Base ppf** field is an existing ppf that includes all of your default plot parameters for creating your drawing. It must reference a title file.

12d marks the location of your title block data using the variables user_text_1, user_text_2 etc. Since it is difficult to remember what user_text_1 represents in the title block, 12d allows you to use a meaningful name reference (Main title for example) instead of user_text_1. The Alias button allows you to set these alias names for the title file referenced in your base ppf.

The Advanced button is only used if the same text data is to be used in another Title Block ppf (share the data between drawing).

The Set button creates/updates the title block ppf and the title file values that you entered.

![Title Block Data Editor](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title block ppf</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Old Plotting* 
*Page 5921*
this is the ppf that is created by the panel. This is the ppf name that you will use in the future plot panels when you are ready to plot using the title block. The Title Block ppf is usually stored locally (in the current folder).

**Base ppf**

this ppf must exist (often in library or your user library). It will contain all of your default plot parameters for creating your drawing. It must reference a title file (see notes below). When you press enter, the ppf file is read to find the name of the title file you reference. Once the title file is found, the alias names are read from the title alias file if available.

To convert an existing ppf file into a Base ppf file use a text editor to delete all references to user_text_n variables in the file.

**Current page**

choice box available pages

if more than one page of data (10 fields) are required additional pages will be listed here.

**Value**

input box

the data to be shown into your drawing title block is entered here. The description to the left is either user_text_n (Note that there may be a gap in the numbering sequence) or an alias that has been set up using the alias button below.

**Alias**

button

if the fields have the names user_text_1, user_text_2 etc. use the button to change the names to a more meaningful description. These new names will be stored in the same folder as the with the title file specified in your base ppf file (the extension als will be added). The following panel will be displayed.

![Set Aliases](image)

Note that there may be gaps in the user_text_n sequence. Only the variable used in the title file will be listed.

**Advanced**

button
this feature allows you to share text data between different title block ppf files. The actual text data is stored in a title file txt (*.tft) file. Selecting the button will bring up the following panel and allow you to change the *.tft file to be used. Generally you will select a *.tft file previously set up for another title block file.

Select the Set button to set your select. The text data will be read and the main panel updated when you select the Finish button.

Set button creates/updates the Title block ppf file and *.tft file.

Notes:

Short-cuts:

*.als and *.tft files can be copies, renamed and then edited using the Title Block Edit Panel or your own text editor.

Alias files (*.als) are kept in the same folder as the your title files. Once you have one alias file set up copy the alias file and rename the copy the same name as the title file but add the additional extension .als. For example:

title file 4d_drainage_long_section_a1.tf

alias file 4d_drainage_long_section_a1.tf.als

CAUTION: The user_text_n variables should represent the same data in both title files. For example user_text_1 should be the main title in both files.

Title file text files (*.tft see advanced) files are kept in the same folder as the your Title block ppf. If you choose not to share a tft between Title block ppf files you can simply copy and rename them. Once you have saved one *.tft file, copy the file and rename the copy the same name as the title block file but add the additional extension .tft

Title Block ppf

The title block ppf file does not contain any data itself. Rather it references a *.tft file containing the text data and your base ppf file (file containing all of your default plot parameters). An example ppf file follows:

The Title Block ppf file is a ppf file with the Base ppf and user text values (in the tft file) referenced by #include statements.

#define ALIAS 1
section_long_plot "plot 2" {
// TITLE BLOCK PPF FILE
#include "Base_ljg.ppf"
#include "Title_block.ppf.tft"
}
**Base ppf**

The Base ppf can be anywhere including local, Library and User Library. It must contain a reference to a title file in the `use_title_file` parameter. The `user_title_file` parameter must be in the file and can't be in an #include file.

The following is an example title file reference.

```plaintext
use_title_file yes
title_file "your title file.tf"
```

Note: If you already have `user_text` variables defined in your Base ppf these values will not be used and a warning message will be issued at plot time. It is best to remove all `user_text` variables from your existing ppfs before attempting to use them with this new 4d facility.

The panel scans the title file reference and records all of the `user_text_n` entries that are used. **Only those used are displayed in the panel.** Next a file with the `.als` is located. If found the alias values are used in the panel instead of `$user_text_1, $user_text_2` etc.

If an alias file (same name as the title file PLUS the extension `.als`) has been previously created using the Alias button, the aliases for the `user_text's` are used on the left hand side of the panel. If an alias file has not been found, they can be created by simply selecting the Alias button.

The Base ppf is also checked to see if a

```plaintext
#ifndef ALIAS
 section_long_plot "plot 2" {
 #endif
```

exist around the opening "xxxxxxx {" and closing "}" braces. If not, a Base PPF file update panel is displayed.

Select **Automatically update ppf now** and select the Process button. The extra lines then are added to the Base ppf.

For example, the beginning and end of the updated file will look like:

```plaintext
BEGINNING
#ifndef ALIAS
section_long_plot "plot 2" {
 #endif

END
#ifndef ALIAS
} #endif
```
Clicking on the Alias button brings up the Set Aliases panel. Simply fill in the names to use instead of the words $user_texts_n in the Title Block - User Text Data Editor panel. Selecting Set writes out an aliases file which has the same names as the title file but with the appended ending .als.

**Set**

After selecting Set, the values for the user_texts are written to a file specified under **Advanced** (if used) or of the same name as the Title block ppf but with .tft appended.
25.8.10 Create Old Plot Frame

**Position of option on menu:** Plot => Old plotting => Create plot frame

On selecting the Create old option, the **plot frame create** panel is displayed.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>input</td>
<td>name</td>
<td>for the plot frame.</td>
</tr>
<tr>
<td>Model</td>
<td>input</td>
<td>available model</td>
<td>the model for the plot frame.</td>
</tr>
<tr>
<td>Colour</td>
<td>input</td>
<td>available colours</td>
<td>the colour for the plot frame.</td>
</tr>
<tr>
<td>Plotter type</td>
<td>input</td>
<td>hp</td>
<td>hp, dxf, dwg, postscript etc.</td>
</tr>
<tr>
<td>Plot file</td>
<td>input</td>
<td>*.hp</td>
<td>name of the file to write the plot of the plot frame to.</td>
</tr>
<tr>
<td>Scale 1:</td>
<td>input</td>
<td>1</td>
<td>scale for the plot.</td>
</tr>
<tr>
<td>Sheet size wd ht (mm)</td>
<td>input</td>
<td>value (separated by spaces)</td>
<td>the width and height values (separated by spaces) or the name of a user defined sheet size.</td>
</tr>
<tr>
<td>Rotation angle</td>
<td>input</td>
<td>0</td>
<td>angle of rotation for the plot frame.</td>
</tr>
<tr>
<td>Origin</td>
<td>input</td>
<td>xyz ops menu</td>
<td>origin (in world units) for the corner of the plot frame - given as three values separated by spaces. The values can either be typed in, or selected by clicking LB in the origin panel view and getting up the xyz ops menu and selecting the pick xyz option.</td>
</tr>
<tr>
<td>Draw viewport border</td>
<td>tick box</td>
<td>tick</td>
<td>if ticked, plot the box around the plotting area (viewport).</td>
</tr>
<tr>
<td>Create</td>
<td>button</td>
<td></td>
<td>create the plot frame and then put up the plot frame edit panel for the created plot frame.</td>
</tr>
<tr>
<td>Same as</td>
<td>button</td>
<td></td>
<td>after picking the same as button, an existing plot frame is selected and its information is used to fill in the above panel fields.</td>
</tr>
</tbody>
</table>

**Title tab**

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use title file</td>
<td>tick box</td>
<td></td>
<td>if ticked, use the file given in the title file field to generate a title block.</td>
</tr>
<tr>
<td>Standard Title</td>
<td>tick box</td>
<td></td>
<td>if ticked, plot the standard 12d Model title block with the text, height and colour given in the following panel fields.</td>
</tr>
<tr>
<td>Title line 1/2</td>
<td>input</td>
<td></td>
<td>first/second line of title information in the 12d titleblock or for the user defined title block.</td>
</tr>
<tr>
<td>Title height (mm)</td>
<td>input</td>
<td>10</td>
<td>height (in millimetres) to draw the two lines of title information in the 12d titleblock.</td>
</tr>
<tr>
<td>Title colour</td>
<td>input</td>
<td>cyan</td>
<td>available colours</td>
</tr>
</tbody>
</table>
Title tab

**Left/right margin (mm)** 10.0
- the left/right hand side margin between the sheet and the plotting area inside the sheet.

**Bottom/top margin (mm)** 10.0
- the bottom/top margin between the sheet and the plotting area inside the sheet.

**How To Use the Option**

The plot frame contains all the information required to define the physical area in real world units to be plotted, the position on the sheet of the area being plotted, the plotter type and the plot file name.

Once the frame is created, the **plot frame edit** panel for the created plot frame is automatically placed on the screen so that the frame’s position can be adjusted using the **Translate** and **Rotate** buttons.
25.8.11 Editor Old Pot Frame

Position of option on menu:  Plot => Old plotting => Editor plot frame

The plot frame editor is used to edit existing plot frames. It is automatically placed on the screen when a plot frame is created so that the frame’s position can be adjusted using the Translate and Rotate buttons.

On selecting the Editor old option, the plot frame edit panel is displayed.

Most of the fields and buttons used in this panel are the same as the plot frame create panel - see the previous section 25.8.10 Create Old Plot Frame. The different ones are

Field Description	Type	Defaults	Pop-Up
Pick button | | | select the plot frame to be edited.
Set button | | | update the plot frame with the information in the above panel fields.
Translate button | | | after picking the translate button, the plot frame will move with the cursor until a point is selected to give the final position of the plot frame.
Rotate button | | | after picking the rotate button, the plot frame is further rotated around the left hand corner of the sheet, by the angle made between the rotation point and the current cursor position. The plot frame will continue to rotate until a point is selected to fix the rotation angle.
25.8.12 Plotting Old Plot Frames

Position of option on menu: Plot => Old plotting => Plot plot frame

The plot old option is used to make a plot of the data on a given plan view for all the selected plot frames (selected by the data source). Note that the plots are of a given plan view and the plot frames do not have to be on the plan view.

On selecting the plot old option, the plot frames plot panel is displayed.

![Plot Frames Plot Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data to plot</td>
<td>Data source type</td>
<td>data source type.</td>
<td>data source type.</td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td></td>
<td></td>
<td>when the plot button is selected, all the plot frames in the data source will be plotted.</td>
<td></td>
</tr>
<tr>
<td>Plot parameters</td>
<td></td>
<td>input</td>
<td>* .ppf files</td>
<td>file of plot parameters to be used for the plot frames.</td>
</tr>
<tr>
<td>Plan view to plot</td>
<td></td>
<td>input</td>
<td>available views</td>
<td>the name of the view that is plotted when the plot frames are selected for plotting. Note that the plot frames do not have to be on the view.</td>
</tr>
<tr>
<td>Plot</td>
<td>button</td>
<td></td>
<td></td>
<td>when the plot buttons is selected, all the plot frames in the data source field will be plotted.</td>
</tr>
</tbody>
</table>

For more information on the plot frame plot parameters, please go to the section 44.1 Plot Frame Parameter File in the Appendix 44 Text Plot Parameters.
25.8.13 Plotter Mapping Table

Position of option on menu: Plot => Plotting setups => Plotter Mapping

The **Plotter mapping file** can be used with pen plotters but is more specifically designed for electrostatic and inject plotters and allows the user to

(a) map the full 10,240 12d Model colours to particular plotter pens and also specify a width (or weight) to be used for PCL5, HPGL2 and postscript plotters.

(b) specify the red, green and blue mix for pens on HPGL2 and colour postscript plotters

There are also two special formats of the plotter mapping file which are used for plotting to Autocad dxf/dwg and Intergraph dgn. The special mapping files use the 12d Model colour as a key to tables which control how the information is passed to DXF/DWG and DGN.

(c) .tbl file used with plotting to Intergraph dgn

(d) .amf used with plotting to Autocad dxf and dwg

The .tbl and .amf files are documented in the 43.3 Mapping 12d Colours to Pens and RGBs and 43.2.1.3 Definition and Example of a .amf File sections in the Appendix 43 Plotters and Plotting.

On selecting the **plotter mapping** option, the **Plotter Mapping Table** panel is displayed.

![Plotter Mapping Table](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapping file</td>
<td>*pmf box</td>
<td>*.pmf file</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>the plotter mapping file to be used when plotting.</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>If no plotter mapping file is given, the pen mapping table in colours.4d is used.</strong></td>
<td></td>
</tr>
<tr>
<td>Default colour</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>if not blank, the rgb of this colour is used as the rgb for the default pen colour.</strong></td>
<td></td>
</tr>
<tr>
<td>Default weight</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>if not blank, the default pen weight.</strong></td>
<td></td>
</tr>
<tr>
<td>Merge colours.4d</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>If ticked, the pen_mapping section is populated with the rgb columns from the colours.4d file are used to define the pen_colours for the colour_number row, and the pen mapping number is used to construct the pen_mapping table.</strong></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>set the information in the panel</strong></td>
<td></td>
</tr>
</tbody>
</table>
25.8.13.1 Initialization of the Plotter Mapping File

25.8.13.1.1 When using the Plotter Mapping Table panel:

When used with the Plotter Mapping Table panel, the pen_mapping and pen_colours sections are initialised before the plotter mapping file is used. This is to ensure that any colours and/or pens not mentioned in the file but used in a plot, do have valid definitions.

The initialisation sequence for the plotter mapping file used with the Plotter Mapping Table panel is:

Before the plotter mapping file is used:

(a) a default pen_mapping table is constructed for the colours in colours.4d by:

\[
\text{colour } n \rightarrow \text{pen } n \quad \text{with the default weight from the Plotter Mapping Table panel.}
\]

(b) a default pen_colours table for pens 0 to 10,240 is set up by:

\[
\text{pen } n \quad \text{default_red} \quad \text{default_green} \quad \text{default_blue}
\]

where default_red, default_green, default_blue are the red, green and blue of the default colour from the Plotter Mapping Table panel.

If the merge colours.4d flag is set in the Plotter Mapping Table panel, the rgb columns from the colours.4d file are used to define the pen_colours and the pen mapping number is used to construct the pen_mapping table.

The plotter mapping file is then processed and over writes any of the above initial mapping values.

25.8.13.1.2 When Using a Plotter from Plotters.4d:

A plotter mapping file can be set for a user defined plotter in the file plotters.4d. In this case, the Plotter Mapping Table panel is not used and hence the initialisation sequence is slightly different.

For a user defined plotter, the initialisation sequence for the plotter mapping file is:

Before the plotter mapping file is used

(a) a default pen_mapping table is constructed from the colours in the colours.4d file by:

\[
\text{colour } n \rightarrow \text{pen } n \quad \text{default_weight}
\]

where default_weight is the default_weight if one is given in the specified plotter mapping file or zero if the default_weight does not exist.

(b) a default pen_colours table for pens 0 to 10,240 is set up by:

\[
\text{pen } n \quad \text{default_red} \quad \text{default_green} \quad \text{default_blue}
\]

where default_red, default_green, default_blue are the red, green and blue of the default colour if one is given in the specified plotter mapping file, or rgb 0 0 0 if the default_colour does not exist.

The plotter mapping file is then processed and over writes any of the above initial mapping values.

25.8.13.2 An Example of a Plotter Mapping File

An example of a plotter mapping file (.pmf) is:

```
default_colour 100 0 100
default_weight 0.1
pen_mapping { // pen mapping and weight table
```
### Old Plotting

<table>
<thead>
<tr>
<th>colour</th>
<th>pen</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0.15</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

```plaintext
pen_colours {
// pen colours table

//pen red green blue values 0-255
0 0 0 0 // pen 0 is black
1 255 0 0 // pen 1 is red
3 0 255 0 // pen 3 is green
}
```
25.8.14 Pen Mapping Old

Position of option on menu:
NO LONGER USED

Although 12d Model uses up to 10,240 different colours, most plotters have a smaller number of pens. Consequently for any plot, it is necessary to define what pen number corresponds to each 12d Model colour.

For all plotters types except Eagle, the pen mapping option can be used to define the correspondence between 12d Model colours and plotter pens for the first sixteen colours. The other colours are given in the colour_map.def file. For Eagle plots, the eagleplt.pmf file is used to map colours to pens.

The pen mapping option is only used if a plotter mapping is not being used (see next section).

On selecting the pen mapping option, the current pen mapping table is displayed in the colours to pens panel.

When starting a new project or entering an existing project, the default pen mapping table is defined by the colours.4d file.

Once inside the project, any pen number in the table can be modified by changing the appropriate pen field and then selecting the set button. The modified table is stored until 12d Model is quit or the user changes to another project.

The pen mappings for colours above sixteen are given in the colours.4d file but can not be displayed or modified by the colours to pens panel.

Whenever a plot is created using non-eagle plotter types, the colours are mapped to the pen numbers given in the colours to pen table before writing out the plot file.

For Eagle plots, the eagleplt.pmf file is used to map colours to pens.

Note - when 12d Model is started up again or the user changes to a new project, the table reverts to its default settings as given in the colours.4d file.
26 PPF Editors

26.1 General Information on PPF Editors

For the special plot types:

Cross sections, General Long sections, Plot Frames, Drainage Long sections, Drainage plan, Melbourne Water long sections and Pipeline Long sections.

there are plot parameters for controlling what items are drawn on the plots, what colours are use, what the text is and its colour and sizes, what the title block, what information is in the title block including user supplied values that can vary with each plot, etc.

The plots themselves are considered to be drawn onto a sheet of paper with the origin (0,0) in the bottom left hand corner and with drawing units of millimetres.

So when any of the plots is generated from 12d Model, the data is translated and scaled so that it fits onto the positive quadrant with (0,0) in the left hand corner. This means that title blocks and overlay models can be set up knowing exactly where they will sit in relation to a plot.

For each of the special plot types, there is a PPF Editor that allows the user to interactively change any of the plots parameters, specify the type of plotter to use (pdf, model, Windows etc) and actually produce the plot.

All this information can be saved away in a plot parameter file (ppf) for future reuse.

In fact the ppf has all the information required to generate the plot and can even be used to create a plot without any interaction from the user.

An example of a long section plot created in the Getting Started for Design manual is:
This plot, and the other three sheets of the set, are generated straight from 12d Model with no manual drafting at all.

For each of the PPF Editors, the parameters are displayed in a tree structure so they can be grouped together to make it easy to find any parameters to edit and modify.

For example, the Section X Plot PPF Editor looks like:

Clicking on a + will expand the node and on a - will collapse the node.

Clicking on a node will display information on the right hand side of the panel. This is where all the parameter values are entered.
Every plot parameter actually has a name but it is rare that you will ever need to know it. For most parameters you can see what the actual parameter name is by hovering over the parameter itself - a description and the name of the parameter is then displayed:

For the user, the parameter names usually only seen in diagrams explaining what the parameters control but when a plot is generated, the PPF Editor file is actually converted to a readable text file with the parameters and their values in it, and that text file that is used for generating the plot.

This all occurs in the background and it is useful to know because the PPF Editor files are often referred to as **binary PPFs** and the text ones as **Ascii PPFs** and there is even a converter to go from the Ascii PPF to a Binary PPF.

However throughout this manual, PPF will refer to the Binary PPF’s unless stated otherwise.

**Note:** Binary PPFs are normally stored within a project.

Many of the sections of the PPF Editors are common and as much as possible, will be described in one place.

For the items common to all the PPF Editors that are documented in the section 26.2 Nodes, see

- 26.2.1 Plot Parameter File
- 26.2.2 View to Load and Global Variables
- 26.2.3 Sheet Size and Plotter Parameters
- 26.2.4 Notes
- 26.2.5 Plot to models
- 26.2.6 Title Block
- 26.2.10 PPFs To Include
- 26.2.11 Buttons at the Bottom of the PPF Editors

For the individual PPF Editors, see
The first section of the documentation is **26.2 Nodes Common to the PPF Editors**.
26.2 Nodes Common to the PPF Editors

For the items common to all the PPF Editors, see

26.2.1 Plot Parameter File
26.2.2 View to Load and Global Variables
26.2.3 Sheet Size and Plotter Parameters
26.2.4 Notes
26.2.5 Plot to models
26.2.6 Title Block
26.2.10 PPFs To Include
26.2.11 Buttons at the Bottom of the PPF Editors
26.2.1 Plot Parameter File

The Plot Parameter file is common to all the PPF Editors and reads and writes (binary) plot parameter files for all values on the PPF Editor.

**Panel field**

**Type**

**Plot parameter file**

file box

*name for the binary plot parameter file to read in or write out.*

*If a name is selected the Read button still needs to be pressed to read the file in and load up the plot parameters in the PPF Editor.*

**Read**

button

*read the given plot parameter file in and load up the plot parameters in the PPF Editor from any values in the file.*

**Write**

button

*write out the plot parameters to the given plot parameter file. A text ppf file is also written out.*

Continue to the next section **26.2.2 View to Load and Global Variables** or return to **26 PPF Editors**.
26.2.2 View to Load and Global Variables

The following fields are common to the top node for most of the PPF Editors.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: View to load details from</td>
<td>View to load details from</td>
<td>section view box</td>
<td>all section views</td>
</tr>
<tr>
<td>View</td>
<td>section view box</td>
<td>all section views</td>
<td></td>
</tr>
<tr>
<td>Global variables</td>
<td>Text style</td>
<td>text style</td>
<td></td>
</tr>
<tr>
<td>Plot symbols</td>
<td>plot_symbols</td>
<td>file box</td>
<td></td>
</tr>
</tbody>
</table>

The columns for the fields documented in the sections are for.

- **View**
  - **section view box**
  - **all section views**

  *On selection of an existing section view, the vertical exaggeration, model of x-sections to plot, corridor model and corridor settings from the section view are loaded into the PPF editor.*

**Section: Global variables**

- **Text style**
  - **global_textstyle**
  - **text box**

  *Default text style to use if there is no parameter given for an optional text style parameter.*

- **Plot symbols**
  - **plot_symbols**
  - **file box**

  *If not blank, this file of plot symbols is used instead of the symbol file currently being used for the project.*

Continue to the next section [26.2.3 Sheet Size and Plotter Parameters](#) or return to [26 PPF Editors](#).
26.2.3 Sheet Size and Plotter Parameters

The following fields are common to the top node for most of the PPF Editors.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Sheet size setup</strong></td>
<td><strong>Sheet size wd ht (mm)</strong></td>
<td>sheet_size</td>
<td>sheet size box</td>
</tr>
<tr>
<td></td>
<td>a valid sheet size is selected.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Section: Plotter parameters**

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plotter type</td>
<td>plotter_type</td>
<td>plotter box</td>
<td></td>
</tr>
<tr>
<td>Plot file stem</td>
<td>plot_stem</td>
<td>plotter box</td>
<td></td>
</tr>
<tr>
<td>Digits in plot file number</td>
<td>file_num_digits</td>
<td>number box</td>
<td></td>
</tr>
</tbody>
</table>

- Leaving *Digits in plot file number* blank or setting a value of 1 or less, will result in file names like we've always known them.
- Setting *Digits in plot file number* to a value of 2 or more, ensures there will be at least that number of digits in the page numbers built into the plot file names, and if zero-padding is used where necessary to get that number of digits.
- For example, if *Digits in plot file number* is 3 then plot number 7 will have the number 007.

Continue to the next section 26.2.4 Notes or return to 26 PPF Editors.
Chapter 26  PPF Editors

26.2.4 Notes

Section: Document your PPF here ...

Region for typing ppf_notes

Type in any notes as documentation for this PPF file.

This information is not plotted.

Continue to the next section 26.2.5 Plot to models or return to 26 PPF Editors.
26.2.5 Plot to models

The **Plot to models** node controls whether models are cleaned before the plot is written to them, and whether the plots go to separate models for each page or all into one model.

The columns for the fields documented in the sections are for:

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean plot models beforehand</td>
<td>plot_model_clean</td>
<td>choice box</td>
<td>do not clean</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>prompt for clean</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>always clean</td>
</tr>
</tbody>
</table>

when plotting to a model, it defines whether to clean (delete the elements in) any resultant plot models that may already exist, before generating the plot(s).

This parameter is only applicable if plotting to a model or models.

Note that if the models are cleaned using this parameter, any non-plot or locked elements found in the models will not be cleaned from the models, and the plot job will be cancelled.

**Section: Translate and merge models**

Whenever a PPF is set to produce multiple sheets of plot models, the **Translate and merge plot models** group of parameters, offer the ability to produce plot models arranged neatly in a row or column of sheets, optionally merged into the single plot model created for the first sheet.

**Note:** The **Origin X** and **Origin Y** parameters are useful when building up larger arrays of plot sheets -- perhaps entire drawing sets -- from multiple PPFs, where each PPF may be specified with a different origin.

**Mode**

The entire group of parameters is activated by setting the Mode to either "row-wise translation" or "column-wise translation". This determines whether the multiple sheets will appear as a row or a column of sheets. If unspecified, "do not translate or merge" is assumed, and the remaining parameters are ignored.

**Spacing (mm)**

determines how far to translate each sheet from the previous sheet. Practically, it should be at least as large as the sheet width or height. For an A1 sheet size, 1000 mm works well as a nice round number.

**Origin X (mm)**

determines the x-coordinate of the bottom-left corner of the first sheet.

If let blank then 0 mm is assumed.

**Origin Y (mm)**

determines the y-coordinate of the bottom-left corner of the first sheet.

If let blank then 0 mm is assumed.

**Merge**

if **ticked**, all sheets produced by the PPF, will be created in a single model and that model is the plot model created for the first sheet.

**Note:** The **Origin X** and **Origin Y** parameters are useful when building up larger arrays of plot sheets -- perhaps entire drawing sets -- from multiple PPFs, where each PPF may be specified with a different origin.

Continue to the next section **26.2.6 Title Block** or return to **26 PPF Editors**.
26.2.6 Title Block

12d Model plots are considered to be drawn onto a sheet of paper with the origin (0,0) in the bottom left hand corner and with drawing units of millimetres. So when any plot is generated from 12d Model, the data is translated and scaled so that it fits onto the positive quadrant with (0,0) in the left hand corner.

This means that linework and text to make up title blocks and other data can be accurately positioned to overlay a 12d Model plot.

For most plots, users can select to have a Standard 12d title block, or use their own Title blocks that have been stored in title block files (tbf).

The format for the title block information is a subset of the 12da format with the special header of title_block and the units inside the tbf are considered to be millimetres.

So inside the tbf file, the set of all title block drawing commands is enclosed within a set of curly brackets { } with the special header

title_block

before the curly brackets.

That is,

title_block

{ 

title block drawing commands in 12da syntax

}

The easiest way to create a tbf file is to create the title block information is to use 12d Model and draw up the title block in a model, or a view of models, and then write the models out to a tbf file using the Create/Edit Title Block File panel (Plot => Plotting setups => Create/edit title block file or Drafting => Create title block file. See 25.7.1 Create/Edit Title Block File).

Because the units for plots are millimetres, the units for the title block drawing commands are taken to be millimetres.

So for the purpose of drawing up a title block in a 12d Model model, the (0,0) for the model corresponds to the origin (0,0) of the plot, and the distances are taken to represent millimetres so you do everything in World units and multiply all the coordinates and distances as the millimetre value multiplied by 1000.

So if text is to be 5 mm high in the title block, then draw text in world units and of size 5. Do not use paper size. If a line is to be 200 mm long, then draw it as 200 World Units.

So for any lines and text drawn up in a model as part of a title block, think of the World units as representing millimetres rather than metres.

Continue to the next section 26.2.6.1 Title Block Section in PPF Editors or return to 26 PPF Editors.

Nodes Common to the PPF Editors
26.2.6.1 Title Block Section in PPF Editors

Each of the PPF Editors has a Title Block section which is the same for each of them.

See:

- 26.2.6.1.1 Title Block Node
- 26.2.6.1.3 Title block - User title info
- 26.2.6.1.4 Title Block - Drawing Register

For general information about a title block, see 26.2.6 Title Block.
26.2.6.1.1 Title Block Node

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard title</td>
<td>plot_border</td>
<td>tick box</td>
</tr>
<tr>
<td></td>
<td>Use title file</td>
<td>use_title_file</td>
<td>tick box</td>
</tr>
<tr>
<td>Title line 1</td>
<td>title_1</td>
<td>text box</td>
<td></td>
</tr>
<tr>
<td>Title line 2</td>
<td>title_2</td>
<td>text box</td>
<td></td>
</tr>
</tbody>
</table>

**Section: Common title block parameters**

- **Standard title**
  - plot_border
  - if ticked, a standard 12d title block will be used.

- **Use title file**
  - use_title_file
  - if ticked, a user defined title file is used.

**Title line 1**

*If Standard title is ticked, Title line 1 is the first line of title text. If Use title file is ticked, Title line 1 is substituted for the title block variable $title_1.*

**Title line 2**

*If Standard title is ticked, Title line 2 is the second line of title text. If Use title file is ticked, Title line 2 is substituted for the title block variable $title_2.*

**Section: 12d default title block parameters**

- **Text size**
  - title_text_size
  - measure box

- **Text colour**
  - title_colour
  - colour box available colours

**Section: Model to plot in plotter units**

- **Plot data model 1, 2, 3**
  - plot_model
  - model box available models

*The Units for the Plot data model are to be in World Units but each unit is taken to represent a millimetre when plotted. So a height of 5 represents 5mm on the plot. (0,0) in the Plot data model corresponds to (0,0) in the plot. Paper Units should not be used in Plot data models.*

*For more information on plot data models, see 26.2.6.1.2 Plot Data Models.*

Continue to:

- 26.2.6.1.3 Title block - User title info
- 26.2.6.1.4 Title Block - Drawing Register

Or return to 26.2 Title Block or 26 PPF Editors.
26.2.6.1.2 Plot Data Models

A sheet of paper on a plotter has (0,0) in the bottom left hand corner and the units of millimetres. So when any plot (plan, plot frame, long section, cross section, drainage network longsection, Melbourne Water longsection or pipeline longsection) is generated from 12d Model, the data is effectively translated and scaled so that it fits onto a sheet of paper with (0,0) in the left hand corner, and the drawing units are millimetres.

If a title block is drawn, either using either the Standard Title or taking the title drawing information from a User Defined Title File, the title block is also drawn onto the sheet of paper with the drawing units of millimetres.

In each of the Title Block nodes in the plot PPF Editors, models can be given in the Plot data model fields and these models are also drawn onto the plot sheet.

Because of the special nature of the plot sheet, the Origin (0,0) of a Plot data model is matched to the origin of the plot sheet, and the World Units in the Plot data model are taken to be millimetres on the plot sheet. This applies to strings, text, linestyles and symbols in World units. So a height of 5 world units represents 5mm on the plot. (0,0).

For text, linestyles and symbols defined in Paper units (millimetres), one Paper unit in a Plot data model still ends up as one millimetre on the plot.

There is also no clipping done when plotting the Plot data model.

So like the Title Block, the Plot data models are simply an overlay that is plotted on top of the paper plan/long section/x section plot that has just been generated.

Special Notes

1. If the Plot data model is added to a Plan View (for creating, editing etc), then the Plotting scale for the Plan view needs to be 1000 so that any text, linestyles and symbols defined in Paper Units are drawn at the correct size to in relation to the other World Units data in the model, and hence as they would appear on a final plot.

2. When plotting to a model:

   (a) for all the data other than the Plot Data Models, 12d Model multiplies the millimetre size by 1000 and all text, linestyles and symbols are converted to World Units. So that lengths (distances) in the "model of the plot" represent millimetres on the plot page.

      Hence if you plot the "model of the plot", you need to plot with a scale of 1:1000 to get the correct size on the paper plot.

   (b) for the Plot Data Models, a copy of the Plot data model is simply added to the model.
containing the plot

Because the *Plot data model* is simply an overlay with no change of scale and is not clipped, then in the special case of *plotting to a model*, a copy of the *Plot data model* is simply added to the model containing the plot. So World text, linestyles and symbols stay as World text, linestyles and symbols. And text, linestyles and symbols in Paper units stay as text, linestyles and symbols in Paper units.

3. When you *plot to a model* and then display the "model of the plot" on a *Plan View*, the *Plotting scale* for the *Plan View* needs to be 1000 so that text, linestyles and symbols that have come from the *Plot data model* and are defined in *Paper Units* display as they would appear in a final paper plot.

4. If you *plot to a model*, and then add the model of the plot to a Plan View and plot the "model of the plot", *all* the linestyles and symbols will be exploded into lines and arcs.

When creating data in a *Plot data model*, to save confusion it is easiest to create all the data, text, linestyles and symbols in World units, and to think of the World unit as being millimetres.

However many *12d Model* users have many of their linestyles and symbols defined in Paper units and then can be used in the *Plot data model* as long as the *Special Notes* are remembered.

Return to [26.2.6.1.1 Title Block Node](#).
26.2.6.1.3 Title block - User title info

The parameters shown below are subject to the appropriate title block variables existing in the title file. For more information on these variables see the section 26.2.6.2 Title Block Variables.

The columns for the fields documented in the sections are for:

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

**Section: User title block parameters**

- **Title file**
  - title_file
  - file box
  - available title files
  - specifies the name of the title file to use. If a valid title file exists, the specified Name values will be filled out in the grid using the title block variable $user_text_n.

- **Name**
  - output
  - the alias for the nth user text specified in the title file.

- **Value**
  - user_text_n
  - text box
  - the alias text to be substituted in for the user text specified.

- **Time format**
  - time_format
  - text box
  - the time format relates to the $time title block variable. For more information on the time formats see the section 26.2.6.6 Specifying the Format for $time.

- **Start page number**
  - start_page_number
  - integer box
  - used as the starting value for the title block variable $page_number. If missing, $page_number starts at 1.

- **Start drawing number**
  - start_drawing_number
  - integer box
  - used as the starting value for the title block variable $drawing_number. If missing, $drawing_number starts at 1.

- **Drawing number prefix**
  - drawing_number_prefix
  - text box
  - the value entered is used for the title block variable $drawing_number_prefix.

- **Drawing number postfix**
  - drawing_number_postfix
  - text box
  - the value entered is used for the title block variable $drawing_number_postfix.

Continue to 26.2.6.1.4 Title Block - Drawing Register or return to 26.2.6.1 Title Block Section in PPF Editors or 26 PPF Editors.
26.2.6.1.4 Title Block - Drawing Register

These parameters are for using a Drawing Register to be used to provide information for the title block. More detailed information is given below after defining the parameters on the node.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register type</td>
<td>drawing_register_type</td>
<td>choice box</td>
<td>Excel</td>
</tr>
<tr>
<td>Register file</td>
<td>drawing_register_file</td>
<td>file box</td>
<td></td>
</tr>
<tr>
<td>Worksheet</td>
<td>drawing_register_excel_sheet</td>
<td>text box</td>
<td></td>
</tr>
</tbody>
</table>

### Section: Drawing register parameters

The type of file used for the drawing register.

name of the register file.

**Worksheet**

*if not blank and the Register type is Excel, name of the register file, the name of the Worksheet of the spreadsheet to use.**

**Grid**

name of the register file.

**Name**

text grid cell
text entry

**Value**

text grid cell
text entry

Many people use database tables, such as an Excel spreadsheet, to provide information for the title blocks of the plots. For example, for special drawing numbers and drawing revision. This database is often known as a **Drawing Register**.

For example, in an Excel spreadsheet, the columns of the spreadsheet would have unique names to refer to the information in each column, and each row of the spreadsheet holds the information for a single, specific plot.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PLOT FILE</td>
<td>DRG#</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>plot_xs_MC01</td>
<td>12345678-5-1</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>plot_xs_MC01</td>
<td>12345678-5-2</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>plot_xs_MC01</td>
<td>12345678-5-3</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>plot_xs_MC02</td>
<td>12345678-5-4</td>
<td>C</td>
</tr>
<tr>
<td>6</td>
<td>plot_xs_MC02</td>
<td>12345678-5-5</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>plot_is_MC01</td>
<td>12345678-6-1</td>
<td>C</td>
</tr>
<tr>
<td>8</td>
<td>plot_is_MC01</td>
<td>12345678-6-2</td>
<td>C</td>
</tr>
<tr>
<td>9</td>
<td>plot_is_MC02</td>
<td>12345678-6-3</td>
<td>C</td>
</tr>
<tr>
<td>10</td>
<td>plot_dr_is</td>
<td>12345678-7-1</td>
<td>C</td>
</tr>
<tr>
<td>11</td>
<td>plot_dr_is</td>
<td>12345678-7-2</td>
<td>C</td>
</tr>
<tr>
<td>12</td>
<td>plot_dr_is</td>
<td>12345678-7-3</td>
<td>C</td>
</tr>
</tbody>
</table>

The **Drawing Register** node in the **PPF Editor** specifies the type and name of the database to use for the one plot.
be used to retrieve information from, and enough information to determine what row of the
database table is to be used to supply information for the title block of a specific plot.

For example in the spreadsheet above, the *plot file name* will identify a particular plot, and the
information in each of the columns from the rest of the row is the drawing number (*Drg#*), Title
(*Title*) and Revision (*Rev*) for that plot.

Once the **Drawing Register** node has been set up to identify a row of the spreadsheet, the title
block variable to extract the information for column *column_name* from that row of the drawing
register is

\[ $\text{drawing_register}<\text{column_name}> \]

So the **Drawing register** node of a *Long Section Plot PPF* could be

![Section Long Plot PPF Editor](image)

and this could be used in a **User tile info** node as:
Continue to 26.2.6.2 Title Block Variables or return to 26.2.6.1 Title Block Section in PPF Editors or 26 PPF Editors.
26.2.6.2 Title Block Variables

For title blocks, the text drawing command has been extended so that they can use special information such as the project name, project details, current date and time, plotting scales etc. can be automatically inserted into the title block at plot time.

To achieve this, special **title block variables** have been defined and wherever these variables appear in a title block text, they are expanded to their defined value at the time of plotting.

Hence the title block variables are simply place markers which have text values substituted for them when the title block file is used in a plot.

The title block variables all begin with a $ and are followed by either another title block variable or a single space. For example, in the 12da string definition, the line is

```
text "user text $variable more user text"
```

or

```
text "user text $variable_1 more user text $variable_2 more user text
```

For example

```
text "Project $project"
```

will write out the word "Project " followed by the name of the project.

**Note** - colour, style, xfactor, slant, offset etc. are all assigned as part of the 12da string definition.

List of Title Block Variables

See:

- Project Name
- Project Details
- Folder Details
- Plot Details
- Drawing Register Details
- PPF Details
- Model Details - for the Drainage Long-section Plot only

**Project Name**

$project  // the current project

**Project Details**

*Project details* which are entered by the user for each project (and defined by the option *Project =>Details =>Details*) can be included in the title block and are specified as **title block variables** by beginning with $project_detail and then including the *project detail name* as part of the $project_detail.

$project_detail_project_detail_name

where project_detail_name is the name of the project detail as given in the Projects Detail Editor (and not the Display name which is shown in the Setup Projects Details or Edit Project Details panels)

For example

```
text "Client: $project_detail_Client"
```

will write out the word "Client: " followed by the text in the project detail with the name "Client."

**Folder Details**
Nodes Common to the PPF Editors

Chapter 26  PPF Editors

The full path name of the working folder

$folder

Plot Details

The following title block variables take values which are passed down from the plot itself:

- $plot_file // the current plot file
- $scale // for plot frames, the current scale
- $horizontal_scale // for section plots, the current horizontal scale
- $vertical_scale // for section plots, the current vertical scale
- $start_chainage // for section plots, the start chainage for the plot
  // sheet
- $end_chainage // for section plots, the end chainage of the plot sheet

Drawing Register Details

$drawing_register<column_name>

When a Drawing Register node has been set up to identify a row of the spreadsheet, the title block variable $drawing_register is used to extract the information for column column_name from that row of the drawing register.

For information on setting up a Drawing Register node, see 26.2.6.1.4 Title Block - Drawing Register.

PPF Details

The following title block variables take values which are passed down from the plot parameter file for the plot

(time parameter files are described in more detail in the rest of this manual):

- $time
  The current date and time. The format for the date and time is given by the plot parameter time_format. See the next section for the description of the format.

- $title_1, $title_2
  $title_1 takes the value from the panel field title line 1 from the section x plot title, section long plot title or plot frame title panels, or from the parameter title_1 in the plot parameter file.
  If title_1 doesn't exist, then $title_1 is blank.
  Similarly for $title_2.

- $user_text_n where n=1,2,... 1000
  $user_text_n takes the value of the parameter user_text_n in the plot parameter file. If user_n doesn't exist, then $user_text_n is blank.
  Aliases can also be defined for the $user_text_n which are used in the PPF editors. See the next section 26.2.6.4 Aliases for $User Text on aliases.

- $page_number
  $page_number has the starting value one, or the value given by the parameter start_page_number from the plot parameter file, and is incremented by one, for each plot produced by the plot option (for example, for each page of a long section plot, for each page of x-section plots or each plot generated from a model of plot frames).

- $drawing_number_prefix, $drawing_number, $drawing_number_postfix
  The values for $drawing_number_prefix and $drawing_number_postfix are passed down from the plot parameter file by the parameters drawing_number_prefix and drawing_number_postfix respectively.
$\text{drawing} \_\text{number}$ has the starting value one, or the value given by the parameter $\text{start} \_\text{drawing} \_\text{number}$ from the plot parameter file, and is incremented by one for each plot produced by the plot option (for example, for each page of a long section plot, for each page of x-section plots or each plot generated from a model of plot frames).

Notes
1. For plot frames, the horizontal scale and vertical scale are given the current scale, and $\text{start} \_\text{chainage}$ and $\text{end} \_\text{chainage}$ are ignored.
2. For section plots, $\text{scale}$ is ignored.

Model Details - for the Drainage Long-section Plot only

The following title block variables take values from the model containing the drainage network.

$\text{model} \_\text{name}$
- The name of the drainage model

$\text{model} \_\text{event} \_\text{type}$
- Type of event of last storm analysed ("Minor" or "Major")

$\text{model} \_\text{return} \_\text{period}$
- ARI of last storm analysed.

Example of Model with Title Block Variables

\begin{center}
\begin{tabular}{|c|c|c|}
\hline
\textbf{Client:} & $\text{project} \_\text{detail} \_\text{Client}$ & \textbf{DESCRIPTION:} \\
\hline
\textbf{SURVEYED:} & \textbf{FIELD BOOK:} & \textbf{DATE:} \\
\textbf{DRAWN:} & \textbf{CHECKED:} & \textbf{$\text{time}$} \\
\hline
\textbf{HORIZONTAL DATUM:} & \textbf{LEVEL DATUM:} & \textbf{SCALE:} \\
\textbf{Di} & & $\text{scale}$ \\
\hline
\end{tabular}
\end{center}

Notes
1. For plot frames, the horizontal_scale and vertical_scale are given the current scale, and $\text{start} \_\text{chainage}$ and $\text{end} \_\text{chainage}$ are ignored.
2. For section plots, $\text{scale}$ is ignored.

Continue to 26.2.6.3 Ad Hoc Queries or return to 26.2.6 Title Block or 26 PPF Editors.
26.2.6.3 Ad Hoc Queries

It is possible to extract information from some external data sources to use in User Title Block variables, or directly in the title block file, to place in the title blocks of plots.

Data can be extracted from
(a) Excel spreadsheets
(b) XML files
(c) Databases supporting ODBC

The external data can be accessed in a completely user definable way, known as an Ad Hoc Queries.

For each different data source, there is a different method to specify how to identify the bit of information needed from the database.

See
- 26.2.6.3.1 EXCEL
- 26.2.6.3.2 XML
- 26.2.6.3.3 ODBC (Open Database Connectivity)

26.2.6.3.1 EXCEL

The Excel spreadsheet to extract information from must have the first row as a header row with the names of each column in it so row (n+1) is only the n'th row of actual information.

The format to retrieve the cell X(n+1) from the Sheet sheet_n is

Excel://Full_Path_To_Excel_File?sheet_n?Xn

It is Xn is because the first row of the spreadsheet is the header row so Xn is referring to the n'th row of actual information but that is the (n+1) row in the spreadsheet.

For example,

Excel://c:\temp\drawing.info.xlsx?Sheet1?A1

will open the Excel file c:\temp\drawing.info.xlsx and get Cell A2 from the sheet Sheet 1.

Return to 26.2.6.3 Ad Hoc Queries
26.2.6.3.2 XML

The format to retrieve the value of the element `sub_elt` inside the element `elt` is

```
XML://Full_Path_To_XML_File?elt/sub_elt
```

For example,

```
XML://c:\temp\drawing_info.xml?PlotData/Title
```

will open the XML file `c:\temp\drawing_info.xml` and extract the value of the Title element below the element PlotData.

```
<User title block parameters
 Title file tbf.tbl
 Name Value
 1 Main Title1 Excel://c:\temp\drawing_info.xsx?Sheet:A1
 2 Main Title2 XML://c:\temp\drawing_info.xml?PlotData/Title
</User>
```

So from the xml file

```
<PlotData>
 <Title>My Title</Title>
 <Client>12d</Client>
 etc
</PlotData>
```

it will get the value "My Title"

Return to 26.2.6.3 Ad Hoc Queries

26.2.6.3.3 ODBC (Open Database Connectivity)

The format to retrieve information from a database is

```
ODBC://ConnectionString?Query
```

Unfortunately the format of the `ConnectionString` and the `Query` to pull data from a database is totally dependent on the database system.

But it would resemble something like

```
ODBC://DSN=MyDBDsn?SELECT Title FROM PlotData WHERE PlotType = 'long'
```

`ODBC` is for advanced users only, and the user must be familiar with the requirements of the end database system.

Return to 26.2.6.3 Ad Hoc Queries
26.2.6.4 Aliases for $User Text

12d Model user defined title blocks can include up to 1,000 markers for placing user defined text ($user_text_n where n can be from 1 to 1000) which is only substituted for actual text at plotting time. Because of the difficulty of knowing exactly what $user_text_n stood for when the title block is being plotted, the concept of aliases has been introduced.

For example, instead of referring to $user_text_4, an alias can be defined to use the "Engineers name:" instead.

The definition of $user_text_n in a title block file has been extended so that it also includes any alias for the $user_text_n.

To define an alias for the $user_text_n in the title block file, simply replace the "_n" by "<n, for the alias>"

For example, if $user_text_1 is to have the alias "Engineers name", the title block file would now contain:

```
text "$user_<1,Engineers name:>
```

The title file and aliases work seamlessly with the interactive PPF editors and Plotters (which are described in their own sections). In the Title block section of the interactive PPF editors and Plotters, the user defined title block file is scanned for any $user_text in it and it is presented as a grid containing all the $user_user_text's in the title block with a column to fill in the values that the user wants to be plotted.

If the format $user_text_n is in the title block file, it is displayed as "User text n in the PPF editor. If an alias exists, then the alias is displayed instead of "User text n".

For example, using the $user_text<1,Engineers name> in a title block file will give:

![Section X Plot PPF Editor](image)

Continue to 26.2.6.5 Values Used for Defaults when Creating Plot Frames or return to 26.2.6 Title Block or 26 PPF Editors.
26.2.6.5 Values Used for Defaults when Creating Plot Frames

There are special parameters that are written in an info block at the top of title block file that are used as defaults for fields in the option Plots=>Plot frames=>Create.

They are

```
info {
 text "plot_frame_name" plot_frame_name
 text "plot_frame_model" plot_frame_model
 text "plot_frame_sheet_size" plot_frame_model
 text "plot_frame_colour" plot_frame_colour
 text "plot_frame_scale" real_number
 text "plot_frame_angle" real_number
 text "plot_frame_left_margin" real_number
 text "plot_frame_right_margin" real_number
 text "plot_frame_top_margin" real_number
 text "plot_frame_bottom_margin" real_number
 text "plot_frame_viewport" 0 or 1
}
```

Continue to 26.2.6.6 Specifying the Format for $time or return to 26.2.6 Title Block or 26 PPF Editors.
26.2.6.6 Specifying the Format for $time

The format for $time is passed down by the plot parameter \texttt{time\_format}.

\begin{verbatim}
    time_format format // format for $time
\end{verbatim}

The format consists of one or more codes and the formatting codes are preceded by a percent sign (%). Characters that do not begin with a % are copied unchanged.

\begin{itemize}
\item \%a \quad abbreviated weekday name
\item \%A \quad full weekday name
\item \%b \quad abbreviated month name
\item \%B \quad full month name
\item \%c \quad date and time representation for locale
\item \%d \quad day of month as decimal number (01 - 31)
\item \%h \quad hour in 24-hour format (00 - 23)
\item \%I \quad hour in 12-hour format (01 - 12)
\item \%j \quad day of year as decimal number (001 - 366)
\item \%m \quad month as decimal number (01 - 12)
\item \%M \quad minute as decimal number (00 - 59)
\item \%p \quad current locale’s A.M./P.M. indicator for 12-hour clock
\item \%S \quad second as decimal number (00 - 59)
\item \%u \quad week of year as decimal number, with Sunday as first day of week (00 - 51)
\item \%w \quad weekday as decimal number (0 - 6; Sunday is 0)
\item \%U \quad week of year as decimal number, with Monday as first day of week (00 - 51)
\item \%x \quad date representation for current locale
\item \%X \quad time representation for current locale
\item \%y \quad year without century, as decimal number (00 - 99)
\item \%Y \quad year with century, as decimal number
\item \%z, \%Z \quad time-zone name or abbreviation; no characters if time zone is unknown
\item \%% \quad percent sign
\end{itemize}

The # flag may prefix any formatting code and the meaning of the format code is changed as follows

\begin{table}
\begin{tabular}{|c|l|}
\hline
\textbf{Format Code} & \textbf{Meaning} \\
\hline
\%#c & long date and time representation, appropriate for current locale. For example, “Tuesday, March 16, 1993, 12:41:29” \\
\%#x & long date, appropriate for current locale. For example, “Tuesday, March 16” \\
\%#d, \%#H, \%#I, \%#, \%m, \%#M, \%#S, \%#U, \%#W, \%#y, \%#Y & Remove leading zeros (if any). \\
\%#a, \%#A, \%#b, \%#B, \%#p, \%#X, \%#z, \%#Z, \%% & # flag is ignored \\
\hline
\end{tabular}
\end{table}

Examples
The format to give the date in the form dd/mm/yy (06/09/97) is "%d/%m/%y"
If you want to remove leading zeros from the day and month (6/9/97) "%#d/%#m/%y"

Continue to 26.2.6.7 Example of a Title Block File or return to 26.2.6 Title Block or 26 PPF Editors.
26.2.6.7 Example of a Title Block File

```plaintext
title_block {
 name ""
 info { // Info block for plot frames
 text "plot_frame_name" "test 1"
 text "plot_frame_model" "test"
 text "plot_frame_colour" "blue"
 real "plot_frame_scale" 1000
 text "plot_frame_sheet_size" "A0"
 real "plot_frame_angle" 0
 real "plot_frame_left_margin" 5
 real "plot_frame_right_margin" 5
 real "plot_frame_top_margin" 5
 integer "plot_frame_viewport" 1
 }
 // text and line work for title block
 data {
 string text { // Text and line work for title block
 name "white"
 chainage 0
 breakline line
 colour black
 style "1"
 worldsize 1.91800944
 textstyle "ROMANS"
 angle 0
 x_factor 1
 slant 0
 offset 0
 raise 0
 text_colour black
 justify "middle-left"
 x 644.91367043
 y 54.28362874
 z -999
 text "DATE:"
 }
 string text { // Text and line work for title block
 name "white"
 chainage 0
 breakline line
 colour black
 style "1"
 worldsize 3.32407138
 textstyle "ROMANS"
 angle 0
 x_factor 1
 slant 0
 offset 0
 raise 0
 text_colour black
 justify "bottom-left"
 x 689.63937012
 y 53.9997359
 }
 }
}
```
```plaintext
z -999
text "$user_1"
}

string text {
 name "white"
 chainage 0
 breakline line
 colour black
 style "1"
 worldsize 1.91800944
 textstyle "HELV"
 angle 0
 x_factor 1
 slant 0
 offset 0
 raise 0
 text_colour black
 justify "bottom-left"
 x 504.81297445
 y 42.5174265
 z -999
 text "WEB: www.12d.com"
}

string text {
 name "white"
 chainage 0
 breakline line
 colour black
 style "1"
 worldsize 3
 textstyle "ROMANS"
 angle 0
 x_factor 1
 slant 0
 offset 0
 raise 0
 text_colour black
 justify "middle-left"
 x 568.83213949
 y 63.44111597
 z -999
 text "Client: $project_detail_Cient"
}

string text {
 name "white"
 chainage 0
 breakline line
 colour black
 style "1"
 worldsize 3.32407138
 textstyle "ROMANS"
 angle 0
 x_factor 1
 slant 0
 offset 0
```
Nodes Common to the PPF Editors

Return to 26.2.6 Title Block or 26 PPF Editors.
26.2.7 Corridors

A corridor around the primary string is defined by giving a left and right corridor width.

Any string in a model added to the section view is checked to see if it appears in the corridor, and if it does, it is drawn on the long section plot.

To be drawn, strings do not have to cross the primary string, but just be in the corridor.

For a long section plot, the primary string is the string being plotted.

For a x section plot, the primary string is the string currently being plotted in the x section subplot.

Warnings:

When the primary string is not a straight line in plan, then how the strings in the corridor project onto the primary string in the plot is not always well defined. Where every possible the ends of the string are dropped perpendicularly onto the primary string.

However if the primary string have sharp angles in it in plan, then dropping perpendicular may
not be possible and dropping to the closed vertex is all that could be done. This means that many points on a string may drop onto the same point on the primary string.

How should this string be drawn in the profile along the primary string?
All of the string drops onto one vertex

primary string
(plan view)

How should this string be drawn along the profile along the primary string?
The string drops equally onto two segments?

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: Corridor parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left corridor width (world units)</td>
<td>corridor_width_left</td>
<td>real box</td>
<td>left corridor width</td>
</tr>
<tr>
<td>Right corridor width (world units)</td>
<td>corridor_width_right</td>
<td>real box</td>
<td>right corridor width</td>
</tr>
<tr>
<td>Left corridor overlap (world units)</td>
<td>corridor_overlap_left</td>
<td>real box</td>
<td>left corridor overlap</td>
</tr>
<tr>
<td>Right corridor overlap (world units)</td>
<td>corridor_overlap_right</td>
<td>real box</td>
<td>right corridor overlap</td>
</tr>
<tr>
<td>Chord-arc tolerance (world units)</td>
<td>corridor_chord_arc</td>
<td>real box</td>
<td>chord-arc tolerance used near any bends in the corridor</td>
</tr>
</tbody>
</table>

Corridors - Model Selection

Section: Corridor - Model selection

Corridor model grid

the grid contains the models of tins and strings (service strings) to be in the corridor and hence draw onto the long section. There can be up to 100 models.

For the parameter corridor_model_n, n is the line number on the grid. That is, n = 1, 2, ..., 100.

Corridor model | corridor_model_n | model box | models containing tins and service strings to be drawn on the section. There can be up to 100 models.

For the parameter corridor_model_n, n is the row number of the cell in the grid.

Continue to the next section 26.2.8 Hatching Cut/Fill or return to 26 PPF Editors.
26.2.8 Hatching Cut/Fill

This option is used to hatch cut and/or fill areas between sets of tins. For each set, the name of the two tins, the hatch linestyle, colour and separation and whether cut and/or fill regions are required are all user definable.

Up to twenty (20) separate sets of tins may be hatched.

The columns for the fields documented in the sections are for:

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

**Section: Hatching cut/fill - Tin parameters**

Define Set #

integer box

*set number to be used to define different original/new tin sets.*

Original tin

hatch_original_tin_n tin box

tin_name for original surface

New tin

hatch_new_tin_n tin box

tin_name for final surface

Notes

(a) cut is when the new tin is below the original tin.
fill is when the new tin is above the original tin.

(b) cut hatching is turned off by setting hatch_cut_separation_n to 0.0.
fill hatching is turned off by setting hatch_fill_separation_n to 0.0.

See

[26.2.8.1 Hatching Cut/Fill - Cut](#)
[26.2.8.2 Hatching Cut/Fill - Fill](#)

Or return to [26 PPF Editors](#).
26.2.8.1 Hatching Cut/Fill - Cut

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Set #</td>
<td>number box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| set number as specified in the Define set#.
Cut separation (mm)          | hatch_cut_separation_n | real box |        |
| distance between cut hatch lines. If 0, no hatching. |
Cut hatch angle (dms)        | hatch_cut_angle_n      | real box |        |
| angle of hatching.          |                        |          |        |
Cut colour                   | hatch_cut_colour_n     | colour box |        |
| colour of the hatching.     |                        |          |        |
Cut linestyle                | hatch_cut_linestyle_n  | linestyle box |        |
| linestyle of the hatching.  |                        |          |        |
Draw sides of cuts           | hatch_cut_draw_sides_n | choice box |        |
| draw mode for sides of cut regions. |
Draw original tin            | hatch_cut_draw_original_n | choice box |        |
| draw mode for sides of original tin in cut. |
Draw new tin                 | hatch_cut_draw_new_n   | choice box |        |
| draw mode for sides of new tin in cut. |

Continue to the next section 26.2.8.2 Hatching Cut/Fill - Fill or return to 26.2.8 Hatching Cut/Fill.
### 26.2.8.2 Hatching Cut/Fill - Fill

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Set #</td>
<td>set number as specified in the Define set#.</td>
<td>integer box</td>
<td></td>
</tr>
<tr>
<td>Fill separation (mm)</td>
<td>hatch_fill_separation_n</td>
<td>real box</td>
<td>distance between fill hatch lines. If 0, no hatching.</td>
</tr>
<tr>
<td>Fill hatch angle (dms)</td>
<td>hatch_fill_angle_n</td>
<td>angle box</td>
<td>angle of hatching in degrees, minutes and seconds in hp notation.</td>
</tr>
<tr>
<td>Fill colour</td>
<td>hatch_fill_colour_n</td>
<td>colour box</td>
<td>colour of the hatching.</td>
</tr>
<tr>
<td>Fill linestyle</td>
<td>hatch_fill_linestyle_n</td>
<td>linestyle box</td>
<td>linestyle of the hatching.</td>
</tr>
<tr>
<td>Draw sides of fills</td>
<td>hatch_fill_draw_sides_n</td>
<td>choice box</td>
<td>draw mode for sides of fill regions.</td>
</tr>
<tr>
<td>Draw original tin</td>
<td>hatch_fill_draw_original_n</td>
<td>choice box</td>
<td>draw mode for sides of original tin in fill.</td>
</tr>
<tr>
<td>Draw new tin</td>
<td>hatch_fill_draw_new_n</td>
<td>choice box</td>
<td>draw mode for sides of new tin in fill.</td>
</tr>
</tbody>
</table>

Continue to the next section [26.2.9 Cuts](#) or return to [26 PPF Editors](#).
26.2.9 Cuts

The cuts that the primary string makes though strings in any user-specified model, can be automatically labelled on the x-section/long section plots.

The height, offset/chainage name, attributes, diameter, x and y coordinates, 3d length of CL until cut point of the cut string can be labelled as well as a symbol drawn. The height of tins at the same offset value can also be labelled.

For a x section plot, the offset position for the labelling is the offset on the primary string where it cuts the string.

For a long section plot, the chainage position for the labelling is the chainage on the primary string where it cuts the string.

The height position for the labelling can be specified as the:

(a) top of the boxes
(b) above the maximum height of the strings on the plot,
(c) height value of the cut string,
(d) diameter value of the cut string,
(e) height of the primary string,
(f) height of a tin.

The actual position of the label is defined relative to the above point.

Note: Only case (c) involves the actual height of the cut string. For all other cases, only the
offset/chainage of the cut string is used. Hence, for all cases except (c), the string does need to have a sensible height to be used for cuts through strings. For example, a boundary string may have null heights but only the offset is required and the height of the tin at that offset can be used as the height (case (e)).

The method for specifying which strings are to be checked for cuts is by first specifying the model which contains the strings, and then a name mask which is used to restrict the strings in the model to only those whose names match the name mask.

Up to twenty five different sets of models and name masks can be used so that different cut sets can be labelled in different ways.

See

- 26.2.9.1 Cuts - Model/Name mask parameters
- 26.2.9.2 Cuts - Offsets - X Section Only
- 26.2.9.3 Cuts - Chainage - Long Sections Only
- 26.2.9.5 Cuts - Diameters
- 26.2.9.6 Cuts - Labels
- 26.2.9.7 Cuts - Symbols
26.2.9.1 Cuts - Model/Name mask parameters

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Section: Cuts - Model/Name mask parameters**

- **Define Set #**
  - number box
  - set number to be used to define different model/mask sets.

- **Model**
  - cuts_n_model
  - model box
  - model from which cut masks are derived

- **Name mask**
  - cuts_n_mask
  - text box
  - text string containing the name masks, each separated by one or more spaces, to test the string name against. Each mask can include wild cards and wild characters.
  - For example: "ke*" or, "?bank*" or, if both masks are required, "ke* ?bank*"
  - If cuts_n_mask is blank, then all strings in the model are used. This is equivalent to name mask being set to "*".

All strings in the model cuts_n_model whose name satisfy the name mask cuts_n_mask are then checked for cuts with the x-sections/longsection, and if a cut occurs, the cut point will be labelled according to the rest of the parameters in the nth set.

- **Design x-section**
  - design x-section
  - point where the x-section cuts a string
  - The cut point can be labelled with:
    - offset of the cut point
    - height of the cut point
    - diameter of the cut string at the cut point
    - height of the section or tins at this offset
    - name of the string for the cut point
  - User defined symbols can also be drawn at the cut point

- **Design long section**
  - design long section
  - point where the design cuts a string
  - The cut point can be labelled with:
    - chainage of the cut point
    - height of the cut point
    - diameter of the cut string at the cut point
    - height of the section or tins at this chainage
    - name of the string for the cut point
  - User defined symbols can also be drawn at the cut point
Continue to 26.2.9.2 Cuts - Offsets - X Section Only or 26.2.9.3 Cuts - Chainage - Long Sections Only or return to 26.2.9 Cuts.
## 26.2.9.2 Cuts - Offsets - X Section Only

This is for Section X Plots Only

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Section: Cuts - Offset parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use Set #</td>
<td>integer box</td>
<td>choice box</td>
<td>set number as specified in the Define set#.</td>
</tr>
</tbody>
</table>

- **Position**
  - **cuts_offset_n_position**
  - choice box
  - at cut string height above top of boxes above top of graph area to primary string to tin 1 to tin 2 to tin 3 to tin 4 to tin 5 to tin 6 to tin 7 to tin 8 to tin 9 to tin 10

- **X (mm)**
  - **cuts_offset_n_x**
  - real box
  - horizontal adjustment to position of offset text.

- **Y (mm)**
  - **cuts_offset_n_y**
  - real box
  - vertical adjustment to position of offset text.

- **Angle (dms)**
  - **cuts_offset_n_angle**
  - angle box
  - rotation of offset text about position in degrees, minutes and seconds in hp notation.

- **Colour**
  - **cuts_offset_n_colour**
  - colour box
  - colour of offset text.

- **Size (mm)**
  - **cuts_offset_n_size**
  - real box
  - size of offset text. A value of 0 means no label.

- **Textstyle**
  - **cuts_offset_n_textstyle**
  - text box
  - textstyle of offset text.

- **Pre-text**
  - **cuts_offset_n_pre_text**
  - text box
  - text before offset text.

- **Post-text**
  - **cuts_offset_n_post_text**
  - text box
  - text after offset text.
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Justification</strong></td>
<td><code>cuts_offset_n_justification</code> justifies the offset text.</td>
</tr>
<tr>
<td><strong>Decimals</strong></td>
<td><code>cuts_offset_n_no_decimals</code> allows specifying the number of decimals in offset.</td>
</tr>
</tbody>
</table>

- If $> 0$, trailing zeros are **removed** after the decimal point.
- If $<0$, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

Continue to [26.2.9.3 Cuts - Chainage - Long Sections Only](#) or return to [26.2.9 Cuts](#).
### 26.2.9.3 Cuts - Chainage - Long Sections Only

This is for the Long section Plots Only,

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Section: Cuts - Chainage parameters</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use Set #</td>
<td></td>
<td>integer box</td>
<td>above cut string height value above top of boxes to primary string to tin 1 to tin 2 to tin 3 to tin 4 to tin 5 to tin 6 to tin 7 to tin 8 to tin 9 to tin 10</td>
</tr>
<tr>
<td>Position</td>
<td>cuts_chainage_n_position</td>
<td>choice box</td>
<td>position of chainage label.</td>
</tr>
<tr>
<td>X (mm)</td>
<td>cuts_chainage_n_x</td>
<td>real box</td>
<td>horizontal adjustment to position of chainage text.</td>
</tr>
<tr>
<td>Y (mm)</td>
<td>cuts_chainage_n_y</td>
<td>real box</td>
<td>vertical adjustment to position of chainage text.</td>
</tr>
<tr>
<td>Angle (dms)</td>
<td>cuts_chainage_n_angle</td>
<td>real box</td>
<td>rotation of chainage text about position in degrees, minutes and seconds in hp notation.</td>
</tr>
<tr>
<td>Colour</td>
<td>cuts_chainage_n_colour</td>
<td>colour box</td>
<td>colour of chainage text.</td>
</tr>
<tr>
<td>Size (mm)</td>
<td>cuts_chainage_n_size</td>
<td>real box</td>
<td>size of chainage text. A value of 0 means no label.</td>
</tr>
<tr>
<td>Textstyle</td>
<td>cuts_chainage_n_textstyle</td>
<td>text box</td>
<td>textstyle of chainage text.</td>
</tr>
<tr>
<td>Pre-text</td>
<td>cuts_chainage_n_pre_text</td>
<td>text box</td>
<td>text before chainage text.</td>
</tr>
<tr>
<td>Post-text</td>
<td>cuts_chainage_n_post_text</td>
<td>text box</td>
<td>text after chainage text.</td>
</tr>
<tr>
<td>Justification</td>
<td>cuts_chainage_n_justification</td>
<td>justification box</td>
<td>bottom-left bottom-centre bottom-right bottom-decimal middle-left middle-centre middle-right middle-decimal top-left top-centre top-right</td>
</tr>
</tbody>
</table>
justification of the chainage text.

Decimals cuts_chainage_n_no_decimals integer box number of decimals in chainage.

If > 0, trailing zeros are removed after the decimal point.
If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

Continue to 26.2.9.4 Cuts - Heights or return to 26.2.9 Cuts.
26.2.9.4 Cuts - Heights

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Set #</td>
<td>set number as specified in the Define set#</td>
<td>integer box</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>cuts_height_n_mode</td>
<td>choice box</td>
<td>use height of cut point</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>use real height above boxes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>height of primary string</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>use height of tin 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>use height of tin 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>use height of tin 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>use height of tin 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>use height of tin 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>use height of tin 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>use height of tin 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>use height of tin 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>use height of tin 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>use height of tin 10</td>
</tr>
</tbody>
</table>

Determines which height value is labelled.

Position	cuts_height_n_position	choice box	at cut string
			above top of boxes
			above top of graph area
			to primary string
			to tin 1
			to tin 2
			to tin 3
			to tin 4
			to tin 5
			to tin 6
			to tin 7
			to tin 8
			to tin 9
			to tin 10

Position of height label.

X (mm)	cuts_height_n_x	real box	horizontal adjustment to position of height text.
Y (mm)	cuts_height_n_y	real box	vertical adjustment to position of height text.
Angle (dms)	cuts_height_n_angle	angle box	rotation of height text about position in degrees, minutes and seconds in hp notation.
Colour	cuts_height_n_colour	colour box	colour of height text.
Size (mm)	cuts_height_n_size	real box	size of height text. A value of 0 means no label.
Textstyle	cuts_height_n_textstyle	text box	textstyle of height text.
Pre-text	cuts_height_n_pre_text	text box	
Post-text

cuts_height_n_post_text
text box
text after height text.

Justification

points_height_n_justification
justification box

Select Choice

bottom-left
bottom-centre
bottom-right
bottom-decimal
middle-left
middle-centre
middle-right
middle-decimal
top-left
top-centre
top-right
top-decimal
decimal-left
decimal-centre
decimal-right
decimal-point

[Sameas]

justification of the height text.

Decimals

cuts_height_n_no_decimals
integer box

number of decimals in height.

If > 0, trailing zeros are removed after the decimal point.
If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

Continue to 26.2.9.5 Cuts - Diameters or return to 26.2.9 Cuts.
26.2.9.5 Cuts - Diameters

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Use Set #**

- integer box

*set number as specified in the Define set#.

**Position**

- choice box

---

Position of diameter label.

**X (mm)**

- real box

*horizontal adjustment to position of text.

**Y (mm)**

- real box

*vertical adjustment to position of text.

**Angle (dms)**

- angle box

*rotation of diameter text about position in degrees, minutes and seconds in hp notation.

**Colour**

- colour box

*colour of height text.

**Size (mm)**

- real box

*size of diameter text. A value of 0 means no label.

**Textstyle**

- text box

*textstyle of diameter text.

**Pre-text**

- text box

*text before diameter text.

**Post-text**

- text box

*text after diameter text.
Justification

points_diam_n_justification

justification box

Justification of the diameter text.

Factor

cuts_diam_n_factor

real box

Factor to multiply the diameter by. For example 1000 if you want the label to be in millimetres.

Decimals

cuts_diam_n_no_decimals

integer box

Number of decimals in diameter value.

If > 0, trailing zeros are removed after the decimal point.

If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

Continue to 26.2.9.6 Cuts - Labels or return to 26.2.9 Cuts.
26.2.9.6 Cuts - Labels

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Set #</td>
<td>integer box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position</td>
<td>cuts_label_n_position</td>
<td>choice box</td>
<td>at cut string height above top of boxes above top of graph area to primary string to tin 1 to tin 2 to tin 3 to tin 4 to tin 5 to tin 6 to tin 7 to tin 8 to tin 9 to tin 10</td>
</tr>
<tr>
<td>Mode</td>
<td>cuts_label_n_mode</td>
<td>choice box</td>
<td>don’t include string name include cut string name</td>
</tr>
<tr>
<td>X (mm)</td>
<td>cuts_label_n_x</td>
<td>real box</td>
<td>horizontal adjustment to position of label.</td>
</tr>
<tr>
<td>Y (mm)</td>
<td>cuts_label_n_y</td>
<td>real box</td>
<td>vertical adjustment to position of label.</td>
</tr>
<tr>
<td>Angle (dms)</td>
<td>cuts_label_n_angle</td>
<td>angle box</td>
<td>rotation of label about position in degrees, minutes and secons in hp notation.</td>
</tr>
<tr>
<td>Colour</td>
<td>cuts_label_n_colour</td>
<td>colour box</td>
<td>colour of label.</td>
</tr>
<tr>
<td>Size (mm)</td>
<td>cuts_label_n_size</td>
<td>real box</td>
<td>size of label. A value of 0 means no label.</td>
</tr>
<tr>
<td>Textstyle</td>
<td>cuts_label_n_textstyle</td>
<td>text box</td>
<td>textstyle of label.</td>
</tr>
<tr>
<td>Pre-text</td>
<td>cuts_label_n_pre_text</td>
<td>text box</td>
<td>text before label.</td>
</tr>
<tr>
<td>Post-text</td>
<td>cuts_label_n_post_text</td>
<td>text box</td>
<td>text after label.</td>
</tr>
</tbody>
</table>
**Justification**

points=label_{n\_justification} justification box

---

justification of the label.

Continue to [26.2.9.7 Cuts - Symbols](#) or return to [26.2.9 Cuts](#).
26.2.9.7 Cuts - Symbols

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Section: Cuts - Symbol parameters**

**Use Set #**

set number as specified in the Define set#.

**Mode**

cuts_symbol_n_mode choice box

cross (0)

up from centre of box (1)

up & down from box centre (2)

square (3)

triangle, base at bottom (4)

circle (5)

use a plot symbol

Symbol mode.

![Predefined symbols 0 to 5](image)

**Note:** If a plot symbol is to be used, the cuts_symbol_n_style parameter must be specified.

**Symbol**

cuts_symbol_n_style plot symbols

a valid plot symbol can be selected.

**Position**

cuts_symbol_n_position choice box

at cut string height

above top of boxes

above top of graph area

to primary string

to tin 1

to tin 2

to tin 3

to tin 4

to tin 5

to tin 6

to tin 7

to tin 8

to tin 9

to tin 10

position of symbol.

**X (mm)**

cuts_symbol_n_x real box

horizontal adjustment to position of symbol.

**Y (mm)**

cuts_symbol_n_y real box

vertical adjustment to position of symbol.

**Angle (dms)**

cuts_symbol_n_angle input

rotation of symbol about point in degrees, minutes and seconds in hp notation.

**Colour**

cuts_symbol_n_colour colour box

colour of symbol.

**Size (mm)**

cuts_symbol_n_size real box

size of symbol. A value of 0 means no symbol.
Return to 26.2.9 Cuts.
26.2.10 PPFs To Include

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPF files</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

by including pre-existing PPF files, the user can build up a modified version without having to set all
the parameters.

Continue to the next section 26.2.11 Buttons at the Bottom of the PPF Editors or return to 26 PPF
Editors.
26.2.11 Buttons at the Bottom of the PPF Editors

**PPF_Editor_Find_Parameter** The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Plot</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>use the plot parameters from the panel to create the plot.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Find</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>when clicked it brings up the PPF Editor Find Parameter panel.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![PPF Editor Find Parameter pop up list for Section Long Plot PPF Editor]

If a valid plot parameter name is keyed in followed by the **Find** button, the cursor will be placed in the appropriate field on the appropriate page.

If you click on the **Choice** icon, then a list of regularly used selections that are built into the choice box will appear (these are different for each PPF Editor). Double clicking on a choice in the list will take you to the relevant section of the tree and the relevant parameter on the right side of the panel.

Return to [26 PPF Editors](#).
26.3 Section X Plot PPF Editor

Position of option on menu:  Plot => Plot and PPF Editors => Cross sections

The Cross Sections PPF Editor is for creating and/or editing a (binary) X-section PPF and for creating a cross section plot.

Note: Binary PPFs are stored within the project (not in the folder containing the project as the text PPFs were).

On selecting the Cross sections option, the Section X Plot PPF Editor panel is displayed. The plot parameters for controlling the cross section plots are accessed by expanding the appropriate node in the Section X Plot tree (click on the + to expand to node or - to collapse the node) and then clicking on the required node, and the information to fill in is displayed on the right hand side of the panel.

For information on all the different nodes see:

26.3.1 General Information on Cross Section Plots
26.3.2 Section X Plot - Front Page
26.3.3 Notes - X-Section
26.3.5 Title Block - X Section
26.3.6 X Section Filtering
26.3.7 Extra X Sections To Plot
26.3.8 Plot Sheet Layout
26.3.9 Boxes/ Centreline Labels
26.3.10 Graph Area
26.3.11 Corridors - X Section
26.3.12 Grades
26.3.13 X-Section Points
26.3.14 Hatching Cut/Fill
26.3.15 Cut/Fill Area Labels
26.3.16 Cuts
26.3.17 Paired Cuts - X Sections
26.3.18 Paired Points
26.3.19 PPFs To Include
26.3.20 Buttons at the Bottom of X-Plot Panel
26.3.1 General Information on Cross Section Plots

X-sections are normally generated at chainages along a given centreline and this centreline
chainage is stored as part of the name of each x-section string.

The start chainage of the x-section string is set so that zero chainage is where the Centre line
cuts the x-section in plan. So the chainage along a x-section string is usually referred to as offsets from the centreline position rather than x-section chainages.

The x-sections along the centreline are stored in the one model (the primary model) which is then
used to generate the cross section plot.

Each x-section from the primary model of x-sections generates its own sub-plot for which a x-
section is the primary string. Hence the cross section plot consists of many individual plots drawn
on one or more plot sheets.

The x-sections are plotted in the order they occur in the x-section model or can be sorted by the
centreline chainage that is part of the x-section name.

The x-sections start being plotted at the bottom left hand corner of the cross section plotting
area. The individual x-section plots are then drawn going up the column, and when the column is
full, start from the bottom of the next column.

When a sheet is full, a follow on sheet is created.

If required, all the sub-plots in a column can be automatically positioned up so that the zero
offsets (the centrelines) of each x-section line up.

The x-section sub plots can be drawn and labelled with the two choices of:

(a) centreline case
where the x-section and tins are plotted and an upright at the zero offset, and labels for the offset and height values at the zero offset (normally the centre line position)

(b) **boxes case**

where the x-section is plotted and the heights of the x-section and the tins at all the x-section points are labelled in boxes under the plot of the x-section.

![Diagram showing Centre line Case and Boxes Case](image)

The x-section sub-plot itself consists of the three regions - graph, datum and boxes.

The **graph area** is the area where the actual plots of the strings are drawn. This exists for both the centreline and boxes case.

The **datum area** is the region between graph area and the datum line. This exists for both the centreline and boxes cases.

The **boxes area** is where the offset values and the heights for the strings drawn on the x-section plot are labelled. This only exists for the boxes case.

![Diagram showing Centre line plot, Graph area, Datum line, and Boxes area](image)

For both cases, the x-section sub-plot can be labelled with other information including

(a) grades across the x-section
(b) points across the x-section
(c) cuts the x-section makes through strings
(d) cut and fill areas

All the required parameters for controlling the cross section plot are set up in the **Section X Plot PPF Editor** and will be described in detail in the following sections.

Please continue to the next section [26.3.2 Section X Plot - Front Page](#) or return to [26.3 Section X Plot PPF Editor](#).
26.3.2 Section X Plot - Front Page

Section: Plot parameter file

A plot parameter file can be used to load values into the fields of the PPF Editor, or as a file to write out all current values in a PPF Editor to.

This section is documented for all the PPF Editors in 26.2.1 Plot Parameter File.

Section: Section: View to load details from AND Global variables

A section view can be selected to load certain values into fields of the PPDF Editor. For example, Vertical exaggeration and Corridor models. And there are variables to use if some values aren’t given.

These sections are documented for all the PPF Editors in 26.2.2 View to Load and Global Variables.

The columns for the fields documented in the sections are for:

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

Section X Plot PPF Editor
Section: Graph area width

Horizontal Scale \hspace{1cm} scale \hspace{1cm} measure box \hspace{1cm} available measures
horizontal scale to be used for X section plots

Vertical exaggeration \hspace{1cm} vertical_exaggeration \hspace{1cm} measure box \hspace{1cm} available measures
vertical scale to be used for X section plots

Section: Primary model x-sections to plot

Model of xsec to plot \hspace{1cm} model_to_plot \hspace{1cm} model box
model of X sections to plot

Start chainage \hspace{1cm} start_chainage \hspace{1cm} input
start chainage of X sections to plot

End chainage \hspace{1cm} end_chainage \hspace{1cm} input
start chainage of X sections to plot

Section: Boxes/Centre line

Label type \hspace{1cm} label_type \hspace{1cm} choice box \hspace{1cm} centre line boxes
the label type to be used for plotting.

Draw and label the primary string \hspace{1cm} primary_string \hspace{1cm} tick box
if ticked, the primary string will be labelled and drawn.

Sort sections \hspace{1cm} sort_sections \hspace{1cm} tick box
if ticked, the X sections will be sorted in increasing chainage. This is important if individual cross sections are added after an apply function for example.

Section: Sheet size setup and Plotter parameters

these sections define the size of the "paper" to plot on, the type of plotter to use and the naming to use for the plot files.

These sections are documented for all the PPF Editors in 26.2.3 Sheet Size and Plotter Parameters.

Please continue to the next section 26.3.3 Notes - X-Section.
26.3.3 Notes - X-Section
This is documented for all the PPF Editors in 26.2.4 Notes.
Please continue to the next section 26.3.4 Plot to Models - X-Section.

26.3.4 Plot to Models - X-Section
This is documented for all the PPF Editors in 26.2.5 Plot to models.
Please continue to the next section 26.3.5 Title Block - X Section.

26.3.5 Title Block - X Section
This is documented for all the PPF Editors in 26.2.6.1 Title Block Section in PPF Editors.
For more general information about a title block, see 26.2.6 Title Block.
Please continue to the next section 26.3.6 X Section Filtering.
26.3.6 X Section Filtering

The model of cross sections usually contains all the sections required to accurately model the object.

The columns for the fields documented in the sections are for:

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

**Section: X-Section Filtering**

For plotting purposes, often only a subset of all the cross sections is required to be plotted so the filtering section contains methods to select only those cross sections that are to be plotted.

**Filter cross-sections**

*filter_sections* tick box

*If* tick, the fields in this tab are used to filter cross sections in the X-sections model.

**Filtered sections colour**

*filter_colour* colour box

Available colours

**Created by function**

*filter_function* function box

Available functions

A model of sections can contain sections created by more than one function. If a function is given, only cross sections created by that function are selected.

**Regular filtering interval**

*filter_interval* input

Regular interval to use for filtering the cross sections

**Regular culling tolerance**

*filter_tolerance* input

Tolerance to use when selecting a cross section

**Include start section**

*filter_start* tick box

*If* tick, a section at the start chainage is included even if the start chainage is not a regular interval

**Include end section**

*filter_end* tick box

*If* tick, a section at the end chainage is included even if the end chainage is not a regular interval

**Include chainage equality sections**

*filter_equalities* tick box

*If* tick, include sections where there is a chainage equality

**Reference string**

*filter_reference* string select

*If* tick, a string is selected to define which sections occur at H/V tangent points, crest and sags.

**Include H tangent sections**

*filter_tangent* tick box

*If* tick, sections at the horizontal tangent points of the reference string are included even if they are not a regular interval

**Include V tangent sections**

*filter_tangent_vertical* tick box

*If* tick, sections at the vertical tangent points of the reference string are included even if they are not a regular interval

**Include V crest/sag sections**

*filter_crestsag* tick box

*If* tick, sections at the crest and sag points of the reference string are included even if they are not a regular interval

**Special chainage file**

*filter_spc_file* file box

*.spc files

*If* non blank, a file of chainages to include sections at even if they are not a regular interval

Please continue to the next section **26.3.7 Extra X Sections To Plot**.
26.3.7 Extra X Sections To Plot

The order and centreline chainages of the x-section subplots for the x-section plot are defined by the sections from the primary model of cross sections.

The sections through any specified triangulations and service models, and offsets for labelling are fully defined by these primary x-sections.

However it is also possible to plot extra x-sections on each of the sub-plots by supplying extra models of x-sections which are at the same plan positions as the primary x-section strings.

Only those x-sections from the extra models that are within a user specified tolerance of a primary x-section are plotted.

The extra models of x-sections and the plan tolerance for checking that the extra cross-sections are the same position as the primary x-sections are

<table>
<thead>
<tr>
<th>Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model tolerance</td>
<td>extra_model_tolerance_1</td>
<td>input</td>
<td>user defined distance</td>
</tr>
<tr>
<td>Model name</td>
<td>extra_model_n</td>
<td>input</td>
<td>extra models of x-sections to plot</td>
</tr>
</tbody>
</table>

Please continue to the next section 26.3.8 Plot Sheet Layout.
26.3.8 Plot Sheet Layout

X-sections are normally generated at chainages along a given centreline. This centreline chainage is stored with each x-section string.

The chainages of the actual x-sections are referred to as offsets from the centreline position rather than x-section chainages. The offsets of the x-section are set up so that the zero offset occurs where the x-section crossed the centreline string.

The x-sections along the centreline are stored in the one model (the primary model) which is then used to generate the cross section plot.

The x-sections are plotted in the order they occur in the x-section model and start being plotted at the bottom left hand corner of the sheet (left_margin,bottom_margin).

The individual x-section plots are then drawn going up the column, and when the column is full, start from the bottom of the next column.

When a sheet is full, a follow on sheet is created.

Each x-section from the primary model of x-sections generates its own sub-plot for which the x-section is the primary string. Hence the cross section plot consists of many individual plots drawn on one or more plot sheets.

Each plot sheet is considered to have only positive co-ordinates with the origin (0,0) in the left hand corner. The units for the plot are millimetres.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Section:</strong> Plot width parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The width of the plot can be a fixed distance left or right of the centre line (zero offset) or for the full section plus an extra left and right distance:

**Absolute extensions**: absolute_extensions tick box

if ticked, the section goes from the left_extension offset on the left to the right_extension offset on the
right. If unticked the section goes for the entire section length plus the left and right extension distances.

Left extension left_extension input

The left_extension value in world units.

Right extension right_extension input

The right_extension value in world units

**Section: Align section parameters**

If required, all the sub-plots in a column can be automatically positioned so that the zero offsets (the centrelines) of each x-section line up.

Line up centrelines line_up_cl tick box

if ticked, each sub plot will be aligned on the plot using the centreline of each x section.

See

26.3.8.1 Plot Sheet Layout - Margins
26.3.8.2 Plot Sheet Layout - Sub Plot Gaps

Or return to 26.3 Section X Plot PPF Editor.
26.3.8.1 Plot Sheet Layout - Margins

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: Margins for standard 12d title file - Border gaps</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If the default 12d title block is used, then the size of the bottom of title block depends on the size. The following parameters are used in the default title block case and the bottom_border_gap is added to the calculated height of the bottom of the title block.

- **Left (mm)**  \( \text{left\_border\_gap \ input} \)
  
  *left border gap (in millimetres).*

- **Right (mm)**  \( \text{right\_border\_gap \ input} \)
  
  *right border gap (in millimetres).*

- **Top (mm)**  \( \text{top\_border\_gap \ input} \)
  
  *top border gap (in millimetres).*

- **Bottom (mm)**  \( \text{bottom\_border\_gap \ input} \)
  
  *bottom border gap (in millimetres).*

---

**Definition of Plotting Areas for Default 12d Title Block**

- Cross section plot area is inside the dashed lines
- Size depends on text size in the default 12d title block
- \((0,0)\)
- Sheet height
- Sheet width
- \((\text{left\_border\_gap, bottom\_border\_gap + title\_block})\)
Section: Margins for user title file

Left (mm)  
left_margin  
real box  
left margin (in millimetres).

Right (mm)  
right_margin  
real box  
right margin (in millimetres).

Top (mm)  
top_margin  
real box  
top margin (in millimetres).

Bottom (mm)  
bottom_margin  
real box  
bottom margin (in millimetres).

Because the user can easily select from the plotting panel whether a User Defined Title Block or the default 12d title block is used, both sets of margin and gap parameters can exist in the one plot parameter file.

The x-sections are plotted in the order they occur in the x-section model and start being plotted at the bottom left hand corner of the cross section plotting area.

The individual x-section plots are then drawn going up the column, and when the column is full, start from the bottom of the next column.

When a sheet is full, a follow on sheet is created.

Continue to the next section 26.3.8.2 Plot Sheet Layout - Sub Plot Gaps or return to 26.3.8 Plot.
Sheet Layout.
26.3.8.2 Plot Sheet Layout - Sub Plot Gaps

The gaps between the sub plots is restricted to those specified below.

Section: Sub plot gaps parameters

The fields and buttons used in this section have the following functions.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left (mm)</td>
<td>left_sub_plot_gap</td>
<td>real box</td>
<td>left margin (in millimetres).</td>
</tr>
<tr>
<td>Right (mm)</td>
<td>right_sub_plot_gap</td>
<td>real box</td>
<td>right margin (in millimetres).</td>
</tr>
<tr>
<td>Top (mm)</td>
<td>top_sub_plot_gap</td>
<td>real box</td>
<td>top margin (in millimetres).</td>
</tr>
<tr>
<td>Bottom (mm)</td>
<td>bottom_sub_plot_gap</td>
<td>real box</td>
<td>bottom margin (in millimetres).</td>
</tr>
</tbody>
</table>

The x-section sub-plot itself consists of the three regions - boxes, datum and graph.

The boxes area is where the offset values and the heights for the strings drawn on the x-section plot are labelled.

The datum area is the region between the boxes area and the graph area.

The graph area is the area where the actual plots of the strings are drawn.

Apart from information labelled in the boxes area, the x-section sub-plot can label other information such as

(a) grades across the x-section
(b) points across the x-section
(c) cuts the x-section makes through strings
(d) cut and fill areas
Definition of Plotting Areas for Default 12d Title Block

- top_border_gap
- bottom_border_gap
- left_border_gap
- right_border_gap
- sheet height
- sheet width
- cross section
- plot area
- left_sub_plot_gap
- right_sub_plot_gap
- top_sub_plot_gap
- bottom_sub_plot_gap

Size depends on text size in the default 12d title block.
Please continue to the next section 26.3.9 Boxes/ Centreline Labels or return to 26.3.8 Plot Sheet Layout.
26.3.9 Boxes/ Centreline Labels

The x-section can be labelled with either

(a) an upright, and the offset and height value at the zero offset (normally the centre line position) - Centre line

(b) the heights of the x-section and the tins at all the x-section points. - Boxes

The choice is given by the parameter *label_type* defined in the section Section: Boxes/Centre line.

A datum line exists for both cases.

For the boxes case, a box area for the offset and heights is created below the datum line. The available parameters for tailoring the box area will be given after describing the datum line parameters.

For the centre line case, the centre line and offset and height of the centre line are shown.

In both cases, the actual cross section plot is drawn above the datum line in the graph area.

The parameters defined below, are common to both boxes and centreline label types.

See

26.3.9.1 Boxes/Centreline Labels - Common Parameters
26.3.9.2 Boxes/Centreline Labels - Boxes
26.3.9.3 Boxes/Centreline Labels - Centreline

Or return to 26.3.9 Boxes/ Centreline Labels.
26.3.9.1 Boxes/Centreline Labels - Common Parameters

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum roundoff</td>
<td>datum_roundoff</td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

The roundoff for the datum value is specified by the user (default 1.0) and the datum is automatically calculated for each sub-plot, and labelled.

Decimal places for datum | datum_decimals | input |

number of decimal places to display the datum value (default 1).
If > 0, trailing zeros are removed after the decimal point.
If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

Datum linestyle | datum_linestyle | linestyle box |

datum line linestyle (default solid)

Datum name | datum_name | input |

text to write before the datum value

Datum textstyle | datum_textstyle | text box |

textstyle for datum information

Datum text size (mm) | datum_text_size | input |

size of datum text and value (mm)

Datum colour | datum_colour | colour box |

colour of the datum text

Datum line colour | datum_line_colour | colour box |

colour of the datum line

See

26.3.9.1.1 Boxes/Centreline Labels - Common Parameters - Tins To Label
26.3.9.1.2 Boxes/Centreline Labels - Common Parameters - Centreline Chainage
26.3.9.1.3 Boxes/Centreline Labels - Com Params - Centreline Equality Chainage
26.3.9.1.4 Boxes/Centreline Labels - Com Params - X Coordinate At 0 Offset
26.3.9.1.5 Boxes/Centreline Labels - Com Params - Y Coordinate At 0 Offset
26.3.9.1.6 Boxes/CL Labels - Com Par - Height Of Primary String At 0 Offset
26.3.9.1.7 Boxes/Centreline Labels - Com Params - Text Placement
26.3.9.1.8 Boxes/Centreline Labels - Com Params - Position of ch,x,y,ht,text
26.3.9.1.1 Boxes/Centreline Labels - Common Parameters - Tins To Label

The columns for the fields documented in the sections are for.

**Panel Field**	**Parameter name**	**Type**	**Pop-Up**
Section: Common parameters for tins to label

**Define tin set #**

input

where n = 1 to.... The set enables the specification of a number of parameters for a number of specified tin names.

**Tin name**

tin_n_name | tin box | available tins

the name of the nth tin to be used for labelling.

If a tin of the name given by *tin_n_name* does not exist, then the plot is not produced and an error message is given.

Continue to the next section 26.3.9.1.2 Boxes/Centreline Labels - Common Parameters - Centreline Chainage or return to 26.3.9 Boxes/ Centreline Labels.
26.3.9.1.2 Boxes/Centreline Labels - Common Parameters - Centreline Chainage

Each x-section sub-plot can be labelled with the centreline chainage of the x-section string. This CHAINAGE INFO label is made up of the text strings:

chainage_title followed by the chainage-value

and is drawn under the datum line.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>
| **Section:** Common centreline chainage label parameters

<table>
<thead>
<tr>
<th>Label subplot with centreline chainage</th>
<th>chainage_label</th>
<th>tick box</th>
</tr>
</thead>
<tbody>
<tr>
<td>if ticked, label sub-plot with centreline</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chainage title</th>
<th>chainage_title</th>
<th>input</th>
</tr>
</thead>
<tbody>
<tr>
<td>text before the chainage value</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chainage Decimal places</th>
<th>chainage_decimals</th>
<th>input</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of decimals in the chainage value.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If > 0, trailing zeros are **removed** after the decimal point.
If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

<table>
<thead>
<tr>
<th>Chainage colour</th>
<th>chainage_colour</th>
<th>colour box</th>
</tr>
</thead>
<tbody>
<tr>
<td>colour of the text</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chainage text size (mm)</th>
<th>chainage_size</th>
<th>input</th>
</tr>
</thead>
<tbody>
<tr>
<td>size of the text</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chainage textstyle</th>
<th>chainage_textstyle</th>
<th>text box</th>
</tr>
</thead>
<tbody>
<tr>
<td>textstyle for the chainage label</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chainage text x position (mm)</th>
<th>chainage_x_offset</th>
<th>input</th>
</tr>
</thead>
</table>
The values of the height and X and Y co-ordinates of the primary string (usually the design cross section) at the zero offset can be labelled. Note that zero offset is normally where the alignment string cuts the cross section.

The heights of any tins (such as the natural surface) at the zero offset can also be labelled.

The labels are made up of:

\[
\text{pre_text value post_text}
\]

where value is either a height or a co-ordinate.

The label is positioned at either the left, right or middle of the datum line, with an x and y adjustment and a rotation.

**Chainage text justification**  
chainage_text_justification_cl  
justification box

justification of the chainage text.
Continue to the next section 26.3.9.1.3 Boxes/Centreline Labels - Com Params - Centreline Equality Chainage or return to 26.3.9 Boxes/ Centreline Labels.
### 26.3.9.1.3 Boxes/Centreline Labels - Com Params - Centreline Equality Chainage

The columns for the fields documented in the sections are for:

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Section:** Common centreline equality chainage label parameters

Label sub-plot with centreline equality chainage	chainage_label_eq	tick box
Equality chainage title	chainage_title_eq	tick box
Decimal places	chainage_decimals_eq	
1000s separator (non K-post)	chainage_thousands_separator_eq	
Zero-pack digits after 1000s separator	chainage_zero_pack_eq	tick box
Show K-post at non-zero offset (if defined)	chainage_name_include_eq	tick box
K-post pre text	chainage_name_pre_eq	
K-post post text	chainage_name_post_eq	
Space before offset of K-post	chainage_offset_space_eq	tick box
Plus sign before positive offset of K-post	chainage_plus_eq	tick box
Show equality zone (if defined)	chainage_zone_include_eq	tick box
Space before equality zone	chainage_zone_space_eq	tick box
Equality zone pre text	chainage_zone_pre_eq	
Equality zone post text	chainage_zone_post_eq	
Before/after equality separator	chainage_zone_pre_eq	
Colour	chainage_colour_eq	
Text size (mm)	chainage_size_eq	
Textstyle	chainage_textstyle_eq	
Text x position	chainage_x_offset_eq	
Text y position	chainage_y_offset_eq	
Text justification	chainage_text_justification_cl_eq	

Continue to the next section 26.3.9.1.4 Boxes/Centreline Labels - Com Params - X Coordinate At 0 Offset or return to 26.3.9 Boxes/ Centreline Labels.
26.3.9.1.4 Boxes/Centreline Labels - Com Params - X Coordinate At 0 Offset

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draw Label</td>
<td><code>primary_x0_draw_mode</code></td>
<td>tick box</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if ticked draw the label</em> - default</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre text</td>
<td><code>primary_x0_pre_text</code></td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>pre-text for label</em> - def &quot; &quot;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post text</td>
<td><code>primary_x0_post_text</code></td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>post-text for label</em> - def &quot; &quot;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decimal places</td>
<td><code>primary_x0_decimals</code></td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>number of decimal places to display</em> - def 1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If &gt; 0, trailing zeros are removed after the decimal point. If &lt;0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X adjustment (mm)</td>
<td><code>primary_x0_x</code></td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>x adjustment to position of label</em> - def 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y adjustment (mm)</td>
<td><code>primary_x0_y</code></td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>y adjustment to position of label</em> - def 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle (dms)</td>
<td><code>primary_x0_angle</code></td>
<td>angle box</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>angle of label</em> - def 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td><code>primary_x0_colour</code></td>
<td>colour box</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>colour of the label</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size (mm)</td>
<td><code>primary_x0_size</code></td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>size (in mm) of the label</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textstyle</td>
<td><code>primary_x0_textstyle</code></td>
<td>text box</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>textstyle of the label</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Justification</td>
<td><code>primary_x0_justify</code></td>
<td>justification box</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>justification of the label</em></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section 26.3.9.1.5 Boxes/Centreline Labels - Com Params - Y Coordinate At 0 Offset or return to 26.3.9 Boxes/ Centreline Labels.
### 26.3.9.1.5 Boxes/Centreline Labels - Com Params - Y Coordinate At 0 Offset

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draw Label</td>
<td>primary_y0_draw_mode</td>
<td>tick box</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if ticked draw the label - def</em> default</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre text</td>
<td>primary_y0_pre_text</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>pre-text for label - def &quot; &quot;</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post text</td>
<td>primary_y0_post_text</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>post-text for label - def &quot; &quot;</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decimal places</td>
<td>primary_y0_decimals</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>number of decimal places to display - def 1.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If &gt; 0, trailing zeros are removed after the decimal point.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If &lt; 0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X adjustment (mm)</td>
<td>primary_y0_x</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>x adjustment to position of label - def 0</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y adjustment (mm)</td>
<td>primary_y0_y</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>y adjustment to position of label - def 0</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle (dms)</td>
<td>primary_y0_angle</td>
<td>angle box</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>angle of label - def 0</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>primary_y0_colour</td>
<td>colour box</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>colour of the label</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size (mm)</td>
<td>primary_y0_size</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>size (in mm) of the label</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textstyle</td>
<td>primary_y0_textstyle</td>
<td>text box</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>textstyle of the label</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Justification</td>
<td>primary_y0_justify</td>
<td>justification box</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>justification of the label</em></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section **26.3.9.1.6 Boxes/CL Labels - Com Par - Height Of Primary String At 0 Offset** or return to **26.3.9 Boxes/ Centreline Labels**.
### 26.3.9.1.6 Boxes/CL Labels - Com Par - Height Of Primary String At 0 Offset

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: Common labelling for height of primary string at 0 offset</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Draw Label**
  - primary_height_draw_mode: tick box
    - If ticked, draw the label - default

- **Pre text**
  - primary_height_pre_text: input
    - Pre-text for label - def " "

- **Post text**
  - primary_height_post_text: input
    - Post-text for label - def " "

- **Decimal places**
  - primary_height_decimals: input
    - Number of decimal places to display - def 1.
    - If > 0, trailing zeros are removed after the decimal point.
    - If < 0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

- **X adjustment (mm)**
  - primary_height_x: input
    - X adjustment to position of label - def 0

- **Y adjustment (mm)**
  - primary_height_y: input
    - Y adjustment to position of label - def 0

- **Angle (dms)**
  - primary_height_angle: angle box
    - Angle of label - def 0

- **Colour**
  - primary_height_colour: colour box
    - Colour of the label

- **Size (mm)**
  - primary_height_size: input
    - Size (in mm) of the label

- **Textstyle**
  - primary_height_textstyle: text box
    - Textstyle of the label

- **Justification**
  - primary_height_justify: justification box
    - Justification of the label

Continue to the next section [26.3.9.1.7 Boxes/Centreline Labels - Com Params - Text Placement](#) or return to [26.3.9 Boxes/ Centreline Labels](#).
### 26.3.9.1.7 Boxes/Centreline Labels - Com Params - Text Placement

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draw Label</td>
<td>extra_text_draw_mode</td>
<td>tick box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked draw the label -default</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text</td>
<td>extra_text</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>text for label - def &quot; &quot;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X adjustment (mm)</td>
<td>extra_text_x</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x adjustment to position of label - def 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y adjustment (mm)</td>
<td>extra_text_y</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y adjustment to position of label - def 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle (dms)</td>
<td>extra_text_angle</td>
<td>angle box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>angle of label - def 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>extra_text_colour</td>
<td>colour box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>colour of the label</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size (mm)</td>
<td>extra_size</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>size (in mm) of the label</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textstyle</td>
<td>extra_text_textstyle</td>
<td>text box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>textstyle of the label</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Justification</td>
<td>extra_text_justify</td>
<td>justification box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>justification of the label</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section [26.3.9.1.8 Boxes/Centreline Labels - Com Params - Position of ch.x.y.ht.text](#) or return to [26.3.9 Boxes/ Centreline Labels](#).
26.3.9.1.8 Boxes/Centreline Labels - ComParams - Position of ch,x,y,ht,text

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Section: Centreline - Chainage Text Position</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position of chainage value</td>
<td>chainage_side_cl</td>
<td>choice box</td>
<td>Middle of datum line Left of datum line Right of datum line</td>
</tr>
</tbody>
</table>

`side of centreline to position chainage text.`

| Justification of chainage text | chainage_text_justification_cl | just. box | bottom-left bottom-centre bottom-right bottom-decimal middle-left middle-centre middle-right middle-decimal top-left top-centre top-right top-decimal decimal-left decimal-centre decimal-right decimal-point |

`justification of the chainage text.`

| **Section: Labelling for X Coord At 0 Offset** |
| Position of text | primary_x0_position | choice box | Middle of datum line Left of datum line Right of datum line |

`side of centreline to position x coord text.`

| **Section: Labelling for Y Coord At 0 Offset** |
| Position of text | primary_y0_position | choice box | Middle of datum line Left of datum line Right of datum line |

`side of centreline to position y coord text.`

| **Section: Labelling for height of primary string at 0 offset** |
| Position of text | primary_height_position | choice box | Middle of datum line Left of datum line Right of datum line |

`side of centreline to position height text.`

| **Section: Parameters for text labelling** |
| Position of text | extra_text_position | choice box | Middle of datum line Left of datum line Right of datum line |

`side of centreline to position text.`

Continue to the next section [26.3.9.2 Boxes/Centreline Labels - Boxes](#) or return to [26.3.9 Boxes/Centreline Labels](#).
26.3.9.2 Boxes/Centreline Labels - Boxes

When boxes is selected for label_type, the primary string (usually the design cross section) and each tin in the x-section sub-plot can be labelled with one or two lines of title, and the height at the offset position for each point in the primary string.

The title for the strings, is drawn in the title area of the boxes area. The offsets/heights are drawn in the heights area of the boxes area. Consequently the boxes area is made up of rows of text consisting of:

- string/tin titles followed by the offset/height values across the string/tin.

Each row is surrounded by lines to form a box.

The default order of the boxes from the bottom up is:

(a) offset title and values
(b) tin title and heights - natural surface etc. (optional)
(c) primary string title and heights - design x-section (optional)

The title area starts at the relative position (left_sub_plot_gap,bottom_sub_plot_gap).

The columns for the fields documented in the sections are for:

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>box_colour</td>
<td>colour box</td>
<td></td>
</tr>
<tr>
<td>Insert 0 offset</td>
<td>offset_insert_zero</td>
<td>tick box</td>
<td>if ticked, a zero offset will be calculated if not already defined on the x section.</td>
</tr>
<tr>
<td>Draw box mode</td>
<td>draw_box_mode</td>
<td>choice box</td>
<td>Do not draw any box lines</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Draw box lines around height area only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Draw box lines around title and height area only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Use parameters defined in boxes - heights</td>
</tr>
</tbody>
</table>

mode for drawing the boxes for the x section plot.
See

26.3.9.2.1 Boxes/Centreline Labels - Boxes - Datum Lines
26.3.9.2.2 Boxes/Centreline Labels - Boxes - Title Area
26.3.9.2.3 Boxes/Centreline Labels - Boxes - Heights Area
26.3.9.2.4 Boxes/Centreline Labels - Boxes - Outside Linework
26.3.9.2.5 Boxes/Centreline Labels - Boxes - Inside Linework
26.3.9.2.6 Boxes/Centreline Labels - Boxes - Extension Mode
26.3.9.2.7 Boxes/Centreline Labels - Boxes - Offset Titles/Values
26.3.9.2.8 Boxes/Centreline Labels - Boxes - Primary String Titles/Values
26.3.9.2.9 Boxes/Centreline Labels - Boxes - Tin Titles/Values
26.3.9.2.10 Boxes/CL Labels - Boxes - Upright Offset/Staggering Parameters
26.3.9.2.11 Boxes/CL Labels - Boxes - Upright Off/Stag Params - Uprights

Or return to 26.3.9 Boxes/ Centreline Labels.
26.3.9.2.1 Boxes/Centreline Labels - Boxes - Datum Lines

For the boxes case, the datum line is positioned the distance \( \text{datum\_below\_gap} \) above the top of the boxes area and the graph area is then positioned the distance \( \text{datum\_above\_gap} \) above the datum line.

Hence the graph area is distance \( (\text{datum\_below\_gap} + \text{datum\_above\_gap}) \) above the top of the boxes area.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: Boxes - datum line parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graph area to datum line gap (mm)</td>
<td>( \text{datum_above_gap} )</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Datum line gap to top of boxes (mm)</td>
<td>( \text{datum_below_gap} )</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>X adjustment (mm)</td>
<td>( \text{datum_x} )</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Y adjustment (mm)</td>
<td>( \text{datum_y} )</td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

\( \text{datum\_x} \) and \( \text{datum\_y} \) can be positive, zero or negative.

Continue to the next section 26.3.9.2.2 Boxes/Centreline Labels - Boxes - Title Area or return to 26.3.9 Boxes/ Centreline Labels.
26.3.9.2.2 Boxes/Centreline Labels - Boxes - Title Area

Many distance definitions in the plot parameter file are given in terms of distance above the top of the boxes area.

The size of the title text is given by the `title_box_text_size` parameter.

The width of the title area is either given by the `space_for_titles` parameter, or if omitted, the required width is automatically calculated.

The columns for the fields documented in the sections are for:

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Section: Boxes - Title area parameters</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Size of titles (mm)</strong></td>
<td><code>title_box_text_size</code></td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>size of offset, height label and values</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Space for titles (mm)</strong></td>
<td><code>space_for_titles</code></td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>size of title area.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>There can be two lines of title text and the title text, textstyle and colour can be set independently for the primary string and each tin.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The x position of the title text is the same for all the lines of title text and can be set to be a fixed distance from the left hand side of the boxes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>X adjustment (mm)</strong></td>
<td><code>box_titles_x</code></td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>distance to move the title text from the left hand side of the boxes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The text in the title area is the same for each cross section plot on the sheet so it is possible to restrict the title area to be only on the first cross section on the sheet or the first column of cross sections.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Title area mode</strong></td>
<td><code>label_first_only</code></td>
<td>choice box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>on all sections</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>on first x-sec of page only</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>on x-sec’s in first column</td>
<td></td>
<td></td>
</tr>
<tr>
<td>it is possible to restrict the title area to be only on the first cross section on the sheet or the first column of cross sections</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Continue to the next section 26.3.9.2.3 Boxes/Centreline Labels - Boxes - Heights Area or return to 26.3.9 Boxes/ Centreline Labels.
26.3.9.2.3 Boxes/Centreline Labels - Boxes - Heights Area

The **heights area** starts at the end of the title area.

The height text is written at right angles to the bottom of the boxes. It can be either top or bottom justified with respect to the box (*box_text_justification*).

The number of decimal places and the size of the heights text can also be specified.

The height of each individual box area is either given by the *horizontal_line_spacing* parameter, or if omitted, the required height is automatically calculated.

**Section: Boxes - Height area parameters**

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of decimals</td>
<td>number_of_decimals</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>number of decimal places in the offset height boxes. If &lt;0, the absolute value is taken as the number of decimal places i.e. no trailing zeros are removed for the values in the offset, heights area.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text size (mm)</td>
<td>text_size</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>text size of the height values</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Justification</td>
<td>box_text_justification</td>
<td>choice box</td>
<td>bottom of individual boxes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>top of individual boxes</td>
</tr>
<tr>
<td></td>
<td>justification of box text.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal line spacing (mm)</td>
<td>horizontal_line_spacing</td>
<td>input</td>
<td>height of each individual box area of title area. Calculated if omitted</td>
</tr>
</tbody>
</table>

The total height of the boxes area is simply given by number of boxes drawn multiplied by the height of one box (they all have the same height).

The **width** of the heights area is determined by the number of chainages to be labelled and whether the values are staggered to prevent over writing.

Hence the total width of the boxes area is the width of the labels area plus the width of the heights area.

Continue to the next section 26.3.9.2.4 Boxes/Centreline Labels - Boxes - Outside Linework or return to 26.3.9 Boxes/ Centreline Labels.
26.3.9.2.4 Boxes/Centreline Labels - Boxes - Outside Linework

Section: Boxes - Outside linework parameters

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draw the left side of title area(1)</td>
<td>draw_box_side_1</td>
<td>tick box</td>
<td>if ticked, draw the left side of the title area (def).</td>
</tr>
<tr>
<td>Draw the top line of title area(2)</td>
<td>draw_box_side_2</td>
<td>tick box</td>
<td>if ticked, draw the top line of the title area (def).</td>
</tr>
<tr>
<td>Draw the bottom line of title area(4)</td>
<td>draw_box_side_4</td>
<td>tick box</td>
<td>if ticked, draw the bottom line of the title area (def).</td>
</tr>
<tr>
<td>Draw the left side of heights area(5)</td>
<td>draw_box_side_5</td>
<td>tick box</td>
<td>if ticked, draw the left side of the heights area (def).</td>
</tr>
<tr>
<td>Draw the top line of heights area(6)</td>
<td>draw_box_side_6</td>
<td>tick box</td>
<td>if ticked, draw the top line of the heights area (def).</td>
</tr>
<tr>
<td>Draw right side of heights area(7)</td>
<td>draw_box_side_7</td>
<td>tick box</td>
<td>if ticked, draw right side of the heights area (def).</td>
</tr>
<tr>
<td>Draw bottom side of heights area(8)</td>
<td>draw_box_side_8</td>
<td>tick box</td>
<td>if ticked, draw bottom side of the heights area (def).</td>
</tr>
<tr>
<td>Colour (1)</td>
<td>box_side_colour_1</td>
<td>colour box</td>
<td>colour to draw left side of title area</td>
</tr>
<tr>
<td>Colour (2)</td>
<td>box_side_colour_2</td>
<td>colour box</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram](image-url)


colour to draw top of title area
Colour (4) box_side_colour_4 colour box

colour to draw bottom of title area
Colour (5) box_side_colour_5 colour box

colour to draw left side of heights area
Colour (6) box_side_colour_6 colour box

colour to draw top of heights area
Colour (7) box_side_colour_7 colour box

colour for right side of heights area
Colour (8) box_side_colour_8 colour box

colour for bottom of heights area

Continue to the next section 26.3.9.2.5 Boxes/Centreline Labels - Boxes - Inside Linework or return to 26.3.9 Boxes/ Centreline Labels.
26.3.9.2.5 Boxes/Centreline Labels - Boxes - Inside Linework

The lines at the top of the individual boxes inside the title area and heights area (separation lines) are controlled by the parameters `box_line_draw_mode` and `box_line_mode_n`.

The separation lines can be drawn just in the title area, just in the heights area or in both areas.

The parameter `box_line_draw_mode` can be set to control all the separation lines but there are additional parameters, `box_line_mode_n`, which override `box_line_draw_mode` for each of the individual boxes where \( n = 1, \ldots, \text{number of boxes} - 1 \).

The top of the top box is not controlled by `box_line_mode_n` but is controlled by the parameters `draw_box_side_2` and `draw_box_side_6`.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Section: Boxes - Inside linework parameters</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separation line mode</td>
<td>box_line_draw_mode</td>
<td>choice box</td>
<td>Do not draw any lines</td>
</tr>
<tr>
<td>separation</td>
<td></td>
<td></td>
<td>Draw the separation lines in both areas</td>
</tr>
<tr>
<td>in</td>
<td></td>
<td></td>
<td>Draw the separation lines in the title area only</td>
</tr>
<tr>
<td>in</td>
<td></td>
<td></td>
<td>Draw the separation lines in the heights area only</td>
</tr>
</tbody>
</table>

the separation line draw mode.

Box # input
Where box \( \# = 1 \) to number of boxes \( (n) \). Box 1 is the bottom box, increasing upwards.

<table>
<thead>
<tr>
<th>Line mode height</th>
<th>box_line_mode_n</th>
<th>choice box</th>
<th>No top line for title or area (mode=0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>line mode for top of title and height areas for box number specified.</td>
<td></td>
<td></td>
<td>Draw top line for title or height area (mode=1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Draw top line for title area only (mode=2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Draw top line for height only (mode=3)</td>
</tr>
<tr>
<td>title \ area</td>
<td>heights \ area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>draw this line for box_line_mode_2 = 1 or 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>draw this line for box_line_mode_1 = 1 or 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

draw this line for box_line_mode_1 = 1 or 2

values for box_line_mode_n

Continue to the next section 26.3.9.2.6 Boxes/Centreline Labels - Boxes - Extension Mode or return to 26.3.9 Boxes/ Centreline Labels.
26.3.9.2.6 Boxes/Centreline Labels - Boxes - Extension Mode

The right hand end of the boxes can stop at the end of the design x-section or extend to the end of the right_extension distance.

```
left extension

right extension
```

```
title area
```

if box_extension_mode = 1 then the boxes extend to the end of the right extension

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Extension mode</td>
<td>box_extension_mode</td>
<td>choice box extend boxes to end of design x-section (mode=0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>extend boxes to end of right extension distance (mode=1)</td>
</tr>
</tbody>
</table>

Continue to the next section 26.3.9.2.7 Boxes/Centreline Labels - Boxes - Offset Titles/Values or return to 26.3.9 Boxes/ Centreline Labels.
### 26.3.9.2.7 Boxes/Centreline Labels - Boxes - Offset Titles/Values

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Section: Boxes - Offset title/value parameters</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First line of offset title</td>
<td>offset_title</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Second line of offset title</td>
<td>offset_title_2</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Offset title textstyle</td>
<td>offset_title_textstyle</td>
<td>text box</td>
<td></td>
</tr>
<tr>
<td>Offset title colour</td>
<td>offset_title_colour</td>
<td>colour box</td>
<td></td>
</tr>
<tr>
<td>Offset title size (mm)</td>
<td>offset_title_size</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Offset value mode</td>
<td>offset_value_mode</td>
<td>choice box</td>
<td></td>
</tr>
<tr>
<td>Offset value colour</td>
<td>offset_colour</td>
<td>colour box</td>
<td></td>
</tr>
<tr>
<td>Offset value textstyle</td>
<td>offset_textstyle</td>
<td>text box</td>
<td></td>
</tr>
<tr>
<td>Offset value size (mm)</td>
<td>offset_size</td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section [26.3.9.2.8 Boxes/Centreline Labels - Boxes - Primary String Titles/Values](#) or return to [26.3.9 Boxes/Centreline Labels](#).
26.3.9.2.8 Boxes/Centreline Labels - Boxes - Primary String Titles/Values

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section: Boxes -</td>
<td>primary_title</td>
<td>real box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>first line</td>
<td></td>
<td>of primary string title</td>
</tr>
<tr>
<td></td>
<td>Second line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section: Boxes -</td>
<td>primary_title_2</td>
<td>real box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>second line</td>
<td></td>
<td>of primary string title</td>
</tr>
<tr>
<td>Textstyle</td>
<td>primary_title_textstyle</td>
<td>text box</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>primary_title_colour</td>
<td>colour box</td>
<td></td>
</tr>
<tr>
<td>Size (mm)</td>
<td>primary_title_size</td>
<td>real box</td>
<td></td>
</tr>
<tr>
<td>Y position (mm)</td>
<td>primary_title_y_pos</td>
<td>real box</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>if set, the height in mm above</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>the bottom of all the boxes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>that the primary string title</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>text is drawn. If</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>not set, then the text is</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>placed at a height that puts</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>it inside the default box for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>the primary string title.</td>
</tr>
<tr>
<td>Section: Boxes -</td>
<td>primary_colour</td>
<td>colour box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>primary_textstyle</td>
<td>text box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>primary_size</td>
<td>real box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>primary_y_pos</td>
<td>real box</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>if set, the height in mm above</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>the bottom of all the boxes that</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>the primary string value text is</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>drawn. If not set, then the text</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>is placed at a height that puts</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>it inside the default box for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>the primary string value.</td>
</tr>
</tbody>
</table>

Decimal places

primary_decimals integer box

number of dec places in primary string height.

If > 0, trailing zeros are removed after the decimal point.
If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

Continue to the next section 26.3.9.2.9 Boxes/Centreline Labels - Boxes - Tin Titles/Values or return to 26.3.9 Boxes/ Centreline Labels.
## 26.3.9.2.9 Boxes/Centreline Labels - Boxes - Tin Titles/Values

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Use tin set #</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>set number to be used to define sets of tin parameters i.e. n value</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tin draw mode</td>
<td>tin_n_draw_mode</td>
<td>choice box</td>
</tr>
<tr>
<td></td>
<td>draw mode for the nth tin specified by set #.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tin colour</td>
<td>tin_n_draw_colour</td>
<td>colour box</td>
</tr>
<tr>
<td></td>
<td>tin colour mode for the nth tin specified by set #.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tin label mode</td>
<td>tin_n_label</td>
<td>choice box</td>
</tr>
<tr>
<td></td>
<td>tin label mode for the nth tin specified by set #.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Do not label the tin

See

26.3.9.2.9.1 Boxes/Centreline Labels - Boxes - Tin Titles/Values - Tin Titles
26.3.9.2.9.2 Boxes/Centreline Labels - Boxes - Tin Titles/Values - Tin Heights
26.3.9.2.9.3 Boxes/Centreline Labels - Boxes - Tin Titles/Values - Tin Depths
26.3.9.2.9.1 Boxes/Centreline Labels - Boxes - Tin Titles/Values - Tin Titles

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

Section: Tin title parameters

Use tin set #

- set number to be used to define sets of tin parameters i.e. n value

First line of tin title

- tin_n_title

- first line of nth tin title

Second line of tin title

- tin_n_title_2

- second line of nth tin title

Tin title textstyle

- tin_n_title_textstyle

- nth tin title textstyle

Tin title colour

- tin_n_title_colour

- nth tin title colour

Tin title size (mm)

- tin_n_title_size

- nth tin title size

Title Y position (mm)

- tin_n_title_y_pos

- if set, the height in mm above the bottom of all the boxes that the nth tin title text is drawn. If not set, then the text is placed at a height that puts it inside the default box for the tin heights.

Continue to the next section 26.3.9.2.9.2 Boxes/Centreline Labels - Boxes - Tin Titles/Values - Tin Heights or return to 26.3.9 Boxes/ Centreline Labels.
26.3.9.2.9.2 Boxes/Centreline Labels - Boxes - Tin Titles/Values - Tin Heights

The columns for the fields documented in the sections are for:

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Section: Tin height parameters**

- **Use tin set #**
  - Input
  - Set number to be used to define sets of tin parameters i.e. n value

- **Decimals**
  - Input
  - Number of dec places in nth tin height.
  - If > 0, trailing zeros are removed after the decimal point.
  - If < 0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

- **Textstyle**
  - Textbox
  - TEXTSTYLE of nth tin height

- **Colour**
  - Colour box
  - nth tin height and depth colour

- **Size (mm)**
  - Input
  - nth tin height size

- **Y pos (mm)**
  - Input
  - If set, the height in mm above the bottom of all the boxes that the tin height text is drawn. If not set, then the text is placed at a height that puts it inside the default box for the tin heights.

Continue to the next section 26.3.9.2.9.3 Boxes/Centreline Labels - Boxes - Tin Titles/Values - Tin Depths or return to 26.3.9 Boxes/ Centreline Labels.
26.3.9.2.9.3 Boxes/Centreline Labels - Boxes - Tin Titles/Values - Tin Depths

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use tin set #</td>
<td>input</td>
<td></td>
<td>set number to be used to define sets of tin parameters i.e. n value</td>
</tr>
<tr>
<td>Depth label mode</td>
<td>tin_n_depth_label</td>
<td>choice box</td>
<td>Label depths</td>
</tr>
<tr>
<td>depth label mode for the nth tin specified by set #.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First line of tin depth title</td>
<td>tin_n_depth_title</td>
<td>input</td>
<td>first line of nth tin depth title</td>
</tr>
<tr>
<td>Second line of tin depth title</td>
<td>tin_n_depth_title_2</td>
<td>input</td>
<td>second line of nth tin depth title</td>
</tr>
<tr>
<td>Depth title textstyle</td>
<td>tin_n_depth_title_textstyle</td>
<td>text box</td>
<td>nth tin depth title textstyle</td>
</tr>
<tr>
<td>Depth title colour</td>
<td>tin_n_depth_title_colour</td>
<td>colour box</td>
<td>nth tin depth title colour</td>
</tr>
<tr>
<td>Depth title size (mm)</td>
<td>tin_n_depth_title_size</td>
<td>input</td>
<td>nth tin depth title size</td>
</tr>
<tr>
<td>Depth title Y position (mm)</td>
<td>tin_n_depth_title_y_pos</td>
<td>input</td>
<td>if set, the height in mm above the bottom of all the boxes that the tin depth title text is drawn. If not set, then the text is placed at a height that puts it inside the default box for the tin heights.</td>
</tr>
<tr>
<td>Decimals in depth value</td>
<td>tin_n_depth_decimals</td>
<td>input</td>
<td>number of dec places in tin height.</td>
</tr>
<tr>
<td>If &gt; 0, trailing zeros are removed after the decimal point.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If &lt;0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth value textstyle</td>
<td>tin_n_depth_textstyle</td>
<td>text box</td>
<td>nth tin depth textstyle</td>
</tr>
<tr>
<td>Depth value colour</td>
<td>tin_n_depth_colour</td>
<td>colour box</td>
<td>nth tin depth colour</td>
</tr>
<tr>
<td>Depth value size (mm)</td>
<td>tin_n_depth_size</td>
<td>input</td>
<td>nth tin depth size</td>
</tr>
<tr>
<td>Depth value Y position (mm)</td>
<td>tin_n_depth_y_pos</td>
<td>input</td>
<td>if set, the height in mm above the bottom of all the boxes that the tin depth text is drawn. If not set, then the text is placed at a height that puts it inside the default box for the tin heights.</td>
</tr>
<tr>
<td>Multiplier for positive depths</td>
<td>depth_positive_factor</td>
<td>input</td>
<td>if set, this value will be used to multiply positive depth values.</td>
</tr>
<tr>
<td>Multiplier for negative depths</td>
<td>depth_negative_factor</td>
<td>input</td>
<td>if set, this value will be used to multiply negative depth values.</td>
</tr>
</tbody>
</table>
The depth from the primary string to a tin, at a particular offset is defined as
\[
\text{depth} = \text{tin height value} - \text{height of the primary string}
\]
That is, the depth that the primary string is below the tin.

Before plotting, the value of depth is multiplied by either the \textit{depth_positive_factor} or \textit{depth_negative_factor}.

\[
\begin{align*}
\text{if (depth }&\geq 0) \quad \text{plotted_depth_value} = \text{depth} \times \text{depth_positive_factor} \\
\text{if (depth }&< 0) \quad \text{plotted_depth_value} = \text{depth} \times \text{depth_negative_factor}
\end{align*}
\]

Hence the definition of depth can be modified by the parameters:

- \textit{depth_positive_factor} value // multiplier for positive depths
- \textit{depth_negative_factor} value // multiplier for negative depths

For example, if the opposite sign is required for depth, that is,
\[
\text{depth} = \text{height of the primary string} - \text{tin height value}
\]

simply set
\[
\begin{align*}
\text{depth_positive_factor} &= -1 \\
\text{depth_negative_factor} &= 1
\end{align*}
\]

Continue to the next section \textit{26.3.9.2.10 Boxes/CL Labels - Boxes - Upright Offset/Staggering Parameters} or return to \textit{26.3.9 Boxes/ Centreline Labels}. 
26.3.9.2.10 Boxes/CL Labels - Boxes - Upright Offset/Staggering Parameters

For each sub-plot, the offsets of the points across the x-section string (primary string) are used for positioning uprights (leader lines), and the offset and height labels for the uprights.

By default, there is an upright at each point across the primary string.

However, if the primary string is a 4d string, then the text at the points on the 4d string can be used as a key to suppress the labelling and upright at that point. See Section: Exclude uprights at nominated x-sec points.

If the real offset position is used for the horizontal position of the offset/height text, text overwriting can easily occur. To prevent overwriting, the text is automatically staggered.

When staggering occurs, the real offset position is then indicated by the offset markers which are drawn at the top of the text boxes from the staggered text position back to the actual offset position of the upright.

The size and position of the staggers are given by:

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: Upright offset/staggering parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset label tolerance</td>
<td>offset_label_tolerance</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Top of stagger to boxes distance (mm)</td>
<td>stagger_gap_top</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Bottom of stagger to boxes distance (mm)</td>
<td>stagger_gap_bottom</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Stagger gap factor</td>
<td>stagger_gap_factor</td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section 26.3.9.2.10.1 Boxes/Centreline Labels - Boxes - Upright off/staggering params - Uprights to exclude or return to 26.3.9 Boxes/ Centreline Labels.
26.3.9.2.10.1 Boxes/Centreline Labels - Boxes - Upright off/staggering params - Uprights to exclude

For each sub-plot, the offsets of the points across the x-section string (primary string) are used for positioning uprights (leader lines), and the offset and height labels for the uprights.

By default, there is an upright at each point across the primary string.

However, if the primary string is a 4d string, then the text at the points on the 4d string can be used as a key to suppress the labelling and upright at that point.

The parameters to stop labelling and uprights are:

\[
\text{mask\_name\_n \hspace{1cm} 4d\_string\_point\_text \hspace{1cm} where } n=1,100
\]

After any name masks have been applied, it is often desirable to weed out offset values that are too close together before doing any labelling.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: Exclude uprights at nominated x-sec points</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set #</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
set number to be used to define a number of uprights to suppress

<table>
<thead>
<tr>
<th>X-sec points to exclude</th>
<th>mask_name_n</th>
<th>input</th>
<th></th>
</tr>
</thead>
</table>
the string name to be excluded. Note: the name can include wild cards (*) and characters (?). n is the value from the Set # provided.

Continue to the next section 26.3.9.2.11 Boxes/CL Labels - Boxes - Upright Off/Stag Params - Uprights or return to 26.3.9 Boxes/ Centreline Labels.
26.3.9.2.11 Boxes/CL Labels - Boxes - Upright Off/Stag Params - Uprights

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: Uprights</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upright draw mode</td>
<td>uprights_draw_mode</td>
<td>choice</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>box</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>ticks to stagger height</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to uprights_y above boxes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to primary string</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to tin 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to tin 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to tin 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to tin 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to tin 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to tin 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to tin 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to tin 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to tin 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to tin 10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Upright draw mode above boxes.**

**Uprights Y distance (mm)**  uprights_y  input
distance to draw the uprights for uprights_draw_mode = "to uprights_y above boxes"

**Uprights colour**  uprights_colour  colour  box
uprights colour. Default is box_colour

**Uprights bottom mode**  uprights_bottom_mode  choice  box  stop at top of boxes
draw to bottom of boxes
draw to uprights_bottom_y below top of boxes
draw to uprights_bottom_y above bottom of boxes
ticks at chainage

**Upright draw mode below top of boxes.**

**Uprights bottom Y distance (mm)**  uprights_bottom_y  input
distance in mm.

**Uprights text offset factor**  uprights_text_offset_factor  input
move the text by this factor*size.

When uprights go below the top of the boxes, the height and offset text is moved to the left so that the upright does not go through the text. The left hand side of the heights boxes also moves to the left to leave room for the height text.
26.3.9.3 Boxes/Centreline Labels - Centreline

Boxes cross section plot

- uprights can go to the bottom of the boxes
- text is to the left of the upright
- uprights can stop at the top of the boxes, or somewhere in between
- text is centred on the upright

Continue to the next section 26.3.9.3 Boxes/Centreline Labels - Centreline or return to 26.3.9 Boxes/ Centreline Labels.
26.3.9.3 Boxes/Centreline Labels - Centreline

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Section: Centreline linestyle**

<table>
<thead>
<tr>
<th>Linestyle of centreline</th>
<th>cl_linestyle</th>
<th>linetype box</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>linestyle to be used for drawing centreline</td>
</tr>
</tbody>
</table>

See

- [26.3.9.3.1 Boxes/Centreline Labels - Centreline - Datum Lines](#)
- [26.3.9.3.2 Boxes/Centreline Labels - Centreline - Height Of Tin At 0 Offset](#)
- [26.3.9.3.3 Boxes/CL Labels - Centreline - Labelling Offset/Height (Superseded)](#)

Or return to [26.3.9 Boxes/ Centreline Labels](#).
26.3.9.3.1 Boxes/Centreline Labels - Centreline - Datum Lines

For the centreline case, the graph area is positioned the distance \( \text{datum\_above\_gap\_cl} \) above the datum line.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: Centreline - datum line parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graph area - datum line gap (mm)</td>
<td>( \text{datum_above_gap_cl} )</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Position of text</td>
<td>( \text{datum_side_cl} )</td>
<td>choice box</td>
<td>Middle of datum line</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Left of datum line</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Right of datum line</td>
</tr>
<tr>
<td>Text justification</td>
<td>( \text{datum_text_justification_cl} )</td>
<td>just. box</td>
<td>bottom-left</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bottom-centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bottom-right</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bottom-decimal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>middle-left</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>middle-centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>middle-right</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>middle-decimal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>top-left</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>top-centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>top-right</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>top-decimal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>decimal-left</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>decimal-centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>decimal-right</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>decimal-point</td>
</tr>
</tbody>
</table>

\( \text{datum\_info} \) can be on the left, middle or right of the datum line.

\( \text{datum\_text\_justification\_cl} \) is not normally required since by default the text justification is set to match \( \text{datum\_side\_cl} \).

\( \text{datum\_x\_cl} \)
distance to move the datum text along the datum line

Datum text position above datum line (mm)

\[ \text{datum}_y_{cl} \quad \text{input} \]

distance to move the datum text above the datum line

The \text{datum}_x_{cl} and \text{datum}_y_{cl} can be positive, zero or negative.

Continue to the next section 26.3.9.3.2 Boxes/Centreline Labels - Centreline - Height Of Tin At 0 Offset or return to 26.3.9 Boxes/ Centreline Labels.
26.3.9.3.2 Boxes/Centreline Labels - Centreline - Height Of Tin At 0 Offset

The columns for the fields documented in the sections are for.

### Panel Field	Parameter Name	Type	Pop-Up
**Section:** Parameters for labelling the height of tin at 0 offset

- **Use tin set #**
  - set number to be used to define sets of tin parameters i.e. n value

- **Draw label**
  - tin_n_height_draw_mode
    - choice box: Do not draw the label
    - Draw the label

- **Position of text**
  - tin_n_height_position
    - choice box: Middle of datum line
    - Left of datum line
    - Right of datum line

- **Pre text**
  - tin_n_height_pre_text
    - input

- **Post text**
  - tin_n_height_post_text
    - input

- **Decimals**
  - tin_n_height_decimals
    - input
  - number of decimal places to display - def 1.
  - If > 0, trailing zeros are removed after the decimal point.
  - If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

- **X adjustment (mm)**
  - tin_n_height_x
    - input
  - x adjustment to position label

- **Y adjustment (mm)**
  - tin_n_height_y
    - input
  - y adjustment to position label

- **Angle (dms)**
  - tin_n_height_angle
    - angle box
  - angle of label

- **Colour**
  - tin_n_height_colour
    - colour box
  - colour of label

- **Size (mm)**
  - tin_n_height_size
    - input
  - size of label

- **Textstyle**
  - tin_n_height_textstyle
    - text box
  - textstyle of label of label

Continue to the next section **26.3.9.3.3 Boxes/CL Labels - Centreline - Labelling Offset/Height (Superseded)** or return to **26.3.9 Boxes/ Centreline Labels**.
26.3.9.3.3 Boxes/CL Labels - Centreline - Labelling Offset/Height (Superseded)

In the centre line case, the value of the height of the primary string (usually the design cross section) at the zero offset can be labelled. This is normally where the alignment string cuts the cross section.

The label is made up of the texts:

```
primary_title offset_title offset_value height_text height_value
```

**Note:** These parameters have now been superseded. The parameters for labelling the height of the primary string at zero offset covers this case. To use the zero offset parameters instead, the primary_height_pre_text would include all text required for the Primary_title, offset_title, offset_value and height_text (offset_value is always 0.0).

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Include primary title in label</td>
<td>primary_mode_cl</td>
<td>Tick box</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The parameter primary_mode_cl controls whether the primary_title is included in the label.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Include height in label</td>
<td>height_mode_cl</td>
<td>Tick box</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The parameter height_mode_cl controls whether the height_title and height_value are included in the label.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Include offset in label</td>
<td>offset_mode_cl</td>
<td>Tick box</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The parameter offset_mode_cl controls whether the offset_title and offset_value are included in the label.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position of text</td>
<td>offset_height_side_cl</td>
<td>Choice</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>The label can be placed on the left, centre of right side of the datum line.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Justification of text</td>
<td>offset_height_text_justification_cl</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>justification of the offset height text. <strong>Note:</strong> - this is not normally required since by default the text justification is set to match offset_height_side_cl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height text label</td>
<td>height_text</td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>height text.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance to move text position along datum line (mm)</td>
<td>offset_x_cl</td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>distance to move the text along the datum line.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance to move text position below datum line (mm)</td>
<td>offset_y_cl</td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>distance to move the text below the datum line.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Continue to the next section 26.3.10 Graph Area or return to 26.3.9 Boxes/ Centreline Labels.
26.3.10 Graph Area

The **graph area** for each section sub-plot is the area where the actual plot of the x-section string is drawn.

The **width** of the graph area is determined by the width of the x-section string being plotted, the left and right extensions and horizontal scale (scale) given by the parameters.

The size of the graph area can be extended to allow for symbols by the following parameters:

The types of strings that are drawn in the graph area of a cross section plot are:

(a) **primary string** the x-section string from the x-section model that is being drawn.

(b) **tins** sections of the primary string through any tins in models in the corridor models.

(c) **services** parts of strings (from models in corridor models) that cut the defined corridor.

The **colour** of the strings in the plot is the actual string colour for cases (a) and (c), and the colour of the tin used for the section in case (b).

Although all the strings are plotted, the plot parameter file can be used to select which ones are labelled with heights.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Section: Graph area - Extra space parameters</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra space units</td>
<td>extra_space_units</td>
<td>choice box world units</td>
<td>millimetres</td>
</tr>
<tr>
<td>Extra space left (units)</td>
<td>extra_space_left</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Extra space right (units)</td>
<td>extra_space_right</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Extra space top (units)</td>
<td>extra_space_top</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Extra space bottom (units)</td>
<td>extra_space_bottom</td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

*units for specifying extra space.*
distance to subtract from bottom of plot area

Please continue to the next section 26.3.11 Corridors - X Section.
26.3.11 Corridors - X Section

A corridor around the primary string is defined by giving a left and right corridor width. Any string in a model added to the section view is checked to see if it appears in the corridor, and if it does, it is drawn on the cross-section plot.

To be drawn, strings do not have to cross the primary string, but just be in the corridor.

This is documented for all the PPF Editors in 26.2.7 Corridors.

Please continue to the next section 26.3.12 Grades.
26.3.12 Grades

The plot of the x-section string is made up of straight lines joining the individual points of the x-section.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: Grade parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Label grades**

- grade_label

  if ticked, label grades.

Either the individual lines can be used as the segments to be labelled for grade, or adjacent lines of the same grade can be considered to be just one segment and labelled only once.

Hence the segments to be labelled for grade can be the individual lines of the x-section, or the segments defined by changes of grade.

**Label change of grade segments**

- grade_change_only

  if ticked, label change of grade segments. If not, label individual lines.

It is also possible to ignore segments smaller that a given minimum width on the plot.

**Minimum segment 3d length**

- grade_minimum_width

    segments smaller than specified value (in mm) are not labelled

The grade labels are drawn parallel to the segment, centred about the segments end points, and a distance grade_offset above the segment. The size, colour and number of decimal places can all be set.

**Minimum segment plan length**

- grade_minimum_width_2d

**Minimum slope (m/m)**

- grade_minimum_slope

**Maximum slope (m/m)**

- grade_maximum_slope

**Decimal places for grades**

- grade_decimals

    number of decimal places in grade.

    If > 0, trailing zeros are removed after the decimal point.

    If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

**Size for grade text (mm)**

- grade_size

    size of the grade label

**Textstyle for grades**

- grade_textstyle

    textstyle of the grade label

**Colour for grades**

- grade_colour

    number of decimal places in grade

**Grade offset (mm)**

- grade_offset

    distance above the segment for label

**Show grade sign**

- grade_offset

    if ticked, the sign of the grade is labelled.

The grade can be labelled as percent cross-fall, 1 in slope, m/m or VicRoads x:1.

Also a threshold value can be set and any grades whose absolute value are below the threshold
can be labelled in one way, and those above the threshold labelled a different way. Hence, if the absolute value of the grade is less that or equal to the absolute value of \textit{grade\_threshold}, then \textit{grade\_mode} is used, otherwise \textit{grade\_upper\_mode} is used.

<table>
<thead>
<tr>
<th>Grade mode</th>
<th>grade_mode</th>
<th>choice box % grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>m/m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VicRoads x:1</td>
</tr>
</tbody>
</table>

**Grade mode**

<table>
<thead>
<tr>
<th>Grade threshold</th>
<th>grade_threshold</th>
<th>input</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>grade_threshold_ mode</td>
<td>choice box % grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>m/m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VicRoads x:1</td>
</tr>
</tbody>
</table>

**Grade threshold mode**

<table>
<thead>
<tr>
<th>Grade upper mode</th>
<th>grade_upper_mode</th>
<th>choice box % grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>m/m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VicRoads x:1</td>
</tr>
</tbody>
</table>

**Grade upper mode**

**Decimal places for grades above threshold value**

<table>
<thead>
<tr>
<th>grade_upper_decimals</th>
<th>input</th>
</tr>
</thead>
<tbody>
<tr>
<td>number dec places in grades above threshold value</td>
<td></td>
</tr>
</tbody>
</table>

*If* > 0, trailing zeros are \textit{removed} after the decimal point. *If* <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

Please continue to the next section \textit{26.3.13 X-Section Points}. 

![Diagram of design section with tin (natural surface)](image-url)
26.3.13 X-Section Points

The points across each x-section can be automatically labelled on the x-section plots. The offset, height and name of the point can be labelled as well as a symbol drawn. The height of tins at the same offset value can also be labelled. The offset position for the labelling is the offset of the point.

The height position for the labelling can be specified as the

(a) top of the boxes for the x-section
(b) above the maximum height of the strings on the plot
(c) height of the point on the x-section string (primary string)
(d) height of a tin.

The actual position of the label is defined relative to the above point.

Note:
Only case (b) involves the actual height of the point on the cross section string. For all other cases, only the offset of the cut string is used.

Other heights, for example, the height of the tin at that offset can be used as the height (case (d)).

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Define Set #</strong></td>
<td><strong>input</strong></td>
<td>set number to be used to define a number of points to include</td>
<td></td>
</tr>
<tr>
<td><strong>Point mask</strong></td>
<td><strong>points_n_mask</strong></td>
<td><strong>input</strong></td>
<td>The points of the x-section to be labelled for the nth set of parameters is restricted to all the points whose name satisfying the points_n_mask. For example</td>
</tr>
</tbody>
</table>

- points_1_mask = "ke**"
- points_1_mask = "?bank**"

or, if both masks are required,

points_1_mask = "ke* ?bank**"

See
26.3.13.1 X Section Points - Offsets
26.3.13.2 X Section Points - Heights
26.3.13.3 X Section Points - Labels
26.3.13.4 X Section Points - Symbols

Or return to 26.3 Section X Plot PPF Editor.
### 26.3.13.1 X Section Points - Offsets

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Section: X-section - Offset parameters**

**Use Set #**

*set number as specified in the Define set#

**Position**

*points_offset_n_position*  
choice box  
above point value  
above top of boxes  
above top of graph area  
to primary string  
to tin 1  
to tin 2  
to tin 3  
to tin 4  
to tin 5  
to tin 6  
to tin 7  
to tin 8  
to tin 9  
to tin 10

above point value.

**X (mm)**

*points_offset_n_x*

input  
horizontal adjustment to position of offset text.

**Y (mm)**

*points_offset_n_y*

input  
height adjustment to position of offset text.

**Angle (dms)**

*points_offset_n_angle*

input  
rotation of offset text about point.

**Colour**

*points_offset_n_colour*

*colour box*

colour of offset text

**Size (mm)**

*points_offset_n_size*

input  
size of offset text. A value of 0 = no label

**Textstyle**

*points_offset_n_textstyle*

*text box*

textstyle of offset text

**Pre-text**

*points_offset_n_pre_text*

input  
text before offset text

**Post-text**

*points_offset_n_post_text*

input  
text after offset text

**Justification**

*points_offset_n_justification*

*justification box*

bottom-left  
bottom-centre  
bottom-right  
bottom-decimal  
middle-left  
middle-centre  
middle-right  
middle-decimal  
top-left
justification of the offset text.

**Decimals**

points_offset_n_no_decimals input

number of decimals in offset text.

If > 0, trailing zeros are **removed** after the decimal point.

If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

Continue to the next section [26.3.13.2 X Section Points - Heights](#) or return to [26.3.13 X-Section Points](#).
26.3.13.2 X Section Points - Heights

The columns for the fields documented in the sections are for.

**Panel Field**	**Parameter name**	**Type**	**Pop-Up**
Use Set # | input | set number as specified in the Define set#

**Mode**
- `points_height_n_mode`
  - choice box
  - use height of cut point
  - use real height above boxes
  - height of primary string
  - use height of tin 1
  - use height of tin 2
  - use height of tin 3
  - use height of tin 4
  - use height of tin 5
  - use height of tin 6
  - use height of tin 7
  - use height of tin 8
  - use height of tin 9
  - use height of tin 10

*height mode above point value.*

**Position**
- `points_height_n_position`
  - choice box
  - above point value
  - above top of boxes
  - above top of graph area
  - to primary string
  - to tin 1
  - to tin 2
  - to tin 3
  - to tin 4
  - to tin 5
  - to tin 6
  - to tin 7
  - to tin 8
  - to tin 9
  - to tin 10

*above point position.*

**X (mm)**
- `points_height_n_x`
  - input
  - horizontal adjustment to position of height text.

**Y (mm)**
- `points_height_n_y`
  - input
  - height adjustment to position of height text.

**Angle (dms)**
- `points_height_n_angle`
  - input
  - rotation of height text about point.

**Colour**
- `points_height_n_colour`
  - colour box
  - colour of height text

**Size (mm)**
- `points_height_n_size`
  - input
  - size of height text. A value of 0 = no label

**Textstyle**
- `points_height_n_textstyle`
  - text box
  - text style of height text

**Pre-text**
- `points_height_n_pre_text`
  - input
Post-text

Justification

Decimals

If > 0, trailing zeros are removed after the decimal point.
If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

Continue to the next section 26.3.13.3 X Section Points - Labels or return to 26.3.13 X-Section Points.
### 26.3.13.3 X Section Points - Labels

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Section: X-section - Label parameters</strong></td>
</tr>
<tr>
<td>Use Set #</td>
<td>points_label_n_position</td>
<td>choice box</td>
<td>above point value</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>above top of boxes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>above top of graph area</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to primary string</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to tin 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to tin 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to tin 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to tin 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to tin 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to tin 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to tin 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to tin 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to tin 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to tin 10</td>
</tr>
</tbody>
</table>

*above point position.*

**Mode**

points_label_n_mode
choice box
don't include point name
include point name in label

**X (mm)**

points_label_n_x
input
horizontal adjustment to position of label.

**Y (mm)**

points_label_n_y
input
height adjustment to position of label.

**Angle (dms)**

points_label_n_angle
input
rotation of label about point.

**Colour**

points_label_n_colour
colour box
colour of label

**Size (mm)**

points_label_n_size
input
size of label. A value of 0 = no label

**Textstyle**

textbox

textstyle of label

**Pre-text**

text before label

**Post-text**

text after label

**Justification**

points_label_n_justification
just. box
bottom-left
bottom-centre
bottom-right
bottom-decimal
middle-left
middle-centre
middle-right
middle-decimal

top-left

top-centre

top-right

top-decimal

decimal-left

decimal-centre

decimal-right

decimal-point

justification of the label.

Continue to the next section 26.3.13.4 X Section Points - Symbols or return to 26.3.13 X-Section Points.
26.3.13.4 X Section Points - Symbols

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Section: X-section - Symbol parameters**

**Use Set #**

- set number as specified in the Define set#

**Mode**

- points_symbol_n_mode
  - choice box
  - cross (0)
  - up from centre of box (1)
  - up and down from centre of box (2)
  - square (3)
  - triangle, base at bottom (4)
  - circle (5)
  - use a plot symbol

```
0 + 1 2 | 3 □ 4 △ 5 ○
```

- predefined symbols 0 to 5

If a plot symbol is to be used, the points_symbol_n_style parameter must be specified.

**Symbol**

- points_symbol_n_style
  - plot symbols
  - a valid plot symbol can be selected.

**Position**

- points_symbol_n_position
  - choice box
  - above point value
  - above top of boxes
  - above top of graph area
  - to primary string
  - to tin 1
  - to tin 2
  - to tin 3
  - to tin 4
  - to tin 5
  - to tin 6
  - to tin 7
  - to tin 8
  - to tin 9
  - to tin 10

- above point position.

**X (mm)**

- points_symbol_n_x
  - input
  - horizontal adjustment to position of symbol.

**Y (mm)**

- points_symbol_n_y
  - input
  - height adjustment to position of symbol.

**Angle (dms)**

- points_symbol_n_angle
  - input
  - rotation of symbol about point.

**Colour**

- points_symbol_n_colour
  - colour box
  - colour of symbol

**Size (mm)**

- points_symbol_n_size
  - input
size of symbol. A value of 0 = no symbol

Please continue to the next section 26.3.14 Hatching Cut/Fill.
26.3.14 Hatching Cut/Fill

This option is used to hatch cut and/or fill areas between sets of tins.

The Hatching Cut/Fill section is common to the PPF Editors and is fully documented in 26.2.8 Hatching Cut/Fill.

Section: Hatching cut/fill - Tin parameters - see 26.2.8 Hatching Cut/Fill
Section: Hatching cut/fill - Cut parameters - see 26.2.8.1 Hatching Cut/Fill - Cut

Section: Hatching cut/fill - Fill parameters- see 26.2.8.2 Hatching Cut/Fill - Fill

Please continue to the next section 26.3.15 Cut/Fill Area Labels.
26.3.15 Cut/Fill Area Labels

If the cross section were produced by the Apply MTF or Apply Function, each section will have as following string attributes with values calculated at the time that the cross sections were created.

- LHS Cut Area
- LHS Fill Area
- LHS Strip Area
- RHS Cut Area
- RHS Fill Area
- RHS Strip Area

From these, the cut left, cut right and cut total, fill left, fill right and fill total, and balance left, balance right and balance total can be labelled on the plot.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

**Section: Cut/Fill are labels**

This section defines the pre and post text, textstyle, size and colour for displaying selected cut/fill areas.

The fields for each row form one set of controls for the placement of the given areas on the plot.

**Cut/Fill areas Grid**

<table>
<thead>
<tr>
<th>Label cut/fill</th>
<th>tick box</th>
</tr>
</thead>
<tbody>
<tr>
<td>if ticked, this row is used and the selected cut/fill value is labelled.</td>
<td></td>
</tr>
<tr>
<td>If not ticked, this row is ignored.</td>
<td></td>
</tr>
</tbody>
</table>

- Label mode | choice box
- cut left, cut right, cut total
- fill left, fill right, fill total
- balance left, balance right, balance total

the type of area to be labelled for this row.

**Text size (mm)**

the text size for the area label.

Label position	choice box
middle	
left	
right	

the area text is positioned with respect to the datum line.

If the Boxes/Centreline Label type is Boxes, then the area text is position at the left hand side of the boxes at the Datum line and the Label position is ignored.

If the Boxes/Centreline Label type is Centre line, on the Datum line but positioned horizontally at the left hand side, right hand side, or middle of the Datum line depending on Label position.

<table>
<thead>
<tr>
<th>X off (mm)</th>
<th>real box</th>
</tr>
</thead>
<tbody>
<tr>
<td>the horizontal adjustment to the selected label position.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y off (mm)</th>
<th>real box</th>
</tr>
</thead>
<tbody>
<tr>
<td>the vertical adjustment to the selected label position.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angle (dms)</th>
<th>angle box</th>
</tr>
</thead>
<tbody>
<tr>
<td>the angle of the attribute label in degrees minutes and seconds in hp notation.</td>
<td></td>
</tr>
</tbody>
</table>

| Pre text | text box |
text to go before the attribute label.

**Post text**
text box
text to go after the attribute label.

**Decimal places**
integer box
number of decimal places to use when it is a real attribute.
If > 0, trailing zeros are **removed** after the decimal point.
If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

**Units factor**
real box
the area is multiplied by the **Units factor**.
If **blank** the value is 1.0

**Colour**
colour box
the colour of the area label.

**Textstyle**
textstyle box
the textstyle of the area label.

**Justification**
justification box
the justification of the area label.

Please continue to the next section **26.3.16 Cuts**.
26.3.16 Cuts

The cuts that each x-section string makes though strings in any user-specified model, can be automatically labelled on the x-section plots.

The **Cuts** section is common to the **PPF Editors** and is fully documented in 26.2.9 Cuts.

**Section: Cuts - Model/Name mask parameters** - see 26.2.9 Cuts.

**Section: Cuts - Offset parameters** - see 26.2.9.2 Cuts - Offsets - X Section Only

**Section: Cuts - Height parameters** - see 26.2.9.4 Cuts - Heights

**Section: Cuts - Diameter parameters** - see 26.2.9.5 Cuts - Diameters

**Section: Cuts - Label parameters** - see 26.2.9.6 Cuts - Labels

**Section: Cuts - Symbol parameters** - see 26.2.9.7 Cuts - Symbols

Continue to the next section **26.3.17 Paired Cuts - X Sections.**
26.3.17 Paired Cuts - X Sections

*Paired Cuts* uses pairs of strings and where both strings cut each x-section, the cuts on the x-plot can be labelled with information such as

(a) the name of the first and second cut strings
(b) attributes from the first and second cut string
(c) offset distance between the two cuts of the pair
(d) 3d length between the two cuts of the pair
(e) the offsets on the x-section of the first and second cuts of the pair

Symbols can be drawn at the offsets of the first and second cuts (at a height specified when defining the Cut sets), and a line drawn between the symbols. Using both the line and a symbol of an arrow head makes an arrow between the two cuts.

The method for specifying which strings are to be checked for paired cuts is by first specifying the models (using wild cards and characters) that contains the strings, and then a start name mask to select the all the strings that are to be the first strings in a cut pair, and an end name mask to select all the strings that are the second strings in a cut pair.

For a x-section, all the cuts of the selected start strings are found and the cuts ordered by the offset of the cut on the x-section. Then all the cuts of the selected end strings are found and the
cuts ordered by the offset of the cut on the x-section.

The start cuts are then processed and each start cut is paired with the next end cut with a larger offset than the start cut. It is possible that there are end cuts before the first start cut (orphaned end cuts) and start cut with no following end cut (orphaned start cuts).

Up to twenty five different sets of models and name masks can be used so that different paired cut sets can be labelled in different ways.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: Pairing - Model/Name mask parameters</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Define Set #

input

set number to be used to define different model/mask sets.

Model

pairing_n_model

model box

models (the name can include wild cards (*) and wild characters (?)) from which start and end cut masks are derived.

Start name mask

pairing_n_start_mask

input

text string containing the name masks to select the start strings, each separated by one or more spaces, to test the string names against. If the name include spaces then it must be enclosed in the quotes " (eg "bench 2").

Each mask can include wild cards (*) and wild characters (?).

For example: "ke*" or, "?bank**" or; if both masks are required, "ke*  ?bank***"

End name mask

pairing_n_end_mask

input

text string containing the name masks to select the end strings, each separated by one or more spaces, to test the string names against. If the name include spaces then it must be enclosed in the quotes " (eg "bench 2")

Each mask can include wild cards and wild characters.

For example: "ke*" or, "?bank**" or; if both masks are required, "ke*  ?bank***"

Note

If Start name mask is blank and End name mask is not blank, then all strings in the models that are not used as end strings, are used as start string.

If End name mask is blank and Start name mask is not blank, then all strings in the models that are not used as start strings, are used as end string.

This is currently not operational: If Start name mask and End name mask are both blank, then all strings in the models are used. All the strings are cut by the x-section are ordered by offset, and successive pairs of cuts taken to be the cut pairs. There could be one remaining cut point (it has the largest offset) and if so, it is taken to be orphaned start point.
where to get the z-values to use for the two cut positions. This is used in conjunction with the choice in the Adopted height field.

If left blank, at cut string height is used.

Adopted height      pairing_n_height           choice box              lower position, higher position

for the choice selected in the Position field, there will be a z-value at the first cut and another z-value at the end cut. The Adopted height says which of the two z-value to use for placing symbols, lines between cuts, text from Attributes and the Offsets of the first cut and the second cut.

If lower (higher) position, the smaller (greater) of the two z-values will be used.
If start (end), the z-value of the first (second) cut of the cut point pair will be used.
If left blank, lower position is used.

Include orphaned start ?  pairing_n_orphan_start   choice box           yes, no

if Yes and there are start cuts after the last end cut (and so can’t be paired), then the last start cut (i.e. the one with the largest offset) is taken as an orphaned start and it is labelled as though there is a matching end at the end of the x-section.
if No and there are start cuts after the last end cut, then those start cut are ignored.
If left blank, No is used.

Include orphaned ends ?  pairing_n_orphan_end   choice box           yes, no

if Yes and there are end cuts before the first start cut, then the first end cut (the one with the smallest offset) is taken as an orphaned end and it is labelled as though there is a matching start at the beginning of the x-section.
if No and there are end cuts before the first start cut, then those end cut are ignored.
If left blank, No is used.

See

26.3.17.1 Paired Cuts - Lines and Symbols
26.3.17.2 Paired Cuts - Labels
26.3.17.3 Paired Cuts - Start Offset
26.3.17.4 Paired Cuts - End Offset

Or return to 26.3 Section X Plot PPF Editor.
26.3.17.1 Paired Cuts - Lines and Symbols

Symbols can be placed at the start and end cut offsets (at the z-value given by the Position and Adopted height columns when defining the Sets), and a line can also be drawn between the cuts at that z-value. Having both the line and a symbol forms an arrow between the cuts pair.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Set #</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Symbol type</td>
<td>pairing_line_symbols_n_symbol</td>
<td>choice box</td>
</tr>
<tr>
<td>Symbol</td>
<td>pairing_line_symbols_n_user_symbol</td>
<td>plot symbols</td>
</tr>
<tr>
<td>Symbol colour</td>
<td>pairing_line_symbols_n_symbol_colour</td>
<td>colour box</td>
</tr>
<tr>
<td>Draw line</td>
<td>pairing_line_symbols_n_line</td>
<td>choice box</td>
</tr>
<tr>
<td>Line colour</td>
<td>pairing_line_symbols_n_line_colour</td>
<td>colour box</td>
</tr>
</tbody>
</table>

For cases 6 and 7, a plot symbol is to be used and is given in the Symbol field.

The height used for the symbol at both ends of the cuts pair is given by the Position and Adopted height column in the Set definition.

For Symbol type 0 to 5, this field is not used.

The height used for the symbol at both ends is given by the Position and Adopted height columns in the Set definition.
colour of the line between the start and end cuts for each cut pair

Left symbol rotation \( pairing\_line\_symbols\_n\_left\_rotate \) measure box
angle (measured counterclockwise from the positive x-axis with units of degrees in 4.17.1 HP Notation) to rotate the symbol at the start cut point for the cut point pair.
If there is no value then the rotation is 0.

Right symbol rotation \( pairing\_line\_symbols\_n\_right\_rotate \) measure box
angle (measured counterclockwise from the positive x-axis with units of degrees in 4.17.1 HP Notation) to rotate the symbol at the end cut point for the cut point pair.
If there is no value then the rotation is 0.

\[ \text{X (mm)} \quad pairing\_line\_symbols\_n\_x \quad \text{measure box} \]
\[ \text{horizontal adjustment to the position of the symbol.} \]

\[ \text{Y (mm)} \quad pairing\_line\_symbols\_n\_y \quad \text{measure box} \]
\[ \text{vertical adjustment to the position of the symbol.} \]

\[ \text{Size} \quad pairing\_line\_symbols\_n\_size \quad \text{measure box} \]
size of symbol. A value of 0 means no symbol.

Continue to the next section 26.3.17.2 Paired Cuts - Labels or return to 26.3.17 Paired Cuts - X Sections.
### 26.3.17.2 Paired Cuts - Labels

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Section: Pairing - Label parameters**

Use Set #  
set number as specified in the Define set #.

Mode  
pairing_label_n_mode  
choice box

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>pairing_label_n_attribute</th>
<th>text box</th>
</tr>
</thead>
<tbody>
<tr>
<td>if Mode is attribute of first string or attribute of second string, this is the name of the attribute to use as the label</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Offset  
pairing_label_n_offset  
measure box

the text is raised by this amount above the line between the cut pair

Colour  
pairing_label_n_colour  
colour box

colour of the text

Size (mm)  
pairing_label_n_size  
measure box

size of the text in millimetres. A value of 0 means no text.

Textstyle  
pairing_label_n_textstyle  
textstyle box

the textstyle for the text

Pre-text  
pairing_label_n_pre_text  
text box

text to draw before the label. This can include spaces, including one or more spaces after the last non blank character of Pre-text.

Post-text  
pairing_label_n_post_text  
text box

text to draw after the label. This can include spaces, including one or more spaces before the first non blank character of Post-text.

Decimals  
pairing_label_n_no_decimals  
number box

if the label is a number, then Decimals is the number of decimal places to write the number out to.

If > 0, trailing zeros are removed after the decimal point.
If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

Leave gap for text  
pairing_label_n_??  
tick box

if ticked then a gap in the line between the cuts pair is left large enough for the label and the pre-text and post-text.
If not ticked then no gap is left in the line between the cuts pair.

The height used for the label is given by the Position and Adopted height columns in the Set definition.
Rotate text to fit pairing_label_n_roate_text tick box

if ticked, then if the label and the pre-text and post-text will not fit between the start cut and end cut of the cut pair, the text is rotated through ninety degrees.

If not ticked, then the label text is drawn even though it will run over the ends of the cut pair.

Continue to the next section 26.3.17.3 Paired Cuts - Start Offset or return to 26.3.17 Paired Cuts - X Sections.
26.3.17.3 Paired Cuts - Start Offset

The Offset (on the x-section) of the first point of the cut pair can be labelled.

The text for the label consists of pre-text followed by Offset value followed by post-text.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
</tr>
</thead>
</table>

**Section: Pairing - Start Offset parameters**

- **Use Set #**
  - input
  - set number as specified in the Define set #.

  The height used for the text is given by the Position and Adopted height columns in the Set definition. This is then adjusted by the field Y (mm).

- **X (mm)**
  - pairing_start_offset_n_x
  - measure box

  for placing the text: horizontal adjustment from the offset of the first cut.

- **Y (mm)**
  - pairing_start_offset_n_y
  - measure box

  for placing the text: the vertical adjustment to the height given by the Position and Adopted height columns in the Set definition.

- **Angle (dms)**
  - pairing_start_offset_n_angle
  - measure box

  angle (measured counterclockwise from the positive x-axis with units of degrees in 4.17.1 HP Notation) to rotate the text.

- **Colour**
  - pairing_start_offset_n_colour
  - colour box

  colour of the text

- **Size (mm)**
  - pairing_start_offset_n_size
  - measure box

  size of the text in millimetres. A value of 0 means no text.

- **Textstyle**
  - pairing_start_offset_n_textstyle
  - textstyle box

  the textstyle for the text

- **Pre-text**
  - pairing_start_offset_n_pre_text
  - text box

  text before the Offset value. This can include spaces, including one or more spaces after the last non blank character of Pre-text.

- **Post-text**
  - pairing_start_offset_n_post_text
  - text box

  text after the Offset value. This can include spaces, including one or more spaces before the first non blank character of Post-text.
### Decimals

The number of decimal places for the offset value. If > 0, trailing zeros are removed after the decimal point. If <0, the absolute value is taken as the number of decimal places to report, i.e., no trailing zeros are removed. For example, -3 means that there is always 3 figures after the decimal place.

Continue to the next section [26.3.17.4 Paired Cuts - End Offset](#) or return to [26.3.17 Paired Cuts - X Sections](#).
26.3.17.4 Paired Cuts - End Offset

The Offset on the x-section of the second point of the cut pair can be labelled.

The label consists of pre-text then the Offset value followed by post-text.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Set #</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>set number as specified in the Define set #.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The height used for the text is given by the Position and Adopted height columns in the Set definition. This is then adjusted by the field Y (mm).</td>
<td></td>
</tr>
<tr>
<td>X (mm)</td>
<td>pairing_end_offset_n_x</td>
<td>measure box</td>
</tr>
<tr>
<td></td>
<td>for placing the text: horizontal adjustment from the offset of the second cut.</td>
<td></td>
</tr>
<tr>
<td>Y (mm)</td>
<td>pairing_end_offset_n_y</td>
<td>measure box</td>
</tr>
<tr>
<td></td>
<td>for placing the text: the vertical adjustment to the height given by the Position and Adopted height columns in the Set definition.</td>
<td></td>
</tr>
<tr>
<td>Angle (dms)</td>
<td>pairing_end_offset_n_angle</td>
<td>measure box</td>
</tr>
<tr>
<td></td>
<td>angle (measured counterclockwise from the positive x-axis with units of degrees in 4.17.1 HP Notation) to rotate the text.</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>pairing_end_offset_n_colour</td>
<td>colour box</td>
</tr>
<tr>
<td></td>
<td>colour of the text.</td>
<td></td>
</tr>
<tr>
<td>Size (mm)</td>
<td>pairing_end_offset_n_size</td>
<td>measure box</td>
</tr>
<tr>
<td></td>
<td>size of the text in millimetres. A value of 0 means no text.</td>
<td></td>
</tr>
<tr>
<td>Textstyle</td>
<td>pairing_end_offset_n_textstyle</td>
<td>textstyle box</td>
</tr>
<tr>
<td></td>
<td>the textstyle for the text.</td>
<td></td>
</tr>
<tr>
<td>Pre-text</td>
<td>pairing_end_offset_n_pre_text</td>
<td>text box</td>
</tr>
<tr>
<td></td>
<td>text before the Offset value. This can include spaces, including one or more spaces after the last non blank character of Pre-text.</td>
<td></td>
</tr>
<tr>
<td>Post-text</td>
<td>pairing_end_offset_n_post_text</td>
<td>text box</td>
</tr>
</tbody>
</table>
|             | text after the Offset value. This can include spaces, including one or more spaces before the first non blank character of Post-text.
Justification  pairing_start_offset_n_justification  justification box

<table>
<thead>
<tr>
<th>Select Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>bottom-left</td>
</tr>
<tr>
<td>bottom-centre</td>
</tr>
<tr>
<td>bottom-right</td>
</tr>
<tr>
<td>bottom-decimal</td>
</tr>
<tr>
<td>middle-left</td>
</tr>
<tr>
<td>middle-centre</td>
</tr>
<tr>
<td>middle-right</td>
</tr>
<tr>
<td>middle-decimal</td>
</tr>
<tr>
<td>top-left</td>
</tr>
<tr>
<td>top-centre</td>
</tr>
<tr>
<td>top-right</td>
</tr>
<tr>
<td>top-decimal</td>
</tr>
<tr>
<td>decimal-left</td>
</tr>
<tr>
<td>decimal-centre</td>
</tr>
<tr>
<td>decimal-right</td>
</tr>
<tr>
<td>decimal-point</td>
</tr>
<tr>
<td>(same)</td>
</tr>
</tbody>
</table>

Decimals  pairing_start_offset_n_no_decimals  number box

The number of decimal places for the Offset value.
If > 0, trailing zeros are removed after the decimal point.
If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

Please continue to the next section 26.3.18 Paired Points.
26.3.18 Paired Points

Most cross sections are created with the vertices having vertex names which correspond to the strings created by template links, or MTF modifiers, or the names of the cut strings when cross sections are created by cutting through strings.

The *Paired Points* option enables a user to link pairs of these vertex names from the cross section being plotted (to create a points pair), and the points from the pair can be labelled with information such as

(a) the name of the first and second point of the pair
(b) vertex attributes of the cross section from the first and second points of the pair
(c) distance between the two points in a pair
(d) 3d length between the two points in a pair
(e) the offsets on the x-section of the first and second points in a pair

Symbols can be drawn at the offsets of the first and second points of a pair (at a height specified when defining the Cut sets), and a line drawn between the symbols. Using both the line and a symbol of an arrow head makes an arrow between the two cuts in a pair.

The method for specifying which named vertices are to be used for paired points is by a **start name mask** (using wild cards and characters) to select all the vertices that are to be the first points in a pair, and an **end name mask** (using wild cards and characters) to select all the vertices that are the second points in a pair.

For a x-section, all the named vertices of the selected **start points** are found and the points ordered by the offset of the point on the x-section. Then all the named vertices of the selected
**end points** are found and the points ordered by the offset of the point on the x-section.

The start points are then processed and each start point is paired with the next end point with a larger offset than the start point. It is possible that there are end points before the first start point (orphaned end points) and start points with no following end point (orphaned start points).

Up to twenty five different sets of name masks can be used so that different paired point sets can be labelled in different ways.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Define Set #</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Start name mask</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>End name mask</td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

**Section: Pairing - Model/Name mask parameters**

- **Define Set #**: input
  - set number to be used to define different name mask sets.

- **Start name mask**: input
  - text string containing the name masks to select the start points, each separated by one or more spaces, to test the x-section vertex names against. If the name includes spaces then it must be enclosed in the quotes " (eg "bench 2").
  - Each mask can include wild cards (*) and wild characters (?).
  - For example: "ke*" or, "?bank*" or, if both masks are required, "ke* ?bank*"

- **End name mask**: input
  - text string containing the name masks to select the end points, each separated by one or more spaces, to test the x-section vertex names against. If the name include spaces then it must be enclosed in the quotes " (eg "bench 2")
  - Each mask can include wild cards and wild characters.
  - For example: "ke*" or, "?bank*" or, if both masks are required, "ke* ?bank*

**Note**

- **If Start name mask** is blank and **End name mask** is not blank, then all vertices on the x-section that are not used as end points, are used as start points.

- **If End name mask** is blank and **Start name mask** is not blank, then all vertices on the x-section that are not used as start points, are used as end points.

- **If End name mask** and **Start name mask** are both blank, then all vertices on the x-section are used.
  - Successive pairs of vertices taken to be the point pairs. There could be one remaining point (it has the largest offset) and if so, it is taken to be orphaned start point.
Position | choice box
---|---
Adopted height | pairings\_n\_height | choice box | lower position, higher position

where to get the z-values to use for the two paired points. This is used in conjunction with the choice in the Adopted height field.

If left blank, at point height is used.

Include orphaned start?	pairing\_n\_orphan\_start	choice box	yes, no
if Yes and there are start points after the last end point (and so can’t be paired), then the last start point (i.e. the one with the largest offset) is taken as an orphaned start and it is labelled as though there is a matching end at the end of the x-section.
if No and there are start points after the last end point, then those start points are ignored.
If left blank, No is used.

Include orphaned ends?	pairing\_n\_orphan\_end	choice box	yes, no
if Yes and there are end points before the first start point, then the first end point (the one with the smallest offset) is taken as an orphaned end and it is labelled as though there is a matching start at the beginning of the x-section.
if No and there are end points before the first start point, then those end points are ignored.
If left blank, No is used.

See

- 26.3.18.1 Paired Points - Lines and Symbols
- 26.3.18.2 Paired Points - Labels
- 26.3.18.3 Paired Points - Start Offset
- 26.3.18.4 Paired Points - End Offset

Or return to 26.3 Section X Plot PPF Editor.
26.3.18.1 Paired Points - Lines and Symbols

Symbols can be placed at the start and end point offsets (at the z-value given by the Position and Adopted height columns when defining the Sets), and a line can also be drawn between the paired points at that z-value. Having both the line and a symbol forms an arrow between the paired points.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Set #</td>
<td>input</td>
<td>set number as specified in the Define set #.</td>
</tr>
<tr>
<td>Symbol type</td>
<td>pairing_line_symbols_n_symbol</td>
<td>choice box</td>
</tr>
<tr>
<td>Symbol</td>
<td>pairing_line_symbols_n_user_symbol</td>
<td>plot symbols</td>
</tr>
<tr>
<td>Symbol colour</td>
<td>pairing_line_symbols_n_symbol_colour</td>
<td>colour box</td>
</tr>
<tr>
<td>Draw line</td>
<td>pairing_line_symbols_n_line</td>
<td>choice box</td>
</tr>
<tr>
<td>Line colour</td>
<td>pairing_line_symbols_n_line_colour</td>
<td>colour box</td>
</tr>
</tbody>
</table>

The height used for the symbol at both ends is given by the Position and Adopted height column in the Set definition.

Symbol type: 0 indicates no symbol, 1 indicates a single arrow, 2 indicates a double arrow, 3 indicates uprights, 4 indicates down rights, 5 indicates uprights and down rights, and 6 and 7 indicate scalable plot symbols.

For Symbol type 6 and 7, a plot symbol is to be used and is given in the Symbol field.

The height used for the symbol at both ends is given by the Position and Adopted height column in the Set definition.

Symbol type: 0 indicates no symbol, 1 indicates a single arrow, 2 indicates a double arrow, 3 indicates uprights, 4 indicates down rights, 5 indicates uprights and down rights, and 6 and 7 indicate scalable plot symbols.

For Symbol type 6 and 7, a plot symbol is to be used and is given in the Symbol field.

The height used for the symbol at both ends is given by the Position and Adopted height column in the Set definition.

Symbol colour: for Symbol type 0 to 5, this field is not used.

The height used for the symbol at both ends is given by the Position and Adopted height columns in the Set definition.

Symbol colour: for Symbol type 0 to 5, this field is not used.

The height used for the symbol at both ends is given by the Position and Adopted height columns in the Set definition.

Draw line: if Draw line, draw a line between the start and end points for each point pair. If No line, no line is drawn between the start and end points for each point pair.

The height used for the line at both ends is given by the Position and Adopted height columns in the Set definition.

Line colour: for Symbol type 0 to 5, this field is not used.

The height used for the line at both ends is given by the Position and Adopted height columns in the Set definition.
colour of the line between the start and end points for each point pair

**Left symbol rotation**  
`pairing_line_symbols_n_left_rotate`  
measure box

angle (measured counterclockwise from the positive x-axis with units of degrees in 4.17.1 HP Notation) to rotate the symbol at the start point of the point pair.

If there is no value then the rotation is 0.

**Right symbol rotation**  
`pairing_line_symbols_n_right_rotate`  
measure box

angle (measured counterclockwise from the positive x-axis with units of degrees in 4.17.1 HP Notation) to rotate the symbol at the end point of the point pair.

If there is no value then the rotation is 0.

**X (mm)**  
`pairing_line_symbols_n_x`  
measure box

horizontal adjustment to the position of the symbol.

**Y (mm)**  
`pairing_line_symbols_n_y`  
measure box

vertical adjustment to the position of the symbol.

**Size**  
`pairing_line_symbols_n_size`  
measure box

size of the symbol. A value of 0 means no symbol.

Continue to the next section 26.3.18.2 Paired Points - Labels or return to 26.3.18 Paired Points.
### 26.3.18.2 Paired Points - Labels

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: Pairing - Label parameters</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Use Set #**
  - input
  - set number as specified in the Define set #.

- **Mode** pairing_label_n_mode
  - choice box
  - type of label to write between the start and end points of the points pair
  - The height used for the label is given by the Position and Adopted height columns in the Set definition.

- **Attribute name** pairing_label_n_attribute
  - text box
  - if Mode is attribute of first point or attribute of second point, this is the name of the attribute to use as the label

- **Offset** pairing_label_n_offset
  - measure box
  - the text is raised by this amount above the line between the point pair

- **Colour** pairing_label_n_colour
  - colour box
  - colour of the text

- **Size** pairing_label_n_size
  - measure box
  - size of the text. A value of 0 means no text.

- **Textstyle** pairing_label_n_textstyle
  - textstyle box
  - the textstyle for the text

- **Pre-text** pairing_label_n_pre_text
  - text box
  - text to draw before the label. This can include spaces, including one or more spaces after the last non blank character of the Pre-text.

- **Post-text** pairing_label_n_post_text
  - text box
  - text to draw after the label. This can include spaces, including one or more spaces before the first non blank character of the Post-text.

- **Decimals** pairing_label_n_no_decimals
  - number box
  - if the label is a number, then Decimals is the number of decimal places to write the number out to.

  - If > 0, trailing zeros are removed after the decimal point.
  - If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

- **Leave gap for text** pairing_label_n_?
  - tick box
  - if ticked then a gap in the line between the points pair is left large enough for the label and the pre-text and post-text.
  - If not ticked then no gap is left in the line between the points pair.
Rotate text to fit pairing_label_n_rotate_text tick box

if ticked, then if the label and the pre-text and post-text will not fit between the start point and end point of the point pair, the text is rotated through ninety degrees.

If not ticked, then the label text is drawn even though it will run over the ends of the point pair.

Continue to the next section 26.3.18.3 Paired Points - Start Offset or return to 26.3.18 Paired Points.
### 26.3.18.3 Paired Points - Start Offset

The offset (on the x-section) of the first point of the point pair can be labelled.

The text for the label consists of pre-text followed by Offset value followed by post-text.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Use Set #</strong></td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>set number as specified in the Define set #.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The height used for the text is given by the Position and Adopted height columns in the Set definition. This is then adjusted by the field Y (mm).</td>
<td></td>
</tr>
<tr>
<td>X (mm)</td>
<td>pairing_start_offset_n_x</td>
<td>measure box</td>
</tr>
<tr>
<td></td>
<td>for placing the text: horizontal adjustment from the offset of the first cut.</td>
<td></td>
</tr>
<tr>
<td>Y (mm)</td>
<td>pairing_start_offset_n_y</td>
<td>measure box</td>
</tr>
<tr>
<td></td>
<td>for placing the text: the vertical adjustment to the height given by the Position and Adopted height columns in the Set definition</td>
<td></td>
</tr>
<tr>
<td>Angle (dms)</td>
<td>pairing_start_offset_n_angle</td>
<td>measure box</td>
</tr>
<tr>
<td></td>
<td>angle (measured counterclockwise from the positive x-axis with units of degrees in 4.17.1 HP Notation) to rotate the text</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>pairing_start_offset_n_colour</td>
<td>colour box</td>
</tr>
<tr>
<td></td>
<td>colour of the text</td>
<td></td>
</tr>
<tr>
<td>Size (mm)</td>
<td>pairing_start_offset_n_size</td>
<td>measure box</td>
</tr>
<tr>
<td></td>
<td>size of the text in millimetres. A value of 0 means no text.</td>
<td></td>
</tr>
<tr>
<td>Textstyle</td>
<td>pairing_start_offset_n_textstyle</td>
<td>textstyle box</td>
</tr>
<tr>
<td></td>
<td>the textstyle for the text</td>
<td></td>
</tr>
<tr>
<td>Pre-text</td>
<td>pairing_start_offset_n_pre_text</td>
<td>text box</td>
</tr>
<tr>
<td></td>
<td>text before the Offset value. This can include spaces, including one or more spaces after the last non blank character of Pre-text.</td>
<td></td>
</tr>
<tr>
<td>Post-text</td>
<td>pairing_start_offset_n_post_text</td>
<td>text box</td>
</tr>
<tr>
<td></td>
<td>text after the Offset value. This can include spaces, including one or more spaces before the first non blank character of the Post-text.</td>
<td></td>
</tr>
</tbody>
</table>
Justification  pairing_start_offset_n_justification  justification box

justification of the text.

Decimals  pairing_start_offset_n_no_decimals  number box

the number of decimal places for the Offset value
If > 0, trailing zeros are removed after the decimal point.
If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

Continue to the next section 26.3.18.4 Paired Points - End Offset or return to 26.3.18 Paired Points.
26.3.18.4 Paired Points - End Offset

The Offset (on the x-section) of the second point of the point pair can be labelled. The label consists of pre-text then the Offset value followed by post-text.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Set #</td>
<td>pairing_end_offset_n_x</td>
<td>measure box</td>
</tr>
<tr>
<td>X (mm)</td>
<td>pairing_end_offset_n_y</td>
<td>measure box</td>
</tr>
<tr>
<td>Y (mm)</td>
<td>pairing_end_offset_n_angle</td>
<td>measure box</td>
</tr>
<tr>
<td>Angle (dms)</td>
<td>pairing_end_offset_n_colour</td>
<td>colour box</td>
</tr>
<tr>
<td>Colour</td>
<td>pairing_end_offset_n_size</td>
<td>measure box</td>
</tr>
<tr>
<td>Size (mm)</td>
<td>pairing_end_offset_n_textstyle</td>
<td>textstyle box</td>
</tr>
<tr>
<td>Textstyle</td>
<td>pairing_end_offset_n_pre_text</td>
<td>text box</td>
</tr>
<tr>
<td>Pre-text</td>
<td>pairing_end_offset_n_post_text</td>
<td>text box</td>
</tr>
</tbody>
</table>

Section: Pairing - End Offset parameters

Use Set #

set number as specified in the Define set #.

The height used for the text is given by the Position and Adopted height columns in the Set definition. This is then adjusted by the field Y (mm).

X (mm) pairing_end_offset_n_x measure box

for placing the text: horizontal adjustment from the Offset of the second point.

Y (mm) pairing_end_offset_n_y measure box

for placing the text: the vertical adjustment to the height given by the Position and Adopted height columns in the Set definition.

Angle (dms) pairing_end_offset_n_angle measure box

angle (measured counterclockwise from the positive x-axis with units of degrees in 4.17.1 HP Notation) to rotate the text.

Colour pairing_end_offset_n_colour colour box

colour of the text.

Size (mm) pairing_end_offset_n_size measure box

size of the text in millimetres. A value of 0 means no text.

Textstyle pairing_end_offset_n_textstyle textstyle box

the textstyle for the text.

Pre-text pairing_end_offset_n_pre_text text box

text before the Offset value. This can include spaces, including one or more spaces after the last non blank character of Pre-text.

Post-text pairing_end_offset_n_post_text text box

text after the Offset value. This can include spaces, including one or more spaces before the first non blank character of Post-text.
Justification          pairing_start_offset_n_justification          justification box

Decimals               pairing_start_offset_n_no_decimals          number box
the number of decimal places for the Offset value
If > 0, trailing zeros are removed after the decimal point.
If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

Please continue to the next section 26.3.19 PPFs To Include.
26.3.19 PPFs To Include
   This is documented for all the PPF Editors in 26.2.10 PPFs To Include.
   Please continue to the next section 26.3.20 Buttons at the Bottom of X-Plot Panel.

26.3.20 Buttons at the Bottom of X-Plot Panel
   This is documented for all the PPF Editors in 26.2.11 Buttons at the Bottom of the PPF Editors.
   Return to 26.3 Section X Plot PPF Editor.
26.4 Long Plot PPF Editor

Position of option on menu: Plot => Plot and PPF Editors => Long sections

The Long section PPF editor is for creating and/or editing a (binary) long-section PPF and for creating a long section plot.

Note: Binary PPFs are stored within the project (not in the folder containing the project as the text ppf's were).

On selecting the Long sections option, the Section Long Plot PPF Editor panel is displayed. The plot parameters for controlling the cross section plots are accessed by expanding to the appropriate node in the Section Long Plot tree (click on the + to expand to node or - to collapse the node) and then clicking on the required node, and the required information to fill in is displayed on the right hand side of the panel.

For information on all the different nodes see:

- 26.4.1 General Information on Long Section Plots
- 26.4.2 Section Long Plot - Front Page
- 26.4.3 Notes - Long Section
- 26.4.4 Plot to models - Long Section
- 26.4.5 Title Block - Long Section
26.4.6 Plot Sheet Layout - Long Section
26.4.7 Pagination
26.4.8 Boxes
26.4.9 Chainage/Staggering
26.4.10 Uprights
26.4.11 Datum Area
26.4.12 Graph Area
26.4.13 Corridors - Long Section
26.4.14 Bubbles
26.4.15 Quick Horizontal Geometry
26.4.16 Extensive Horizontal Geometry
26.4.17 Quick Vertical Geometry
26.4.18 Extensive Vertical Geometry
26.4.19 Labelling Points With Chainage/Height/Grade/Deflection
26.4.20 Labelling Points With Symbols
26.4.21 Hatching Cut/Fill
26.4.22 Cuts
26.4.23 Paired Cuts - Long Section
26.4.24 Primary String Name Label
26.4.25 Scale Labelling
26.4.26 Plan Plotting
26.4.27 PPFs To Include - Long Section
26.4.28 Buttons at Bottom of Panel - Long Section
26.4.1 General Information on Long Section Plots

A long section is normally generated along a given centreline and includes sections along the centre line through tins and services.

If the long section plot is too long to fit on one page, it can be broken into a number of pages (sheets) with a user defined overlap between the sheets.

The long plot on each page consists of the three regions - boxes, datum and graph areas.

The **boxes area** is where the titles and the chainage values and the heights/deptths for the strings drawn on the long plot are labelled.

The **datum area** is the region between the boxes area and the graph area.

The **graph area** is the area where the actual plots of the strings are drawn.

Apart from information labelled in the boxes area, the long section plot can label other information such as:

(a) horizontal geometry
(b) vertical geometry
(c) chainage, heights at special points
(d) symbols at special points
(e) bubbles at special chainages
(f) cuts the design string makes through strings
(g) cut and fill areas

A plot of the plan area that the long section traverses can also be automatically included on each page of the long section plot.
All the required parameters for controlling the long section plot are set up in the *Long Plot PPF Editor* and will be described in detail in the following sections.

Please continue to the next section 26.4.2 Section Long Plot - Front Page or return to 26.4 Long Plot PPF Editor.
26.4.2 Section Long Plot - Front Page

The long plot itself consists of the three regions - boxes, datum and graph areas.

The **boxes area** is where the titles and the chainage values and the heights/depths for the strings drawn on the long plot are labelled.

The **datum area** is the region between the boxes area and the graph area.

The **graph area** is the area where the actual plots of the strings are drawn.

Apart from information labelled in the boxes area, the long section plot can label other information including:

(a) horizontal geometry
(b) vertical geometry
(c) chainage, heights at special points
(d) symbols at special points
(e) bubbles at special chainages
(f) cuts the design string makes through strings
(g) cut and fill areas
Section: Plot parameter file

A plot parameter file can be used to load values into the fields of the PPF Editor, or as a file to write out all current values in a PPF Editor to.

This section is documented for all the PPF Editors in 26.2.1 Plot Parameter File.

Section: Section: View to load details from AND Global variables

A section view can be selected to load certain values into fields of the PPDF Editor. For example, Vertical exaggeration and Corridor models. And there are variables to use if some values aren’t given.

These sections are documented for all the PPF Editors in 26.2.2 View to Load and Global Variables.

The columns for the fields documented in the sections are for:

Panel Field	Parameter name	Type	Pop-Up
Name of string to profile | string_to_plot | string select box | 
Model of strings to profile | model_to_plot | model box | 
Horizontal Scale | scale | input | 
Vertical exaggeration | vertical_exaggeration | input | 
Start chainage | start_chainage | input | 
End chainage | end_chainage | input | 

Section: Sheet size setup and Plotter parameters

These sections define the size of the "paper" to plot on, the type of plotter to use and the naming to use for the plot files.

These sections are documented for all the PPF Editors in 26.2.3 Sheet Size and Plotter Parameters.

Section: Chainage range

Use HG VG for min, max determines whether the horizontal geometry (HG) and the vertical geometry (VG) are both used to determine the minimum and maximum chainages for drawing. This allows the vertical geometry to be plotted when it is outside the horizontal geometry (e.g. kerb returns).

Use HG and VG to determine min/max chainage

Use HG and VG for min_max chainage | use_hg_vg_for_min_max | tick box |

if ticked, the min/max chainage will be determined by the Horizontal and Vertical geometry.

Please continue to the next section 26.4.3 Notes - Long Section.
26.4.3 Notes - Long Section
This is documented for all the PPF Editors in 26.2.4 Notes.
Please continue to the next section 26.4.4 Plot to models - Long Section.

26.4.4 Plot to models - Long Section
This is documented for all the PPF Editors in 26.2.5 Plot to models.
Please continue to the next section 26.4.5 Title Block - Long Section.

26.4.5 Title Block - Long Section
This is documented for all the PPF Editors in 26.2.6.1 Title Block Section in PPF Editors.
For more general information about a title block, see 26.2.6 Title Block.
This is documented for all the PPF Editors in 26.2.6 Title Block.

Title Block - Symbols

<table>
<thead>
<tr>
<th>Panel field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scale mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotate with plot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please continue to the next section 26.4.6 Plot Sheet Layout - Long Section.
26.4.6 Plot Sheet Layout - Long Section

**Plot Sheet Layout - Margins**

**Section: Margins for standard 12d title file - Border gaps**

If the default 12d title block is used, then the size of the bottom of title block depends on the text size. The following parameters are used in the default title block case and the bottom_border_gap is added to the calculated height of the bottom of the title block.

- **Left (mm)**
  - `left_border_gap` real box
  - left border gap (in millimetres).

- **Right (mm)**
  - `right_border_gap` real box
  - right border gap (in millimetres).

- **Top (mm)**
  - `top_border_gap` real box
  - top border gap (in millimetres).

- **Bottom (mm)**
  - `bottom_border_gap`
  - bottom border gap (in millimetres).

**Section: Margins for user title file**

- **Left (mm)**
  - `left_margin` input
  - left margin (in millimetres).

- **Right (mm)**
  - `right_margin` input
  - right margin (in millimetres).

---

**Definition of Plotting Areas for Default 12d Title Block**

(long section plot area is inside the dashed lines)

(0,0) size depends on text size in the default 12d title block

---

**Long Plot PPF Editor**
Because the user can easily select from the plotting panel whether a User Defined Title Block or the default 12d title block is used, both sets of margin and gap parameters can exist in the one plot parameter file.

The \((\text{left}_\text{margin}, \text{bottom}_\text{margin})\) defines the left hand corner position of the long plot on the plot sheet.

The \(\text{right}_\text{margin}\) and \(\text{top}_\text{margin}\) need not be set and if missing, will be calculated from the other plot parameters defining the plot layout.

If the sheet sizes are missing, they will also be automatically calculated.

Please continue to the next section 26.4.7 Pagination.
26.4.7 Pagination

If the long section plot is too long to fit on one page, it can be broken into a number of pages (sheets).

The parameter, `pagination_length`, controls the amount of new chainage length on each plot page. Each page of the long section plot can also included a set chainage amount from the end of the previous plot.

Hence apart from the first page and possibly the last page, the plot will have a chainage length given by the sum of the `pagination_length` and `pagination_overlap`.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use pagination</td>
<td>pagination</td>
<td>tick box</td>
<td></td>
</tr>
</tbody>
</table>

*if ticked, then break the plot into pages.*

<table>
<thead>
<tr>
<th>Pagination mode</th>
<th>pagination_mode</th>
<th>choice</th>
<th>chainage</th>
</tr>
</thead>
</table>

*length and overlap units.*

<table>
<thead>
<tr>
<th>Chainage length</th>
<th>pagination_length</th>
<th>input</th>
<th></th>
</tr>
</thead>
</table>

*new chainage range on each page.*

<table>
<thead>
<tr>
<th>Chainage overlap</th>
<th>pagination_overlap</th>
<th>input</th>
<th></th>
</tr>
</thead>
</table>

*overlap between pages.*

**Note:**
The `pagination_length` and `pagination_overlap` are given in chainage units or millimetres. The user must choose values which will fit on the selected sheet size or the end of each plot will be truncated by the sheet.

Please continue to the next section 26.4.8 Boxes.
26.4.8 Boxes

Each string in the long section plot can be labelled with one or two lines of title, and the chainages/heights/depths at the user specified chainages for the strings.

The **title** for the strings, is drawn in the **title area** of the **boxes area**.

The **chainages/heights/depths** are drawn in the **heights area** of the **boxes area**.

Consequently the boxes area is made up of rows of text consisting of:

- **string/tin titles** followed by the **chainage/height/depth** values along the string.

Each row is surrounded by lines to form a box.

The default order of the boxes from the bottom up is:
(a) optional super-elevation diagram
(b) chainage values
(c) can be primary string heights - user choice
(d) tin heights and depths
(e) offset heights and depths
(f) optional volumes or earth works
(g) can be primary string heights - user choice
(h) zero or more blank boxes
number of boxes to be left blank

The blank boxes are used to place other information in (such as horizontal or vertical geometry) or for other user supplied information.

**Section: Primary string parameters**

The primary string (the design string) is used to define
(a) the design long section
(b) the chainage positions for labelling heights and drawing uprights
(c) the section line used for sectioning through tins
(d) the section line for defining the corridor for services

Although the primary string is used to set up most of the information for the long section plot, it doesn't have to be drawn on the long section.

The drawing or not drawing of the primary string on each cross section plot is controlled by the parameter `primary_string`.

The colour of the primary string in the plot is the actual primary string colour.

Sometimes the primary string is only required to define chainages or the horizontal path for tin sections. In this case, the primary string would not be drawn on the long section plot.

If the primary string is drawn, it is automatically labelled.

Also the drawing of crosses at the vertical intersection points can be controlled from the ppf file.

**Draw and label the primary string  primary_string tick box**

*if ticked, the primary string will be drawn and labelled.*

**Draw crosses at VIPs primary_draw_vips tick box**

*if ticked, crosses will be draw at the vertical intersection points.*

The position of the primary string label box can be either straight after the chainage box, or after the tin and offset boxes but before the blank boxes.

Placing the primary string label before the bank boxes or just after the chainage box in controlled by the parameter `primary_label_mode`.

**Primary string location  primary_label_mode choice box**
in last box before blank boxes
in first box above chainages

*position of the primary string label.*

Although the order of the boxes may appear to be fixed, in practice they can be in any order. This is possible because for each box, there is a parameter to set the height in millimetres from the bottom of all the boxes that the text in the box is drawn at (the `_y_pos` parameters).

The roundoff for the datum value is specified by the user (default 1.0) and the datum is automatically calculated for each sub-plot, and labelled.

See

26.4.8.1 Boxes - Title Area
26.4.8.2 Boxes - Values Area
26.4.8.3 Boxes - Outside Linework
26.4.8.4 Boxes - Inside Linework
26.4.8.5 Boxes - Chainage Titles/Values
26.4.8.6 Boxes - Primary String Titles/Heights
26.4.8.7 Boxes - Tin Titles/Heights/Depths
26.4.8.8 Boxes - Offset String Chainages
26.4.8.9 Boxes - Super Elevation Diagram
26.4.8.10 Boxes - Volume Cut/Fill
26.4.8.11 Boxes - X,Y

Or return to 26.4 Long Plot PPF Editor.
26.4.8.1 Boxes - Title Area

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section: Boxes - Title area parameters

The title area starts at the co-ordinate (left_margin, bottom_margin).

The size of the title text is given by the \texttt{title\_box\_text\_size} parameter.

The width of the title area is either given by the \texttt{space\_for\_titles} parameter, or if omitted, the required width is automatically calculated.

\begin{itemize}
  \item \textbf{Size of titles (mm)} \texttt{title\_box\_text\_size} \textit{input}
  \item \textit{size of offset, height label and values}
  \item \textbf{Space for titles (mm)} \texttt{space\_for\_titles} \textit{input}
  \item \textit{size of title area.}
\end{itemize}

The x position of the title text is the same for all the lines of title text and can be set to be a fixed distance from the left hand side of the boxes.

\begin{itemize}
  \item \textbf{X adjustment (mm)} \texttt{box\_titles\_x} \textit{input}
  \item \textit{distance to move the title text from the left hand side of the boxes}
\end{itemize}

The y position of the title text can be set separately for each type of title. The parameters are given later under each of the title types (e.g. chainages, primary string, tins, depths \textit{etc}.).

After the title area there can be a user defined gap, followed by the heights area

\begin{itemize}
  \item \textbf{Distance between title and values area (mm)} \texttt{box\_gap} \textit{input}
  \item \textit{distance between title and values area in mm.}
\end{itemize}

The height text is written at right angles to the bottom of the boxes. It can be either top or bottom justified with respect to the box (\texttt{box\_justification}).

Continue to the next section \texttt{26.4.8.2 Boxes - Values Area} or return to \texttt{26.4.8 Boxes}. 

26.4.8.2 Boxes - Values Area

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

**Section: Boxes - Value area parameters**

The **values area** starts at the end of the title area.

The height text is written at right angles to the bottom of the boxes. It can be either top or bottom justified with respect to the box (box_text_justification).

The number of decimal places (number_of_decimals), and the size of the heights text (box_text_size) can be specified globally but there is a parameter for each box which overrides these defaults for each box of heights.

**Justification**

- box_text_justification
- choice box
- bottom of individual boxes
- top of individual boxes

justification of height text.

**Number of decimals**

- number_of_decimals
- input

number of decimal places in the height boxes. If <0, the absolute value is taken as the number of decimal places i.e. no trailing zeros are removed for the values in the heights area.

**Text size (mm)**

- box_text_size
- input

distance to move the title text from the left hand side of the boxes

**Horizontal line spacing (mm)**

- horizontal_line_spacing
- input

height of the individual height boxes.

A global height for the individual boxes is either given by the horizontal_line_spacing parameter, or if omitted, a height to fit the largest height or depth value is calculated and used as the default box height.

However, the height of each box can be individually set by parameters box_size_n where the boxing numbering, n. starts from the bottom box. The value of horizontal_line_spacing is used for any of the box_size_n parameters not specified.

**Label tin/offset string heights by default**

- label_heights
- tick box

**Label tin/offset string depths by default**

- label_depths
- tick box

**Box #**

- input

specifying the nth value

**Size (mm)**

- box_size_n
- input

height of the nth box, numbered from bottom up.

The total height of the boxes area is simply given by the sum of the heights of each box.
The width of the heights area is determined by the number of chainages to be labelled and whether the values are staggered to prevent over writing.

Hence the total width of the boxes area is the width of the title area plus box_gap, plus the width of the heights area.

Many distance definitions in the plot parameter file are given in terms of distance above the top of the boxes area so that the distances are independent of the number of boxes and box sizes.

Continue to the next section 26.4.8.3 Boxes - Outside Linework or return to 26.4.8 Boxes.
26.4.8.3 Boxes - Outside Linework

The drawing of the box line work, the box colour, the position of the primary string labels and the number of blank boxes are all set by parameters.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

**Section: Boxes - Outside linework parameters**

**Draw the left side of title area**(1)

- draw_box_side_1 tick box
  - if ticked, draw the left side of the title area (def).

**Draw the top line of title area**(2)

- draw_box_side_2 tick box
  - if ticked, draw the top line of the title area (def).

**Draw the top line of title area**(3)

- draw_box_side_3 tick box
  - if ticked, draw right side of the title area (def).

**Draw the bottom line of title area**(4)

- draw_box_side_4 tick box
  - if ticked, draw the bottom line of the title area (def).

**Draw the left side of heights area**(5)

- draw_box_side_5 tick box
  - if ticked, draw the left side of the heights area (def).

**Draw the top line of heights area**(6)

- draw_box_side_6 tick box
  - if ticked, draw the top line of the heights area (def).

**Draw right side of heights area**(7)

- draw_box_side_7 tick box
  - if ticked, draw right side of the heights area (def).

**Draw bottom side of heights area**(8)

- draw_box_side_8 tick box
  - if ticked, draw bottom side of the heights area (def).

**Colour (1)** box_side_colour_1 colour box
  - colour to draw left side of title area

**Colour (2)** box_side_colour_2 colour box
  - colour to draw top of title area

**Colour (3)** box_side_colour_3 colour box
  - colour to draw right side of title area

**Colour (4)** box_side_colour_4 colour box
  - colour to draw bottom of title area

**Colour (5)** box_side_colour_5 colour box
  - colour to draw left side of heights area

**Colour (6)** box_side_colour_6 colour box
  - colour to draw top of heights area
Chapter 26 PPF Editors

Colour (7) box_side_colour_7 colour box
colour for right side of heights area

Colour (8) box_side_colour_8 colour box
colour for bottom of heights area

Continue to the next section 26.4.8.4 Boxes - Inside Linework or return to 26.4.8 Boxes.
26.4.8.4 Boxes - Inside Linework

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

Section: Boxes - Inside linework parameters

The lines at the top of the individual boxes inside the title area and heights area (separation lines) are controlled by the parameters `box_line_draw_mode` and `box_line_mode_n`.

The separation lines can be drawn just in the title area, just in the heights area or in both areas.

The parameter `box_line_draw_mode` can be set to control all the separation lines but there are additional parameters, `box_line_mode_n`, which override `box_line_draw_mode` for each of the individual boxes where \( n = 1, \ldots \) number of boxes -1.

The top of the top box is not controlled by `box_line_mode_n` but is controlled by the parameters `draw_box_side_2` and `draw_box_side_6`.

**Separation line mode**

- **box_line_draw_mode**
  - choice box: Do not draw any separation
  - choice box: Draw the separation lines in both areas
  - choice box: Draw the separation lines in the title area only
  - choice box: Draw the separation lines in the heights area only

**Box #**

Where box \( # = 1 \) to number of boxes \( (n) \). Box 1 is the bottom box, increasing upwards.

**Line mode**

- **box_line_mode_n**
  - choice box: No top line for title or area (mode=0)
  - choice box: Draw top line for title or height area (mode=1)
  - choice box: Draw top line for title area only (mode=2)
  - choice box: Draw top line for height area only (mode=3)

*Line mode for top of title and height areas for box number specified.*
Continue to the next section 26.4.8.5 Boxes - Chainage Titles/Values or return to 26.4.8 Boxes.
### 26.4.8.5 Boxes - Chainage Titles/Values

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: Chainage title parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title line 1</td>
<td>chainage_title</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Title line 2</td>
<td>chainage_title_2</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Textstyle</td>
<td>chainage_title_textstyle</td>
<td>text box</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>chainage_title_colour</td>
<td>colour box</td>
<td></td>
</tr>
<tr>
<td>Text size (mm)</td>
<td>chainage_title_size</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Text y position (mm)</td>
<td>chainage_title_y_pos</td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

If set, the height in mm above the bottom of all the boxes that the chainage title text is drawn. If not set, then the text is placed at a height that puts it inside the default box for the chainage.

### Section: Chainage value parameters (raw/running chainage)

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal places</td>
<td>chainage_decimals</td>
</tr>
</tbody>
</table>

number of decimal places for chainages.

If > 0, trailing zeros are **removed** after the decimal point.

If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

Textstyle	chainage_textstyle	text box
Colour	chainage_colour	colour box
Text size (mm)	chainage_size	input
Text y position (mm)	chainage_y_pos	input

if set, the height in mm above the bottom of all the boxes that the chainage values are drawn. If not set, then the text is placed at a height that puts it inside the default box for the chainage.

Continue to the next section 26.4.8.5.1 Boxes - Chainage Title/Values - Equality Chainage Values or return to 26.4.8 Boxes.
26.4.8.5.1 Boxes - Chainage Title/Values - Equality Chainage Values

Section: Equality chainage values

Label with equality chainages chainage_label_eq tick box

Decimal places chainage_decimals_eq input

1000s separator (non K-post) chainage_thousands_separator_eq input

Zero-pack digits after 1000s separator chainage_zero_pack_eq tick box

Show K-Post at non-zero offset (if defined) chainage_name_include_eq tick box

K-post pre text chainage_name_pre_eq input

K-post post text chainage_name_post_eq input

Space before offset of K-post chainage_offset_space_eq tick box

Plus sign before positive offset of K-post chainage_plus_eq tick box

Show equality zone (if defined) chainage_zone_include_eq tick box

Space before equality zone chainage_zone_space_eq tick box

Equality zone pre text chainage_zone_pre_eq input

Equality zone post text chainage_zone_post_eq input

Before/after equality separator chainage_equals_separator_eq input

Textstyle chainage_textstyle_eq input

Colour chainage_colour_eq colour box

Text size (mm) chainage_size_eq input

Text y position (mm) chainage_y_pos_eq input

Continue to the next section 26.4.8.6 Boxes - Primary String Titles/Heights or return to 26.4.8 Boxes.
26.4.8.6 Boxes - Primary String Titles/Heights

Sometimes the primary string is only required to define chainages or the horizontal path for tin sections. In this case, the primary string would not be drawn on the long section plot.

If the primary string is drawn, it is automatically labelled.

Also the drawing of crosses at the vertical intersection points can be controlled from the ppf file.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Title line primary_title</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Title line 2 primary_title_2</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Textstyle primary_title_textstyle</td>
<td>text box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Colour primary_title_colour</td>
<td>colour box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Text size (mm) primary_title_size</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Text y position (mm) primary_title_y_pos</td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

**Section: Primary string title parameters**

**Title line**

*primary_title*

*1st line of string title.*

**Title line 2**

*primary_title_2*

*second line of string title. Default is primary string name.*

**Textstyle**

*primary_title_textstyle*

*textstyle for the primary string title*

**Colour**

*primary_title_colour*

*colour of the primary string title*

**Text size (mm)**

*primary_title_size*

*size of the string title*

**Text y position (mm)**

*primary_title_y_pos*

*if set, the height in mm above the bottom of all the boxes that the primary string title text is drawn. If not set, then the text is placed at a height that puts it inside the default box for the primary string.*

**Section: Primary string height parameters**

**Decimal places**

*primary_decimals*

*number of decimal places for height values.*

*If > 0, trailing zeros are removed after the decimal point. If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.*

**Textstyle**

*primary_textstyle*

*textstyle for the height values*

**Colour**

*primary_colour*

*colour of the height values*

**Text size (mm)**

*primary_size*

*size of the height values*

**Text y position (mm)**

*primary_y_pos*

*if set, the height in mm above the bottom of all the boxes that the primary string height values are drawn. If not set, then the text is placed at a height that puts it inside the default box for the primary string.*

**Search dist when no z (m)**

*primary_ch_tolerance*

*for a given chainage, if no z value exists, this distance is added to/subtracted from the chainage to search for a valid z value.*

Continue to the next section 26.4.8.7 Boxes - Tin Titles/Heights/Depths or return to 26.4.8 Boxes.
### 26.4.8.7 Boxes - Tin Titles/Heights/Depths

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: Tin titles/heights/depths parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Label depth default</td>
<td>label_depths</td>
<td>tick box</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>if ticked, the depths are labelled.</td>
</tr>
</tbody>
</table>

**Define tin set #**

- **input**
  - where \( n = 1 \) to... The set enables the specification of a number of parameters for a number of specified tin names.

**Tin name**

- **tin_n_name**
  - tin box available tins
  - the name of the \( n \)th tin to be used for labelling.

If a tin of the name given by **tin_n_name** does not exist, then the plot is not produced and an error message is given.

- **Tin draw mode**
  - **tin_n_draw_mode**
    - choice box Draw the tin
    - Do not draw the tin
  - draw tin mode for the \( n \)th tin specified by tin set #.

- **Tin colour**
  - **tin_n_draw_colour**
    - colour box
    - tin colour mode for the \( n \)th tin specified by tin set #.

- **Tin label mode**
  - **tin_n_label**
    - choice box Label the tin
    - Do not label the tin
  - tin label mode for the \( n \)th tin specified by tin set #.

See

- [26.4.8.7.1 Boxes - Tin Titles/Heights/Depths - Titles](#)
- [26.4.8.7.2 Boxes - Tin Titles/Heights/Depths - Heights](#)
- [26.4.8.7.3 Boxes - Tin Titles/Heights/Depths - Depths](#)

Or return to [26.4.8 Boxes](#).
26.4.8.7.1 Boxes - Tin Titles/Heights/Depths - Titles

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section: Tin - Title parameters

Use tin set #
set number to be used to define sets of tin parameters i.e. n value

First line of tin title
first line of nth tin title

Second line of tin title
second line of nth tin title

Tin title textstyle
nth tin title textstyle

Tin title colour
nth tin title colour

Tin title size (mm)
nth tin title size

Title Y position (mm)
if set, the height in mm above the bottom of all the boxes that the nth tin title text is drawn. If not set, then the text is placed at a height that puts it inside the default box for the tin heights.

Continue to the next section 26.4.8.7.2 Boxes - Tin Titles/Heights/Depths - Heights or return to 26.4.8 Boxes.
### 26.4.8.7.2 Boxes - Tin Titles/Heights/Depths - Heights

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Section: Tin - Height parameters**

**Use tin set #**

*set number to be used to define sets of tin parameters i.e. n value*

**Decimals**

*number of dec places in nth tin height.*

*If > 0, trailing zeros are removed after the decimal point.*

*If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.*

**Textstyle**

*textstyle of nth tin height*

**Colour**

*nth tin height and depth colour*

**Size (mm)**

*nth tin height size*

**Y pos (mm)**

*if set, the height in mm above the bottom of all the boxes that the tin height text is drawn. If not set, then the text is placed at a height that puts it inside the default box for the tin heights.*

Continue to the next section **26.4.8.7.3 Boxes - Tin Titles/Heights/Depths - Depths** or return to **26.4.8 Boxes**.
26.4.8.7.3 Boxes - Tin Titles/Heights/Depths - Depths

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use tin set #</td>
<td>input</td>
<td></td>
<td>set number to be used to define sets of tin parameters i.e. n value</td>
</tr>
<tr>
<td>Depth label mode</td>
<td>tin_n_depth_label</td>
<td>choice box</td>
<td>Label depths</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Do not label depths</td>
</tr>
<tr>
<td>First line of tin depth title</td>
<td>tin_n_depth_title</td>
<td>input</td>
<td>first line of nth tin depth title</td>
</tr>
<tr>
<td>Second line of tin depth title</td>
<td>tin_n_depth_title_2</td>
<td>input</td>
<td>second line of nth tin depth title</td>
</tr>
<tr>
<td>Depth title textstyle</td>
<td>tin_n_depth_title_textstyle</td>
<td>text box</td>
<td>nth tin depth title textstyle</td>
</tr>
<tr>
<td>Depth title colour</td>
<td>tin_n_depth_title_colour</td>
<td>colour box</td>
<td>nth tin depth title colour</td>
</tr>
<tr>
<td>Depth title size (mm)</td>
<td>tin_n_depth_title_size</td>
<td>input</td>
<td>nth tin depth title size</td>
</tr>
<tr>
<td>Depth title Y position (mm)</td>
<td>tin_n_depth_title_y_pos</td>
<td>input</td>
<td>if set, the height in mm above the bottom of all the boxes that the tin depth title text is drawn. If not set, then the text is placed at a height that puts it inside the default box for the tin heights.</td>
</tr>
<tr>
<td>Decimals in depth value</td>
<td>tin_n_depth_decimals</td>
<td>input</td>
<td>number of dec places in tin height.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If &gt; 0, trailing zeros are removed after the decimal point.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If &lt;0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.</td>
</tr>
<tr>
<td>Depth value textstyle</td>
<td>tin_n_depth_textstyle</td>
<td>text box</td>
<td>nth tin depth textstyle</td>
</tr>
<tr>
<td>Depth value colour</td>
<td>tin_n_depth_colour</td>
<td>colour box</td>
<td>nth tin depth colour</td>
</tr>
<tr>
<td>Depth value size (mm)</td>
<td>tin_n_depth_size</td>
<td>input</td>
<td>nth tin depth size</td>
</tr>
<tr>
<td>Depth value Y position (mm)</td>
<td>tin_n_depth_y_pos</td>
<td>input</td>
<td>if set, the height in mm above the bottom of all the boxes that the tin depth text is drawn. If not set, then the text is placed at a height that puts it inside the default box for the tin heights.</td>
</tr>
<tr>
<td>Multiplier for positive depths</td>
<td>depth_positive_factor</td>
<td>input</td>
<td>if set, this value will be used to multiply positive depth values.</td>
</tr>
<tr>
<td>Multiplier for negative depths</td>
<td>depth_negative_factor</td>
<td>input</td>
<td>if set, this value will be used to multiply negative depth values.</td>
</tr>
</tbody>
</table>

The depth from the primary string to a tin, at a particular offset is defined as
\[ \text{depth} = \text{tin height value} - \text{height of the primary string} \]

That is, the depth that the primary string is \textbf{below} the tin.

Before plotting, the value of depth is multiplied by either the \textit{depth\_positive\_factor} or \textit{depth\_negative\_factor}.

\[
\begin{align*}
\text{if (depth} \geq 0) & \quad \text{plotted\_depth\_value} = \text{depth} \times \text{depth\_positive\_factor} \\
\text{if (depth} < 0) & \quad \text{plotted\_depth\_value} = \text{depth} \times \text{depth\_negative\_factor}
\end{align*}
\]

Hence the definition of depth can be modified by the parameters:

- \text{depth\_positive\_factor value} \quad // multiplier for positive depths
- \text{depth\_negative\_factor value} \quad // multiplier for negative depths

For example, if the opposite sign is required for depth, that is,

\[
\text{depth} = \text{height of the primary string} - \text{tin height value}
\]

simply set

\[
\begin{align*}
\text{depth\_positive\_factor} & = -1 \\
\text{depth\_negative\_factor} & = 1
\end{align*}
\]

Continue to the next section \textbf{26.4.8.7.4 Boxes - Offset String Titles/Heights/Depths} or return to \textbf{26.4.8 Boxes}. 
26.4.8.7.4 Boxes - Offset String Titles/Heights/Depths

The columns for the fields documented in the sections are for:

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Section:</strong></td>
<td><strong>Offset string titles/heights/depths parameters</strong></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each string in the offset model given can be automatically projected onto the primary string and drawn on the long section plot.

The offset model has been modified to allow strings to be projected onto the primary string to be specified by model and name, rather than just projecting all the strings in a given model. The string can also be labelled with either the string name, its model name or both.

The string is specified by

```
offset_n_mask = "model_name->string_name"
```

For each n, a set of plot parameters determine if the string’s heights and/or depths from the primary string are labelled in the boxes area.

If only the `string_name` is given, then the model given in the Offset model field of the Section Long Plot panel.

If there is **more than one string** with the given model and name, then it will be considered to be one string and at any primary string chainage, the closest of the strings will be the part used for projecting. For example, strings of the same name on either side of a road intersection will be considered to be the one string for projecting.

If any `offset_n_mask` is used, then the Offset option expects all the strings to be specified by an `offset_n_mask`. Then if no mask exists for any value of n, then that parameter set is ignored and no string projected.

If no offset masks are used (that is, no `offset_n_mask`'s are used), then the plot parameters determine whether each string in the offset model is plotted and labelled is the same as the order of the strings in the offset model.

For the following sets of parameters, n takes the value 1 to 100 and specifies that the parameter set applies to the nth string given by `offset_n_mask` or, if no offset masks are given, the nth string in the Offset model.

**Default offset model**

<table>
<thead>
<tr>
<th>Default offset model</th>
<th>offset_model</th>
<th>model box</th>
</tr>
</thead>
<tbody>
<tr>
<td>default offset model.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Define set #**

where n = 1 to.... The set enables the specification of a number of parameters for a number of specified tin names.

**Offset mask**

<table>
<thead>
<tr>
<th>Offset mask</th>
<th>offset_n_mask</th>
<th>input</th>
</tr>
</thead>
<tbody>
<tr>
<td>the value specified by model_name-&gt;string_name.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Offset draw mode**

<table>
<thead>
<tr>
<th>Offset draw mode</th>
<th>offset_n_draw_mode</th>
<th>choice box</th>
<th>Draw the offset string</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Do not draw the offset string</td>
<td></td>
</tr>
<tr>
<td>draw mode for offset string.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Datum difference from primary**

<table>
<thead>
<tr>
<th>Datum difference from primary</th>
<th>input</th>
</tr>
</thead>
</table>

**Left search distance**

<table>
<thead>
<tr>
<th>Left search distance</th>
<th>offset_n_lw</th>
<th>input</th>
</tr>
</thead>
<tbody>
<tr>
<td>default 1000. Distance to search to the left of the primary string for the offset string. If 0, don’t search to the left.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Right search distance**

<table>
<thead>
<tr>
<th>Right search distance</th>
<th>offset_n_rw</th>
<th>input</th>
</tr>
</thead>
</table>


default 1000. Distance to search to the right of the primary string for the offset string. If 0, don’t search to the right.

**Offset colour**

`offset_n_draw_colour` colour box

default offset string colour.

**Offset label mode**

`offset_n_label` choice box

Label the strings heights

Do not label the strings heights

offset string label mode.

See

- 26.4.8.7.5 Boxes - Offset String Titles/Heights/Depths - Titles
- 26.4.8.7.6 Boxes - Offset String Titles/Heights/Depths - Heights
- 26.4.8.7.7 Boxes - Offset String Titles/Heights/Depths - Depths

Or return to 26.4.8 Boxes.
26.4.8.7.5 Boxes - Offset String Titles/Heights/Depths - Titles

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

**Section: Offset string - Title parameters**

The default title for each set each parameter set, is the string name but this can be changed to just the model name or the model and string name:

- **Offset string mode**  offset_title_mode  choice box  Label with string name
  - Label with model name
  - Label with model->string
  as  name

**Use set #**  input

set number to be used to define sets of offset parameters i.e. n value

or, for any set, the offset_title_mode can be replaced by two lines of user defined title:

First line of offset title  offset_n_title  input
first line of nth offset title

Second line of offset title  offset_n_title_2  input
second line of nth offset title

**Title textstyle**  offset_n_title_textstyle  text box
nth offset title textstyle

**Title colour**  offset_n_title_colour  colour box
nth offset title colour

**Title size (mm)**  offset_n_title_size  input
nth offset title size

**Title Y position (mm)**  offset_n_title_y_pos  input
if set, the height in mm above the bottom of all the boxes that the offset title text is drawn. If not set, then the text is placed at a height that puts it inside the default box for the offset heights.

Continue to the next section 26.4.8.7.6 Boxes - Offset String Titles/Heights/Depths - Heights or return to 26.4.8 Boxes.
26.4.8.7.6 Boxes - Offset String Titles/Heights/Depths - Heights

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use set #</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>set number to be used to define sets of offset parameters i.e. n value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decimals</td>
<td>offset_n_decimals</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>number of dec places in nth offset height.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If &gt; 0, trailing zeros are removed after the decimal point.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If &lt;0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textstyle</td>
<td>offset_n_textstyle</td>
<td>text box</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>offset_n_colour</td>
<td>colour box</td>
<td></td>
</tr>
<tr>
<td>Size (mm)</td>
<td>offset_n_size</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Y pos (mm)</td>
<td>offset_n_y_pos</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if set, the height in mm above the bottom of all the boxes that the offset height text is drawn. If not set, then the text is placed at a height that puts it inside the default box for the offset heights.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section 26.4.8.7.7 Boxes - Offset String Titles/Heights/Depths - Depths or return to 26.4.8 Boxes.
26.4.8.7.7 Boxes - Offset String Titles/Heights/Depths - Depths

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

**Section: Offset string - Depth parameters**

**Use set #**

set number to be used to define sets of offset parameters i.e. n value

**Depth label mode**

offset_n_depth_label choice box Label depths

depth label mode for the nth offset specified by set #.

**First line of depth title**

offset_n_depth_title input

first line of nth offset depth title

**Second line of depth title**

offset_n_depth_title_2 input

second line of nth offset depth title

**Depth title textstyle**

offset_n_depth_title_textstyle text box

nth offset depth title textstyle

**Depth title colour**

offset_n_depth_title_colour colour box

nth offset depth title colour

**Depth title size (mm)**

offset_n_depth_title_size input

nth offset depth title size

**Depth title Y position (mm)**

offset_n_depth_title_y_pos input

if set, the height in mm above the bottom of all the boxes that the offset depth title text is drawn. If not set, then the text is placed at a height that puts it inside the default box for the offset heights.

**Decimals in depth value**

offset_n_depth_decimals input

number of dec places in offset height.

If > 0, trailing zeros are removed after the decimal point.

If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

**Depth value textstyle**

offset_n_depth_textstyle box

nth offset depth textstyle

**Depth value colour**

offset_n_depth_colour colour box

nth offset depth colour

**Depth value size (mm)**

offset_n_size input

nth offset depth size

**Depth value Y position (mm)**

offset_n_depth_y_pos input

if set, the height in mm above the bottom of all the boxes that the offset depth text is drawn. If not set, then the text is placed at a height that puts it inside the default box for the offset heights.

Continue to the next section 26.4.8.8 Boxes - Offset String Chainages or return to 26.4.8 Boxes.
26.4.8.8 Boxes - Offset String Chainages

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>Offset string - Chainage parameters</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use String</td>
<td>chainage_n_offset_mode</td>
<td>tick box</td>
<td></td>
</tr>
<tr>
<td>Offset String</td>
<td>chainage_n_offset_string</td>
<td>select box</td>
<td></td>
</tr>
<tr>
<td>First line of chainage title</td>
<td>chainage_n_title</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Second line of chainage title</td>
<td>chainage_n_title_2</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Chainage title textstyle</td>
<td>chainage_n_title_textstyle</td>
<td>text box</td>
<td></td>
</tr>
<tr>
<td>Chainage title colour</td>
<td>chainage_n_title_colour</td>
<td>colour box</td>
<td></td>
</tr>
<tr>
<td>Chainage title size (mm)</td>
<td>chainage_n_title_size</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Chainage title Y position (mm)</td>
<td>chainage_n_title_y_pos</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Decimals in chainage value</td>
<td>chainage_n_decimals</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Chainage value textstyle</td>
<td>chainage_n_textstyle</td>
<td>text box</td>
<td></td>
</tr>
<tr>
<td>Chainage value colour</td>
<td>chainage_n_colour</td>
<td>colour box</td>
<td></td>
</tr>
<tr>
<td>Chainage value size (mm)</td>
<td>chainage_n_size</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Chainage value Y position (mm)</td>
<td>chainage_n_y_pos</td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section 26.4.8.9 Boxes - Super Elevation Diagram or return to 26.4.8 Boxes.
26.4.8.9 Boxes - Super Elevation Diagram

The optional super-elevation diagram draws the values of the cross-fall (x-fall) between two strings using the primary string as the reference string. The cross-fall at a given chainage on the primary string is calculated by sectioning perpendicular to the reference string at that chainage and cutting the two strings. The cross-fall is defined as the cross-fall between the two cuts points on the strings.

The diagram has levels for the cross fall for a pair of strings on the left of the primary string, and a pair of strings on the right of the primary string. The diagram also has uprights in the super-elevation box with chainage values at the change of super values.

For the left hand side, the cross-fall is calculated at right angles to the primary string between the user given left hinge string and the left edge string.

The columns for the fields documented in the sections are for.

Panel Field	Parameter name	Type	Pop-Up
**Section: Super elevation diagram parameters**

Super elevation diagram draw mode

<table>
<thead>
<tr>
<th>super_draw_mode</th>
<th>choice box</th>
<th>don't draw diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode = 1</td>
<td>draw diagram using super sample interval</td>
<td></td>
</tr>
<tr>
<td>mode = 2</td>
<td>sample super using chainages of x-sec’s</td>
<td></td>
</tr>
<tr>
<td>mode = 3</td>
<td>sample super using chainages from a string</td>
<td></td>
</tr>
</tbody>
</table>

Super sample interval | super_sample_interval | input |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>if mode = 1, Chainage distance to sample x-fall. (default 20)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Super sample name | super_sample_name | input |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>name to be used in sampling. If mode = 2, name = model_name.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If mode = 3, name = model_name-&gt;string_name</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Super tolerance | super_tolerance | input |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>If super_draw_mode is 1, the change of super is greater than super_tolerance, draw uprights</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
See

26.4.8.9.1 Boxes - Super Elevation Diagram - Titles
26.4.8.9.2 Boxes - Super Elevation Diagram - X-Fall
26.4.8.9.4 Boxes - Super Elevation Diagram - Left Side
26.4.8.9.5 Boxes - Super Elevation Diagram - Right Side
26.4.8.9.6 Boxes - Super Elevation Diagram - Centre Line
26.4.8.9.7 Boxes - Super Elevation Diagram - Common X-Fall
26.4.8.9.8 Boxes - Super Elevation Diagram - Uprights

Or return to 26.4.8 Boxes.
### 26.4.8.9.1 Boxes - Super Elevation Diagram - Titles

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>First line of super title</td>
<td>super_title</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>1st line of the super title</td>
<td>super_title</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Super title textstyle</td>
<td>super_title_textstyle</td>
<td>text box</td>
<td></td>
</tr>
<tr>
<td>Super title colour</td>
<td>super_title_colour</td>
<td>colour box</td>
<td></td>
</tr>
<tr>
<td>Super title size (mm)</td>
<td>super_title_size</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Super title Y position (mm)</td>
<td>super_title_y_pos</td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

**Section: Super elevation diagram - Title parameters**

- If set, the height in mm above the bottom of all the boxes that the super title text is drawn. If not set, then the text is placed at a height that puts it inside the default box for the super.

Continue to the next section [26.4.8.9.2 Boxes - Super Elevation Diagram - X-Fall](#) or return to [26.4.8 Boxes](#).

### 26.4.8.9.2 Boxes - Super Elevation Diagram - X-Fall

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-fall textstyle</td>
<td>super_xfall_textstyle</td>
<td>text box</td>
<td></td>
</tr>
<tr>
<td>X-fall colour</td>
<td>super_xfall_colour</td>
<td>colour box</td>
<td></td>
</tr>
<tr>
<td>X-fall size (mm)</td>
<td>super_xfall_size</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>X-fall X position (mm)</td>
<td>super_xfall_x</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>X-fall Y position (mm)</td>
<td>super_xfall_y</td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

**Section: Super elevation diagram - X-fall parameters**

- The distance to the right from the super chainage uprights to the start of the x-fall text.

- If set, the height in mm above the bottom of all the boxes that the super x-fall text is drawn. If not set, then the text is placed at a height that puts it inside the default box for the super.

Continue to the next section [26.4.8.9.3 Boxes - Super Elevation Diagram - Chainage](#) or return to [26.4.8 Boxes](#).
26.4.8.9.3 Boxes - Super Elevation Diagram - Chainage

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section: Super elevation diagram - Chainage parameters

- **Chainage textstyle** (super_ch_textstyle) text box
textstyle of super chainage title

- **Chainage colour** (super_ch_colour) colour box
colour of super chainage title

- **Chainage size (mm)** (super_ch_size) input
size of super chainage title

- **Chainage X position (mm)** (super_ch_x) input
distance to the right from the super chainage uprights to the start of the super chainage text.

- **Chainage Y position (mm)** (super_ch_y) input
if set, the height in mm below the bottom of all the boxes that the super chainage is finished.

- **Chainage decimal places** (super_ch_decimals) input
number of dec places in super chainage

Continue to the next section 26.4.8.9.4 Boxes - Super Elevation Diagram - Left Side or return to 26.4.8 Boxes.
26.4.8.9.4 Boxes - Super Elevation Diagram - Left Side

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>super_hinge_name_left</td>
<td>select box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>left hinge string. (model_name-&gt;string_name)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>super_edge_name_left</td>
<td>select box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>left edge string. (model_name-&gt;string_name)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>super_left_linestyle</td>
<td>linestyle box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>linestyle of super left line.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>super_left_line_colour</td>
<td>colour box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Colour of super left line.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>super_left_decimals</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of dec places in super left x-fall value</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>super_left_pre</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Text before super left x-fall value.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>super_left_post</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Text after super left x-fall value.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section 26.4.8.9.5 Boxes - Super Elevation Diagram - Right Side or return to 26.4.8 Boxes.
### 26.4.8.9.5 Boxes - Super Elevation Diagram - Right Side

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>Section: Super elevation diagram - Right side parameters</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Right hinge string</strong></td>
<td>select box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>right hinge string. (model_name-&gt;string_name)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Right edge string</strong></td>
<td>select box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>right edge string. (model_name-&gt;string_name)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Super right linestyle</strong></td>
<td>linestyle box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>linestyle of super right line.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Super right line colour</strong></td>
<td>Colour box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Colour of super right line.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Super right decimal places</strong></td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of dec places in super right x-fall value</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Text before right X-fall value</strong></td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Text before super right x-fall value.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Text after right X-fall value</strong></td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Text after super right x-fall value.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section [26.4.8.9.6 Boxes - Super Elevation Diagram - Centre Line](#) or return to [26.4.8 Boxes](#).

### 26.4.8.9.6 Boxes - Super Elevation Diagram - Centre Line

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>Section: Super elevation diagram - Centre line parameters</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Super centre linestyle</strong></td>
<td>Linestyle box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Super centre line linestyle.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Super centre line colour</strong></td>
<td>Colour box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Super centre line colour.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section [26.4.8.9.7 Boxes - Super Elevation Diagram - Common X-Fall](#) or return to [26.4.8 Boxes](#).
26.4.8.9.7 Boxes - Super Elevation Diagram - Common X-Fall

The columns for the fields documented in the sections are for.

Panel Field	Parameter name	Type	Pop-Up

Section: Super elevation diagram - Common X-fall parameters

Text before common X-fall value

- **super_common_pre** input
  - text before super common x-fall value.

Text after common X-fall value

- **super_common_post** input
  - text after super common x-fall value.

Super common linestyle

- **super_common_linestyle** linestyle box
  - super common linestyle.

Super common line colour

- **super_common_line_colour** colour box
  - super common colour.

Super common decimal places

- **super_common_decimals** input
  - number of decimal places in super common x-fall value

Continue to the next section 26.4.8.9.8 Boxes - Super Elevation Diagram - Uprights or return to 26.4.8 Boxes.

26.4.8.9.8 Boxes - Super Elevation Diagram - Uprights

The columns for the fields documented in the sections are for.

Panel Field	Parameter name	Type	Pop-Up

Section: Super elevation diagram - Upright parameters

Upright mode

- **super_upright_mode** choice box
  - for left string only
  - for right string only
  - for both strings

Super uprights colour

- **super_upright_colour** colour box
  - super upright colour.

Continue to the next section 26.4.8.10 Boxes - Volume Cut/Fill or return to 26.4.8 Boxes.
26.4.8.10 Boxes - Volume Cut/Fill

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Section: Volume cut/fill parameters</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The values of calculated cut and fill volumes (cut and fill earth works) can be read from a file and then interpolated to produce cut and fill volumes for a given interval along the primary string.

**Draw a volume diagram**  volume_draw_mode  tick box
if ticked, draw a volume diagram.

**Cut and fill text position**  volume_text_centre_mode  choice box  along the uprights
position of cut and fill text relative to the uprights.

**Sample interval**  volume_sample_interval  input
interval to display volumes.

**Report file**  volume_file_name  report box
name of volumes report file.

**Box Y position (mm)**  volume_y_pos  input
if set, the volume box is positioned at this height from the bottom of the first box

**Box size (mm)**  volume_box_size  input
if set, upright, volumes and titles box height.

**Horizontal cut/fill dividing line linestyle**
volume_cl_linestyle  linestyle box
linestyle of the cut/fill dividing line.

**Horizontal cut/fill dividing line colour**
volume_cl_line_colour  colour box
colour of the cut/fill dividing line.

See

26.4.8.10.1 Boxes - Volume Cut/Fill - Titles
26.4.8.10.2 Boxes - Volume Cut/Fill - Values
26.4.8.10.3 Boxes - Volume Cut/Fill - Uprights/Sub Uprights

Or return to 26.4.8 Boxes.
### 26.4.8.10.1 Boxes - Volume Cut/Fill - Titles

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Section: Volumes cut/fill - Title parameters</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First line of volume title</td>
<td>volume_title</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td><em>1st line of the volume title</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume title textstyle</td>
<td>volume_title_textstyle</td>
<td>text box</td>
<td></td>
</tr>
<tr>
<td><em>textstyle of volume title</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume title colour</td>
<td>volume_title_colour</td>
<td>colour box</td>
<td></td>
</tr>
<tr>
<td><em>colour of volume title</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume title size (mm)</td>
<td>volume_title_size</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td><em>size of volume title</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume title Y position (mm)</td>
<td>volume_title_y_pos</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td><em>if set, the height in mm above the bottom of all the boxes that the volume title text is drawn. If not set, then the text is placed at a height that puts it inside the default box for the volumes.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See

- [26.4.8.10.1.1 Boxes - Volume Cut/Fill - Titles - Cut](#)
- [26.4.8.10.1.2 Boxes - Volume Cut/Fill - Titles - Fill](#)

Or return to [26.4.8 Boxes](#).
26.4.8.10.1.1 Boxes - Volume Cut/Fill - Titles - Cut

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>
| Section: Volumes cut/fill - Title cut parameters
| First line of volume cut title               volume_cut_title   | input    |        |
| Volume cut title textstyle      volume_cut_title_textstyle | text box      |        |
| Volume cut title colour        volume_cut_title_colour   | colour box |        |
| Volume cut title size (mm)     volume_cut_title_size | input    |        |
| Volume cut title Y position (mm) volume_cut_title_y | input    |        |

Continue to the next section 26.4.8.10.1.2 Boxes - Volume Cut/Fill - Titles - Fill or return to 26.4.8 Boxes.

26.4.8.10.1.2 Boxes - Volume Cut/Fill - Titles - Fill

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>
| Section: Volumes cut/fill - Title fill parameters
| First line of volume fill title               volume_fill_title | input    |        |
| Volume fill title textstyle      volume_fill_title_textstyle | text box      |        |
| Volume fill title colour        volume_fill_title_colour | colour box |        |
| Volume fill title size (mm)     volume_fill_title_size | input    |        |
| Volume fill title Y position (mm) volume_fill_title_y | input    |        |

Continue to the next section 26.4.8.10.2 Boxes - Volume Cut/Fill - Values or return to 26.4.8 Boxes.
26.4.8.10.2 Boxes - Volume Cut/Fill - Values

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Section: Volumes cut/fill - Cut value parameters**

- **Textstyle**
  - `volume_cut_textstyle`
  - text box
  - textstyle of the cut values.

- **Colour**
  - `volume_cut_text_colour`
  - colour box
  - colour of cut values

- **Size (mm)**
  - `volume_cut_text_size`
  - input
  - size of cut values

- **X position (mm)**
  - `volume_cut_text_x`
  - input
  - the x distance to move the cut text from the default cut text position, def 0, it is not used if `volume_text_centre_mode= between the uprights`

- **Y position (mm)**
  - `volume_cut_text_y`
  - input
  - the y distance to move the cut text from the default cut text position

- **Decimal places**
  - `volume_cut_decimals`
  - input
  - number of dec places in cut values.
  - If > 0, trailing zeros are removed after the decimal point.
  - If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

**Section: Volumes cut/fill - Fill value parameters**

- **Textstyle**
  - `volume_fill_textstyle`
  - text box
  - textstyle of the fill values.

- **Colour**
  - `volume_fill_text_colour`
  - colour box
  - colour of fill values

- **Size (mm)**
  - `volume_fill_text_size`
  - input
  - size of fill values

- **X position (mm)**
  - `volume_fill_text_x`
  - input
  - the x distance to move the fill text from the default fill text position, def 0, it is not used if `volume_text_centre_mode= between the uprights`

- **Y position (mm)**
  - `volume_fill_text_y`
  - input
  - the y distance to move the fill text from the default fill text position

- **Decimal places**
  - `volume_fill_decimals`
  - input
  - number of dec places in fill values.
  - If > 0, trailing zeros are removed after the decimal point.
  - If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

Continue to the next section 26.4.8.10.3 Boxes - Volume Cut/Fill - Uprights/Sub Uprights or return to 26.4.8 Boxes.
26.4.8.10.3 Boxes - Volume Cut/Fill - Uprights/Sub Uprights

The columns for the fields documented in the sections are for.

**Panel Field**	**Parameter name**	**Type**	**Pop-Up**
**Section: Volumes cut/fill - Upright parameters**
Draw cut/fill uprights | volume_uprights_draw_mode | choice box | don't draw cut/fill uprights
draw cut/fill uprights
upright draw mode.

Colour of uprights | volume_uprights_line_colour | colour box | colour of uprights

**Section: Volumes cut/fill - Sub upright parameters**
Colour of sub uprights | volume_sub_upright_colour | colour box | colour of sub uprights line

Sub upright X position (mm) | volume_sub_uprights_x | input | the x distance to move from the default sub uprights position.

Sub upright title X position (mm) | volume_sub_title_x | input | the distance to move the sub title text from the volume sub uprights

Continue to the next section 26.4.8.11 Boxes - X,Y or return to 26.4.8 Boxes.
26.4.8.11 Boxes - X,Y

The values of the X and Y coordinate for selected chainages can be labelled as separate boxes. The chainages specified are limited to the base set of chainages already defined in the chainage selection and staggering section. i.e. an upright must exist for the X and Y value to be labelled. Not all of the uprights have to be labelled, just those specified in this section. There are plot parameters to control all aspects of the X and Y labelling. Chainages are used for positioning X and Y labels. The chainages for the long section plot relate to the primary string and are controlled by a set of parameters.

The columns for the fields documented in the sections are for:

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Section: X, Y parameters</strong></td>
<td>xy_order</td>
<td>choice box</td>
<td>X before Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y before X</td>
</tr>
<tr>
<td></td>
<td>xy_chord_arc</td>
<td>choice box</td>
<td>Do not use chord/arc chainsages</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Use chord/arc chainsages</td>
</tr>
<tr>
<td></td>
<td>xy_start_chainage</td>
<td>input box</td>
<td>start chainage of chainage range to be labelled.</td>
</tr>
<tr>
<td></td>
<td>xy_end_chainage</td>
<td>input box</td>
<td>end chainage of chainage range to be labelled.</td>
</tr>
<tr>
<td></td>
<td>xy_interval</td>
<td>input</td>
<td>the regular interval (0=no regulars).</td>
</tr>
<tr>
<td></td>
<td>xy_label_hcp</td>
<td>tick box</td>
<td>if ticked, include the tangents and spirals.</td>
</tr>
<tr>
<td></td>
<td>xy_label_hip</td>
<td>tick box</td>
<td>if ticked, include horizontal intersection points.</td>
</tr>
<tr>
<td></td>
<td>xy_label_vip</td>
<td>tick box</td>
<td>if ticked, include vertical intersection points.</td>
</tr>
<tr>
<td></td>
<td>xy_label_vtp</td>
<td>tick box</td>
<td>if ticked, include tangent points.</td>
</tr>
<tr>
<td></td>
<td>xy_label_crest</td>
<td>tick box</td>
<td>if ticked, include crest points.</td>
</tr>
<tr>
<td></td>
<td>xy_label_grade_change</td>
<td>tick box</td>
<td>if ticked, include changes in vertical grade.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The boxes are placed from bottom to top.
xy_chord_arc  tick box

Chainage weeding tolerance

xy_label_tolerance  input

if >0 then use as a weeding tolerance, if <=0 don’t weed.

Files of special chainages

xy_special_n_file  file box

n = 1 to 20 - include chainages from the file (one chainage per line)

See

26.4.8.11.1 Boxes - X,Y - X Parameters
26.4.8.11.2 Boxes - X,Y - Y Parameters

Or return to 26.4.8 Boxes.
26.4.8.11.1 Boxes - X,Y - X Parameters

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Section: X parameters**

- **Label X values/title**
  - x_label
  - tick box
  - if ticked, the X values/titles will be labelled.

**Section: X title parameters**

- **Title line 1**
  - x_title
  - input
  - 1st line of X title.

- **Title line 2**
  - x_title_2
  - input
  - second line of X title.

- **Textstyle**
  - x_title_textstyle
  - text box
  - textstyle for the X title

- **Colour**
  - x_title_colour
  - colour box
  - colour of the X title

- **Text size (mm)**
  - x_title_size
  - input
  - size of the X title

- **Text y position (mm)**
  - x_title_y_pos
  - input
  - if set, the height in mm above the bottom of all the boxes that the X title text is drawn. If not set, then the text is placed at a height that puts it inside the default box for the X labels.

**Section: X value parameters**

- **Decimal places**
  - x_label_decimals
  - input
  - number of decimal places for X values.
  - If > 0, trailing zeros are removed after the decimal point.
  - If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

- **Textstyle**
  - x_label_textstyle
  - text box
  - textstyle for the X values

- **Colour**
  - x_label_colour
  - colour box
  - colour of the X values

- **Text size (mm)**
  - x_label_size
  - input
  - size of the X values

- **Text y position (mm)**
  - x_label_y_pos
  - input
  - if set, the height in mm above the bottom of all the boxes that the X values are drawn. If not set, then the text is placed at a height that puts it inside the default box for the X labels.

Continue to the next section 26.4.8.11.2 Boxes - X,Y - Y Parameters or return to 26.4.8 Boxes.
### 26.4.8.11.2 Boxes - X,Y - Y Parameters

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Section: Y parameters</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Label Y values/titles</td>
<td>y_label</td>
<td>tick box</td>
<td></td>
</tr>
</tbody>
</table>

*if ticked, the Y values/titles will be labelled.*

| **Section: Y Title Parameters** | | | |
| Title line 1 | y_title | input | |

*1st line of Y title.*

| Title line 2 | y_title_2 | input | |

*second line of Y title.*

| Textstyle | y_title_textstyle | text box | |

*textstyle for the Y title*

| Colour | y_title_colour | colour box | |

*colour of the Y title*

| Text size (mm) | y_title_size | input | |

*size of the Y title*

| Text y position (mm) | y_title_y_pos | input | |

*if set, the height in mm above the bottom of all the boxes that the Y title text is drawn. If not set, then the text is placed at a height that puts it inside the default box for the Y labels.*

| **Section: Y value parameters** | | | |
| Decimal places | y_label_decimals | input | |

*number of decimal places for Y values.*

*If > 0, trailing zeros are removed after the decimal point.*

*If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.*

| Textstyle | y_label_textstyle | text box | |

*textstyle for the Y values*

| Colour | y_label_colour | colour box | |

*colour of the Y values*

| Text size (mm) | y_label_size | input | |

*size of the Y values*

| Text y position (mm) | y_label_y_pos | input | |

*if set, the height in mm above the bottom of all the boxes that the Y values are drawn. If not set, then the text is placed at a height that puts it inside the default box for the Y labels.*

Please continue to the next section [26.4.9 Chainage/Staggering](#).
26.4.9 Chainage/Staggering

Chainages are used for positioning height labels, uprights (leader lines) and bubbles. The chainages for the long section plot relate to the primary string.

The columns for the fields documented in the sections are as follows:

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: Chainage/Staggering - Chainage parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chord/arc chainage mode</td>
<td>chord_arc</td>
<td>choice box</td>
<td>Do not use chord/arc chainages</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Use chord/arc chainages</td>
</tr>
</tbody>
</table>

Chainage mode to include chord/arc chainages.

Chainage interval: chainage_interval input
the regular interval (0=no regulars).

Include start and end chainages
chainage_label_ends tick box
if ticked, include the start and end chainages.

Include tangents, spirals
chainage_label_hcp tick box
if ticked, include the tangents and spirals.

Include horizontal intersection points
chainage_label_hip tick box
if ticked, include horizontal intersection points.

Include horizontal tangent points
chainage_label_hcp tick box
if ticked, include horizontal tangent points.

Include vertical intersection points
chainage_label_vip tick box
if ticked, include vertical intersection points.

Include vertical tangent points
chainage_label_vtp tick box
if ticked, include vertical tangent points.

Include crest points
chainage_label_crest tick box
if ticked, include crest points.

Include sag points
chainage_label_sag tick box
if ticked, include sag points.

Include change of vertical grade
chainage_label_grade_change tick box
if ticked, include changes in vertical grade.

Include chord/arc tolerance chainages
chainage_label_grade_change tick box.

Chainage weeding tolerance
chainage_label_tolerance input
if >0 then use as a weeding tolerance, if <=0 don’t weed.

Merge in bubble chainages
chainage_merge_bubbles tick box
if ticked, merge in bubble chainages.

Weeding tolerance after bubble merge
chainage_merge_tolerance input
if > 0, weed after merge using specified weeding tolerance. If <= 0, don’t weed after merge.

Files of special chainages
chainage_special_n_file file box
n = 1 to 20 - include chainages from the file (one chainage per line)

Continue to the next section 26.4.9.1 Chainage/Staggering - Staggering or return to 26.4.9.
26.4.9.1 Chainage/Staggering - Staggering

If the real chainage position is used for the horizontal position of the chainage/height/depth text, text over writing can easily occur.

To prevent over writing, the text can be staggered.

If the `stagger_mode` parameter is set to 1, the text position is adjusted so that the text does not over write.

The real chainage position is then indicated by the chainage markers which are drawn at the top of the text boxes from the staggered text position back to the actual chainage position of the text.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: Chainage/Staggering - Staggering parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stagger mode</td>
<td>stagger_mode</td>
<td>choice box</td>
<td>no staggering, allow over writing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stagger text</td>
</tr>
<tr>
<td>Distance from boxes to top of staggers (mm)</td>
<td>stagger_gap_top</td>
<td>input</td>
<td>distance from the top of boxes to top of staggers in mm.</td>
</tr>
<tr>
<td>Distance from boxes to bottom of staggers (mm)</td>
<td>stagger_gap_bottom</td>
<td>input</td>
<td>distance from the top of boxes to bottom of staggers in mm.</td>
</tr>
<tr>
<td>Stagger gap factor</td>
<td>stagger_gap_factor</td>
<td>input</td>
<td>distance between staggers is box_text_size * stagger_gap_factor</td>
</tr>
</tbody>
</table>

When staggering occurs, it is possible for the heights area to be longer than the graph area.

Please continue to the next section 26.4.10 Uprights.
26.4.10 Uprights

Uprights, or leader lines, can be drawn from the top of the staggers to the strings drawn on the plot.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: Upright parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Upright draw mode**

<table>
<thead>
<tr>
<th>Upright draw mode</th>
<th>uprights_draw_mode</th>
<th>choice box</th>
<th>none</th>
</tr>
</thead>
<tbody>
<tr>
<td>max string height</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to stagger height</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>uprights_y above boxes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to primary string</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tin 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tin 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tin 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tin 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tin 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tin 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tin 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tin 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tin 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tin 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to offset 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to offset 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to offset 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to offset 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to offset 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to offset 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to offset 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to offset 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to offset 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to offset 10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Uprights Y distance (mm)**

<table>
<thead>
<tr>
<th>Uprights Y distance (mm)</th>
<th>uprights_y</th>
<th>input</th>
</tr>
</thead>
<tbody>
<tr>
<td>distance to draw the uprights for uprights_draw_mode = &quot;to uprights_y above boxes&quot;</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Uprights colour**

<table>
<thead>
<tr>
<th>Uprights colour</th>
<th>uprights_colour</th>
<th>colour box</th>
</tr>
</thead>
<tbody>
<tr>
<td>uprights colour. Default is box_colour</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Uprights bottom mode**

<table>
<thead>
<tr>
<th>Uprights bottom mode</th>
<th>uprights_bottom_mode</th>
<th>choice box</th>
<th>stop at top of boxes</th>
</tr>
</thead>
<tbody>
<tr>
<td>draw to bottom of boxes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>draw to uprights_bottom_y below top of boxes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>draw to uprights_bottom_y above bottom of boxes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ticks at chainage</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Upright draw mode below top of boxes.**

**Uprights bottom Y distance (mm)**

<table>
<thead>
<tr>
<th>Uprights bottom Y distance (mm)</th>
<th>uprights_bottom_y</th>
<th>input</th>
</tr>
</thead>
<tbody>
<tr>
<td>distance in mm.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Uprights text offset factor**

<table>
<thead>
<tr>
<th>Uprights text offset factor</th>
<th>uprights_text_offset_factor</th>
<th>input</th>
</tr>
</thead>
<tbody>
<tr>
<td>move the text by this factor*size.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When uprights go below the top of the boxes, the height and offset text is moved to the left so that the upright does not go through the text. The left hand side of the heights boxes also moves to the left to leave
room for the height text.

Please continue to the next section 26.4.11 Datum Area.
26.4.11 Datum Area

The **datum area** is the region between the boxes area and the graph area.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

**Section: Datum area - datum value mode**

- **Use manual datum** manual_datum tick box
  
  If ticked the datum will be calculated internally, else use the datum_value parameter for the datum.

- **Datum value** datum_value input
  
  The value to be used for the datum.

- **Datum roundoff** datum_roundoff input
  
  The value to roundoff the datum value.

- **Decimal places for datum** datum_decimals input
  
  *If* > 0, trailing zeros are **removed** after the decimal point.
  
  *If* < 0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

**Section: Datum area - other parameters**

- **Datum name** datum_name input
  
  Text to write before the datum value

- **Graph area to datum line gap (mm)** datum_above_gap real box
  
  Distance from the bottom of the graph area to the datum line.

- **Datum line gap to top of boxes (mm)** datum_below_gap real box
  
  Distance from datum line to top of boxes.

The **datum line** is positioned the distance **datum_below_gap** above the top of the boxes area and the graph area is positioned the distance **datum_above_gap** above the datum line.

Hence the graph area is distance (datum_below_gap + datum_above_gap) above the top of the boxes area.

The **datum_below_gap** and **datum_above_gap** can be zero or positive.

- **Datum linestyle** datum_linestyle linestyle box
  
  Datum line linestyle (default solid)

- **Datum textstyle** datum_textstyle text box
  
  Textstyle for datum information

- **Datum text size (mm)** datum_text_size input
  
  Size of datum text and value (mm)

- **Datum colour** datum_colour colour box
  
  Colour of the datum text and line.

- **X adjustment (mm)** datum_x input
  
  Distance to move the datum text along the datum line

- **Y adjustment (mm)** datum_y input
  
  Distance to raise the datum text above the datum line
26.4.11.1 Datum Area - Offset String Datum Labels

Section: Offset string datum area label parameters

Offset string
Datum name
Datum colour
X adjustment (mm)
Y adjustment (mm)

Please continue to the next section 26.4.12 Graph Area.
26.4.12 Graph Area

The graph area sits on top of the boxes and datum areas, so there may not be enough room left on the sheet for the full plot height. In this case, the plot will be truncated at the top of the allowed graph area.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

**Section: Graph area parameters**

**Left/Right extensions (world units)**

*if not zero, the long section goes for this chainage distance from before the primary string starts to after the primary string ends. The primary string is extended by continuing at the instantaneous bearing at the ends of the primary string.*

<table>
<thead>
<tr>
<th>Extra space units</th>
<th>extra_space_units</th>
<th>choice box</th>
<th>world units</th>
<th>millimetres</th>
</tr>
</thead>
</table>

*units for specifying extra space to be added to the plot area.*

<table>
<thead>
<tr>
<th>Extra space left (units)</th>
<th>extra_space_left</th>
<th>input</th>
</tr>
</thead>
</table>

*extra distance to add to the end of title area before the plot area starts.*

<table>
<thead>
<tr>
<th>Extra space right (units)</th>
<th>extra_space_right</th>
<th>input</th>
</tr>
</thead>
</table>

*extra distance to add to the end of plot area for the end of the boxes to draw to.*

<table>
<thead>
<tr>
<th>Extra space top (units)</th>
<th>extra_space_top</th>
<th>input</th>
</tr>
</thead>
</table>

*extra distance to add to the top of plot area.*

<table>
<thead>
<tr>
<th>Extra space bottom (units)</th>
<th>extra_space_bottom</th>
<th>input</th>
</tr>
</thead>
</table>

*extra distance to add before the bottom of plot area starts.*

Please continue to the next section [26.4.13 Corridors - Long Section](#).
26.4.13 Corridors - Long Section

A corridor around the primary string is defined by giving a left and right corridor width. Any string in a model added to the section view is checked to see if it appears in the corridor, and if it does, it is drawn on the cross-section plot. To be drawn, strings do not have to cross the primary string, but just be in the corridor. This is documented for all the PPF Editors in 26.2.7 Corridors.

Please continue to the next section 26.4.14 Bubbles.
26.4.14 Bubbles

Circles with the string name and a unique number (bubbles) can be drawn on the long section plot. Bubbles are normally used for lip profiles.

The chainages used for the bubbles are given by a set of parameters similar to the chainage parameters. The resulting set of bubbles are sequentially numbered (starting with one) in chainage order.

Although many bubbles can be defined by the bubble parameters, a bubble is only drawn on the plot if there is a labelled chainage to draw it above.

Hence not all bubbles given by the bubble chainage parameters are drawn but for the ones that are drawn, the bubble number is taken from the full bubble set.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: Bubble definition parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bubble draw mode</td>
<td>chainage_bubbles</td>
<td>choice box</td>
<td>Do not draw bubbles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Draw bubbles</td>
</tr>
<tr>
<td>Bubble radius</td>
<td>bubble_radius</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bubble colour</td>
<td>bubble_colour</td>
<td>colour box</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bubble upright mode</td>
<td>bubble_draw_upright</td>
<td>choice box</td>
<td>Do not draw bubble upright</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Draw bubble upright</td>
</tr>
<tr>
<td>Bubble start chainage</td>
<td>bubble_start_chainage</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bubble end chainage</td>
<td>bubble_end_chainage</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chord/arc chainage mode</td>
<td>bubble_chord_arc</td>
<td>choice box</td>
<td>Do not use chord/arc chainages</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Use chord/arc chainages</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bubble interval</td>
<td>bubble_interval</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See

26.4.14.1 Bubbles - Text
26.4.14.2 Bubbles - Label

Or return to 26.4 Long Plot PPF Editor.
### 26.4.14.1 Bubbles - Text

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel Field</td>
<td>Parameter name</td>
<td>Type</td>
<td>Pop-Up</td>
</tr>
<tr>
<td>Section: Bubble definition - Text parameters</td>
<td>Bubble text string name mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bubble text string name mode</td>
<td>bubble_text_string_name_mode</td>
<td>choice box</td>
<td>Do not label with string name</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Label with string name</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Label with model-&gt;string name</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mode of bubble text string name.</td>
</tr>
<tr>
<td>Pre text</td>
<td>bubble_pre_text</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Post text</td>
<td>bubble_post_text</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Textstyle</td>
<td>bubble_textstyle</td>
<td>text box</td>
<td></td>
</tr>
<tr>
<td>Size (mm)</td>
<td>bubble_text_size</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>bubble_text_colour</td>
<td>colour box</td>
<td></td>
</tr>
<tr>
<td>Offset (mm)</td>
<td>bubble_text_offset</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Upright distance (mm)</td>
<td>bubble_upright_distance</td>
<td>angle box</td>
<td>distance bubbles are above boxes/uprights</td>
</tr>
<tr>
<td>Bubble upright distance mode</td>
<td>bubble_mode</td>
<td>choice box</td>
<td>Distance is above boxes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Distance is above uprights</td>
</tr>
<tr>
<td>mode of bubble upright distance.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section 26.4.14.2 Bubbles - Label or return to 26.4.14 Bubbles.
26.4.14.2 Bubbles - Label

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

**Section: Bubble definition - Label parameters**

- **Include tangents, spirals** bubble_label_hcp tick box
  - if ticked, include the tangents and spirals.

- **Include horizontal intersection points** bubble_label_hip tick box
  - if ticked, include horizontal intersection points.

- **Include horizontal tangent points** bubble_label_hcp tick box
  - if ticked, include horizontal tangent points.

- **Include vertical intersection points** bubble_label_vip tick box
  - if ticked, include vertical intersection points.

- **Include vertical tangent points** bubble_label_vtp tick box
  - if ticked, include vertical tangent points.

- **Include crest points** bubble_label_crest tick box
  - if ticked, include crest points.

- **Include sag points** bubble_label_sag tick box
  - if ticked, include sag points.

- **Include change of vertical grade** bubble_label_grade_change tick box
  - if ticked, include changes in vertical grade.

- **Include chord/arc tolerance chainages** bubble_chord_arc tick box

- **Bubble weeding tolerance** bubble_label_tolerance input
  - if >0 then use as a weeding tolerance, if <=0 don't weed.

**Files of special chainages**

- **bubble_special_n_file** file box
  - n = 1 to 20 - include chainages from the file (one chainage per line)

Please continue to the next section 26.4.15 Quick Horizontal Geometry.
26.4.15 Quick Horizontal Geometry

The standard horizontal geometry arrows can be drawn at a given distance above the top of the boxes area.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: Quick horizontal geometry</td>
<td>Distance above boxes (mm)</td>
<td>horizontal_geometry_yinput</td>
<td></td>
</tr>
<tr>
<td></td>
<td>distance above boxes for drawing of arrows</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section: Quick horizontal geometry - Left side label parameters

<table>
<thead>
<tr>
<th>Text</th>
<th>horizontal_geometry_label_text</th>
<th>input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textstyle</td>
<td>horizontal_geometry_label_textstyle</td>
<td>text box</td>
</tr>
<tr>
<td>Text colour</td>
<td>horizontal_geometry_label_text_colour</td>
<td>colour box</td>
</tr>
<tr>
<td>Text size (mm)</td>
<td>horizontal_geometry_label_text_size</td>
<td>input</td>
</tr>
</tbody>
</table>

Section: Quick horizontal geometry - Arrow and text parameters

<table>
<thead>
<tr>
<th>Text colour</th>
<th>horizontal_geometry_arrow_text_colour</th>
<th>colour box</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textstyle</td>
<td>horizontal_geometry_arrow_textstyle</td>
<td>text box</td>
</tr>
<tr>
<td>Text size (mm)</td>
<td>horizontal_geometry_arrow_text_size</td>
<td>input</td>
</tr>
<tr>
<td>Decimal places</td>
<td>horizontal_geometry_label_decimals</td>
<td>input</td>
</tr>
</tbody>
</table>

If > 0, trailing zeros are removed after the decimal point.
If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

Arrow colour        | horizontal_geometry_arrow_colour     | colour box  |
Arrow height (mm)    | horizontal_geometry_arrow_height     | input      |

Please continue to the next section 26.4.16 Extensive Horizontal Geometry.
26.4.16 Extensive Horizontal Geometry

The standard horizontal geometry arrows can be drawn at a given distance above the top of the boxes area.

For complicated horizontal geometry labelling, there are sets of horizontal geometry labelling parameters which give tight control over the position and types of labels.

It is also possible to label the horizontal geometry of alignment strings other than the primary string. To plot such a string on the same plot, the chainage position of the horizontal geometry for the non-primary alignment strings is projected onto the primary string to give a primary string chainage for plotting. The values of the horizontal geometry (such as radius and spiral length) that are plotted are taken from the other string. Independently graded offset strings (such as a left and right kerbs) are the type of additional alignment strings that may need to be plotted on the same long section plot as the reference string (primary string).

For plotting horizontal geometry, the user can give up to twenty sets of these labels and they can be used to label spirals, curves and tangent information for the primary string and/or additional alignment strings.

Each label set consists of three parts:
(a) a text label on the left hand side of the plot
(b) an arrow
(c) text on the arrows.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: Extensive horizontal geometry parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Define set #</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>where n = 1 to...20. The set enables the specification of a number of parameters for a number of specified extensive horizontal geometry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For the following parameters, n takes the value 1 to 20 and specifies the nth parameter set.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometry to label</td>
<td>h_g_n_type</td>
<td>choice box</td>
<td>label spirals</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>label horizontal curves</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>label horizontal tangents</td>
</tr>
<tr>
<td>specifies what geometry is to be labelled for the nominated set. If h_g_n_type is missing, then the set is ignored.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value to label</td>
<td>h_g_n_value_mode</td>
<td>choice box</td>
<td>nothing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>length</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>radius (for curve labelling)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>or radius*length (for spiral)</td>
</tr>
<tr>
<td>specifies the value to label.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y offset (mm)</td>
<td>h_g_n_label_y</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>distance of arrow line above top of the boxes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If the set of parameters is to apply to the horizontal geometry of an alignment string other than the primary string, then the offset string can be specified.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset string</td>
<td>h_g_n_offset_string</td>
<td>select box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the name of the non-primary string. i.e.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>h_g_n_offset_string</td>
<td>model-&gt;string_name</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
h_g_n_offset_string \textit{string_name}

and the model is the \textit{defined by offset_model}. \textit{offset_model has been} defined in the section 26.4.8.7.4 \textit{Boxes - Offset String Titles/Heights/Depths}.

If the \textit{h_g_n_offset_string} parameter does not exist, then the set of horizontal geometry parameters is applied to the primary string.

See

26.4.16.1 \textit{Extensive Horizontal Geometry - Left Hand Labels}
26.4.16.2 \textit{Extensive Horizontal Geometry - Arrow Type}
26.4.16.3 \textit{Extensive Horizontal Geometry - Arrow Text}

Or return to 26.4 \textit{Long Plot PPF Editor}. 
### 26.4.16.1 Extensive Horizontal Geometry - Left Hand Labels

The columns for the fields documented in the sections are for.

**Panel Field**	**Parameter name**	**Type**	**Pop-Up**

**Section: Extensive horizontal geometry - Left hand label parameters**

The fields and buttons used in this section have the following functions.

**Field Description**	**Parameter name**	**Type**	**Pop-Up**

**Use set #**

*set #, as specified by the define set # parameter.*

For the following parameters, n takes the value 1 to 20 and specifies the nth parameter set.

**Label X (mm)**  | **h_g_n_label_x** | **input** | **distance from the left hand side of the labels area to start the left hand label text.**

**Offset (mm)**  | **h_g_n_label_offset** | **input** | **distance to raise the left hand label text above arrow line.**

**Text size (mm)**  | **h_g_n_label_text_size** | **input** | **size of the left hand label text.**

**Text colour**  | **h_g_n_label_text_colour** | **colour box** | **size of the left hand label text.**

**Text**  | **h_g_n_label_text** | **input** | **left hand label text.**

**Textstyle**  | **h_g_n_label_textstyle** | **text box** | **textstyle for the left hand label text.**

Continue to the next section [26.4.16.2 Extensive Horizontal Geometry - Arrow Type](#) or return to [26.4.16 Extensive Horizontal Geometry](#).
26.4.16.2 Extensive Horizontal Geometry - Arrow Type

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use set #</td>
<td></td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>set #, as specified by the define set # parameter.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the following parameters, n takes the value 1 to 20 and specifies the nth parameter set.

- **Arrow type mode** 
  - h_g_n_draw_mode 
  - choice box 
  - arrow (1) 
  - line (2) 
  - line with uprights at ends (3) 
  - uprights with no lines (4) 
  - line with downrights (5) 
  - downrights with no lines (6) 
  - line with up and downrights at ends (7) 
  - up and downrights with no line (8) 
  - draw curve (9) 
  - radius*length curve (11)

specifies the arrow type to be drawn.

<table>
<thead>
<tr>
<th>0</th>
<th>4</th>
<th>1</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>

- **Left arrow gap (mm)** 
  - h_g_n_left_gap 
  - input 
  - size of gap for left side of arrow.

- **Right arrow gap (mm)** 
  - h_g_n_right_gap 
  - input 
  - size of gap for right side of arrow.

- **Arrow colour** 
  - h_g_n_colour 
  - colour box 
  - colour of arrow text

- **Arrow height (mm)** 
  - h_g_n_height 
  - input 
  - height of arrow in mm.

- **Leave gap in arrow for text** 
  - h_g_n_gap 
  - tick box 
  - if ticked, a gap will be left for text.

Continue to the next section 26.4.16.3 Extensive Horizontal Geometry - Arrow Text or return to 26.4.16 Extensive Horizontal Geometry.
### 26.4.16.3 Extensive Horizontal Geometry - Arrow Text

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section:</td>
<td>Extensive horizontal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>geometry</td>
<td>Arrow text parameters</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Use set #
- set #, as specified by the define set # parameter.

#### Text colour
- h_g_n_text_colour
- colour box
  - colour of arrow text

#### Text size (mm)
- h_g_n_text_size
- input
  - size of arrow text

#### Text offset (mm)
- h_g_n_text_offset
- input
  - distance to raise the text above the arrow line.

#### Arrow text pre-text
- h_g_n_pre_text
- input
  - text before the arrow text

#### Arrow text post-text
- h_g_n_post_text
- input
  - text after the arrow text

#### Textstyle
- h_g_n_textstyle
- text box
  - textstyle of arrow text

#### Decimal places
- h_g_n_no_decimals
- input
  - number of decimal places in arrow text.

  - If > 0, trailing zeros are removed after the decimal point.
  - If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

#### Rotate text to fit
- h_g_n_rotate
- tick box
  - if ticked, the text on the arrows will be rotated to fit.

Please continue to the next section 26.4.17 Quick Vertical Geometry.
26.4.17 Quick Vertical Geometry

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

**Section: Quick vertical geometry - Grade**

Distance above boxes (mm)

vertical_geometry_grade_y  input

distance above boxes. If 0, don’t draw.

**Section: Quick vertical geometry - Length**

Distance above boxes (mm)

vertical_geometry_length_y  input

distance above boxes. If 0, don’t draw.

**Section: Quick vertical geometry - Common parameters**

Arrow mode

vertical_geometry_arrow_mode  input  ticks
arrows

arrow mode.

Arrow colour

vertical_geometry_arrow_colour  colour box

arrow colour.

Arrow height (mm)

vertical_geometry_arrow_height  input

height of arrow in mm.

See

26.4.17.1 Quick Vertical Geometry - Grade Labels
26.4.17.2 Quick Vertical Geometry - Length Labels

Or return to 26.4 Long Plot PPF Editor.
26.4.17.1 Quick Vertical Geometry - Grade Labels

The columns for the fields documented in the sections are for:

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Section: Quick vertical geometry - Grade left hand label parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text</td>
<td>vertical_geometry_label_grade_text</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Textstyle</td>
<td>vertical_geometry_label_grade_textstyle</td>
<td>textstyle box</td>
<td></td>
</tr>
<tr>
<td>Text colour</td>
<td>vertical_geometry_label_grade_text_colour</td>
<td>colour box</td>
<td></td>
</tr>
<tr>
<td>Text size (mm)</td>
<td>vertical_geometry_label_grade_text_size</td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

Section: Quick vertical geometry - Grade arrow and text parameters

Grade mode	vertical_geometry_grade_mode	choice box %	1 in
Grade decimal places	vertical_geometry_label_grade_decimals	input	
Grade arrow textstyle	vertical_geometry_arrow_grade_textstyle	textstyle box	
Grade arrow text colour	vertical_geometry_arrow_grade_text_colour	colour box	
Grade arrow text size (mm)	vertical_geometry_arrow_grade_text_size	input	

Continue to the next section 26.4.17.2 Quick Vertical Geometry - Length Labels or return to 26.4.17 Quick Vertical Geometry.
26.4.17.2 Quick Vertical Geometry - Length Labels

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel</th>
<th>Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>vertical_geometry_label_length_text</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Text</td>
<td></td>
<td>vertical_geometry_label_length_textstyle</td>
<td>textstyle</td>
<td></td>
</tr>
<tr>
<td>Text colour</td>
<td></td>
<td>vertical_geometry_label_length_text_colour</td>
<td>colour</td>
<td></td>
</tr>
<tr>
<td>Text size (mm)</td>
<td></td>
<td>vertical_geometry_label_length_text_size</td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

**Section: Quick vertical geometry - Length left hand label parameters**

- **Text**: text for left hand length label.
- **Textstyle**: textstyle for left hand length label.
- **Text colour**: colour of left hand length label
- **Text size (mm)**: size of left hand length label

**Section: Quick vertical geometry - Length arrow and text parameters**

- **Length mode**: mode of length for length labels.
- **Length decimal places**: number of decimal places for length arrow labels.
- **Length arrow textstyle**: textstyle for length arrow labels.
- **Length arrow text colour**: colour of length arrow labels.
- **Length arrow text size (mm)**: size of length arrow labels

Please continue to the next section 26.4.18 Extensive Vertical Geometry.
26.4.18 Extensive Vertical Geometry

For complicated vertical geometry labelling of the primary alignment string, there are sets of vertical geometry labelling parameters which give tight control over the position and types of labels.

It is also possible to label the vertical geometry of alignment strings other than the primary string. To plot such a string on the same plot, the chainage position of the vertical geometry for the non-primary alignment strings is projected onto the primary string to give a primary string chainage for plotting. The values of the vertical geometry (such as grade and curve length) that are plotted are taken from the other string. Independently graded offset strings (such as a left and right kerbs) are the type of additional alignment strings that may need to be plotted on the same long section plot as the reference string (primary string).

For plotting vertical geometry, the user can give up to twenty sets of these labels and they can be used to label grades or vertical curve information for the primary string and/or additional alignment strings.

Each label set consists of three parts:
(a) a text label on the left hand side of the plot
(b) an arrow
(c) text on the arrows.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section:</td>
<td>Extensive</td>
<td>vertical geometry parameters</td>
<td></td>
</tr>
</tbody>
</table>

**Define set #**

Input where \( n = 1 \) to \( ...20 \). The set enables the specification of a number of parameters for a number of specified extensive horizontal geometry.

For the following parameters, \( n \) takes the value 1 to 20 and specifies the \( n \)th parameter set.

**Geometry to label**

\[ v_{g\_n\_type} \]

**Choice box**

Label grades

**Value to label**

\[ v_{g\_n\_value\_mode} \]

**Choice box**

Nothing

%grade | or | parabola length, arc length

1 in grade | or | radius

mm grade | or | K value

ch length between curve points per chord (QR) | or | curve constant (QR).

Specifies the value to label. This will be dependant on the \( v_{g\_n\_type} \) chosen.

**Vertical curve points to draw the arrows between** (for grade labelling only)

**Points to draw arrows between**

\[ v_{g\_n\_between\_mode} \]

**Choice box**

Between chainages at the vips between chainages at the vtps
specifies where to draw the arrows between (for grade labelling only).

Y offset (mm) \( v_{g_n\_label\_y} \) input
distance of arrow line above top of the boxes. This value can be negative

If the set of parameters is to apply to the vertical geometry of an alignment string other than the primary string, then the following parameter can define the other alignment string

**Offset string** \( v_{g_n\_offset\_string} \) select box
the name of the non-primary string. i.e.

\[ v_{g_n\_offset\_string} \quad \text{model->string\_name} \]

or

\[ v_{g_n\_offset\_string} \quad \text{string\_name} \]

and the model is the **defined by offset\_model**. offset\_model has been defined in the section 26.4.8.7.4 Boxes - Offset String Titles/Heights/Depths.

If the \( v_{g_n\_offset\_string} \) parameter does not exist, then the set of vertical geometry parameters is applied to the primary string.

See

26.4.18.1 Extensive Vertical Geometry - Left Hand Labels
26.4.18.2 Extensive Vertical Geometry - Arrow Type
26.4.18.3 Extensive Vertical Geometry - Arrow Text

Or return to 26.4 Long Plot PPF Editor.
26.4.18.1 Extensive Vertical Geometry - Left Hand Labels

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section: Extensive vertical geometry - Left hand labels parameters

- **Use set #**
  - input
  - set #, as specified by the define set # parameter.

For the following parameters, n takes the value 1 to 20 and specifies the nth parameter set.

- **Label X (mm)**
  - \( v_g_n_label_x \)
  - input
  - distance from the left hand side of the labels area to start the left hand label text.

- **Offset (mm)**
  - \( v_g_n_label_offset \)
  - input
  - distance to raise the left hand label text above arrow line.

- **Text size (mm)**
  - \( v_g_n_label_text_size \)
  - input
  - size of the left hand label text.

- **Text colour**
  - \( v_g_n_label_text_colour \)
  - colour box
  - size of the left hand label text.

- **Text**
  - \( v_g_n_label_text \)
  - input
  - left hand label text.

- **Textstyle**
  - \( v_g_n_label_textstyle \)
  - text box
  - textstyle for the left hand label text.

Continue to the next section 26.4.18.2 Extensive Vertical Geometry - Arrow Type or return to 26.4.18 Extensive Vertical Geometry.
26.4.18.2 Extensive Vertical Geometry - Arrow Type

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

Section: Extensive vertical geometry - Arrow type parameters

Use set # input

define set # specifies set #, as specified by the define set # parameter.

For the following parameters, n takes the value 1 to 20 and specifies the nth parameter set.

Arrow type mode v_g_n_draw_mode choice box arrow (1)
line (2)
uprights with no lines (3)
line with uprights at ends (4)
line with downrights (5)
downrights with no lines (6)
line with up and downrights at ends (7)
up and downrights with no line (8)
draw curve (9)
draw grade (10)

specifies the arrow type to be drawn.

Left arrow gap (mm) v_g_n_left_gap input
size of gap for left side for arrow.

Right arrow gap (mm) v_g_n_right_gap input
size of gap for right side of arrow.

Arrow colour v_g_n_colour colour box
colour of arrow text

Arrow height (mm) v_g_n_height input
height of arrow in mm.

Leave gap in arrow for text v_g_n_gap tick box
if ticked, a gap will be left for text.

Continue to the next section 26.4.18.3 Extensive Vertical Geometry - Arrow Text or return to 26.4.18 Extensive Vertical Geometry.
### 26.4.18.3 Extensive Vertical Geometry - Arrow Text

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Section:</strong></td>
<td><strong>Extensive vertical geometry - Arrow text parameters</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use set #</td>
<td>set #, as specified by the define set # parameter.</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Text colour</td>
<td>v_g_n_text_colour</td>
<td>colour box</td>
<td></td>
</tr>
<tr>
<td>Text size (mm)</td>
<td>v_g_n_text_size</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Text offset (mm)</td>
<td>v_g_n_text_offset</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Arrow text pre-text</td>
<td>v_g_n_pre_text</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Arrow text post-text</td>
<td>v_g_n_post_text</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Textstyle</td>
<td>v_g_n_textstyle</td>
<td>text box</td>
<td></td>
</tr>
<tr>
<td>Decimal places</td>
<td>v_g_n_no_decimals</td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

- **If** > 0, trailing zeros are removed after the decimal point.
- **If** < 0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

- **Rotate text to fit** v_g_n_rotate tick box
  - if ticked, the text on the arrows will be rotated to fit.

Please continue to the next section: 26.4.19 Labelling Points With Chainage/Height/Grade/Deflection.
26.4.19 Labelling Points With Chainage/Height/Grade/Deflection

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

**Section: Labelling points with chainage/height/grade/deflection**

**Define set #**

where \( n = 1 \) to \( 20 \). The set enables the specification of a number of parameters for a number of specified labels.

For the following parameters, \( n \) takes the value 1 to 20 and specifies the \( n \)th parameter set.

**Label Type**

\( \text{label}_n\_\text{type} \)

choice box

- chainage of vip
- height of vip
- chainage of vip, height of primary crest
- sag
- vtp
- hcp
- change of grade
- mid-ordinate of the vertical curve

The chainage and/or height values for certain points (given by \( \text{label}_n\_\text{type} \)) can be labelled.

If \( \text{label}_n\_\text{type} \) is missing, then the set is ignored.

**Label height mode**

\( \text{label}_n\_\text{y}\_\text{mode} \)

choice box

- height above boxes (mm)
- height above height value (mm)
- height above primary height (mm)

specifies which reference point the \( \text{label}_n\_\text{y}\) distance is measured from.

See

- 26.4.19.1 Labelling Points - Label Position
- 26.4.19.2 Labelling Points - Label Text Type
- 26.4.19.3 Labelling Points - Label Text

Or return to 26.4 Long Plot PPF Editor.
26.4.19.1 Labelling Points - Label Position

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use set #</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>set #, as specified by the Define set # parameter.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the following parameters, n takes the value 1 to 20 and specifies the nth parameter set.

- **Distance above point (mm)** label_n_y input distance above point.
- **Angle (dms)** label_n_angle angle box rotation about point.
- **Angle on grade** tick box
- **Distance along from point (mm)** label_n_x input the distance along from the point in mm.
- **Text raise height (mm)** label_n_offset input the distance to raise the text in mm.
- **Justification** choice box left end middle end justification of the label.

Continue to the next section 26.4.19.2 Labelling Points - Label Text Type or return to 26.4.19 Labelling Points With Chainage/Height/Grade/Deflection.
### 26.4.19.2 Labelling Points - Label Text Type

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Section: Ch/Ht/Grade label text type parameters</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Use set #**
  - input
  - set #, as specified by the Define set # parameter.

For the following parameters, n takes the value 1 to 20 and specifies the nth parameter set.

- **Size (mm)**
  - label_n_size
  - input
  - size of the text.

- **Colour**
  - label_n_colour
  - colour box
  - colour of text.

- **Textstyle**
  - label_n_textstyle
  - text box
  - the textstyle of the text.

Continue to the next section [26.4.19.3 Labelling Points - Label Text](#) or return to [26.4.19 Labelling Points With Chainage/Height/Grade/Deflection](#).
### 26.4.19.3 Labelling Points - Label Text

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Section: Ch/Ht/Grade label text parameters

**Use set #**

input

set #, as specified by the **Define set #** parameter.

For the following parameters, n takes the value 1 to 20 and specifies the nth parameter set.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Label type</strong></td>
<td>label_n_value_mode</td>
<td>choice box</td>
</tr>
<tr>
<td></td>
<td>val 1 = chainage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>val 1 = height</td>
<td></td>
</tr>
<tr>
<td></td>
<td>val 1 = chainage, val2 = height</td>
<td></td>
</tr>
<tr>
<td></td>
<td>val 1 = height, val2 = chainage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the value label mode</td>
<td></td>
</tr>
<tr>
<td><strong>Pre-text</strong></td>
<td>label_n_pre_text</td>
<td>input</td>
</tr>
<tr>
<td></td>
<td>text before the label text</td>
<td></td>
</tr>
<tr>
<td><strong>Mid-text</strong></td>
<td>label_n_mid_text</td>
<td>input</td>
</tr>
<tr>
<td></td>
<td>text at mid position i.e. between val 1 and val 2.</td>
<td></td>
</tr>
<tr>
<td><strong>Post-text</strong></td>
<td>label_n_post_text</td>
<td>input</td>
</tr>
<tr>
<td></td>
<td>text after the label text</td>
<td></td>
</tr>
<tr>
<td><strong>Decimal places val 1</strong></td>
<td>label_n_no_decimals_1</td>
<td>input</td>
</tr>
<tr>
<td></td>
<td>number of decimal places in val 1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If &gt; 0, trailing zeros are <strong>removed</strong> after the decimal point.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If &lt;0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.</td>
<td></td>
</tr>
<tr>
<td><strong>Decimal places val 2</strong></td>
<td>label_n_no_decimals_2</td>
<td>input</td>
</tr>
<tr>
<td></td>
<td>number of decimal places in val 2.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If &gt; 0, trailing zeros are <strong>removed</strong> after the decimal point.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If &lt;0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.</td>
<td></td>
</tr>
<tr>
<td><strong>Deflection mode</strong></td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

Please continue to the next section **26.4.20 Labelling Points With Symbols**.
26.4.20 Labelling Points With Symbols

Symbols can be placed at certain points given by `symbol_n_type`.

The symbol is drawn in a square box centred on (0,0) with sides of length two millimetres. That is, the box co-ordinates are (-1,-1), (1,1), (1,-1), (-1,-1).

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: Labelling points with symbols</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set #</td>
<td>input</td>
<td>where ( n = 1 ) to 20. The set enables the specification of a number of parameters for a number of specified symbols.</td>
<td></td>
</tr>
<tr>
<td>For the following parameters, ( n ) takes the value 1 to 20 and specifies the ( n )th parameter set.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol Type</td>
<td><code>symbol_n_type</code></td>
<td>choice box</td>
<td>chainage of vip, height of vip chainage of vip, height of primary crest sag vtp hcp change of grade mid-ordinate of the vertical curve</td>
</tr>
<tr>
<td>If <code>symbol_n_type</code> is missing, then the set is ignored.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Label height mode</td>
<td><code>symbol_n_y_mode</code></td>
<td>choice box</td>
<td>height above boxes (mm) height above height value (mm) height above primary height (mm)</td>
</tr>
<tr>
<td>specifies which reference point the <code>label_n_y</code> distance is measured from.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance above point (mm)</td>
<td><code>symbol_n_y</code></td>
<td>input</td>
<td>distance above point given by mode.</td>
</tr>
<tr>
<td>Angle (dms)</td>
<td><code>symbol_n_angle</code></td>
<td>angle box</td>
<td>rotation about point.</td>
</tr>
<tr>
<td>Distance along from point (mm)</td>
<td><code>symbol_n_x</code></td>
<td>input</td>
<td>the distance along from the point in mm.</td>
</tr>
<tr>
<td>Size (mm)</td>
<td><code>symbol_n_size</code></td>
<td>input</td>
<td>the symbol size in mm.</td>
</tr>
<tr>
<td>Colour</td>
<td><code>symbol_n_colour</code></td>
<td>colour box</td>
<td>the symbol size in mm.</td>
</tr>
<tr>
<td>Symbol draw mode</td>
<td><code>symbol_n_draw_mode</code></td>
<td>choice box</td>
<td>height above boxes (mm) cross (0) upright from centre of box (1) up and downright from centre of box (2) square (3) triangle, base at bottom (4) circle (5)</td>
</tr>
</tbody>
</table>

`draw mode for symbol`
Please continue to the next section 26.4.21 Hatching Cut/Fill.
26.4.21 Hatching Cut/Fill

This option is used to hatch cut and/or fill areas between sets of tins.

The Hatching Cut/Fill section is common to the PPF Editors and is fully documented in 26.2.8 Hatching Cut/Fill.

**Section: Hatching cut/fill - Tin parameters** - see 26.2.8 Hatching Cut/Fill

**Section: Hatching cut/fill - Cut parameters** - see 26.2.8.1 Hatching Cut/Fill - Cut

**Section: Hatching cut/fill - Fill parameters** - see 26.2.8.2 Hatching Cut/Fill - Fill

Please continue to the next section 26.4.22 Cuts.
26.4.22 Cuts

The cuts that the longsection string makes though strings in any user-specified model, can be automatically labelled on the x-section plots.

The Cuts section is common to the PPF Editors and is fully documented in 26.2.9 Cuts.

Section: Cuts - Model/Name mask parameters - see 26.2.9 Cuts.

Section: Cuts - Chainage parameters - see 26.2.9.3 Cuts - Chainage - Long Sections Only

Section: Cuts - Height parameters - see 26.2.9.4 Cuts - Heights

Section: Cuts - Diameter parameters - see 26.2.9.5 Cuts - Diameters

Section: Cuts - Label parameters - see 26.2.9.6 Cuts - Labels

Section: Cuts - Symbol parameters - see 26.2.9.7 Cuts - Symbols

Continue to the next section 26.4.23 Paired Cuts - Long Section.
26.4.23 Paired Cuts - Long Section

Paired cuts uses pairs of strings and where both strings cut the primary string, the cuts on the long plot can be labelled with information such as:
(a) the name of the first and second cut strings
(b) attributes from the first and second cut string
(c) plan distance between the two cuts of the pair
(d) 3d length between the two cuts of the pair
(e) the chainage on the long section of the first and second cuts of the pair

Symbols can be drawn at the chainages of the first and second cuts (at a height specified when defining the Cut sets), and a line drawn between the symbols. Using both the line and a symbol of an arrow head makes an arrow between the two cuts.

The method for specifying which strings are to be checked for paired cuts is by first specifying the models (using wild cards and characters) that contains the strings, and then a start name mask to select the all the strings that are to be the first strings in a cut pair, and an end name mask to select all the strings that are the second strings in a cut pair.

For a long section, all the cuts of the selected start strings are found and the cuts ordered by the chainage of the cut with the primary string of the long section. Then all the cuts of the selected
end strings are found and the cuts ordered by the chainage of the cut with the primary string of the long section.

The start cuts are then processed and each start cut is paired with the next end cut with a larger chainage than the start cut. It is possible that there are end cuts before the first start cut (orphaned end cuts) and start cut with no following end cut (orphaned start cuts).

Up to twenty five different sets of models and name masks can be used so that different paired cut sets can be labelled in different ways.

See

26.4.23.1 Paired Cuts (Long Section) - Front Page
26.4.23.2 Paired Cuts (Long Section) - Lines and Symbols
26.4.23.3 Paired Cuts (Long Section) - Labels
26.4.23.4 Paired Cuts (Long Section) - Start Chainage
26.4.23.5 Paired Cuts (Long Section) - End Chainage

Or return to 26.4 Long Plot PPF Editor.
26.4.23.1 Paired Cuts (Long Section) - Front Page

Section: Pairing - Model/Name mask parameters

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Define Set #</td>
<td>pairing_n_set</td>
<td>input</td>
</tr>
</tbody>
</table>

*set number to be used to define different model/mask sets.*

<table>
<thead>
<tr>
<th>Model</th>
<th>pairing_n_model</th>
<th>model box</th>
</tr>
</thead>
</table>

*models (the name can include wild cards (*) and wild characters (?)) from which start and end cut masks are derived.*

<table>
<thead>
<tr>
<th>Start name mask</th>
<th>pairing_n_start_mask</th>
<th>input</th>
</tr>
</thead>
</table>

*text string containing the name masks to select the start strings, each separated by one or more spaces, to test the string names against. If the name include spaces then it must be enclosed in the quotes " (eg "bench 2").

Each mask can include wild cards (*) and wild characters (?).

For example: 
"ke*" or, 
"?bank*" or, if both masks are required, 
"ke* ?bank***"

<table>
<thead>
<tr>
<th>End name mask</th>
<th>pairing_n_end_mask</th>
<th>input</th>
</tr>
</thead>
</table>

*text string containing the name masks to select the end strings, each separated by one or more spaces, to test the string names against. If the name include spaces then it must be enclosed in the quotes " (eg "bench 2").

Each mask can include wild cards and wild characters.

For example: 
"ke*" or, 
"?bank*" or, if both masks are required, 
"ke* ?bank***"

**Note**

*If Start name mask is blank and End name mask is not blank, then all strings in the models that are not used as end strings, are used as start string.*

*If End name mask is blank and Start name mask is not blank, then all strings in the models that are not used as start strings, are used as end string.*

*This is currently not operational: If Start name mask and End name mask are both blank, then all strings in the models are used. All the strings that cut the primary string of the long section are ordered by offset, and successive pairs of cuts taken to be the cut pairs. There could be one remaining cut point (it has the largest chainage) and if so, it is taken to be orphaned start point.*
where to get the z-values to use for the two cut positions. This is used in conjunction with the choice in the Adopted height field.

If left blank, at cut string height is used.

Adopted height pairing_n_height choice box lower position, higher position
for the choice selected in the Position field, there will be a z-value at the first cut and another z-value at the end cut. The Adopted height says which of the two z-value to use for placing symbols, lines between cuts, text from Attributes and the Offsets of the first cut and the second cut.

If lower (higher) position, the smaller (greater) of the two z-values will be used.
If start (end), the z-value of the first (second) cut of the cut point pair will be used.
If left blank, lower position is used.

Include orphaned start ? pairing_n_orphan_start choice box yes, no
if Yes and there are start cuts after the last end cut (and so can’t be paired), then the last start cut (i.e. the one with the largest chainage) is taken as an orphaned start and it is labelled as though there is a matching end at the end of the long section.
if No and there are start cuts after the last end cut, then those start cut are ignored.
If left blank, No is used.

Include orphaned ends ? pairing_n_orphan_end choice box yes, no
if Yes and there are end cuts before the first start cut, then the first end cut (the one with the smallest chainage) is taken as an orphaned end and it is labelled as though there is a matching start at the beginning of the long section.
if No and there are end cuts before the first start cut, then those end cut are ignored.
If left blank, No is used.

Continue to the next section 26.4.23.2 Paired Cuts (Long Section) - Lines and Symbols or return to 26.4.23 Paired Cuts - Long Section.
26.4.23.2 Paired Cuts (Long Section) - Lines and Symbols

Symbols can be placed at the start and end cut chainages (at the z-value given by the Position and Adopted height columns when defining the Sets), and a line can also be drawn between the cuts at that z-value. Having both the line and a symbol forms an arrow between the cuts pair.

Section: Pairing - Lines and symbol parameters

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Set #</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>set number as specified in the Define set #.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol type</td>
<td>pairing_line_symbols_n_symbol</td>
<td>choice box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>type of symbol at each end of the cut pair.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><img src="symbol_types.png" alt="Symbol Types" /></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>for cases 6 and 7, a plot symbol is to be used and is given in the Symbol field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>pairing_line_symbols_n_user_symbol</td>
<td>plot symbols</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for Symbol type 6 and 7, the plot symbol to be used at each cut point.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For Symbol type 0 to 5, this field is not used.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol colour</td>
<td>pairing_line_symbols_n_symbol_colour</td>
<td>colour box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>colour of the symbol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draw line</td>
<td>pairing_line_symbols_n_line</td>
<td>choice box</td>
<td>No line, Draw line</td>
</tr>
<tr>
<td></td>
<td>if Draw line, draw a line between the start and end cuts for each cut pair.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If No line, no line is drawn between the start and end cuts for each cut pair.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The height used for the line at both ends is given by the Position and Adopted height columns in the Set definition.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line colour</td>
<td>pairing_line_symbols_n_line_colour</td>
<td>colour box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>colour of the line between the start and end cuts for each cut pair</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Left symbol rotation  pairing_line_symbols_n_left_rotate  measure box
angle (measured counterclockwise from the positive x-axis with units of degrees in 4.17.1 HP. Notation) to rotate the symbol at the start cut point for the cut point pair.
If there is no value then the rotation is 0.

Right symbol rotation  pairing_line_symbols_n_right_rotate  measure box
angle (measured counterclockwise from the positive x-axis with units of degrees in 4.17.1 HP. Notation) to rotate the symbol at the end cut point for the cut point pair.
If there is no value then the rotation is 0.

X (mm)  pairing_line_symbols_n_x  measure box
horizontal adjustment to the position of the symbol.

Y (mm)  pairing_line_symbols_n_y  measure box
vertical adjustment to the position of the symbol.

Size  pairing_line_symbols_n_size  measure box
size of symbol. A value of 0 means no symbol.

Continue to the next section 26.4.23.3 Paired Cuts (Long Section) - Labels or return to 26.4.23 Paired Cuts - Long Section.
26.4.23.3 Paired Cuts (Long Section) - Labels

*Section: Pairing - Label parameters*

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Set #</td>
<td>Use Set #</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>set number as specified in the Define set #.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>pairing_label_n_mode</td>
<td>choice box</td>
<td></td>
</tr>
</tbody>
</table>

*Type of label to write between the start and end points of the cuts pair*

The height used for the label is given by the **Position** and **Adopted height** columns in the Set definition.

**Attribute name**

- **pairing_label_n_attribute**

  if **Mode** is **attribute of first string** or **attribute of second string**, this is the name of the attribute to use as the label

**Offset**

- **pairing_label_n_offset**

  the text is raised by this amount above the line between the cut pair

**Colour**

- **pairing_label_n_colour**

  colour of the text

**Size (mm)**

- **pairing_label_n_size**

  size of the text in millimetres. A value of 0 means no text.

**Textstyle**

- **pairing_label_n_textstyle**

  the textstyle for the text

**Pre-text**

- **pairing_label_n_pre_text**

  text to draw before the label. This can include spaces, including one or more spaces after the last non blank character of **Pre-text**.

**Post-text**

- **pairing_label_n_post_text**

  text to draw after the label. This can include spaces, including one or more spaces before the first non blank character of **Post-text**.

**Decimals**

- **pairing_label_n_no_decimals**

  if the label is a number, then **Decimals** is the number of decimal places to write the number out to.

  If > 0, trailing zeros are **removed** after the decimal point.

  If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

**Leave gap for text**

- **pairing_label_n_??**

  if ticked then a gap in the line between the cuts pair is left large enough for the label and the pre-text and post-text.

  If not ticked then no gap is left in the line between the cuts pair.

**Rotate text to fit**

- **pairing_label_n_rotate_text**

  if ticked, then if the label and the pre-text and post-text will not fit between the start cut and end cut of...
the cut pair, the text is rotated through ninety degrees.

If not ticked, then the label text is drawn even though it will run over the ends of the cut pair.

Continue to the next section 26.4.23.4 Paired Cuts (Long Section) - Start Chainage or return to 26.4.23 Paired Cuts - Long Section.
26.4.23.4 Paired Cuts (Long Section) - Start Chainage

The Chainage (on the long section) of the first point of the cut pair can be labelled.

The text for the label consists of pre-text followed by Chainage value followed by post-text.

**Section: Pairing - Start Chainage parameters**

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Set #</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

set number as specified in the Define set #.

The height used for the text is given by the Position and Adopted height columns in the Set definition. This is then adjusted by the field Y (mm).

X (mm)  pairing_start_chainage_n_x  measure box

for placing the text: horizontal adjustment from the chainage of the first cut.

Y (mm)  pairing_start_chainage_n_y  measure box

for placing the text: the vertical adjustment to the height given by the Position and Adopted height columns in the Set definition

Angle (dms)  pairing_start_chainage_n_angle  measure box

angle (measured counterclockwise from the positive x-axis with units of degrees in 4.17.1 HP Notation) to rotate the text

Colour  pairing_start_chainage_n_colour  colour box

colour of the text

Size (mm)  pairing_start_chainage_n_size  measure box

size of the text in millimetres. A value of 0 means no text.

Textstyle  pairing_start_chainage_n_textstyle  textstyle box

the textstyle for the text

Pre-text  pairing_start_chainage_n_pre_text  text box

text before the Chainage value. This can include spaces, including one or more spaces after the last non blank character of Pre-text.

Post-text  pairing_start_chainage_n_post_text  text box

text after the Chainage value. This can include spaces, including one or more spaces before the first non blank character of Post-text.
Justification          pairing_start_chainage_n_justification          justification box

Decimals               pairing_start_chainage_n_no_decimals       number box
the number of decimal places for the offset value
If > 0, trailing zeros are removed after the decimal point.
If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

Continue to the next section 26.4.23.5 Paired Cuts (Long Section) - End Chainage or return to 26.4.23 Paired Cuts - Long Section.
26.4.23.5 Paired Cuts (Long Section) - End Chainage

The Chainage on the long section of the second point of the cut pair can be labelled. The label consists of pre-text then the Chainage value followed by post-text.

Section: Pairing - End Chainage parameters

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Set #</td>
<td></td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

  set number as specified in the Define set #.

The height used for the text is given by the Position and Adopted height columns in the Set definition. This is then adjusted by the field Y (mm).

X (mm)  pairing_end_chainage_n_x  measure box

for placing the text: horizontal adjustment from the offset of the second cut.

Y (mm)  pairing_end_chainage_n_y  measure box

for placing the text: the vertical adjustment to the height given by the Position and Adopted height columns in the Set definition.

Angle (dms)  pairing_end_chainage_n_angle  measure box

angle (measured counterclockwise from the positive x-axis with units of degrees in 4.17.1 HP Notation) to rotate the text.

Colour  pairing_end_chainage_n_colour  colour box

colour of the text.

Size (mm)  pairing_end_chainage_n_size  measure box

size of the text in millimetres. A value of 0 means no text.

Textstyle  pairing_end_offset_n_textstyle  textstyle box

the textstyle for the text.

Pre-text  pairing_end_chainage_n_pre_text  text box

text before the Offset value. This can include spaces, including one or more spaces after the last non blank character of Pre-text.

Post-text  pairing_end_chainage_n_post_text  text box

text after the Offset value. This can include spaces, including one or more spaces before the first non blank character of Post-text.
### Justification

**pairing_start_chainage_n_justification**

Justification of the text.

### Decimals

**pairing_start_chainage_n_no_decimals**

The number of decimal places for the Offset value

*If* > 0, trailing zeros are **removed** after the decimal point.

*If* <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

Please continue to the next section **26.4.24 Primary String Name Label**.
26.4.24 Primary String Name Label

The plot can be labelled with a name under the boxes area.

The name is made up of a concatenation of the text string names.

**Section: Primary string name label parameters**

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name mode</td>
<td>plot_name_string_namechoice box</td>
<td>box</td>
</tr>
<tr>
<td></td>
<td>determines what text is placed in the name labels.</td>
<td></td>
</tr>
<tr>
<td>Pre-text</td>
<td>plot_name_pre_text</td>
<td>input</td>
</tr>
<tr>
<td></td>
<td>text before label.</td>
<td></td>
</tr>
<tr>
<td>Post-text</td>
<td>plot_name_post_text</td>
<td>input</td>
</tr>
<tr>
<td></td>
<td>text after label.</td>
<td></td>
</tr>
<tr>
<td>Textstyle</td>
<td>plot_name_textstyle</td>
<td>text box</td>
</tr>
<tr>
<td></td>
<td>textstyle of label.</td>
<td></td>
</tr>
<tr>
<td>Size (mm)</td>
<td>plot_name_size</td>
<td>input</td>
</tr>
<tr>
<td></td>
<td>size of label.</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>plot_name_colour</td>
<td>colour box</td>
</tr>
<tr>
<td></td>
<td>colour of label.</td>
<td></td>
</tr>
<tr>
<td>X offset (mm)</td>
<td>plot_name_x_offset</td>
<td>input</td>
</tr>
<tr>
<td></td>
<td>horizontal adjustment to position of label.</td>
<td></td>
</tr>
<tr>
<td>Y offset (mm)</td>
<td>plot_name_y_offset</td>
<td>input</td>
</tr>
<tr>
<td></td>
<td>vertical adjustment to position of label.</td>
<td></td>
</tr>
</tbody>
</table>

The plot name is positioned under the boxes.

The plot_name_x_offset is measured from the beginning of the height boxes.

The default for plot_name_x_offset is centred on heights area.

The plot_name_y_offset is measured from the bottom of the box area with positive being down.

Please continue to the next section 26.4.25 Scale Labelling.
26.4.25 Scale Labelling

The plot can be labelled with the horizontal and vertical scale under the boxes area. The scale label is made up of a concatenation of the text strings:

scale_horizontal_pre_text horizontal scale value scale_horizontal_post_text
and
scale_vertical_pre_text vertical scale value scale_vertical_post_text

The horizontal scale value is the value given by the scale parameter. The scales are positioned under the boxes.

See

26.4.25.1 Scale Labelling - Horizontal
26.4.25.2 Scale Labelling - Vertical

Or return to 26.4 Long Plot PPF Editor.
26.4.25.1 Scale Labelling - Horizontal

Section: Scale labelling - Horizontal parameters

The fields and buttons used in this section have the following functions.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-text</td>
<td>scale_horizontal_pre_text</td>
<td>text box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>text before scale label</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-text</td>
<td>scale_horizontal_post_text</td>
<td>text box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>text after scale label</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textstyle</td>
<td>scale_horizontal_textstyle</td>
<td>textstyle box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>textstyle of scale label</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size (mm)</td>
<td>scale_horizontal_size</td>
<td>real box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>size of scale label</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>scale_horizontal_colour</td>
<td>colour box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>colour of scale label</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X offset (mm)</td>
<td>scale_horizontal_x_offset</td>
<td>real box</td>
<td>horizontal adjustment to position the label. It is measured from the beginning of the heights area.</td>
</tr>
<tr>
<td>Y offset (mm)</td>
<td>scale_horizontal_y_offset</td>
<td>real box</td>
<td>vertical adjustment to position the scale label. It is measured down from the bottom of the boxes.</td>
</tr>
<tr>
<td>Decimal places</td>
<td>scale_horizontal_decimals</td>
<td>integer box</td>
<td>number of decimal places in the scale label.</td>
</tr>
</tbody>
</table>

If > 0, trailing zeros are removed after the decimal point.
If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

Continue to the next section 26.4.25.2 Scale Labelling - Vertical or return to 26.4.25 Scale Labelling.
26.4.25.2 Scale Labelling - Vertical

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-text</td>
<td>scale_vertical_pre_text</td>
<td>text box</td>
<td></td>
</tr>
<tr>
<td>Post-text</td>
<td>scale_vertical_post_text</td>
<td>text box</td>
<td></td>
</tr>
<tr>
<td>Textstyle</td>
<td>scale_vertical_textstyle</td>
<td>textstyle box</td>
<td></td>
</tr>
<tr>
<td>Size (mm)</td>
<td>scale_vertical_size</td>
<td>real box</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>scale_vertical_colour</td>
<td>colour box</td>
<td></td>
</tr>
<tr>
<td>X offset (mm)</td>
<td>scale_vertical_x_offset</td>
<td>real box</td>
<td></td>
</tr>
<tr>
<td>Y offset (mm)</td>
<td>scale_vertical_y_offset</td>
<td>real box</td>
<td></td>
</tr>
<tr>
<td>Decimal places</td>
<td>scale_vertical_decimals</td>
<td>number box</td>
<td></td>
</tr>
</tbody>
</table>

*labelling of scales on the long section plots*

Section: Scale labelling - Vertical parameters

The fields and buttons used in this section have the following functions.

- **Pre-text**
  - *text before label*
  - Parameter name: `scale_vertical_pre_text`
  - Type: text box

- **Post-text**
  - *text after label*
  - Parameter name: `scale_vertical_post_text`
  - Type: text box

- **Textstyle**
  - *textstyle of label*
  - Parameter name: `scale_vertical_textstyle`
  - Type: textstyle box

- **Size (mm)**
  - *size of label*
  - Parameter name: `scale_vertical_size`
  - Type: real box

- **Colour**
  - *colour of label*
  - Parameter name: `scale_vertical_colour`
  - Type: colour box

- **X offset (mm)**
  - *horizontal adjustment to the position of label. This is measured from the beginning of the heights area.*
  - Parameter name: `scale_vertical_x_offset`
  - Type: real box

- **Y offset (mm)**
  - *vertical adjustment to the position of label. This is measure in a downward direction from the bottom of the boxes.*
  - Parameter name: `scale_vertical_y_offset`
  - Type: real box

- **Decimal places**
  - *number of decimal places in the label.*
  - Parameter name: `scale_vertical_decimals`
  - Type: number box

  *If > 0, trailing zeros are removed after the decimal point.*
  *If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.*

Please continue to the next section **26.4.26 Plan Plotting.**
26.4.26 Plan Plotting

**Section: Plan parameters**

The Plan Plotting section is for generating a combined long section and plan plot on the one plot sheet. The chainage interval for the long section plots (as set up in the Pagination section 26.4.7 Pagination) is used to define the chainage interval for the plan plot.

The total sheet size is given by the Sheet size parameter (see the section 26.4 Long Plot PPF Editor), and the position of the long section plot on the sheet is defined in the section 26.4.6 Plot Sheet Layout - Long Section. What is left to be defined is the area on the sheet for the plan plot.

Hence sheets of long sections and the associated plan plots are automatically generated.

The fields and buttons used in this section have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use plan plotting</td>
<td>plan_plotting</td>
<td>tick box</td>
<td></td>
</tr>
<tr>
<td>Left margin (mm)</td>
<td>plan_left_margin</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Right margin (mm)</td>
<td>plan_right_margin</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Top margin (mm)</td>
<td>plan_top_margin</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Bottom margin (mm)</td>
<td>plan_bottom_margin</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Gap from left margin to start chainage (mm)</td>
<td>plan_left_margin_gap</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Draw border around plan plot</td>
<td>plan_draw_border</td>
<td>tick box</td>
<td></td>
</tr>
<tr>
<td>Border colour</td>
<td>plan_border_colour</td>
<td>colour box</td>
<td></td>
</tr>
<tr>
<td>Symbol for start chainage</td>
<td>plan_start_symbol</td>
<td>symbol box</td>
<td></td>
</tr>
<tr>
<td>Symbol for end chainage</td>
<td>plan_end_symbol</td>
<td>symbol box</td>
<td></td>
</tr>
<tr>
<td>Symbol size (mm)</td>
<td>plan_symbol_size</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Symbol colour</td>
<td>plan_symbol_colour</td>
<td>colour box</td>
<td></td>
</tr>
<tr>
<td>View to plot</td>
<td>plan_view_name</td>
<td>view box</td>
<td></td>
</tr>
</tbody>
</table>

Please continue to the next section 26.4.27 PPFs To Include - Long Section.
26.4.27 PPFs To Include - Long Section

This is documented for all the PPF Editors in 26.2.10 PPFs To Include.
Please continue to the next section 26.4.28 Buttons at Bottom of Panel - Long Section.

26.4.28 Buttons at Bottom of Panel - Long Section

This is documented for all the PPF Editors in 26.2.2 View to Load and Global Variables.

Return to 26.4 Long Plot PPF Editor.
26.5 Drainage Long Plot PPF Editor

**Position of option on menu:** Plot => Plot and PPF Editors => Drainage long

The **Drainage Plot PPF Editor** is for creating and/or editing a (binary) drainage and sewer long section ppf file and for creating a drainage and/or sewer long section plot.

**Note:** Binary and text PPFs are stored within the project (not in the folder containing the project).

On selecting the Drainage long option, the **Drainage Plot PPF Editor** panel is displayed.

The plot parameters for controlling the cross section plots are accessed by expanding to the appropriate node in the **Drainage Plot** tree (click on the + to expand to node or - to collapse the node) and then clicking on the required node, and the required information to fill in is displayed on the right hand side of the panel.

For information on all the different nodes see:

- **26.5.1 General Information on Drainage Long Section Plots**
- **26.5.2 Drainage Plot - Front Page**
- **26.5.3 Notes - Drainage Long Plot**
- **26.5.5 Title Block - Drainage Long Plot**
- **26.5.6 Plot Sheet Layout**
- **26.5.7 Boxes**
- **26.5.8 Chainages/Uprights**
26.5.9 Datum Area
26.5.10 Arrows
26.5.11 Drainage Graph Area
26.5.12 Top Area
26.5.13 Corridors - Drainage Long
26.5.14 Maintenance Holes
26.5.15 Property Controls/House Connections
26.5.16 Hatching Cut/Fill
26.5.17 Cuts - Drainage/Sewer Long
26.5.18 Primary String Name Label
26.5.19 PPFs to include - Drainage Long Section
26.5.20 Buttons at Bottom of Panel
26.5.1 General Information on Drainage Long Section Plots

The Drainage Long Section Plot generates the longsection plots for all lines in a drainage network.

Given the plot sheet size and the horizontal and vertical scales, the long sections for the drainage lines are plotted in string name alphabetical order starting at the top of the sheet and moving across the sheet. Once one row is full, if there is room the plot moves down the page and begins a new row. When a plot sheet is full, a new plot sheet is automatically begun.

Hence the drainage lines are plotted one after another on one or more plot sheets.

Each individual drainage long section plot consists of eleven areas.

From the bottom up, they are

1. The **drainage string name area** is where the name of the drainage string can be plotted.
2. The **boxes area** is where the chainages and various values for the drainage strings are labelled.
3. The **below datum area** is a region between the boxes area and the datum line.
4. The **arrow 1 area** is for drawing arrows where the arrows go between the staggered uprights and below the graph area. The datum line is at the bottom of the arrow 1 area.
5. The **bottom stagger area** is where the upright line staggers occur before going up from the boxes area to the graph area.
6. The **arrow 2 area** is for drawing arrows below the graph but where the arrows go between non-staggered uprights.
7. The **graph area** is the area where the actual plots of the strings are drawn.
8. The **arrow 3 area** is for drawing arrows above the graph area and where the arrows go between non-staggered uprights.
9. The **top stagger area** is where the upright line staggers occur above the graph area.

10. The **arrow 4 area** is for drawing arrows where the arrows go between the staggered uprights and above the graph area.

11. The **top area** is an annotation area above the arrow 4 area and is used for bubbles, manhole names (pit names), junctions, deflection angles etc.

The areas and the information in them will now be described in more detail.

The drainage longsection plot includes:
(a) the manholes, drainage pipe and any house connections
(b) the height of the finished surface at the manhole
(c) manhole names and cover types
(d) distances between manholes
(e) the invert depth of the pipe on either side of a manhole
(f) the grades and types of the pipes
(g) any services in the corridor - including their name, invert level and distance from the nearest downstream manhole
(h) if the information exists, the velocity, flow, HGL values and diagram

All the required parameters for controlling the drainage long section plot are set up in the **Drainage Plot PPF Editor** and will be described in detail in the following sections.

Please continue to the next section **26.5.2 Drainage Plot - Front Page** or return to **26.5 Drainage Long Plot PPF Editor**.
26.5.2 Drainage Plot - Front Page

The drainage long plot itself consists of the three regions - boxes, datum and graph areas. The **boxes area** is where the titles and the chainage values and the heights/depths for the strings drawn on the long plot are labelled. The **datum area** is the region between the boxes area and the graph area. The **graph area** is the area where the actual plots of the strings are drawn.

**Section: Plot parameter file**

A *plot parameter file* can be used to load values into the fields of the PPF Editor, or as a file to write out all current values in a PPF Editor to.

This section is documented for all the PPF Editors in **26.2.1 Plot Parameter File**.

**Section: Section: View to load details from AND Global variables**

A *section view* can be selected to load certain values into fields of the PPDF Editor. For example,
Vertical exaggeration and Corridor models. And there are variables to use if some values aren’t given.

These sections are documented for all the PPF Editors in 26.2.2 View to Load and Global Variables.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: Section parameters</td>
<td>network_model</td>
<td>model box available models</td>
<td>model containing the drainage/sewer strings to draw in long section on the plot.</td>
</tr>
<tr>
<td>Horizontal Scale</td>
<td>scale</td>
<td>input</td>
<td>horizontal scale to be used for the long section plots</td>
</tr>
<tr>
<td>Vertical exaggeration</td>
<td>vertical_exaggeration</td>
<td>input</td>
<td>vertical scale to be used for the long section plots</td>
</tr>
</tbody>
</table>

Section: Sheet size setup and Plotter parameters

these sections define the size of the "paper" to plot on, the type of plotter to use and the naming to use for the plot files.

These sections are documented for all the PPF Editors in 26.2.3 Sheet Size and Plotter Parameters.

Please continue to the next section 26.5.3 Notes - Drainage Long Plot.
26.5.3 Notes - Drainage Long Plot
This is documented for all the PPF Editors in 26.2.4 Notes.
Please continue to the next section 26.5.4 Plot to Models - Drainage Long Plot.

26.5.4 Plot to Models - Drainage Long Plot
This is documented for all the PPF Editors in 26.2.5 Plot to models.
Please continue to the next section 26.5.5 Title Block - Drainage Long Plot.

26.5.5 Title Block - Drainage Long Plot
This is documented for all the PPF Editors in 26.2.6.1 Title Block Section in PPF Editors.
For more general information about a title block, see 26.2.6 Title Block.
Please continue to the next section 26.5.6 Plot Sheet Layout.
26.5.6 Plot Sheet Layout

See

26.5.6.1 Plot Sheet Layout - Margins
26.5.6.2 Plot Sheet Layout - Other Parameters

Or return to 26.4 Long Plot PPF Editor.
26.5.6.1 Plot Sheet Layout - Margins

Section: Plot sheet layout - Margins

<table>
<thead>
<tr>
<th>Panel field</th>
<th>Parameter name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left (mm)</td>
<td>left_border_gap</td>
<td>input</td>
</tr>
<tr>
<td></td>
<td>left border gap (in millimetres).</td>
<td></td>
</tr>
<tr>
<td>Right (mm)</td>
<td>right_border_gap</td>
<td>input</td>
</tr>
<tr>
<td></td>
<td>right border gap (in millimetres).</td>
<td></td>
</tr>
<tr>
<td>Top (mm)</td>
<td>top_border_gap</td>
<td>input</td>
</tr>
<tr>
<td></td>
<td>top border gap (in millimetres).</td>
<td></td>
</tr>
<tr>
<td>Bottom (mm)</td>
<td>bottom_border_gap</td>
<td>input</td>
</tr>
<tr>
<td></td>
<td>bottom border gap (in millimetres).</td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section 26.5.6.2 Plot Sheet Layout - Other Parameters or return to 26.5.6 Plot Sheet Layout.
### 26.5.6.2 Plot Sheet Layout - Other Parameters

**Section: Plot sheet layout - Other parameters**

<table>
<thead>
<tr>
<th>Panel field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row per sheet mode</td>
<td>only_one_line</td>
<td>choice box</td>
<td>more than one row on sheet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>only one row on sheet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>whether to allow multiple rows on a sheet.</strong></td>
</tr>
<tr>
<td>Plot height (mm)</td>
<td>plot_height</td>
<td>input</td>
<td>height of plot row (in millimetres).</td>
</tr>
<tr>
<td>Horizontal plot gap (mm)</td>
<td>horizontal_plot_gap</td>
<td>input</td>
<td>gap between plot columns (in millimetres).</td>
</tr>
<tr>
<td>Vertical plot gap (mm)</td>
<td>vertical_plot_gap</td>
<td>input</td>
<td>gap between plot rows (in millimetres).</td>
</tr>
<tr>
<td>Start new sheet/row for strings longer than (world units)</td>
<td>string_length_for_break</td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section [26.5.7 Boxes](#) or return to [26.5.6 Plot Sheet Layout](#).
26.5.7 Boxes

The Boxes Area on the drainage long section plot is used to label points on the drainage strings with the following information: chainages, road centre line chainages, natural surface heights, finished surface heights, before pit and after pit invert levels, before pit and after pit hgl values, and before pit and after pit depths to inverts.

The default order of the boxes is as shown in the diagram, below.

![Diagram of Boxes Area](image)

The chainage box is hardwired to always appear first (at the bottom) in the order of boxes. If, you wish to change the order of any of the other boxes, or wish to omit any of the other boxes, you can do so by specifying the following box order parameters.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box #</td>
<td>box_n_set</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>order (from 1 to 6) of the nth box type.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>List #</td>
<td>box_n</td>
<td>choice box</td>
<td>road centre line chainages</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>natural surface heights</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>finished surface heights</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>invert levels</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hgl values</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>depths to inverts</td>
</tr>
</tbody>
</table>

box type for the nth set of box order parameters.

See

- 26.5.7.1 Boxes - Title Area
- 26.5.7.2 Boxes - Values Area
- 26.5.7.3 Boxes - Chainage
- 26.5.7.4 Boxes - Road Centre Line Chainage
- 26.5.7.5 Boxes - Natural Surface
- 26.5.7.6 Boxes - Finished Surface
- 26.5.7.7 Boxes - Invert Levels
- 26.5.7.8 Boxes - HGL
- 26.5.7.9 Boxes - Depths
- 26.5.7.10 Boxes - Outer linework

Or return to 26.4 Long Plot PPF Editor.
26.5.7.1 Boxes - Title Area

Section: Boxes - Title area parameters

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box width (mm)</td>
<td>box_width</td>
<td>input</td>
<td>width of the box title area.</td>
</tr>
<tr>
<td>Box height (mm)</td>
<td>box_height</td>
<td>input</td>
<td>default height of each box.</td>
</tr>
<tr>
<td>Colour of box linework</td>
<td>box_colour</td>
<td>colour box</td>
<td>available colours</td>
</tr>
<tr>
<td>Size of titles (mm)</td>
<td>title_box_text_size</td>
<td>input</td>
<td>default text size of box titles.</td>
</tr>
<tr>
<td>Colour of titles</td>
<td>title_box_text_colour</td>
<td>colour box</td>
<td>available colours</td>
</tr>
</tbody>
</table>

Suppress title left linework	suppress_title_box_line_left	tick box
Suppress title top linework	suppress_title_box_line_top	tick box
Draw linestyle legend beneath TIN & HGL titles	draw_linestyle_legends	tick box
Draw linestyle legend beneath IL title	draw_linestyle_legend_il	tick box

Continue to the next section 26.5.7.2 Boxes - Values Area or return to 26.5.7 Boxes.

26.5.7.2 Boxes - Values Area

Section: Boxes - Value area parameters

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of values (mm)</td>
<td>box_text_size</td>
<td>input</td>
<td>default text size of box values.</td>
</tr>
<tr>
<td>Colour of values</td>
<td>box_text_colour</td>
<td>colour box</td>
<td>available colours</td>
</tr>
<tr>
<td>Justification mode</td>
<td>box_text_left_justify</td>
<td>choice box</td>
<td>top justify values, bottom justify values</td>
</tr>
<tr>
<td>Text side mode</td>
<td>box_text_side</td>
<td>choice box</td>
<td>left, right, centre</td>
</tr>
</tbody>
</table>

| Decimal places of values   | number_of_decimals       | number box | default number of decimal places for box values. |

If > 0, trailing zeros are removed after the decimal point.
If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

| Suppress value top linework | suppress_value_box_line_top | tick box |

Continue to the next section 26.5.7.3 Boxes - Chainage or return to 26.5.7 Boxes.
### 26.5.7.3 Boxes - Chainage

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box height (mm)</td>
<td>chainage_box_size</td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

Height of chainage box (only required if different from default box_height).

**Section: Title parameters**

1. **Line 1**
   - plot_title_chainage_name
     
     First line of text for chainage box title.

2. **Line 2**
   - plot_title_chainage_name_2
     
     Optional second line of text for chainage box title.

**Colour**

- chainage_title_colour

Text colour of chainage box title (required only if different from default title_box_text_colour).

**Text size (mm)**

- chainage_title_text_size

Text size of chainage box title (required only if different from default title_box_text_size).

**Textstyle**

- chainage_title_textstyle

Font of chainage box title (required only if different from default global_textstyle).

**Suppress title bottom linework**

Suppress title bottom linework (tick box)

---

**Section: Value parameters**

**Colour**

- chainage_text_colour

Text colour of chainage box values (required only if different from default box_text_colour).

**Text size (mm)**

- chainage_text_size

Text size of chainage box values (required only if different from default box_text_size).

**Textstyle**

- chainage_textstyle

Font of chainage box values (required only if different from default global_textstyle).

**Decimal places**

- chainage_decimals

Decimal places for chainage box values (required only if different from default number_of_decimals).

- If > 0, trailing zeros are removed after the decimal point.
- If < 0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

**Suppress value bottom linework**

Suppress value bottom linework (tick box)

Continue to the next section 26.5.7.4 Boxes - Road Centre Line Chainage or return to 26.5.7 Boxes.
26.5.7.4 Boxes - Road Centre Line Chainage

### Panel Field	Parameter name	Type	Pop-Up
Include centre line chainage box | draw_centre_chainage | tick box | whether to include the road centreline chainage box in the boxes area.

- **Box height (mm)** | centre_chainage_box_size | input | height of road centreline chainage box (only required if different from default box_height).

**Section: Title parameters**

- **Line 1** | plot_title_centre_chainage_name | input | first line of text for road centreline chainage box title.
- **Line 2** | plot_title_centre_chainage_name_2 | input | optional second line of text for road centreline chainage box title.
- **Colour** | chainage_title_colour_cl | colour box available colours | colour of road centreline chainage box title (required only if different from default title_box_text_colour).
- **Text size (mm)** | chainage_title_text_size_cl | input | text size of road centreline chainage box title (required only if different from default title_box_text_size).
- **Textstyle** | chainage_title_textstyle_cl | font box available fonts | font of road centreline chainage box title (required only if different from default global_textstyle).

- **Suppress title bottom linework** | suppress_title_box_line_rc | tick box | 

**Section: Value parameters**

- **Colour** | chainage_text_colour_cl | colour box available colours | text colour of road centreline chainage box values (required only if different from default box_text_colour).
- **Text size (mm)** | chainage_text_size_cl | input | text size of road centreline chainage box values (required only if different from default box_text_size).
- **Textstyle** | chainage_textstyle_cl | font box available fonts | font of road centreline chainage box values (required only if different from default global_textstyle).

- **Decimal places** | chainage_cl_decimals | input | decimal places for road centreline chainage box values (required only if different from default number_of_decimals).

  - If > 0, trailing zeros are **removed** after the decimal point.
  - If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

- **Suppress value bottom linework** | suppress_value_box_line_rc | tick box |

Continue to the next section 26.5.7.5 Boxes - Natural Surface or return to 26.5.7 Boxes.
26.5.7.5 Boxes - Natural Surface

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draw text mode</td>
<td>draw_ns_text</td>
<td>choice box</td>
<td>don’t include ns box</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>include ns box</td>
</tr>
</tbody>
</table>

whether to include the natural surface box in the boxes area.

Box height (mm)       surface_box_size   input
height of natural surface box (only required if different from default box_height).

**Section: Title parameters**

Line 1               plot_title_surface_name   input
first line of text for natural surface box title.

Line 2               plot_title_surface_name_2 input
optional second line of text for natural surface box title.

Colour               ns_title_colour        colour box   available colours
text colour of natural surface box title (required only if different from default title_box_text_colour).

Text size (mm)        ns_title_text_size   input
text size of natural surface box title (required only if different from default title_box_text_size).

Textstyle             ns_title_textstyle    font box     available fonts
text of natural surface box title (required only if different from default global_textstyle).

Suppress title bottom linework suppress_title_box_line_ns tick box

**Section: Value parameters**

Colour               ns_text_colour        colour box   available colours
text colour of natural surface box values (required only if different from default box_text_colour).

Text size (mm)        ns_text_size        input
text size of natural surface box values (required only if different from default box_text_size).

Textstyle             ns_textstyle         font box     available fonts
text of natural surface box values (required only if different from default global_textstyle).

Decimal places        ns_decimals        input
decimal places for natural surface box values (required only if different from default number_of_decimals).

If > 0, trailing zeros are removed after the decimal point.
If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

Suppress value bottom linework suppress_value_box_line_ns tick box

Continue to the next section **26.5.7.6 Boxes - Finished Surface** or return to **26.5.7 Boxes**.
26.5.7.6 Boxes - Finished Surface

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draw text mode</td>
<td>draw_fs_text</td>
<td>choice box</td>
<td>don’t include fs box</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>include fs box</td>
</tr>
</tbody>
</table>

whether to include the finished surface box in the boxes area.

<table>
<thead>
<tr>
<th>FS tin/Top of MH mode</th>
<th>draw_fs_mode</th>
<th>choice box</th>
<th>height from fs tin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>height from top of MH</td>
</tr>
</tbody>
</table>

whether the finished surface height values come from the finished surface tin, or from the tops of the maintenance holes.

Box height (mm)               | f_surface_box_size  | input             |                          |
|                            |                      |                   | height of finished surface box (only required if different from default box_height).

**Section: Title parameters**

Line 1                        | plot_title_finished_name | input |                          |
| Line 2                      | plot_title_finished_name_2 | input |                          |

first line of text for finished surface box title.

optional second line of text for finished surface box title.

Colour                        | fs_title_colour       | colour box        | available colours        |
| Text size (mm)                | fs_title_text_size    | input             |                          |
| Textstyle                    | fs_title_textstyle    | font box          | available fonts          |

| Suppress title bottom linework | suppress_title_box_line_fs | tick box |                          |

Section: Value parameters

Colour                        | fs_text_colour        | colour box        | available colours        |
| Text size (mm)                | fs_text_size          | input             |                          |
| Textstyle                    | fs_textstyle          | font box          | available fonts          |

| Suppress value bottom linework | suppress_value_box_line_fs | tick box |                          |

Continue to the next section 26.5.7.7 Boxes - Invert Levels or return to 26.5.7 Boxes.
26.5.7.7 Boxes - Invert Levels

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box height (mm)</td>
<td>invert_height_box_size</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>height of invert level box (only required if different from default box_height).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Section: Title parameters**

- **Line 1**
  - plot_title_invert_name | input |
  - first line of text for invert level box title.
- **Line 2**
  - plot_title_invert_name_2 | input |
  - optional second line of text for invert level box title.
- Colour il_title_colour | colour | box available colours |
  - text colour of invert level box title (required only if different from default title_box_text_colour).
- **Text size (mm) il_title_text_size | input |
  - text size of invert level box title (required only if different from default title_box_text_size).
- **Textstyle il_title_textstyle | font box | available fonts |
  - font of invert level box title (required only if different from default global_textstyle).
- Suppress title bottom linework suppress_title_box_line_il | tick box |

**Section: Value parameters**

- Colour il_text_colour | colour | box available colours |
  - text colour of invert level box values (required only if different from default box_text_colour).
- **Text size (mm) il_text_size | input |
  - text size of invert level box values (required only if different from default box_text_size).
- **Textstyle il_textstyle | font box | available fonts |
  - font of invert level box values (required only if different from default global_textstyle).
- **Decimal places il_decimals | input |
  - decimal places for invert level box values (required only if different from default number_of_decimals).
  - If > 0, trailing zeros are removed after the decimal point.
  - If < 0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.
- Suppress value bottom linework suppress_value_box_line_il | tick box |

Continue to the next section 26.5.7.8 Boxes - HGL or return to 26.5.7 Boxes.
26.5.7.8 Boxes - HGL

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draw HGL box</td>
<td>draw_hgl_value</td>
<td>tick box</td>
<td>whether to include the HGL box in the boxes area.</td>
</tr>
<tr>
<td>Box height (mm)</td>
<td>hgl_box_size</td>
<td>input</td>
<td>height of HGL box (only required if different from default box_height).</td>
</tr>
</tbody>
</table>

**Section: Title parameters**

<table>
<thead>
<tr>
<th>Line 1</th>
<th>plot_title_hgl_name</th>
<th>input</th>
<th>first line of text for HGL box title.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 2</td>
<td>plot_title_hgl_name_2</td>
<td>input</td>
<td>optional second line of text for HGL box title.</td>
</tr>
<tr>
<td>Colour</td>
<td>hgl_title_colour</td>
<td>colour box</td>
<td>available colours</td>
</tr>
<tr>
<td>Text size (mm)</td>
<td>hgl_title_text_size</td>
<td>input</td>
<td>text size of HGL box title (required only if different from default title_box_text_size).</td>
</tr>
<tr>
<td>Textstyle</td>
<td>hgl_title_textstyle</td>
<td>font box</td>
<td>available fonts</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>font of HGL box title (required only if different from default global_textstyle).</td>
</tr>
</tbody>
</table>

**Suppress title bottom linework** suppress_title_box_line_hg tick box

**Section: Value parameters**

Colour	hgl_text_colour	colour box	available colours
Text size (mm)	hgl_text_size	input	text size of HGL box values (required only if different from default box_text_size).
Textstyle	hgl_textstyle	font box	available fonts
			font of HGL box values (required only if different from default global_textstyle).
Decimal places	hgl_decimals	input	decimal places for HGL box values (required only if different from default number_of_decimals).

If > 0, trailing zeros are removed after the decimal point.
If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

**Suppress value bottom linework** suppress_value_box_line_hg tick box

Continue to the next section 26.5.7.9 Boxes - Depths or return to 26.5.7 Boxes.
26.5.7.9 Boxes - Depths

Panel Field	Parameter name	Type	Pop-Up
Depth box mode | depth_mode | choice box | don't include depths box

whether to include the depths (to inverts) box in the boxes area, and if so, whether the depths are measured from the finished surface tin, the tops of the maintenance holes, or the natural surface tin.

Box height (mm) | invert_depth_box_size | input
height of depths box (only required if different from default box_height).

Section: Title parameters

Line 1 | plot_title_depth_name | input
first line of text for depths box title.

Line 2 | plot_title_depth_name_2 | input
optional second line of text for depths box title.

Colour | depth_title_colour | colour box | available colours
text colour of depths box title (required only if different from default title_box_text_colour).

Text size (mm) | depth_title_text_size | input
text size of depths box title (required only if different from default title_box_text_size).

Textstyle | depth_title_textstyle | font box | available fonts
font of depths box title (required only if different from default global_textstyle).

Suppress title bottom linework | suppress_title_box_line_dp | tick box

Section: Value parameters

Colour | depth_text_colour | colour box | available colours
text colour of depths box values (required only if different from default box_text_colour).

Text size (mm) | depth_text_size | input
text size of depths box values (required only if different from default box_text_size).

Textstyle | depth_textstyle | font box | available fonts
font of depths box values (required only if different from default global_textstyle).

Decimal places | depth_decimals | input
decimal places for depths box values (required only if different from default number_of_decimals).

If > 0, trailing zeros are removed after the decimal point.
If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

Suppress value bottom linework | suppress_value_box_line_dp | tick box

Continue to the next section 26.5.10 Boxes - Outer linework or return to 26.5.7 Boxes.
26.5.7.10 Boxes - Outer linework

**Section: Boxes - Outer linework**

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title area box mode</td>
<td>draw_box_mode</td>
<td>choice box</td>
<td>do not draw title area box</td>
</tr>
<tr>
<td>lines</td>
<td></td>
<td></td>
<td>draw title area box, no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>draw title area box with</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>whether to draw the line work around the titles area, and if so, whether to draw lines separating each title as well.</td>
</tr>
<tr>
<td>Chainage box mode</td>
<td>chainage_box_mode</td>
<td>choice box</td>
<td>don't draw the chainage box</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>draw the chainage box</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>whether to draw the line work around the chainage box.</td>
</tr>
</tbody>
</table>

Please continue to the next section [26.5.8 Chainages/Uprights](#).
26.5.8 Chainages/Uprights

Uprights, or leader lines, can be drawn through the points on the drainage strings, anywhere from the top area to the bottom of the boxes area.

**Section: Upright parameters**

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top of uprights mode</td>
<td>uprights_top_mode</td>
<td>choice box</td>
<td>stop at top of pit go to top area</td>
</tr>
<tr>
<td>Bottom of uprights mode</td>
<td>uprights_bottom_mode</td>
<td>choice box</td>
<td>stop at top of boxes go to bottom of boxes</td>
</tr>
</tbody>
</table>

* determines how high on the plot, the uprights are drawn.

* determines how low on the plot, the uprights are drawn.

<table>
<thead>
<tr>
<th>Leave gap in uprights through pit</th>
<th>uprights_gap_mode</th>
<th>tick box</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Colour of uprights to pits</th>
<th>manhole_line_colour</th>
<th>colour box available colours</th>
</tr>
</thead>
</table>

* colour of the uprights.

**Section: Chainage parameters**

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chainage values at uprights</td>
<td>chainage_mode</td>
<td>choice box</td>
<td>pipe length chainage running chainage both pipe length and</td>
</tr>
</tbody>
</table>

* running whether the chainage values represent the individual pipe lengths, the running chainages, or both.

<table>
<thead>
<tr>
<th>Pipe length label position</th>
<th>centre_pipe_length</th>
<th>choice box</th>
<th>0 at start pit, length at end pit centre of pipe length</th>
</tr>
</thead>
</table>

* determines how pipe length chainages are displayed. **Note:** if the centre of pipe length option is chosen, the pipe length chainage text is drawn horizontally, rather than vertically.

See

- 26.5.8.1 Chainages/Uprights - Services
- 26.5.8.2 Chainages/Uprights - Finished Surface/Top of MH Values
- 26.5.8.3 Chainages/Uprights - Staggering

Or return to 26.4 Long Plot PPF Editor.
26.5.8.1 Chainages/Uprights - Services

Any services crossing the drainage strings (defined by specifying corridor service models in the Corridors section) can be automatically labelled with an upright, chainage and invert level labels (of the drainage string, placed within the appropriate boxes in the Boxes area), and a name label (that includes the crossing service string name, its diameter, and its invert level at the point of crossing).

Note: crossing services may also be labelled (independently) by utilising the parameters in the Cuts section.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service chainage values at uprights</td>
<td>service_chainage_modechoice box pipe length chainage running chainage both pipe length and running</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draw uprights to crossing services</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour of uprights to crossing services</td>
<td>service_line_colour colour box available colours</td>
<td>colour of the crossing service uprights.</td>
<td></td>
</tr>
</tbody>
</table>

Section: Service chainage text parameters

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>service_ch_text_colour colour box available colours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text size (mm)</td>
<td>service_ch_text_size input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textstyle</td>
<td>service_ch_textstyle font box available fonts</td>
<td>font of crossing service chainage box values (required only if different from default global_textstyle).</td>
<td></td>
</tr>
<tr>
<td>Decimal places</td>
<td>service_ch_decimals input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If > 0, trailing zeros are removed after the decimal point.
If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

Section: Service invert level text parameters

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>service_il_text_colour colour box available colours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text size (mm)</td>
<td>service_il_text_size input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textstyle</td>
<td>service_il_textstyle font box available fonts</td>
<td>font of crossing service invert level box values (required only if different from default global_textstyle).</td>
<td></td>
</tr>
</tbody>
</table>
global_textstyle).

**Decimal places**

*service_il_decimals*  
**input**

decimal places for crossing service invert level box values (required only if different from default number_of_decimals).

*If > 0, trailing zeros are removed* after the decimal point.

*If < 0, the absolute value is taken as the number of decimal places to report* i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

### Section: Service label text parameters

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show name</td>
<td>service_name_show_name</td>
<td>tick box</td>
<td></td>
</tr>
<tr>
<td>Show size</td>
<td>service_name_show_size</td>
<td>tick box</td>
<td></td>
</tr>
<tr>
<td>Show IL</td>
<td>service_name_show_il</td>
<td>tick box</td>
<td></td>
</tr>
<tr>
<td>X adjustment (mm)</td>
<td>service_name_x</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Y adjustment (mm)</td>
<td>service_name_y</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Stagger</td>
<td>service_name_stagger</td>
<td>tick box</td>
<td>below crossing point</td>
</tr>
<tr>
<td>Y position</td>
<td>service_name_y_mode</td>
<td>choice box</td>
<td>above crossing point below top staggers above bottom staggers</td>
</tr>
</tbody>
</table>

**Distance of label below crossing point (mm)**

*service_name_y*  
**input**

distance (in millimetres) of crossing service name labels below crossing points.

**Colour**

*service_name_text_colour*  
**colour box available colours**

text colour of crossing service name labels (required only if different from default box_text_colour).

**Text size (mm)**

*service_name_text_size*  
**input**

text size of crossing service name labels (required only if different from default box_text_size).

**Textstyle**

*service_name_textstyle*  
**font box available fonts**

font of crossing service name labels (required only if different from default global_textstyle).

**Decimal places**

*service_name_decimals*  
**input**

decimal places for the crossing service invert levels that make up part of the crossing service name labels (required only if different from default number_of_decimals).

*If > 0, trailing zeros are removed* after the decimal point.

*If < 0, the absolute value is taken as the number of decimal places to report* i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

Continue to the next section [26.5.8.2 Chainages/Uprights - Finished Surface/Top of MH Values](#) or return to [26.5.8 Chainages/Uprights](#).
26.5.8.2 Chainages/Uprights - Finished Surface/Top of MH Values

In addition to the finished surface level labels within the Boxes area, more detailed vertical labels representing finished surface levels at the pits, can be added to accompany the pit uprights within the Graph area.

### Panel Field Parameter name Type Pop-Up

**Finished surface draw mode**
- **draw_fs_vertical** choice box
  - do not draw fs values
  - always draw fs values
  - only draw if different

whether to label the finished surface levels within the Graph area. Additional control is provided to only draw the labels if the finished surface level is different from the level at the top of the maintenance hole.

**Finished surface value mode**
- **draw_fs_vertical_mode** choice box
  - value from fs tin
  - value from top of mh

whether the finished surface level label values come from the fs tin or the top of the maintenance holes.

**Pre text**
- **fs_vertical_pre_text** input
  
  label text before the finished surface level.

**Post text**
- **fs_vertical_post_text** input
  
  label text after the finished surface level.

**Decimal places**
- **fs_vertical_decimals** input
  
  decimal places for finished surface level values (required only if different from default number_of_decimals).

  *If > 0, trailing zeros are removed after the decimal point.*

  *If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.*

**Colour**
- **fs_vertical_colour** colour box
  
  text colour of finished surface level labels (required only if different from default box_text_colour).

**Size (mm)**
- **fs_vertical_size** input
  
  text size of finished surface level labels (required only if different from default box_text_size).

**Textstyle**
- **fs_vertical_textstyle** font box
  
  font of finished surface level labels (required only if different from default global_textstyle).

**X adjustment (mm)**
- **fs_vertical_x** input
  
  horizontal adjustment to position of finished surface level labels.

**Y adjustment (mm)**
- **fs_vertical_y** input
  
  vertical adjustment to position of finished surface level labels.

Continue to the next section 26.5.8.3 Chainages/Uprights - Staggering or return to 26.5.8 Chainages/Uprights.
26.5.8.3 Chainages/Uprights - Staggering

Because the pit and service uprights are sometimes too close together to fit all the desired information in the Boxes and Arrows areas, the uprights can be staggered (widen) in such a way as to provide more space in these areas, below and above the Graph area, whilst still maintaining the correct upright spacing within the Graph area itself. Specifically, the staggering of the uprights occurs below the Graph area between Arrow areas 1 and 2, and above the Graph area between Arrow areas 3 and 4. As such, it is recommended that Arrow areas 2 and 3 be used only for information requiring minimal space.

Section: Stagger area below graph area parameters

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top of arrow area 1 to start of the staggers (mm)</td>
<td>stagger_height_1</td>
<td>input</td>
</tr>
</tbody>
</table>

refer to stagger_height_1 on above diagram.

Distance over which stagger occurs (mm)

| stagger_height_2 | input |

refer to stagger_height_2 on above diagram.

End of the staggers to bottom of arrow area 2 (mm)

| stagger_gap_bottom | input |

refer to stagger_gap_bottom on above diagram.

Section: Stagger area above graph area parameters

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top of arrow area 3 to start of the staggers (mm)</td>
<td>stagger_gap_top</td>
<td>input</td>
</tr>
</tbody>
</table>

refer to stagger_gap_top on above diagram.

Distance over which stagger occurs (mm)

| stagger_height_3 | input |

refer to stagger_height_3 on above diagram.

End of the staggers to bottom of arrow area 4 (mm)

| stagger_height_4 | input |
refer to stagger_height_4 on above diagram.

**Section: Stagger offset parameters**

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum distance between pit uprights (mm)</td>
<td>horizontal_text_gap</td>
<td>input</td>
</tr>
<tr>
<td></td>
<td>refer to horizontal_text_gap on above diagram.</td>
<td></td>
</tr>
<tr>
<td>Minimum distance before first service uprights (mm)</td>
<td>service_text_gap_before</td>
<td>input</td>
</tr>
<tr>
<td>Minimum distance after service uprights (mm)</td>
<td>service_text_gap</td>
<td>input</td>
</tr>
<tr>
<td></td>
<td>refer to service_text_gap on above diagram.</td>
<td></td>
</tr>
</tbody>
</table>

Please continue to the next section 26.5.9 Datum Area.
26.5.9 Datum Area

The Datum area is where each long section plot's datum value is drawn. The datum line for each long section plot is defined at the bottom of Arrow area 1.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below datum area gap (mm)</td>
<td>datum_gap</td>
<td>input</td>
<td>distance from the top of the Boxes area to the bottom of Arrow area 1.</td>
</tr>
</tbody>
</table>

Extend datum line into title area

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>datum_extend</td>
<td>tick box</td>
<td></td>
</tr>
</tbody>
</table>

See

26.5.9.1 Datum Area - Name
26.5.9.2 Datum Area - Values

Or return to 26.4 Long Plot PPF Editor.

26.5.9.1 Datum Area - Name

The datum name (or title) is drawn at the datum line, above the Boxes title area.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum name</td>
<td>datum_name</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>X offset (mm)</td>
<td>datum_title_x</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Y offset (mm)</td>
<td>datum_title_y</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Textstyle</td>
<td>datum_title_textstyle</td>
<td>font box</td>
<td>available fonts</td>
</tr>
<tr>
<td>Text size (mm)</td>
<td>datum_title_text_size</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>datum_title_colour</td>
<td>colour box</td>
<td>available colours</td>
</tr>
</tbody>
</table>

font of datum name (required only if different from default global_textstyle).

text size of datum name (required only if different from default box_text_size).

text colour of datum name (required only if different from default box_text_colour).

Continue to the next section 26.5.9.2 Datum Area - Values or return to 26.5.9 Datum Area.
26.5.9.2 Datum Area - Values

The datum values are drawn at the datum lines, above the Box values areas.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal places</td>
<td>datum_decimals</td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

- **number of decimal places for datum values.**
  - If > 0, trailing zeros are **removed** after the decimal point.
  - If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

<table>
<thead>
<tr>
<th>X offset (mm)</th>
<th>datum_x</th>
<th>input</th>
<th></th>
</tr>
</thead>
</table>

- **horizontal adjustment to position of datum values.**

<table>
<thead>
<tr>
<th>Y offset (mm)</th>
<th>datum_y</th>
<th>input</th>
<th></th>
</tr>
</thead>
</table>

- **vertical adjustment to position of datum values.**

<table>
<thead>
<tr>
<th>Textstyle</th>
<th>datum_textstyle</th>
<th>font box</th>
<th>available fonts</th>
</tr>
</thead>
</table>

- **font of datum values (required only if different from default global_textstyle).**

<table>
<thead>
<tr>
<th>Text size (mm)</th>
<th>datum_text_size</th>
<th>input</th>
<th></th>
</tr>
</thead>
</table>

- **text size of datum values (required only if different from default box_text_size).**

<table>
<thead>
<tr>
<th>Colour</th>
<th>datum_text_colour</th>
<th>colour box</th>
<th>available colours</th>
</tr>
</thead>
</table>

- **text colour of datum values (required only if different from default box_text_colour).**

Please continue to the next section **26.5.10 Arrows.**
26.5.10 Arrows

The Arrow areas on the drainage long section plot, are used to label segments (individual pipes) on the drainage strings with the following information: grades, diameters and types, flow velocities, flow volumes, drainage line names, and any user-defined pipe attribute values.

There are four separate Arrow areas on the plot, any of which can be used to label the above information. From plot bottom to top, the Arrow areas are:

- Arrow area 1: staggered arrows below the Graph area,
- Arrow area 2: unstaggered arrows below the Graph area,
- Arrow area 3: unstaggered arrows above the Graph area,
- Arrow area 4: staggered arrows above the Graph area.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height of arrow area 1 (mm)</td>
<td>arrow_area_1</td>
<td>input</td>
</tr>
<tr>
<td></td>
<td>refer to arrow_area_1 on the above diagram.</td>
<td></td>
</tr>
<tr>
<td>Height of arrow area 2 (mm)</td>
<td>arrow_area_2</td>
<td>input</td>
</tr>
<tr>
<td></td>
<td>refer to arrow_area_2 on the above diagram.</td>
<td></td>
</tr>
<tr>
<td>Height of arrow area 3 (mm)</td>
<td>arrow_area_3</td>
<td>input</td>
</tr>
<tr>
<td></td>
<td>refer to arrow_area_3 on the above diagram.</td>
<td></td>
</tr>
<tr>
<td>Height of arrow area 4 (mm)</td>
<td>arrow_area_4</td>
<td>input</td>
</tr>
<tr>
<td></td>
<td>refer to arrow_area_4 on the above diagram.</td>
<td></td>
</tr>
</tbody>
</table>

See

- 26.5.10.1 Arrows - Grades
- 26.5.10.2 Arrows - Diameters
- 26.5.10.3 Arrows - Velocities
- 26.5.10.4 Arrows - Flow
Or return to 26.4 Long Plot PPF Editor.
26.5.10.1 Arrows - Grades

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draw pipe grade</td>
<td>draw_pipe_grade</td>
<td>check box</td>
<td></td>
</tr>
</tbody>
</table>

whether to draw the pipe grades in one of the Arrow areas.

**Arrow area for the arrow**  pipe_grade_arrow_area  choice box

Area 1
Area 2
Area 3
Area 4

the desired Arrow area for the pipe grade information.

**Y offset (mm)**  pipe_grade_y  input

vertical offset of pipe grade information, measured upwards from the bottom of the selected Arrow area.

**Grade mode**  percentage_grade  choice box

1 in grade
% grade
determines the format of the pipe grade information.

See

26.5.10.1.1 Arrows - Grades - Title Text
26.5.10.1.2 Arrows - Grades - Arrow type
26.5.10.1.3 Arrows - Grades - Arrow Text

Or return to 26.5.10 Arrows.
26.5.10.1.1 Arrows - Grades - Title Text

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text</td>
<td>pipe_grade_title</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Textstyle</td>
<td>pipe_grade_title_textstyle</td>
<td>font box</td>
<td>available fonts</td>
</tr>
<tr>
<td>Size (mm)</td>
<td>pipe_grade_title_text_size</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>pipe_grade_title_text_colour</td>
<td>colour box</td>
<td>available colours</td>
</tr>
<tr>
<td>Offset (mm)</td>
<td>pipe_grade_title_offset</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>X offset (mm)</td>
<td>pipe_grade_title_x</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Draw title bottom linework</td>
<td>pipe_grade_title_line</td>
<td>tick box</td>
<td></td>
</tr>
<tr>
<td>Height of title left linework (mm)</td>
<td>pipe_grade_title_height</td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section 26.5.10.1.2 Arrows - Grades - Arrow type or return to 26.5.10 Arrows.

26.5.10.1.2 Arrows - Grades - Arrow type

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrow type</td>
<td>pipe_grade_arrow_mode</td>
<td>choice box</td>
<td>available arrow types</td>
</tr>
<tr>
<td>Colour</td>
<td>pipe_grade_arrow_colour</td>
<td>colour box</td>
<td>available colours</td>
</tr>
<tr>
<td>Size (mm)</td>
<td>pipe_grade_arrow_size</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Arrow gap mode</td>
<td>pipe_grade_arrow_gap</td>
<td>choice box</td>
<td>no gap in arrow leave gap in arrow for text</td>
</tr>
</tbody>
</table>

Continue to the next section 26.5.10.1.3 Arrows - Grades - Arrow Text or return to 26.5.10 Arrows.
### 26.5.10.1.3 Arrows - Grades - Arrow Text

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre text</td>
<td>pipe_grade_arrow_pre_text</td>
<td>text box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>label text before the pipe grade values.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post text</td>
<td>pipe_grade_arrow_post_text</td>
<td>text box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>label text after the pipe grade values.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decimal places</td>
<td>pipe_grade_arrow_decimals</td>
<td>integer box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>decimal places for pipe grade values.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If &gt; 0, trailing zeros are <strong>removed</strong> after the decimal point.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If &lt;0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>pipe_grade_arrow_text_colour</td>
<td>colour box</td>
<td>available colours</td>
</tr>
<tr>
<td></td>
<td>text colour for pipe grade values.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size (mm)</td>
<td>pipe_grade_arrow_text_size</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>text size for pipe grade values.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textstyle</td>
<td>pipe_grade_arrow_textstyle</td>
<td>font box</td>
<td>available fonts</td>
</tr>
<tr>
<td></td>
<td>font of pipe grade values.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset (mm)</td>
<td>pipe_grade_arrow_text_offset</td>
<td>real box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vertical adjustment to position of pipe grade values.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section [26.5.10.2 Arrows - Diameters](#) or return to [26.5.10 Arrows](#).
26.5.10.2 Arrows - Diameters

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe diameter scale factor</td>
<td>pipe_diameter_scale_factor</td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

multiplier of pipe diameter values.

Draw pipe diameter          draw_pipe_diameter   choice box  don't draw pipe diameter   draw pipe diameter

whether to draw the pipe diameters in one of the Arrow areas.

Arrow area for the arrow     pipe_diameter_arrow_area   choice box  Area 1                     |
			Area 2
			Area 3
			Area 4

the desired Arrow area for the pipe diameter information.

Y offset (mm)               pipe_diameter_y     input

vertical offset of pipe diameter information, measured upwards from the bottom of the selected Arrow area.

See

26.5.10.2.1 Arrows - Diameters - Title Text
26.5.10.2.2 Arrows - Diameters - Arrow type
26.5.10.2.3 Arrows - Diameters - Arrow Text

Or return to 26.5.10 Arrows.
26.5.10.2.1 Arrows - Diameters - Title Text

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text</td>
<td>pipe_diameter_title</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Textstyle</td>
<td>pipe_diameter_title_textstyle</td>
<td>font box</td>
<td>available fonts</td>
</tr>
<tr>
<td>Size (mm)</td>
<td>pipe_diameter_title_text_size</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>pipe_diameter_title_text_colour</td>
<td>colour box</td>
<td>available colours</td>
</tr>
<tr>
<td>Offset (mm)</td>
<td>pipe_diameter_title_offset</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>X offset (mm)</td>
<td>pipe_diameter_title_x</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Draw title bottom linework</td>
<td>pipe_diameter_title_line</td>
<td>tick box</td>
<td></td>
</tr>
<tr>
<td>Height of title left linework (mm)</td>
<td>pipe_diameter_title_height</td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section 26.5.10.2.2 Arrows - Diameters - Arrow type or return to 26.5.10 Arrows.

26.5.10.2.2 Arrows - Diameters - Arrow type

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrow type</td>
<td>pipe_diameter_arrow_mode</td>
<td>choice box</td>
<td>available arrow types</td>
</tr>
<tr>
<td>Colour</td>
<td>pipe_diameter_arrow_colour</td>
<td>colour box</td>
<td>available colours</td>
</tr>
<tr>
<td>Size (mm)</td>
<td>pipe_diameter_arrow_size</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Arrow gap mode</td>
<td>pipe_diameter_arrow_gap</td>
<td>choice box</td>
<td>no gap in arrow leave gap in arrow for text</td>
</tr>
</tbody>
</table>

Continue to the next section 26.5.10.1.3 Arrows - Grades - Arrow Text or return to 26.5.10 Arrows.
### 26.5.10.2.3 Arrows - Diameters - Arrow Text

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre text</td>
<td>pipe_diameter_arrow_pre_text</td>
<td>input</td>
<td>label text before the pipe diameter values.</td>
</tr>
<tr>
<td>Post text</td>
<td>pipe_diameter_arrow_post_text</td>
<td>input</td>
<td>label text after the pipe diameter values.</td>
</tr>
<tr>
<td>Pipe type mode</td>
<td>pipe_type_mode</td>
<td>choice box</td>
<td>don't include the pipe type</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>include the pipe type</td>
</tr>
<tr>
<td>Units factor</td>
<td>pipe_diameter_arrow_factor</td>
<td>input</td>
<td>whether to include the pipe type after the post text in the pipe diameter labels.</td>
</tr>
<tr>
<td>Decimal places</td>
<td>pipe_diameter_arrow_decimals</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>pipe_diameter_arrow_text_colour</td>
<td>colour box</td>
<td>text colour for pipe diameter values.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td>Size (mm)</td>
<td>pipe_diameter_arrow_text_size</td>
<td>input</td>
<td>text size for pipe diameter values.</td>
</tr>
<tr>
<td>Textstyle</td>
<td>pipe_diameter_arrow_textstyle</td>
<td>font box</td>
<td>font of pipe diameter values.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>available fonts</td>
<td></td>
</tr>
<tr>
<td>Offset (mm)</td>
<td>pipe_diameter_arrow_text_offset</td>
<td>input</td>
<td>vertical adjustment to position of pipe diameter values.</td>
</tr>
</tbody>
</table>

Continue to the next section [26.5.10.3 Arrows - Velocities](#) or return to [26.5.10 Arrows](#).
26.5.10.3 Arrows - Velocities

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draw pipe velocity</td>
<td>draw_pipe_velocity</td>
<td>check box</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>whether to draw the flow velocities in one of the Arrow areas.</td>
</tr>
<tr>
<td>Arrow area for the arrow</td>
<td>pipe_velocity_arrow_area</td>
<td>choice box</td>
<td>Area 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Area 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Area 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Area 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>the desired Arrow area for the flow velocity information.</td>
</tr>
<tr>
<td>Y offset (mm)</td>
<td>pipe_velocity_y</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>vertical offset of flow velocity information, measured upwards from the bottom of the selected Arrow area.</td>
</tr>
</tbody>
</table>

See

- 26.5.10.3.1 Arrows - Velocities - Title Text
- 26.5.10.3.2 Arrows - Velocities - Arrow type
- 26.5.10.3.3 Arrows - Velocities - Arrow Text

Or return to 26.5.10 Arrows.
26.5.10.3.1 Arrows - Velocities - Title Text

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text</td>
<td>pipe_velocity_title</td>
<td>input</td>
<td>title for the flow velocity information.</td>
</tr>
<tr>
<td>Textstyle</td>
<td>pipe_velocity_title_textstyle</td>
<td>font box</td>
<td>available fonts</td>
</tr>
<tr>
<td>Size (mm)</td>
<td>pipe_velocity_title_text_size</td>
<td>input</td>
<td>text size of flow velocity title.</td>
</tr>
<tr>
<td>Colour</td>
<td>pipe_velocity_title_text_colour</td>
<td>colour box</td>
<td>available colours</td>
</tr>
<tr>
<td>Offset (mm)</td>
<td>pipe_velocity_title_offset</td>
<td>input</td>
<td>vertical adjustment to position of flow velocity title.</td>
</tr>
<tr>
<td>X offset (mm)</td>
<td>pipe_velocity_title_x</td>
<td>input</td>
<td>horizontal adjustment to position of flow velocity title.</td>
</tr>
<tr>
<td>Draw title bottom linework</td>
<td>pipe_velocity_title_line</td>
<td>tick box</td>
<td></td>
</tr>
<tr>
<td>Height of title left linework (mm)</td>
<td>pipe_velocity_title_height</td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section 26.5.10.3.2 Arrows - Velocities - Arrow type or return to 26.5.10 Arrows.

26.5.10.3.2 Arrows - Velocities - Arrow type

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrow type</td>
<td>pipe_velocity_arrow_mode</td>
<td>choice box</td>
<td>available arrow types</td>
</tr>
<tr>
<td>Colour</td>
<td>pipe_velocity_arrow_colour</td>
<td>colour box</td>
<td>available colours</td>
</tr>
<tr>
<td>Size (mm)</td>
<td>pipe_velocity_arrow_size</td>
<td>input</td>
<td>arrow size for flow velocity information.</td>
</tr>
<tr>
<td>Arrow gap mode</td>
<td>pipe_velocity_arrow_gap</td>
<td>choice box</td>
<td>no gap in arrow leave gap in arrow for text</td>
</tr>
</tbody>
</table>

Continue to the next section 26.5.10.3.3 Arrows - Velocities - Arrow Text or return to 26.5.10 Arrows.
26.5.10.3.3 Arrows - Velocities - Arrow Text

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre text</td>
<td>pipe_velocity_arrow_pre_text</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>label text before the flow velocity values.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post text</td>
<td>pipe_velocity_arrow_post_text</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>label text after the flow velocity values.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Units factor</td>
<td>pipe_velocity_arrow_factor</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>decimal places for flow velocity values.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If &gt; 0, trailing zeros are removed after the decimal point.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If &lt;0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>pipe_velocity_arrow_text_colour</td>
<td>colour box available colours</td>
<td>text colour for flow velocity values.</td>
</tr>
<tr>
<td>Size (mm)</td>
<td>pipe_velocity_arrow_text_size</td>
<td>input</td>
<td>text size for flow velocity values.</td>
</tr>
<tr>
<td>Textstyle</td>
<td>pipe_velocity_arrow_textstyle</td>
<td>font box available fonts</td>
<td>font of flow velocity values.</td>
</tr>
<tr>
<td>Offset (mm)</td>
<td>pipe_velocity_arrow_text_offset</td>
<td>input</td>
<td>vertical adjustment to position of flow velocity values.</td>
</tr>
</tbody>
</table>

Continue to the next section 26.5.10.4 Arrows - Flow or return to 26.5.10 Arrows.
26.5.10.4 Arrows - Flow

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draw pipe flow</td>
<td>draw_pipe_flow</td>
<td>check box</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>whether to draw the flow volumes in one of the Arrow areas.</td>
</tr>
<tr>
<td>Arrow area for the arrow</td>
<td>pipe_flow_arrow_area</td>
<td>choice box</td>
<td>Area 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Area 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Area 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Area 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>the desired Arrow area for the flow volume information.</td>
</tr>
<tr>
<td>Y offset (mm)</td>
<td>pipe_flow_y</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>vertical offset of flow volume information, measured upwards from the bottom of the selected Arrow area.</td>
</tr>
</tbody>
</table>

See

26.5.10.4.1 Arrows - Flow - Title Text
26.5.10.4.2 Arrows - Flow - Arrow Type
26.5.10.4.3 Arrows - Flow - Arrow Text

Or return to 26.5.10 Arrows.
26.5.10.4.1 Arrows - Flow - Title Text

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text</td>
<td>pipe_flow_title</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>title for the flow volume information.</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textstyle</td>
<td>pipe_flow_title_textstylefont</td>
<td>box</td>
<td>available fonts</td>
</tr>
<tr>
<td></td>
<td><strong>font of flow volume title.</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size (mm)</td>
<td>pipe_flow_title_text_size</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>text size of flow volume title.</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>pipe_flow_title_text_colour</td>
<td>colour box</td>
<td>available colours</td>
</tr>
<tr>
<td></td>
<td><strong>text colour of flow volume title.</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset (mm)</td>
<td>pipe_flow_title_offset</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>vertical adjustment to position of flow volume title.</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X offset (mm)</td>
<td>pipe_flow_title_x</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>horizontal adjustment to position of flow volume title.</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draw title bottom linework</td>
<td>pipe_flow_title_line</td>
<td>tick box</td>
<td></td>
</tr>
<tr>
<td>Height of title left linework (mm)</td>
<td>pipe_flow_title_height</td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section 26.5.10.4.2 Arrows - Flow - Arrow Type or return to 26.5.10 Arrows.

26.5.10.4.2 Arrows - Flow - Arrow Type

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrow type</td>
<td>pipe_flow_arrow_mode</td>
<td>choice box</td>
<td>available arrow types</td>
</tr>
<tr>
<td></td>
<td><strong>arrow type (0 to 8) for the flow volume information.</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>pipe_flow_arrow_colour</td>
<td>colour box</td>
<td>available colours</td>
</tr>
<tr>
<td></td>
<td><strong>arrow colour for flow volume information.</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size (mm)</td>
<td>pipe_flow_arrow_size</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>arrow size for flow volume information.</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrow gap mode</td>
<td>pipe_flow_arrow_gap</td>
<td>choice box</td>
<td>no gap in arrow</td>
</tr>
<tr>
<td></td>
<td><strong>whether to put text gaps in the arrows, for flow volume information.</strong></td>
<td>leave gap in arrow for text</td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section 26.5.10.4.3 Arrows - Flow - Arrow Text or return to 26.5.10 Arrows.
26.5.10.4.3 Arrows - Flow - Arrow Text

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre text</td>
<td>pipe_flow_arrow_pre_text</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>label text before the flow volume values.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post text</td>
<td>pipe_flow_arrow_post_text</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>label text after the flow volume values.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Units factor</td>
<td>pipe_flow_arrow_factor</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Decimal places</td>
<td>pipe_flow_arrow_decimals</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>decimal places for flow volume values.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If &gt; 0, trailing zeros are removed after the decimal point.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If &lt;0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>pipe_flow_arrow_text_colour</td>
<td>colour box available colours</td>
<td></td>
</tr>
<tr>
<td></td>
<td>text colour for flow volume values.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size (mm)</td>
<td>pipe_flow_arrow_text_size</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>text size for flow volume values.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textstyle</td>
<td>pipe_flow_arrow_textstyle</td>
<td>font box available fonts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>font of flow volume values.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset (mm)</td>
<td>pipe_flow_arrow_text_offset</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vertical adjustment to position of flow volume values.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section 26.5.10.5 Arrows - Drainage Line Name or return to 26.5.10 Arrows.
### 26.5.10.5 Arrows - Drainage Line Name

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draw drainage line</td>
<td>draw_drainage_line</td>
<td>check box</td>
<td></td>
</tr>
</tbody>
</table>

whether to draw the drainage line names in one of the Arrow areas.

**Arrow area for the arrow** drainage_line_arrow_area

<table>
<thead>
<tr>
<th>choice box</th>
<th>Area 1</th>
<th>Area 2</th>
<th>Area 3</th>
<th>Area 4</th>
</tr>
</thead>
</table>

the desired Arrow area for the drainage line name information.

**Y offset (mm)** drainage_line_y input

vertical offset of drainage line name information, measured upwards from the bottom of the selected Arrow area.

See

- [26.5.10.5.1 Arrows - Drainage Line Name - Title Text](#)
- [26.5.10.5.2 Arrows - Drainage Line Name - Arrow Type](#)
- [26.5.10.5.3 Arrows - Drainage Line Name - Arrow Text](#)

Or return to [26.5.10 Arrows](#).
### 26.5.10.5.1 Arrows - Drainage Line Name - Title Text

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text</td>
<td>drainage_line_title</td>
<td>input</td>
<td>title for the drainage line name information.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Textstyle</th>
<th>drainage_line_title_textstyle</th>
<th>font box</th>
<th>available fonts</th>
</tr>
</thead>
</table>

| Size (mm)       | drainage_line_title_text_size  | input     | text size of drainage line name title. |

<table>
<thead>
<tr>
<th>Colour</th>
<th>drainage_line_title_text_colour</th>
<th>colour box</th>
<th>available colours</th>
</tr>
</thead>
</table>

| Offset (mm)     | drainage_line_title_offset      | input     | vertical adjustment to position of drainage line name title. |

| X offset (mm)   | drainage_line_title_x           | input     | horizontal adjustment to position of drainage line name title. |

| Draw title bottom linework | drainage_line_title_line | tick box |

| Height of title left linework (mm) | drainage_line_title_height | input |

Continue to the next section 26.5.10.5.2 Arrows - Drainage Line Name - Arrow Type or return to 26.5.10 Arrows.

### 26.5.10.5.2 Arrows - Drainage Line Name - Arrow Type

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrow type</td>
<td>drainage_line_arrow_mode</td>
<td>choice box</td>
<td>available arrow types</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Colour</th>
<th>drainage_line_arrow_colour</th>
<th>colour box</th>
<th>available colours</th>
</tr>
</thead>
</table>

| Size (mm)       | drainage_line_arrow_size   | input         | arrow size for drainage line name information. |

<table>
<thead>
<tr>
<th>Arrow gap mode</th>
<th>drainage_line_arrow_gap</th>
<th>choice box</th>
<th>no gap in arrow</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>drainage_line_arrow_gap</th>
<th>leave gap in arrow for text</th>
</tr>
</thead>
</table>

whether to put text gaps in the arrows, for drainage line name information.

Continue to the next section 26.5.10.5.3 Arrows - Drainage Line Name - Arrow Text or return to 26.5.10 Arrows.
### 26.5.10.5.3 Arrows - Drainage Line Name - Arrow Text

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre text</td>
<td>drainage_line_arrow_pre_text</td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

*label text before the drainage line names.*

| Post text    | drainage_line_arrow_post_text       | input                 |                             |

*label text after the drainage line names.*

| Colour       | drainage_line_arrow_text_colour     | colour box            | available colours           |

*text colour for drainage line names.*

| Size (mm)    | drainage_line_arrow_text_size       | input                 |                             |

*text size for drainage line names.*

| Textstyle    | drainage_line_arrow_textstyle       | font box              | available fonts             |

*font of drainage line names.*

| Offset (mm)  | drainage_line_arrow_text_offset     | input                 |                             |

*vertical adjustment to position of drainage line names.*

Continue to the next section [26.5.10.6 Arrows - User Defined Pipe Attributes](#) or return to [26.5.10 Arrows](#).
26.5.10.6 Arrows - User Defined Pipe Attributes

User defined pipe attribute data can be drawn in the Arrow areas. The following fields are required for each desired pipe attribute (set). Each set of fields forms one row of a grid.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set #</td>
<td></td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

**Set #**

a unique integer $n$, greater than 0, to identify the $n$th set of pipe attribute plot parameters.

**Draw pipe attribute mode**

draw_pipe_attr_n choice box don't draw pipe attribute draw pipe attribute

whether to draw the $n$th set of pipe attribute data in one of the Arrow areas.

**Pipe attribute name**

pipe_attr_n_name input

name of the $n$th pipe attribute.

**Arrow area for the arrow**

pipe_attr_n_arrow_area choice box Area 1 Area 2 Area 3 Area 4

the desired Arrow area for the $n$th set of pipe attribute data.

**Y offset (mm)**

pipe_attr_n_y input

vertical offset of the $n$th set of pipe attribute data, measured upwards from the bottom of the selected Arrow area.

See

26.5.10.6.1 Arrows - User Defined Pipe Attributes - Title Text
26.5.10.6.2 Arrows - User Defined Pipe Attributes - Arrow Type
26.5.10.6.3 Arrows - User Defined Pipe Attributes - Arrow Text

Or return to 26.5.10 Arrows.
26.5.10.6.1 Arrows - User Defined Pipe Attributes - Title Text

The following fields are required for each desired pipe attribute (set). Each set of fields forms one row of a grid.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set #</td>
<td>pipe_attr_n_title</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a unique integer ( n ), greater than 0, to identify the ( n )th set of pipe attribute plot parameters. The Set # should match one of the Set #\s from the grid in the parent node: User defined pipe attributes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text</td>
<td>pipe_attr_n_title</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>title for the ( n )th set of pipe attribute data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textstyle</td>
<td>pipe_attr_n_title_textstyle</td>
<td>font box available fonts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>font of the title for the ( n )th set of pipe attribute data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size (mm)</td>
<td>pipe_attr_n_title_text_size</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>text size of the title for the ( n )th set of pipe attribute data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>pipe_attr_n_title_text_colour</td>
<td>colour box available colours</td>
<td></td>
</tr>
<tr>
<td></td>
<td>text colour of the title for the ( n )th set of pipe attribute data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset (mm)</td>
<td>pipe_attr_n_title_offset</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vertical adjustment to position of the title for the ( n )th set of pipe attribute data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X offset (mm)</td>
<td>pipe_attr_n_title_x</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>horizontal adjustment to position of the title for the ( n )th set of pipe attribute data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draw title bottom linework</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height of title left linework (mm)</td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section 26.5.10.6.2 Arrows - User Defined Pipe Attributes - Arrow Type or return to 26.5.10 Arrows.
26.5.10.6.2 Arrows - User Defined Pipe Attributes - Arrow Type

The following fields are required for each desired pipe attribute (set). Each set of fields forms one row of a grid.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set #</td>
<td>input</td>
<td></td>
<td>a unique integer n, greater than 0, to identify the nth set of pipe attribute plot parameters. The Set # should match one of the Set #'s from the grid in the parent node: User defined pipe attributes.</td>
</tr>
<tr>
<td>Arrow type</td>
<td>pipe_attr_n_arrow_mode</td>
<td>choice box</td>
<td>available arrow types</td>
</tr>
<tr>
<td>Colour</td>
<td>pipe_attr_n_arrow_colour</td>
<td>colour box</td>
<td>available colours</td>
</tr>
<tr>
<td>Size (mm)</td>
<td>pipe_attr_n_arrow_size</td>
<td>input</td>
<td>arrow size for the nth set of pipe attribute data.</td>
</tr>
<tr>
<td>Arrow gap mode</td>
<td>pipe_attr_n_arrow_gap</td>
<td>choice box</td>
<td>no gap in arrow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>leave gap in arrow for text</td>
</tr>
</tbody>
</table>

Whether to put text gaps in the arrows, for the nth set of pipe attribute data.

Continue to the next section 26.5.10.6.3 Arrows - User Defined Pipe Attributes - Arrow Text or return to 26.5.10 Arrows.
### 26.5.10.6.3 Arrows - User Defined Pipe Attributes - Arrow Text

The following fields are required for each desired pipe attribute (set). Each set of fields forms one row of a grid.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set #</td>
<td>pipe_attr_n_arrow_set</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a unique integer ( n ), greater than 0, to identify the ( n )th set of pipe attribute plot parameters. The Set # should match one of the Set #s from the grid in the parent node: User defined pipe attributes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre text</td>
<td>pipe_attr_n_arrow_pre_text</td>
<td>input</td>
<td>label text before the values of the ( n )th set of pipe attribute data.</td>
</tr>
<tr>
<td>Post text</td>
<td>pipe_attr_n_arrow_post_text</td>
<td>input</td>
<td>label text after the values of the ( n )th set of pipe attribute data.</td>
</tr>
<tr>
<td>Units factor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pipe_attr_n_arrow_decimals</td>
<td>input</td>
<td>decimal places the values of the ( n )th set of pipe attribute data.</td>
</tr>
<tr>
<td></td>
<td>If ( &gt; 0 ), trailing zeros are removed after the decimal point.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If ( &lt; 0 ), the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>pipe_attr_n_arrow_text_colour</td>
<td>colour box</td>
<td>available colours</td>
</tr>
<tr>
<td></td>
<td>text colour for the values of the ( n )th set of pipe attribute data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size (mm)</td>
<td>pipe_attr_n_arrow_text_size</td>
<td>input</td>
<td>text size for the values of the ( n )th set of pipe attribute data.</td>
</tr>
<tr>
<td>Textstyle</td>
<td>pipe_attr_n_arrow_textstyle</td>
<td>textstyle box available textstyles</td>
<td>font for the values of the ( n )th set of pipe attribute data.</td>
</tr>
<tr>
<td>Offset (mm)</td>
<td>pipe_attr_n_arrow_text_offset</td>
<td>input</td>
<td>vertical adjustment to position of values of the ( n )th set of pipe attribute data.</td>
</tr>
</tbody>
</table>

Please continue to the next section [26.5.11 Drainage Graph Area](#).
26.5.11 Drainage Graph Area

The Graph area is where the diagram of the drainage line, in long-section, is drawn. In addition, if Hydraulic Grade Line (HGL) information is set, the HGL can also be drawn in the Graph area.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left/Right extensions (world units)</td>
<td>profile_extension</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td>Drainage string colour</td>
<td>drainage_colour</td>
<td>colour box</td>
<td>available colours</td>
</tr>
<tr>
<td>Draw finished surface tin</td>
<td>draw_fs_tin</td>
<td>tick box</td>
<td></td>
</tr>
<tr>
<td>Finished surface tin colour</td>
<td>fs_tin_colour</td>
<td>colour box</td>
<td>available colours</td>
</tr>
<tr>
<td>Draw natural surface tin</td>
<td>draw_ns_tin</td>
<td>tick box</td>
<td></td>
</tr>
<tr>
<td>Natural surface tin colour</td>
<td>ns_tin_colour</td>
<td>colour box</td>
<td>available colours</td>
</tr>
<tr>
<td>Draw HGL</td>
<td>draw_hgl_diag</td>
<td>tick box</td>
<td>whether to draw the HGL in the Graph area.</td>
</tr>
<tr>
<td>HGL colour</td>
<td>hgl_colour</td>
<td>colour box</td>
<td>available colours</td>
</tr>
<tr>
<td>HGL linestyle</td>
<td>hgl_linestyle</td>
<td>choice box</td>
<td>linestyle of HGL.</td>
</tr>
</tbody>
</table>

Please continue to the next section 26.5.12 Top Area.
26.5.12 Top Area

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line at the bottom of the top area</td>
<td>draw_top_line</td>
<td>choice box</td>
<td>don't draw line</td>
</tr>
<tr>
<td>mode</td>
<td></td>
<td></td>
<td>draw line</td>
</tr>
</tbody>
</table>

Whether to draw a horizontal line at the bottom of the Top area.

Please continue to the next section 26.5.13 Corridors - Drainage Long.

26.5.13 Corridors - Drainage Long

A corridor around the primary string is defined by giving a left and right corridor width.

Any string in a model added to the section view is checked to see if it appears in the corridor, and if it does, it is drawn on the cross-section plot.

To be drawn, strings do not have to cross the primary string, but just be in the corridor.

This is documented for all the PPF Editors in 26.2.7 Corridors.

Please continue to the next section 26.5.14 Maintenance Holes.
26.5.14 Maintenance Holes

The drainage string name, the maintenance hole name (pit number) and maintenance hole type (pit type) can be drawn on the drainage long section plot as MH label, with or without a bubble around it.

The MH label text is made up of

```
pre_text line_name / pit_name pit_type post_text
```

where each bit of the MH label is controlled by parameters.

The bubble may or may not exist.

The MH label (and bubble) can be positioned at the bottom of the top area, or can be placed a fixed distance above the top of the corresponding manhole.

If the bubble text is drawn at the bottom of the top area, the upright is automatically drawn up to the bubble text.

If the bubble text is drawn above the pit, it is positioned by the distance_above_pit parameter plus the top stagger distances, stagger_gap_top, stagger_height_3 and stagger_height_4.

This is necessary because the bubble text may need to be staggered.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Section: Maintenance hole names/types/bubbles</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Include line name mode</td>
<td>draw_line_name</td>
<td>choice box</td>
<td>don't include line name</td>
</tr>
<tr>
<td>Include pit name mode</td>
<td>draw_pit_name</td>
<td>choice box</td>
<td>don't include pit name</td>
</tr>
<tr>
<td>Include pit type mode</td>
<td>draw_pit_type</td>
<td>choice box</td>
<td>don't include pit type</td>
</tr>
<tr>
<td>Size (mm)</td>
<td>bubble_text_size</td>
<td>real box</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>bubble_text_colour</td>
<td>colour box</td>
<td>available colours</td>
</tr>
<tr>
<td>Textstyle</td>
<td>bubble_textstyle</td>
<td>textstyle box</td>
<td>available textstyles</td>
</tr>
<tr>
<td>X adjustment (mm)</td>
<td>bubble_text_x</td>
<td>real box</td>
<td></td>
</tr>
<tr>
<td>Y adjustment (mm)</td>
<td>bubble_text_y</td>
<td>real box</td>
<td></td>
</tr>
</tbody>
</table>
vertical adjustment to position of MH name label.

**Pre text**

*bubble_pre_text*  text box

text to go before MH name label.

**Post text**

*bubble_post_text*  text box

text to go after MH name label.

**Text angle (dms)**

*bubble_text_angle*  angle box

text angle of MH name label.

**Text justification**

*bubble_text_justify*  justification box

text justification of MH name label.

**Bubble radius (mm)**

*bubble_radius*  real box

radius of bubble around MH name label. Zero (0) for no bubble.

**Bubble colour**

*bubble_colour*  colour box  available colours

colour of bubble around MH name label.

**Bubble length (mm)**

*bubble_length*  input

length of bubble around MH name label. Zero (0) for circular bubble.

**Bubble text position**

*draw_text_at_pit*  choice box  draw bubble&text in top area
draw bubble&text above pit

whether to position the MH name labels and bubbles in the Top area, or directly above the pits.

**Distance to add to place bubble above the pit (mm)**

*distance_above_pit*  real box

for *draw_text_at_pit* set to draw bubble & text above pit, distance to add between top of pit and bottom of bubble.

See

- 26.5.14.1 Maintenance Holes - Line/Junction Deflection Angles
- 26.5.14.2 Maintenance Holes - Symbols
- 26.5.14.3 Maintenance Holes - Attribute Labels

Or return to 26.5 Drainage Long Plot PPF Editor.
26.5.14.1 Maintenance Holes - Line/Junction Deflection Angles

If there is a change of direction of the pipes of the plotted drainage string going through the pit, the **deflection angle** (pit angle) is drawn above the MH label.

The **deflection angle text** is made up:

```
angled_pre_text deflection angle angled_post_text
```

Also **any junctions** at a pit in the plotted drainage string can be labelled with the name of the drainage strings coming into the pit, and the angle of the pipes at the junction.

Hence the **junction text** for each junction at the pit is made up of two lines:

```
junction_pre_text line_name junction_post_text
junction_angle_pre_text junction_angle junction_angle_post_text
```

Note that there may be more than one junction at the pit.

If bubbles are drawn around the MH label, the deflection angle and junction name and angle are drawn at the distance (**angled_text_x_offset**, **angled_text_y_offset**) above the bubble and with the distance **angled_text_gap** between the lines of information.

If bubbles are not drawn, **MH label** and the deflection angle and junction names and angles are placed the distance (**angled_text_x_offset**, **angled_text_y_offset**) above the bottom of the top area. Each line of text is separated by the distance **angled_text_gap**.

The deflection angle and junction name and angle are drawn at an angle of **angled_text_angle**.

The columns for the fields documented in the sections are for:

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Section:</strong></td>
<td>Maintenance hole line/junction deflection angles</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>this section defines where the lines of text will be, and the angle of the text and distance between the lines of text.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Angled text x offset (mm)**	angled_text_x_offset	real box
distance in mm that the text is offset in x from the centre of the top of the bubble.

**Angled text y offset (mm)**	angled_text_offset	real box
distance in mm that the text is offset in y from the centre of the top of the bubble.

**Angled text horiz gap (mm)**	angled_text_gap	real box
perpendicular distance in mm between the pit angle text and the junction texts.

**Angled text angle (dms)**	angled_text_angle	angle box
angle of the text in degrees minutes and seconds in hp notation.
Angled text justification  choice box  left, right
justification of the pit angle text and the junction texts. It can only be "left" and "right".

Degrees mode  choice box  DDDMMSS.s
DDDM
DDD
Decimal degrees

if DDDMMSS.s the angle is given in degrees, minutes and seconds and tenths of a second
if DDDMMSS.s the deflection angle is given in degrees, minutes and seconds and tenths of a second.
If DDDMM the deflection angle is given in degrees and minutes.
If DDD the deflection angle is given in degrees.
If Decimal degrees the deflection angle is given in decimal degrees with the number of decimal places
given by Degrees decimals.

Degrees decimals  integer box
if Degrees mode is Decimal degrees the it will be written out t this many decimal places.

Section: Drainage line deflection angles
this section defines the pre and post text, textstyle, size and colour for the deflection angle (pit angle) text.

Pre text  text box
text to go before the pit deflection angle text.

Post text  text box
text to go after the pit deflection angle text.

Colour  colour box available colours
colour of the pit deflection angle text.

Size (mm)  real box
size in millimetres of the pit deflection angle text.

Textstyle  textstyle box available textstyles
textstyle of the pit deflection angle text.

See
26.5.14.1.2 Maint Holes - Line/Junction Defl Ang - Junction Deflection Angles

Or return to 26.5.14 Maintenance Holes.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section:</td>
<td>Maintenance hole junction name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>this section defines the pre and post text, textstyle, size and colour for the junction name text.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction name mode</td>
<td>junction_name_mode</td>
<td>choice box</td>
<td>don't include junction string name</td>
</tr>
<tr>
<td>include junction string name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre text</td>
<td>junction_pre_text</td>
<td>text box</td>
<td>text to go before the junction name text.</td>
</tr>
<tr>
<td>Post text</td>
<td>junction_post_text</td>
<td>text box</td>
<td>text to go after the junction name text.</td>
</tr>
<tr>
<td>Colour</td>
<td>junction_text_colour</td>
<td>colour box</td>
<td>available colours</td>
</tr>
<tr>
<td>Size (mm)</td>
<td>junction_text_size</td>
<td>real box</td>
<td>size in millimetres of the junction name text.</td>
</tr>
<tr>
<td>Textstyle</td>
<td>junction_textstyle</td>
<td>textstyle box</td>
<td>available textstyles</td>
</tr>
<tr>
<td>textstyle of the junction name text.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section 26.5.14.1.2 Maint Holes - Line/Junction Defl Ang - Junction Deflection Angles or return to 26.5.14 Maintenance Holes.
26.5.14.1.2 Maint Holes - Line/Junction Defl Ang - Junction Deflection Angles

The columns for the fields documented in the sections are for.

### Panel Field	Parameter name	Type	Pop-Up
**Section:** Maintenance hole junction deflection angles  
this section defines the pre and post text, textstyle, size and colour for the junction angle text.

**Append mode**

<table>
<thead>
<tr>
<th>junction_angle_append</th>
<th>choice box</th>
</tr>
</thead>
<tbody>
<tr>
<td>label junction name and angle on separate lines</td>
<td></td>
</tr>
<tr>
<td>append angle to junction name</td>
<td></td>
</tr>
<tr>
<td>append name to junction angle</td>
<td></td>
</tr>
</tbody>
</table>

**Pre text**

<table>
<thead>
<tr>
<th>junction_angle_pre_text</th>
<th>text box</th>
</tr>
</thead>
<tbody>
<tr>
<td>text to go before the junction angle text.</td>
<td></td>
</tr>
</tbody>
</table>

**Post text**

<table>
<thead>
<tr>
<th>junction_angle_post_text</th>
<th>text box</th>
</tr>
</thead>
<tbody>
<tr>
<td>text to go after the junction angle text.</td>
<td></td>
</tr>
</tbody>
</table>

**Colour**

<table>
<thead>
<tr>
<th>junction_angle_text_colour</th>
<th>colour box available colours</th>
</tr>
</thead>
<tbody>
<tr>
<td>colour of the junction angle text.</td>
<td></td>
</tr>
</tbody>
</table>

**Size (mm)**

<table>
<thead>
<tr>
<th>junction_angle_text_size</th>
<th>real box</th>
</tr>
</thead>
<tbody>
<tr>
<td>size in millimetres of the junction angle text.</td>
<td></td>
</tr>
</tbody>
</table>

**Textstyle**

<table>
<thead>
<tr>
<th>junction_angle_textstyle</th>
<th>textstyle box available textstyles</th>
</tr>
</thead>
<tbody>
<tr>
<td>textstyle of the junction angle text.</td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section [26.5.14.2 Maintenance Holes - Symbols](#) or return to [26.5.14 Maintenance Holes](#).
### 26.5.14.2 Maintenance Holes - Symbols

Symbols representing the different types of maintenance holes used, can be drawn on the plots.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

**Section: Maintenance hole symbols**

This section defines the pre and post text, textstyle, size and colour for the junction name text.

The fields for each row form one set of controls for the placement of MH symbols on the plot. Normally, the grid will contain one row for each MH type/symbol used.

**Symbols Grid**

**All MH types**

- **tick box**

  If **ticked**, then all MH types are labelled with the fields in this row.

  If **not ticked**, then all maintenance holes with the given **MH Type** are labelled with the fields in this row.

**MH type**

- **manhole_symbol_n_type**

  available MH types

  maintenance holes with this **MH type** are labelled with the fields in this row.

**MH symbol mode**

- **manhole_symbol_n_mode**

  cross (0)

  up from centre of box (1)

  up&down from box centre (2)

  square (3)

  triangle, base at bottom (4)

  circle (5)

  use a 12d symbol (6)

  for the MH type for this row, whether to use one of the hard-wired symbols (1-5), or a symbol from the 12d symbols list.(6)

**MH symbol position**

- **manhole_symbol_n_position**

  choice box

  at top of mh

  above top of boxes

  above highest point

  to primary string

  to first found tin

  for the MH type for this row, the desired position of the symbol.

**Stagger**

- **tick box**

**Size (mm)**

- **manhole_symbol_n_size**

  for the MH type for this row, the symbol size.

**X (mm)**

- **manhole_symbol_n_x**

  for the MH type for this row, the horizontal adjustment to the selected MH symbol position.

**Y (mm)**

- **manhole_symbol_n_y**

  for the MH type for this row, the vertical adjustment to the selected MH symbol position.
Symbol manhole_symbol_n_style symbol box available symbols
for the MH type for this row, and with Manhole symbol mode set to use a symbol, the symbol to use from the 12d symbols list.

Angle (dms) manhole_symbol_n_angle angle box
for the MH type for this row, the symbol angle in degrees minutes and seconds in hp notation.

Colour manhole_symbol_n_colour colour box available colours
for the MH type for this row, the symbol colour.

Continue to the next section 26.5.14.3 Maintenance Holes - Attribute Labels or return to 26.5.14 Maintenance Holes.
26.5.14.3 Maintenance Holes - Attribute Labels

The text for Maintenance Holes attributes can be drawn on the plots.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>
| Section: Maintenance hole attribute labels

This section defines the pre and post text, textstyle, size and colour for displaying the attributes as text.

The fields for each row form one set of controls for the placement of the given attribute on the plot.

Attributes Grid

Label MH attribute

if ticked, this row is used and the attribute is labelled.

If not ticked, this row is ignored.

Attribute name

the full path name of the attribute to be labelled.

From primary string at junction pits (non-standard) tick box

if ticked.:

Text size (mm)

the text size for this attribute label.

Label position choice box

at top of mh
at ds il of mh
at sump of mh
at first found tin
at top of boxes
at highest point

position to place attribute label

Stagger tick box

the text size for this attribute label.

X off (mm) real box

the horizontal adjustment to the selected label position.

Y off (mm) real box

the vertical adjustment to the selected label position.

Angle (dms) angle box

the angle of the attribute label in degrees minutes and seconds in hp notation.

Pre text text box

text to go before the attribute label.

Post text text box

text to go after the attribute label.

Decimal places integer box

number of decimal places to use when it is a real attribute.

If > 0, trailing zeros are removed after the decimal point.

If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.
Units factor

for real and integer attributes, the value is multiplied by the **Units factor**.

Colour

the colour of the attribute label.

Textstyle

the textstyle of the attribute label.

Justification

the justification of the attribute label.

Please continue to the next section 26.5.15 Property Controls/House Connections.
26.5.15 Property Controls/House Connections

Section: Property control parameters

**Draw property control mode**
- draw_property_controls
  - choice box
  - draw property controls
  - don't draw property controls

Section: House connection parameters

**Draw house connections mode**
- draw_house_connections
  - choice box
  - draw house connections
  - don't draw house connections

**House connection width (mm)**
- house_connection_width
  - real box

26.5.15.1 Property Controls/House Connections - House Connection Labels

26.5.15.1.1 PC/HC - House Connection Labels - Symbols

26.5.15.1.2 PC/HC - House Connection Labels - House Connection Type

26.5.15.1.3 PC/HC - House Connection Labels - Distance

26.5.15.1.4 PC/HC - House Connection Labels - Depths

26.5.15.1.5 PC/HC - House Connection Labels - Finished Surface

26.5.15.1.6 PC/HC - House Connection Labels - Invert Levels
26.5.15.2 Property Controls/House Connections - Property Control Labels

26.5.15.2.1 PC/HC - Property Control Labels - Symbols

26.5.15.2.2 PC/HC - Property Control Labels - Distance

26.5.15.2.3 PC/HC - Property Control Labels - Finished Surface

26.5.15.2.4 PC/HC - Property Control Labels - Invert Levels

Please continue to the next section 26.5.16 Hatching Cut/Fill.
26.5.16 Hatching Cut/Fill

This option is used to hatch cut and/or fill areas between sets of tins.

The Hatching Cut/Fill section is common to the PPF Editors and is fully documented in 26.2.8 Hatching Cut/Fill.

**Section: Hatching cut/fill - Tin parameters -** see 26.2.8 Hatching Cut/Fill

**Section: Hatching cut/fill - Cut parameters -** see 26.2.8.1 Hatching Cut/Fill - Cut

**Section: Hatching cut/fill - Fill parameters-** see 26.2.8.2 Hatching Cut/Fill - Fill

Please continue to the next section 26.5.17 Cuts - Drainage/Sewer Long.
26.5.17 Cuts - Drainage/Sewer Long

The cuts that the primary string (drainage or sewer line) makes though strings in any user specified model can be automatically labelled on the drainage/sewer long section plots.

The Cuts section is common to the PPF Editors and is fully documented in 26.2.9 Cuts.  

Section: Cuts - Model/Name mask parameters - see 26.2.9 Cuts.  
Section: Cuts - Chainage parameters - see 26.2.9.3 Cuts - Chainage - Long Sections Only  
Section: Cuts - Height parameters - see 26.2.9.4 Cuts - Heights  
Section: Cuts - Diameter parameters - see 26.2.9.5 Cuts - Diameters  
Section: Cuts - Label parameters - see 26.2.9.6 Cuts - Labels  
Section: Cuts - Symbol parameters - see 26.2.9.7 Cuts - Symbols  

Continue to the next section 26.5.18 Primary String Name Label.
26.5.18 Primary String Name Label

The plot can be labelled with a name under the boxes area.

The name is made up of a concatenation of the text string names:

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name mode</td>
<td>plot_name_string_name</td>
<td>choice box</td>
</tr>
<tr>
<td></td>
<td>determines what text is placed in the name labels.</td>
<td></td>
</tr>
<tr>
<td>Pre-text</td>
<td>plot_name_pre_text</td>
<td>text box</td>
</tr>
<tr>
<td></td>
<td>text before label.</td>
<td></td>
</tr>
<tr>
<td>Post-text</td>
<td>plot_name_post_text</td>
<td>text box</td>
</tr>
<tr>
<td></td>
<td>text after label.</td>
<td></td>
</tr>
<tr>
<td>Textstyle</td>
<td>plot_name_textstyle</td>
<td>textstyle box</td>
</tr>
<tr>
<td></td>
<td>textstyle of label.</td>
<td></td>
</tr>
<tr>
<td>Size (mm)</td>
<td>plot_name_size</td>
<td>real box</td>
</tr>
<tr>
<td></td>
<td>size of label.</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>plot_name_colour</td>
<td>colour box</td>
</tr>
<tr>
<td></td>
<td>colour of label.</td>
<td></td>
</tr>
<tr>
<td>X offset (mm)</td>
<td>plot_name_x_offset</td>
<td>real box</td>
</tr>
<tr>
<td></td>
<td>horizontal adjustment to position of label.</td>
<td></td>
</tr>
<tr>
<td>Y offset (mm)</td>
<td>plot_name_y_offset</td>
<td>real box</td>
</tr>
<tr>
<td></td>
<td>vertical adjustment to position of label.</td>
<td></td>
</tr>
</tbody>
</table>

The plot name is positioned under the boxes.
The plot_name_x_offset is measured from the beginning of the height boxes.
The default for plot_name_x_offset is centred on heights area.
The plot_name_y_offset is measured from the bottom of the box area with positive being down.

Please continue to the next section 26.5.19 PPFs to include - Drainage Long Section.
26.5.19 PPFs to include - Drainage Long Section
This is documented for all the PPF Editors in 26.2.10 PPFs To Include.
Please continue to the next section 26.5.20 Buttons at Bottom of Panel.

26.5.20 Buttons at Bottom of Panel
This is documented for all the PPF Editors in 26.2.2 View to Load and Global Variables.
Return to 26.5 Drainage Long Plot PPF Editor.
26.6 Melbourne Water Plot PPF Editor

**Position of option on menu:**  Plot => Plot and PPF Editors => Melbourne Water

The Melbourne Water plot PPF editor is for creating and/or editing a (binary) Melbourne Water sewer long section PPF and for creating a Melbourne Water sewer long section plot. An text version of the file is also produced.

**Note:** Binary and text PPFs are stored within the project (not in the folder containing the project).

On selecting the Melbourne Water option, the Sewer Plot Melbourne Water PPF Editor panel is displayed.

The plot parameters for controlling the cross section plots are accessed by expanding to the appropriate node in the Sewer Plot Melbourne Water tree (click on the + to expand to node or - to collapse the node) and then clicking on the required node, and the required information to fill in is displayed on the right hand side of the panel.

For information on all the different nodes see:

- 26.6.1 Melbourne Water Plot - Front Page
- 26.6.2 Notes - Melbourne Water
- 26.6.3 Plot to Models - Melbourne Water
- 26.6.4 Title Block - Melbourne Water
26.6.5 Plot Sheet Layout - Melbourne Water
26.6.6 Staggering - Melbourne Water
26.6.7 Boxes - Melbourne Water
26.6.8 Datum Value - Melbourne Water
26.6.9 Corridors - Melbourne Water
26.6.14 Cuts - Melbourne Water Long
26.6.16 PPFs to include - Melbourne Water
26.6.17 Buttons at Bottom of Panel - Melbourne Water
26.6.1 Melbourne Water Plot - Front Page

The Melbourne Water sewer long plot itself consists of the three regions - boxes, datum and graph areas.

The **boxes area** is where the titles and the chainage values and the heights/depths for the strings drawn on the long plot are labelled.

The **datum area** is the region between the boxes area and the graph area.

The **graph area** is the area where the actual plots of the strings are drawn.

Section: Plot parameter file

A plot parameter file can be used to load values into the fields of the PPF Editor, or as a file to write out all current values in a PPF Editor to.

This section is documented for all the PPF Editors in **26.2.1 Plot Parameter File**.

Section: Section: View to load details from AND Global variables
a section view can be selected to load certain values into fields of the PPDF Editor. For example, Vertical exaggeration and Corridor models. And there are variables to use if some values aren’t given.

These sections are documented for all the PPF Editors in 26.2.2 View to Load and Global Variables.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: Section parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network model</td>
<td>network_model</td>
<td>model box</td>
<td>available models</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>model containing the sewer strings to draw in long section on the plot.</td>
</tr>
<tr>
<td>Horizontal Scale</td>
<td>scale</td>
<td>real box</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>horizontal scale to be used for the long section plots</td>
<td></td>
</tr>
<tr>
<td>Vertical exaggeration</td>
<td>vertical_exaggeration</td>
<td>real box</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>vertical scale to be used for the long section plots</td>
<td></td>
</tr>
<tr>
<td>Section: Sheet size setup and Plotter parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>These sections define the size of the &quot;paper&quot; to plot on, the type of plotter to use and the naming to use for the plot files.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>These sections are documented for all the PPF Editors in 26.2.3 Sheet Size and Plotter Parameters.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Continue to the next section 26.6.2 Notes - Melbourne Water.</td>
</tr>
</tbody>
</table>
26.6.2 Notes - Melbourne Water
This is documented for all the PPF Editors in 26.2.4 Notes.
Continue to the next section 26.6.3 Plot to Models - Melbourne Water.

26.6.3 Plot to Models - Melbourne Water
This is documented for all the PPF Editors in 26.2.5 Plot to Models.
Continue to the next section 26.6.4 Title Block - Melbourne Water.

26.6.4 Title Block - Melbourne Water
This is documented for all the PPF Editors in 26.2.6.1 Title Block Section in PPF Editors.
For more general information about a title block, see 26.2.6 Title Block.
Continue to the next section 26.6.5 Plot Sheet Layout - Melbourne Water.

26.6.5 Plot Sheet Layout - Melbourne Water
The information on this node is the same as that for Drainage Long Sections - see 26.5.6 Plot Sheet Layout.
Continue to the next section 26.6.6 Staggering - Melbourne Water.

26.6.6 Staggering - Melbourne Water
Continue to the next section 26.6.7 Boxes - Melbourne Water.

26.6.7 Boxes - Melbourne Water
Continue to the next section 26.6.8 Datum Value - Melbourne Water.

26.6.8 Datum Value - Melbourne Water
Continue to the next section 26.6.9 Corridors - Melbourne Water.

26.6.9 Corridors - Melbourne Water
A corridor around the primary string is defined by giving a left and right corridor width.
Any string in a model added to the section view is checked to see if it appears in the corridor, and if it does, it is drawn on the cross-section plot.
To be drawn, strings do not have to cross the primary string, but just be in the corridor.
This is documented for all the PPF Editors in 26.2.7 Corridors.
Continue to the next section 26.6.10 Maintenance Holes - Melbourne Water.

26.6.10 Maintenance Holes - Melbourne Water
26.6.11 Services - Melbourne Water

Continue to the next section 26.6.12 Property Controls/House Connections - Melbourne Water.

26.6.12 Property Controls/House Connections - Melbourne Water

Continue to the next section 26.6.13 Hatching Cut/Fill - Melbourne Water.

26.6.13 Hatching Cut/Fill - Melbourne Water

This option is used to hatch cut and/or fill areas between sets of tins.

The Hatching Cut/Fill section is common to the PPF Editors and is fully documented in 26.2.8 Hatching Cut/Fill.

**Section: Hatching cut/fill - Tin parameters -** see 26.2.8 Hatching Cut/Fill

**Section: Hatching cut/fill - Cut parameters -** see 26.2.8.1 Hatching Cut/Fill - Cut

**Section: Hatching cut/fill - Fill parameters -** see 26.2.8.2 Hatching Cut/Fill - Fill

26.6.14 Cuts - Melbourne Water Long

The cuts that the primary string (drainage or sewer line) makes though strings in any user specified model can be automatically labelled on the drainage/sewer long section plots. The Cuts section is common to the PPF Editors and is fully documented in 26.2.9 Cuts.

Section: Cuts - Model/Name mask parameters - see 26.2.9 Cuts.

Section: Cuts - Chainage parameters - see 26.2.9.3 Cuts - Chainage - Long Sections Only

Section: Cuts - Height parameters - see 26.2.9.4 Cuts - Heights

Section: Cuts - Diameter parameters - see 26.2.9.5 Cuts - Diameters

Section: Cuts - Label parameters - see 26.2.9.6 Cuts - Labels

Section: Cuts - Symbol parameters - see 26.2.9.7 Cuts - Symbols

Continue to the next section 26.6.16 PPFs to include - Melbourne Water.
26.6.15 Paired Cuts - Melbourne Water

Paired cuts uses pairs of strings and where both strings cut the primary string, the cuts on the long plot can be labelled with information such as:

(a) the name of the first and second cut strings
(b) attributes from the first and second cut string
(c) plan distance between the two cuts of the pair
(d) 3d length between the two cuts of the pair
(e) the change on the long section of the first and second cuts of the pair

Symbols can be drawn at the chainages of the first and second cuts (at a height specified when defining the Cut sets), and a line drawn between the symbols. Using both the line and a symbol of an arrow head makes an arrow between the two cuts.

The method for specifying which strings are to be checked for paired cuts is by first specifying the models (using wild cards and characters) that contains the strings, and then a start name mask to select the all the strings that are to be the first strings in a cut pair, and an end name mask to select all the strings that are the second strings in a cut pair.

For a long section, all the cuts of the selected start strings are found and the cuts ordered by the chainage of the cut with the primary string of the long section. Then all the cuts of the selected end strings are found and the cuts ordered by the chainage of the cut with the primary string of
the long section.

The start cuts are then processed and each start cut is paired with the next end cut with a larger chainage than the start cut. It is possible that there are end cuts before the first start cut (orphaned end cuts) and start cut with no following end cut (orphaned start cuts).

Up to twenty five different sets of models and name masks can be used so that different paired cut sets can be labelled in different ways.

### 26.6.15.1 Paired Cuts - Front Page

The information on this section is the same as that for Long Sections, please see [26.4.23.1 Paired Cuts (Long Section) - Front Page](#).

### 26.6.15.1.1 Paired Cuts - Lines and Symbols

The information on this section is the same as that for Long Sections, please see [26.4.23.2 Paired Cuts (Long Section) - Lines and Symbols](#).

### 26.6.15.1.2 Paired Cuts - Labels

The information on this section is the same as that for Long Sections, please see [26.4.23.3 Paired Cuts (Long Section) - Labels](#).

### 26.6.15.1.3 Paired Cuts - Start Chainage

The information on this section is the same as that for Long Sections, please see [26.4.23.4 Paired Cuts (Long Section) - Start Chainage](#).

### 26.6.15.1.4 Paired Cuts - End Chainage

The information on this section is the same as that for Long Sections, please see [26.4.23.5 Paired Cuts (Long Section) - End Chainage](#).
26.6.16 PPFs to include - Melbourne Water

This is documented for all the PPF Editors in 26.2.10 PPFs To Include.

Continue to the next section 26.6.17 Buttons at Bottom of Panel - Melbourne Water.

26.6.17 Buttons at Bottom of Panel - Melbourne Water

This is documented for all the PPF Editors in 26.2.11 Buttons at the Bottom of the PPF Editors.

Return to 26.6 Melbourne Water Plot PPF Editor.
26.7 Pipeline Plot PPF Editor

**Position of option on menu:** Plot => Plot and PPF Editors => Pipelines

**Position of option on menu:** Design => Pipeline => Plots

The Pipeline Plot PPF Editor is for creating and/or editing a (binary) pipeline long section pff file and for creating a pipeline long section plot for all the pipeline strings in a given model.

The pipeline long section plot will break an individual plot up if it doesn’t fit across the sheet. There can be one or more rows of plot on the same sheet.

The top row is done first, followed by the second top row, then the third and so on until the bottom row. If there is only one row, it is considered to be the bottom row.

When a sheet is full, a follow on sheet is created.

As soon as one pipeline string is completed, the next pipeline string in the network model is plotted beginning on the same row as the previous pipeline string and with a horizontal gap of size horizontal_plot_gap between the plots. If there is not enough room on the row to start the next plot, it will begin on a new row.

**Note:** Binary PPFs are stored within the project (not in the folder containing the project as the text PPFs were).

On selecting the **Pipelines** option, the Pipeline Plot PPF Editor panel is displayed.

The plot parameters for controlling the cross section plots are accessed by expanding to the appropriate node in the Pipeline Plot tree (click on the + to expand to node or - to collapse the node) and then clicking on the required node, and the required information to fill in is displayed on the right hand side of the panel.
For information on all the different nodes see:

26.7.1 General Information on Pipeline Long Section Plots
26.7.2 Pipeline Long section Plot - Front Page
26.7.3 Notes - Pipeline
26.7.4 Plot to Models - Pipeline
26.7.5 Title Block - Pipeline
26.7.6 Plot Sheet Layout - Pipeline
26.7.7 Chainage/Uprights - Pipeline
26.7.8 Boxes - Pipeline
26.7.9 Datum Value - Pipeline
26.7.10 Graph Area - Pipeline
26.7.11 Corridors - Pipeline
26.7.12 Change of Direction at Intersection Point
26.7.13 Hatching Cut/Fill - Pipeline
26.7.14 Cuts - Pipeline
26.7.15 Paired Cuts - Pipeline
26.7.16 PPFs to include - Pipeline
26.7.17 Buttons at Bottom of Panel - Pipeline
26.7.1 General Information on Pipeline Long Section Plots

The pipeline plot makes special long section plots for a **network** of pipeline strings.

The pipeline long section plot will break an individual plot up if it doesn't fit across the sheet. There can be one or more rows of plot on the same sheet.

The top row is done first, followed by the second top row, then the third and so on until the bottom row. If there is only one row, it is considered to be the bottom row.

When a sheet is full, a follow on sheet is created.

As soon as one pipeline string is completed, the next pipeline string in the network model is plotted beginning on the same row as the previous pipeline string and with a user given horizontal gap between the plots. If there is not enough room on the row to start the next plot, it will begin on a new row.

---

Each pipeline long plot consists of seven areas. From the bottom up, they are:

1. **The boxes area** is where the chainages and various values for the pipeline strings are labelled.
2. **The below datum area** is a region between the boxes area and the datum line.
3. **The bottom stagger area** is where the upright line staggers occur before going up from the boxes area to the graph area.
4. **The graph area** is the area where the actual plots of the strings are drawn.
5. **The top stagger area** is where the upright line staggers occur above the graph area.
6. **The arrow 4 area** is an extension of the uprights above the top stagger area to allow for the drawing of arrows where the arrows go between the staggered uprights above the graph area.
7. **The top area** is an annotation area above the arrow 4 area (the top of the plot) and is used for...
pegs and deflection angles.

Apart from information labelled in the boxes and top areas, the pipeline long section plot can place arrows between ips for other information such as:

(a) pipe grade  
(b) vertical geometry  
(c) horizontal geometry  

Also the chainages where services cross the pipeline line are automatically labelled.

For each pipeline plot, the labelling of pipe invert levels, depth to invert, pipe grade and natural surface level are done at the chainages:

(a) pegs given by a user given peg interval  
(b) horizontal and vertical deflection points  
(c) points in the specials model  
(d) crossing services  

All the required parameters for controlling the pipeline long section plot are set up in the Pipeline Plot PPF Editor and will be described in detail in the following sections.

Please continue to the next section 26.4.2 Section Long Plot - Front Page or return to 26.4 Long Plot PPF Editor.
26.7.2 Pipeline Longsection Plot - Front Page

The pipeline long plot itself consists of the three regions - boxes, datum and graph areas. The **boxes area** is where the titles and the chainage values and the heights/depths for the strings drawn on the long plot are labelled. The **datum area** is the region between the boxes area and the graph area. The **graph area** is the area where the actual plots of the strings are drawn.

---

**Section: Plot parameter file**

A plot parameter file can be used to load values into the fields of the PPF Editor, or as a file to write out all current values in a PPF Editor to.

*This section is documented for all the PPF Editors in [26.2.1 Plot Parameter File](#).*

**Section: View to load details from AND Global variables**

A section view can be selected to load certain values into fields of the PPDF Editor. For example,
Vertical exaggeration and Corridor models. And there are variables to use if some values aren’t given. These sections are documented for all the PPF Editors in 26.2.2 View to Load and Global Variables.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: Section parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network model</td>
<td>network_model</td>
<td>model box</td>
<td>available models</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>model containing the pipeline strings to draw in long section on the plot.</td>
</tr>
<tr>
<td>Horizontal Scale</td>
<td>scale</td>
<td>real box</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>horizontal scale to be used for the long section plots</td>
</tr>
<tr>
<td>Vertical exaggeration</td>
<td>vertical_exaggeration</td>
<td>real box</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>vertical scale to be used for the long section plots</td>
</tr>
<tr>
<td>Start chainage</td>
<td>start_chainage</td>
<td>real box</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>start chainage of the string to start the long section plots at</td>
</tr>
<tr>
<td>End chainage</td>
<td>end_chainage</td>
<td>real box</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>end chainage of the string to end the long section plots at</td>
</tr>
</tbody>
</table>

Section: Sheet size setup and Plotter parameters

these sections define the size of the "paper" to plot on, the type of plotter to use and the naming to use for the plot files.

These sections are documented for all the PPF Editors in 26.2.3 Sheet Size and Plotter Parameters.

Please continue to the next section 26.7.3 Notes - Pipeline.
26.7.3 Notes - Pipeline
This is documented for all the PPF Editors in 26.2.4 Notes.
Continue to the next section 26.7.4 Plot to Models - Pipeline.

26.7.4 Plot to Models - Pipeline
This is documented for all the PPF Editors in 26.2.5 Plot to models.
Continue to the next section 26.7.5 Title Block - Pipeline.

26.7.5 Title Block - Pipeline
This is documented for all the PPF Editors in 26.2.6.1 Title Block Section in PPF Editors.
For more general information about a title block, see 26.2.6 Title Block.
Continue to the next section 26.7.6 Plot Sheet Layout - Pipeline.

26.7.6 Plot Sheet Layout - Pipeline
The information on this node is the same as that for Drainage Long Sections - see 26.5.6 Plot Sheet Layout.
Continue to the next section 26.7.7 Chainage/Uprights - Pipeline.

26.7.7 Chainage/Uprights - Pipeline
Continue to the next section 26.7.8 Boxes - Pipeline.

26.7.8 Boxes - Pipeline
Continue to the next section 26.7.9 Datum Value - Pipeline.

26.7.9 Datum Value - Pipeline
Continue to the next section 26.7.10 Graph Area - Pipeline.

26.7.10 Graph Area - Pipeline
Continue to the next section 26.7.11 Corridors - Pipeline.

26.7.11 Corridors - Pipeline
A corridor around the primary string is defined by giving a left and right corridor width.
Any string in a model added to the section view is checked to see if it appears in the corridor, and if it does, it is drawn on the cross-section plot.
To be drawn, strings do not have to cross the primary string, but just be in the corridor.
This is documented for all the PPF Editors in 26.2.7 Corridors.
26.7.12 Change_of_Direction_at_Intersection_Point

Continue to the next section 26.7.13 Hatching Cut/Fill - Pipeline.

26.7.13 Hatching Cut/Fill - Pipeline

This option is used to hatch cut and/or fill areas between sets of tins.

The Hatching Cut/Fill section is common to the PPF Editors and is fully documented in 26.2.8. Hatching Cut/Fill.

Section: Hatching cut/fill - Tin parameters - see 26.2.8 Hatching Cut/Fill
Section: Hatching cut/fill - Cut parameters - see 26.2.8.1 Hatching Cut/Fill - Cut
Section: Hatching cut/fill - Fill parameters - see 26.2.8.2 Hatching Cut/Fill - Fill

Continue to the next section 26.7.14 Cuts - Pipeline.
26.7.14 Cuts - Pipeline

The cuts that the primary string (drainage or sewer line) makes though strings in any user specified model can be automatically labelled on the drainage/sewer long section plots.

The Cuts section is common to the PPF Editors and is fully documented in 26.2.9 Cuts.

Section: Cuts - Model/Name mask parameters - see 26.2.9 Cuts.

Section: Cuts - Chainage parameters - see 26.2.9.3 Cuts - Chainage - Long Sections Only

Section: Cuts - Height parameters - see 26.2.9.4 Cuts - Heights

Section: Cuts - Diameter parameters - see 26.2.9.5 Cuts - Diameters

Section: Cuts - Label parameters - see 26.2.9.6 Cuts - Labels

Section: Cuts - Symbol parameters - see 26.2.9.7 Cuts - Symbols

Continue to the next section 26.7.15 Paired Cuts - Pipeline.
26.7.15 Paired Cuts - Pipeline

Paired cuts uses pairs of strings and where both strings cut the primary string, the cuts on the long plot can be labelled with information such as

(a) the name of the first and second cut strings
(b) attributes from the first and second cut string
(c) plan distance between the two cuts of the pair
(d) 3d length between the two cuts of the pair
(e) the change on the long section of the first and second cuts of the pair

Symbols can be drawn at the chainages of the first and second cuts (at a height specified when defining the Cut sets), and a line drawn between the symbols. Using both the line and a symbol of an arrow head makes an arrow between the two cuts.

The method for specifying which strings are to be checked for paired cuts is by first specifying the models (using wild cards and characters) that contains the strings, and then a start name mask to select the all the strings that are to be the first strings in a cut pair, and an end name mask to select all the strings that are the second strings in a cut pair.

For a long section, all the cuts of the selected start strings are found and the cuts ordered by the chainage of the cut with the primary string of the long section. Then all the cuts of the selected end strings are found and the cuts ordered by the chainage of the cut with the primary string of
the long section.

The start cuts are then processed and each start cut is paired with the next end cut with a larger chainage than the start cut. It is possible that there are end cuts before the first start cut (orphaned end cuts) and start cut with no following end cut (orphaned start cuts).

Up to twenty five different sets of models and name masks can be used so that different paired cut sets can be labelled in different ways.

26.7.15.1 Paired Cuts - Front Page
The information on this section is the same as that for Long Sections, please see 26.4.23.1 Paired Cuts (Long Section) - Front Page

26.7.15.1.1 Paired Cuts - Lines and Symbols
The information on this section is the same as that for Long Sections, please see 26.4.23.2 Paired Cuts (Long Section) - Lines and Symbols

26.7.15.1.2 Paired Cuts - Labels
The information on this section is the same as that for Long Sections, please see 26.4.23.3 Paired Cuts (Long Section) - Labels

26.7.15.1.3 Paired Cuts - Start Chainage
The information on this section is the same as that for Long Sections, please see 26.4.23.4 Paired Cuts (Long Section) - Start Chainage

26.7.15.1.4 Paired Cuts - End Chainage
The information on this section is the same as that for Long Sections, please see 26.4.23.5 Paired Cuts (Long Section) - End Chainage

Continue to the next section 26.7.16 PPFs to include - Pipeline.
26.7.16 PPFs to include - Pipeline
This is documented for all the PPF Editors in 26.2.10 PPFs To Include.
Continue to the next section 26.7.17 Buttons at Bottom of Panel - Pipeline.

26.7.17 Buttons at Bottom of Panel - Pipeline
This is documented for all the PPF Editors in 26.2.2 View to Load and Global Variables.
Return to 26.7 Pipeline Plot PPF Editor.
26.8 Drainage Plan Plot PPF Editor

**Position of option on menu:** Plot => Plot and PPF Editors => Drainage Plan

The **Drainage Plan Plot PPF Editor** is for creating and/or editing a (binary) drainage and sewer plan plot pff file and for creating a drainage and/or sewer plan annotation overlay model. A text version of the file is also produced.

**Note:** Binary and text PPFs are stored within the project (not in the folder containing the project).

On selecting the Drainage plan option, the **Drainage Plan Plot PPF Editor** panel is displayed.

The plot parameters for controlling the cross section plots are accessed by expanding to the appropriate node in the **Drainage Plan Plot** tree (click on the + to expand to node or - to collapse the node) and then clicking on the required node, and the required information to fill in is displayed on the right hand side of the panel.

For information on all the different nodes see:

26.8.1 Drainage Plan Plot - Front Page
26.8.2 Notes - Drainage Plan Plot
26.8.3 Pipes
26.8.4 Maintenance Holes
26.8.5 House Connections
26.8.6 Bubbles
26.8.7 Flow Arrows
26.8.8 Buttons at Bottom of Panel
26.8.1 Drainage Plan Plot - Front Page

**Note:** When creating Drainage Plan Plot overlays, all distances and sizes (including text sizes, offsets, rises, etc) are specified in world units.

---

**Section: Plot parameter file**

A *plot parameter file* can be used to load values into the fields of the PPF Editor, or as a file to write out all current values in a PPF Editor to.

This section is documented for all the PPF Editors in 26.2.1 Plot Parameter File.

The columns for the fields documented in the sections are for:

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>model box</td>
<td>model</td>
<td>available models</td>
</tr>
</tbody>
</table>

**Section: Load design details from**

Model of drainage design strings to create Annotation for.

**Section: Save plot annotations to**

Model to write the drainage annotations to.

Clean plot model beforehand  plot_model_clean  choice box  smart clean
full clean
determines how to clean (delete the elements in) the output model, if it exists, before generating the plot annotations.

For **smart clean**, any existing text, flow arrow and bubble annotation elements found that match the annotations about to be generated, will retain their pre-existing positions.

For **full clean**, no information about the pre-existing plot annotation is used, and the new plot annotation is created from scratch.

**Plot rotation (dms)** plot_rotation measure box
At Point, Point to Point,
String from Point, String to
Point

**Set colours as string names** naming_mode tick box
if ticked, the names all created plot annotation strings will be their colour names. This will override any user specified string names defined in other sections.

---

26.8.2 Notes - Drainage Plan Plot

This is documented for all the PPF Editors in **26.2.4 Notes**.

Continue to the next section **26.8.3 Pipes** or return to **26.8 Drainage Plan Plot PPF Editor**
26.8.3 Pipes

The pipes in a plan of a drainage network are often not drawn as they appear but with different linestyles etc to represent different pipe diameters etc.

The pipe diameter, invert levels and attributes can all be labelled in plan.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Section: Pipe representation</strong></td>
<td>Pipe string level mode</td>
<td>pipe_level_mode</td>
<td>choice box</td>
</tr>
<tr>
<td></td>
<td>Pipe string vertical offset</td>
<td>pipe_vertical_offset</td>
<td>measure box</td>
</tr>
<tr>
<td></td>
<td>Draw multi pipes</td>
<td>pipe_multi</td>
<td>tick box</td>
</tr>
</tbody>
</table>

**Pipe Diameters Label grid**

The fields in this section are grid column fields that may each have up to 20 rows (sets) defined.

All pipes with diameters that fall between the minimum diameter Min pipe diam and the maximum diameter Max pipe diam for a row (set), will be represented according to the values of the other fields in this row. Note that the Pipe diameters are defined in the drainage design strings.

Min pipe diam (m) pipe_dia_min_n input minimum pipe diameter in metres for the nth row of pipe representations.

Max pipe diam (m) pipe_dia_max_n input maximum pipe diameter in metres for the nth row of pipe representations.

All pipes with diameters that fall between the min and max diameters of this row, will be represented according to the values of the other fields in this row.

Pipe type mask pipe_dia_mode text box

determines whether to represent pipes as linestyles and/or solid pipes for the nth row of pipe representations.

Representation mode pipe_dia_mode choice box none linestyle pipe linestyle and pipe

determines whether to represent pipes as linestyles and/or solid pipes for the nth row of pipe representations.

Trim mode trim_edge_mode choice box don't trim strings trim pipes trim linestyles trim pipes and linestyles

determines whether to trim pipe and/or linestyle strings around maintenance holes for the nth row of pipe representations.

Multi-pipe spacing real box the distance to space the pipes when multiple pipes are drawn.

Colour pipe_dia_colour_n colour box available colours colour to use for the nth row of pipe representations.
Linestyle pipe_dia_linestyle_n linestyle box available linestyles
   linestyle to use for the nth row of pipe representations.
Linestyle string name pipe_dia_name_n input
   string name of linestyles for the nth row of pipe representations.
Pipe string name pipe_edge_name_n input
   string name of pipes for the nth row of pipe representations.

Section: Pipe labels

Label Rise mode rise_mode choice box rise from centre of pipe
   rise from edge of pipe
determines where all pipe label text rise values are measured from.

See
  26.8.3.0.1 Pipes - Pipe Diameter Labels
  26.8.3.0.2 Pipes - Pipe IL Labels
  26.8.3.0.3 Pipes - Pipe Attribute Labels

Or return to 26.8 Drainage Plan Plot PPF Editor.
26.8.3.0.1 Pipes - Pipe Diameter Labels

The diameter of the pipes can be labelled in plan.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Section: Pipe diameter labels</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draw diameter labels</td>
<td>pipe_label_draw</td>
<td>tick box</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, the pipe diameters are labelled.</td>
<td></td>
</tr>
<tr>
<td>Label mode</td>
<td>pipe_label_mode</td>
<td>choice box</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pre dia post grade</td>
<td>pre dia post type grade</td>
</tr>
</tbody>
</table>

Determines what text is to be placed for the pipe diameter labels. Pipe types and grades can be included, in addition to diameters. Pipe diameters, types and grades are all defined in the drainage design strings.

**Note:** if a pipe attribute of real type named **width** exists and is greater than zero, the pipe is considered to be rectangular and is labelled **<width x height>**, where the height takes the value of the pipe diameter.

<table>
<thead>
<tr>
<th>Text size</th>
<th>pipe_label_size</th>
<th>real box</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>text size of the pipe diameter labels. The labels will only be created if the size is greater than zero.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Text offset</th>
<th>pipe_label_offset</th>
<th>real box</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>distance to move the pipe diameter labels along the pipe, from the mid position of the pipe segment. Positive values are to the right.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Text rise</th>
<th>pipe_label_rise</th>
<th>real box</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>distance to move the pipe diameter labels away from the pipe centreline or edge (depending on setting of <strong>rise_mode</strong>) A negative value will place the labels on the other side of the pipes.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Text colour</th>
<th>pipe_label_colour</th>
<th>colour box</th>
<th>available colours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>colour of the pipe diameter labels.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Text style</th>
<th>pipe_label_textstyle</th>
<th>textstyle box</th>
<th>available fonts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>font of the pipe diameter labels.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pre text</th>
<th>pipe_label_pre_text</th>
<th>text box</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>text to be placed before the diameter in the pipe diameter labels.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Post text</th>
<th>pipe_label_post_text</th>
<th>text box</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>text to be placed after the diameter in the pipe diameter labels.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units factor</th>
<th>pipe_label_factor</th>
<th>real box</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>multiplier of diameter values. A Units factor of 1000 will result in the diameters being labelled in mm.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal places</th>
<th>pipe_label_decimals</th>
<th>integer box</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>number of decimal places in labelled diameter values.</td>
<td></td>
</tr>
</tbody>
</table>

If > 0, trailing zeros are **removed** after the decimal point. If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

<table>
<thead>
<tr>
<th>Text string name</th>
<th>pipe_label_name</th>
<th>name box</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>string name of the pipe diameter labels.</td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section 26.8.3.0.2 Pipes - Pipe IL Labels section or return to 26.8.3 Pipes.
26.8.3.0.2 Pipes - Pipe IL Labels

The invert levels of both ends of the pipes can be labelled in plan.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Section: Pipe IL labels</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draw IL labels</td>
<td>pipe_text_draw_il</td>
<td>tick box</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>if ticked,</strong> the pipe invert levels are labelled.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text size</td>
<td>pipe_text_size_il</td>
<td>real box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>text size of the pipe IL (Invert Level) labels. The labels will only be created if the size is greater than zero.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text offset</td>
<td>pipe_text_offset_il</td>
<td>real box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>distance to move the pipe IL labels along the pipe, from the ends of the pipe. Positive values are towards the mid position of the pipe segment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text rise</td>
<td>pipe_text_rise_il</td>
<td>real box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>distance to move the pipe IL labels away from the pipe centreline or edge (depending on setting of rise_mode). A negative value will place the labels on the other side of the pipes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text colour</td>
<td>pipe_text_colour_il</td>
<td>colour box</td>
<td>available colours</td>
</tr>
<tr>
<td></td>
<td>colour of the pipe IL labels.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text style</td>
<td>pipe_text_textstyle_il</td>
<td>textstyle box</td>
<td>available textstyles</td>
</tr>
<tr>
<td></td>
<td>textstyle of the pipe IL labels.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre text</td>
<td>pipe_text_pre_text_il</td>
<td>text box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>text to be placed before the IL in the pipe IL labels.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post text</td>
<td>pipe_text_post_text_il</td>
<td>text box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>text to be placed after the IL in the pipe IL labels.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Units factor</td>
<td>pipe_text_factor_il</td>
<td>real box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>multiplier of IL values. A Units factor of 3.281 will result in the ILs being labelled in feet.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decimal places</td>
<td>pipe_text_decimals_il</td>
<td>integer box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>number of decimal places in labelled IL values.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>If &gt; 0, trailing zeros are removed</strong> after the decimal point.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>If &lt;0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text string name</td>
<td>pipe_text_name_il</td>
<td>name box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>text string name of the pipe IL labels.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section 26.8.3.0.3 Pipes - Pipe Attribute Labels section or return to 26.8.3 Pipes.
26.8.3.0.3 Pipes - Pipe Attribute Labels

The values of any pipe attributes can be labelled in plan.

The columns for the fields documented in the sections are for:

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

**Section: Pipe attribute labels**

Pipe attribute label grid

Each row of the grid defines how a pipe attribute is labelled. There may be up to 20 rows.

- **Label pipe attribute**
  - tick box
  - *if ticked*, the pipe attribute for this row will be labelled.
  - *If not ticked*, the pipe attribute for this row will *not* be labelled.

- **Attribute name**
  - text box
  - full path name of the pipe attribute for this row that may be labelled.

- **Text size**
  - pipe_attribute_text_size_n real box
  - text size of the pipe attribute for this row.

- **Text offset**
  - real box
  - distance to move the pipe attribute labels for this row along the pipe, from the ends of the pipe. Positive values are towards the mid position of the pipe segment.

- **Text rise**
  - real box
  - distance to move the pipe attribute labels for this row away from the pipe edge. A negative value will place the labels on the other side of the pipes.

- **Text colour**
  - colour box available colours
  - colour of the pipe attribute labels for this row.

- **Text style**
  - textstyle box available textstyles
  - textstyle of the pipe attribute labels for this row.

- **Pre text**
  - text box
  - text to be placed before the pipe attribute labels for this row.

- **Post text**
  - text box
  - text to be placed after the pipe attribute labels for this row.

- **Units factor**
  - real box
  - if the pipe attribute for this row is real or integer, it is multiplied by the *Units factor* for this row.

- **Decimal places**
  - integer box
  - if the pipe attribute for this row is real, this is the number of decimal places in the pipe attribute label for this row.
  - *If > 0, trailing zeros are removed* after the decimal point.
  - *If < 0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed*. For example -3 means that there is always 3 figures after the decimal place.

- **Text string name**
  - pipe_attribute_text_name_n name box
  - name of the text string of the pipe attribute label for this row.

Continue to the next section 26.8.4 Maintenance Holes or return to 26.8.3 Pipes or 26.8 Drainage Plan Plot PPF Editor.
26.8.4 Maintenance Holes

The maintenance holes in a plan of a drainage network are often not drawn as they appear but with different symbols etc to represent different manhole types etc.

The manhole name, diameter, depth, chainage, attributes and setout points can all be labelled in plan.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Section: Maintenance hole representation</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MH symbol direction mode</td>
<td>mh_symbol_dir_mode</td>
<td>choice box</td>
<td>use symbol angle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>left</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>right</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>average</td>
</tr>
</tbody>
</table>

Determines what mode of direction is used to place the MH symbols.

MH symbol angle (dms) | mh_symbol_angle | angle | angle of MH symbol placement in degrees, minutes and seconds in hp notation. This is only used depending on the setting of mh_symbol_dir_mode.

Use road direction where possible | tick box |

Use MH label direction for Text mode | tick box |

Group symbols with text labels | tick box |

If ticked,

MH Grid

The rows in the grid contain information for placing symbols at maintenance holes. There can be up to 20 rows in the grid.

MH type | mh_type_n | MH cell | available MH types |

MH type that will be drawn by information in this row of the grid. All MHs of this type will be represented according to the values of the other fields in this row. MH types are defined in the drainage design strings.

MH mode | mh_mode_n | choice cell | none |
			text
			symbol
			circle

Determines whether a text string, a symbol, or a circle is to be used to represent the maintenance holes in this row.

Insertion point | choice cell | mh centre, setout point |

Where to place the representation of the maintenance hole.

MH Symbol or Text | mh_symbol_n | symbol cell | available symbols |

Symbol or text string to use to represent the nth set of maintenance holes.

If mh_mode_n is set to text, a text string can be typed in.

If mh_mode_n is set to symbol, the symbol name can be chosen from the pop-up list.

If mh_mode_n is set to circle, then it is ignored.

MH Symbol mirror image
Justification

Justification mode of the MH text for this row of maintenance holes. It is relative to the centres of the MHs. This will only be relevant if \texttt{mh\_mode\_n} is set to \texttt{text}.

Size

Size of the MH symbols or text strings for this row of maintenance holes. The symbols, circles or text strings will only be created if the size is greater than zero.

In the case of a circle, the size is determined to match the diameter of the MH.

Offset

distance to move the MH symbols, circles or text strings to the left or right of the MH centres, for this row of maintenance holes. Positive values are to the right. The direction of movement is parallel to the angle of the MH symbols (see \texttt{mh\_symbol\_dir\_mode} and \texttt{mh\_symbol\_angle}).

Rise

distance to move the MH symbols, circles or text strings above or below of the MH centres, for this row of maintenance holes. Positive values are upwards. The direction of movement is perpendicular to the angle of the MH symbols (see \texttt{mh\_symbol\_dir\_mode} and \texttt{mh\_symbol\_angle}).

Colour

colour of the MH symbols, circles or text strings, for this row of maintenance holes.

Text style

font of the MH text for this row of maintenance holes. This will only be relevant if \texttt{mh\_mode\_n} is set to \texttt{text}.

MH Symbol string name

string name of the MH symbols, circles or text strings for this row of maintenance holes.

Section: Maintenance Hole Labels

MH label direction mode

determines what angle is to be used to position the maintenance hole label text.

MH label angle

angle of MH label text in degrees, minutes and seconds using hp notation.

This is only used depending on the setting of \texttt{mh\_text\_mode}.

MH label justification

justification mode of all MH label text strings, relative to the MH centres.
See

26.8.4.1 Maintenance Holes - MH Name Labels
26.8.4.2 Maintenance Holes - MH diameter Labels
26.8.4.3 Maintenance Holes - MH depth Labels
26.8.4.4 Maintenance Holes - MH Chainage Labels
26.8.4.5 Maintenance Holes - MH Attribute Labels
26.8.4.6 Maintenance Holes - MH Setout Points

Or return to 26.8 Drainage Plan Plot PPF Editor.
26.8.4.1 Maintenance Holes - MH Name Labels

The maintenance holes names are defined in the drainage strings.

The columns for the fields documented in the sections are for:

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

**Section: MH name labels**

this section defines how a MH name is labelled.

**Draw name labels** tick box

- if **ticked** the name of the maintenance hole is labelled.
- If **not ticked** the name of the maintenance hole is not labelled.

**Text size** mh_text_size real box

- if >0, the text size of the MH name labels.
- If zero, the MH name will not be labelled.

**Text offset** mh_text_offset real box

distance to move the MH name labels to the left or right of the MH centres. Positive values are to the right. The direction of movement is parallel to the angle of the text, specified by parameters mh_text_mode and mh_text_angle. The justification of the text is specified by parameter mh_text_justify.

**Text rise** mh_text_rise real box

distance to move the MH name labels above or below the MH centres. Positive values are above. The direction of movement is perpendicular to the angle of the text, specified by parameters mh_text_mode and mh_text_angle. The justification of the text is specified by parameter mh_text_justify.

**Text colour** mh_text_colour colour available colours

colour of the MH name labels.

**Text style** mh_text_textstyle textstyle available textstyles

textstyle of the MH name labels.

**Pre text** mh_text_pre text box

text to be placed before the MH name in the MH name labels.

**Post text** mh_text_post text box

text to be placed after the MH name in the MH name labels.

**Text string name** mh_text_name text box

text string name of the MH name labels.

Continue to the next section 26.8.4.2 Maintenance Holes - MH diameter Labels or return to 26.8.4 Maintenance Holes.
26.8.4.2 Maintenance Holes - MH diameter Labels

The diameter of each maintenance hole is defined in the drainage strings.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Section:</strong> MH diameter labels</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

  *this section defines how a MH diameter is labelled.*

**Draw diameter labels**

- **Tick box**
  - **If ticked** the diameter of the maintenance holes are labelled.
  - **If not ticked** the diameter of the maintenance holes are not labelled.

**Sub Section: Only label if diameter is outside range:**

| Min | mh_text_min_dia | real box |
| Max | mh_text_max_dia | real box |

  *range of MH diameters for which the MH diameter labels will not be created.*

  *Both Min and Max are entered in metres.*

**Text size**

- **mh_text_size_dia**
  - real box
  - if >0, the text size of the MH diameter labels.
  - If zero, the MH diameter will not be labelled.

**Text offset**

- **mh_text_offset_dia**
  - real box
  - distance to move the MH diameter labels to the left or right of the MH centres. Positive values are to the right. The direction of movement is parallel to the angle of the text, specified by parameters mh_text_mode and mh_text_angle.
  - The justification of the text is specified by parameter mh_text_justify.

**Text rise**

- **mh_text_rise_dia**
  - real box
  - distance to move the MH diameter labels above or below the MH centres. Positive values are above. The direction of movement is perpendicular to the angle of the text, specified by parameters mh_text_mode and mh_text_angle.
  - The justification of the text is specified by parameter mh_text_justify.

**Text colour**

- **mh_text_colour_dia**
  - colour box
  - available colours
  - colour of the MH diameter labels.

**Text style**

- **mh_text_textstyle_dia**
  - textstyle box
  - available fonts
  - font of the MH diameter labels.

**Pre text**

- **mh_text_pre_dia**
  - text box
  - text to be placed before the diameter in the MH diameter labels.

**Post text**

- **mh_text_post_dia**
  - text box
  - text to be placed after the diameter in the MH diameter labels.

**Units factor**

- **mh_text_factor_dia**
  - real box
  - multiplier of diameter values. A Units factor of 1000 will result in the diameters being labelled in mm.

**Decimal places**

- **mh_text_decimals_dia**
  - integer box
  - number of decimal places in labelled diameter values.

  *If > 0, trailing zeros are removed after the decimal point.*
  *If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.*

**Text string name**

- **mh_text_name_dia**
  - text box
  - string name of the MH diameter labels.
Continue to the next section 26.8.4.3 Maintenance Holes - MH depth Labels or return to 26.8.4 Maintenance Holes.
26.8.4.3 Maintenance Holes - MH depth Labels

The depth of each maintenance hole is defined in the drainage strings.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

**Section: MH depth labels**

This section defines how a **MH depth** is labelled.

**Draw depth labels**

TICK box

If **ticked** the depth of the maintenance holes are labelled.

If **not ticked** the depth of the maintenance holes are not labelled.

**Text size**

mh_text_size_depth real box

If >0, the text size of the MH depth labels.

If zero, the MH depths are not labelled.

**Text offset**

mh_text_offset_depth real box

distance to move the MH depth labels to the left or right of the MH centres. Positive values are to the right. The direction of movement is parallel to the angle of the text, specified by parameters mh_text_mode and mh_text_angle. The justification of the text is specified by parameter mh_text_justify.

**Text rise**

mh_text_rise_depth real box

distance to move the MH depth labels above or below the MH centres. Positive values are above. The direction of movement is perpendicular to the angle of the text, specified by parameters mh_text_mode and mh_text_angle. The justification of the text is specified by parameter mh_text_justify.

**Text colour**

mh_text_colour_depth colour box available colours

colour of the MH depth labels.

**Text style**

mh_text_textstyle_depth textstyle available fonts

text style of the MH depth labels.

**Pre text**

mh_text_pre_depth text box

text to be placed before the depth in the MH depth labels.

**Post text**

mh_text_post_depth text box

text to be placed after the depth in the MH depth labels.

**Units factor**

mh_text_factor_depth real box

multiplier of depth values. A Units factor of 3.281 will result in the depths being labelled in feet.

**Decimal places**

mh_text_decimals_depth integer box

number of decimal places in labelled depth values.

If > 0, trailing zeros are removed after the decimal point.

If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

**Text string name**

mh_text_name_depth name box

string name of the MH depth labels.

Continue to the next section **26.8.4.4 Maintenance Holes - MH Chainage Labels** or return to **26.8.4 Maintenance Holes**.
26.8.4.4 Maintenance Holes - MH Chainage Labels

The chainage of each maintenance hole is defined in the drainage strings.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: MH chainage labels</td>
<td>this section defines how a MH chainage is labelled.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Draw chainage labels | tick box |
if >0, the text size of the MH chainage labels.
If zero, the MH depths are not labelled.

Chainage mode | mh_text_mode_ch | choice box |
runtime: chainage
previous chainage
next chainage

determines what the chainage is that is labelled at the MHs.

If running chainage, the chainage is given with reference to the start of the drainage design string.
If previous chainage, the chainage is from the previous maintenance hole.
If next chainage, the chainage is from the next maintenance hole.

Text size | mh_text_size_ch | real box |
if >0, the text size of the MH chainage labels.
If zero, the MH depths are not labelled.

Text offset | mh_text_offset_ch | real box |
distance to move the MH chainage labels to the left or right of the MH centres. Positive values are to the right. The direction of movement is parallel to the angle of the text, specified by parameters mh_text_mode and mh_text_angle. The justification of the text is specified by parameter mh_text_justify.

Text rise | mh_text_rise_ch | real box |
distance to move the MH chainage labels above or below the MH centres. Positive values are above. The direction of movement is perpendicular to the angle of the text, specified by parameters mh_text_mode and mh_text_angle. The justification of the text is specified by parameter mh_text_justify.

Text colour | mh_text_colour_ch | colour box |
colour of the MH chainage labels.

Text style | mh_text_textstyle_ch | textstyle |
font of the MH chainage labels.

Pre text | mh_text_pre_ch | text box |
text to be placed before the chainage in the MH chainage labels.

Post text | mh_text_post_ch | text box |
text to be placed after the chainage in the MH chainage labels.

Units factor | mh_text_factor_ch | real box |
multiplier of chainage values. A Units factor of 3.281 will result in the chainages being labelled in feet.

Decimal places | mh_text_decimals_ch | integer box |
number of decimal places in labelled chainage values.

If > 0, trailing zeros are removed after the decimal point.
If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

Text string name | mh_text_name_ch | name box |
string name of the MH chainage labels.

Continue to the next section 26.8.4.5 Maintenance Holes - MH Attribute Labels or return to 26.8.4 Maintenance Holes.
26.8.4.5 Maintenance Holes - MH Attribute Labels

The values of any maintenance hole attributes can be labelled in plan.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
</table>

**Section: MH attribute labels**

MH attribute label grid

*each row of the grid defines how a MH attribute is labelled. There may be up to 20 rows.*

**Label MH attribute**

tick box

*if ticked, the MH attribute for this row will be labelled.*

*If not ticked, the MH attribute for this row will not be labelled.*

**Attribute name**
text box

*full path name of the MH attribute for this row that may be labelled.*

**Text size**
real box

*text size of the MH attribute for this row.*

**Text offset**
real box

*distance to move the MH attribute labels for this row to the right of the centre of the MH.*

**Text rise**
real box

*distance to move the MH attribute labels for this above the centre of the MH.*

**Text colour**
colour box

*available colours*

*colour of the MH attribute labels for this row.*

**Text style**
textstyle box

*available textstyles*

*textstyle of the MH attribute labels for this row.*

**Pre text**
text box

*text to be placed before the MH attribute labels for this row.*

**Post text**
text box

*text to be placed after the MH attribute labels for this row.*

**Units factor**
real box

*if the MH attribute for this row is real or integer, it is multiplied by the Units factor for this row.*

**Decimal places**
integer box

*if the MH attribute for this row is real, this is the number of decimal places in the MH attribute label for this row.*

*If > 0, trailing zeros are removed after the decimal point.*

*If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.*

**Text string name**
name box

*name of the text string of the MH attribute label for this row.*

Continue to the next section 26.8.4.6 Maintenance Holes - MH Setout Points or return to 26.8.4 Maintenance Holes.
26.8.4.6 Maintenance Holes - MH Setout Points

Symbols can be placed at the setout points for each maintenance hole.

The columns for the fields documented in the sections are for.

<table>
<thead>
<tr>
<th>Panel Field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: MH setout points</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draw setout points</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, symbols are drawn at the MH set out points. If not ticked, symbols are not drawn at the MH set out points.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setout symbol</td>
<td>symbol box</td>
<td>available symbols</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the symbol to draw at each setout point.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol size</td>
<td>real box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>size of the symbol for the setout points.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setout points string name</td>
<td>name box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the string that has the symbol.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Include MH name in string name</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, the MH name is included in the setout points string name. If not ticked, the MH name is not included in the setout points string name.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section 26.8.5 House Connections or return to 26.8 Drainage Plan Plot PPF Editor
26.8.5 House Connections

The maintenance holes in a plan of a drainage network are often not drawn as they appear but with different symbols etc to represent different manhole types etc.

The manhole name, diameter, depth, chainage, attributes and setout points can all be labelled in plan.

The columns for the fields documented in the sections are for.

Panel Field	Parameter name	Type	Pop-Up
Section: Maintenance hole representation
Panel field | Parameter name | Type | Pop-Up
Section: Maintenance hole representation

Draw house connections | hc_draw_mode | tick box

**HC linestyle** | hc_line_style | linestyle | available linestyles
linestyle with which to represent the house connections to the pipes. The HCs will be represented as lines perpendicular to the pipe, from the pipe centreline, to the sides of the pipe that the HCs are on.

**HC colour** | hc_colour | Colour | available colours
colour of the house connection linestyles

**HC string name** | hc_line_name | Input
string name of the HC lines.

The remaining fields in this section are grid column fields that may each have up to 6 sets (rows) defined.

Panel field	Parameter name	Type	Pop-Up
**HC Type** | hc_types_n | Input
HC type of the nth set of house connections. All HCs of this type will be represented according to the values of the other fields in this set (row). HC types are defined in the drainage design strings. There are only 6 different HC types used in 12d Model.

**HC Type label** | hc_type_text_n | Input
text label to be associated with the HC type of the nth set of house connections.

**Label HC Name and Type** | hc_type_tp_n | Tick box
label the names and types of the HCs of the nth set of house connections. Depending on the HC type, it may not be desired to label the type.

**Label HC IL** | hc_type_il_n | Tick box
label the ILs of the HCs of the nth set of house connections. Depending on the HC type, it may not make sense to label the IL.

**Label HC Chainage** | hc_type_ch_n | Tick box
label the chainages of the HCs of the nth set of house connections. Depending on the HC type, it may not make sense to label the chainages.

**Label HC Additional Text** | hc_type_at_n | Tick box
label the Additional text of the HCs of the nth set of house connections. Depending on the HC type, it may not be desired to label the Additional text.

See
- [26.8.5.1 House Connections - HC Name and Type Labels](#)
- [26.8.5.2 House Connections - HC IL Labels](#)
- [26.8.5.3 House Connections - HC Chainage Labels](#)
26.8.5.4 House Connections - HC Additional Text Labels

Or return to 26.8 Drainage Plan Plot PPF Editor.
26.8.5.1 House Connections - HC Name and Type Labels

<table>
<thead>
<tr>
<th>Panel field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label mode</td>
<td>hc_type_mode</td>
<td>choice box</td>
<td>available choices</td>
</tr>
<tr>
<td>Text size</td>
<td>hc_type_size</td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

Text size of the HC type labels. The labels will only be created if the size is greater than zero and the parameter hc_type_tp_n is set to on for the nth set of house connections. The HC type labels are associated with the HC types are defined by the parameter set hc_type_text_n.

Text offset  

Input

distance to move the HC type labels away from the pipe centreline. Negative values are converted to positive. HC label text is always placed perpendicular to the pipe (or parallel to the HC line) and on the same side of the pipe as the HC. The text will be automatically left justified or right justified, depending on the side.

Text rise  

Input

distance to move the HC type labels above or below the HC lines. Positive values are above. The direction of movement is parallel to the pipe (or perpendicular to the HC line). The text will be automatically bottom justified.

Text colour  

Colour

colour of the HC type labels.

Text style  

Textstyle

font of the HC type labels.

Text string name  

Input

string name of the HC type labels.

Continue to the next section 26.8.5.2 House Connections - HC IL Labels or return to 26.8.5 House Connections.
26.8.5.2 House Connections - HC IL Labels

<table>
<thead>
<tr>
<th>Panel field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text size</td>
<td>hc_il_size</td>
<td>input</td>
<td></td>
</tr>
</tbody>
</table>

text size of the HC IL (Invert Level) labels. The labels will only be created if the size is greater than zero and the parameter hc_type_il_n is set to on for the nth set of house connections.

<table>
<thead>
<tr>
<th>Text offset</th>
<th>hc_il_offset</th>
<th>input</th>
<th></th>
</tr>
</thead>
</table>

distance to move the HC IL labels away from the pipe centreline. Negative values are converted to positive. HC label text is always placed perpendicular to the pipe (or parallel to the HC line) and on the same side of the pipe as the HC. The text will be automatically left justified or right justified, depending on the side.

<table>
<thead>
<tr>
<th>Text rise</th>
<th>hc_il_rise</th>
<th>input</th>
<th></th>
</tr>
</thead>
</table>

distance to move the HC IL labels above or below the HC lines. Positive values are above. The direction of movement is parallel to the pipe (or perpendicular to the HC line). The text will be automatically bottom justified.

<table>
<thead>
<tr>
<th>Text colour</th>
<th>hc_il_colour</th>
<th>colour</th>
<th>available colours</th>
</tr>
</thead>
</table>

colour of the HC IL labels.

<table>
<thead>
<tr>
<th>Text style</th>
<th>hc_il_textstyle</th>
<th>textstyle</th>
<th>available fonts</th>
</tr>
</thead>
</table>

font of the HC IL labels.

<table>
<thead>
<tr>
<th>Pre text</th>
<th>hc_il_pre</th>
<th>input</th>
<th></th>
</tr>
</thead>
</table>
text to be placed before the IL in the HC IL labels.

<table>
<thead>
<tr>
<th>Post text</th>
<th>hc_il_post</th>
<th>input</th>
<th></th>
</tr>
</thead>
</table>
text to be placed after the IL in the HC IL labels.

<table>
<thead>
<tr>
<th>Units factor</th>
<th>hc_il_factor</th>
<th>input</th>
<th></th>
</tr>
</thead>
</table>
multiplier of IL values. A Units factor of 3.281 will result in the ILs being labelled in feet.

<table>
<thead>
<tr>
<th>Decimal places</th>
<th>hc_il_decimals</th>
<th>input</th>
<th></th>
</tr>
</thead>
</table>

number of decimal places in labelled IL values.

If > 0, trailing zeros are removed after the decimal point.
If <0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

<table>
<thead>
<tr>
<th>Text string name</th>
<th>hc_il_name</th>
<th>input</th>
<th></th>
</tr>
</thead>
</table>

string name of the HC IL labels.

Continue to the next section 26.8.5.3 House Connections - HC Chainage Labels or return to 26.8.5 House Connections.
### 26.8.5.3 House Connections - HC Chainage Labels

<table>
<thead>
<tr>
<th>Panel field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chainage mode</td>
<td>hc_chain_mode</td>
<td>choice box</td>
<td>hc lot offset</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>running chainage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>previous chainage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>next chainage</td>
</tr>
</tbody>
</table>

determines what chainage values will be labelled at the HCs. The **running chainage** option refers to the start of the drainage design string. The **previous chainage** and **next chainage** options refer to the previous and next MHs respectively. The **hc lot offset** option is a special one that looks for a user-defined attribute called "<hc_name> hc lot offset" in the house connections along the drainage design strings. If the attribute is found, its value is set as the HC chainage label. If the attribute is not found, the value of the HC chainage label is set to a default HC Lot Offset of 5.0.

**Text size**

**hc_chain_size**

*input*

text size of the HC chainage labels. The labels will only be created if the size is greater than zero and the parameter **hc_type_ch_n** is set to **on** for the nth set of house connections.

**Text offset**

**hc_chain_offset**

*input*

distance to move the HC chainage labels away from the pipe centreline. Negative values are converted to positive. HC label text is always placed perpendicular to the pipe (or parallel to the HC line) and on the same side of the pipe as the HC. The text will be automatically left justified or right justified, depending on the side.

**Text rise**

**hc_chain_rise**

*input*

distance to move the HC chainage labels above or below the HC lines. Positive values are above. The direction of movement is parallel to the pipe (or perpendicular to the HC line). The text will be automatically bottom justified.

**Text colour**

**hc_chain_colour**

colour available colours

colour of the HC chainage labels.

**Text style**

**hc_chain_textstyle**

textstyle available fonts

*font* of the HC chainage labels.

**Pre text**

**hc_chain_pre**

*input*

text to be placed before the chainage in the HC chainage labels.

**Post text**

**hc_chain_post**

*input*

text to be placed after the chainage in the HC chainage labels.

**Units factor**

**hc_chain_factor**

*input*

multiplier of chainage values. A Units factor of 3.281 will result in the chainages being labelled in feet.

**Decimal places**

**hc_chain_decimals**

*input*

number of decimal places in labelled chainage values.

*If* > 0, trailing zeros are **removed** after the decimal point.

*If* < 0, the absolute value is taken as the number of decimal places to report i.e. no trailing zeros are removed. For example -3 means that there is always 3 figures after the decimal place.

**Text string name**

**hc_chain_name**

*input*

string name of the HC chainage labels.

Continue to the next section **26.8.5.4 House Connections - HC Additional Text Labels** or return to **26.8.5 House Connections**.
### 26.8.5.4 House Connections - HC Additional Text Labels

<table>
<thead>
<tr>
<th>Panel field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional text</td>
<td>hc_text</td>
<td>input</td>
<td>the additional text to place near the HCs.</td>
</tr>
<tr>
<td>Text size</td>
<td>hc_text_size</td>
<td>input</td>
<td>text size of the HC additional text labels. The labels will only be created if the size is greater than zero and the parameter hc_type_at_n is set to on for the nth set of house connections.</td>
</tr>
<tr>
<td>Text offset</td>
<td>hc_text_offset</td>
<td>input</td>
<td>distance to move the HC additional text labels away from the pipe centreline. Negative values are converted to positive. HC label text is always placed perpendicular to the pipe (or parallel to the HC line) and on the same side of the pipe as the HC. The text will be automatically left justified or right justified, depending on the side.</td>
</tr>
<tr>
<td>Text rise</td>
<td>hc_text_rise</td>
<td>input</td>
<td>distance to move the HC additional text labels above or below the HC lines. Positive values are above. The direction of movement is parallel to the pipe (or perpendicular to the HC line). The text will be automatically bottom justified.</td>
</tr>
<tr>
<td>Text colour</td>
<td>hc_text_colour</td>
<td>colour</td>
<td>available colours</td>
</tr>
<tr>
<td>Text style</td>
<td>hc_text_textstyle</td>
<td>textstyle</td>
<td>available fonts</td>
</tr>
<tr>
<td>Text string name</td>
<td>hc_text_name</td>
<td>input</td>
<td>string name of the HC additional text labels.</td>
</tr>
</tbody>
</table>

Continue to the next section [26.8.6 Bubbles](#) or return to [26.8 Drainage Plan Plot PPF Editor](#)
26.8.6 Bubbles

<table>
<thead>
<tr>
<th>Panel field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Section: Bubbles</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draw bubbles</td>
<td>bubble_draw_mode</td>
<td>tick box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>draw bubbles (circles) around the MH name labels.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bubble colour</td>
<td>bubble_colour</td>
<td>colour box</td>
<td>available colours</td>
</tr>
<tr>
<td></td>
<td>colour of the bubbles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bubble factor</td>
<td>bubble_factor</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the initial radius of the bubble is calculated as half the text length of the MH name label. The bubble factor is used to multiply the initial radius to give the final bubble radius. Factors greater than 1 will increase the bubble size.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bubble string name</td>
<td>bubble_name</td>
<td>input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>string name of the bubbles.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section [26.8.7 Flow Arrows](#) or return to [26.8 Drainage Plan Plot PPF Editor](#)
26.8.7 Flow Arrows

<table>
<thead>
<tr>
<th>Panel field</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: Flow Arrows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draw flow arrows</td>
<td>flow_arrow_mode</td>
<td>tick box</td>
<td></td>
</tr>
</tbody>
</table>
  *draw flow arrows near the pipe diameter labels, showing the direction of flow in the pipes.*
| Arrow colour         | flow_arrow_colour     | colour box |        |
  *colour of the flow arrows.*
| Solid fill arrows    | flow_arrow_fill       | tick box |        |
| Arrow length         | flow_arrow_length     | input    |        |
  *length of the flow arrows. Setting the length to a negative number will place the arrow on the other side of the pipe (whilst still maintaining the correct arrow direction).*
| Arrow rise           | flow_arrow_rise       | input    |        |
| Arrow string name    | flow_arrow_name       | input    |        |
  *string name of the flow arrows.*

Continue to the next section 26.8.8 Buttons at Bottom of Panel or return to 26.8 Drainage Plan Plot PPF Editor

26.8.8 Buttons at Bottom of Panel

This is documented for all the PPF Editors in 26.2.11 Buttons at the Bottom of the PPF Editors.

Return to 26.8 Drainage Plan Plot PPF Editor
26.9 Plot Frame and PPF Editor

Position of option on menu:  Plot => Plot and PPF Editors => Plot frames

The **Plot Frame PPF Editor** is for creating and/or editing a (binary) plot frame PPF file and for creating a cross section plot.

**Note:** Binary PPFs are stored *within* the project (not in the folder containing the project as the text ppf's were).

On selecting the **Plot frames** option, the **Plot Frame PPF Editor** panel is displayed.

The plot parameters for controlling the cross section plots are accessed by expanding to the appropriate node in the **Plot Frame** tree (click on the + to expand to node or - to collapse the node) and then clicking on the required node, and the required information to fill in is displayed on the right hand side of the panel.

![Plot Frame PPF Editor panel](image)

See

- [26.9.1 Plot Frame - Front Page](#)
- [26.9.2 Notes - Plot Frame](#)
- [26.9.4 Plot Frame Title Block](#)
- [26.9.5 Buttons at Bottom of Plot Frame PPF Editor](#)
26.9.1 Plot Frame - Front Page

Section: Single plot frame

The fields and buttons used in this section have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot frame</td>
<td>single_frame</td>
<td>string select box</td>
<td>select the plot frame to be plotted.</td>
</tr>
</tbody>
</table>

Section: Model of plot frames

The fields and buttons used in this section have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model of frames</td>
<td>model_of_frames</td>
<td>model box</td>
<td>model of plot frames to plot.</td>
</tr>
</tbody>
</table>

Section: View to plot

The fields and buttons used in this section have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>View to plot</td>
<td>view_name</td>
<td>model box</td>
<td>view in which data to plot resides.</td>
</tr>
</tbody>
</table>

Section: Plotter parameters

The fields and buttons used in this section have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Parameter name</th>
<th>Type</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plotter type</td>
<td>plotter_type</td>
<td>plotter box</td>
<td>a valid plotting option is selected.</td>
</tr>
<tr>
<td>Plot file stem</td>
<td>plot_stem</td>
<td>plotter box</td>
<td>plot file name. The appropriate extension is added dependant on the plotter type selected.</td>
</tr>
<tr>
<td>Clean plot models before-hand</td>
<td>plot_model_clean</td>
<td>choice box</td>
<td>do not clean prompt for clean always clean</td>
</tr>
</tbody>
</table>

whether to clean (delete the elements in) any resultant plot models that may already exist, before generating the plot(s). This parameter is only applicable if plotting to a model or models. Note that if the models are cleaned using this parameter, any non-plot or locked elements found in the models will not be cleaned from the models, and the plot job will be cancelled.

Use drawing numbers in plot file names use_drawing_numbers_in_filenames tick box

Please continue to the next section 26.9.2 Notes - Plot Frame.
26.9.2 Notes - Plot Frame
This is documented for all the PPF Editors in 26.2.4 Notes.
Please continue to the next section 26.9.3 Plot to Models - Plot Frame.

26.9.3 Plot to Models - Plot Frame
This is documented for all the PPF Editors in 26.2.5 Plot to models.
Please continue to the next section 26.9.4 Plot Frame Title Block.

26.9.4 Plot Frame Title Block
This is documented for all the PPF Editors in 26.2.6.1 Title Block Section in PPF Editors.
For more general information about a title block, see 26.2.6 Title Block.
Return to 26.9 Plot Frame and PPF Editor.

26.9.5 Buttons at Bottom of Plot Frame PPF Editor
This is documented for all the PPF Editors in 26.2.2 View to Load and Global Variables.
Return to 26.9 Plot Frame and PPF Editor.
26.10 Convert Ascii PPF to Binary

**Position of option on menu:**  Plot => Plot and PPF Editors => Convert Ascii to Binary

The Convert ascii to binary option is for converting the old text plot parameter files to the new binary plot parameter file format.

**Note:** Binary PPFs are stored within the project (not in the folder containing the project as the Text PPFs were).

Selecting the Convert ascii to binary displays the PPF Convert Ascii to Binary panel:

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascii ppf file box</td>
<td>name of the Text plot parameter file to convert.</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary ppf button</td>
<td>convert the Text PPF to the equivalent binary PPF. The binary PPF file will be stored in the current project.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convert button</td>
<td>convert the Text PPF to a binary PPF.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
26.11 Copy Title Data

Position of option on menu: Plot => Plot and PPF Editors => Copy title data

The Copy title data option is for copying the title data in one binary plot parameter to another binary plot parameter file format.

On selecting the Copy title data option, the PPF Copy Title Data panel is displayed.

![PPF Copy Title Data Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old plot parameter file</td>
<td>name of the plot parameter file to copy the title data from.</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New plot parameter file</td>
<td>name of the plot parameter file to copy the title data to.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copy</td>
<td>copy the title data from one PPF file to another.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
27 Reports

Position of menu: It is on the main menu as Report

The Reports menu contains options to report on the strings in a model, polygon details (area, centroid), string set outs, string names, crest and sag points and x-falls.

The Reports menu is

For the option/menu Edit, go to

- 27.1 Edit
- 27.2 Strings
- 27.3 Functions
- 27.4 Length and Area
- 27.5 Set-Out Reports
- 27.6 Services
- 27.7 Quantities
- 27.8 X-Fall and Offset Report
- 27.9 Report Utilities
- 27.10 QA Reports
- 27.11 More Reports

Each menu option will now be discussed.
27.1 Edit

**Position on menu:** Report => Edit

The Edit option is used to edit any (printer) reports ending in *.rpt.

On walking right on Edit, the list of files ending in *.rpt are displayed.

Double clicking on the report name will bring up the report in the system editor.

Clicking on the Edit at the top of the menu brings up the **Edit a file** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Folder</strong></td>
<td>folder box</td>
<td>folder box</td>
<td>current folder</td>
<td>folder browser</td>
</tr>
</tbody>
</table>

  * the folder to look for the report file.

| **File to edit** | file box | * .rpt |

  * name of the file to bring up in the system editor.
27.2 Strings

Position of menu: Report => Strings

The Strings menu contains options to report on selected strings, report the crest/sag points for a string and create a list of all the unique string names in a model or view.

The Strings walk-right menu is

For the option Coords/Brg-Dst, go to 27.2.1 Coordinates or Bearing-Distance Report

Crest/sag points 27.2.2 Crest/Sag Points Report
Names 27.2.3 Names Report
Super alignment 27.2.4 Super Alignment Report
Chainage Equalities 27.2.5 Chainage Equalities Report
Super strings 27.2.6 Report for Super Strings
More 27.2.7 More Strings Reports.
27.2.1 Coordinates or Bearing-Distance Report

Position of option on menu:  Report => Strings => Coords/Brg-Dst

The Coords/Brg-Dst option is used to generate a report on selected items defined by a source box. The report can be of the form of coordinates of each point of a string, or the co-ordinates of the first point of a string and the bearings and distances from each other point of the string to the first point of the string.

For a Super Alignment string it will report the solved horizontal and vertical geometry (the horizontal and vertical Segments that make up the Super Alignment). If there is a non-zero separation value, then at each chainage that is a multiple of the separation value, the report also includes the chainage, x, y, z, and in and out bearings at the chainage.

For an Alignment string it will report on the HIP’s and VIPS. If there is a non-zero separation value, then at each chainages that are multiples of the separation value, the report also includes the chainage, x, y, z, bearing for horizontal and chainage, height (z), grade for vertical.

On selecting the Coords/Brg-Dst option, the Report on Selected Item panel is displayed.

![Report on Selected Item panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>data selection type - for a full description go to <a href="#">4.19.3 Data Source</a>.</td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td>source of data to be processed.</td>
</tr>
<tr>
<td>Report file</td>
<td>input</td>
<td>* .rpt</td>
<td>name of the file to report to.</td>
</tr>
<tr>
<td>Coordinates(x,y)</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
</tbody>
</table>
if tick, the coordinate report parameters will be displayed which will determine what other information as well as the coordinate values will be placed in the report. **NOTE:** If an alignment string is part of the selection, the report will include all relevant details about the alignment. In this case the report will not use the coordinate report parameters as specified, for the alignment string.

**Bearing and Distances** tick box

if tick, the bearing and distance report parameters will be displayed which will determine what other information as well as the bearing and distance values will be placed in the report.

**Coordinate report parameters**

if the Coordinates(x,y) option is selected, the following parameters will be displayed

- **Point ids** tick box
  
  if selected, any valid point ids will be shown in the report.

- **Vertex indices** tick box
  
  if selected, vertex indices will be shown in the report.

- **Z Values** tick box
  
  if selected, any valid z values will be shown in the report.

- **Radius values** tick box
  
  if selected, any valid radius values will be shown in the report.

- **Vertex Text** tick box
  
  if selected, any valid vertex text values will be shown in the report.

- **Separation for Alignment** tick box
  
  if selected, the separation for alignment box will be enabled.

  **Separation** input box 10
  
  if enabled by ticking the previous tick box, the alignment string information will be reported at a chainage interval given by the separation value.

- **Report** button
  
  run the option and create the report.

For a Super Alignment, the report is the same as Reports => Strings => Super alignment (see 27.2.4, Super Alignment Report).
27.2.2 Crest/Sag Points Report

Position of option on menu:  Report => Strings => Crest sag points

The crest/sag points option is used to generate a (printer) report on the crests and sags points of a string.

A number of strings can be reported on by selecting them in turn.

On selecting the crest/sag points option, the string crest/sag points report panel is displayed.

The fields and buttons in this panel are used as follows:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td>* .rpt</td>
<td></td>
</tr>
</tbody>
</table>

data selection type - for a full description go to 4.19.3 Data Source.

data source type of data source.

name of the file to contain the reports on the crest and sag points of strings.

Pick & Report button

as strings are selected, the crest and sag points report is generated and appended to the report file.

The cycle is terminated by clicking RB to raise the pick ops menu and selecting cancel from it.
27.2.3 Names Report

The names option is used to report on all the unique strings in a model or on a view.

If the report button is selected, then all the strings in the model/view given by the model/view to report field will be checked and all unique names, plus a frequency count, will be written to the report file.

Selecting Names displays the String Names Report for panel.

![String Names Report for Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
</tr>
<tr>
<td># chars to check</td>
<td>input</td>
</tr>
<tr>
<td></td>
<td>if non blank, the number of characters to be used in the string name when checking for uniqueness.</td>
</tr>
<tr>
<td></td>
<td>If blank, then the entire string name is used.</td>
</tr>
<tr>
<td>Report file</td>
<td>file box</td>
</tr>
<tr>
<td></td>
<td>* .rpt files</td>
</tr>
<tr>
<td></td>
<td>name of the file for the report.</td>
</tr>
<tr>
<td>Report</td>
<td>button</td>
</tr>
<tr>
<td></td>
<td>report on all the unique string names in model/view.</td>
</tr>
</tbody>
</table>
27.2.4 Super Alignment Report

Report on the Super Alignment that gives information on the horizontal and vertical components.

For a Super Alignment string it will report the solved horizontal and vertical geometry (the horizontal and vertical Segments that make up the Super Alignment).

If there is a non-zero separation value, then at each chainages that are multiples of the separation value, the report also includes the chainage, x, y, z, in and out bearing for horizontal vertices, and chainage, height (z) and in and out grade for vertical vertices.

On selecting the Super alignment option, the Super Alignment Report panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type - for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>choice box</td>
<td>simple text</td>
<td>html tables, pdf tables, original xml, csv ip tables, simple text, crests and sags</td>
</tr>
<tr>
<td>Report type</td>
<td>choice box</td>
<td>simple text</td>
<td>html tables, pdf tables, original xml, csv ip tables, simple text, crests and sags</td>
</tr>
<tr>
<td>Report file</td>
<td>input</td>
<td>*.rpt</td>
<td>name of the file to report to. See below for definition of the report and an example.</td>
</tr>
</tbody>
</table>

The Super Alignment report is made up of 5 parts:

(a) General Information
   The type of transition curve.
Whether the super alignment is closed or not.

The start chainage for the string and the chainage length (2d length) of the string.

(b) Horizontal Vertex Data

The Horizontal Vertex Data section of the report gives information about each of the horizontal vertices of the underlying horizontal segment geometry.

Note: "Solving" a super alignment takes all the constraints and produces a string of vertices with segments of type Line, Arc or Transition between each pair of adjacent vertices.

So the Horizontal Vertex Data report gives the (x,y,z) coordinates of each of the vertices of the solved horizontal geometry with the type of segment going into the vertex (In Seg), and the type of segment going out of the vertex (Out Seg).

The In Direction is the angle at the vertex of the segment going into the vertex, and the Out Direction is the angle at the vertex of the segment going out of the vertex.

If the In and Out Direction are the same, then the two segments are tangential at the vertex and there will be a Yes in the Tan column, otherwise there will be a No in the Tan column.

In Seg

The type of the segment going into the critical point (In Segment) at the chainage - Line, Arc, Leading Spiral (L.Spiral), Trailing Spiral (T.Spiral)

Out Seg

The type of the segment going out of the critical point (Out Segment) at the chainage - Line, Arc, Leading Spiral (L.Spiral), Trailing Spiral (T.Spiral)

Tan - yes or no

yes if the In Segment and Out Segment are tangential. That is, the In Direction and Out Direction are the same.

no if the In Segment and Out Segment are not tangential. That is, the In Direction and Out Direction are different.

Chainage

chainage of the critical point

X, Y and Z Coordinates at that chainage

In Direction

the angle of the In Segment at the critical point. Measured in dms, counterclockwise from the positive x-axis.

Out Direction

the angle of the Out Segment at the critical point. Measured in dms, counterclockwise from the positive x-axis.

In Radius

the radius of the In Segment at the critical point (or blank if on a Line).

Out Radius

the radius of the Out Segment at the critical point (or blank if on a Line).

(c) Horizontal Geometry Data

How each of the horizontal parts is defined.

(d) Vertical Vertex Data

The Vertical Vertex Data section of the report gives information about each of the vertical vertices of the underlying vertical segment geometry.

Note: "Solving" the vertical of a super alignment takes all the constraints and produces a 2d string in the (Chainage, height) plane, of vertices with segments of type Line, Arc or Parabola between each pair of adjacent vertices.
So the **Vertical Vertex Data** report gives the (ch,z) coordinates of each of the vertices of the solved vertical geometry with the type of segment going into the vertex (**In Seg**), and the type of segment going out of the vertex (**Out Seg**).

The **In Grade** is the grade at the vertex of the segment going into the vertex, and the **Out Grade** is the grade at the vertex of the segment going out of the vertex.

If the **In** and **Out Grade** are the same, then the two segments are **tangential** at the vertex and there will be a **Yes** in the **Tan** column, otherwise there will be a **No** in the **Tan** column.

**In Seg**

The type of the segment going into the critical point (**In Segment**) at the chainage - Line, Arc, Parabola

**Out Seg**

The type of the segment going out of the critical point (**Out Segment**) at the chainage - Line, Arc, Parabola

**Tan - yes or no**

- **yes** if the **In Segment** and **Out Segment** are tangential. That is, the **In Grade** and **Out Grade** are the same.
- **no** if the **In Segment** and **Out Segment** are not tangential. That is, the **In Grade** and **Out Grade** are different.

**Chainage**

chainage of the critical point

**Level**

height (z value) at that chainage

**In Grade**

the grade of the **In Segment** at the critical point.

**Out Grade**

the grade of the **Out Segment** at the critical point.

**In VCL Radius**

the radius of the parabola or arc of the **In Segment** at the critical point (or blank if on a Line).

**Out VCL Radius**

the radius of the parabola or arc of the **Out Segment** at the critical point (or blank if on a Line).

(e) **Vertical Geometry Data**

How each of the vertical parts is defined.
Super Alignment to Report

Horizontal Geometry

Vertical Geometry
The Super Alignment report is made up of 5 parts:

(a) General Information
   - The date the report was produced
   - The string and model name for the string
   - The type of transition curve
   - Whether the super alignment is closed or not
   - The start chainage for the string and the chainage length (2d length) of the string

---

### Old Report - V9

<table>
<thead>
<tr>
<th>Out Seg</th>
<th>Tan Chainage</th>
<th>X</th>
<th>Y</th>
<th>Coordinates</th>
<th>Z</th>
<th>In Direction</th>
<th>Out Direction</th>
<th>In Rad</th>
<th>Out Rad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line</td>
<td>0.000</td>
<td>42946.380</td>
<td>37406.792</td>
<td>203.514</td>
<td>195°01'49.50&quot;</td>
<td>195°01'49.50&quot;</td>
<td>-100.000</td>
<td>-100.000</td>
<td></td>
</tr>
<tr>
<td>Spiral</td>
<td>Yes</td>
<td>351.558</td>
<td>42800.007</td>
<td>37297.489</td>
<td>188.341</td>
<td>195°01'49.50&quot;</td>
<td>195°01'49.50&quot;</td>
<td>-100.000</td>
<td>-100.000</td>
</tr>
<tr>
<td>Arc</td>
<td>Yes</td>
<td>545.518</td>
<td>42730.395</td>
<td>37561.735</td>
<td>187.533</td>
<td>195°01'49.50&quot;</td>
<td>195°01'49.50&quot;</td>
<td>-100.000</td>
<td>-100.000</td>
</tr>
<tr>
<td>Line</td>
<td>No</td>
<td>546.941</td>
<td>42834.908</td>
<td>37038.111</td>
<td>174.523</td>
<td>298°53'11.72&quot;</td>
<td>298°53'11.72&quot;</td>
<td>201°48'05.08&quot;</td>
<td>201°48'05.08&quot;</td>
</tr>
</tbody>
</table>

### Geometry Data

#### Alignment Report for string <m001> in Model <m001>

<table>
<thead>
<tr>
<th>Out Seg</th>
<th>Tan Chainage</th>
<th>Level</th>
<th>In Grade</th>
<th>Out Grade</th>
<th>In VCL Radius</th>
<th>Out VCL Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line</td>
<td>372.906</td>
<td>174.358</td>
<td>0.20</td>
<td>0.20</td>
<td>1382.628</td>
<td>1382.628</td>
</tr>
<tr>
<td>Parabola</td>
<td>596.930</td>
<td>180.272</td>
<td>9.00</td>
<td>9.00</td>
<td>1382.628</td>
<td>1382.628</td>
</tr>
</tbody>
</table>
(b) A report for the critical points, and the horizontal chainage increment of the string giving the
Point Type at the chainage (eg Straight, Tangent-Curve, Curve, Spiral-Curve etc)
Chainage at that point.
X, Y and Z Coordinates at that chainage
Instantaneous Bearing at that chainage
Instantaneous Radius at that chainage (or blank if on a straight)

(c) Horizontal Vertex Data
The Horizontal Vertex Data section of the report gives information about each of the horizontal vertices of the underlying horizontal segment geometry.
Note: "Solving" a super alignment takes all the constraints and produces a string of vertices with segments of type Line, Arc or Transition between each pair of adjacent vertices.
So the Horizontal Vertex Data report gives the (x,y,z) coordinates of each of the vertices of the solved horizontal geometry with the type of segment going into the vertex (In Seg), and the type of segment going out of the vertex (Out Seg).
The In Bearing is the bearing at the vertex of the segment going into the vertex, and the Out Bearing is the bearing at the vertex of the segment going out of the vertex.
If the In and Out Bearings are the same, then the two segments are tangential at the vertex and there will be a Yes in the Tan column, otherwise there will be a No in the Tan column.

(d) Horizontal Geometry Details
How each of the horizontal parts is defined.

(e) Vertical Vertex Data
The Vertical Vertex Data section of the report gives information about each of the vertical vertices of the underlying vertical segment geometry.
Note: "Solving" the vertical of a super alignment takes all the constraints and produces a 2d string in the (Chainage, height) plane, of vertices with segments of type Line, Arc or Parabola between each pair of adjacent vertices.
So the Vertical Vertex Data report gives the (ch,z) coordinates of each of the vertices of the solved vertical geometry with the type of segment going into the vertex (In Seg), and the type of segment going out of the vertex (Out Seg).
The In Grade is the grade at the vertex of the segment going into the vertex, and the Out Grade is the grade at the vertex of the segment going out of the vertex.
If the In and Out Grade are the same, then the two segments are tangential at the vertex and there will be a Yes in the Tan column, otherwise there will be a No in the Tan column.

(f) Horizontal Geometry Details
How each of the vertical parts is defined.
27.2.5 Chainage Equalities Report

Position of option on menu:  Report => Strings => Chainage equalities
This option is under development.

On selecting the Chainage equalities option, the Chainage Equality Report panel is displayed.

![Chainage equality report panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model data selection type - for a full description go to 4.19.3 Data Source.</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>type of data source.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centreline</td>
<td>string select</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report File</td>
<td>file select</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output as CSV</td>
<td>tick box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- run the option and create the report.
27.2.6 Report for Super Strings

**Position of option on menu:**  
Report => Strings => Super strings

This option reports on information in the super string.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source type</strong></td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>data selection type - for a full description go to 4.19.3 Data Source.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Data source</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>type of data source.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Vertex index</strong></td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td><em>if tick, vertex indices are reported.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Point id</strong></td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td><em>if tick, point ids are reported.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Report XY</strong></td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td><em>if tick, x and y values are reported.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Report Z</strong></td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td><em>if tick, z values are reported.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Report file header</strong></td>
<td>input box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td><em>if tick, a header including the date and model name and string names is included.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Report file name</strong></td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>name of the report.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Report</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Run the option.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
27.2.7 More Strings Reports

There are currently no options on this menu.
27.3 Functions

Position of menu: Report => Functions

A report can be made on a function. The function walk-right menu is

![Function Reports](image)
27.3.1 Report a Function, Report all Functions

Position of option on menu: Report => Functions => One
Position of option on menu: Report => Functions => All

On selecting the report or report all option, the function report/ report all functions panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>function box</td>
<td>available functions</td>
<td>name of the function to be reported.</td>
</tr>
<tr>
<td>Report file</td>
<td>file box</td>
<td>* .rpt files</td>
<td>name of the file to write the report to.</td>
</tr>
<tr>
<td>Report</td>
<td>button</td>
<td></td>
<td>after selecting this button, a report on the function/ all functions is produced.</td>
</tr>
</tbody>
</table>
27.4 Length and Area

Position of option on menu:  Report => Length/Area

The Length/area (Polygons) option creates a report containing the following information for each selected string:

- string name
- if the string is closed or not
- length of the string
- area of the string (if not closed, join first and last points). A polygon area is positive if the vertices of the polygon go in a clockwise direction, or negative if the vertices go in an anti-clockwise direction.
- centroid co-ordinates

On selecting the Length/Area option, the Polygon Report for panel is displayed.

The fields and buttons in this panel are used as follows

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>data selection type - for a full description go to 4.19.3 Data Source.</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>type of data source.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report areas as absolute</td>
<td>tick box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A polygon area is positive if the vertices of the polygon go in a clockwise direction, or negative if the vertices go in an anti-clockwise direction.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, report all areas as positive.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td>input</td>
<td></td>
<td>*.rpt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>file for the polygon reports.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>produce a polygon report for all strings selected in the Data source.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
27.5 Set-Out Reports

**Position of menu:** Report => Set-out

The Set out report options are for reporting the bearing and distance from a selected instrument station to individual points, strings, models of strings or views of strings.

In the Setout report, a backsight stations can be selected and the bearing of the line from the instrument station to the backsight station reported. Individual backsight points or strings of backsight points can be selected for reporting.

In the Radial report, the report can be sorted by point number, bearing or distance.

The set outs walk-right menu is

```
Set-Out Report
Old Setout Report
Setout Report
Radial Report
```

old set out report from V5.0
set out report for strings
set out report sorted by name, distance or bearing

For the option Old setout report, go to

- Old Setout Report 27.5.1
- Setout Report 27.5.2
- Radial Report 27.5.3

The menu options will now be discussed.
27.5.1 Old Setout Report

**Position of option on menu:** Report => Set out => Old setout report

The setout report from 12d Model V5. This option has been rewritten for 12d Model V6 and is called **Setout Report**.

On selecting the **Old setout report** option, the **Old Setout Report** panel is displayed.

The fields and buttons in this panel are used as follows:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

_data selection type - for a full description go to 4.19.3 Data Source._

<table>
<thead>
<tr>
<th>Data source</th>
<th>type of data source.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report mode</td>
<td>input report points, report string</td>
</tr>
<tr>
<td></td>
<td><em>if report points</em>, report selected points. Otherwise report on all points in the selected string.</td>
</tr>
<tr>
<td>Maximum distance</td>
<td>input</td>
</tr>
<tr>
<td></td>
<td><em>if non-blank</em>, any points further that the maximum distance from the instrument station will not be reported on. If <em>blank</em>, all selected points will be reported on</td>
</tr>
<tr>
<td>Report file</td>
<td>input</td>
</tr>
<tr>
<td></td>
<td>file for the backsight and setout reports</td>
</tr>
</tbody>
</table>
Instrument XYZ/name output
co-ordinates/name of the current instrument station

Bearing decimal places input
number of decimal places to report the bearings to

Instrument button
the required instrument station is selected and its name and position are reported in the instrument XYZ and instrument name panel fields.

Backsight button
a backsight is selected and written to the report file.

Pick button
After pick is chosen, a set out report is written to the report file for any selected strings. If the report mode is report point, only the individual point is reported. If the report mode is report string, all the points in the string are reported.
The cycle is terminated by clicking RB to raise the pick ops menu and selecting cancel from it.

Setouts button
produce a set out report for all the strings in the model/view given in the model/view field.

How to Use the Panel and Panel Messages
(a) Enter the report file name and maximum distance.
(b) The instrument station is chosen by activating the station button and selecting the required station point. It will then be reported in the file.
(c) Any backsight points to be reported can then be chosen by picking the backsight button and selecting the backsight point.
(d) To report on individual strings or points, set the report mode to either point or string. The pick button is then activated and the individual points or strings selected. The cycle is terminated by clicking RB to raise the pick ops menu and selecting cancel from it.
To report on all the strings in a model/view, give the model/view in the model/view field, and select the setout button.

Note
The instrument station can be changed at any time by selecting the station button and picking the new station.
All backsight and set outs will then be taken from the new instrument station.
27.5.2 Setout Report

**Position of option on menu:**  Report => Set out => Setout report

In the Setout report, a backsight stations can be selected and the bearing of the line from the instrument station to the backsight station reported. Individual backsight points or strings of backsight points can be selected for reporting.

The instrument station can be changed at any time and new backsight and set outs reported.

The setout option prints the following information:

- **instrument station**
  - string name, point number, x, y, z

- **backsight point**
  - string name, point number, x, y, z, bearing to the line joining the instrument and backsight, horizontal distance, height difference between instrument station and the backsight

- **point set-out point**
  - string name, point number, x, y, z, bearing, horizontal distance, height difference between instrument station and the point

On selecting the Setout report option, the Setout Report panel is displayed.

![Setout Report Panel]

The fields and buttons in this panel are used as follows

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source type</strong></td>
<td>Model</td>
<td></td>
<td>data selection type - for a full description go to 4.19.3 Data Source.</td>
</tr>
</tbody>
</table>
Data source
   type of data source.

Report mode  choice box  report points, report string
   if report points, report selected points. Otherwise report on all points in the selected string.

Maximum distance  input
   if non-blank, any points further that the maximum distance from the instrument station will not be reported on. If blank, all selected points will be reported on.

Report file  file box
   file for the backsight and setout reports

Instrument XYZ/name  output
   co-ordinates/name of the current instrument station

Bearing decimal places  input
   number of decimal places to report the bearings to

Instrument  button
   the required instrument station is selected and its name and position are reported in the instrument XYZ and instrument name panel fields.

Backsight  button
   a backsight is selected and written to the report file.

Pick  button
   After pick is chosen, a set out report is written to the report file for any selected strings. If the report mode is report point, only the individual point is reported. If the report mode is report string, all the points in the string are reported. The cycle is terminated by clicking RB to raise the Pick ops menu and selecting Cancel from it.

Setouts  button
   produce a set out report for all the strings in the model/view given in the model/view field.

How to Use the Panel and Panel Messages
(a) Enter the report file name and maximum distance.
(b) The instrument station is chosen by activating the station button and selecting the required station point. It will then be reported in the file.
(c) Any backsight points to be reported can then be chosen by picking the backsight button and selecting the backsight point.
(d) To report on individual strings or points, set the report mode to either point or string. The pick button is then activated and the individual points or strings selected. The cycle is terminated by clicking RB to raise the pick ops menu and selecting cancel from it. To report on all the strings in a model/view, give the model/view in the model/view field, and select the setout button.

Note
The instrument station can be changed at any time by selecting the station button and picking the new station.

All backsight and set outs will then be taken from the new instrument station.
27.5.3 Radial Report

Position of option on menu: Report => Set out => Radial report

The radial report reports the bearing and distance from the Instrument to selected vertices. The report can be sorted by point id, bearing or distance.

Selecting Radial report brings up the Radial Report panel.

![Radial Report panel](image)

The fields and buttons in this panel are used as follows:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*data selection type - for a full description go to 4.19.3 Data Source.*

Data source

*type of data source.*
Scaled radial  
  radio button  
  if selected, the report uses a fixed scale factor.

Scale factor  
  input 1  
  if scaled radial is selected, the fixed scale factor to use

Projection radial  
  radio button  
  if selected, the report uses a projection for calculating distances

Projection  
  projection box  
  if projection radial is selected, the selected projection is used when calculating distances

Instrument setup  
  when the instrument point is selected, the **Instrument co-ordinates** and **name** is displayed in the Instrument xyz and Instrument name fields.

Report settings

Include points without id  
  tick box  
  if tick, vertices with a non blank point id are included in the report.  
  if not tick, only vertices with non blank point id are included in the report.

Zero padding for bearing  
  tick box  
  if tick, include extra zeros for minutes and seconds.

Sort by  
  choice box  
  point id, bearing, distance  
  if point id, the report is sorted by the point id’s on the vertex.  
  bearing, the report is sorted by the bearing to the point.  
  distance, the report is sorted by the distance to the point.

Number of decimals  
  input 3  
  number of decimal places for reporting co-ordinates

Maximum distance  
  input  
  if non-blank, any vertices further that the maximum distance from the instrument station will not be reported on. If blank, all vertices points will be reported on

Search tolerance  
  input  
  when a vertex is found, any vertices with the same point id within the search distance of the vertex are not reported. Also no vertices closer to the instrument point that this distance will be reported.

Report file  
  file box  
  file for the setout reports

Report  
  button  
  produce the report
27.6 Services

Position of option on menu: Report => Services

Selecting Services brings up the Services panel.

This section of documentation is a work in progress and will be updated in subsequent releases.

![Services panel screenshot]

The fields and buttons in this panel are used as follows:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type - for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>type of data source.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data segment report file</td>
<td>file box</td>
<td>segment report.csv</td>
<td>available .csv files</td>
</tr>
<tr>
<td>Total segment report file</td>
<td>file box</td>
<td>segment report totals.csv</td>
<td>available .csv files</td>
</tr>
<tr>
<td>Detail vertex report file</td>
<td>file box</td>
<td>vertex report.csv</td>
<td>available .csv files</td>
</tr>
<tr>
<td>Total vertex report file</td>
<td>file box</td>
<td>vertex report totals.csv</td>
<td>available .csv files</td>
</tr>
<tr>
<td>Tin for depths</td>
<td>tin box</td>
<td></td>
<td>available tins</td>
</tr>
<tr>
<td>Rename dimension factor</td>
<td>measure box</td>
<td>1000</td>
<td>At Point, Point to Point, String from Point, String to Point</td>
</tr>
<tr>
<td>Service</td>
<td>Setting</td>
<td>Status</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Rename strings</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td>Use IFS ids</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td>Null symbol</td>
<td>symbol box</td>
<td>available symbols</td>
<td></td>
</tr>
</tbody>
</table>
27.7 Quantities

Position of option on menu: Report => Quantities
Selecting Quantities brings up the Quantities panel.

The fields and buttons in this panel are used as follows

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source type</strong></td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type - for a full description go to 4.19.3 Data Source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Data source</strong></td>
<td>type of data source</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Data file  file box
set up file for the costing data - file is read/written using the Read/Write buttons.

Costing tabs

Points tab and grid

By name  By colour
for any string selected by the key/name or colour, the number of vertices in the string is
multiplied by the cost and the total added to the quantities report.

Lengths tab and grid

By name  By colour
for any string selected by the key/name or colour, the plan or 3d length of the string is
multiplied by the cost and the total added to the quantities report.

Plan Areas tab and grid

By name  By colour
for any string selected by the key/name or colour, the plan area of the string is multiplied by
the cost and the total added to the quantities report.

Surface Areas tab and grid

By name  By colour
for any string selected by the key/name or colour, the surface area of the string within the
given tin is multiplied by the cost and the total added to the quantities report.

Report mode  choice box  Summary   Summary, Full
produce the quantity report.

Report costs  tick box
if tick, the cost used for each calculation is included in the report.

Report to CSV file  tick box
if tick, the report is written as a CSV file

Report  file box
name of the quantities report file

Quantify  button
produce the quantity report.
27.8 X-Fall and Offset Report

**Position of option on menu:** Report => Xfall/offset

The x-fall report option reports on the horizontal and vertical offsets and the cross-fall between two strings.

The offsets are calculated as follows:

(a) a reference string is selected which is used to define chainages.

(b) lines perpendicular to the reference string are taken at regular chainages and intersected (in plan) with the first and second strings.

(c) the horizontal and vertical offsets and the cross-fall between the two strings is calculated at the intersection points.

On selecting the X-fall option, the X-Fall Report panel is displayed.

The fields and buttons in this panel are used as follows:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start/End chainage</td>
<td>input&lt;br&gt;&lt;br&gt;if blank, the start/end chainage of the reference string is used.&lt;br&gt;if non-blank, the given chainage is used as the start/end chainage.</td>
</tr>
<tr>
<td>Interval</td>
<td>input&lt;br&gt;&lt;br&gt;chainage interval to calculate values at.</td>
</tr>
<tr>
<td>Maximum offset</td>
<td>input&lt;br&gt;&lt;br&gt;if non-blank, the maximum distance to search from the reference string to find the 1st and 2nd strings.</td>
</tr>
<tr>
<td>Report file</td>
<td>file box&lt;br&gt;&lt;br&gt;file for the x-fall report</td>
</tr>
<tr>
<td>Ref/1st/2nd</td>
<td>button&lt;br&gt;&lt;br&gt;select the reference/first/second string.</td>
</tr>
<tr>
<td>Report</td>
<td>button&lt;br&gt;&lt;br&gt;produce a offset and x-fall report between the first and second strings.</td>
</tr>
</tbody>
</table>
27.9 Report Utilities

Position of menu: Report => Utilities

This section of documentation is a work in progress and will be updated in subsequent releases.

The Utilities walk-right menu is

For the option Report templates, go to

XML translate

27.9.1 Report Templates
27.9.2 XML Translate
27.9.1 Report Templates

Position of option on menu:  Report => Utilities => Report templates

This section of documentation is a work in progress and will be updated in subsequent releases.

On selecting Report templates, the Edit panel is displayed.
27.9.2 XML Translate

Position of option on menu: Report => Utilities => XML translate

This section of documentation is a work in progress and will be updated in subsequent releases.

On selecting XML translate, the XML Translate panel is displayed.
27.10 QA Reports

Position of menu: Report => QA Reports

The QA options are for checking surveyed strings against design strings or tins.

<table>
<thead>
<tr>
<th>QA Reports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check asbuilt string vs design string</td>
</tr>
<tr>
<td>Check asbuilt string vs wall tin</td>
</tr>
<tr>
<td>Check points above tin</td>
</tr>
<tr>
<td>Check points vs tin</td>
</tr>
<tr>
<td>Check survey points vs design points</td>
</tr>
<tr>
<td>Check survey points vs design points (old)</td>
</tr>
<tr>
<td>Compare named strings</td>
</tr>
</tbody>
</table>

For Check asbuilt string vs design string go to 27.10.1 Check As built String vs Design String

Check asbuilt string vs wall tin 27.10.2 Check Asbuilt String vs Wall Tin
Check points above tin 27.10.3 Check Points Above a Tin
Check points vs tin 27.10.4 Check Points vs Tin
Check survey points vs design points 27.10.6 Check Survey Points vs Design Points
Check survey points vs design points (Old) 27.10.5 Check Survey Points vs Design Points

Compare name strings 27.10.7 Compare Named Strings
27.10.1 Check As built String vs Design String

**Position of option on menu:**  Report => QA Reports => Check asbuilt string vs design string

This panel is used to check the horizontal and vertical differences between two strings (usually “as built” and design). A control string is selected to provide the chainage and line to cut the two strings and calculate the difference along. The control string can be one of the two strings.

The corridors are an optional setting for where multiple cuts of the as built and design strings are possible.

E.g. If string crosses over itself or turns through more than 90° a section normal to the control string could cut it more than once.

If the user sees warning messages such as “> 1 cut” then use these settings to filter out the multiple cuts.

Selecting the Check asbuilt string vs design string brings up the **Check As Built String vs Design String** panel.

![Check As Built String vs Design String panel](image)

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>As built string</strong></td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>　　　　　　　　　　　　　　　</td>
<td>string to compare</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Design string</strong></td>
<td>string select</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions:

- **As built string**
  - string select
- **Design string**
  - string select
Control string

string to use to define chainage and right angles. The line at right angles cuts the “as built” and “design” strings and is used to calculate the horizontal and vertical differences.

Report horizontal difference choice box Right +ve None, Right +ve, Right -ve

if None Don’t report horizontal distances.

if Right +ve Horizontal differences are reported with differences to the right reported as +ve

if Right -ve Horizontal differences are reported with differences to the right reported as -ve

Report vertical difference choice box Above +ve None, Above +ve, Above -ve

if None Don’t report horizontal distances.

if Above +ve Vertical differences are reported with differences above reported as +ve

if Above -ve Vertical differences are reported with differences above reported as -ve

Report at asbuilt string’s vertices tick box

if tick, the differences are reported at the vertices of the as built string.

Report at regular control line interval tick box

if tick, the differences are reported at the chainage interval given in the “Report interval” box.

Difference units choice box Millimetres (0 dp), Millimetres (1 dp), Millimetres (2 dp), Millimetres (3 dp), Millimetres (4 dp)

if Millimetres (0 dp) In the report, differences are printed out as Millimetres with 0 decimal places

if Millimetres (1 dp) In the report, differences are printed out as Millimetres with 1 decimal place

if Metres (3 dp) In the report, differences are printed out as Metres with 3 decimal places

if Metres (4 dp) In the report, differences are printed out as Metres with 4 decimal places

Report interval input box

chainage interval of the control string to report the differences at.

Start chainage input box

start chainage of the control string to start reporting differences.

End chainage input box

end chainage of the control string to stop reporting differences.

Offset Corridor input box

If this value is set a cut offset greater than this from the design string is ignored.

Hgt diff Corridor input box

If this value is set a cut hgt difference greater than this from the design string is ignored.

Report file input box

name of the report file.

Report button

run the option.
27.10.2 Check Asbuilt String vs Wall Tin

Position of option on menu: Report => QA Reports => Check asbuilt string vs wall tin

This panel is used to check the horizontal difference between a string (usually the “as built”) and a tin (usually a wall tin). A control string is selected to provide the chainage and bearing to project a horizontal line to cut the string and the tin and calculate the horizontal difference along. The control string can be the “as built” string.

Points that are different by a given inner and outer tolerance are flagged in the report.

![Check As Built String vs Wall Tin]

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>As built string</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control string</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start chainage</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End chainage</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin to check against</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report at as built string’s vertices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report at regular control line interval</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report interval</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner tolerance (mm)</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Outer tolerance (mm)</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As built string string to compare against the wall tin.

Control string string to use to define chainage and right angles. The horizontal line at right angles cuts the “as built” string and “tin to check against” tin that is used to calculate the horizontal differences.

Start chainage start chainage of the control string to start reporting differences.

End chainage end chainage of the control string to stop reporting differences.

Tin to check against tin to compare the as built string with.
Report at as built string's vertices tick box tick
if tick, the differences are reported at the vertices of the as built string.

Report at regular control line interval tick box tick
if tick, the differences are reported at the chainage interval given in the “Report interval” box.

Report interval input box 5
chainage interval of the control string to report the differences at.

Inner tolerance (mm) input box 100
if the inner horizontal distance between the string and the wall is greater than this value (in units times 1000) then it is flagged in the report.

Outer tolerance (mm) input box 100
if the outer horizontal distance between the string and the wall is greater than this value (in units times 1000) then it is flagged in the report.

Report File input box
name of the report file.

Report button
run the option.
27.10.3 Check Points Above a Tin

**Position of option on menu:** Report => QA Reports => Check points above tin

This panel is used to check the z-value of points against the z-value of a tin at the same (x,y) locations and only report on those above the tin. To check points above and below a tin, go to the next section 27.10.4 Check Points vs Tin.

A z-tolerance above the tin is given and all points above the tin and outside the tolerance are especially flagged in the report.

Optionally the report can also include the chainage and offset of the points from a selected alignment string.

![Check Tolerance Above Design Tin](image)

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model of shots model box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>model of points to check the z-value against the tin.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin to check against tin box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tin to check the z-values against</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above tolerance (mm) input box</td>
<td>175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if the z-value of the point is above the tin and the difference of the z-value of the point and the tin (times 1000), is greater than this amount then it is flagged in the report.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report file file box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>name of the report file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report ch/off to centre line tick box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if tick, the chainage and offset of the points from the selected alignment string are included in the report.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select align string select</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>select the alignment string to calculate offset and chainage from.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Report

run the option.
27.10.4 Check Points vs Tin

Position of option on menu: Report => QA Reports => Check points vs tin

For Check points above tin, go to 27.10.3 Check Points Above a Tin.

This panel is used to check the z-value of points against the z-value of a tin at the same (x,y) locations, or if a Layer depth is given, the z-values of points are checked against the tin minus the layer depth.

Separate z-tolerances are supplied for above and below the tin and points outside either tolerance are especially flagged in the report.

Optionally the report can also include the chainage and offset of the points from a selected alignment string.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model of shots</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>model of points to check the z-value against the tin.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin to check against</td>
<td>tin box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>tin to check the z-values against</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above tolerance (mm)</td>
<td>input box</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if the z-value of the point is above the tin and the difference of the z-value of the point and the tin (times 1000), is greater than this amount then it is flagged in the report.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below tolerance (mm)</td>
<td>input box</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>if the z-value of the point is below the tin and the absolute value of the difference of the z-value of the point and the tin (times 1000), is greater than this amount then it is flagged in the report.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer depth (mm)</td>
<td>input box</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>this value is subtracted form the z-value of the tin before the comparison is made with the z-value of the point.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
name of the report file.

**Report ch/off to centre line**

Tick box

If tick, the chainage and offset of the points from the selected alignment string are included in the report.

**Select align**

String select

Select the alignment string to calculate offset and chainage from.

**Report**

Run the option.
27.10.5 Check Survey Points vs Design Points (Old)

Position of option on menu: Report => QA Reports => Check survey points vs design points (old)

This option is used to check surveyed points against the design points.

Separate tolerances are given for Eastings (x), Northings (y) and Elevations (z).

Any design points that have not been surveyed are noted and copies of points out of tolerance and/or points not surveyed can be automatically made.

NOTE - if a radial search distance is required in (x,y), go to the next section 27.10.6 Check Survey Points vs Design Points (3).

![Check Survey Pts vs Design Pts](image)

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survey data model</td>
<td>model box</td>
<td>available models</td>
<td>model of points to be compared against the design points.</td>
</tr>
<tr>
<td>Design data model</td>
<td>model box</td>
<td>available models</td>
<td>points to be compared against.</td>
</tr>
<tr>
<td>Out of tolerance model</td>
<td>model box</td>
<td>available models</td>
<td>copies of any points out of tolerance are added to this model.</td>
</tr>
<tr>
<td>Points not surveyed model</td>
<td>input box</td>
<td></td>
<td>copies of any points from the design model that have not been surveyed.</td>
</tr>
<tr>
<td>Report file name</td>
<td>input box</td>
<td>name of the report.5</td>
<td></td>
</tr>
<tr>
<td>Easting tolerance</td>
<td>input box</td>
<td>0.001</td>
<td>tolerance in the x direction.</td>
</tr>
<tr>
<td>Northing tolerance</td>
<td>input box</td>
<td>0.001</td>
<td>tolerance in the y-direction.</td>
</tr>
</tbody>
</table>
Elevation tolerance  
input box 0 
tolerance in the z-direction.

Min reporting dist  
input box 0

Process  
button
run the option.
27.10.6 Check Survey Points vs Design Points (3)

**Position of option on menu:** Report => QA Reports => Check survey points vs design points

This option is used to check surveyed points against the design points.

The (x,y) search distance can be either one radial distance, a separate x and y distance or separate chainage and offset distances.

Any design points that have not been surveyed are noted and can be optionally copied to a model.

![Check Survey Pts vs Design Pts (3) dialog box]

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Main Tab</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source type - survey</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design data model</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
</tbody>
</table>

*data selection type - for a full description go to 4.19.3 Data Source.*

*Model containing design points for comparison against.*
Points not surveyed model

Copies of any points from the design model that have not been surveyed.

Report file

Name of report file for results

Search radius

If set surveyed/design points are matched when less than this distance apart.

Match by Pt Id

If ticked surveyed/design points are matched by point id.

Tolerance method

If Chainage-Offset, separate chainage and offset tolerances relative to a selected string are given to check against.

If Easting-Northing, separate Easting (x) and Northing (y) tolerances are given to check against.

If Distance, the test is for a radial distance, not a separate tolerances.

Easting tolerance

The tolerance in the x-direction

Northing tolerance

The tolerance in the y-direction

Elevation tolerance

The tolerance in the z-direction
Settings Tab

This tab allows some settings in controlling the report.

**Report Column Widths**

- **Point Id width**
  - Input: 10
  - Width of point id column.

- **Code width**
  - Input: 12
  - Width of code column, (0 removes column)

- **Model width**
  - Input: 25
  - Width of model column, (0 removes column)

- **Easting/Chainage width**
  - Input: 12
  - Width of easting/chainage column.

- **Northing/Offset width**
  - Input: 12
  - Width of northing/offset column.

- **Level width**
  - Input: 12
  - Width of level column.

- **Distance width**
  - Input: 12
  - Width of distance column.

**Report design coords**
if ticked design coordinates will be written to the report file

**Report as CSV?**

*If Report as CSV? is ticked then the column width settings are ignored and the report written as a comma delimited 'CSV' file suitable for exports to spreadsheets and others.*

*If Report as CSV? is not ticked then the reported is formatted with the column width figures in mind.*

Run button

**run the option.**
27.10.7 Compare Named Strings

Position of option on menu:  Report => QA Reports => Compare named strings

The **compare named strings** panel is a utility to check for changes in a string and highlights these changes. It would typically be used when a revised design is released to highlight where the actual changes are.

Strings are matched by name, there must only be one string of the same name in each of the data sources.

Selecting **Compare named strings** brings up the **Compare Named Strings** panel.

![Compare Named Strings panel](image)

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data 1st Strings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data 2nd Strings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exact comparison?</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Data 1st Strings**

the data source for the 1st set of strings.

data selection type - for a full description go to [4.19.3 Data Source](#).

**Data 2nd Strings**

the data source for the set of strings to compare to the 1st set of strings.

data selection type - for a full description go to [4.19.3 Data Source](#).

**Exact comparison?** tick box

if ticked the strings are compared vertex by vertex

if unticked the points in the 2nd string are dropped to the first string and the comparison is done by offset and height difference.
**Pos/xy Tol** measure box

*The distance between vertices or the difference in offset before the point is considered different.*

**Z Tol** measure box

*The height difference between the strings before the point is considered different.*

**Report file** file box

*The file to which the results of the comparison are written, contains the strings compared, the number of name matches if not matched or unique and the details of differing points.*

**Out of Tolerance Model** model box

*Any points outside the nominated tolerances can be written to this model.*

**Symbol size** input

*Points in the out of tolerance model have a diamond of this real world size drawn around them to highlight the points.*

**Compare** button

*Compares the two data sources*
27.11 More Reports

**Position of menu:**  Report => More

More miscellaneous reports.

<table>
<thead>
<tr>
<th>More Reports</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>4d strings</strong></td>
</tr>
<tr>
<td>Alignment - strings cut</td>
</tr>
<tr>
<td>Alignment z diff from tin</td>
</tr>
<tr>
<td>Alignment string</td>
</tr>
<tr>
<td>Alignment table - IP’s TC’s</td>
</tr>
<tr>
<td>Alignment table - elements</td>
</tr>
<tr>
<td>Area by string colour</td>
</tr>
<tr>
<td>Diff elev between x-sections and tin</td>
</tr>
<tr>
<td>Quarter points bubble and table</td>
</tr>
<tr>
<td>Report min z</td>
</tr>
<tr>
<td>Rough areas between sections</td>
</tr>
<tr>
<td>Super string</td>
</tr>
<tr>
<td>X-section CivilCAD/Moss/Qld MRD format</td>
</tr>
</tbody>
</table>

For the option/menu 4d string, go to

- Alignment - strings cut
- Alignment z diff from tin
- Alignment string
- Alignment table - IP’s TC’s
- Alignment table - elements
- Area by string colour
- Diff elev between x-sections and tin
- Quarter points bubble and table
- Report min z
- Rough areas between sections
- X-section CivilCAD/Moss/Qld MRD format

The menu options will now be discussed.
27.11.1 Report for 4d Strings

*Position of option on menu:*  Report => More => Report for 4d strings

This panel is used to create a report for 4d strings where the x, y and z values are printed out for each point plus either the 4d text for the point or the name of the string (repeated for each point).

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source</strong></td>
<td>choice box</td>
<td>model</td>
<td>string, model, view</td>
<td></td>
</tr>
<tr>
<td><strong>Model/View/String</strong></td>
<td>data source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data source to do report of 4d strings on.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Report as text</strong></td>
<td>file</td>
<td>4d text</td>
<td>string name</td>
<td>4d text</td>
</tr>
<tr>
<td></td>
<td>If 4d text, the 4d text for the point is written out after the x, y and z values.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If string name, the string name is written out after the x, y and z values.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>No decimal places</strong></td>
<td>input</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>number of decimal places to use in the x, y and z values.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Report file</strong></td>
<td>file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the report file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Process</strong></td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>run the option.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
27.11.2 Alignment - Strings Cut

Position of option on menu:  Report => More => Alignment - strings cut

This option is used to create a report of the position and angle that strings make where they cut a selected alignment string.

![Alignment Cut Strings panel](image)

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Road centreline</strong></td>
<td>select the alignment string to report the cuts for.</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Data source</strong></td>
<td>source of the data</td>
<td>choice box</td>
<td>Model</td>
<td>String/Model/View</td>
</tr>
<tr>
<td><strong>Data</strong></td>
<td>method a specifying data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Report file</strong></td>
<td>name of the report file</td>
<td>input box</td>
<td></td>
<td>*.rpt files</td>
</tr>
<tr>
<td><strong>Process</strong></td>
<td>run the option.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
27.11.3 Report Z Differences from Alignment to Tin

Position of option on menu: Report => More => Report z differences from alignment to tin

This panel is used to create a report of the difference in z-values between an alignment string and a tin. The differences are reported at a given chainage interval along the alignment string.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select alignment string</td>
<td>string</td>
<td>select</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chainage interval</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>input box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report file name</td>
<td>input box</td>
<td>*.rpt files</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

select the alignment string to report z-differences for.
interval to report on.
tin to get z-values from.
name of the report file.
run the option.
27.11.4 Alignment Report

Position of option on menu:  Report => More => Alignment string

This panel is used to report the tangent points and centres of arcs for an alignment string.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select alignment string</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report file name</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

select the alignment string to report on.

name of the report file.

run the option.
27.11.5 Alignment Table - IP’s, TC’s

Position of option on menu: Report => More => Alignment table - IP’s and TC’s

Create table of IP and CT points for an alignment string.

This panel has already been documented.

See 24.16.15 Tabulate Alignment - IP’s and CT’s in 24 Drafting
27.11.6 Alignment Table - Elements

Position of option on menu:  Report => More => Alignment table - elements

Create table of horizontal elements for an alignment string.

This panel has already been documented.

See 24.16.16 Tabulate Alignment - Elements in 24 Drafting
27.11.7 Total of Plan Area by String Colour

Position of option on menu:  Report => More => Area by string colour

This panel is used to calculate the sum of the plan area of all strings of the same colour. This is especially useful for calculating the plan areas of faces produced for slope areas, volumes etc. A report giving the total plan area for each different colour is produced.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source</td>
<td>Type of data to calculate areas for</td>
<td>data source</td>
<td>model</td>
<td>model, view</td>
</tr>
<tr>
<td>Model/View</td>
<td>Data source to calculate the areas and sum by colour</td>
<td>data source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report file</td>
<td>Report giving the total plan areas of the strings for each colour</td>
<td>input box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>Run the option</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
27.11.8 Report Z Differences From X-Sections to a Tin

Position of option on menu:  Report => More => Diff elev between x-section and tin

This panel is used to report the z differences between the points on cross sections and the corresponding z-values from a tin.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model of X-Sections</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>model of cross sections to report on.</td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>tin box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tin to get z-values from.</td>
<td></td>
</tr>
<tr>
<td>Report file name</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>name of the report file.</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>run the option.</td>
<td></td>
</tr>
</tbody>
</table>
27.11.9 Quarter Points Report

**Position of option on menu:** Report => More => Quarter points bubbles and table

This option is used to create bubbles and/or a report for the critical horizontal and vertical points and quarter points (by chord or by chainage) for any arcs in an alignment string.

This option has already been documented as Survey => Setout => Setout lip line in the section 17.18.3 Setout Lip Line.
27.11.10 Report Minimums Z-Value on a Cross Section

Position on menu: Report => More => Report min z

This panel creates a report giving the minimum z-value on a cross section.

![Minimum Section Level Panel]

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross section model</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>model of cross sections to report on.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output file</td>
<td>file box</td>
<td>*.txt files</td>
<td></td>
</tr>
<tr>
<td></td>
<td>file to write section names and minimum z-values to.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>run the option.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
27.11.11 Report Rough Areas

**Position of option on menu:** Report => More => Rough areas between sections

This panel is used to

![Report Rough Areas panel]

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model of x-sections</td>
<td>input box</td>
<td>xxxxx</td>
<td></td>
</tr>
<tr>
<td>Start chainage</td>
<td>input box</td>
<td>xxxxx</td>
<td></td>
</tr>
<tr>
<td>End chainage</td>
<td>input box</td>
<td>xxxxx</td>
<td></td>
</tr>
<tr>
<td>Report file name</td>
<td>input box</td>
<td>name of the report file.</td>
<td></td>
</tr>
<tr>
<td>Report</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*run the option.*
27.11.12 X-Sections Report

**Position of option on menu:** Report => More => X-section CivilCAD/Moss/QLD MR format

This panel is used to write out cross sections in a variety of formats.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Model of x-sections</strong></td>
<td>input box</td>
<td>available models</td>
<td>model of cross sections to write out.</td>
</tr>
<tr>
<td><strong>Report type</strong></td>
<td>file box</td>
<td>CivilCAD</td>
<td>format of the report.</td>
</tr>
<tr>
<td><strong>Report file name</strong></td>
<td>input box</td>
<td></td>
<td>name of the report file.</td>
</tr>
<tr>
<td><strong>Report</strong></td>
<td>button</td>
<td></td>
<td>run the option.</td>
</tr>
</tbody>
</table>
28 Utilities

Position of menu: It is on the main menu as Utilities.

The Utilities menus contain a collection of useful operations that don't easily fit under any of the other menus.

For ease of selection, the frequently used utilities are placed on the first level of the menu. All the other utilities are split alphabetically between two walk-right menus - the utilities walk-right menus for A-G and H-Z.

For the option/menu:

- **Snaps**, go to 28.1 Snaps
- **Attributes**, go to 28.2 Attributes
- **Chains**, go to 28.3 Chains
- **Functions**, go to 28.4 Functions
- **Macros**, go to 28.5 Macros
- **Measure**, go to 28.6 Measure
- **Recalc**, go to 28.7 Recalc
- **Fence**, go to 28.8 Fence
- **Super strings**, go to 14.12.9 Super Strings
- **A-G**, go to 28.9 Utilities A-G
- **H-Z**, go to 28.10 Utilities H-Z
- **Old**, go to 28.11 Old
28.1 Snaps

**Position of menu:**  Utilities => Snaps

The snaps option allows the user to set snapping modes for use during pick operations. The snapping modes have been discussed in detail in the 4.13 Snaps section.

The Snaps walk-right menu provides a full snap menu, abbreviated snap menus laid out either horizontally or vertically, and a snaps cogo menu for creating special point positions using coordinate geometry commands.

For the option
- **Snaps**, go to 28.1.1 Snaps
- **Snaps (Vert)** 28.1.2 Snaps (Vert) and H Toolbar
- **Cogo** 28.1.3 Snaps Cogo
- **New** 28.1.5 Snaps New
- **Select accept button** 28.1.4 Select accept button
28.1.1 Snaps

**Position of option on menu:** Utilities => Snaps => Snaps

The Snaps menu provides tick boxes to turn the various snap modes on or off and options to set tin, string and model names. Any combination of snap modes and names can be set.

<table>
<thead>
<tr>
<th>Snaps menu</th>
<th>Snaps V menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>point snap on/off</td>
<td>V</td>
</tr>
<tr>
<td>line snap on/off</td>
<td>P</td>
</tr>
<tr>
<td>text snap on/off</td>
<td>L</td>
</tr>
<tr>
<td>grid snap on/off</td>
<td>X</td>
</tr>
<tr>
<td>allow cursor point on/off</td>
<td>G</td>
</tr>
<tr>
<td>ask for z value at each point in edits</td>
<td>C</td>
</tr>
<tr>
<td>name of tin to snap to</td>
<td>H</td>
</tr>
<tr>
<td>tin snap on/off</td>
<td>T</td>
</tr>
<tr>
<td>turn segment snap on/off</td>
<td>S</td>
</tr>
<tr>
<td>restriction on string names</td>
<td>I</td>
</tr>
<tr>
<td>restriction on model names</td>
<td>D</td>
</tr>
<tr>
<td>set snap tolerance</td>
<td>A</td>
</tr>
<tr>
<td>set point snap tolerance</td>
<td>K</td>
</tr>
<tr>
<td>bring up info panel on/off</td>
<td>M</td>
</tr>
<tr>
<td>turns data tips on/off</td>
<td></td>
</tr>
<tr>
<td>turns fast pick on/off</td>
<td></td>
</tr>
<tr>
<td>turns fast accept on/off</td>
<td></td>
</tr>
<tr>
<td>K - accept results of snaps CAD</td>
<td></td>
</tr>
<tr>
<td>picks bring up selection grid</td>
<td></td>
</tr>
</tbody>
</table>

The snaps are set on or off using the toggles on the Snaps H toolbar, or the tick boxes on the Snaps or Snaps V menu.

For more information on what all the snaps in the Snaps menu are, go to the 4.13 Snaps and 4.13.2 Setting Snaps section.
28.1.2 Snaps (Vert) and H Toolbar

Position of option on menu: Utilities => Snaps => Snaps (Vert)

The Snaps (vert) menu provides the same tick boxes as the Snaps menu to turn the various snap modes on or off, however the snap descriptions are abbreviated to one character to reduce the menu size. There is also the H toolbar which is a horizontal version of the Snaps menu.

The H toolbar and Snaps (vert) menu are H toolbar which is

![Snaps Menu]

The Snaps are

- P  Point snap (on)
- L  Line snap (on)
- X  Text snap (off)
- G  Grid snap (off)
- C  Cursor snap (on)
- H  Height snap (off)
- T  Tin snap (off)
- S  Segment snap (off)
- I  Info snap (on)
- D  Data tip (off)
- F  Fast accept (on)
- A  Fast accept (off)
- K  Construction snap (on)
- M  Show selection grid on picks

For more information on snaps, go to the 4.13 Snaps and 4.13.2 Setting Snaps section.
28.1.3 Snaps Cogo

Position of menu: Utilities -> Snaps -> Cogo

The Snaps cogo options are used to create the point required for any 12d Model select operation. For example, selecting the next point in append in an editor. The result of the Snaps cogo is returned to the select operation as the selected point.

Walking right on the cogo option brings up the Snaps cogo menu

and the walk-right menus for each of the Snaps cogo menu items are

Note on Combining Snaps Cogos

When using a snaps cogo option, another select is often required and it is permissible to use other snaps cogo option to create the point for that select.

For example, the required point is the point halfway between two other points dropped perpendicularly onto an arc.

Such a combined result can be achieved using Snaps cogo however the order of selecting the snaps cogo options may at first seem to be the reverse of what is required.

For the above example, the snaps cogo perpen must be selected before the between option.

This is because when the perpen snap cogo option is selected, it asks the user to select the point to drop and it is then that the snaps cogo between option is used to find the midpoint of two selected point. The result of the between then becomes the point to drop for the perpen.

If the between option had been selected first, the resultant midpoint would have been returned as the selected point and that select completed.
28.1.4 Select accept button

**Position of menu:** Utilities => Snaps => Select accept button

Instead of selecting (MB) to accept a string selection, you can click (LB) on the **Accept** button. This option is usually used for tablet computers without a middle mouse button.

LB = the left mouse button

MB = the middle mouse button

![Select Accept Button](image_url)
28.1.5 Snaps New

Position of menu: Utilities => Snaps => New

The XTRA Snaps menu is currently under development.
28.2 Attributes

**Position of menu:** Utilities => Attributes

This section of documentation is a work in progress and will be updated in subsequent releases.

The Attributes walk-right menu is:

For the Attribute definitions editor, go to 28.2.1 Attribute Definitions Editor

Custom attribute editor 28.2.2 Custom Attribute Editor
28.2.1 Attribute Definitions Editor

Position of option on menu: Utilities => Attributes => Attributes Edits => Attribute definitions editor

This section of documentation is a work in progress and will be updated in subsequent releases.
28.2.2 Custom Attribute Editor

**Position of option on menu:** Utilities => Attributes => Attributes Edits => Custom attribute editor

This section of documentation is a work in progress and will be updated in subsequent releases.
Chapter 28 Utilities

28.3 Chains

Position of menu:  Utilities => Chains

12d Model has many different built in objects, from simple strings, through to complex super alignments with computators, drainage networks, super tins and Apply MTF functions. However as complex as these objects are, no software can foresee every situation met in surveying and civil design, both now and into the future.

12d Model provides two tools to help users extend the supplied 12d Model functionality and automate simple and complex tasks within a company. They are the

(a) the 12d Model Programming Language (12dPL) - a full programming language so users can write complex tailored options and functions (called macros)

and

(b) chains.

Chains are a relative simple method for users to combine and run existing 12d Model functions and options. Anyone who can use 12d Model can create and run a chain.

In its simplest form, a Chain is a list of items that are run in the order that they appear in the list. Things that can be run in a Chain include:

(a) 12d Model functions
(b) other chains
(c) super alignment resolves
(d) plot parameter files
(e) most 12d Model options
(f) most screen layout files
(g) most macros, and certainly those that don’t have a panel
(h) an external command line
(i) some special hardwired chain commands such as delete a tin, delete all tins, delete a model, delete all models, clean a model, delete a file and compare files.

For more sophisticated applications, chains can also

(a) create 12d Model views and add and remove models from the views
(b) minimise, maximise, redraw and delete views
(c) include flow control using tests, labels and go to’s
(d) be parametrised and run with user supplied parameter values

So a chain can be as simple as running a list of functions or as complex and making decisions inside the chain, thus creating user defined Super Objects.
The **Chains** walk-right menu is

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Create</strong></td>
<td>create a chain</td>
</tr>
<tr>
<td><strong>Edit</strong></td>
<td>edit a chain</td>
</tr>
<tr>
<td><strong>Parameters</strong></td>
<td>parameterise a chain</td>
</tr>
<tr>
<td><strong>Copy</strong></td>
<td>copy a chain</td>
</tr>
<tr>
<td><strong>Convert</strong></td>
<td>convert a chain</td>
</tr>
<tr>
<td><strong>Rename</strong></td>
<td>rename a chain</td>
</tr>
<tr>
<td><strong>Run</strong></td>
<td>run a chain</td>
</tr>
<tr>
<td><strong>Delete</strong></td>
<td>delete a chain</td>
</tr>
</tbody>
</table>
28.3.1 Create/Edit a Chain

**Position of option on menu:** Utilities => Chains => Create

The **Create/Edit** option creates new chains but can also edit an existing chain, or run an existing chain.

Selecting **Create** brings up the **Create/Edit Chain** panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chain file</td>
<td>name of the file for the chain.</td>
<td>file box</td>
<td>blank</td>
<td>available *.chain, *.rcn files</td>
</tr>
<tr>
<td>Parameter value file</td>
<td>file defining parameters for the chain.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prompt for parameters</td>
<td>if ticked, prompt for parameter values when running a chain</td>
<td>checkbox</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Always record parameters</td>
<td>if ticked, create parameters when recording</td>
<td>checkbox</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run chain in interactive mode</td>
<td>if ticked, will run the chain in interactive mode</td>
<td>checkbox</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warning prompt</td>
<td>if ticked, validate each chain command</td>
<td>checkbox</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The icons across the middle are:

- **Insert a command**
- **Delete commands**
- **Copy commands**
- **Move commands up**
- **Move commands down**
- **Activate commands**
- **Deactivate commands**
- **Record options**
- **Paste commands**
- **Run the chain**
- **Activate commands**
- **Deactivate commands**

The **Read** button when pressed, read in the given chain file.

To **create** a new chain, a unique name is typed into the **Chain file** box and the **Write** button clicked.

To **edit** an existing chain, enter the name of the existing chain into the **Chain file** box and then click on the **Read** button.

The chain is then built up by inserting commands using the **Insert** icon.

Chains
Write button
when presses, write out all the chain commands in the list to the given chain file. After each item is added to the chain, click on Write to save the updated chain.

Parameter value file file box blank existing parameter files
if not blank, the file to use for mapping parameters and values in the Chain.
If blank, no parameter file is used
For more information, go to the section 28.3.4 Chain Parameters.

Prompt for parameters tick box
if ticked, when a with parameters chain is run, the table of parameters is displayed on the screen before running the chain so that any required modifications can be made before the chain is run.
If not ticked, any values for parameters are taken from the parameter value file.

Always record parameters tick box
If ticked and the user records panels or options, the recorder will attempt to record parameters.

Run chain in interactive mode tick box
if ticked, run the chain in Interactive Mode. See 28.3.2 Interactive Mode.
If not ticked, the chain runs normally.

Important Note and Warning
Run chain in interactive mode has no connection to the Run in interactive mode that is available when many panels are recorded in a chain. When a recorded panel in the chain has Run in interactive mode ticked on, then when that panel runs in the chain, the panel is displayed and the user can change values in the panel fields and then run/not run the panel. When the panel is closed the chain continues running.

Warning prompt tick box
if not ticked, validations of the inserted commands are not performed straight away. For example, if you press Insert many times, you won’t get the warning prompt “Some changes you have made are invalid. Do you wish to change nodes and discard your changes?”. Also a confirmation prompt does not come up when you delete commands from the chain.
if ticked, inserted commands are validated and warning messages and error messages will be generated.

Icons
Insert icon
inserts commands into the chain. For more information on the commands, go to 28.3.1.1 Inserting a Chain Command

Delete icon
deletes the highlighted commands in the chain

Copy icon
copies the highlighted commands in the chain so that they can be pasted back into this chain or another chain.

Paste icon
pastes the copied commands into this chain, or into another opened chain.

Move up icon
move the highlighted commands up one position in the chain

Move down icon
move the highlighted commands down one position in the chain
Activate icon
activate any of the highlighted commands that are deactivated

Deactivate icon
deactivate all of the highlighted commands

Record icon
record one or more options. For more information on Record, go to 28.3.1.2 Record Icon and the Recorder Toolbar

Button at Bottom

Run button
run the chain.

Continue to the next subsection 28.3.1.1 Inserting a Chain Command or the next section 28.3.3 Edit a Chain or return to 28.3 Chains.
28.3.1.1 Inserting a Chain Command

The chain is built up by *inserting commands* using the **Insert** icon.

Clicking on the **Insert** icon inserts a new command with the default name of **New** into the chain. The **Type** of the command is then selected on the right hand side of the panel. The specific information needed for defining that type of new command is then displayed on the right hand side of the panel.

![Image of Create/Edit Chain interface with instructions on inserting a chain command](image)

- Click on the **Insert** icon to create a new command with the default name of **New**.
- Click on the **Type** pop-up to see what **Chain** commands can be inserted.
- The information displayed on the right hand side is then modified to suit the selected command.
Selecting a command will update the right hand side of the panel with information for that particular command. For example, for the **Resolve SA** command:

After each Command is added to the chain, or a Command modified, click on **Write** to save the updated chain.
For all the available Chain Commands that can be Inserted, see 28.3.1.1 Chain Commands.

Continue to the next section 28.3.1.1 Chain Commands or return to 28.3 Chains.
28.3.1.1.1 Chain Commands

For the Chain commands under the group
- Execution, go to 28.3.1.1.2 Execution
- Elements 28.3.1.1.3 Elements
- Files 28.3.1.1.4 Files
- Views 28.3.1.1.5 Views
- Drainage 28.3.1.1.6 Drainage
- Other 28.3.1.1.7 Other
- Conditionals 28.3.1.1.8 Conditionals
28.3.1.1.1 Common Fields in Commands

The common fields used in the right hand side of the Create/Edit Chain panel for the Chain commands are:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use parameters</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If ticked,</em> parameters can be used within the commands.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Note that only some chain commands have a Use Parameters tick.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command name</td>
<td>text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>the name to give the command - this is what is displayed in the Chain list.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>As information is filled in for a command, a default Command name composed of the command and some extra information from the command fields (for example the name of the super alignment) is created and written into the Command name field.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>The Command name does not have to be unique and can be changed at any time.</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clicking on the abc icon on the end of the Command name field will regenerate the automatic Command name and write it in the Command name field.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>When you rerecord a command, the Command name is not modified but left as it was before rerecording.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If ticked,</em> the command is run when the chain is run.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If not ticked,</em> the command is not run when the chain is run.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continue on failure</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If ticked</em> and there is an error when running the command, processing continues to the next command in the Chain.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>If not ticked</em> and there is an error when running the command then the Chain terminates.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td>text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>any information typed into this box is kept as a Comment for current Chain command being displayed.</em></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>This is a comment on the command in the chain. The comment can be many lines. And contain blank lines.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Execute</th>
<th>button</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>run the current chain command. This button is not on all commands.</em></td>
<td></td>
</tr>
</tbody>
</table>

When a chain is running, messages and error messages are written to the **Output window**.

**Important Note** - each time a command is inserted or modified, the **Write** button must be clicked to write out the modified chain.
Return to 28.3.1.1 Chain Commands or 28.3 Chains.
28.3.1.1.2 Execution

For the description of the common fields on most Chain Command panels, see 28.3.1.1.1 Common Fields in Commands. These include the fields Use Parameters, Command name, Active, Continue on failure and Comments, and the button Execute.

Option
run a 12d Model option. Note that not all options can be run in a chain.
Option is also used to record the option that it runs.
For more information, go to 28.3.1.2.1 Execution >Option.

Option - Manual
run a 12d Model option in Manual Mode. Note that not all options can be run in a chain.
Option - Manual is also used to record the option that it runs.
For more information, go to 28.3.1.2.2 Execution >Option - Manual.

Screen layout file
run an existing screen layout file. Note - not all slf’s can be run.
For more information, go to 28.3.1.2.3 Execution >Screen Layout File.

Function
recalc a 12d function
For more information, go to 28.3.1.2.4 Execution >Function.

Delete function
delete a function.
It will optionally clean all the strings created by the function.

Delete all functions
delete all functions
It will optionally clean all the strings created by all the functions.

Chain
run an existing chain.

Macro
run a 12d Model macro that doesn’t have a panel
For more information, go to 28.3.1.2.5 Execution >Macro.

Plot
run a plot parameter file.
For more information, go to 28.3.1.2.6 Execution >Plot.

Shell command
run an external program, Microsoft command line etc.
For more information, go to 28.3.1.2.7 Execution >Shell Command.

Continue to the next section 28.3.1.1.3 Elements or return to 28.3.1.1 Chain Commands or 28.3.1.1 Inserting a Chain Command.
28.3.1.1.3 Elements

For the description of the common fields on most Chain Command panels, see 28.3.1.1.1 Common Fields in Commands. These include the fields Use Parameters, Command name, Active, Continue on failure and Comments, and the button Execute.

Resolve SA
resolve a selected super alignment.
Clicking on the Resolve command highlights the selected super alignment.

Delete string
delete a selected string

Clean model
clean the given model

Create model
creates a new model of the specified name

Delete tin
delete the given tin

Delete model
delete the given model

Delete all tins
delete all tins in the project

Delete all models
delete all models in the project

Delete all templates
delete all templates in the project

Delete all empty models
delete all empty models in the project

Continue to the next section 28.3.1.1.4 Files or return to 28.3.1.1 Chain Commands or 28.3.1.1 Inserting a Chain Command.
28.3.1.1.1.4 Files

For the description of the common fields on most Chain Command panels see 28.3.1.1.1 Common Fields in Commands. These include the fields Use Parameters, Command name, Active, Continue on failure and Comments, and the button Execute.

Copy file

copy the given file to a user given file name (which included the full path name).

![Copy file dialog](image)

The file being copied will overwrite an existing file.

Delete file

deletes the specified file

Compare

compare two text files and write the results out to a Report file.

If the Report file already exists, the Write mode determines if it is overwritten or appended to.

![Compare dialog](image)

Continue to the next section 28.3.1.1.5 Views or return to 28.3.1.1 Chain Commands or 28.3.1.1 Inserting a Chain Command.
28.3.1.1.5 Views

For the description of the common fields on most Chain Command panels see 28.3.1.1.1 Common Fields in Commands. These include the fields Use Parameters, Command name, Active, Continue on failure and Comments, and the button Execute.

Redraw all views
  redraws all views.

Redraw a view
  redraws a given view.

Fit view
  do a fit on a given view.

Minimise view
  minimise a given view.

Maximise view
  maximise a given view.

Restore a view
  restore a minimised view.

Create view
  creates a new view of the given name and optionally position in the View Area.
  For more information, go to 28.3.1.1.2.8 Views >Create view.

Delete view
  delete a view of a given name.

Add model to view
  adds the given model to a given view.

Remove model from view
  remove a given model from a given view.

Remove all from view
  removes all the models from a given view.

Dump view image
  dump an image of a given view.
  For more information, go to 28.3.1.1.2.9 Views >Dump view image.

Change view colour
  change the background colour of a given view.

Continue to the next section 28.3.1.1.6 Drainage or return to 28.3.1.1 Chain Commands or 28.3.1 Inserting a Chain Command.
28.3.1.1.6 Drainage

For the description of the common fields on most Chain Command panels see 28.3.1.1.1 Common Fields in Commands. These include the fields Use Parameters, Command name, Active, Continue on failure and Comments, and the button Execute.

Drainage analysis

runs drainage analysis on a given model

Drainage analysis- dynamic

runs dynamic drainage analysis on a given model

Set pit details

sets the pit details for a given model

Regrade pipes

regrades the pipes in a given model

Continue to the next section 28.3.1.1.7 Other or return to 28.3.1.1 Chain Commands or 28.3.1 Inserting a Chain Command.
28.3.1.1.1.7 Other

For the description of the common fields on most Chain Command panels see 28.3.1.1.1 Common Fields in Commands. These include the fields Use Parameters, Command name, Active, Continue on failure and Comments, and the button Execute.

Comment

creates a cosmetic comment - no action is performed.

Halt

stop running the chain

Prompt

places a Prompt and returns a value to a chain parameter.

For more information, go to 28.3.1.2.10 Other >Prompt.

Sleep

puts the chain asleep for a given number of seconds.

Write output window

writes a one line message to the Output Window.

Clear output window

clears the Output Window.

Dump slx image

writes out the image of the panel than an SLX creates.

For more information, go to 28.3.1.2.11 Other >Dump slx image.

Print parameter

prints out information about a chain parameter to the Output Window.

For more information, go to 28.3.1.2.12 Other >Print parameter.

Save project

save the current project to disk.

Continue to the next section 28.3.1.1.8 Conditionals or return to 28.3.1.1 Chain Commands or 28.3.1.1 Inserting a Chain Command.
28.3.1.1.1.8 Conditionals

How the Conditionals work is described in 28.3.1.1.9 Chain Flow Control and Conditional Commands.

Label

create a labelled line in the chain. See 28.3.1.1.9 Chain Flow Control and Conditional Commands.

Goto

jump to a labelled line. See 28.3.1.1.9 Chain Flow Control and Conditional Commands.

If Model Is Empty

test if a model of a given name is empty.

If Model Exists

test if a model of a given name exists

If Tin Exists

test if a tin of a given name exists

If Function Exists

test if a function of a given name exists

If File Exists

test if a file of a given name exists

If View Exists

test if a view of a given name exists

If Parameter Equals

test if a given parameter has a certain value

For more information, go to 28.3.1.1.2.13 Conditionals >If Parameter Equals.

Return to 28.3.1.1 Chain Commands or 28.3.1.1 Inserting a Chain Command.
28.3.1.1.9 Chain Flow Control and Conditional Commands

The commands in a Chain are normally processed in the order that they are listed in the Chain. However this order can be changed by using the Goto and Label commands, and the commands given in the Conditionals group (see 28.3.1.1.8 Conditionals).

**Label**

The Label command has a user given name and acts as a reference line in a chain. Goto’s and Conditionals can change the processing order of the Chain so that the next command processed is the one after the Label and processing continues on from there.

The name of a Label must be unique within the Chain.

When run the Label command doesn’t do anything and processing moves onto the command after the Label command.

**Goto**

The Goto command changes the processing order of the Chain so that next command processed is the one after the given Label.

**Conditionals**

A Conditional consists of a test and the two nodes On pass and On fail.

Each Conditional commands performs a specific test and

(a) if the test is passed then the action on the On pass line is performed
(b) if the tests fails then the action on the On fail line is performed
The choices for both the **On pass** and **On fail** are the same and are:

- **Continue** - run the next command in the Chain
- **Goto Label** - the next command to run is the one after the given Label.

**Run chain** - run the given Chain. The next command in the Chain is then run.

**Halt** - stop running the chain.

Return to [28.3.1.1 Chain Commands](#) or [28.3.1 Inserting a Chain Command](#).
28.3.1.1.2 Additional Information on Some Chain Commands

See

28.3.1.1.2.1 Execution >Option
28.3.1.1.2.2 Execution >Option - Manual
28.3.1.1.2.3 Execution >Screen Layout File
28.3.1.1.2.4 Execution >Function
28.3.1.1.2.5 Execution >Macro
28.3.1.1.2.6 Execution >Plot
28.3.1.1.2.7 Execution >Shell Command
28.3.1.1.2.8 Views >Create view
28.3.1.1.2.9 Views >Dump view image
28.3.1.1.2.10 Other >Prompt
28.3.1.1.2.11 Other >Dump sli image
28.3.1.1.2.13 Conditionals >If Parameter Equals
28.3.1.2.1 Execution >Option

The Option command records any 12d Model panel or 12d PL’s (macros) that can be recorded.

After this command is selected, the Record button must then be pressed to start a "one option" record cycle. The option to be recorded is then started up and run so that it is recorded.

The fields and buttons have the following functions.

Field Description  Type  Defaults  Pop-Up

Type  
chain command box
the chain command - this command is Option

Run in interactive mode  tick box
if ticked, when the command runs, the panel will be displayed.
At this point all the data in the panel field may be changed. Once the panel is closed, the chain will continue.
Note that it is the responsibility of the user to only make sensible changes.
If not ticked, the command will run without being displayed and allowing for changes to be made.

Important Note and Warning
The Run in interactive mode for a panel has no connection to the Run chain in interactive mode for the Chain.

For the description of the fields Use Parameters, Command name, Active, Continue on failure and Comments, and the button Execute see 28.3.1.1.1 Common Fields in Commands.

Buttons at bottom
See Record button
Preview button
Execute button
Record button

Clicking on the Record button starts a “one option” record cycle.

The Recorder toolbar is placed on the screen but no button has to be pressed because the Record is already running. However the buttons Stop and Cancel can be pressed to terminate the recording.

Now run the 12d Model panel option or macro that you wish to record.

Once the option has run, the Recorder panel is automatically removed, and the recorded option’s details recorded in the Option command and the Command name of the Option is set to the name of the option that was run.

The Create/Edit Chain panel is then opened and displayed the Option command that was just recorded.

Click on the Write button at the bottom of the Create/Edit Chain panel to save the modified chain.

Important Notes on Recording
1. CAD commands can not be recorded.
2. Many Macros can not be recorded. But if Option won’t work, then Option - Manual may. See 28.3.1.2.2 Execution >Option - Manual.
3. Not all 12d panels can be recorded. For example, if a screen layout file can not be created for an option, then it can’t be recorded. When recording, the 12d Model panel option must be filled in and run. This may restrict what options can be recorded. But if Option won’t work, Option - Manual may. See 28.3.1.2.2 Execution >Option - Manual. If you still find a panel won’t record, please leave a note about that panel on the 12d Model Forum.
Preview button

The Preview button brings up the panel with all the information filled in for those panel fields that can be validated. So sometimes Preview can not display all the command information.

Preview is for display only and on its own can’t be used to modify the details of the command.

However, if it is a recorded option and there is a Record button on the command, it can be done in conjunction with the Record button.

So to change the values in a recorded option, select Preview to bring up the recorded option with all the information filled in.

Then hit the Record button on the Option command, make the required changes to the displayed option, and run the panel again.

This will record the new information in place of the existing information.

Click on the Write button at the bottom of the Create/Edit Chain panel to save the modified chain.

Execute button

run the current chain command.

Option Parameters

To define or modify parameters used in an option, click on the + beside the option name in the chain (or double click on the option name) and the Parameters node for the option will be displayed.

For more details on option parameters, go to 28.3.4.3 How to Create Chain Parameters.

Special Notes on Recording Options

1. Use Unique String Names for String Selects

String selects on panels record the ID and the name of the string, and the model ID and the name of the model containing the string.

When the option is run in the chain, the string is first searched for using the model and string id’s but if that fails then a string of the recorded name is searched for in the recorded model name.

If the string name is unique in the model then the correct string will be selected. If there is more than one string with the same name in the model, then the first string of that name that is found will be used.

2. Polygon Selects

String selects can be recorded for a Polygon box but Rectangle, Parallelogram or Lasso can not be recorded.

Continue to the next section 28.3.1.2.2 Execution >Option - Manual or return to 28.3.1.1 Chain Commands or 28.3.1.1 Inserting a Chain Command.
28.3.1.1.2.2 Execution >Option - Manual

The Option - Manual command records an option but with additional information that is used when the command is run in the chain. For example, recording that certain buttons are to be pressed in a certain order.

This is useful for more complex panels, or panels that require multiple button presses. It is also useful for recording macros.

Unlike the Option command, the panel must already be on the screen with the appropriate fields filled in before it can be recorded.

The Option - Manual command records an option in two parts:

1. The panel to use (the data)
2. The buttons to press and the order they should be pressed

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>chain command box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

the chain command - this command is Option - Manual

Buttons to press

grid

displays the list of buttons in the panel that are to be pressed and in the order that they are to be pressed. The buttons are added to the list by using the Capture button button.
For information about grids, see 4.19.6 Grids in Panels.

Automatically close panel  tick box

if **ticked**, when the panel is run in the chain, the panel is automatically closed after all the captured buttons are pressed.

if **not ticked**, the panel is not automatically closed. If a Finish button has not been captured and hence not pressed when the panel is run in the chain, the panel will remain on the screen (open) after the command is finished.

Run in interactive mode  tick box

if **ticked**, when the command runs, the panel will be displayed.

At this point all the data in the panel field may be changed. Once the panel is closed, the chain will continue.

Note that it is the responsibility of the user to only make sensible changes.

If **not ticked**, the command will run without being displayed and allowing for changes to be made.

**Important Note and Warning**

The Run in interactive mode for a panel has no connection to the Run chain in interactive mode for the Chain.

For the description of the fields Use Parameters, Command name, Active, Continue on failure and Comments, and the button Execute see 28.3.1.1.1 Common Fields in Commands.

Capture data  button

after pressing Capture data, the cursor is moved over the panel that is to be captured. The panel will be highlighted with a yellow border to indicate which panel will be selected.

Clicking LB will select the highlighted panel and the panel and all the panel field values will be recorded.

Unlike the Option command, the panel must already be on the screen with the appropriate fields filled in before pressing Capture data.

Also unlike the Option command the panel is not run.

Instead after the panel has been selected, the panel buttons that need to be pressed for running the panel are recorded in the order that they need to be pressed.

Capture buttons  button

after pressing Capture buttons, the cursor is moved over the panel buttons on the selected panel, and the panel button will be highlighted with a yellow border to indicate which button will be selected.

Clicking LB will select the highlighted button and the name of the button will be added to the bottom of the Buttons to press grid.

To select another panel button, click on Capture buttons again.

Continue to the next section 28.3.1.2.3 Execution >Screen Layout File or return to 28.3.1.1 Chain Commands or 28.3.1.1 Inserting a Chain Command.
### 28.3.1.2.3 Execution > Screen Layout File

The Screen layout file command displays the first panel stored in an SLF file and runs it by pressing the panels designated 'run button'.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>chain command box</td>
<td>the chain command - this command is Screen layout file.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLF</td>
<td>file</td>
<td>the slf file to run the first panel from.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Run in interactive mode**  
- tick box
  - *if ticked*, when the command runs, the panel will be displayed.
  - *At this point all the data in the panel field may be changed. Once the panel is closed, the chain will continue.*
  - *Note that it is the responsibility of the user to only make sensible changes.*
  - *If not ticked*, the command will run without being displayed and allowing for changes to be made.

**Important Note and Warning**

*The Run in interactive mode for a panel has no connection to the Run chain in interactive mode for the Chain.*

For the description of the fields **Use Parameters, Command name, Active, Continue on failure and Comments**, and the button **Execute** see [28.3.1.1.1 Common Fields in Commands](#).

Continue to the next section [28.3.1.2.4 Execution >Function](#) or return to [28.3.1.1 Chain Commands](#) or [28.3.1.1 Inserting a Chain Command](#).
28.3.1.1.2.4 Execution >Function

The Function command recalcs an existing function.

If Use parameters is not ticked, the Function field is displayed. This requires the selection of an existing function to recalc.

If Use parameters is ticked, the Function parameter field is displayed. This requires the selection of a function parameter. See 28.3.4 Chain Parameters for more details.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>chain command box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>the chain command - this command is Function.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command name</td>
<td>function box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continue on failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run in interactive mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

At this point all the data in the panel fields may be changed. Once the panel is closed, the chain will continue.
Note that it is the responsibility of the user to only make sensible changes.

If not ticked, the command will run without being displayed and allowing for changes to be made.

**Important Note and Warning**

The Run in interactive mode for a panel has no connection to the Run chain in interactive mode for the Chain.

**Preview** button

The **Preview** button brings up the panel with all the information filled in for those panel fields in the function that can be validated. So sometimes **Preview** can not display all the command information.

**Preview** is for display only and on its own can’t be used to modify the details of the command.

For the description of the fields **Use Parameters**, **Command name**, **Active**, **Continue on failure** and **Comments**, and the buttons **Execute** see 28.3.1.1.1 Common Fields in Commands.

Continue to the next section 28.3.1.1.2.5 Execution >Macro or return to 28.3.1.1 Chain Commands or 28.3.1.1 Inserting a Chain Command.
28.3.1.2.5 Execution >Macro

The Macro command runs a macro with a set of optional arguments.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Type</strong></td>
<td>chain command box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Macro</strong></td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Arguments</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Command name</strong></td>
<td>New</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Active</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Continue on failure</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Run in interactive mode</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Comments</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The chain command - this command is *Macro*.

The macro to run.

An optional set of arguments to pass to the macro.

*Note* that Chain Parameters can be passed as argument to the Macro. See [28.3.5.5 Chain Parameters as Macro (12dPL's) Arguments](#).

**Run in interactive mode**

Tick box

If ticked, if it is a panel macro (i.e. brings up a panel), the macro will be run in Interactive mode and the panel will be displayed. If it is not a panel macro, the macro will run as normal.

At this point all the data in the panel fields may be changed. Once the panel is closed, the chain will continue.

Note that it is the responsibility of the user to only make sensible changes.

If not ticked, the command will run without being displayed and allowing for changes to be made.

**Important Note and Warning**

The Run in interactive mode for a panel has no connection to the Run chain in interactive mode for the Chain.
For the description of the fields Use Parameters, Command name, Active, Continue on failure and Comments, and the button Execute see 28.3.1.1.1 Common Fields in Commands.

Continue to the next section 28.3.1.2.6 Execution >Plot or return to 28.3.1.1 Chain Commands or 28.3.1.1 Inserting a Chain Command.
28.3.1.2.6 Execution >Plot

The Plot command plots a given pff file.

The fields and buttons have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Type</strong></td>
<td>chain command box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>the chain command - this command is Plot</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Plot type</strong></td>
<td>Plot type box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>PPF file</strong></td>
<td>PPF file box</td>
<td>available PPF's for the Plot type</td>
<td></td>
</tr>
<tr>
<td><strong>Command name</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Active</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Continue on failure</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Comments</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Click on **Plot type** choice box and select the required plot type.

Then type or select the **PPF file** of that type to plot.

Continue to the next section 28.3.1.2.7 Execution >Shell Command or return to 28.3.1.1 Chain Commands or 28.3.1 Inserting a Chain Command.
### 28.3.1.2.7 Execution >Shell Command

The Shell command commands run an external program, Microsoft command line etc.

![Shell Command Setup](image)

The fields and buttons have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Type</strong></td>
<td>The chain command box</td>
<td>chain command box</td>
<td>Shell command</td>
<td></td>
</tr>
<tr>
<td><strong>Executable</strong></td>
<td>Name of the file to execute.</td>
<td>file browse box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Arguments**  | If not blank, the text is passed as arguments to theExecutable. Also the value of a Chain parameter can be used as an argument passed to the Executable program. The parameter name is enclosed in square brackets ([ and ]) and then surrounded by double quotes ("), 

"[parameter_name]" and this is entered in the Arguments field in the place of the argument of the Executable that it replaces. |

For the description of the fields Use Parameters, Command name, Active, Continue on failure and Comments, and the button Execute see 28.3.1.1.1 Common Fields in Commands.

Continue to the next section 28.3.1.2.8 Views >Create view or return to 28.3.1.1 Chain Commands or 28.3.1.1 Inserting a Chain Command.
28.3.1.1.2.8 Views >Create view

The Create view command creates view of a given name and type. It can also optionally give the Top Left and Bottom Right to position and size the view.

The fields and buttons have the following functions.

Field Description	Type	Defaults	Pop-Up
Type | chain command box |

*the chain command - this command is Create view*

View name | text box | name of the view to create. If the name already exists then it is an error.

View type | view types box | available view types | the type of view to create

Top/Left/Bottom/Right | integer box | if not blank, the value in pixels of the top left hand and bottom right corners of the of the created view.

The coordinate system has (0,0) at the Top Left of the 12d Model View area, and the X-axis going across the screen and the Y-axis going down the screen. The units are pixels.
For the description of the fields **Use Parameters**, **Command name**, **Active**, **Continue on failure** and **Comments**, and the button **Execute** see 28.3.1.1.1 Common Fields in Commands.

Continue to the next section 28.3.1.1.2.9 Views >Dump view image or return to 28.3.1.1.1 Chain Commands or 28.3.1.1 Inserting a Chain Command.
28.3.1.2.9 Views >Dump view image

The Dump view image command write out an image of the given view.

The fields and buttons have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>chain command box</td>
<td>Dump view image</td>
<td></td>
<td></td>
</tr>
<tr>
<td>View</td>
<td>View box</td>
<td>available views</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Include title</td>
<td>tick box</td>
<td></td>
<td>if ticked, the title of the view and the icons on the view are included in the image.</td>
<td></td>
</tr>
<tr>
<td>Format</td>
<td>choice box</td>
<td></td>
<td>If not ticked, the title of the view and the icons on the view are not included in the image.</td>
<td></td>
</tr>
<tr>
<td>Image file</td>
<td>file box</td>
<td>check_progress_2.jpg</td>
<td>the image is written out to this file.</td>
<td></td>
</tr>
</tbody>
</table>
For the description of the fields **Use Parameters, Command name, Active, Continue on failure and Comments**, and the button **Execute** see 28.3.1.1.1 Common Fields in Commands.

Continue to the next section 28.3.1.2.10 Other >Prompt or return to 28.3.1.1 Chain Commands or 28.3.1.1 Inserting a Chain Command.
28.3.1.2.10 Other >Prompt

The **Prompt** command is used to display a user defined Prompt or panel, with user defined text, optional widgets and buttons.

Each button assigns a value to a given parameter, which may be used later in the chain to provide flow control or change data.

All Prompts come up in the same place.

The fields and buttons have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>chain command box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Prompt title</strong></td>
<td>text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Prompt message</strong></td>
<td>text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Parameter for result</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Widgets to display</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Buttons to display</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Command name</strong></td>
<td>Prompt Take a coffee break</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Active</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Continue on failure</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Comments</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Prompt Command Interface](image)
the title to display at the top of the Prompt

**Prompt message**  
the message to display

**Parameter for result**  
the parameter to store the result of the Prompt in

**Widgets to display - grid**
An optional list of widgets to display on the panel to capture more information. The widget must be stored in an existing parameter, defined in the chain's PVF file. The type of parameter will determine the type of widget displayed.

For information about grids, see [4.19.6 Grids in Panels](#).

**Name**  
the name of the widget

**Parameter**  
list of parameters for the chain

the parameter that the widget is created for and will set once the prompt is closed. The parameter must be one of the parameters for the chain.

**Mode**

**Optional?**
tick box

if yes, the widget will be optional and the user will not need to fill it in when the prompt is displayed.

if no or blank, the widget will not be optional and the user will be required to fill in the widget.

For the description of the fields Use Parameters, Command name, Active, Continue on failure and Comments, and the button Execute see [28.3.1.1.1 Common Fields in Commands](#).

**Buttons to display - grid**
a set of buttons to display on the Prompt panel, each with a name and a return value.

For information about grids, see [4.19.6 Grids in Panels](#).

**Name**
the name of the button

**Value**

if the button is pressed, the value to assign to the parameter Parameter for result.

Continue to the next section [28.3.1.1.2.11 Other >Dump slx image](#) or return to [28.3.1.1 Chain Commands](#) or [28.3.1.1 Inserting a Chain Command](#).
28.3.1.2.11 Other >Dump slx image

The Dump slx image command write out an image of the panel that the SLX creates.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>chain command box - the chain command is Dump slx image</td>
<td>chain command box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLX File</td>
<td>file box - name of the slx file to read in and display the panel it describes, and then write out an image for.</td>
<td>file box</td>
<td>available *.slx commands</td>
<td></td>
</tr>
<tr>
<td>Format</td>
<td>choice box - image format to use</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image file</td>
<td>file box - the image is written out to this file.</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command name</td>
<td>Dump file ADAC_Reader_slx</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons have the following functions.

For the description of the fields Use Parameters, Command name, Active, Continue on failure and Comments, and the button Execute see 28.3.1.1.1 Common Fields in Commands.

Continue to the next section 28.3.1.2.12 Other >Print parameter or return to 28.3.1.1 Chain Commands or 28.3.1 Inserting a Chain Command.
28.3.1.1.2.12 Other >Print parameter

The **Print parameter** command writes out information about a chain parameter to the Output Window.

It prints out in the format

\[
\text{parameter_name [type:parameter_type]} = \text{parameter_value}
\]

(a) the name of the parameter  
(b) the type of the type  
(c) the value of the parameters where the **Print parameter** command is processed in the Chain

As an example, for a parameter **design_map_file**, this would print to the **Output Window**:

---

**Starting chain**: ADAC_design_base.chain  
**Executing print parameter command**: New  
**design_map_file [type: Text]** = $USER_LIB\ADAC_GCCC_Map_Design_to_ADAC_40.mapfile  
**Executing Comment command**: Clean out the models used in processing  
**Executing Clean model command**: Clean design mapped data

---

The fields and buttons have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Type</strong></td>
<td>chain command box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Parameter</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Command name</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Active</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Continue on failure</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Comments</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

The chain command - this command is **Print parameter**

For the description of the fields **Command name**, **Active**, **Continue on failure** and **Comments**, and the button **Execute** see [28.3.1.1.1 Common Fields in Commands](#).

Continue to the next section [28.3.1.2.13 Conditionals >If Parameter Equals](#) or return to [28.3.1.1 Chain Commands](#) or [28.3.1.1 Inserting a Chain Command](#).
28.3.1.2.13 Conditionals >If Parameter Equals

The If Parameter equals command tests if a Chain Parameter has a certain value.

The fields and buttons have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>chain command box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The chain command - this command is If Parameter Equals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter name</td>
<td>parameter box</td>
<td>parameters in this chain</td>
<td></td>
</tr>
<tr>
<td>The name of a parameter from the Parameter value file that is to be tested for having a user given value. The pop-up lists all the parameters in the Parameter value file for the Chain.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The action of the On Pass and On fail nodes are described in 28.3.1.1.9 Chain Flow Control and Conditional Commands.

For the description of the fields Command name, Active, Continue on failure and Comments, and the button Execute see 28.3.1.1.1 Common Fields in Commands.

Return to 28.3.1.1 Chain Commands or 28.3.1.1 Inserting a Chain Command.
28.3.1.2 Record Icon and the Recorder Toolbar

Clicking on the Record icon removes the Create/Edit Chain panel and brings up the Recorder toolbar with icons to Pause, Stop and Cancel the recording.

The Recording process is already underway and you simply run the 12d Model panels and recordable macros that you wish to record and then press the Stop icon.

Pressing Pause causes the recording process is interrupted and the Pause icon on the Recorder toolbar changes to Record. Other options can be run and recording only resumes when Record is pressed on the Recorder toolbar.

For each recorded panel or macro, an Option command is added to the list of commands in the chain and its Command name is the name of the recorded panel or macro.

When Stop is pressed, the Recorder toolbar is removed and the Create/Edit Chain panel for the chain is opened on the screen with the new Option commands added to the command list.

Click on the Write button at the bottom of the Create/Edit Chain panel to then update the chain.

Note that in Create/Edit Chain panel the Command name can be modified by clicking on the command in command list in the Create/Edit Chain panel and then changing its Command name.
field. Click on the **Write** button at the bottom of the **Create/Edit Chain** panel to update the chain.

For more information on recording panel and the buttons **Record**, **Preview** and **Execute**, go to 28.3.1.2.1 **Execution >Option**.
28.3.2 Interactive Mode

Chains support an **Interactive Mode**, meaning that the user is allowed to influence the flow of commands or the data input into the chain.

There are two types of Interactive Mode: **Chain Interactive Mode** and **Command Interactive Mode**:

(a) **Chain Interactive Mode:**

This is toggled via the Run chain in interactive mode tick box on the **Chain Edit/Create panel**. See 28.3.1 Create/Edit a Chain

Then when the chain is run, the **Interactive toolbar** is displayed and the chain will pause for user input. See 28.3.2.1 Interactive Toolbar and Chain Interactive Mode for more details.

(b) **Command Interactive Mode:**

Several commands now support and interactive mode which means that instead of running without the user seeing the command, a command with interactive mode ticked on will pause the chain, display the panel, and allows the user to change panel values and be run or not run. This applies in the case of panels, functions and macros.

So in these cases, any panels associated with them, and the data they were recorded with, will be displayed and the panel will wait for user input before continuing. See 28.3.2.2 Commands Interactive Mode.

**Important Note**

The **Chain Interactive Mode** and the **Command Interactive Mode** are totally separate and not related in any way. However when running a **Chain in Interactive Mode**, for each command that supports **Command Interactive Mode**, the user can run the command as is, or force it to run in **Command Interactive Mode**.
28.3.2.1 Interactive Toolbar and Chain Interactive Mode

When running a Chain in Interactive Mode, the Interactive toolbar is placed on the screen and the chain pauses and waits for the user to say run the command. The user can even choose a different command to run, and continue running from that command on.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choice box</td>
<td>choice box</td>
<td>all commands in the Chain</td>
<td></td>
</tr>
</tbody>
</table>

- **Choice box**: choose the command from the Chain that is placed in the Interactive toolbar ready to be run next.

- **Play button**: plays the command displayed in the Interactive toolbar.

- **Play + i button**: plays the command displayed in the Interactive toolbar in the Command Interactive Mode regardless of the commands own Run in interactive mode field. See 28.3.2.2 Commands Interactive Mode.

  *This button is only available when the command can be run in Command Interactive Mode. For example a Comment command can not be run in Command Interactive Mode.*

- **Stop button**: stops running the Chain but the Create/Edit Chain panel for the Chain is left on the screen.

- **Fast forward button**: runs the chain to the end. The Create/Edit Chain panel for the Chain is left on the screen.
Bring up the Chain Parameters Editor panel with the Parameter value file for the Chain loaded into it.

Help button

Display the context sensitive help.

28.3.2.2 Commands Interactive Mode

Running a command in Command Interactive Mode will do one of several things, depending on the type of the command:

1. If it is a recorded Option, the panel will be presented to the user and the user can change values in the panel fields.
   The user either runs the panel or doesn’t run the panel, and then selects the Finish button or closes the panel with the X icon.
   If the chain is being run from the Interactive toolbar, the Chain then moves on and displays the next command in the Chain in the Interactive toolbar.
   If the chain is not being run from the Interactive toolbar, the Chain then moves on and runs the next command in the Chain.

2. If it is a Function command, the chain will attempt to open the function editor.
   The user either runs the function or doesn’t run the function, and then selects the Finish button or closes the panel with the X icon.
   If the chain is being run from the Interactive toolbar, the Chain then moves on and displays the next command in the Chain in the Interactive toolbar.
   If the chain is not being run from the Interactive toolbar, the Chain then moves on and runs the next command in the Chain.
28.3.3 Edit a Chain

**Position of option on menu:** Utilities => Chains => Edit

**Position of option on menu:** Utilities => Recalc => Edit chain

Editing an existing chain on either menu can be done two ways.

The **Edit** walk-right menu displays all the chains in the project and double clicking on a chain in the list will bring up the Create/Edit Chain panel (see 28.3.1 Create/Edit a Chain for more information).

Another way of editing a chain is by using the **Recalc Chain** panel (yes the **Recalc Chain** panel) that comes up by:

(a) If the **Chain** menu is being displayed by walking right on Utilities => Chains => Edit on the top Main Menu then the Edit menu will be displaying with [Edit] written on the top. Clicking on [Edit] will bring up the **Recalc Chain** panel

(b) If the **Chain** or **Recalc** menu has been torn from the Main Menu on the top then the **Recalc Chain** panel comes up if you click on Utilities => Chains => Edit without walking right or Utilities => Recalc => Edit chain without walking right.

The **Recalc Chain** panel can run an existing chain, edit an existing Chain or create a new chain. For information on the **Recalc Chain** panel see 28.3.9 Run a Chain.

Continue to the next section 28.3.4 Chain Parameters or return to 28.3 Chains.
28.3.4 Chain Parameters

The basic usage of chains is to record and playback a set of panels and other chain commands. The user can have interactive with the command running in the chain by running the Chain in Interactive Mode (see 28.3.2 Interactive Mode) and/or running selected commands in Command Interactive Model (see 28.3.2.2 Commands Interactive Mode).

However even though these options allow you to change values in some panels as the chain runs, this has to be done again every time the chain is run.

To allow for more power and in the way values in the panels fields are changed, Chain Parameters were introduced.

Chain Parameters can be used in place of actual values in the panels and the parameters can be given different values each time the chain is run.

For example, you may have a chain that triangulates a data set and creates and labels contours for the created tin. And to make the chain more flexible, you want to give the name of the created tin and contour models each time the chain is run but don’t want to do it by hand.

Or you may want to just give the name of the tin and have the names of the contour models derived from the given tin name.

Chain Parameters are used to give the chain this added flexibility.

When Chain Parameters are created, the actual values for the parameters used are stored in a separate parameter value file (*.pvf) and so the values of all the parameters can be changed by running the chain with a different parameter value file.

The Chain Parameters and their values can be defined when the panel is created using the Option command, or done separately within the chain itself. Or a combination of both.

To create parameters straight away, have the Always record parameters field ticked on before starting to record an Option.

After the option is finished and the recording stops, the Record Option Parameters panel is displayed and is used to select the fields you wish to parameterise. See 28.3.4.2 Record Option Parameters Panel.

For information on how to create parameters separately to the recording process, or how to modify existing parameters, see 28.3.4.1 Creating and Modifying Parameters Outside the Recording Process.
28.3.4.1 Creating and Modifying Parameters Outside the Recording Process

For a command in the Create/Edit Chain panel, to create parameters separately to the recording process, or to modify existing parameters, click on the + to the left of the command in the command list and then on the Parameter line. The Parameters are then displayed on the right hand side of the panel.

The fields and buttons used in this panel have the following functions.
### Field Description

<table>
<thead>
<tr>
<th><strong>Parameter grid</strong></th>
<th><strong>Type</strong></th>
<th><strong>Defaults</strong></th>
<th><strong>Pop-Up</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>the parameter grid holds information about each defined parameter in the chain.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Field name</strong></td>
<td>display only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the name of the panel field to be parameterised. This is written to when a field is selected by the <strong>Pick parameters</strong> buttons. This is read only.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Parameter</strong></td>
<td>text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the name the user gives the parameter. This can also be modified.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note that the parameter name can only be alphanumeric and underscores. No spaces are allowed in the name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Active</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if <strong>ticked</strong>, this row is used.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If <strong>not ticked</strong>, the row is not used and acts like a comment.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Buttons at Bottom

**Pick parameters**

this is used to define more parameters for the option by picking a field from the recorded panel to use as a parameter.

To create a new parameter for the command, click on the **Pick parameters** button. This will bring up the **Record Options Parameter** panel which is used to pick new parameters.

For a description of the **Record Options Parameter** panel and information on how to use it to pick parameters, see 28.3.4.2 **Record Option Parameters Panel**.

Highlighted rows in the grid can be deleted using the **X** icon.

New rows are created using the **Pick parameters** button.

If a **Parameter** is not to be used at this time, **untick** the **Active** column.

Parameters within options are defined as **Parameter Mappings**.

A parameter mapping maps from a specific field to a named parameter. When an option command runs and fills out a particular field, it will look for the appropriate parameter mapping to that field to use as the value for the field.

To create parameters without recording, or modify them, click on the Parameters under the expanded Option command in the chain editor. All the mappings from parameters to the fields they represent will be listed here.
28.3.4.2 Record Option Parameters Panel

The Record Option Parameters panel is displayed:

(a) as soon as a recording is finished if the Always record parameters field ticked on in the Create/Edit Chain panel.

or

(b) by clicking on the Pick parameters button when the Parameters line is clicked on for a command in the Create/Edit Chain panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter value file</td>
<td>parameter value file box</td>
<td>available *.pvf files</td>
<td></td>
</tr>
<tr>
<td>Parameter stem</td>
<td>text box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons for this panel will now be described but how you use the panel to select parameters is given in the section 28.3.4.3 How to Create Chain Parameters

The fields and buttons used in this panel have the following functions.

Parameter value file

the name of the field on the panel that is being parameterised.

Parameter stem

pretext and postext written in the form pre_text*post_text and it is used on the value that is going to be written in the Parameter column in the grid when it is created by the Generate button.
Note that if there are any spaces in the pre_text*post_text, then each space will be replaced by an underscore in the parameter name.

**Parameter grid name**
the parameter grid holds information about each defined parameter in the chain.

**Field name** display only
the name of the panel field to be parameterised. This is written to when a field is selected by either the **Pick** or **Pick all** buttons. This is read only.

**Field type** display only
the type of the parameterised field. This is written to when a field is selected by either the **Pick** or **Pick all** buttons. This is read only.

**Current value** display only
the value that the panel field had at the time of recording. This is read only.

**Parameter** text box
the name of the parameter. If **Generate** is pressed, then this is automatically created from the **Parameter stem** and the name of the Field in the panel.

Note that the parameter name can only be alphanumeric and underscores. Not spaces are allowed in the name.

**Save in PVF** tick box
if **ticked**, this row is saved in the **parameter value file**.
If **not ticked**, the row is not saved in the **parameter value file**.

However in both cases the information is saved with the chain.

**Buttons at Bottom**

**Pick**
pick a field from the recorded panel to use as a parameter

**Pick all**
automatically pick all fields to be used as parameters

**Generate**
generate names for the parameters, using the optional parameter stem

**Set and finish**
save the recorded parameters and finish the panel.

For information on how to use this panel to select parameters is given in the section 28.3.4.3, **How to Create Chain Parameters**.
28.3.4.3 How to Create Chain Parameters

The Record Option Parameters is used to create Chain Parameters and this section describes that process in detail.

Note - information on each field and button in the panel is given in the section 28.3.4.2 Record Option Parameters Panel.

The Pick or the Pick All buttons can then be used to select the fields that are to be parameterised.

After Pick is pressed, as you move over the panel that was just recorded, the fields of the panel that the cursor is over is highlighted with a yellow rectangle.
Clicking when a particular field is highlighted writes the name, type and current value of the field to the next blank line in the grid of the Record Option Parameters panel.

The name that you want to call the parameter is then typed into the Parameter column and the Save in PVF column ticked or not ticked.

If another panel field is to be parameterised, then press the Pick button and repeat the process.

When all the fields to be parameterised have been selected, click on Set and finish.

The Record Option Parameters panel is then removed from the screen. Click on Finish to remove the panel that was recorded.

Click on the Write button on the top right hand side of the Create/Edit Chain panel to update the chain in the file, and also if there is one, update the Parameter value file.

Note that sometimes the name of the command is not updated until Write is pressed.

Another way to create the Parameter names is to click on Generate. The Parameter stem is then applied to the name of the field on the panel to create the Parameter name.
Note that a parameter name can not contain spaces so any spaces are replaced by underscores.

Finally if all panel fields are to be selected as parameters then press the Generate all button.
Also if you want to do most parameters but not all, it is often quicker to click on Generate all and then delete the few that you don’t want from the Record Option Parameters panel.

The parameters for a command can be seen by clicking on the + to the left of the command in the command list and then clicking on the Parameter line that is displayed. The Parameters are then displayed in the right hand side of the panel.

If the Parameter is not to be used at this time, untick the Active column.

Return to 28.3.4.2 Record Option Parameters Panel or 28.3.4.3 How to Create Chain Parameters.
28.3.5 Creating/Editing Parameter Value Files

**Position of option on menu:** Utilities => Chains => Parameters

These options Create, Edit and Copy Chain pvf files (parameter value files).

- **Create**
  - 28.3.5.1 Creating a Chain Parameters Value File
  - selecting Create opens the parameter editor
  - walk right on Edit, lists parameter files to edit
  - used to copy a Chain Parameter Value File from one file to another.

- **Edit**
  - 28.3.5.2 Editing a Chain Parameters Value File

- **Copy**
  - 28.3.5.3 Copy a PVF

Chains can also be used
28.3.5.1 Creating a Chain Parameters Value File

Position of option on menu: Utilities => Chains => Parameters => Create

Selecting Create brings up the Chain Parameters Editor panel which is used to both create and edit chain parameters.

For information about this panel, see 28.3.5.2 Editing a Chain Parameters Value File
28.3.5.2 Editing a Chain Parameters Value File

**Position of option on menu:** Utilities => Chains => Parameters => Edit

The **Edit** option is a walk-right which lists the existing parameter files. Clicking on a file in this list, brings it up in the Chain Parameters Editor panel with the selected pvf file already loaded into the panel.

Or if the Parameter menu is a floating menu, clicking on **Edit** without walking right will bring up the Chain Parameters Editor panel without a pvf file already loaded. This can then be used to create a new pvf file or selected and load an existing pvf file.
See:

Inserting a parameter  28.3.5.2.1 Inserting a Parameter
Searching  28.3.5.2.2 Searching for Parameter Values
28.3.5.2.1 Inserting a Parameter

Clicking on the **Insert** icon inserts a new parameter into the list of parameters under the current highlighted parameter. The new parameter is given the default **Type** Text and name **New**.

![Insert icon and parameter editor](image)

The correct type for the new parameter is then selected in the **Type** field and the information required for that type of parameter is then displayed in the right hand side of the panel.

The types of parameters available are:

- **Integer**
- **Real**
- **Text**
- **String**
- **Tin**
- **Model**
- **Function**
- **True/False**
- **Colour**
- **Grid**

The information on the right hand side will be updated when a different **Type** is selected.

See:

- **Integer** [28.3.5.2.1.1 Integer, Real, Text, Function, True/False and Colour Parameters](#)
- **Real** [28.3.5.2.1.1 Integer, Real, Text, Function, True/False and Colour Parameters](#)
- **Text** [28.3.5.2.1.1 Integer, Real, Text, Function, True/False and Colour Parameters](#)
- **String** [28.3.5.2.1.2 String Parameter](#)
- **Tin** [28.3.5.2.1.3 Tin Parameter](#)
- **Model** [28.3.5.2.1.4 Model Parameter](#)
- **Function** [28.3.5.2.1.1 Integer, Real, Text, Function, True/False and Colour Parameters](#)
- **True/False** [28.3.5.2.1.1 Integer, Real, Text, Function, True/False and Colour Parameters](#)
- **Colour** [28.3.5.2.1.1 Integer, Real, Text, Function, True/False and Colour Parameters](#)
- **Grid** [28.3.5.2.1.5 Grid Parameter](#)
### 28.3.5.2.1.1 Integer, Real, Text, Function, True/False and Colour Parameters

The information needed for all these parameter types is virtually the same.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>choice box parameter types</td>
<td>the type of the parameter. In this case it will be Integer, Real, Text, Function, True/False or Colour.</td>
<td></td>
</tr>
</tbody>
</table>

The icon displayed on the left of the parameter name in the Parameter list under the Parameter node will match the Type.
Name  text box
the name of the parameter. This must be unique within the pvf file.
The name becomes the name displayed in the Parameter list under the Parameter node.
The name in this list may not change until the Write button is pressed.

Value  integer, real, text, function, tick box, colour
the value of the parameter. This must match the type of the parameter (integer, real, text, function, true/false tick box, colour).
For Type True/False, Value is a tick box and ticked means True and unticked means False.

Comment  comment box
user comments to be stored with the parameter.

Continue to the next section 28.3.5.2.1.2 String Parameter or return to 28.3.5.2.1 Inserting a Parameter.
28.3.5.2.1.2 String Parameter

The information needed for the parameter of type String is given on the right hand side of the panel when String is selected for Type.

The fields and buttons used in the right hand side of the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>choice box parameter types</td>
<td>choice box</td>
<td>parameter types</td>
<td></td>
</tr>
<tr>
<td>The type of the parameter. In this case it is String.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the name of the parameter. This must be unique within the pvf file.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lookup mode</td>
<td>choice box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if Lookup by name and id, the string to use is searched for by string id first and if the string id does not exist, then by string name. If the search becomes by name and there is more than one string with the name then the first one found is selected. THIS NEEDS TO BE EXTENDED FOR name and model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
and model

if **Lookup by id only**, the string to use is searched for by id only. THIS NEEDS TO BE EXTENDED FOR name and model

**Value**

string select box

A string is selected by clicking on the string select icon on the right of the field and then selecting a string. The string name and id, and the model name and id that the string is in, are saved with the parameter.

**Comment**

comment box

User comments to be stored with the parameter.

Continue to the next section **28.3.5.2.1.3 Tin Parameter** or return to **28.3.5.2.1 Inserting a Parameter**.
28.3.5.2.1.3 Tin Parameter

The information needed for the parameter of type Tin is given on the right hand side of the panel when Tin is selected for Type.

The fields and buttons used in the right hand side of the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Type</strong></td>
<td>choice box</td>
<td>parameter types</td>
<td></td>
</tr>
<tr>
<td><strong>Name</strong></td>
<td>text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Lookup mode</strong></td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Type**: the type of the parameter. In this case it is Tin.
- **Name**: the name of the parameter. This must be unique within the .pvf file.
- **Lookup mode**: if Lookup by name and id, the tin to use is searched for by tin id first and if the tin id does not exist, then by tin name.
- if Lookup by name only, the tin to use is searched for by tin name only.
- if Lookup by id only, the tin to use is searched for by id only.
**Value**

tin box

the name of the tin. The tin name and id are saved with the parameter.

**Comment**

comment box

user comments to be stored with the parameter.

Continue to the next section 28.3.5.2.1.4 Model Parameter or return to 28.3.5.2.1 Inserting a Parameter.
28.3.5.2.1.4 Model Parameter

The information needed for the parameter of type `Model` is given on the right hand side of the panel when `Model` is selected for `Type`.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>choice box</td>
<td>parameter types</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lookup mode</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in the right hand side of the panel have the following functions.

- **Type**
  - The type of the parameter. In this case it is `Model`.
  - The `Model` icon displayed on the left of the parameter name in the Parameter list under the Parameter node.

- **Name**
  - The name of the parameter. This must be unique within the pvf file.
  - The name becomes the name displayed in the Parameter list under the Parameter node.
  - The name in this list may not change until the Write button is pressed.

- **Lookup mode**
  - If `Lookup by name and id`, the model to use is searched for by model id first and if the model id does not exist, then by model name.
  - If `Lookup by name only`, the model to use is searched for by model name only.
  - If `Lookup by id only`, the model to use is searched for by id only.
Value  

tin box  

the name of the model. The model name and id are saved with the parameter.

Comment  

comment box  

user comments to be stored with the parameter.

Continue to the next section 28.3.5.2.1.5 Grid Parameter or return to 28.3.5.2.1 Inserting a Parameter.
28.3.5.2.1.5 Grid Parameter

The information needed for the parameter of type Grid is given on the right hand side of the panel when Grid is selected for Type.

The fields and buttons used in the right hand side of the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>choice box</td>
<td>parameter types</td>
<td>Grid</td>
</tr>
<tr>
<td>Name</td>
<td>text box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSV mode</td>
<td>choice box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grid parameter file</td>
<td>file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modify mode</td>
<td></td>
<td>Clear All</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Grid icon is displayed on the left of the parameter name in the Parameter list under the Parameter node.

The name becomes the name displayed in the Parameter list under the Parameter node.

The name in this list may not change until the Write button is pressed.

If CSV file, a CSV (comma separated value) file, which defines the values to fill a grid.

The name of the CSV file.
Modify mode  choice box

if Clear All, all the existing values in the grid are deleted and are replaced by those in the CSV file.
If Append, any existing value in the grid in the panel that has the same name as one in the CSV file is replaced by the one in the CSV file. All values in the CSV file that do not already exist in the grid in the panel are added to the grid in the panel.

Comment  comment box
user comments to be stored with the parameter.

Return to 28.3.5.2.1 Inserting a Parameter.
28.3.5.2.2 Searching for Parameter Values

The Chain Parameters Editor panel has a search facility to find any parameter names that contain some user given text.

Text is entered into the search field and if the button for:

- **Backward** search is pressed then the parameter names are searched backwards from the current highlighted node until a name containing the text is found. The parameter node of the found name is highlighted so that information for it is displayed in the right hand side of the panel. The search stops when the beginning of the parameter nodes is reached.

- **Forward** search is pressed then the parameter names are searched forward from the current highlighted node until a name containing the text is found. The parameter node of the found name is highlighted so that information for it is displayed in the right hand side of the panel. The search stops when the end of the parameter nodes is reached.

Return to 28.3.5.2 Editing a Chain Parameters Value File.
28.3.5.3 Copy a PVF

Position of option on menu: Utilities => Chains => Parameters => Copy

Copy a PVF is used to copy a Chain Parameter Value File. Selecting Copy brings up the Copy a PVF panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source File</td>
<td>file box</td>
<td>available *.pvf files</td>
<td><em>original PVF file to copy</em></td>
</tr>
<tr>
<td>Target File</td>
<td>file box</td>
<td>available *.pvf files</td>
<td><em>name of the new copied PVF file</em></td>
</tr>
<tr>
<td>Copy</td>
<td>button</td>
<td></td>
<td><em>copies the PVF file</em></td>
</tr>
</tbody>
</table>

Continue to the next section 28.3.5.4 Running Chains from User Menus and Toolbars or return to 28.3.5 Creating/Editing Parameter Value Files.
28.3.5.4 Running Chains from User Menus and Toolbars

Chain can be run from a user menu or a user toolbar by using the **Command**:

Command: "chain chain_file_name"

where `chain_file_name` is the name of the chain.

For User Menus and Toolbars, it is also possible to substitute the name of the parameter value file (pvf) to use for the chain `chain_file_name` in place of the pvf mentioned in the chain `chain_file_name` itself.

The command is

Command: "chain -pvf pvf_file_name chain_file_name"

where `pvf_file_name` is the name of the pvf file to use when the chain `chain_file_name` is run from this User Menu or Toolbar.

**Note** that the

```
-pvf pvf_file_name
```

is still inside the double quotes (".").

Using the `-pvf` means that the one base chain can be easily used in user menus and toolbars but with different pvf files.

For example, the chain `ADAC_Survey_base.chain` occurs many times in the "ADAC Survey 4.0 Chains" menu but each time it is run with a different pvf file.

For more information on User Menus and User Toolbars, see 41.2 User Defined Menus and 41.3 User Defined Toolbars in the Appendix 41 Functions Keys, Menus, Toolbars.

Continue to the next section 28.3.5.5 Chain Parameters as Macro (12dPL's) Arguments or return to 28.3.5 Creating/Editing Parameter Value Files.
28.3.5.5 Chain Parameters as Macro (12dPL’s) Arguments

When the Chain Command

**Execution >Macro**

is used to run a 12dPL program (also known as 12PL's or **12d Model** macros), the **value** of a **Chain parameter** can be used as an argument passed to a 12dPL program.

This is done via the **Arguments** field in the Macros Command.

The Parameter Name is enclosed in square brackets ([ and ]) and then surrounded by double quotes ("")

"[parameter_name]"

and this is entered in the **Arguments** field in the place of the argument that it replaces.

For information on the chain command **Macro**, see 28.3.1.2.5 **Execution >Macro**.

Return to 28.3.5 Creating/Editing Parameter Value Files or 28.3 Chains.
28.3.6 Copy a Chain

Position of option on menu: Utilities => Chains => Copy

This option copies a chain.

Selecting Copy bring up the Copy a Chain panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source file</td>
<td>name of the chain to be copied.</td>
<td>file</td>
<td>available *.chain, *.rcn files</td>
<td></td>
</tr>
<tr>
<td>Target file</td>
<td>new name for the copied chain.</td>
<td>file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copy</td>
<td>Copy the chain.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section 28.3.7 Chain Conversion or return to 28.3 Chains.
28.3.7 Chain Conversion

Position of option on menu: Utilities => Chains => Convert

This option converts a pre-v10 chain rcn file to the .chain format.

Selecting Convert brings up the Chain Conversion panel.

![Chain Conversion panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source file</td>
<td>file</td>
<td>available *.rcn files</td>
<td></td>
</tr>
<tr>
<td>Destination file</td>
<td>file</td>
<td>available *.chain files</td>
<td></td>
</tr>
<tr>
<td>Convert sub chains</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, all sub chains will be converted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if not ticked, no sub chains will be converted.</td>
<td></td>
</tr>
<tr>
<td>Convert SLF files</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if ticked, all slf files included in the chain will be converted to the new SLX format.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>if not ticked, no slf files will be converted.</td>
<td></td>
</tr>
<tr>
<td>Convert</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>converts the source rcn file into the new .chain file format.</td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section 28.3.8 Rename a Chain or return to 28.3 Chains.
28.3.8 Rename a Chain

Position of option on menu: Utilities => Chains => Rename

This option renames an existing chain.

Selecting Rename brings up the Rename a Chain panel.

![Rename a Chain panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chain to rename</td>
<td>file box</td>
<td>available *.chain, *.rcn files</td>
<td></td>
</tr>
<tr>
<td>New name</td>
<td>text box</td>
<td>available *.chain, *.rcn files</td>
<td></td>
</tr>
<tr>
<td>Rename</td>
<td>button</td>
<td>Change the name of the chain.</td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section 28.3.9 Run a Chain or return to 28.3 Chains.
28.3.9 Run a Chain

Position of option on menu: Utilities =>Chains =>Run

Position of option on menu: Utilities =>Recalc =>Run chain

These options can run an existing chain and also create a new chain or edit an existing chain.

Running an existing chain on either menu can be done two ways.

The Run or Run chain walk-right menu displays all the chains in the project and double clicking on a chain in the list will run the chain.

Another way of running a chain is by using the Recalc Chain panel that comes up by:

(a) If the menu is being displayed by walking right on Utilities =>Chains =>Run on the top Main Menu then the Run menu will be displaying with [Run] written on the top. Clicking on [Run] will bring up the Recalc Chain panel.

(b) If any of the menus getting to the Chain or Recalc menus have been torn from the top Main Menu then the Recalc Chain panel comes up by clicking on Utilities =>Chains =>Run without walking right or Utilities =>Recalc =>Run chain without walking right.

The Recalc Chain panel can run an existing chain, or edit an existing chain, or create a new chain.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chain file</td>
<td>the name of the chain file to create/edit or run.</td>
<td>file box</td>
<td>available *.chain and *.rcn files</td>
<td></td>
</tr>
<tr>
<td>Run</td>
<td>if the chain exist then the chain will be run.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edit</td>
<td>if the chain exist then it will be brought up in the Create/Edit Chain panel for editing.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Editing an existing chain on either menu can be done two ways.

The Edit walk-right menu displays all the chains in the project and double clicking on a chain in the list will bring up the Create/Edit Chain panel (see 28.3.1 Create/Edit a Chain for more information).

Another way of editing a chain is by using the Recalc Chain panel that comes up by:

(a) If the Chain menu is being displayed by walking right on Utilities =>Chains =>Edit on the top Main Menu then the Edit menu will be displaying with [Edit] written on the top. Clicking on [Edit] will bring up the Recalc Chain panel.

(b) If any of the menus getting to the Chain or Recalc menus have been torn from the top Main Menu then the Recalc Chain panel comes up by clicking on Utilities =>Chains =>Edit without walking right or Utilities =>Recalc =>Edit chain without walking right.
Main Menu then the Edit menu will be displaying with [Edit] written on the top. Clicking on [Edit] will bring up the Recalc Chain panel.

If the Chain menu is being displayed by walking right on Utilities => Recalc => Edit chains on the top Main Menu then the Edit menu will be displaying with [Edit chain] written on the top. Clicking on [Edit chain] will bring up the Recalc Chain panel.

(b) If the Chain or Recalc menu has been torn from the Main Menu on the top then the Recalc Chain panel comes up if you click on Utilities => Chains => Edit without walking right or Utilities => Recalc => Edit chain without walking right.

The Recalc Chain panel can edit an existing Chain or create a new chain.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chain file</td>
<td>file box</td>
<td>available *.chain, *.rcn files</td>
<td>the name of the chain file to create.</td>
</tr>
<tr>
<td>Run</td>
<td>button</td>
<td>if the chain exist then the chain will be run.</td>
<td></td>
</tr>
<tr>
<td>Edit</td>
<td>button</td>
<td>if the chain in Chain file exist then it will be brought up in the Create/Edit Chain panel for editing.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the chain in Chain file does not exist then it is created and then brought up in the Create/Edit Chain panel for editing.</td>
<td></td>
</tr>
</tbody>
</table>

Continue to the next section [28.3.10 Delete a Chain] or return to [28.3 Chains].
28.3.10 Delete a Chain

Position of option on menu: Utilities => Chains => Delete

This option deletes a chain.

Selecting Delete brings up the Delete a Chain panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chain to delete</td>
<td>name of the chain to delete</td>
<td>folder box</td>
<td>available *.chain, *.rcn files</td>
<td></td>
</tr>
</tbody>
</table>

Delete button delete the chain given in the Chain to delete field.

Return to 28.3 Chains.
28.4 Functions

Position of menu: Utilities => Functions

Functions are used in the template and interface options to collect special data together. This allows 12d Model to recognise when some of the data has been modified and that some of the data is no longer valid. It is then possible to re-run the functions (re-calc the functions) and update the modified data.

The Functions walk-right menu is

- list of functions in the project
- modify an existing function
- lock a function so it won’t recalc
- modify the recalc order of functions
- recalculate functions
- rename a function
- change the name of tins in functions
- add functions to the project
- save a functions to disk
- edit attributes of a function
- delete functions from disk

The Functions walk-right simply lists all the functions that have been defined in the project. The other options in this menu will now be described in more detail.

For the option Editor, go to
- 28.4.1 Editor
- 28.4.2 Lock
- 28.4.3 Order
- 28.4.4 Recalc
- 28.4.5 Rename
- 28.4.6 Change all Tins
- 28.4.7 Add
- 28.4.8 Save
- 28.4.9 Attributes
- 28.4.10 Delete
- 28.4.10.2 Delete Many Functions
28.4.1 Editor

On walking right on the Editor menu option, a list of defined functions appears.

By selecting the highlighted name of a function to be edited, the appropriate function panel filled with the information from the selected function, is displayed.

The information in the selected function can then be modified.

Important Note
The defined functions menu also has a [Same as] option which is used to select the function to be edited by simply picking any string that was created by the function.
28.4.2 Lock

Position of option on menu: Utilities => Functions => Lock

The function lock option is used to lock a function so that it can’t be re-calculated. On selecting the Lock option, the Function Lock Status panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>name of the function to lock/unlock.</td>
<td>input</td>
<td>available functions</td>
<td></td>
</tr>
<tr>
<td>Lock model</td>
<td>display and modifies the lock status for the given function.</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>set the lock mode for the selected function.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
28.4.3 Order

Position of option on menu: Utilities => Functions => Order

The default recalculation order for functions is the order in which the functions were created. However, the Order option is used to modify the function recalc order.

On selecting the Order option, the Function Recalc Order panel is displayed.

![Function Recalc Order Panel]

The fields and buttons used in this panel have the following functions.

Field Description                Type             Defaults   Pop-Up

Functions                        table            available functions

list of functions in their recalculation order. Functions should only appear once in the list.

Set                              button

record the order of functions in the table.

Note - all functions must still exist somewhere in the re-arranged recalc order.
28.4.4 Recalc

Position of option on menu: Utilities => Functions => Recalc

The recalc menu is the same as the menu.

Utilities => Recalc

For more information, please go to the section 28.7 Recalc.
28.4.5 Rename

**Position of option on menu:** Utilities =>Functions =>Rename

On selecting the rename option, the **function rename** panel is displayed. This panel can be used to change the names of existing functions.

![Function Rename Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old function</td>
<td>name of the function to be renamed.</td>
<td>input</td>
<td>available functions</td>
<td></td>
</tr>
<tr>
<td>New function</td>
<td>new name for the function</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rename</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Change the name of the function in the old function field to the name given in the new function field.*
28.4.6 Change all Tins

Position of option on menu: Utilities => Functions => Change all tins

Selecting the Change all tins option, displays the panel Change Tin Name in All Functions. This panel is used to change the name of a tin in all functions to another tin name.

![Change Tin Name in All Functions Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old tin name</td>
<td>Tin box</td>
<td>Available tins</td>
<td>name of the tin to be renamed</td>
</tr>
<tr>
<td>New tin name</td>
<td>Tin box</td>
<td>Available tins</td>
<td>new name for the tin in all functions</td>
</tr>
<tr>
<td>Rename</td>
<td>button</td>
<td></td>
<td>Change the name of the tin in the Old tin name field in all functions to the name given in the New tin name field</td>
</tr>
</tbody>
</table>
28.4.7 Add

**Position of menu:** Utilities => Functions => Add

The function add option brings up the walk-right menu, function adds:

```
Function Adds
Add all to project
```

**Position of option on menu:** Utilities => Functions => Add => Add all to project

On selecting the Add all to project option, the Add All Functions To Project panel is displayed. This panel is used to add all removed functions to the project.

```
Add All Functions To Project
```

```
Add Finish Help
```
28.4.8 Save

Functions can be saved on disk so that they can be used for future project work.

The **Function save** walk-right menu is

![Function Save Menu]

**Note** - Modified or new functions are automatically saved when a project is saved.

For the option **Save a function**, go to 28.4.8.1 **Save a Function**

For the option **Save all functions**, go to 28.4.8.2 **Save All Functions**

28.4.8.1 Save a Function

On selecting the **Save a function** option, the **Save Function** panel is displayed.

![Save Function Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>input</td>
<td>available functions</td>
<td>name of the function to be saved.</td>
</tr>
<tr>
<td>Save</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After selecting this button, the function given in the function field will be saved to disk.

28.4.8.2 Save All Functions

On selecting the **Save all** option, the **Save All Functions** panel is displayed.

![Save All Functions Panel]

By selecting the **save** button, all functions in the working project will be saved to disk. Unless an error occurs, the panel will be removed after the saving is completed.
28.4.9 Attributes

Position of menu: Utilities => Functions => Attributes

This section of documentation is a work in progress and will be updated in subsequent releases.
28.4.10 Delete

Position of menu: Utilities => Functions => Delete

Using the Delete option, functions can be deleted from disk so that they no longer can be accessed or take up disk space.

To help protect the user against disasters, when a function is selected for deletion, a yes-no pop-up menu is used to confirm that the user did intend deleting the function.

If deletion is confirmed, the selected function is removed from the project and deleted from the disk.

The Function Delete walk-right menu is

![Function Delete Walk-right Menu]

For the option Delete a function, go to
- 28.4.10.1 Delete a Function
- 28.4.10.2 Delete Many Functions
- 28.4.10.3 Delete All Functions

28.4.10.1 Delete a Function

Position of option on menu: Utilities => Functions => Delete => Delete a function

The Delete a function option can be used to delete a function in the working project.

On selecting the Delete a function option, the Delete Function panel is displayed.

![Delete Function Panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>function box</td>
<td>all project functions</td>
<td>name of the function to be deleted.</td>
</tr>
<tr>
<td>Clean function strings</td>
<td>tick box</td>
<td></td>
<td>if ticked, delete all the strings created by the function</td>
</tr>
<tr>
<td>Delete</td>
<td>button</td>
<td></td>
<td>after selecting this button, the function given in the function field will be deleted from the computer disk. A yes-no pop-up is used to confirm that deletion is required.</td>
</tr>
</tbody>
</table>

28.4.10.2 Delete Many Functions

Position of menu: Utilities => Functions => Delete many
The Delete many option deletes one or more functions in the working project. Selecting the Delete many, displays the Delete many functions panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>if ticked, delete the selected function listed after the tick</td>
</tr>
<tr>
<td>Function</td>
<td>input</td>
<td>all project functions</td>
<td>name of all the functions in the project</td>
</tr>
<tr>
<td>Delete function strings</td>
<td>tick box</td>
<td></td>
<td>if ticked, delete all the strings created by the selected functions</td>
</tr>
<tr>
<td>Delete</td>
<td>button</td>
<td></td>
<td>delete all the ticked functions in the function field</td>
</tr>
</tbody>
</table>
28.4.10.3 Delete All Functions

Position of option on menu: Utilities => Functions => Delete => Delete all functions

The Delete all functions option will delete all of the functions in the working project.

On selecting the Delete all functions option, the Delete All Functions panel is displayed.

![Delete All Functions panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean function strings</td>
<td>tick box</td>
<td>if ticked, delete all the strings created by all the function</td>
<td></td>
</tr>
</tbody>
</table>

After selecting the Delete button, a yes-no pop-up is used to confirm that deletion is required. If it is, all functions in the working project will be deleted from disk and unless an error occurs, the panel will be removed.
28.5 Macros

Position of menu: Utilities -> Macros

The 12d Solutions Programming Language (12dPL) is a powerful programming language designed to run from within 12d Model. Its main purpose is to allow users to enhance the existing 12d Model package by writing their own programs (12dPLs or macros).

12dPL programs can be compiled from within or outside 12d Model but can only be run from within 12d Model.

The Macros menu has options to compile macros, compile and run or just run macros. A full description of macros is given in the 12d Model Programming Language manual.

The Macros walk-right menu is

For the option Compile, go to 28.5.1 Compile

Compile/run 28.5.2 Compile and Run
Create 28.5.3 Create
Edit 28.5.4 Edit
Run 28.5.5 Run
Create prototypes file 28.5.6 Create Prototype File
Version 28.5.7 Version
Kill 28.5.8 Kill

The options will now be described.
28.5.1 Compile

Position of option on menu:  Utilities => Macros => Compile

The Compile option is used to compile the 12dPL program source code into a executable program which can then be run from within 12d Model.

On selecting the option, the **Compile a Macro** panel is placed on the screen.

![Compile a Macro panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Macro source</strong></td>
<td>input</td>
<td>* .4dm files</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* .4dm files</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* .4dm files</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* .4dm files</td>
</tr>
<tr>
<td>Compile</td>
<td>button</td>
<td></td>
<td>* .4dm files</td>
</tr>
</tbody>
</table>

* compile the code file given in the **Macro source** field.
28.5.2 Compile and Run

Position of option on menu: Utilities => Macros => Compile/Run

The Compile/Run option compiles the 12dPL program (macro) source code into an executable program, and if there are no errors, runs the program.

When a macro is run, a macro console panel is placed on the screen to provide an i/o and message area for the macro. It is possible to bring up the macro console with or without the restart, abort and finish buttons.

When the macro finishes, the macro console can be left on the screen or removed.

Selecting the Compile/Run menu option, brings up the Compile/Run a Macro panel:

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro source</td>
<td>input</td>
<td>*.4dm files</td>
<td></td>
</tr>
<tr>
<td>Macro arguments</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Show buttons</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retain on exit</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td>Show console</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td>Allow defaults</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* the name of the macro source file.

If non-blank, a text line which is passed to the program as an argument line.

If ticked, the macro console panel remains on the screen after the macro has finished running.

If ticked, the macro console panel is placed on the screen.

If ticked, the default value for a prompt is displayed in the macro console panel.
Compile/Run button

compile the code file given in the macro source field and if the compile is successful, run the program.
28.5.3 Create

The Macros=>Create option is used to create macro files (*.4dm) with the editor pointed to by the EDIT_4D environment variable.

Selecting Macros=>Create brings up the Create Macro File *.4dm panel.

```
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folder</td>
<td>name of the folder to create</td>
<td>input</td>
<td>current folder</td>
<td></td>
</tr>
<tr>
<td>File to create</td>
<td>name of the file, in folder</td>
<td>input</td>
<td>*.4dm files</td>
<td></td>
</tr>
<tr>
<td>Create</td>
<td>create the file given by the file to create in folder</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

create the file given by the folder and file to create panel fields. A macro header is set up in the file.
28.5.4 Edit

**Position of option on menu:** Utilities => Macros => Edit

The Macros=>Edit option is used to edit macro files (*.4dm) with the editor pointed to by the EDIT_4D environment variable.

The Macros=>Edit option has two modes of operation - selecting the macros=>edit itself, or by activating the Macros=>Edit option's walk-right menu, folder *.4dm.

Selecting Macros=>Edit itself brings up the Edit Macro File *.4dm panel.

![Edit Macro File *.4dm panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folder</td>
<td>name of the folder for the .4dm file.</td>
<td>input</td>
<td>current folder</td>
<td></td>
</tr>
<tr>
<td>File to edit</td>
<td>name of the file, in folder, to edit.</td>
<td>input</td>
<td>*.4dm files</td>
<td></td>
</tr>
<tr>
<td>Edit</td>
<td>edit the file given by the folder and file to edit panel fields. If the file given in the file to edit field does not exist, then a new file is created which already has each of the macro header set up.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Macros=>Edit walk-right menu provides a list all the many template files (files ending in .mtf) in the current folder. When a file is selected from the list, it is automatically loaded into the editor.
28.5.5 Run

Position of option on menu: Utilities => Macros => Run

The Run option runs an existing macro executable program (produced by the compile process).

Like the Compile/Run option, the Run options can run the macro executable with or without buttons on the macro console, and leave or remove the macro console once the macro has been executed.

Selecting the Run menu option brings up the Run a Macro panel

![Run a Macro panel]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro object</td>
<td>input</td>
<td></td>
<td>* .4dm files</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the name of the macro object or executable program.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macro arguments</td>
<td>input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if non-blank, a text line which is passed to the program as an argument line.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Show buttons</td>
<td>tick box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, the macro console panel has abort, restart and finish buttons on it.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retain on exit</td>
<td>tick box</td>
<td></td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, the macro console panel remains on the screen after the macro has finished running.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Show console</td>
<td>tick box</td>
<td></td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, the macro console panel is placed on the screen.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if not ticked, the macro console panel is not displayed - used mainly with panels.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allow defaults</td>
<td>tick box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, the default value for a prompt is displayed in the macro console panel.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>run the executable given in the macro object field.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
28.5.6 Create Prototype File

**Position of option on menu:** Utilities => Macros => Create prototype file

The **Create prototype file** option creates a list of the function prototypes for all the *12dPL* functions in the **12d Programming Language** compiler that is available on your computer.

Selecting the **Create prototypes file** brings up the **Create Macro Prototype File** panel.

![Create Macro Prototype File panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output prototype file</td>
<td>File Box</td>
<td>*.txt files</td>
<td>the name of the file to write the macro function prototypes out to.</td>
</tr>
<tr>
<td>Create</td>
<td>button</td>
<td></td>
<td>create the file of macro function prototypes.</td>
</tr>
</tbody>
</table>

*Note:* The image shows a window titled "Create Macro Prototype File" with fields for "Output prototype file" and buttons labeled "Create," "Finish," and "Help."
28.5.7 Version

**Position of option on menu:** Utilities => Macros => Version

The Version option simply brings up a panel giving information about the macro process.
28.5.8 Kill

Position of option on menu: Utilities => Macros => Kill

The Kill option is used to terminate selected running macros.

This option is useful in situations such as when the macro writer has omitted a Finish button on the macro or has unintentionally made the macro panel invisible.

It cannot be used to terminate a macro in an infinite loop because there is no way of getting to the Kill option.

On selecting Kill, the Kill Macros panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro Grid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macro name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kill</td>
<td>choice cell</td>
<td>yes</td>
<td>yes, no</td>
</tr>
</tbody>
</table>

if yes, the macro will be terminated when the Kill button is selected.
**Kill button**

terminates all macros in the grid with *yes* in the **Kill** column.
28.6 Measure

Position of menu: Utilities => Measure

The Measure menu contains two options to display the
delta x, delta y, horizontal distance, angle and bearing
between points, and for a section view, the
delta chainage, delta height, slope distance and % grade
between points are calculated and displayed.

There are also options to calculate the plan area of polygons, the surface area of a tin within a
polygon, run measures and dynamic measures and dynamically calculate and display the x-fall
between two strings.

The Measure walk-right menu is

Note

The Measure option has another mode of operation. Rather than moving onto the walk-right
arrow, if LB is clicked when the Measure button is highlighted on the 12d Model=>utilities menu, the
distance/bearing panel is displayed on the screen.

For the option Angle x 3 pts, go to 28.6.1 Angle by 3 Points
Bearing/distance 28.6.2 Bearing and Distance
Plan area 28.6.3 Plan Area
Surface area 16.11.4 Surface Area
Value 28.6.5 Value
String 28.6.6 String
String dynamic 28.6.7 String Dynamic
Xfall by strings 28.6.8 X Fall by Strings
Xfall by strings (advanced) 28.6.9 X Fall by Strings (Advanced)

The options in the menu will now be described.
28.6.1 Angle by 3 Points

**Position of option on menu:** Utilities => Measure => Angle x 3 pts

The Angle by 3 pts option is used to calculate the angle formed by selected three positions. The angle can be expressed as a clockwise or anti-clockwise angle.

On selecting the Angle x 3 pts option, the Measure Angle panel is displayed.

![Measure Angle panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mode</strong></td>
<td>Input</td>
<td>input</td>
<td>disjoint</td>
<td>disjoint, continuous</td>
</tr>
<tr>
<td></td>
<td>In disjoint mode, only the angle between the three selected positions is reported. After the angle is reported, the user can select the 1st point in the sequence.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In continuous mode, after the initial reporting of the angle, the user is prompted for the 3rd point of the new angle to be measured. By default, the previous 2nd point becomes the first point and the previous 3rd point becomes the 2nd point. This allows just one point (the third point) to be selected and the angle reported will change accordingly.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Clockwise angle</strong></td>
<td>Tick box</td>
<td>tick box</td>
<td>if ticked, then the angle is measured in the clockwise (forward) direction.</td>
<td></td>
</tr>
<tr>
<td><strong>Anti-clockwise angle</strong></td>
<td>Tick box</td>
<td>tick box</td>
<td>if ticked, then the angle is measured in the anti-clockwise direction.</td>
<td></td>
</tr>
<tr>
<td><strong>Clear</strong></td>
<td>Button</td>
<td>button</td>
<td>when this button is selected, the sequence is re-initialised.</td>
<td></td>
</tr>
</tbody>
</table>

**Note** - after two positions are selected, the angle to the cursor position is dynamically calculated and displayed as the cursor moves around the view.
28.6.2 Bearing and Distance

**Position of option on menu:** Utilities => Measure => Bearing/Distance

The **Bearing/Distance** option is used to calculate

(a) the bearing measured in a clockwise direction between the positive y-axis and the (imaginary) line joining two selected points (when the bearing tick box is selected)

or

the bearing measured in an anticlockwise direction between the positive x-axis and the (imaginary) line joining two selected points (when the **Math angle** tick box is selected)

(b) the distance between two user selected points.

On selecting the **Bearing/Distance** option, the **Measure Bearing/Distance** panel is displayed.

```
Measure Bearing/Distance

Mode [] disjoint [] Scale factor []

Bearing [] Math angle [] Special for same string [] XY grades []

Clear Finish Help
```

This panel is principally used to display the distances between, and bearing of the line joining, pairs of user selected points.

message area 1 : \[ \text{brg} = \text{plane dist} = \text{ellipsoid dist} = \]

where \( \text{brg} \) is the angle measured clockwise from north and is calculated using the coordinate values (Inverse value)

\( \text{plane dist} \) is the distance calculated using the coordinate values (Inverse value)

\( \text{ellipsoid dist} \) is the distance calculated by dividing the plane distance by the current scale factor

message area 2: \[ \text{dx} = \text{dy} = \text{dht} = \text{(if applicable)} \]

where \( \text{dx} \) is the difference in x value between the two coordinates

\( \text{dy} \) is the difference in y value between the two coordinates

\( \text{dz} \) is the difference in z value between the two coordinates

If valid height values exist for two consecutive points the grade and slope is also reported

message area 3: \[ \text{grade \%} = \text{slope} = \]

If the measurement mode is set to continuous, the sum distances will be shown for the route taken

message area 4: \[ \text{Sum plane dist} = \text{Sum ellip dist} = \]

where \( \text{Sum plane dist} \), is the accumulative length of the route taken calculated using plane distances.

\( \text{Sum ellip dist} \), is the \( \text{Sum plane dist} / \text{scale factor} \).

The fields and buttons used in this panel have the following functions.
Field Description	Type	Defaults	Pop-Up
**Mode** | input | disjoint | disjoint, continuous

In disjoint mode, only the distance between the two points and the bearing (in degrees, minutes and seconds) of the (imaginary) line connecting the two points are displayed.

In continuous mode, after the initial reporting of the bearing/distance, the user is prompted to select the next point (2nd point). In this case the previously selected second point becomes the first point.

**Scale** | input/output | 1.0

The scale factor which will be used to convert plane distances to ellipsoid distances.

i.e ellipsoid distance = plane distance / scale factor

**Bearing** | tick box | ticked

If ticked, the measured vectors can be displayed as bearings (angles measured from north, clockwise).

**Math angle** | tick box | un-ticked

If ticked, the measured vectors can be displayed as a mathematical angle (measured from east in a anti-clockwise direction).

**Clear** | button

When this button is selected, the selection sequence is re-initialised.

Note

When in **continuous** mode, each time the next screen position is added to the highlighted figure, the **plan area** is calculated for the closed figure that is constructed by joining the first and last selected screen positions.
28.6.3 Plan Area

**Position of option on menu:** Utilities => Measure => Plan area

The Plan area option is used to calculate the plan areas enclosed by strings. If a string is not closed, the first and last points are considered to be connected to form a polygon. On selecting the option, the Measure Plan Area panel is placed on the screen.

![Measure Plan Area panel](image)

This panel is principally used to display the plan areas of strings selected by the user. The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>input</td>
<td>disjoint</td>
<td>disjoint, continuous</td>
</tr>
</tbody>
</table>

If disjoint, only the area of the selected string is displayed. If continuous, the total of the areas is also displayed.

**Clear button**  
When this button is selected, the total-to-date of the area is reset to zero and the selection sequence began.

**How to Use the Panel and Panel Messages**

The measure area cycle consists is as follows:

(a) the string is selected with the mouse.

- message area 1: select string for area calcs
- message area 2

(b) repeat step (a) to find more areas and accumulate them. If the accumulator is to be zeroed, simply select the clear button again.

The area of the selected string is displayed in message area 2. If the mode is set to continuous, the accumulated areas (sum) of the selected strings is also displayed.

- message area 1: select string for area calcs
- message area 2: area = value, sum = value

The cycle can then be repeated for as many strings as needed without leaving the option. The accumulated total is reset to zero (cleared) by selecting the clear button again.
28.6.4 Surface Area

**Position of option on menu:** Utilities => Measure => Surface area

The **Surface area** option calculates and reports the surface area of a tin restricted to a user specified polygon.

This option has already been documented as Tins => Tin analysis => Surface area.

See the section 16.11.4 Surface Area.
28.6.5 Value

**Position of option on menu:**  Utilities => Measure => Value

The *Value* option is used to calculate and display any of the measures available in the *Measures* pop-up menu.

The *Measures* are documented under 4.21 Measures.

On selecting the option, the *Measure Value* panel and the *Measures* menu are placed on the screen.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Value</strong></td>
<td>output</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

the value calculated by the selected measure option.
28.6.6 String

Position of option on menu:  Utilities => Measure => String

This section of documentation is a work in progress and will be updated in subsequent releases.

On selecting String, the Measure String From Point panel is placed on the screen.
28.6.7 String Dynamic

**Position of option on menu:**  Utilities => Measure => String dynamic

This section of documentation is a work in progress and will be updated in subsequent releases.

On selecting **String dynamic**, the **Measure String Dynamic** panel is placed on the screen.
### 28.6.8 X Fall by Strings

**Position of option on menu:** Utilities => Measure => XFall by strings

In this option, the user selects a reference string to define what is meant by chainage and right angles, and then selects two strings to calculate the x-fall between.

Once the three strings are selected, as the cursor moves around in a plan view, the cursor position is dropped perpendicularly onto the reference string.

At the dropped chainage, a line is taken at right angles to the reference point and extended until it cuts the two selected strings. The xfall, delta width and delta z is then calculated between the cut points on the strings.

Then the chainage and the xfall are dynamically displayed in the panel message area.

The line joining the two strings is dynamically displayed on the plan view.

The chainage, xfall, delta width and delta z are dynamically displayed in the message area.

- **Reference string**: The selected string is used to defined the meaning of chainage and bearing for the inquire. The cursor is dropped perpendicularly onto the reference string and at the dropped chainage, a line is taken at right angles to the reference point and extended until it cuts string 1 and string 2. The xfall, delta width and delta z between the two cut points are then calculate and displayed.

- **String 1/2**: The two strings to calculate x-fall between.

On selecting the Xfall by strings option, the XFall Between 2 strings Inquire panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>string-select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>String 1/2</td>
<td>string-select</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Reference**

The selected string is used to defined the meaning of chainage and bearing for the inquire. The cursor is dropped perpendicularly onto the reference string and at the dropped chainage, a line is taken at right angles to the reference point and extended until it cuts string 1 and string 2. The xfall, delta width and delta z between the two cut points are then calculate and displayed.

**String 1/2**

The two strings to calculate x-fall between.
If **pick all** is selected, the user is asked to sequentially select the three strings: reference string, string 1 and string 2. The strings are automatically assigned to the appropriate string-select panel fields.
28.6.9 X Fall by Strings (Advanced)

**Position of option on menu:** Utilities => Measure => X Fall by strings (advanced)

In this option, the user selects a reference string to define what is meant by chainage and right angles, and then selects two strings to calculate a variety of values for the reference string and the two strings, and the differences between the values for the two strings.

Once the three strings are selected, as the cursor moves around in a plan view, the cursor position is dropped perpendicularly onto the reference string.

At the dropped chainage, a line is taken at right angles to the reference point and extended until it cuts the two selected strings. The xfall is then calculated between the cut points on the strings.

Then the chainage and the xfall are dynamically displayed in the panel message area.

The line joining the two strings is dynamically displayed on the plan view.

Various values for the cut points on the two strings, and the differences of the values between the strings dynamically displayed in the grid.

![Plan View Diagram]

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>the selected string is used to define the meaning of chainage and bearing for the inquire. The cursor is</td>
<td>string-select</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
dropped perpendicularly onto the reference string and at the dropped chainage, a line is taken at right angles to the reference point and extended until it cuts string 1 and string 2. The values are then calculate and displayed for the two cut points and the difference between the values of the cut points.

String 1/2  
the two strings to calculate value on, and the differences between the values.

Grid  
grid to display the values or the cut point on the two strings and the differences between the values.

Pick all  
button

For example,
28.7 Recalc

Position of menu:  Utilities => Recalc

Once a function has been applied, the calculated information is only correct whilst the initial data is not modified in any way. If any modifications are made to the data, then the function must be re-run and all the associated information recalculated and redrawn, and any perspective views associated with the function set with the new eye and target positions, and redrawn.

There are date and time stamps for all string, tin and template information in 12d Model and this enables 12d Model to determine what information has been modified since a function was last run and what re-calculation are required.

The Recalc option is designed to re-run functions

If LB is clicked whilst the Recalc menu option is highlighted, all the template functions with auto recalc set on, and that have had their initial data modified since their last re-run, will be recalculated and all appropriate information updated. The data will be redrawn on any views that is was on before the recalc.

The Recalc walk-right menu has four options:

- Auto
- Edit func
- Edit data
- Recalc
- Recalc all
- User
- Edit chain
- Run chain

For the option Auto, go to 28.7.1 Auto

For the option Edit func, go to 28.7.2 Editor

For the option Edit data, go to 28.7.3 Edit Data from String

For the option Recalc, go to 28.7.4 Recalc

For the option Recalc all, go to 28.7.5 Recalc All

For the option Edit chain, go to 28.7.6 Edit Chain

For the option Run chain, go to 28.7.7 Run Chain
28.7.1 Auto

Position of option on menu: Utilities => Recalc => Auto

The Auto option allows the user to specify whether a function is automatically recalced if another function, tin, template or string that it depends upon, is modified or recalced.

Individual functions or all functions can have auto-recalcalc mode turned on or off and the default for a new function is off.

The Function Auto menu is

For the option Auto, go to 28.7.1 Auto
Auto all 28.7.1.2 Auto all

28.7.1.1 Auto

Position of option on menu: Utilities => Recalc => Auto

Selecting Auto displays the Auto Recalc Mode for a Function panel.

The fields and buttons used in this panel have the following functions.

Field Description	Type	Defaults	Pop-Up
Function	input	available functions	name of the function to be have auto recalc mode set on/off.
Auto recalc	tick box	tick	If the tick is on, the specified function will have its auto recalc value changed to on.
		If the tick is off, the specified function will have its auto recalc value changed to off.	
Set | button | | Set the auto recalc mode for the selected function.

28.7.1.2 Auto all

Position of option on menu: Utilities => Recalc => Auto => Auto all

Selecting Auto all displays the Auto Recalc Mode For All Functions panel.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto recalc</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
</tbody>
</table>

*If the tick is on, all functions within the project will have their **auto recalc** value changed to on.*

*If the tick is off, all functions within the project will have their **auto recalc** value changed to off.*

*Note: the tick is not a global setting within 12d. The use of the option changes every function within the project.*

**Set** button

*Set the **auto recalc** mode for all functions.*
28.7.2 Editor

Position of option on menu: Utilities => Recalc => Editor

The Recalc => Editor option is used to edit functions.

The Recalc => Editor walk-right menu provides a list all the defined functions in the project.

When a function is selected from the list, it is automatically loaded into the appropriate function panel for the selected function, and displayed.

The information in the selected function can then be modified.

Important Note

The defined functions menu also has a [Same as] option which is used to select the function to be edited by simply picking any string that was created by the function. This is documented in the next section 28.7.2.1 Edit Function from String.

28.7.2.1 Edit Function from String

Position of option on menu: Utilities => Recalc => Editor => [Same as]

The Edit Function from String option allows the user to start up the Function editor by simply selecting a string that was created by the function.

On selecting the option, the Edit Function From String panel is displayed.

The fields and buttons used in this panel have the following functions.

Field Description	Type	Defaults	Pop-Up
Pick Edit button |  |  |  

select data that was created by a function and the appropriate function editor is then opened.
28.7.3 Edit Data from String

Position of option on menu: Utilities =>Recalc =>Edit data

The Edit data option allows the user to start up the MTF editor by simply selecting a string that was created using an Apply Templates function (and hence an MTF file). The MTF file used in the Apply Templates function is automatically loaded into MTF editor (go to 20.4.1.1 MTF Edit).

Similarly the Edit data option also allows the user to start up the Survey Field Data editor by simply selecting a string that was created using a Survey Data Reduction function. All the data produced by the Survey Data Reduction function is automatically loaded into the Survey Field Data editor (go to the section 17.7.5 Survey Field Data Editor).

On selecting the Edit data option, the Edit MTF/Survey Function Data panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick Edit button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

select data that was created by applying an MTF file or a Survey Data Reduction function. The appropriate MTF editor or Survey Field Data editor that created the selected data, is then opened.

For information on the Survey Field Data Editor, go to the section 17.7.5 Survey Field Data Editor.

For information on the MTF Editor, go to 20.4.1.1 MTF Edit.
28.7.4 Recalc

**Position of menu:** Utilities => Recalc => Recalc

The Recalc option is used to recalculate a user selected function, and all functions that depend on the function that have auto recalc set on.

The Recalc walk-right menu lists all the existing functions and by selecting a function name, the function will be forced to re-run and all appropriate information and views for that function will be updated.

The existing functions menu also has a [Changed] option which recalcs all changed functions.

The existing functions menu has a [Same as] option which is used to select the function to be recalced by simply picking any string that was created by the function. This is documented in the next section 28.7.4.1 Recalc Function from String

28.7.4.1 Recalc Function from String

**Position of option on menu:** Utilities => Recalc => Recalc => [Same as]

The Recalc Function from String option allows the user to recalc a function by simply selecting a string that was created by the function.

On selecting the option, the Recalc Function From String panel is displayed.

![Recalc Function From String Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick Edit</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions.

- **Pick Recalc** button: select data that was created by a function and the appropriate function will be recalced.
28.7.5 Recalc All

Position of option on menu:  Utilities => Recalc => Recalc all

The Recalc all option re-runs all functions regardless of their date and time stamps.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ignore auto recalc</td>
<td>tick box</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If not ticked, all functions that have the auto-recalc flag set on are re-calculated.
If ticked, the auto-recalc flag is ignored and all functions are re-calculated.
28.7.6 Edit Chain

**Position of option on menu:** Utilities => Recalc => Edit chain

The Recalc => Edit chain option is used to edit chains.

The Recalc => Edit chain walk-right menu provides a list all the defined chains in the project. When a chain is selected from the list, it is automatically loaded into the Edit/Create Chain panel ready for editing.
28.7.7 Run Chain

Position of option on menu: Utilities => Recalc => Run chain

The Recalc => Run chain option is used to run chains.

The Recalc => Run chain walk-right menu provides a list all the defined chains in the project. When a chain is selected from the list, it is automatically run.
28.8 Fence

Position of menu: Utilities => Fence

It is often necessary to divide strings into those parts that are within a certain region and those parts that are outside the region. In 12d Model, the Fence option is the method of achieving this result.

Given a string to be used as a fence, the 12d Model fencing options will process strings in a model/view against the fence and break the strings into the parts inside the fence string and those parts outside the fence string.

Any 2d, 3d or interface line-strings that cut the fence polygon will have points inserted at the intersections with the fence polygon. The z-value at the intersection point will be interpolated from the adjacent points in the line-string.

Point strings do not have any extra points added to them.

Restrictions
- only 2d, 3d and interface strings can be split using the fence option.
- 4d strings are treated as though they were point strings.
- arcs are considered to be inside the fence if the minimum bounding rectangles of the fence and arc overlap.
- alignment, pipeline, drainage, sewer strings are not processed by the fence option

Notes
1. if the fence string is not closed, the first and last points are joined together to form a closed polygon as the fence.
2. a string may be broken into a number of pieces if it wanders in and out of the fence string.
3. the fence string is not processed against itself even if it is in the model or view being fenced.
4. unpredictable results will occur if any strings being fenced lie on top of the fence. If problems occur, parallel the fence in or out by a millimetre.

The fence options allows the user to choose a single string to be used as the polygon fence or a number of strings to be used as polygons and process the data against all the strings in one operation.

The fence walk-right menu is

For the option Fence, go to
- 28.8.1 Fence
- 28.8.2 Fence Stem
- 28.8.3 Multi Fence
- 28.8.4 Multi Fence Stem
28.8.1 Fence

**Position of option on menu:** Utilities => Fence

In this option, the user selects a single string to be used as a polygon fence. If the string is not closed, the first and last points are joined together to form a polygon.

The Fence option will process a selected string or all the strings in a model/view/string against this fence and break the strings into the parts inside the fence string and those parts outside the fence string.

On selecting the Fence option and then the appropriate Data Source in the panel, the Fence panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source type</strong></td>
<td>data selection type - for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Data source</strong></td>
<td>data source for strings to fence.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Polygon for fence</strong></td>
<td>string-select</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the selected string will be used as the polygon to act as a fence to separate data into an inside and an outside.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Exclude model containing fence</strong></td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, no data in the model containing the fence string will be fenced.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if not ticked, all the appropriate data in the model containing the fence string will be fenced.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Model for fence inside</strong></td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if non-blank, name of the model to contain the data inside of the fence string.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If blank, then no fence inside will be calculated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Model for fence outside</strong></td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if non-blank, name of the model to contain the data outside of the fence string.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If blank, then no fence outside will be calculated.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fence button

on selecting fence, the appropriate strings in the data source will be divided by the fence string (selected by the poly button) into the parts of the strings inside the fence string and the parts of the string outside the fence string. Any line-strings that cut the fence string will have a point inserted at the intersection with the fence string and the z-value for this point interpolated from the points on either side of it in the line-string.

How to Use the Panel and Panel Messages

(a) Select a fence polygon string by choosing Polygon to fence
(b) Fence processing begins on selecting the Fence button.

Progress messages - sent to the panel message area
- calculating inside-outside
- calculating inside
- calculating outside
- fencing string name

Completion message - sent to the panel message area
- finished fence

<esc> can be used to abort the fence option.
28.8.2 Fence Stem

Position of option on menu: Utilities => Fence => Fence stem

As for the Fence option, the user selects a single string to be used as a polygon fence. If the string is not closed, the first and last points are joined together to form a polygon.

The Fence Stem option will process a selected string or all the strings in a model/view against this fence and break the strings into the parts inside the fence string and those parts outside the fence string. The inside and outside will then be put into models of the same name as the original model modified by a prefix and/or postfix.

This means that unlike the Fence option, when fencing a view with the Fence Stem option, the inside/outside for each model on the view goes to distinct models using the prefix/postfix for the inside/outside model names.

On selecting the Fence Stem option and then the appropriate Data Source in the panel, the Fence Stem panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* data selection type - for a full description go to 4.19.3 Data Source.

Data source

data source for strings to fence.

Prefix for fence inside

input available models

if non-blank, prefix*postfix to adjust the data model name to be the model to contain the data inside of the fence string.

If blank, then no fence inside will be calculated.

Prefix for fence outside

input available models

if non-blank, prefix*postfix to adjust the data model name to be the model to contain the data outside of the fence string.

If blank, then no fence outside will be calculated.
Polygon for fence string-select
the selected string will be used as the polygon to act as a fence to separate data into an inside and an outside.

Exclude model containing fence tick box tick
if ticked, no data in the model containing the fence string will be fenced.
if not ticked, all the appropriate data in the model containing the fence string will be fenced.

Fence button
on selecting Fence, the appropriate strings in the data source will be divided by the fence string into the parts of the strings inside the fence string and the parts of the string outside the fence string. Any line-strings that cut the fence string will have a point inserted at the intersection with the fence string and the z-value for this point interpolated from the points on either side of it in the line-string.

<esc> can be used to abort the fence option.
28.8.3 Multi Fence

Position of option on menu: Utilities => Fence => Multi fence

It is often necessary to fence data against more than one polygon.

In the Multi fence option, the user provides a model containing all the polygons to be used as fences. The Multi fence option will process the selected string or all the strings in a model/view against all the polygons in the polygon model.

The data will be clipped and the outside is considered to be those bits are outside all of the polygons and the inside is the remainder, i.e. the bits inside any one of the polygon.

On selecting the Multi fence option and then the appropriate Data Source in the panel, the Multi Fence String/Model/View panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td>Model</td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>Data source for strings to fence.</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Model of fences</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the model that contains the polygons to be used as fences.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for fence inside</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the model to contain the data that is inside any one of the fences. If this field is blank, then no fence inside will be calculated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for fence outside</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the model to contain the data outside all of the fences. If this field is blank, then no fence outside will be calculated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exclude model containing fence</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, no data in the model containing the fence string will be fenced.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if not ticked, all the appropriate data in the model containing the fence string will be fenced.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fence button

the appropriate strings in the data source will be divided by the fence polygons (from the model of fences) into the parts of the strings inside any one fence and the parts of the string outside all of the fences. Any line-strings that cut the fences will have a point inserted at the intersection with each fence and the z-value for this point interpolated from the points on either side of it in the line-string.

<Esc> can be used to abort the multi-fence option.
28.8.4 Multi Fence Stem

**Position of option on menu:** Utilities => Fence => Multi fence stem

It is often necessary to fence data against more than one polygon.

In the **Multi fence stem** option, the user provides a model containing all the polygons to be used as fences. The **Multi fence stem** option will process selected strings or all the strings in a model/view against all the polygons in the polygon model.

The data will be clipped and the **outside** is considered to be those bits are **outside all** of the polygons and the **inside** is the remainder, *i.e.* the bits **inside any one** of the polygon.

On selecting the **Multi fence stem** option and then the appropriate **Data Source** in the panel, the **Multi Fence Stem String/Model/View** panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>data selection type - for a full description go to <a href="#">4.19.3 Data Source</a>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>data source for strings to fence.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model of fences</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name of the model that contains the polygons to be used as fences.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prefix for fence inside</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if non-blank, prefix*postfix to adjust the data model name to be the model to contain the data inside of the fence string.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If blank, then no fence inside will be calculated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prefix for fence outside</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if non-blank, prefix*postfix to adjust the data model name to be the model to contain the data outside of the fence string.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If blank, then no fence outside will be calculated.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exclude model containing fence  tick box  tick

if ticked, no data in the model containing the fence string will be fenced.
if not ticked, all the appropriate data in the model containing the fence string will be fenced.

Fence  button

the appropriate strings in the data source will be divided by the fence polygons (from the model of fences) into the parts of the strings inside any one fence and the parts of the string outside all of the fences. Any line-strings that cut the fences will have a point inserted at the intersection with each fence and the z-value for this point interpolated from the points on either side of it in the line-string.

<Esc> can be used to abort the multi-fence option.
28.9 Utilities A-G

Position on menu: Utilities → A-G

For Add VIP to SA from file go to 28.9.2 Add VIP to SA From File
Affine 2D 28.9.3 2D Affine
Affine 2D Orthogonal 28.9.4 2D Affine - Orthogonal
Archive models 28.9.5 Archive Models
Cartographic 28.9.6 Cartographic Projections
Change 28.9.7 Change
Change string chainage 28.9.8 Change String Chainage
Check/Clash 28.9.9 Check/Clash
Classify conduits 28.9.10 Classify Conduits
Classify symbols 28.9.11 Clear String Names
Clear string names 28.9.11 Clear String Names
Colour X-Sections by XFall range 20.14.1 Colour Sections by XFall Range
Convert 28.9.12 Convert
Create centres of string curves 24.6.1 Create Centre Points for Curves of Strings
Create Grid 28.9.13 Create Grid
Cuts 28.9.13 Cuts
Delete 28.9.14 Delete
Draw perpendicular LC to points 28.9.15 Draw a Perpendicular from Centreline to a Point

<table>
<thead>
<tr>
<th>Command</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duplicate</td>
<td>28.9.16 Duplicate</td>
</tr>
<tr>
<td>Explode</td>
<td>28.9.17 Explode</td>
</tr>
<tr>
<td>Explode (text)</td>
<td>28.9.18 Explode Text</td>
</tr>
<tr>
<td>Factor</td>
<td>28.9.19 Factor</td>
</tr>
<tr>
<td>Filter</td>
<td>28.9.20 Filter</td>
</tr>
<tr>
<td>Grid setout</td>
<td>28.9.21 Grid setout</td>
</tr>
</tbody>
</table>

For general information on *Affine* and *Helmert* Transformations, go to [28.9.1 Coordinate Transformations - Helmert and Affine](#).
28.9.1 Coordinate Transformations - Helmert and Affine

A **2D Helmert** transformation is a two dimensional linear transformation consisting of a scaling, a rotation (of both the x-axis and y-axis about the vertical axis) and a 2D-translation (shift) of data. Hence there are four parameters to be specified.

A **3D Helmert** transformation is a three dimensional linear transformation consisting of a scaling, three rotations (about the 3 axes), and a 3D-translation (shift) of data. Hence there are 7 parameters to be specified.

A **2D affine transformation** is a two dimensional linear transformation consisting of a 2D-translation (shift) of the data, a scaling of the data in two different directions and rotations of the x-axis (about the vertical axis) and of the y-axis (about the vertical axis). Hence there are six parameters to be specified. Unlike the Helmert transformations, rectangles can be skewed by an affine transformation.

A **2D orthogonal affine transformation** is a two dimensional linear transformation consisting of a 2D-translation (shift) of the data, a scaling of the data in two different directions and the same rotation (of both the x-axis and y-axis like the Helmert). Hence there are five parameters to be specified. Unlike the standard affine transformations, rectangles are not skewed by the orthogonal affine transformation.

These types of transformation are often used in civil projects for converting data between a local coordinate system (observed coordinates) and another coordinate system.

The most frequent method of defining all these transformations is not by explicitly giving the transformation parameters but by having both the observed and the final coordinates for three or more points (known as the control points) and then trying to calculate the transformation parameters from these sets of coordinates.

If the transformation parameters can be successfully calculated from the observed-final coordinate pairs for the control points, then the transformation parameters are then be used to convert the coordinates of any other object in the observed coordinate system to the new final coordinates.

So for this method, the first step is to select control points for which the coordinates are known in the final coordinate system and in the local (observed) coordinate system.

And in the diagram above, the observed coordinates of the control point A are to be mapped by the transformation to the coordinates of the control point A in the final coordinate system. And similarly for the points B, C and D.

Note that A is the same point on the ground - it just has a different coordinate in a different coordinate system and hence will appear in a different place in a diagram for each coordinate system.
Usually each control point is selected because
(a) its final coordinates are already known
(b) there is a marker on the ground indicating the exact position of the control point
and
(c) the control point is the area that is being surveyed (observed).
The control point is then surveyed to get its observed coordinates.

Because the final coordinates of the control points are known in advance, the final coordinates of
the control point are referred to as the Control Coordinates, or Control Easting and Control
Northing and the control point coordinates often referred to as the Control Point. The surveyed
coordinates of the control point are called as the Observed Coordinates or Observed Easting
and Observed Northing (of the control point).

**IMPORTANT NOTE** - the control points must be selected so that they are spread throughout the
area, and the control points must not all be on the one straight line.

The number of parameters to be determined for the transformation ranges from three in a fixed
scale 2D Helmert up to seven for a 3D Helmert so there must be enough control points to provide
sufficient independent equations to be able to solve for the parameters. Also all survey
measurements have errors in them and it is best to have more than the minimum number of
required control points to help control errors.

However when there are four or more control-observed point pairs, the system will be over
determined. That is, by taking different subsets of the control-observed point pairs, different
transformation parameters will result.

In this situation, **12d Model** uses Least Squares to calculate the transformation parameters
from the over determined systems.

Once the transformation parameters have been calculated by Least Squares, for each of the
control points the transformation can be applied to the observed coordinates of the control point.
The difference between the Control Coordinates and the transformed Observed Coordinates for
a control point is called the residuals for the transformation.

The residuals for the least squares solution gives a measure of how good the Least Squares
solution was, and for checking purposes, the residuals are displayed in the transformation panel
for each of the control-observed point pairs.

As an example of the meaning of the transformation parameters, we’ll look at the 2D Helmert
transformation.

The 2D Helmert has four parameters:
(a) the scale factor for the existing coordinates with respect to the new coordinates
(b) the (z axis) rotation of the existing coordinates to align it with the new coordinates axis
(c) the two (x and y) translations of the existing coordinates after the scalings and rotations
have been applied

and the operations to be performed on observed coordinates are:
1. Scale the observed coordinates about (0,0) by the Scale factor
2. Then rotate the resulting coordinates about (0,0) in a clockwise direction by the Clockwise
rotation degrees.
3. Then translate the resulting coordinates by ((X translation, Y translation).
28.9.1.1 Selecting Control and Observed Points for the Helmert and Affine Transformations

For the **Affine** and **Helmert** transformations, the parameters can be either typed in or calculated from control-observed point pairs using the method of least squares.

If the **Parameters by** choice box is set to **Pt Selection** then control-observed point pairs are selected by the user and the pairs are written to the grids on the panels.

For information about how to select control and observed points in the Affine and Helmert panels, go to the next section [28.9.1.1 Selecting Control and Observed Points for the Helmert and Affine Transformations](#).

For Example

The Helmert parameters for the example are:

- **Scale**: 0.5
- **Clockwise rotation**: 45 deg
- **X translation**: -1.5
- **Y translation**: 1.38

### Grid for 2D transformations
If the Pt selection method is chosen, the selection of points is started by selecting the Control button.

**Note** - the default is to select the Control Point (the coordinates of the control point in the transformed coordinate system) and then its associated Observed Point (the coordinates of the control point in the observed system).

Neither point is accepted until the second point is selected. However, the order of selection can be reversed by setting the environment variable PICK_ORDER_OBSERVED_FIRST_4D (see 7.6.3 env.4d). The order can then be Observed Point first and then its associated control point with Control Coordinates.

To help reduce errors, after a control point - observed point pair is selected, the position of the Control Point is shown as a triangle and the position of the associated Observed Point as a circle with a line drawn between the control-observed point pair for clarity.

---

### Grid for 3D transformations

<table>
<thead>
<tr>
<th>Use pt</th>
<th>Control Easting</th>
<th>Control Northing</th>
<th>Control Level</th>
<th>Observed Easting</th>
<th>Observed Northing</th>
<th>Observed Level</th>
<th>Residual Easting</th>
<th>Residual Northing</th>
<th>Residual Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After selecting the Control button, the selection starts with the Control (Observed) Point, accepting that point then selecting the corresponding Observed (Control) Point.
After selecting the first pair of points, the second pair is then selected and so on.
The picking is terminated by clicking **RB** and selecting **Cancel** when the next control (observed) point is to be selected.

The coordinates of the Control Points and Observed Points are added to the grid on the selection of two valid points. The **Use pt** field is ticked by default.

<table>
<thead>
<tr>
<th>Use pt</th>
<th>Control Easting</th>
<th>Control Northing</th>
<th>Observed Easting</th>
<th>Observed Northing</th>
<th>Residual Easting</th>
<th>Residual Northing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>89621.0175</td>
<td>73418.2203</td>
<td>90542.9037</td>
<td>73734.1936</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>90014.635</td>
<td>73150.7295</td>
<td>90827.5429</td>
<td>73541.6898</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>89621.0175</td>
<td>73150.7295</td>
<td>90409.5592</td>
<td>73445.9901</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>90014.635</td>
<td>73418.2203</td>
<td>90960.8874</td>
<td>73829.0734</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>90014.635</td>
<td>73418.2203</td>
<td>90960.8874</td>
<td>73829.0734</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If **Use pt** is set to tick, the corresponding control-observed point pair is used in the calculations. If **Use pt** is not ticked, the corresponding control-observed point pair is ignored and not used.

The **Calculate** button calculates the transformation parameters based on all the control-observed point pairs in the grid with the **Use pt** tick box ticked on.

The residuals are placed into the residual columns of the grid and the calculated parameters are placed into the parameters section of the panel.

If the **Parameters by** choice box is set to **Direct entry**, the transformation parameters are manually entered into the panel and the grid section is not used.

For information on how the **Affine Transformation works with Rasters**, go to the section 28.9.1.2 Affine and Helmert Transformations Applied to Rasters

### 28.9.1.2 Affine and Helmert Transformations Applied to Rasters

12d Rasters (including ECW rasters) may have transforms applied with any transformation panel with the following constraints:

1. "Replace existing data" is the only output option supported.
2. The set of parameters supplied for the transformation, when applied to the four corners of the
original raster, results in a rectangle.

3. The raster cannot be selected as a string to be transformed, it should be placed in a model on its own and the model selected as the 'Data to change'.

The raster images themselves will not be altered, only the model information which maps them into world coordinates is changed.

For the Affine panel, this means that different x and y scaling factors may be used, however the two axis rotations must be identical.
28.9.2 Add VIP to SA From File

Position of option on menu: Utilities => A-G => Add VIP to SA from file

This section of documentation is a work in progress and will be updated in subsequent releases.

On selecting Add VIP to SA from file, the Add VIP to SA from file panel is displayed.
28.9.3 2D Affine

Position of option on menu: Utilities => A-G => Affine

An affine transformation is a two dimensional linear transformation consisting of a 2D-translation (shift) of the data, a scaling of the data in two perpendicular directions and a rotation of the x-axis and the y-axis. Hence there are six parameters to be specified. Unlike the Helmert transformations, rectangles can be skewed by an affine transformation.

So the affine parameters are:
(a) the x-scale factor for the observed co-ordinates with respect to the control coordinates
(b) the y-scale factor for the observed co-ordinates with respect to the control coordinates
(c) the rotation of the x-axis of the observed co-ordinates to align it with the control x co-ordinates axis
(d) the rotation of the y-axis of the observed co-ordinates to align it with the control y co-ordinates axis
(e) the x and y translation of the existing co-ordinates after the scalings and rotations have been applied

For information on the affine transformation, please go to the section 28.9.1 Coordinate Transformations - Helmert and Affine.

For information on how the Affine Transformation works with Rasters, go to the section 28.9.1.2 Affine and Helmert Transformations Applied to Rasters.

On selecting Affine 2D, the Affine 2d panel is displayed.
If the Parameters by choice box is set to **Pt Selection** then control-observed point pairs are selected by the user and the pairs are written to the grid on the panel. See the section [28.9.1.1 Selecting Control and Observed Points for the Helmert and Affine Transformations](#) for information on picking control and observed points.

If the Parameters by choice box is set to **Direct entry**, the transformation parameters are manually entered into the panel and the grid section is not used.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>file box</td>
<td>file type</td>
<td>*aaf files</td>
<td></td>
</tr>
<tr>
<td>Read button</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Model</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Data to change

- **Data source type**
  - Model
    - data selection type - for a full description go to [4.19.3 Data Source](#).
- **Data source**
  - input
    - source of data to be processed.
Affine parameters by choice Pt selection Pt selection Direct entry

the parameter entry method.

Pt selection - the control points and their matching observed points are selected by the user after clicking the control button.

Direct entry - the transformation parameter fields are used to type in the parameter data.

Report file *.rpt files
if not blank, write a report on the Affine transformation.

Rotation x angle box
the rotation of the x-axes of the existing points with respect to the transformed x-axis.

Rotation y angle box
the rotation of the y-axes of the existing points with respect to the transformed y-axis.

Scale x input/output
the x-scale factor for the existing coordinates with respect to the transformed coordinates

Scale y input/output
the y-scale factor for the existing coordinates with respect to the transformed coordinates

X Translation input/output
the x translation of the existing coordinates with respect to the transformed coordinates

Y Translation input/output
the y translation of the existing coordinates with respect to the transformed coordinates

Control button
starts the selection process for choosing more control points. The process is terminated when the calculate button is used.

Calculate button
calculate the Affine parameters from the selected points shown in the grid.

Target type
Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target

Target info input
extra information required for the target.

Affine button
apply the affine transformation to the data specified in the source box, and put it into the appropriate target area.
28.9.4 2D Affine - Orthogonal

**Position of option on menu:** Utilities => A-G => Affine 2D orthogonal

A **2D orthogonal affine transformation** is a two dimensional linear transformation consisting of a 2D-translation (shift) of the data, a scaling of the data in two different directions and the same rotation of both the x-axis and y-axis (about the z axis, like the Helmert). Hence there are five parameters to be specified. Unlike the standard affine transformations, rectangles can not be skewed by the orthogonal affine transformation.

Hence the orthogonal affine parameters are

(a) the x-scale factor for the observed co-ordinates with respect to the control coordinates
(b) the y-scale factor for the observed co-ordinates with respect to the control coordinates
(c) the same rotation of the x-axis and y-axis of the observed coordinates to align it with the control x and coordinate axis
(d) the x and y translation of the observed coor dinates after the scalings and rotations have been applied

For information on the affine transformation, please go to the section 28.9.1 Coordinate Transformations - Helmert and Affine

For information on how the Affine Transformation works with Rasters, go to the section 28.9.1.2 Affine and Helmert Transformations Applied to Rasters

On selecting Affine 2D orthogonal, the Orthogonal Affine panel is displayed.
If the **Parameters by** choice box is set to **Pt Selection** then control-observed point pairs are selected by the user and the pairs are written to the grids on the panels. See the section 28.9.1.1, Selecting Control and Observed Points for the Helmert and Affine Transformations for information on picking control and observed points.

If the **Parameters by** choice box is set to **Direct entry**, the transformation parameters are manually entered into the panel and the grid section is not used.

The fields and buttons used in this panel have the following functions.

**Field Description**	**Type**	**Defaults**	**Pop-Up**
**File** | file box | *.ortho_aaf files | 
*Filename can be specified for reading or writing a file to restore the panel contents for re-use.*

**Read** | button | 
*If a valid file exists, the file contents can be loaded into the panel.*

**Write** | button | 
*If a valid name is specified, the user can write the input data to a file.*

**Data to change**
Data source type
data selection type - for a full description go to 4.19.3 Data Source.

Data source input
source of data to be processed.

Parameters by choice Pt selection Pt selection Direct entry
the parameter entry method.

Report file *.rpt files
if not blank, write a report on the orthogonal affine transformation.

Clockwise rotation angle box
the rotation of both x and y axes of the existing points with respect to the transformed x and y axes.

Fixed scale? tick box
if ticked, the x and y scales are typed into the X/Y Scale fields and are held fixed when the orthogonal affine parameters are calculated from the selected control-observed point pairs.

Scale x input/output
the x-scale factor for the existing co-ordinates with respect to the transformed coordinates

Scale y input/output
the y-scale factor for the existing coordinates with respect to the transformed coordinates

X Translation input/output
the x translation of the existing coordinates with respect to the transformed coordinates

Y Translation input/output
the y translation of the existing coordinates with respect to the transformed coordinates

Origin method choice box Pick Pick, Obs’d centroid Ctrl centroid
the translation can be reported against another origin than the default (0,0).

Origin X/Y coordinate input
the translation parameters are written out with respect to this origin.

Control button
restarts the selection process for choosing more control points.

Calculate button
calculate the orthogonal affine parameters from the selected points shown in the grid.

Target type
Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target

Target info input
extra information required for the target.

Affine button
apply the orthogonal affine transformation to the data specified in the source box, and put it into the appropriate target area.
28.9.5 Archive Models

**Position of option on menu:** Utilities => A-G => Archive models

This option saves all models matching a specified model mask, to 12da files named in the style:

<model name/prefix>[YYYYMMDD HHMMSS].12da

On selecting the Archive models option, the Archive models panel is displayed.

![Archive Models panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model mask</td>
<td>input text</td>
<td></td>
</tr>
<tr>
<td>specifies the model(s) to archive. Use '*' and '?' wildcards to specify multiple models.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folder for archive files</td>
<td>folder</td>
<td></td>
</tr>
<tr>
<td>a pre-existing folder to write the 12da files to. If unspecified, will write to backups.4d or working folder, depending on the environment variable $USE_BACKUPS_4D_FOLDER_4D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decimal places</td>
<td>integer</td>
<td></td>
</tr>
<tr>
<td>Number of decimal places to use when writing the 12da files. If unspecified, 15 decimal places are used.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group multiple models per 12da file</td>
<td>tick box</td>
<td>ticked</td>
</tr>
<tr>
<td>if ticked, multiple models may be archived per 12da file, based on the matching first word of each model name. (The first word is the prefix of the model name, before the first space.) If not ticked, one model is archived per 12da file.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skip existing archives with matching file names</td>
<td>tick box</td>
<td>ticked</td>
</tr>
<tr>
<td>if ticked, existing 12da files with matching names are left untouched and not re-archived. If not ticked, existing files are overwritten.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Include time stamp in file names</td>
<td>tick box</td>
<td>not ticked</td>
</tr>
<tr>
<td>if ticked, include archive date and time stamp in the file names, in the style:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YYYYMMDD HHMMSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run</td>
<td>button</td>
<td></td>
</tr>
<tr>
<td>runs the option</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Special Note**
The Archive Models option is a macro, which may optionally be run from a chain via arguments, rather than via an interactive panel. The details of the argument syntax are written to the Output Window, whenever the macro is run without valid arguments, namely:

```
128 Macro: "model Archive panel.48d" started...

Saves all models matching <model mask> to 128-ascii files named: "<model name>/prefno/YYYYMMDD HHMMSS.126a".

Usage with no arguments: macro is run with a panel interface.

Usage with arguments: model Archive panel <model mask> [4 <folder> [-group -skip -timestamp]

Arguments:
<model mask> - Models to be archived. Use "*" and "?" wildcards to specify multiple models.
[4 <folder>] - Existing folder to write 126a files to. If unspecified, will write to backups.4d or working folder, depending on USE_BACKUPS.4D_FOLDER.4D.
-group - Group multiple models per 126a file, based on matching first word of model names. If unspecified, one model is archived per 126a file.
-skip - Existing 126a files with matching names are left untouched and not re-archived. If unspecified, existing files are overwritten.
-timestamp - Include archive date and time stamp in file names ("YYYYMMDD HHMMSS" format).

eg1: model Archive panel 047* 4",survey archive" -group -skip
eg2: model Archive panel "CONTROL" -timestamp
```
28.9.6 Cartographic Projections

**Position of option on menu:** Utilities => A-G => Cartographic

The Cartographic option is used to transform data based on the same datum between

(a) two different cartographic projections (based on the same datum)

(b) longitude and latitude and a cartographic projection (based on the same datum)

(c) a cartographic projection and longitude and latitude (based on the same datum).

The Cartographic option has already been documented in the section 17.10.2 Cartographic.
28.9.7 Change

**Position of option on menu:** Utilities => A-G => Change

This Change option is similar to the Change option from the Strings edits menu.

For the selected strings, Change can modify the colour, name, breakline type, style and model of each string.

On selecting the Change option, the Change String Info panel is displayed.

![Change String Info Panel](image)

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source type</strong></td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Data source</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>New name</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>New colour</strong></td>
<td>input available colours</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>New style</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>New pt-line type</strong></td>
<td>leave as is</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>New weight</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The source of data to be changed.

If non-blank, then the name of the selected strings will be changed to the name given in the new name field.

If non-blank, then the colour of the selected strings will be changed to the colour given in the new colour field.

If non-blank, then the linestyle of the selected strings will be changed to the given in the new style field.
New pt-line type input leave as is leave as is, point, line
if leave as is, then the point-line type of the selected string will be not be changed.
If point string or line string, then the point-line type of the selected string will be changed to that type.

New weight input leave as is leave as is, point, line
if non-blank, then the weight of the selected strings will be changed to the
given in the new weight field.

Target type
Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target

Target info input
extra information required for the target.

Change button
process the Data source of selected strings.
28.9.8 Change String Chainage

**Position of option on menu:** Utilities => A-G => Change string chainage

Change string chainage sets the start chainage of the selected strings to a given chainage value.

Selecting the Change string chainage brings up the Change string chainage panel.

![Change String Chainage Panel](image)

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data to change</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cut through string</td>
<td>string select</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New chainage</td>
<td>input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target info</td>
<td>input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in the panel have the following functions.

**Data to change**

- **Data source type**: Model
  - *data selection type* - for a full description go to [4.19.3 Data Source](#).
- **Data source**: input
  - source of data to be processed.
- **Cut through string**: string select
  - if selected, the position on each string from the "Data to change" source box intersects the selected string will have the chainage from "New Chainage" at that position.
  - if no string is selected, the field is displayed as optional and the "New Chainage" value becomes the start chainage of each string selected from the source box.
- **New chainage**: input
  - value to set the start chainage of all the selected strings to.

**Target type**

- **Data target type**: where to put the processed strings. For a full description go to [4.19.4 Data Target](#).

**Target info**: input
- extra information required for the target.

**Change**
- button
  - process the selected Data source of strings.
28.9.9 Check/Clash

Position of menu: Utilities => A-G => Check/clash

Check/clash options run checks on strings, and clashes between strings.

The Check/Clash walk-right menu is

- check for clashing pipes, drainage strings, etc.
- check for crossing breaklines, duplicate vertices, etc.
- run checks on a polygon
- check strings against a Map File, etc.
- check strings clashing in 3d

For

- Clash detection 28.9.9.1 Clash Detection
- Check breaklines, go to 16.3 Check Breaklines, Duplicate Vertices, Identicals
- Check polygon 28.9.9.2 Check Polygon
- Check strings 28.9.9.3 Check Strings
- 3d service clash 28.9.9.4 Strings Clash in 3d
28.9.9.1 Clash Detection

**Position of menu:** Design => Check/clash => Clash detection  
Utilities => A-G => Check/clash => Clash detection

**Clash detection** checks whether strings clash with each other, and trimeshes of the clash zones can be created. **Rules** can be defined specifying what is a clash.

The **Check/Clash** menu is:

![Check/Clash menu](image)

For the options, see

- **Detection** 28.9.9.1.1 Clash Detection
- **Rules** 28.9.9.1.2 Clash Detection Rules

---

Utilities A-G

Page 6543
28.9.9.1.1 Clash Detection

Position of option on menu: Design => Check/clash => Clash detection => Detection
Utilities => A-G => Check/clash => Clash detection => Detection

Service Clash detection checks whether strings clash with each other, and trimeshes of the clash zones can be created. Rules can be defined specifying what is a clash. For example, you may only want to know about a horizontal clash, but not a vertical clash, or you may want to know if anything clashes not only with a string but within a user given corridor around the string.

Clashes can be detected between strings of the types Super Pipe with straight line segments and Drainage with straight line segments.

Selecting Detection brings up the Service Clash panel

![Service Clash Detection Panel]

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rule set</td>
<td>choice box</td>
<td>available clash rules</td>
<td></td>
</tr>
<tr>
<td>Curve interval</td>
<td>real box</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
the interval to break curves up when calculating clashes.

**Chord to arc**

real box 0.1

the chord to arc tolerance to use when breaking curves up when calculating clashes.

**Model for check corridors**

model box

*if not blank, for all strings in the **Model(s) to check** given in the Rule Set, strings will be created representing the defined corridor.*

**Model for check against corridors**

model box

*if not blank, for all strings in the **Model(s) to check against** given in the Rule Set, strings will be created representing the defined corridor.*

**Model for clash trimeshes**

model box available models

*if not blank, trimeshes are created to indicate where the clashes occur, and are placed in this model.*

**Clean models beforehand**

tick box

*if ticked, the models for check corridors, check against corridors and clash trimesh models are cleaned before processing.*

**Report type**

choice box available xml formats for this panel

the type of report to be generated from the xml file. New customised report formats can be added by the user. See 4.30 Setting Up XML Reports

**Report file**

file box

*if not blank, a report file of this name is created.*

*If blank, no report is created.*

**Check**

button

perform the clash checks. Error messages are written to the Output Window as Intelligent Log Lines to help find the problems.
28.9.9.1.2 Clash Detection Rules

Position of option on menu: Design => Check/clash => Clash detection => Rules
Utilities => A-G => Check/clash => Clash detection => Rules

The Service Clash Rules define what is meant by a "clash".

The Service Clash Rules is a tree of Clash Rule Sets and each set has a unique name. The Service Clash Detection panel specifies which of the Clash Rule Sets is to be used for a particular clash detection run.

The Service Clash Rules are loaded from a file called service_clash_rules.xml that is searched for as a standard Set_UPs file. See 39.2 Files for Setting Up 12d.

Selecting Rules brings up the Service Clash Rules panel.

The Service Clash Rules panel

- Each Clash Rule Set is at the first level of the Clash Rule Sets tree
- A Rule in the Clash Rule Set Water vs Gas
- This is at the second level of the tree.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clash Rule Sets Tree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Clash Rule Set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A Clash Rule Set is defined at the first level of the Clash Rule Sets tree and each Clash Rule Set must have a unique name. One Clash Rule Set is selected in the Service Clash Detection panel to provide the rules to be used for a particular clash detection run</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A new Clash Rule Set is created by clicking and highlighting the top level Clash Rules Sets and then pressing the Add Child button, or by clicking on and highlighting a first level Clash Rule Set and then pressing the Add button.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A new Clash Rules Set with the dummy name service_clash_rule_set is then created and a new name must be entered in the Name field on the right hand side of the tree. The Description is optional.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(b) Rules in a Clash Rule Set

The rules for a named Clash Rule Set as defined as second level items under the Clash Rule Set. The rules define what is meant by a particular clash.

A new Rule is created by clicking and highlighting the named Clash Rules Set and then pressing the Add Child button, or by clicking on and highlighting a Rule already in the named Clash Rule Set and then pressing the Add button.

A new Rule with the dummy name service_clash_rule is then created and a new name must be entered in the Name field on the right hand side of the tree. The Description is optional.
There must be at least one clash rule in a Clash Rule Set otherwise there is nothing to do. If such a Clash Rule Set is used then no results will be reported.

The Rule defines two separate datasets for each rule - the **Source dataset** containing the elements being checked, and the **Target dataset** containing the elements being checked against. Elements cannot exist in both. They are in either one or the other or neither.

The **Model to check** and **Object name to check** defines the elements that are in the Source data set. Both fields can contain wild cards and wild characters and blank fields will match all elements. That is, blank fields are taken as the wild character *.

The **Model to check against** and **Object name to check against** defines which of the remaining elements (where remaining = all elements minus source data) are in the **Target dataset**. Both fields can contain wild cards and wild characters.

Elements in the **Source dataset** will **only be checked** against elements in the **Target dataset**. Any other objects not in the **Source dataset** or **Target dataset** are ignored.

So you should be specific for the **Source dataset** and cannot be too generic, since being too generic will mean that there are few elements left to be in the **Target dataset** leaving little or nothing to check against.

Hence you should be fairly specific in your **Source dataset** filters, but can be totally generic in the **Target dataset** filters.

To see this in a diagram, if the yellow region represents all the elements in the project and the green region the elements in the **Source dataset**, then the Target dataset (red region) can only be totally outside the green region. So if the green region is very large, then there are not many elements left to be in the red region. The elements in the yellow region that aren’t in the red or green regions are the objects in the project that are totally ignored by that rule.

**Recommendations for Using the Service Clash Detection:**

(a) Model each type of utility in its own model, *e.g.* GAS, WATER, ELEC, TELECOM.

(b) As a minimum create a rule for each service type.

(c) If there are different clearances for different target services being checked, create a rule for each case. *e.g.* Gas vs Water, Gas vs Elec, Gas vs Other.

(d) If you need to check for clashes between utilities of the same type, place these in different models or name them differently so that they can be selected by name, *e.g.* WATER TRUNK and WATER CONNECTIONS or ELEC LEFT and ELEC RIGHT.
(e) Be as narrow and specific with the Source filters as you can be. There is a trade-off, however, between being specific and needing to create multiple rules. Find a balance.

(f) Use standard naming for models and strings and develop standard clash detection rule sets.

(g) You can use map files to help filter out or map strings to certain models to match existing rule sets.

Write Button

When the Write button is selected, a Write Setup File panel comes up to specify where the services_clash_rules.xml file is to be written out to.

For the choices on the panel, see 39.2.6 Writing Out Setup Files

A project restart is required for the new file to take effect
28.9.9.2 Check Polygon

Position of option on menu: Utilities => A-G => Check/clash => Check polygon

Check polygon checks to see if a polygon passes the polygon checks performed by a polygon box. The checks are to try and ensure that the polygon is suitable for use in some 12d options.

For example, a polygon that crosses over itself, or has duplicate vertices, or has edges partially on top of other edges, or in parts consists of a single line, are not usable in most options requiring a polygon (fence) for calculations.

The Exact Volumes options in particular are very sensitive to having a well formed polygon whereas other options can use polygons that are unsuitable for Exact Volumes.

Some of the things that make a polygon unsuitable (and will produce the message "bad polygon" or "bad poly") are:

(a) self intersects in the polygon
(b) multiple vertices at the same (x,y) location
(c) sides being partially on top of other sides
(d) corners just touching other sides or vertices
(e) parts of the polygon that contain no area. For example, a loop at one end and then a line going out from the loop. The line does not enclose any area. This may be created by contouring a surface that contains has a ridge line of constant height.

Errors in the polygon are reported in the Output Window with intelligent log lines to help find the section of the polygon with the error.

Selecting Check polygons brings up the Check Polygon panel

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polygon</td>
<td>select a polygon to check</td>
<td>polygon box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output model</td>
<td>if non blank, the resolved polygon is added to this model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check</td>
<td>perform the polygon checks. Error messages are written to the Output Window as Intelligent Log Lines to help find the problems.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
28.9.9.3 Check Strings

**Position of option on menu:** Utilities => A-G => Check/clash => Check strings

Check strings compares selected strings against a Map File and also checks distances between vertices on strings.

Selecting Check strings brings up the Check Strings panel.

![Check Strings panel](image)

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source type</strong></td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Data source</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Map file</strong></td>
<td>map file box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Min length</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Max length</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Min height</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Max height</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Min length**: report if any distance between adjacent vertices in a string is less than Min length.
- **Max length**: report if any distance between adjacent vertices in a string is greater than Max length.
- **Min height**: report if any vertex height is less than Min height.
- **Max height**: report if any vertex height is greater than Max height.
Zero heights tick box
   if ticked, any vertex heights equal to 0.0 will be reported. It is very rare that any height is exactly 0.0

Report file
   if non blank, any failures are reported in this file.

Check button
   process the selected strings
28.9.9.4 Strings Clash in 3d

Position of option on menu: Utilities => A-G => Check/clash => 3d service clash

3d service clash compares selected models of strings and checks to see if they intersect each other.

Selecting 3d service clash brings up the Service Clash panel.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service clearance file</td>
<td>file box</td>
<td>*.csv files</td>
<td></td>
</tr>
</tbody>
</table>

Service clearance file

- csv file containing a list of model names and clearances. This file is read in as soon as the option starts and fills out the Service and Clearance grid.

Grid - Service model and Clearance

For a row in the grid:

- any string in the model of name Service model must have the clearance given in the Clearance column. That is, any other string must be at least the Clearance distance from the string from the Service model.

When the option starts, the grid is loaded from the Service clearance file. The grid can be modified and whenever the Process button is selected, the contents of the grid is written to the file name given by Service clearance file.

Data source type

- Model

Data source type - for a full description go to 4.19.3 Data Source.
source of data to be processed.

Each string in the data source is processed against all other strings selected by the Data source.

If a string is from a model listed in the Service model and Clearance grid, then the corresponding clearance is used for the string, otherwise the default clearance given in the Clearance panel field is used.

Clash model model box available models

the lines of clash between any two strings is placed in the Clash model.

Clash report

a report is generated for any clashes

Clearance input

the default clearance to use for a string that is not in any of the Service models given in the Service model and Clearance grid

Process button

process the selected strings and check for clashes
28.9.10 Classify Conduits

Position of option on menu: Utilities => A-G => Classify conduits

This option sets attributes on “conduit strings”, i.e. strings of the following type only: Super (with conduit dimensions), Drainage, Pipeline, Pipe.

String attributes set are:
- "justification" (text) on all strings - values set to "invert", "obvert" or "centre".
- "pipe size" (text) on constant-size Super string conduits, Pipeline and Pipe strings.
- "diameter" (real) on constant-size Super string conduits, Pipeline and Pipe strings.
- "width" (real) on constant-size Super string box conduits.

Segment attributes set are:
- "pipe size" (text) on all Super string conduit segments.
- "diameter" (real) on all Super string conduit segments.
- "width" (real) on all Super string box conduit segments.

Notes:
1) Drainage and Pipeline strings are always invert justified.
2) Pipeline and Pipe strings are always circular with a constant diameter.
3) Super string conduits may be circular or box. Drainage strings may be circular, box, vee or trapezoid.
4) For non-circular conduit shapes, attribute "diameter" represents height of conduit.
5) Attribute "pipe size" is in mm (base units x 1000) and supports shapes: circular, box, vee, trapezoid - eg: "600", "1200x600", "V2000x600", "T2000B1200x600".
6) Drainage strings already have Pipe attributes "diameter" and "pipe size" (and potentially "width" and/or "top width") set via the Drainage Network Editor.

On selecting the Classify conduits option, the Classify Conduit Strings panel is displayed.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type - for a full description go to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.19.3 Data Source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source of conduit strings</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source of data to be processed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete conduit attributes from non-conduit strings</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
</tbody>
</table>
whether to delete the above mentioned string and segment attributes (if present) from non-conduit string types

Run button

runs the option
28.9.11 Clear String Names

*Position of option on menu:* Utilities => A-G => Clear string names

Clear string names removes the names for all the selected strings.

Selecting Clear string names brings up the Clear String Names panel.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source type</strong></td>
<td>Model</td>
<td>data selection type - for a full description go to 4.19.3 Data Source.</td>
<td></td>
</tr>
<tr>
<td><strong>Data source</strong></td>
<td>input</td>
<td>source of data to be processed.</td>
<td></td>
</tr>
<tr>
<td><strong>Run</strong></td>
<td>button</td>
<td>remove/delete the string names from the selected strings</td>
<td></td>
</tr>
</tbody>
</table>
28.9.12 Convert

**Position of menu:** Utilities => A-G => Convert

The convert options are designed to convert large numbers of strings between string types. There is also a global convert option which will convert even more string types.

The convert walk-right menu is

![Convert Menu]

- convert bulk strings
- convert 2d strings to 3d strings
- convert 3d strings to 2d strings
- convert 4d strings to 3d strings
- convert text to 3d points
- convert polylines to alignments
- convert closed strings to closed super strings
- convert strings to super alignments

For the option **Convert**, go to the section

- **28.9.12.1 Convert**
- **28.9.12.2 2d to 3d**
- **28.9.12.3 3d to 2d**
- **28.9.12.4 4d to 3d**
- **28.9.12.5 Text to 3d**
- **28.9.12.6 Poly to alignment**
- **28.9.12.7 Same start/end point strings**
- **28.9.12.8 Convert to super alignments**
28.9.12.1 Convert

Position of option on menu: Utilities => A-G => Convert => Convert

The Convert option converts strings to a selected string type.

On selecting the Convert option, the Convert String Types panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New type</td>
<td>string type box</td>
<td>all string types</td>
<td></td>
</tr>
</tbody>
</table>

**Data source type**

- *data selection type - for a full description go to 4.19.3 Data Source.*

**Data source**

- *source of data to be processed.*

**New type**

- *the type of string to try and convert the data to.*

**Target type**

- *Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target.*

**Target info**

- *extra information required for the target.*

**Convert**

- *button* convert all the selected strings to the type given in the New type field.
28.9.12.2 2d to 3d

Position of option on menu: Utilities => A-G => Convert => 2d to 3d

The main difference between a 2d and a 3d string is that all the points in a 2d string have the same height. Hence to modify the z-values at individual points, a string must be 3d.

The 2d to 3d option is used to turn 2d (contour) strings into 3d strings.

This option is especially useful when a large number of strings have been read in with constant z-values (for example, cadastre) and the user then wants to modify the heights at each point on the string.

On selecting 2d to 3d and then the appropriate Data Source in the panel, the Convert 2d to 3d Strings in panel is displayed.

![Convert 2d to 3d Strings in panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pass other strings</td>
<td>tick box</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If ticked, copies of all other strings are passed through to the model for converted strings.

<table>
<thead>
<tr>
<th>Target type</th>
<th>Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target info</td>
<td>input</td>
</tr>
</tbody>
</table>

Extra information required for the target.

| Convert             | button                                                                                           |

Convert all the 2d string in the Data source to 3d strings.
28.9.12.3 3d to 2d

Position of option on menu: Utilities => A-G => Convert => 3d to 2d

The difference between a 3d and a 2d string is that all the points in a 2d string have the same height. The 3d to 2d option turns 3d string with a constant height into 2d strings. That is, it only converts 3d strings that have the same height at each point.

This option is useful when contours strings have come from another system as 3d strings, not 2d strings.

On selecting 3d to 2d and then the appropriate Data Source in the panel, the Convert 3d to 2d Strings in panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pass other strings</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td>Target</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target info</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convert</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Convert all the 3d strings with constant height in the Data source to 2d strings.
28.9.12.4 4d to 3d

Position of option on menu: Utilities => A-G => Convert => 4d to 3d

The difference between a 4d and a 3d string is that a 4d string can have a text label at each point on the string. The 4d to 3d option turns 4d string into 3d strings by stripping off the text labels at each point of the 4d string.

On selecting 4d to 3d and then the appropriate Data Source in the panel, the Convert 4d to 3d Strings in panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data selection type - for a full description go to 4.19.3 Data Source.

<table>
<thead>
<tr>
<th>Data source</th>
<th>input</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Pass other strings</th>
<th>tick box</th>
<th>tick</th>
</tr>
</thead>
</table>

if ticked, copy all other strings and pass them through to the model for 3d strings.

<table>
<thead>
<tr>
<th>Target type</th>
<th></th>
</tr>
</thead>
</table>

Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target.

<table>
<thead>
<tr>
<th>Target info</th>
<th>input</th>
<th></th>
</tr>
</thead>
</table>

extra information required for the target.

<table>
<thead>
<tr>
<th>Convert</th>
<th>button</th>
<th></th>
</tr>
</thead>
</table>

convert all the 4d strings in the Data source to 3d strings.
28.9.12.5 Text to 3d

Position of option on menu: Utilities => A-G => Convert => Text to 3d

Sometimes when data for points is received from a CAD systems, all that is received is the text of the z-value of the point and no actual point.

The Text to 3d option will find text representing a z-value and create a new point using the justification point of the text as the (x,y) position and the value of the text as the z-value.

On selecting Text to 3d, the Convert Text Strings to 3d Strings panel is displayed.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for 3d points</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Horizontal offset (dx)</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Vertical offset (dy)</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Min z value</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max z value</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions:

- **Data source type**: Select the type of data source to be used. 
- **Data source**: The source of the data to be processed.
- **Model for 3d points**: Select the model to place the 3d points in.
- **Horizontal offset (dx)**: The x-value for created point is the text justification point less the horizontal offset.
- **Vertical offset (dy)**: The y-value for created point is the text justification point less the vertical offset.
- **Min z value**: If non-blank, only convert text with z-value greater than **Min z value**.
- **Max z value**: If non-blank, only convert text with z-value less than **Max z value**.
- **Process**: Convert all the selected text strings to 3d strings.
28.9.12.6 Poly to Alignment

Position of option on menu: Utilities => A-G => Convert => Poly to alignment
Selecting Poly to alignment brings up the CAD Polyline to Alignment Convert panel.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Data selection type</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- for a full description go to 4.19.3 Data Source.</td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td>source of data to be processed.</td>
</tr>
<tr>
<td>New name</td>
<td>name box</td>
<td>available names</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>if non blank, new name for the converted strings</td>
</tr>
<tr>
<td>New model</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>new model for the converted strings</td>
</tr>
<tr>
<td>New colour</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>if non blank, new colour for the converted strings</td>
</tr>
<tr>
<td>IP/TP chg tolerance</td>
<td>input</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Delete original</td>
<td>tick box</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>if ticked, the original strings are deleted.</td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>convert all the selected alignments.</td>
</tr>
</tbody>
</table>
28.9.12.7 Same Start/End Point Strings

Position of option on menu: Strings => Properties => Same start/end point strings
Position of option on menu: Utilities => A-G => Convert => Same start/end point strings
Position of option on menu: Utilities => Super strings => Same start/end point strings

When non super string strings are closed, an extra vertex identical to the first vertex is added to the end of the string. For super strings, there is a closed string flag and no duplication of the first and last vertices is required.

This option converts closed non super strings to closed super strings and deletes the duplicated vertex.

Selecting Same string/end point strings brings up the Convert Same Start/End Point Strings panel.

![Convert Same Start/End Point Strings Panel]

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pass other strings</td>
<td>tick</td>
<td>tick</td>
<td></td>
</tr>
<tr>
<td>Target type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target info</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convert</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data source type - for a full description go to 4.19.3 Data Source.

Data source - source of data to be processed.

Pass other strings - if ticked, copy all other strings and pass them through to the target model.

Target type - Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target.

Target info - extra information required for the target.

Convert - convert all the closed strings to closed super strings with duplicated end point.
28.9.12.8 Convert to Super Alignment

Position of option on menu: Utilities => A-G => Convert => Convert to super alignments

The Convert option converts strings to super alignments, either with just IPs or using Elements.

Note - conversion to Elements is only possible if you have the Alignment module.

Selecting Convert to super alignments brings up the Convert to Super Alignment panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convert mode</td>
<td>choice box</td>
<td>IPs, Elements</td>
<td></td>
</tr>
<tr>
<td>Target type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target info</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convert</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field Description and Type:
- **Data source type**: Model data selection type - for a full description go to 4.19.3 Data Source.
- **Data source**: input source of data to be processed.
- **Convert mode**: choice box IPS, Elements
  - If **IPs**, the strings are converted to super alignments with IPs.
  - If **Elements**, the strings are converted to super alignments using Elements.
  - Note - if the user does not have the Alignment module, then the Convert mode is automatically set to IPs.
- **Target type**: Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target.
- **Target info**: input extra information required for the target.
- **Convert**: button convert all the selected strings to either super alignments with IPs or super alignments with Elements.
28.9.13 Cuts

Position of menu:  Utilities => A-G => Cuts

Cuts is used to create intersections through string data rather than tins.

That is, it calculates the cuts that a plan string makes with each of the strings in a model or view, and creates cut points with the z-value from the cut strings.

The cut points that the plan string creates are connected as a 4d string - the x-section of cuts through a model or view - with the z value coming from the cut string, and the text at the point being the name of string that was cut.

There are two methods for generating the cuts x-sections

(a) by taking sections along selected strings or all the strings in a model or view

(b) by taking sections at regular intervals and perpendicular to a selected centre line string.

The Cuts walk-right menu contains these two methods

For the option by strings, go to the section 28.9.13.1 Cuts by Strings.

For the option by centreline, go to the section 28.9.13.2 Cuts by Centreline.
28.9.13.1 Cuts by Strings

Position of option on menu: Utilities => A-G => Cuts => by strings

by strings generates cuts through a Data source of strings, for all the strings in a user specified model.

For each string in the Model of strings, the plan representation of the string is cut through the all the string in Data to cut through, to generate cut x-sections.

Selecting by strings displays the Cuts Through panel.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>data selection type - for a full description go to 4.19.3 Data Source.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>source of data to be cut through.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model of strings</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>each string in this model will be processed against all the strings in the Data source Data to cut through.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for cuts</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>model to place the cut x-sections into.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour for cuts</td>
<td>input</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td></td>
<td>colour for the cut x-section strings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cut</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>each string in the Model of strings is processed against all the strings in the Data source Data to cut through. The 4d strings of cuts are placed in the Model for cuts.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
28.9.13.2 Cuts by Centreline

Position of option on menu: Utilities => A-G => Cuts => by centreline

For by centreline, a centre line string is selected by the user and temporary plan lines are created at regular intervals perpendicular to the selected string.

Cut x-sections are then generated for the temporary plan section lines by taking cuts through the Data source Data to cut through.

Selecting by centreline displays the Cuts from CL for panel.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section separation</td>
<td>input</td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following functions:

Field Description	Type	Defaults	Pop-Up
Data source type        | Model|          |        |
Data source              | input|          |        |
Section separation       | input| 10.0     |        |
data source.

Special chainages input *.spf files
a file containing chainages, one per line, that are also used as chainages to create cross sections at.

Gather vertical points of interest tick box
whether or not to create cuts at vertical points of interests (sags, crests, vertical tangent points etc)

Chord/arc tolerance input default chord/arc tolerance
the chord to arc tolerance to use on the selected string for determining how many plan sections are created around horizontal curves.

Left/Right cut width input 50
the left/right distance to go out from the centre line for creating a section to cut through the strings.

Model for cuts input available models
model to place the cut x-section strings into.

Clean cuts model beforehand tick box
if ticked, the model is cleaned of all data before new sections are created.

Colour for cuts colour box available colours
colour for the cut section strings

Keep null levels tick box
if ticked, then if a null level exists on the string being cut, then a null level point is created.

Select cl string-select
the selected cl string is used to create plan section lines at regular intervals and perpendicular to the centre line string. These strings are cut though the model/view of strings.

Start/End chainage input
if non-blank then sections for the cuts are restricted to between the given start and end chainage of the selected cl string.

End Area Calculations

Tin tin box available tins
if non-blank, the cut and fill areas for the section against the tin are calculated and added as attributes to the section.

Strip depth input
if non-zero, then a strip depth is removed from the tin before the cut and fill areas for the section against the tin are calculated.

Cut button
each plan section line generated down the selected centre line string is processed against all the strings in the Data source. The 4d strings of cuts are placed in the Model for cuts.
28.9.14 Delete

Position of option on menu: Utilities => A-G => Delete

The Delete option deletes all the selected strings.
On selecting the Delete option, the Delete panel is displayed.

![Delete Panel]

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Data selection type - for a full description go to 4.19.3 Data Source.</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input source of data to be processed.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td>button delete the selected strings.</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
28.9.15 Draw a Perpendicular from Centreline to a Point

Position of option on menu:  Utilities => A-G => Draw perpendicular cl to points

This option creates strings drawn perpendicular from reference alignments to selected points, and output a Special Chainage (SPC) file of the reference chainages that the points are perpendicular to. The user has the choice of either output, or both.

Typical uses are to create a model of cut strings which can be used to for cut labelling on long section plots where features such as property access locations occur along the road corridor, or to write SPC files that can be used to create cross sections through the dropped points when running Apply MTF functions.

Selecting Draw perpendicular cl to points displays the Draw a Perpendicular from Centreline to a Point panel.

The fields and buttons used in this panel have the following functions...
### Data Points To Drop

Gathers a list of all the points on the selected strings.

*For a full description of data source go to 4.19.3 Data Source*

### Data Reference Strings

Selects the reference strings that the above points will be dropped onto. Reference strings must be of type Alignment or Super Alignment.

*For a full description of data source go to 4.19.3 Data Source*

### Drop all points from chosen strings?

**tick box**

*The default is to calculate chainages and/or strings from every point in the selected strings. Turning this tick box off will restrict the calculation to the end points only. E.g. It can be used to create cut strings for use with the paired cuts functionality in long section plotting.*

### Offset Tolerance

**input**

*Will restrict the search to points that fall within the specified width from the reference string.*

### Outputs

#### Name mode

**choice box**

*For the From point text mode, the name of the new string is set by the text attached to the points. For the From string names mode, the name of the new string is set by the selected strings. For the Typed mode, the name is given in the Name field.*

**name box names.4d file**

*This only needs to be filled in when using the Typed name mode. This field is not required for the other Name mode choices.*

**model box available models**

*The model to store the new strings on. This field is optional and no strings will be created if left blank. E.g. if you only want Special Chainage Files.*

**colour box available colours**

*The colour to draw the new strings with.*

**linestyle box available linestyles**

*The linestyle to draw the new strings with.*

#### Z value mode

**choice box**

*The method by which z values are assigned to the points on the new string.*

*For the 2d from point mode, all points have the same z value as the point being dropped. For the 2d from reference mode, all points have the same z value as the reference string. For the 3d reference to point mode, the new string is drawn from the z value at the reference to the z value of the dropped point.*

**measure box**

*At point, Point to Point, String from Point, String to Point*
End extension measure box 1 At point, Point to Point, String from Point, String to Point

Write SPC Files(s)? tick box ticked

The writing of Special Chainage Files is optional. If ticked, the names of the files are automatically derived from the combination of Model name and Reference string name and a user defined file stem (given in the SPC file stem field) may be added to the name.

SPC File Stem text box

An optional user entered text value that is added to the automatically derived file name.

Process button

run the option.
28.9.16 Duplicate

**Position of option on menu:** Utilities => A-G => Duplicate

Duplicate makes duplicates of strings.

Selecting Duplicate displays the Duplicate panel.

![Duplicate panel](image)

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Data source selection type - for a full description go to 4.19.3 Data Source</td>
<td>Model</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Data source</td>
<td>source of data to be processed.</td>
<td>input</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>New model</td>
<td>name of the model to place the duplicated strings into.</td>
<td>input</td>
<td>available models</td>
<td>-</td>
</tr>
<tr>
<td>Duplicate</td>
<td>duplicate all the strings in the data source.</td>
<td>button</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<esc> can be used to abort the duplicate option.
28.9.17 Explode

Position of option on menu: Utilities => A-G => Explode

The Explode option explodes point strings into individual one vertex strings and line strings into individual segments.

Super alignment, Alignment, pipeline, sewer and drainage strings are not exploded.

On selecting Explode and then the appropriate Data Source in the panel, the Explode Strings in panel is displayed.

![Explode Strings in panel](image)

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

_data selection type - for a full description go to 4.19.3 Data Source_

<table>
<thead>
<tr>
<th>Data source</th>
<th>input</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

_source of data to be processed._

<table>
<thead>
<tr>
<th>Pass other strings</th>
<th>tick box</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

_if ticked, copies of all other strings and passed through to the exploded model._

<table>
<thead>
<tr>
<th>Only explode point strings</th>
<th>tick box</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

_if ticked, only point strings are exploded. Line strings are left unexploded._

<table>
<thead>
<tr>
<th>Target type</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

_Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target_

<table>
<thead>
<tr>
<th>Target info</th>
<th>input</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

_extra information required for the target._

<table>
<thead>
<tr>
<th>Explode</th>
<th>button</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

_explode all the strings in the data source into one vertex strings and segments._
28.9.18 Explode Text

**Position of option on menu:** Utilities =>A-G => Explode (text)

**Explode (text)** explodes text in text strings and the text from 4d strings, into its component arcs and lines. The exploded arcs and lines are placed in one new model.

Selecting **Explode (text)** displays the **Explode Text in** panel.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Data selection type - for a full description go to 4.19.3 Data Source</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source of data to be processed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exploded model</td>
<td>input</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>name of the model to place the exploded text strings and text of 4d strings into.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explode</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>explode all the selected text and add them to the model given in the <strong>Exploded model</strong> field.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
28.9.19 Factor

**Position of option on menu:** Utilities => A-G => Factor

Factor multiplies the x, y and z values of selected strings by user supplied factors. The option is useful for changing the units of any data in a model (e.g. Imperial to metric). Selecting Factor displays the Factor panel.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x/y/z factor</td>
<td>input</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Origin x y z</td>
<td>input</td>
<td></td>
<td>xyz ops menu</td>
</tr>
</tbody>
</table>

- *x/y/z factor* refers to the factor to multiply the x/y/z-values of a string by.
- The *Origin x y z* field with x y z value to be used as (x,y,z) origin for the factor.
- *blank* indicates an origin of (0,0,0) is used.
Factor text size: tick box tick

*if ticked, the size of text is factored.*

**Target type**

*Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target*

**Target info**

*input

extra information required for the target.*

**Factor**

*button

* multiply the (x,y,z) values of the selected strings by the x,y and z factors given in the appropriate panel fields.*

**WARNING** - if the x factor and y factor are not equal, then arcs in arcs, circles, alignment and polyline strings can not be factored. For these cases, the y factor will be set the x-factor and then applied to the arcs.
28.9.20 Filter

**Position of menu:** Utilities => A-G => Filter

The Filter options are used to remove surplus points from strings.

Three types of filters are currently supported in 12d Model:

- a string filter, which removes points from 2d and/or 3d line strings that do not deviate by more than a specified offset tolerance from straight lines joining successive string points (in three dimensions for 3d strings)
- a vertex-filter which removes adjacent vertices closer than a given user defined (x,y) and z distance
- a z-filter which eliminates points not contained within a specified z-range

The Filter walk-right menu is

![Filter menu]

For the option **String filter**, go to

- **28.9.20.1 String Filter**
- **28.9.20.2 Vertex Filter**
- **28.9.20.3 Z Filter**
28.9.20.1 String Filter

**Position of option on menu:** Utilities => A-G => Filter => String filter

The String filter option is used to remove surplus vertices from 2d strings (contours) and 3d strings.

The string filter option tries to drop out vertices that if left out, don't make "too much difference". So for a user defined tolerance:

if you have successive vertices A, B and C, and by leaving out vertex B, then the lines AB and BC don't go outside a tube of radius tolerance around the lines AC, then vertex B is dropped.

![String Filter - Vertex B Can Be Dropped](image1)

![String Filter - Vertex B CAN'T be Dropped](image2)

![String Filter - Working from A, the vertices from A to E will be Dropped](image3)

The filter starts at the first vertex of the string and looks ahead, dropping out vertices until it finds one that can't be removed. That vertex then become the new second vertex and the process is repeated but starting at the new second vertex. This process is repeated for the new third vertex.
and so on until the end of the string.

The tolerance value used normally depends on the data set and the job that the data is being used for.

So the string filter removes vertices from 2d and/or 3d line strings that do not deviate by more than a specified offset tolerance from straight lines joining successive string vertices (in three dimensions for 3d strings).

**NOTE** - string filter does not apply to point strings.

Selecting String filter displays the Filter Strings in panel.

The fields and buttons used in this panel have the following function:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>String type</td>
<td>input</td>
<td>2d</td>
<td>2d, 2d &amp; 3d</td>
</tr>
<tr>
<td>Filter tolerance</td>
<td>input</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Target</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copy to model</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields and buttons used in this panel have the following function:

- **Data source type** - for a full description go to [4.19.3 Data Source](#).
- **Data source** - source of data to be processed.
- **String type** - string types to be filtered.
- **Filter tolerance** - tolerance to be used in filtering.
- **Pass other strings** - if ticked, pass all other strings through to the model for filtered strings.

**Target type**

- Data target type - where to put the processed strings. For a full description go to [4.19.4 Data Target](#).
Target info  input
extra information required for the target.

Filter  button
filter all the selected strings.
28.9.20.2 Vertex Filter

Position of option on menu: Utilities => A-G => Filter => Vertex filter

The Vertex filter option is used to remove close adjacent vertices from selected strings. The strings can be point or line strings.

The option can remove adjacent string vertices that are equal to a given tolerance either in plan position only (i.e. have similar x and y co-ordinates) or equal to a given tolerance for x, y and z co-ordinates.

Selecting Vertex filter displays the Filter adjacent vertices in panel.

![Filter adjacent vertices in panel]

The fields and buttons used in this panel have the following function:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimension</td>
<td>input</td>
<td>2d</td>
<td>2d,3d</td>
</tr>
<tr>
<td>XYZ tolerance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z tolerance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertices with attributes</td>
<td>Ignore/Skip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segments with attributes</td>
<td>Ignore/Skip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copy to model</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The distance to use for checking if adjacent vertices are too close in (x,y)

The delta-z to use for checking if adjacent vertices are too close in z

Vertices with attributes choice box Ignore/skip Ignore/skip, Merge attributes
If Ignore/skip, don’t drop any vertices with attributes.

If Merge attributes, merge the attributes from a dropped vertex with the kept vertex.

If Lose attributes, drop the attributes from a dropped vertex.

**Segments with attributes**

- **choice box**
- Ignore/skip, Merge attributes
- Lose attributes

If Ignore/skip, don’t drop any vertices of segments with attributes.

If Merge attributes, merge the attributes from a dropped segment with the kept segment.

If Lose attributes, drop the attributes from a dropped segment.

**Target type**

Data target type - where to put the processed strings. For a full description go to [4.19.4 Data Target](#)

**Target info**

- **input**
- extra information required for the target.

**Filter**

- **button**
- filter the selected strings.
28.9.20.3 Z Filter

Position of option on menu: Utilities => A-G => Filter => Z filter

It is often necessary to remove data which is not within a certain z range. For example, all points with z-values below 0.0. The z filter option allows the user to define a z-range by specifying a minimum and maximum z value.

Strings of type 2d, 3d and 4d can then be processed against the z-range and new strings created containing only those points that are

(a) within the z-range - accepted points

or

(b) outside the z-range - rejected points

For all other string types, the entire string is accepted if any part of the string is within the z-range, otherwise it is rejected.

Selecting Z filter displays the Z Filter Strings in panel:

![Z Filter Strings in panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data selection type - for a full description go to 4.19.3 Data Source

Data source

source of data to be processed.

z min

minimum z value to be accepted. If this field is blank, all string z-values pass the minimum test.

z max

maximum z value to be accepted. If this field is blank, all string z-values pass the maximum test.

Filtered model

input available models

if non-blank, the name of the model to place the accepted string points in. The string has the same name as the original string. If blank, the accepted point strings are not saved.

Rejects model

input available models

if non-blank, then strings containing the rejected points are placed in this model. The strings of rejected points have the same name as the original strings. If blank, the rejected point strings are not saved.
Filter button

z filter the selected strings by the z minimum and z maximum values.
28.9.21 Grid setout

**Position of option on menu:** Utilities => A-G => Grid setout

*Grid setout* creates a set of points from the intersections of lines and/or arc strings. The strings to intersect normally form a grid.

It is assumed that the strings to intersect are named with letters along one axis of the grid and numbers in the other so that a point may be named in the following manner: 1a or a1.

Selecting *Grid setout* displays the *Grid Setout* panel.

![Grid setout panel]

The fields and buttons used in this panel have the following function

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Grid model</strong></td>
<td>model box</td>
<td>Select Model</td>
<td></td>
</tr>
<tr>
<td><em>The model of strings to intersect with each other</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Model for points</strong></td>
<td>model box</td>
<td>Select Model</td>
<td></td>
</tr>
<tr>
<td><em>the model to contain the points of intersection for the strings in Grid model.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Point name</strong></td>
<td>choice box</td>
<td>Number first</td>
<td>Number first, Letter first, Any order</td>
</tr>
<tr>
<td><em>Method used to determine how to name the created points based on names of the strings being intersected:</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number first: use the numbered string first</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Letter first: use the alphabetical string first</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any order: use the order in which the strings are processed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Clear result model</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>if tick, clean out the Model for points before finding the intersections.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Run</strong></td>
<td>button</td>
<td></td>
<td>run the option.</td>
</tr>
</tbody>
</table>
28.10 Utilities H-Z

For the option **Head to tail**, go to

- 28.10.1 Head to Tail
- 28.10.2 Head to Tail Point Strings
- 28.10.3 Set Height
- 28.10.4.1 2D Helmert (Advanced)
- 28.10.4.2 3D Helmert
- 28.10.5 Inquire
- 8.7.2 Apply a Label Map File
- 8.8.5 Apply Map File
- 28.10.6 Null Heights
- 28.10.7 Parallel
- 28.10.8 Polygon Discovery
- 28.10.9 Rename Strings
- 28.10.10 Reverse Strings
- 28.10.11 Rotate
- 28.10.12 Rotate Relative
- 28.10.13 Set Constant Z-Values
- 28.10.14 Set Strings Directions
<table>
<thead>
<tr>
<th>Feature</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set heights for 2d/super strings</td>
<td>28.10.15 Set Heights for 2d/Super Strings</td>
</tr>
<tr>
<td>Smooth strings</td>
<td>28.10.16 Smooth Strings</td>
</tr>
<tr>
<td>Swap XY</td>
<td>28.10.17 Swap XY</td>
</tr>
<tr>
<td>Test wildcards</td>
<td>28.10.18 Test Wildcards</td>
</tr>
<tr>
<td>Text</td>
<td>28.10.19 Text</td>
</tr>
<tr>
<td>Text - Find/Replace</td>
<td>24.16.8 Replace Text</td>
</tr>
<tr>
<td>Translate</td>
<td>28.10.20 Translate</td>
</tr>
</tbody>
</table>
28.10.1 Head to Tail

**Position of option on menu:** Utilities => H-Z => Head to tail

*Head to tail* is used to join strings with common end points together. If requested, strings are only joined if they have matching names as well as matching end points. Selecting *Head to tail*, displays the *Head to Tail Strings* panel.

![Head to Tail Strings panel](image)

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source type</strong></td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>data selection type</em> - for a full description go to 4.19.3 Data Source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Data source</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source of data to be processed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>One string</strong> or <strong>Many strings</strong></td>
<td>radio button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if <em>One String</em> is selected, then a Base string is selected and only the head-to-tailed string containing the Base string is created. If <em>Many strings</em> is selected, then head to tailing occurs for all the strings in the Data source.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Head to tail across models</strong></td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if <em>ticked</em>, then strings can be created from head to tailing strings from any of the selected models. If <em>not ticked</em>, then strings will only be head to tailed with strings from the same model.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Use string names tick box
if ticked, the string names must also match for the strings to be joined.

Pass other strings tick box tick
if ticked, any string not joined will also copied to the joined model.

Tolerance input 0.0005
If the distance between two end points is less than tolerance, then the points are considered the same and the strings may be joined.

Target type
Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target

Target info input extra information required for the target.

Process button process all the selected strings
28.10.2 Head to Tail Point Strings

**Position of option on menu:** Utilities => H-Z => Head to tail point strings

**Head to tail point string** is used to joins point strings into larger point strings. This can speed up drawing and processing when there are large numbers of single point strings.

If requested, strings are only joined if they have matching names as well as being point strings. Selecting **Head to tail points** displays the **Head to Tail Point Strings** panel.

![Head to Tail Point Strings Panel](image)

The fields and buttons used in this panel have the following functions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type - for a full description go to 4.19.3 Data Source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source of data to be processed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head to tail across models</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if <strong>ticked</strong>, then strings can be created from joining point strings from any of the selected models.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If <strong>not ticked</strong>, then strings will only joined with strings from the same model.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use string names</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if <strong>ticked</strong>, the string names must also match for the strings to be joined.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Points per string</td>
<td>integer box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the maximum number of vertices to have in the joined strings.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target type</td>
<td>Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target info</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>extra information required for the target.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Process button

process all the selected point strings
28.10.3 Set Height

Position of option on menu: Utilities => H-Z => Height

For the selected strings, **Height** will set all the z-values to the given height.

Selecting **Height** displays the **Set Height** panel.

![Set Height Panel](image)

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New height</td>
<td>input</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Do null heights</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target type</td>
<td>Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target info</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Data source* - source of data to be processed.

*New height* - the new height to set all the z-values in the selected strings to.

*Do null heights* - if ticked, null heights are set to the new height. If not ticked, null heights are not modified.

*Target type* - Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target

*Target info* - extra information required for the target.

*Set* - process the selected string.
28.10.4 Helmert Transformations

See 28.10.4.1 2D Helmert (Advanced)  
28.10.4.2 3D Helmert

28.10.4.1 2D Helmert (Advanced)

Position of option on menu: Utilities => H-Z => Helmert 2D (Advanced)

A 2D Helmert transformation is a two dimensional linear transformation consisting of a scaling, rotation and a 2D- translation (shift) of data. That is, there are four parameters to be specified.

Hence the 2D Helmert parameters are

(a) the one scale factor for both the x and y axes
(b) the same rotation of the x-axis and y-axis of the existing coordinates to align it with the control x and coordinate axis
(c) the x and y translation of the observed coordinates after the scalings and rotations have been applied

The 2D Helmert (Advanced) option calculated and applied a Helmert transformation, and also allows the user to fix the scale for the transformation. That is, the scale is user defined and not determined by the least squared calculations.

For information on the 2D Helmert transformation, please go to the section 28.9.1 Coordinate Transformations - Helmert and Affine

For information on how the Affine Transformation works with Rasters, go to the section 28.9.1.2 Affine and Helmert Transformations Applied to Rasters

Selecting 2D Helmert (Advanced) brings up the Helmert 2D (Advanced) panel.
If the Parameters by choice box is set to **Pt Selection** then control-observed point pairs are selected by the user and the pairs are written to the grids on the panels. See the section 28.9.1.1 *Selecting Control and Observed Points for the Helmert and Affine Transformations* for information on picking control and observed points.

If the Parameters by choice box is set to **Direct entry**, the transformation parameters are manually entered into the panel and the grid section is not used.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>the name of a 2d Helmert parameter file to read in/write out</td>
<td>file box</td>
<td>*.hel_adv, *.hel files</td>
<td></td>
</tr>
<tr>
<td>Read button</td>
<td>read the contents of the .hel_adv (or .hel) file given in File and load the parameters saved in the file into the panel fields.</td>
<td></td>
<td></td>
<td>Note: the *.hel file format is from an earlier Helmert panel that no longer exists in 12d Model.</td>
</tr>
<tr>
<td>Write button</td>
<td>write the parameters and data in the panel fields to the file given in File.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>data selection type - for a full description go to 4.19.3 Data Source</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Data source

source of data to be processed.

Parameters by

choice

Pt selection

Pt selection

Direct entry

the parameter entry method.

Report file

*.rpt files

if not blank, write a report on the Helmert transformation.

Scale

input/output

the scale factor for the existing coordinates with respect to the transformed coordinates

Fixed scale?

tick box

if ticked, the scale is entered into the Scale field and it is held fixed when the Helmert parameters are calculated from the selected control-observed point pairs.

Clockwise rotation

input/output

the rotation of the axes of the existing points with respect to the transformed axes.

Origin method

choice box

Pick

Pick, Obs’d centroid

Ctrl centroid

the translation can be reported against another origin than the default (0,0).

Origin X/Y coordinate

input

the translation parameters are written out with respect to this origin.

X Translation

input/output

the x translation of the existing coordinates with respect to the transformed x coordinates

Y Translation

input/output

the y translation of the existing coordinates with respect to the transformed y coordinates

Control

button

restarts the selection process for choosing more control points.

Calculate

button

calculate the helmert parameters from the selected points shown in the grid.

Target type

Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target.

Target info

input

extra information required for the target.

Helmert

button

apply the helmert transformation to the data specified in the source box, and put it into the appropriate target area.

Inverse

button

applies the inverse transformation to the one defined in the panel.

Finish

button

end the option, remove the panel from the screen.
28.10.4.2 3D Helmert

Position of option on menu: Utilities => H-Z => Helmert 3D

A 3D Helmert transformation is a three dimensional linear transformation consisting of a scaling, three rotations, and a 3D-translation (shift) of data. Hence there are 7 parameters to be specified.

For information on the 3D Helmert transformation, please go to the section 28.9.1 Coordinate Transformations - Helmert and Affine

For information on how the Affine Transformation works with Rasters, go to the section 28.9.1.2 Affine and Helmert Transformations Applied to Rasters

Selecting Helmert 3D brings up the 3D Helmert panel.

If the Parameters by choice box is set to Pt Selection then control-observed point pairs are selected by the user and the pairs are written to the grids on the panels. See the section 28.9.1.1 Selecting Control and Observed Points for the Helmert and Affine Transformations for information on picking control and observed points.

If the Parameters by choice box is set to Direct entry, the transformation parameters are
manually entered into the panel and the grid section is not used.

The fields and buttons in the panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>file box</td>
<td>*.hel_3d</td>
<td></td>
</tr>
</tbody>
</table>

*the name of a 3d Helmert parameter file to read in/write out*

| Read button       | read the contents of the .hel_3d file given in File and load the parameters saved in the file into the panel fields. |
| Write button      | write the parameters and data in the panel fields to the file given in File. |

Data source type: Model

*data selection type - for a full description go to 4.19.3 Data Source*

Data source: input

*source of data to be processed.*

Parameters by choice

Pt selection

Pt selection

Direct entry

*the parameter entry method.*

Report file: *.rpt files

*if not blank, write a report on the 3D Helmert transformation.*

Scale: input/output

*the scale factor for the existing coordinates with respect to the transformed coordinates*

Fixed scale?: tick box

*if ticked, the scale is entered into the Scale field and it is held fixed when the Helmert parameters are calculated from the selected control-observed point pairs.*

Origin method choice box

Pick

Pick, Obs’d centroid

Ctrl centroid

*the translation can be reported against another origin than the default (0,0,0).*

Origin X/Y/Z coordinate: input

*the translation parameters are written out with respect to this origin.*

X rotation (Clockwise rotation): input/output

*the rotation in the (y,z) plan about the x-axis of the axes of the existing points with respect to the transformed axes.*

Y rotation (Clockwise rotation): input/output

*the rotation in the (z,x) plane of the axes of the existing points with respect to the transformed axes.*

Z rotation (Clockwise rotation): input/output

*the rotation in the (x,y) plane of the axes of the existing points with respect to the transformed axes.*

X/Y/Z Translation: input/output

*the x/y/z translation of the existing co-ordinate with respect to the transformed x/y/z coordinates*

Control button

*restarts the selection process for choosing more control points.*
Calculate button

calculate the helmert parameters from the selected points shown in the grid.

Target type

Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target

Target info input

extra information required for the target.

Helmert button

apply the Helmert transformation to the data specified in the source box, and put it into the appropriate target area.

Inverse button

applies the inverse transformation to the one defined in the panel.

Finish button

end the option, remove the panel from the screen.
28.10.5 Inquire

Position of option on menu:   Utilities =>H-Z =>Inquire

Inquire highlights all the selected strings.

On selecting the Inquire option, the Inquire panel is displayed.

![Inquire Panel]

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*data selection type - for a full description go to [4.19.3 Data Source](#)*

| Data source | input    |        |        |

*source of data to be highlighted.*
28.10.6 Null Heights

**Position of option on menu:** Utilities => H-Z => Null heights

A null value is used as a z-value (height) when no actual z-value exists at a vertex. That is, the vertex has valid x and y coordinates but no valid z-value.

The null heights walk-right menu is

For the option *Height*, go to 28.10.6.1 Heights

*Height range* 28.10.6.2 Height Range

*Null to height* 28.10.6.3 Null to Height
28.10.6.1 Heights

**Position of option on menu:** Utilities => H-Z => Null heights => Height

Null heights is used to set vertices with a given z-value to 12d Model's null value. Selecting **Heights** displays **Null Height of** panel.

![Null Height of panel](null_height_of_panel.png)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height to null</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target info</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Null</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Data source type**

*data selection type - for a full description go to 4.19.3 Data Source*

**Data source**

*source of data to be processed.*

**Height to null**

*height value to set to the null value.*

**Target type**

*Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target*

**Target info**

*extra information required for the target.*

**Null**

*test all the z-values in the selected strings and if the value is equal to the Height to null value, set the z-value to null.*
28.10.6.2 Height Range

Position of option on menu: Utilities => H-Z => Null heights => Null range

Null height range sets the vertices with z-values between a given height minimum and height maximum, to 12d Model's null value. Selecting Height range displays the Null Height Range of panel.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height min</td>
<td>input</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height max</td>
<td>input</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target info</td>
<td>input</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Null</td>
<td>button</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data selection type - for a full description go to 4.19.3 Data Source

Source of data to be processed.

Minimum value of the heights to be set as null values.

Maximum value of the heights to be set as null values.

Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target

Extra information required for the target.

Test all the z-values in the selected strings and if the value is between the Height min and Height max value, set the z-value to null.
28.10.6.3 Null to Height

Position of option on menu: Utilities => H-Z => Null heights => Null to height

Null to height is used to set vertices with a null z-value to a user given value. Selecting Null to height range displays the Null to Height of panel.

![Null to Height of panel]

The fields and buttons used in this panel have the following functions.

**Field Description**	**Type**	**Defaults**	**Pop-Up**
**Data source type** | Model | | 
*data selection type* - for a full description go to 4.19.3 Data Source

**Data source** | input | | 
*source of data to be processed.*

**New height** | input | | 
*height value to change null values to.*

**Target type** | 
*Data target type* - where to put the processed strings. For a full description go to 4.19.4 Data Target

**Target info** | input | | 
*extra information required for the target.*

**Change** | button | | 
*Change all the null z-values in the selected strings to the value in the New height field.*
28.10.7 Parallel String

**Position of option on menu:** Utilities => H-Z => Parallel string

This option parallels horizontally one or more strings (the option Strings => Strings edit => Parallel only parallels one string at a time).

It is a macro and runs in two ways:

1. from the menu or
2. via a command line interface that does not require user interaction.

**Note:** the command line interface is available so that the option can be run in a chain if the macro cannot be recorded in a chain. If the macro is called without any command line arguments, then it will assume it is being run in the graphical, interactive manner and will display a panel to the user. Otherwise, the macro will parse the relevant command line arguments and run without user interaction.

Selecting `Parallel` brings up the **Parallel Strings** panel.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td>measure box</td>
<td>0</td>
<td>available measures</td>
<td></td>
</tr>
<tr>
<td>Target type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The direction of the source string is used to determine the left and right side of the string in the parallel operation. A positive offset parallels the string to the right with respect to the string direction. A negative offset parallels to the left with respect to the string direction.
Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target

Target info

input
extra information required for the target.

Process

button
processes the selected data.

Note When Using the Option With Command Line Arguments:

When calling the macro using the command line interface, it must be called according to the following format:

parallel_strings_panel.4do "SOURCE MODEL" offset "TARGET MODEL"

The first argument passed must be the name of a model containing the data to process. The source model of data to process must be the first argument provided to the macro.

The second argument must be the offset distance to parallel the source strings. This can be negative or positive, but it must be a valid real number (e.g. 1.234, -567.00, 0).

The third and final argument must be the name of the model in which to place the resultant paralleled strings.

If any of the fields contain spaces, they must be enclosed in quotes

For example:  "SOURCE DATA"

When using the command line interface, there must be 3 and only 3 arguments. Any fewer or more will be considered an error and will stop the macro from progressing any further.

Refer to the description of the fields in the Graphical User Interface section for further details, including restrictions on fields and expected behaviour

The macro uses the Parallel() function made available through the macro language. As such, the string types supported and behaviour of the macro is dependent on the implementation of that function.
28.10.8 Polygon Discovery

**Position of option on menu:** Utilities => H-Z => Polygon discovery

Polygon discovery takes a selected position/point on a plan view and from the data displayed on the view, finds the polygon enclosing the selected position/point from the line and arc segments in strings around the position/point.

The name, colour and model for the created polygon are taken from the CAD Tool bar.

Selecting Polygon discovery brings up the **Polygon Discovery** panel.

![Polygon Discovery Panel](image)

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. extension</td>
<td>real value box</td>
<td>0.03</td>
<td>measures</td>
</tr>
</tbody>
</table>

*maximum distance to extend segments to get an intersection to help define the surrounding polygon.*

<table>
<thead>
<tr>
<th>Mode</th>
<th>choice box</th>
<th>Use outer polygon</th>
<th>Use outer polygon Use inner polygon Create with holes Create all found</th>
</tr>
</thead>
</table>

If ticked, the created polygons are given a fill colour.
Pick button

pick the position/point that will be used to find an enclosing polygon for.
28.10.9 Rename Strings

Position of option on menu: Utilities => H-Z => Rename strings

Selecting Rename strings brings up the Global String Rename panel.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source type</strong></td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type - for a full description go to 4.19.3 Data Source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Data source</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source of data to be processed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Input</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>expression to match the selected string names against.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>If a match occurs then the string name is modified as per the Output field.</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Output</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
expression for renaming the strings that matched Input.

**Match sub strings**
- tick box not ticked
  - if ticked, only a part of the string name needs to match the expression in Input.

**Use regular expressions**
- tick box not ticked
  - if ticked, Input is a regular expression.

**Target type**
- Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target

**Target info**
- input
  - extra information required for the target.

**Rename**
- button
  - rename the selected data.
28.10.10 Reverse Strings

Position of option on menu: Utilities => H-Z => Reverse strings

Reverses the direction of the selected strings.

Selecting Reverse strings brings up the Reverse Strings panel.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

  data selection type - for a full description go to 4.19.3 Data Source

<table>
<thead>
<tr>
<th>Data source</th>
<th>input</th>
<th>source of data to be processed.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Target type</th>
<th>Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target info</td>
<td>input</td>
</tr>
</tbody>
</table>

  extra information required for the target.

<table>
<thead>
<tr>
<th>Reverse</th>
<th>button</th>
</tr>
</thead>
</table>

  reverse the direction of the selected strings.
28.10.11 Rotate

**Position of option on menu:** Utilities => H-Z => Rotate

*Rotate* rotates all the selected strings about a central point (the rotation centre). The strings are rotated through a user supplied angle and can be moved or copied to their new rotated position.

The difference between a copy and a move is that if a string is **copied**, a copy of the string is rotated and the original string left untouched, whereas for a **move**, the actual string is moved from its original position to the new rotated position.

Selecting **Rotate** displays the **Rotate** panel.

![Rotate panel](image)

The centre of the rotation is defined by selecting the **Centre** button and picking a point as the new centre. The centre can be changed at any time by using the **Centre** button to select another centre.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data selection type</td>
<td>source of data to be processed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotation centre</td>
<td>xyz ops</td>
<td></td>
<td></td>
</tr>
<tr>
<td>select the centre of the rotation. The centre can be changed at any time.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotation angle (dms)</td>
<td>angle box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the angle in degrees to rotate the string through. The angle is measured about the rotation centre point in either a clockwise or anticlockwise direction.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Target type

Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target

Target info  
input

extra information required for the target.

Rotate  
button

rotate the selected data.
28.10.12 Rotate Relative

Position of option on menu: Utilities => H-Z => Rotate relative

Rotate Relative allows multiple strings to be rotated in the XY plane by a user given angle and about various base points (rotation centres).

The simpler Rotate option (Utilities => H-Z => Rotate) only rotates the selected strings about a single point.

Rotate Relative is more flexible and has many methods for defining the base points (rotation centres), even allowing individual strings to have their own base point. In this case, the base point for rotation is calculated for each string in the Data Source and the rotation applied to each string individually. For example, Relative Rotate can rotate strings where the base point for each string is the start vertex of each string.

Allowing various base point modes allows greater flexibility in rotating many strings at once.

Rotate Relative performs a 2d rotation of strings. That is, the rotation is only in the XY plane.

The strings can be moved or copied to their new rotated position. The difference between a copy and a move is that if a string is copied, a copy of the string is rotated and the original string left untouched, whereas for a move, the actual string is moved from its original position to the new rotated position.

Selecting Rotate Relative displays the Relative Rotate panel.

The fields and buttons used in the panel have the following functions.
<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>source box</td>
<td>Model</td>
<td></td>
</tr>
<tr>
<td>Rotation angle (dms)</td>
<td>angle box</td>
<td>0°</td>
<td></td>
</tr>
<tr>
<td>Direction</td>
<td>choice box</td>
<td>Clockwise</td>
<td>Clockwise, Counter-clockwise</td>
</tr>
<tr>
<td>Pick Angle by 3 points</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Upon clicking the button, the user will be asked to pick the:

1. Base point about which the angle is measured (A);
2. Reference point (B); and
3. New point (C).

The Rotation angle and Direction will be calculated based on the 3 picked points.

Base point mode | choice box | Start of string | Start of string, End of string, Middle of string, Middle Vertex, Vertex Number, Chainage, Chainage & Offset, Coordinates, Angle by 3 pts Vertex, Justification point (Text only!) |

allows the user to define how the base point for the rotation is determined for the data. Valid options include:

- Start of string – the base point is the start of each string
- End of string – the base point is the end of each string
- Middle of string – the base point is the middle (based on chainage) of each string
• Middle Vertex – the base point is the middle vertex of each string. In the case of a string with an even number of vertices, the behaviour of this routine can be varied. Refer to the Middle Vertex Mode in the Advanced tab.

• Vertex Number – the base point is a specific vertex of each string, specified by the vertex number. The start vertex is 1, the next vertex 2 and so on for a string with n vertices. The vertex number may also be specified as a negative number to count vertices from the end of the string back towards the start. In this case, for a string with n vertices, a vertex number of -1 is the last vertex (nth vertex), -2 the 2nd last vertex (n-1), and so on until the first vertex number is ~n. If the specified vertex number exceeds the string extents, then an error will be produced and the string skipped.

• Chainage – the base point is calculated at a specific chainage along each string. Where the chainage is beyond either end of a string, the behaviour of this routine can be varied. Refer to the Base point chainage extend mode in the Advanced tab.

• Chainage & Offset – the base point is calculated at a specific chainage along and offset from each string. The standard convention of a negative offset to the left of the string and positive offset to the right of the string applies.

• Coordinates – the base point is specified by a set of coordinates. In this mode, the routine behaves in the same way as the normal Rotate routine- the same base point is used for all strings. The Z coordinate is not optional and must be entered, even if it is zero. The Z coordinate, however, does not affect the rotation.

• Angle by 3pts Vertex – the base point is the set of coordinates selected when the Angle by 3 pts was picked. This is the coordinates of point A in the diagram above.

• Justification point (Text only!) – the base point is the justification point of a Text object. Note that this only applies to Text objects- all other objects will be skipped in this mode.

The fields displayed on the panel will change depending on the base point mode chosen.

**Vertex number**
integer box 1
the vertex number to be used as a base point. Enabled for Vertex Number mode only.

**Chainage**
real box 0
the chainage to be used for calculating the base point. Enabled for Chainage and Chainage & Offset modes only.

**Offset**
real box 0
the offset to be used for calculating the base point. Enabled for Chainage & Offset mode only.

**Base Point**
xyz box 0,0,0
the coordinates (X, Y, Z) to be used as the base point. Enabled for Coordinates mode only.
Advanced Tab

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base point chainage extend mode</td>
<td>choice box</td>
<td>Limit to end of string</td>
<td>Skip with error,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limit to end of string</td>
<td>Limit to end of string,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Extend beyond string</td>
</tr>
</tbody>
</table>

controls the behaviour of the routine when the base point mode is Chainage and the specified chainage is beyond the string extents.

- *Skip with error* – the string will be skipped, with an error written to the output window
- *Limit to end of string* – the base point will use the chainage of the nearest end point
- *Extend beyond string* – the base point will be calculated based on a projection beyond the string to the specified chainage and based on the bearing of the nearest end.
Middle vertex mode choice box Lower vertex Skip with error, Lower vertex< Higher vertex

controls the behaviour of the routine when the base point mode is Middle Vertex and the string has an even number of vertices. Where the string has an even number of vertices, the middle vertex can be one of two possibilities.

Skip with error – the string will be skipped, with an error written to the output window

Lower vertex – the lower-numbered vertex will be used as the middle vertex

Higher vertex – the higher-numbered vertex will be used as the middle vertex

Add attributes tick box ticked

writes the various relative rotate settings to the rotated string as string attributes.

Output messages tick box ticked

writes various output messages when run. If not ticked, no output messages will be produced by the routine, including critical warning and error messages.

Use log lines tick box ticked

use intelligent log lines for the certain output messages. If not ticked and output messages are enabled, the messages will be normal messages.

Target type
data selection type - for a full description go to 4.19.3 Data Source

Target info
input
extra information required for the target.

Rotate
button
rotate the selected data.
28.10.13 Set Constant Z-Values

Position of option on menu: Utilities => H-Z => Set constant z-values

This option sets all the points on a string to the same elevation - the average, highest, or lowest z-value of each selected string's z-values.

For example, the option can be used to set a starting value for building pads.

The user can drape a string then average the z-values to get close to a volumes balance. Alternatively, the user can opt for the highest z-value calculated by the drape, i.e. the entire platform is in fill, or select the lowest z-value so the entire platform is in cut.

Selecting Set constant z-values brings up the Set Constant Z-Value panel.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td>data selection type - for a full description go to 4.19.3 Data Source</td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td>source of data to be processed.</td>
<td></td>
</tr>
<tr>
<td>Z value mode</td>
<td>choice box</td>
<td>Average, Highest, Lowest</td>
<td></td>
</tr>
</tbody>
</table>

if Average, the string is given the Z value that is the average of all the vertex Z values.

If Highest, the string is given the Z value that is the highest of all the vertex Z values.

If Lowest, the string is given the Z value that is the lowest of all the vertex Z values.

Process button

sets the constant z-value for the selected strings.
28.10.14 Set Strings Directions

**Position of option on menu:** Utilities => H-Z => Set strings directions

Set strings directions attempts to set the direction of select strings to be the same as the direction of a selected reference string.

On selecting Set strings directions, the Set Strings Directions panel is displayed.

![Set Strings Directions Panel]

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference string</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target info</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Data source type - for a full description go to 4.19.3 Data Source*

*Data source - for a full description go to 4.19.3 Data Source*

*Reference string - the string that is used as the reference direction. This is the direction that, if possible, the selected strings are given.*

*Target type - for a full description go to 4.19.4 Data Target*

*Target info - extra information required for the target.*

*Change - change the direction of the selected strings.*
28.10.15 Set Heights for 2d/Super Strings

Position of option on menu: Utilities => H-Z => Set heights for 2d/super strings

Set heights for 2d/super strings is used to quickly change the height of selected 2d strings or 2d super strings (super strings with a constant z value). It is especially useful when you have a lot of contours without z-values and you wish to give them z-values.

An initial height and increment is given and as each string is selected, it is given the current height and the height then incremented for use when picking the next string.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Height</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height increment</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>input</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td>Target type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target info</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Update string</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Height** to used as the height for the next selected string. This is incremented by the **Height increment** after each string is accepted.

As each string is accepted and given the **Height**, **Height** is incremented by this value.

If not blank, the selected strings are given this colour when their z-value is changed.

If blank, the selected strings keep their original colour.

**4.19.4 Data Target**

Where to put the processed string - for a full description go to

Update string

After clicking on the **Update string** arrow icon, 2d strings are selected and when accepted, have their z-value changed to the value in **Height**. The height value is then automatically incremented by **Height increment**. The next string is then selected and accepted (without needing to click on **Pick** again). This continues until **Cancel** is selected from the **Pick Ops** menu.
28.10.16 Smooth Strings

Position of option on menu: Utilities => H-Z => Smooth strings

The Smooth options are used to add extra points into 2D or 3D strings to make a smoother string.

Selecting Smooth strings displays the Smooth Strings panel.

The fields and buttons used in this panel have the following function:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model data selection type - for a full description go to 4.19.3 Data Source.</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>Data source to be smoothed.</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for smoothed strings</td>
<td>Model for the smoothed strings to go to</td>
<td>available models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preserve string points</td>
<td>Tick box</td>
<td>tick box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pass other strings</td>
<td>Tick box</td>
<td>tick</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smooth</td>
<td>Button</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- If ticked, the smoothed strings will still contain all the original points.
- If not ticked, the smoothed strings may deviate from the original string points.
- If ticked, any strings that can’t be smoothed are copied and added to the smoothed strings model.
28.10.17 Swap XY

Position of option on menu: Utilities => H-Z => Swap XY

The Swap xy option is used to swap the (x,y) coordinates of selected strings. Selecting Swap XY displays the Swap XY String/Model/View panel.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target info</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swap XY</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

data selection type - for a full description go to 4.19.3 Data Source.

source of data to be have the XY coordinates swapped.

Data target - where to put the processed string. For a full description go to 4.19.4 Data Target.

extra information required for the target.

swap the selected strings and add them to the target.
28.10.18 Test Wildcards

Position of option on menu: Utilities => H-Z => Test wildcards

Test wildcards is used to test the effect of pattern expressions and regular expressions on text.

Selecting Test wildcards displays the Pattern/Regular Expression Tester panel.

The Search/Replace criteria and the Pattern expression or Regular expression are applied to the data in the Input column and the results are placed in the Output column.
28.10.19 Text

Position of option on menu: Utilities => H-Z => Text

The Text option is used to change the text style, units, height, offset, justification, angle and text for text, 4d strings and super strings.

For this option the selection process is extended from the standard Data Source.

After the data is selected as defined by the Data Source, the two extra parameters, Old text and the Textdata parameters in Info, are used to further specify which text is to be selected and modified.

Selecting Text displays the Change Text Info panel.

The fields and buttons used in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
</tr>
</tbody>
</table>

Data selection type - for a full description go to 4.19.3 Data Source.

Data source input

source of data to be processed.
Use regular expressions  
tick box  
not ticked  
if ticked, then Regular expressions given in the Old and New fields are used to modify the text.

Ignore case  
tick box  
ticked  
if ticked, the search for Old text will make a match independent of upper or lower case.  
If not ticked, the search for Old text will treat upper or lower case as being different.

Any matched text is replaced by new text.

Old text  
input  
if the Old text field is non-blank, then any text in 4d or text strings will be checked for a match against this value. Wild cards and characters can be used.

Info  
input  
if non-blank, then only strings which match these Textdata parameters will be selected.

New text  
input  
if non-blank, then any selected text the selected strings will be modified to this value. Wild cards and characters can be used.

Info  
input  
if non-blank, then the select text on the selected strings will be given these Textdata parameters.

Target type  
Data target - where to put the processed strings. For a full description go to 4.19.4 Data Target

Target info  
input  
extra information required for the target.

Convert  
button  
run the option and change the selected text.
28.10.20 Translate

Position of option on menu: Utilities => H-Z => Translate

Translate is used to translate the selected strings through a user supplied translation vector (dx,dy,dz).

The strings can be translated in the x,y and z directions and be moved or copied to their new translated positions.

The difference between a copy and a move is that if a string is copied, a copy of the string is translated and the original string left untouched, whereas for a move, the actual string is moved from its original position to the new translated position.

Selecting Translate displays the Translate panel.

![Translate Panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data source type - for a full description go to 4.19.3 Data Source

Data source

input

source of data to be processed.

dx dy dz

input

the translation vector (dx,dy,dz). This vector is added to all points in the strings.

The translation (dx dy dz) can be typing into the dx dy dz field or by picking the dx dy dx button and then selecting two points with the cursor. When two points are selected, the difference vector of the two selected points is taken as the translation vector (dx,dy,dz). The (dx,dy,dz) value is piped into the dx dy dz field.

Target type

Data target - where to put the processed string. For a full description go to 4.19.4 Data Target
Target info input
extra information required for the target.
Translate button
translate the selected strings.

How to Use the Panel
(a) Enter the Data source for the strings to be translated.
(b) Define the translation vector \((dx \ dy \ dz)\) by either typing the value into the \(dx \ dy \ dz\) field or by selecting the \(dx \ dy \ dz\) button and picking two points to define the translation vector. The resulting \((dx \ dy \ dz)\) values are piped into the \(dx \ dy \ dz\) field.
(c) Select the target mode.
(d) Selecting the Translate button then does the required translations (moves or copies).
28.11 Old

Position of option on menu: Utilities => Old

The Old Utilities contains superseded options. They should no longer be used.

For Check breaklines, go to
  Check breaklines (advanced)  28.11.1 Check Breaklines
  Helmert 2D  28.11.2 Check Breaklines (Advanced)
  28.11.3 2D Helmert
28.11.1 Check Breaklines

Position of option on menu: Utilities => Old => Check breaklines

For information on this option please go to the section 16.4 Check Breaklines - Old
28.11.2 Check Breaklines (Advanced)

**Position of option on menu:** Utilities => Old => Check breaklines (advanced)

This section of documentation is a work in progress and will be updated in subsequent releases.

The fields and buttons in the panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data set 1</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if <strong>Data set 2</strong> is ticked off, then all the selected strings in Data set 1 are checked against all the other selected strings from Data set 1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If <strong>Data set 2</strong> is ticked on, then all the selected strings in Data set 1 are checked against all the selected strings in Data set 2, BUT the strings in Data set 1 are not checked against each other and the strings in Data set 2 are not checked against each other.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Data set 1 source type</strong></th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>data selection type - for a full description go to 4.19.3 <em>Data Source</em>.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Data set 1 source</strong></th>
<th>input</th>
</tr>
</thead>
<tbody>
<tr>
<td>data to be processed.</td>
<td></td>
</tr>
</tbody>
</table>
Data set 2

Data set 2 source type  Model
  data selection type - for a full description go to 4.19.3 Data Source.

Data set 2 source  input
data to be processed.

Intersecting strings with valid heights  model box  available models
  if non-blank, check for any crossing line segments and place either a copy of the crossing segments into
  the model given in this field or a diamond depending on the state of Simple crosses.

Duplicate vertices of different heights  model box  available models
  if non-blank, copies of any strings that are completely duplicated are placed in the model given in this
  field and circles are placed in this model at any duplicate points that aren't from an entire string.

Identical strings in all details  model box  available models
  if non-blank, the duplicates of any strings are moved to model given in this field. That is, if any strings
  are identical in all ways, then the second and subsequent identical strings are moved to the this model.
  This is especially for the case when a second copy of some data has been supplied.

Self check strings  tick box  tick
  if ticked, a string is not check against itself for crossing breaklines etc.
  If not ticked, a string is not checked against itself for crossing breaklines. This speeds up processing.

Colour for intersections  colour box  available colours
  colour for the copies of the crossing segments.

Clean models beforehand  tick box  tick
  if ticked, the models for intersecting string, duplicate points, identicals are cleaned before the option is
  run.

Report file  file box
  if non-blank, a report file of this name is created giving details of all the crossing breaklines and
  duplicate plan points with different z-values.

Simple crosses  tick box  tick
  if ticked, create diamonds at the position where strings cross, otherwise create a string in the shape of
  a cross with parts of the crossing strings.

Check  button
  after selecting the check button, all the strings in the model/view are tested for any crossing line
  segments or duplicate points. If requested, a report is generated.

<esc> can be used to abort the checking option.
28.11.3 2D Helmert

Position of option on menu:  Utilities => Old => 2D Helmert

NOTE - this option has been superseded and should not be used. It is for upward computability only.

A 2D Helmert transformation is a two dimensional linear transformation consisting of a scaling, rotation and a 2D- translation (shift) of data. Hence there are four parameters to be specified:

Hence the 2D Helmert parameters are
(a) the one scale factor for both the x and y axes
(b) the same rotation of the x-axis and y-axis of the existing coordinates to align it with the control x and coordinate axis
(c) the x and y translation of the observed coordinates after the scalings and rotations have been applied

For information on the 2D Helmert transformation, please go to the section 28.9.1 Coordinate Transformations - Helmert and Affine

This case of a fixed scale is not allowed in this option but is in the 28.10.4.1 2D Helmert (Advanced) option.

Selecting Helmert brings up the Helmert 2D panel.

If the Parameters by choice box is set to Pt Selection then control-observed point pairs are
selected by the user and the pairs are written to the grids on the panels. See the section 28.9.1.1 Selecting Control and Observed Points for the Helmert and Affine Transformations for information on picking control and observed points.

If the Parameters by choice box is set to Direct entry, the transformation parameters are manually entered into the panel and the grid section is not used.

The fields and buttons used in this panel have the following functions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>file box</td>
<td>*.hel files</td>
<td></td>
</tr>
<tr>
<td>Read</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source type</td>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helmert parameters by</td>
<td>choice</td>
<td>Pt selection</td>
<td>Pt selection Direct entry</td>
</tr>
<tr>
<td>Report file</td>
<td>*.rpt files</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotation</td>
<td>input/output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scale</td>
<td>input/output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X Translation</td>
<td>input/output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y Translation</td>
<td>input/output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculate</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target type</td>
<td>Data target type - where to put the processed strings. For a full description go to 4.19.4 Data Target</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target info</td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helmert</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
target area.

**Inverse** button
applies the inverse transformation to the one defined in the panel.

**Finish** button
end the option, remove this panel and the Helmert control points table from the screen.
29 User

12d Model allows options to be placed on User menus.

Go to

- 29.1 User Defined Menus
- 29.2 User on the Main Menu
- 29.3 Miscellaneous
- 29.4 Beta
- 29.5 Console
- 29.6 Polygon
- 29.7 Undocumented User Menus
- 29.8 Obsolete Options

29.1 User Defined Menus

To help customise 12d Model, there is a pull down menu User on the Main menu and User menus on each of the pull down menus on the Main menu.

The User menus can run 12d Model macros, external programs, chains, and bring up 12d Model screen layout files, panels and menus.

For the full definition and format for user defined menus, see 41.2 User Defined Menus in the Appendix 41 Functions Keys, Menus, Toolbars.
29.2 User on the Main Menu

All the options under User and User menus are either customers own macros or unsupported macros from 12d Solutions which may not be documented. For more information on defining User menus, go to 29.1 User Defined Menus.

The User walk-right menu on the Main menu is:

For the option Miscellaneous, go to 29.3 Miscellaneous
Beta 29.4 Beta
Console 29.5 Console
Polygon 29.6 Polygon
29.3 Miscellaneous

All the options under User and User menus are either customers own macros or unsupported macros from 12D Solutions which may not be documented. For more information on User menus, go to 29.1 User Defined Menus

The walk rights User =>Miscellaneous menu is:

A to C
- Attribute editor
- Chainage/offset label inquire
- Change names of strings
- Contour levels
- Create buildings for TINS
- Convert circles to points
- Create control stations
- Create 2 point - 2D strings
- Create 3 point - 2D strings (name from label)

D to K
- Draw cross at IPs
- Drop bubbles
- Drop points onto centre line
- Drop 2 values of points onto centre line
- Extrapolate
- Extend pipe
- Fencing models
- Get length in 3d
- Head to tail closest points

L to Q
- Label alignment
- Label alignment radius/p (rail)
- Label curve
- Label sewer plan
- Label strings with name
- Model to name
- Name strings using text strings
- Overlay Optimiser
- Polygons from 2 string names
- Quarter points bubbles and table

R to Z
- Read EEBY sections
- Read USGS DEM data
- Remove null VIP's
- Remove binability
- Restore fenced model
- Restore model 1st
- Scale text values
- Scale string names
- Set string names by number
- Set string properties
- Set contour level from contour names
- Set contour names from contour levels
- Sort .xyzs data file
- String attributes-properties to-from clipboard
- Sum length of all strings view/model
- Super string dimension occurrences
- Super string to v3.2 strings
- Translate string in section view
- Text (elev) to 3d point
- Tins elev differences to points
- XYZ chaining

For Attribute Editor, go to the section
- Chainage/offset label inquire
- Change names of strings
- Contour levels
- Create buildings for TINS
- Create points for circle centres
- 14.18.1 Attribute Editor
- this is a console macro
- 29.3.1 XXX New Name
- 29.3.2 Set Heights for 2d (contour) Strings
- 29.3.3 XXX Create Building for a Tin
- 29.3.4 Create Points for Centre of Circles
Create control stations
Create 2 point - 2D strings

**Points**
Create 3 point - 2D strings (name from label)
Draw cross at IPs
Drop bubbles
Drop points onto centreline
Drop Z values of points onto centre lines
Extrapolate
Extend pipe
Fencing models
Get length in 3d
Head to tail closest points
Label alignment
Label alignment radius/ip (rail)
Label curve
Label curve radii
Label sewer plan
Label strings with name
Model to name
Name strings using text strings

**Picking Text**
Overlay Optomiser
Polygon from 2 string names
Quarter points bubbles and table
Read EEBY sections
Read USGS DEM data
Remove null VIPs
Remove tinability
Restore fenced model
Restore model list
Scale text values
Scale string names
Set string names by number
Set string properties
Set contour levels from contour names

**Names**
Set contour names from contour levels

**Levels**
Sort xyzs data file
String attributes properties to-from clipboard
Sum length of all strings model/view
Super string dimension occurrences

**Occurrences**
Super string to V3.2 strings
Translate string in section view
Text (elev) to 3d point
Tin elev differences to points
XYZ chainage
29.3.1 XXX New Name

**Position of option on menu:** User => Miscellaneous => A to C => Change name of strings

*Note* - This is an unsupported option which may not be fully documented.

![Set New String Names](image)

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source</strong></td>
<td>Model/View/String of circles</td>
<td>Model</td>
<td>string, model, view</td>
<td></td>
</tr>
<tr>
<td><strong>Model</strong></td>
<td>source of the data to process.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Name stem</strong></td>
<td>input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Next number</strong></td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
29.3.2 Set Heights for 2d (contour) Strings

**Position of option on menu:** User => Miscellaneous => A to C => Contour levels

*Note* - This is an unsupported option which may not be fully documented.

This panel is used to quickly change the height of contour strings. An initial height and increment is given. As each string is accepted, it is given the height and the height then incremented.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Height</strong></td>
<td>input</td>
<td>defaults</td>
<td></td>
</tr>
<tr>
<td>Height to use for the next selected string. This is incremented by the “Height increment” after each string is accepted.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Height increment</strong></td>
<td>input</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td>As each string is accepted, the “Height” value is incremented by this value.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>New colour</strong></td>
<td>input</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td>If non-blank, the selected strings are given this colour when their z-value is changed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Pick</strong></td>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>After clicking on Pick, 2d strings are selected and when accepted, have their z-value changed to the value in the Height field. The height value is then automatically incremented. The next string is then selected and accepted (without needing to click on Pick again). This continues until Cancel is selected from the “Pick Ops” menu.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Undo</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undo the last height change. This can be selected up to 200 times.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
29.3.3 XXX Create Building for a Tin

**Position of option on menu:** User => Miscellaneous => A to C => Create buildings for tin

**Note** - This is an unsupported option which may not be fully documented.
29.3.4 Create Points for Centre of Circles

Position of option on menu: User => Miscellaneous => A to C => Convert circles to points

Note - This is an unsupported option which may not be fully documented.
This option creates points at the centres of circles.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source</td>
<td>Model</td>
<td>string, model, view</td>
<td></td>
</tr>
<tr>
<td>Model/View/string of circles</td>
<td></td>
<td>source of the circles to create centre points for.</td>
<td></td>
</tr>
<tr>
<td>Model for centres</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Run</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

run the option.
29.3.5 XXX Create Control Stations

**Position of option on menu:**  User => Miscellaneous => A to C => Create control stations

*Note* - This is an unsupported option which may not be fully documented.
29.3.6 XXX Create 2d String from Two Points

**Position of option on menu:**  User =>Miscellaneous =>A to C =>Create 2 point - 2d strings

*Note* - This is an unsupported option which may not be fully documented.
29.3.7 XXX Create 3 Point 2d Strings

Position of option on menu: User =>Miscellaneous =>A to C =>Create 3 point - 2d strings

Note - This is an unsupported option which may not be fully documented.
29.3.8 XXX Drop Bubbles

Position of option on menu:  User => Miscellaneous => D to K => Drop bubbles

Note - This is an unsupported option which may not be fully documented.
29.3.9 XXX Drop Points onto Alignment

**Position of option on menu:** User => Miscellaneous => D to K => Drop points onto alignment

**Note** - This is an unsupported option which may not be fully documented.
29.3.10 XXX Drop z-value onto Centreline

**Position of option on menu:** User => Miscellaneous => D to K => Drop points on centreline

*Note* - This is an unsupported option which may not be fully documented.
29.3.11 Extrapolate Point

Position of option on menu: User => Miscellaneous => D to K => Extrapolate

Note - This is an unsupported option which may not be fully documented.

This option is used to select two points and then creates a new point a given distance from the second point along the line from the first point to the second point. The z-value for the point is the extrapolated z-value from the two selected points.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select first point</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and second point</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance</td>
<td>output box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undo</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

select the first point to use in the extrapolation.
select the second point to use in the extrapolation.
distance to project from the second point along the line from the first to the second point.
run the option.
undo the last extrapolated point created since the panel has been up.
29.3.12 XXX Create VicRoad Pipe

*Position of option on menu:* User => Miscellaneous => D to K => Extend pipe

*Note* - This is an unsupported option which may not be fully documented.
29.3.13 XXX Fencing Models

Position of option on menu: User => Miscellaneous => D to K => Fencing models

*Note* - This is an unsupported option which may not be fully documented.
29.3.14 Length in 3d

**Position of option on menu:**  User => Miscellaneous => D to K => Get length in 3d

**Note:** This is an unsupported option.

This panel is used to calculate the 3d length of a selected string.

![Length in 3D panel](image)

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*select the string to calculated the 3d length for.*
29.3.15 XXX Head to Tail Closest Points

Position of option on menu: User => Miscellaneous => D to K => Head to tail closest points

Note - This is an unsupported option which may not be fully documented.
29.3.16 XXX Label Alignment

Position of option on menu: User => Miscellaneous => L to Q => Label alignment

Note - This is an unsupported option which may not be fully documented.
29.3.17 XXX Label Alignment Radius

**Position of option on menu:**  
User => Miscellaneous => L to Q => Label alignment radius/ip (rail)

*Note* - This is an unsupported option which may not be fully documented.
29.3.18 XXX Label Sewer Plan (old)

Position of option on menu:  User =>Miscellaneous =>L to Q =>Label sewer plan

Note - This is an unsupported option which may not be fully documented.

This option has been superseded.
29.3.19 XXX Name Strings by Nearby Text

Position of option on menu:   User =>Miscellaneous =>L to Q =>Label strings with name

Note - This is an unsupported option which may not be fully documented.

![Label String By Name dialog box](image)
29.3.20 XXX Name Strings by Model Name

Position of option on menu:  User => Miscellaneous => L to Q => Model to name

Note - This is an unsupported option which may not be fully documented.
29.3.21 XXX Name Section Strings by Picking Text

**Position of option on menu:**  User =>Miscellaneous =>L to Q =>Name strings using text strings

*Note* - This is an unsupported option which may not be fully documented.
29.3.22 XXX Overlay Optimiser

**Position of option on menu:** User => Miscellaneous => L to Q => Overlay optimiser

*Note* - This is an unsupported option which may not be fully documented.
29.3.23 XXX Read EEBY Sections

Position of option on menu:  User =>Miscellaneous =>R to Z =>Read EEBY sections

Note - This is an unsupported option which may not be fully documented.
29.3.24 XXX Read USGS DEM Data

Position of option on menu: User => Miscellaneous => R to Z => Read USGS DEM data

Note - This is an unsupported option which may not be fully documented.
29.3.25 Remove Null VIP Points

**Position of option on menu:**  User =>Miscellaneous =>R to Z =>Remove null VIP’s

*Note* - This is an unsupported option which may not be fully documented.

This option is used to remove any null vertical intersection points from alignment strings.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source</td>
<td>data source</td>
<td>Model</td>
<td>String, Model, View</td>
</tr>
<tr>
<td>Model/View/String</td>
<td>data source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Type of data to remove null vips for.*

*Data source for all the alignment strings to remove all null vips from.*

*Run the option.*
29.3.26 XXX Remove Tinability

**Position of option on menu:** User => Miscellaneous => R to Z => Remove tinability

*Note* - This is an unsupported option which may not be fully documented.
29.3.27 XXX Restore Fenced Model

Position of option on menu: User => Miscellaneous => R to Z => Restore fenced model

Note - This is an unsupported option which may not be fully documented.

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>View to Add</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
29.3.28 XXX Scale Text Values

Position of option on menu: User => Miscellaneous => R to Z => Scale text values

Note - This is an unsupported option which may not be fully documented.

<table>
<thead>
<tr>
<th>Text model</th>
<th>labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delimiter</td>
<td></td>
</tr>
<tr>
<td>Scale factor</td>
<td>null</td>
</tr>
<tr>
<td>Decimals</td>
<td>3</td>
</tr>
<tr>
<td>New pre text</td>
<td></td>
</tr>
</tbody>
</table>

**Error** Model <labels> does not exist

[Image of text converter interface]
29.3.29 XXX Scale String Names

Position of option on menu:  User =>Miscellaneous =>R to Z=>Scale string names

Note - This is an unsupported option which may not be fully documented.
29.3.30 XXX Set String Names by Number

Position of option on menu: User => Miscellaneous => R to Z => Set string names by number

*Note* - This is an unsupported option which may not be fully documented.
29.3.31 XXX String Operations

Position of option on menu: User => Miscellaneous => R to Z => Set string properties

Note - This is an unsupported option which may not be fully documented.
29.3.32 Set Contour Levels from String Names

Position of option on menu: User => Miscellaneous => R to Z => Set contour level from contour name

Note - This is an unsupported option which may not be fully documented.

This operates on contour strings and sets the contour z-value to be the value of the name of the contour string. The z-values may need to be factored to bring them into the correct units.

![Z-values from Names panel](image)

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source</td>
<td>data source</td>
<td>Model</td>
<td>Model, View</td>
</tr>
<tr>
<td>Model/View</td>
<td>data source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undo</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type of data to set contour z-values for:

Data source to of contours to set z-values for:

Run the option

Undo the last set of contours labelled since the panel was up.
29.3.33 Set Contour Names From Contour Levels

**Position of option on menu:** User => Miscellaneous => R to Z => Set contour names from contour levels

*Note* - This is an unsupported option which may not be fully documented.

This option operates on contours only and sets the string name to be the contour z value multiplied by the given factor.

![Name From Contour Level](image)

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data source</strong></td>
<td>data source</td>
<td>Model</td>
<td>String, Model, View</td>
</tr>
<tr>
<td><strong>Model/View/String</strong></td>
<td>data source</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Z factor</strong></td>
<td>input</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td><strong>No of decimals</strong></td>
<td>input</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td><strong>Process</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Type of data to label contours strings for.*

*Data source to calculate label the contours for.*

*Value to multiply the z values by before creating the string name.*

*Number of decimals places to use in the string name.*

*Run the option.*
29.3.34 XXX Sort XYZs Data File

Position of option on menu: User => Miscellaneous => R to Z => Sort xyz data file

Note - This is an unsupported option which may not be fully documented.
29.3.35 String Clipboard

**Position of option on menu:** User => Miscellaneous => R to Z => String attributes-properties to-from clipboard

**Position of option on menu:** File I/O => User => String attributes-properties to-from clipboard

*Note* - This is an unsupported option which may not be fully documented.

On selecting the String attributes-properties to-from clipboard option, the String clipboard panel is displayed.

This panel can be used to export string properties and attributes to the windows clipboard and import the properties to update the same strings.

The following properties are always exported when **copy** is selected:

<table>
<thead>
<tr>
<th>String id</th>
<th>Name</th>
<th>Type</th>
<th>Breakline</th>
<th>Style</th>
<th>Colour</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>3322187D1</td>
<td>Drainage</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

**String id. Type and Length** are for export only and cannot be changed on an import. **Name, Breakline, Style and Colour** may be changed to update the string when **paste** is selected. **Style** (linestyle order number from linestyl.4d) and **Colour** (colours.4d) numbers are used.

Starting in the 8th column, all of the string attributes are exported unless the **Att prefix selection** and/or the **Att prefix exclusion** filters are used. The first row is the string attribute name and the second row contains a number indicating the type of attribute. Attribute type numbers are:

1. integer numbers (no decimals)
2. real numbers (decimals allowed)
3. text (characters allowed)

The fields and buttons used in this panel have the following functions.

**String model**
- **model box**
  - name of the model to select strings from.

**Att prefix selection**
- **input**
  - last data used
  - (copy only) if blank all attributes will be selected prior to the exclusion. If text is entered then only attributes with this exact text (case sensitive) will be selected prior to the exclusion.

**Att prefix exclusion**
- **input**
  - last data used
  - (copy only) if blank all attributes matching the selection above will be exported. If text is entered then attributes with this exact text (case sensitive) will be excluded from the export.
Copy button

Copies the data from the string to the Windows clipboard.

Paste button

Pastes the data from the Windows clipboard. The string id is used to locate the string in the given model and then the properties/attributes are created and/or updated. If the attribute name is prefixed by DELETE followed by a space this string attribute will be deleted from all strings listed in the import.
29.3.36 Total Length of Strings

**Position of option on menu:**  User => Miscellaneous => R to Z => Sum length of all strings

**Note** - This is an unsupported option which may not be fully documented.

This panel is used to calculate the total length of the strings in a selected model or view.

![Total Length of Strings](image)

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source</td>
<td>data source type</td>
<td>model, view, string</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Data source</strong></td>
<td>data source to calculate lengths for.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length in 2d/3d</td>
<td>radio button</td>
<td>2d</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if 2d, the lengths are only calculated in 2d.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If 3d, the lengths are calculated in 3d.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ignore null length string(s)</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>if ticked, strings of null length are ignored in the string count and hence don’t affect the average length.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>run the option</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
29.3.37 XXX Super String Dimension Occurrences

Position of option on menu: User => Miscellaneous => R to Z => Super string dimension occurrences

Note - This is an unsupported option which may not be fully documented.
29.3.38 XXX Transform V4 to V3.2

**Position of option on menu:** User => Miscellaneous => R to Z => Super string to V3.2 strings

*Note* - This is an unsupported option which may not be fully documented.

This panel converts a super string from 12d *Model* V4.0 format to V3.2 strings.
29.3.39 XXX Section Move

**Position of option on menu:** User => Miscellaneous => R to Z => Translate string in section view

*Note:* This is an unsupported option which may not be fully documented.

This panel is used to translate a string on a section view.

![Section Move Panel](image)
29.3.40 XXX Output XYZ and Chainage

Position of option on menu:  User =>Miscellaneous =>R to Z=>XYZ chainage

Note - This is an unsupported option which may not be fully documented.
29.4 Beta

All the options under User and User menus are either customers own macros or unsupported macros from 12D Solutions which may not be documented. For more information on User menus, go to 29.1 User Defined Menus.

The walk rights Beta menu is:

- 12d block insert
- Alignment labels
- Alignment label table
- Airfield Runway Calculator
- Catchment definer
- Check duplicate point numbers
- Create culverts
- Liquid Measure
- Make cuts
- Plot symbol / title block creation
- Read SDRMap feature codes
- Read SDRMap symbols
- Reformat CivilCAD Ascii 5 File
- Remove super string tinability
- Triangulate by selection set
- Update z value from points
- Create extrusions
- Extrusions tutorials

For the option Alignment labels, go to 29.4.1 XXX Alignment Labels
- Alignment label table 29.4.2 XXX Table of Alignment Labels
- Airfield Runway Calculator 29.4.3 Airfield Runway Calculator
- Catchment definer 29.4.4 XXX Catchment Definer
- Check duplicate point numbers 29.4.5 XXX Check Duplicate Point Numbers
- Create culverts 29.4.6 XXX Create Culvert
- Liquid measure 29.4.7 XXX Liquid Measure
- Make cuts 29.4.8 XXX Make Cuts Through Strings
- Plot symbol/title block 29.4.9 XXX Plot Symbol and Title Block

Creation (old)
- Read SDRMap feature codes 29.4.10 XXX Read SDRMap Feature Code
- Read SDRMap symbols 29.4.11 XXX Read SDRMap Symbols
- Reformat CivilCAD Ascii 5 file 29.4.12 XXX Reformat CivilCAD Ascii 5 file
- Remove super string tinability 29.4.13 XXX Remove Super String Tinability
- Triangulate by selection set 29.4.14 XXX Triangulate by Selection Set
- Update z values from points 29.4.15 XXX Update Z Values from Points
29.4.1 XXX Alignment Labels

**Position of option on menu:** User => Beta => Alignment labels

*Note* - This is an unsupported option which may not be fully documented.
29.4.2 XXX Table of Alignment Labels

Position of option on menu: User => Beta => Alignment label table

*Note* - This is an unsupported option which may not be fully documented.
29.4.3 Airfield Runway Calculator

Position of option on menu: User => Beta => Airfield Runway Calculator

This option is under development
29.4.4 XXX Catchment Definer

Position of option on menu:  User => Beta => Catchment definer

Note - This is an unsupported option which may not be fully documented.
29.4.5 XXX Check Duplicate Point Numbers

Position of option on menu: User => Beta => Check duplicate point numbers

Note - This is an unsupported option which may not be fully documented.
29.4.6 XXX Create Culvert

**Position of option on menu:** User => Beta => Create culvert

*Note* - This is an unsupported option which may not be fully documented.
29.4.7 XXX Liquid Measure

Position of option on menu:  User => Beta => Liquid measure

*Note* - This is an unsupported option which may not be fully documented.
29.4.8 XXX Make Cuts Through Strings

Position of option on menu:  User => Beta => Make cuts

Note - This is an unsupported option which may not be fully documented.
29.4.9 XXX Plot Symbol and Title Block Creation (old)

Position of option on menu: User => Beta => Plot symbol/title block creation

Note - This is an unsupported option which may not be fully documented.
29.4.10 XXX Read SDRMap Feature Code

Position of option on menu:  User => Beta => Read SDRMap feature codes

Note - This is an unsupported option which may not be fully documented.
29.4.11 XXX Read SDRMap Symbols

Position of option on menu: User => Beta => Read SDRMap symbols

Note - This is an unsupported option which may not be fully documented.
29.4.12 XXX Reformat CivilCAD Ascii 5 file

Position of option on menu: User => Beta => Reformat CivilCAD Ascii 5 file

Note - This is an unsupported option which may not be fully documented.
29.4.13 XXX Remove Super String Tinability

**Position of option on menu:**  User => Beta => Remove super string tinability

*Note* - This is an unsupported option which may not be fully documented.
29.4.14 XXX Triangulate by Selection Set

*Position of option on menu:*  User => Beta => Triangulation by selection set

*Note* - This is an unsupported option which may not be fully documented.
29.4.15 XXX Update Z Values from Points

**Position of option on menu:** User => Beta => Update z value from points

*Note* - This is an unsupported option which may not be fully documented.

![Update Z-value From Point](image_url)

29.5 Console

All the options under User and User menus are either customers own macros or unsupported macros from 12D Solutions which may not be documented. For more information on User menus, go to 29.1 User Defined Menus

All the macros on the Console menu only use the console panel and so do not support a F1 key for help.

The User => Console rights menu is:

![Console Rights Menu](image_url)
29.6 Polygon

The Polygon walk-right menu is

```
Polygon
Create polygon by picking point inside
Create polygon by picking sides
Colour polygon by range file
Remove polygon colour
Read polygons
```

and each option in this menu will now be discussed.

For Create polygon by picking point inside area, go to 14.6.18 Surrounding Polygon
Create polygon by picking sides 29.6.1 Create Polygon by Picking Sides
Colour polygons from range file 29.6.2 Colour Polygons by Range File
Remove polygon colour 29.6.3 Remove Polygon Colour
Road polygons 20.8.12.3 Road Polygons
29.6.1 Create Polygon by Picking Sides

**Position of option on menu:** User => Polygon => Create polygon by picking sides

This option creates a polygon by picking each segment in its order (and with direction) around the polygon. Segments will be automatically extended or clipped to form the polygon.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model for polygon</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td>Lot colour</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td>Join first and last segment</td>
<td>tick box</td>
<td>if tick, join the end of the last selected segment to the start of the first selected segment to form the final</td>
<td></td>
</tr>
</tbody>
</table>
side of the polygon. The segments may be automatically trimmed/extended.

Pick sides
string select
pick, with direction, the segments to be joined together to form the sides of the polygon.

Process
button
create the polygon from the selected segments.
29.6.2 Colour Polygons by Range File

**Position of option on menu:**  User => Polygon => Colour polygons by range file

This option creates a polygon by picking each segment in its order (and with direction) around the polygon. Segments will be automatically extended or clipped to form the polygon.

![](image.png)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range file</td>
<td>file box</td>
<td>*.lrf</td>
<td></td>
<td>range file for colouring polygons.</td>
</tr>
<tr>
<td>Data source type</td>
<td>model</td>
<td>model, view</td>
<td></td>
<td>data source type.</td>
</tr>
<tr>
<td>Data source</td>
<td>data source for polygons to be coloured.</td>
<td>model</td>
<td></td>
<td>data source for polygons to be coloured.</td>
</tr>
<tr>
<td>Table location</td>
<td>position select box</td>
<td>position of the table.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for table</td>
<td>model box</td>
<td>available models</td>
<td></td>
<td>model for the table of statistics on the polygon areas.</td>
</tr>
<tr>
<td>Text colour</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
<td>colour of the text.</td>
</tr>
<tr>
<td>Text size (w)</td>
<td>double box</td>
<td></td>
<td></td>
<td>size of the text for the table.</td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
<td>select all the polygons given by the Data source and colour them according to the lot range file.</td>
</tr>
</tbody>
</table>
29.6.3 Remove Polygon Colour

Position of option on menu: Design => Estate/Lots => Lot utilities => Remove polygon colour

Note - This is an unsupported option which may not be fully documented.
This option removes the colour of all the selected polygons.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source type</td>
<td>model</td>
<td>model, view</td>
<td></td>
</tr>
<tr>
<td>Data source</td>
<td>data source for polygons to have their colour removed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td>select all the polygons given by the Data source and remove the polygon colour.</td>
</tr>
</tbody>
</table>
29.7 Undocumented User Menus

The options on a User menu are either customer’s macros or unsupported macros from 12D Solutions and may not be documented.

To return to the start of the documentation on the User menu, click on 29 User.
29.8 Obsolete Options

These options are now obsolete and may not be documented.
To return to the start of the documentation on the User menu, click on User.
29.8.1 Triangulate a Model List

This is an obsolete option which is not documented.

To return to the start of the documentation on the User menu, click on 29 User.
29.8.2 Triangulate a Model

This is an obsolete option which is not documented.

To return to the start of the documentation on the User menu, click on 29 User.
29.8.3 MicroStation/ArcView/MapInfo Map File

This is an obsolete option which is not documented.

To return to the start of the documentation on the User menu, click on 29 User.
29.8.4 Old Head to Tail Strings

This is an obsolete option which is not documented.

To return to the start of the documentation on the User menu, click on 29 User.
29.8.5 String Movie CL for View

This is an obsolete option which is not documented.

To return to the start of the documentation on the User menu, click on 29 User.
29.8.6 String Report

This is an obsolete option which is not documented.

To return to the start of the documentation on the User menu, click on 29 User.
29.8.7 Write Binary XYZ File For

This is an obsolete option which is not documented.

To return to the start of the documentation on the User menu, click on 29 User.
29.8.8 Write BIPS File For

This is an obsolete option which is not documented.

To return to the start of the documentation on the User menu, click on 29 User.
29.8.9 Write Title Block File

This is an obsolete option which is not documented.

To return to the start of the documentation on the User menu, click on 29 User.
29.8.10 Old Clip String

This is an obsolete option which is not documented.

To return to the start of the documentation on the User menu, click on 29 User.
29.9 Drainage Options

These options are part of the Drainage-Sewer menu.
For the option *Downhill strings*, go to 29.9.1 Downhill Strings
Raindrop 29.9.2 Raindrop/Teardrop
Aquaplaning risk 29.9.3 Aquaplaning Risk Assessment
Extract sewer controls 29.9.4 Extract Sewer Controls
Convert to pts and lines 29.9.5 Convert to Points and Lines
29.9.1 Downhill Strings

Position of option on menu: Design=>Drainage-Sewer=>Downhill strings

This option copies selected Super strings to a target model, where the strings are split at their crests and sags, and set in the downhill direction.

On selecting the **Downhill strings** option, the **Downhill Strings** panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source model mask</td>
<td>input text</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specifies the model(s) from which to select Super strings to process. Use '*' and '?' wildcards to specify multiple models. Note: the target model cannot be specified.

| Source string mask                       | input text  |          |        |

Specifies the string name(s) to process from within the selected model(s). Use '*' and '?' wildcards to specify multiple string names. Note: if blank, the option will match all string names in the selected model(s).

| Colour for downhill strings              | colour box  | available colours |        |


Drainage Options

Chapter 29  User

Colour to apply to all strings in the target model (optional).

Linestyle for downhill strings  linestyle box  “FLOW LINE”  available linestyles

Linestyle to apply to all strings in the target model (optional).

Levee tolerance  input real  0.025

Localised uphill portions will be allowed to rise up within this vertical tolerance.

Discard tolerance  input real  0.1

Resultant strings shorter than this tolerance will be discarded from the target model.

Join resultant strings head-to-tail  tick box  ticked

Whether to join strings in the target model in a head-to-tail fashion.

Head-to-tail tolerance  input real  0.005

If joining strings head-to-tail, the head must be within this tolerance of the tail.

Matching number of leading characters in string names  input integer0

If joining strings head-to-tail, this number of leading characters in both string names must match.

Split resultant strings at drainage inlets  tick  not ticked

Whether to split strings in the target model at nearby drainage inlets.

Drainage model  model box  available models

If splitting strings at drainage inlets, strings will be split at all nearby drainage inlet pits found in this model. Drainage inlets (i.e. on-grade and sag pits only) must be within one pit diameter of the string, and may not be closer than the Discard tolerance from either end of the string.

Model of downhill strings  model box  available models

Target model. All matching source strings are copied to and processed in this model.

Clean model beforehand  tick box  ticked

Whether to clean the target model beforehand.

Run  button

Runs the option.

Special Note:
The Downhill Strings option is a macro, that may optionally be run from a chain via arguments, rather than via a panel. The details of the argument syntax are written to the Output Window, whenever the macro is run without valid arguments, viz:
12d Macro: "downhill_strings_panel.4do" started ...

Credits: AECOM Australia Pty Ltd developed the original, non-panel version of this macro.

Copies Super strings matching (string mask) from all models matching (model mask) to (target model).
All strings copied to (target model) are split at create and a gap and set in downhill direction.

Usage with no arguments: macro is run with a panel interface.

Usage with arguments: downhill_strings_panel <model mask> <string mask> <target model>
	[clean] [-C <colour name>] [-L <linestyle name>]
	[-t <tlevel tol> [-d <discard tol>]] [-j <ch2 tol> <prefix len>]

Optional flags:
-<clean> = Clean <target model> beforehand.
-<C <colour name>> = Colour for resultant strings.
-<L <linestyle name>> = Linestyle for resultant strings.
-<t <tlevel tol>> = Allow localised uphill portions rising less than <leveld tol>. Default is 0.025 without -t flag.
-<d <discard tol>> = Discard resultant strings shorter than <discard tol>. Default is 0.1 without -d flag.
-<j <ch2 tol> <prefix len>> = Join <target model> strings head-to-tail when head is within <ch2 tol> of tail ... ...
and when first <prefix len> characters in string names match.

cgl: downhill_strings_panel "down* stra" DL, "down stra", clean t 6.025 -d 0.1
cgl2: downhill_strings_panel "down* stra" DL, "down stra", C cyan t L "FLOW LINE", j 0.005 2

target model cleaned ...
added 30 downhill strings to target model ...
joined 18 string pairs head-to-tail in target model ...
split 14 strings in target model at nearby drainage inlets ...
discarded 6 short strings from target model ...

12d macro "downhill_strings_panel.4do" processed 24 strings from 15 models, to target model "drainage kerb inverts downhill"
29.9.2 Raindrop/Teardrop

Position of option on menu: Design=>Drainage-Sewer=>Raindrop
Position of option on menu: Tins=>Tin Analysis=>Rain drop

This section of documentation is a work in progress and will be updated in subsequent releases.
On selecting the Raindrop option, the Teardrop Macro panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>tin box</td>
<td>GROUND</td>
<td>available tins</td>
</tr>
<tr>
<td>Triangle filter colour</td>
<td>colour box</td>
<td>available colours</td>
<td></td>
</tr>
<tr>
<td>Model for flow lines</td>
<td>model box</td>
<td>FLOWMODEL</td>
<td>available models</td>
</tr>
</tbody>
</table>

Flow through point

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>X coordinate</td>
<td>measure box</td>
<td>0</td>
<td>available measures</td>
</tr>
<tr>
<td>Y coordinate</td>
<td>measure box</td>
<td>0</td>
<td>available measures</td>
</tr>
<tr>
<td>Z coordinate</td>
<td>measure box</td>
<td>0</td>
<td>available measures</td>
</tr>
<tr>
<td>Track Up Triangle</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td>Track Down Triangle</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td>Track Down Valley</td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
29.9.3 Aquaplaning Risk Assessment

Position of option on menu: **Design=>Drainage-Sewer=>Aquaplaning risk**

This option performs an aquaplaning risk assessment using the *Gallaway Equation*. The user need only supply flow path strings as 2d Super strings in the areas of concern on the road pavement tin (typically at the transitions in the road cross-fall). The option then re-creates these flow path strings in 3d, with evenly spaced vertices, then applies the *Gallaway Equation* to determine a water film depth at each vertex (where all parameters considered are set as vertex attributes). It then assesses the risk of aquaplaning at each vertex by associating a risk level and segment colour with the water film depth calculated at each vertex. In addition, a report file is written to the *Windows* clipboard, and optionally to file.

The *Gallaway Equation* is defined as follows:

\[
d = \frac{0.103 T^{0.11} L^{0.43} I^{0.59}}{S^{0.42}} - T
\]

- d = water film depth above top of pavement texture (mm)
- L = length of flow path (m)
- S = slope of the flow path (%)
- T = average pavement texture depth (mm)
- I = rainfall intensity (mm/hr)


On selecting the *Aquaplaning risk* option, the *Aquaplaning Risk Assessment* panel is displayed.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model of flow path strings</td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>All Super strings in this model will be analysed and updated with results.</strong></td>
</tr>
<tr>
<td>Road pavement tin</td>
<td>tin box</td>
<td>available tins</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Used to define the vertical profile of each flow path string.</strong></td>
</tr>
<tr>
<td>Reference string</td>
<td>string select</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Used to locate, identify, rename and sort the flow path strings (optional).</strong></td>
</tr>
<tr>
<td>Rainfall intensity (mm/hr)</td>
<td>input</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Typically 50 mm/hr for aquaplaning checks.</strong></td>
</tr>
<tr>
<td>Pavement texture depth (mm)</td>
<td>input</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Average texture depths can range from about 0.2 to 4 mm for different pavement materials.</strong></td>
</tr>
<tr>
<td>Flow path slope mode</td>
<td>choice box</td>
<td>Equal Area</td>
<td>Equal Area, Average</td>
</tr>
</tbody>
</table>
Determines how the slope of the flow path string is calculated at each vertex. Available modes are “Equal Area” and “Average” slope, from the start of the string to each vertex.

**Flow path z-value mode**

<table>
<thead>
<tr>
<th>Choice Box</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road pavement tin height</td>
<td>Road pavement tin height, Water film depth (mm)</td>
</tr>
</tbody>
</table>

Determine what the z-values of the flow path strings will represent. Available modes are “Road pavement tin height” and “Water film depth (mm)”.

**Calculated points per flow path string**

Number of evenly spaced points along each flow path string at which to calculate water film depths.

**Reported points per flow path string**

Number of evenly spaced points along each flow path string at which to report water film depths.

**Water film depth risk levels and other warnings**

**Unacceptable risk**

<table>
<thead>
<tr>
<th>Colour Box</th>
<th>Colour</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td></td>
<td>Colour to associate with an unacceptable risk.</td>
</tr>
</tbody>
</table>

**Unacceptable depth (mm)**

4

The lowest water film depth associated with an unacceptable risk.

**High risk**

<table>
<thead>
<tr>
<th>Colour Box</th>
<th>Colour</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orange</td>
<td></td>
<td>Colour to associate with a high (acceptable) risk.</td>
</tr>
</tbody>
</table>

**High depth (mm)**

3.2

The lowest water film depth associated with a high (acceptable) risk.

**Moderate risk**

<table>
<thead>
<tr>
<th>Colour Box</th>
<th>Colour</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow</td>
<td></td>
<td>Colour to associate with a moderate (acceptable) risk.</td>
</tr>
</tbody>
</table>

**Moderate depth (mm)**

2.5

The lowest water film depth associated with a moderate (acceptable) risk.

**Low risk**

<table>
<thead>
<tr>
<th>Colour Box</th>
<th>Colour</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td></td>
<td>Colour to associate with a low (acceptable) risk.</td>
</tr>
</tbody>
</table>

**Unknown risk**

<table>
<thead>
<tr>
<th>Colour Box</th>
<th>Colour</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grey</td>
<td></td>
<td>Colour for strings that cannot be assessed for risk.</td>
</tr>
</tbody>
</table>

**Warning depth rate (mm/m)**

0.4

Warn if 

\[
\frac{\text{water film depth}}{\text{flow path length}}
\]

is excessive (optional).

**Warning flow path length (m)**

60

Warn if flow path length is excessive (optional).

**Report**

**Report file**

Report will be written in tab-delimited format to the Windows clipboard, and optionally to this file.

**Overwrite existing report file**

Whether to overwrite or append to an existing report file.
Run button

Runs the option.

Additional Notes:

1) The **Aquaplaning Risk Assessment** option writes auxiliary help information to the *Output Window* every time it is run, *viz*:

```
12d macro "aquaplaning_risk_panel.4dm"

Performs an aquaplaning risk assessment using the Gallaway equation.
User need only draw flow paths as 2d Super strings in the areas of concern on the road pavement tin.

Report:
*Written in tab-delimited format to Windows clipboard and optionally to file.
Flow Path Strings:
*re-created in 3d with evenly spaced vertices.
*segments are individually colour coded to indicate the risk of aquaplaning.
*vertices are set with attributes of all variables considered at each vertex.

Reference:

Credits:
*NECIM Australia Pty Ltd developed the original version of this macro.
```

2) The tab-delimited report is always written to the *Windows* clipboard, even if a report file is not specified. A pre-formatted *Excel* report template is installed and available in the library – **SLIB/aquaplaning_report_template.xlsx** – and after running the aquaplaning option, the contents of the clipboard may be pasted directly into a copy of this template file, as shown here:
3) Combined plan and profile plots of the analysed flow path strings, for inclusion in reports, may be generated from the Section Long Plot PPF Editor. A PPF file set specifically for this purpose is installed and available in the library – SLIB\aquaplaning_longsection_A4.lplotppf – as shown here:
29.9.4 Extract Sewer Controls

Position of option on menu: **Design=>Drainage-Sewer=>Extract sewer controls**

The sewer property control strings are a sub string of the drainage string and therefore may only be profiled using a right mouse click of the profile button. To include these control strings on plots or export to other packages they need to be converted to super strings.

On selecting the **Extract Sewer Controls** option, the **Extract Sewer Property Controls** panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Drainage model</strong></td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>All drainage strings in this model will have their property controls strings duplicated as super strings.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Model for property controls</strong></th>
<th>model box</th>
<th>available models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>The super strings for the property controls are placed in this model.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Extract with diameters</strong></th>
<th>tick box</th>
<th>ticked</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>The super strings will have the constant pipe dimension set to the control diameter.</td>
</tr>
</tbody>
</table>

| **Run**                       | button   | |
|--------------------------------|----------| Create the super strings representing the property controls. |
29.9.5 Convert to Points and Lines

Position of option on menu: **Design=>Drainage-Sewer=>Convert to pts and lines**

This option converts a drainage network into simple points and lines.

Pits will be created as single point super strings with the pit attributes set as string attributes.

Pipes will be created as single or multiple segment super strings with pipe attributes set as string attributes.

This may be useful for uploading to external GIS systems via the GIS module.

Selecting **Convert to pts and lines** brings up the **Drainage convert to points and lines** panel.

![Drainage convert to points and lines panel](image)

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Network model</strong></td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>the source model of the drainage network</em></td>
<td></td>
</tr>
<tr>
<td><strong>Strings model</strong></td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>the model to output pipe strings to</em></td>
<td></td>
</tr>
<tr>
<td><strong>Points model</strong></td>
<td>model box</td>
<td>available models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>the model output pit point strings to</em></td>
<td></td>
</tr>
<tr>
<td><strong>Copy string attributes to pits and pipes?</strong></td>
<td>tick box</td>
<td>not ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>if ticked, the string attributes for points are copied to to pit attributes and string attributes for lines are copied to the pipe attributes.</em></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>If not ticked, no attributes are copied.</em></td>
<td></td>
</tr>
<tr>
<td><strong>Clean models</strong></td>
<td>tick box</td>
<td>ticked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>whether or not to clean the models first</em></td>
<td></td>
</tr>
<tr>
<td><strong>Convert</strong></td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>performs the conversion</em></td>
<td></td>
</tr>
</tbody>
</table>
The 12d Model Window menu contains options to cascade, tile horizontally and vertically. The Output window can also be toggled on and off.

The Window on main menu and walk-right menus are

- cascade the non-minimized views
- horizontally tile the non-minimized views
- vertically tile the non-minimized views
- place all minimized view icons at the bottom of the views area
- lock toolbars so that they can’t be moved
- toggle the output window on/off
- toggle the background tasks windo on/off
- shows if on-screen keyboard is enabled
- list of existing views
31 Help

Position of menu: It is on the main menu as Help

The 12d Model help menu contains options to access Microsoft’s Help on Microsoft’s Help, the 12d Model Help and the 12d Model Macro Programming Language Help, plus links to the 12d Solutions web site www.12d.com, information about the option in the current 12d Model being run, an email information to 12d Solutions, dongle testing routines, checking for updates to the 12d Model exe, system information and for Windows 7, the download for using WinHlp.

The help on main menu and walk-right menus are

See:

31.1 12d Model Help
31.2 12d Model Macro Manual
31.3 12d on the Web
31.4 About 12d Model
31.5 Email Info to 12d
31.6 Dongles Administration
31.7 Check for Updates
31.8 Microsoft 7

Continue to the next section 31.1 12d Model Help.
31.1 12d Model Help

Position of option on menu: Help => 12d Model

Using the context sensitive 12d Model Help is documented in the chapter 6 12d Model Help.

Continue to the next section 31.1 12d Model Help or return to 31 Help.
31.2 12d Model Macro Manual

Position of option on menu: Help => 12d Macro manual

12d Model includes a powerful Programming Language (12dPL) for writing user programs (also known as macros).

This is the context sensitive version of the 12d Model Programming Language manual.

Continue to the next section 31.3 12d on the Web or return to 31 Help.
31.3 12d on the Web

Position of menu:  Help => 12d on the web

The 12d on the web walk-right menu contains links to the 12d Solutions web site www.12d.com.

Continue to the next section 31.4 About 12d Model or return to 31 Help.
31.4 About 12d Model

Position of option on menu:  Help => About 12d Model

The About 12d Model option displays information about the current 12d Model authorization including such items as the Client name, dongle number and authorized modules.

The existing 12d Model modules are shown on the Modules and Extras tabs with a tick indicating that the current licence has the module.

The Program tab has extra information about the current 12d Model executable and project.

On selecting the About 12d Model option, the 12d Model Information panel is displayed.

```
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client</td>
<td>output only</td>
<td></td>
<td>name of the authorized client.</td>
<td></td>
</tr>
<tr>
<td>Dongle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days remaining</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

The fields and buttons used in this panel have the following functions.

- **Turn off modules**: Turn off modules
- **Finish**: Finish and close the panel
- **Help**: Help
Dongle output only
number of the dongle for this licence.

Version output only
12d Model version number.

Days remaining output only
number of days left for the authorisation.

Modules tab

Base module output only
number of allowed points in the Base module. If this number is exceeded then the project cannot be saved until enough points are deleted to bring the point count below the allowed number of points.

Alignment, Pipeline, Volumes, etc. choice boxes yes, no, maintenance.

if yes, the module is authorised. If it is yes then it can be changed to no and when the Turn off modules button is pressed, the module will no longer be authorised until you exit the project and restart it.

If no, the module is not authorised.

If Maintenance, the module is included whilst you are on Maintenance.

Turn off modules button
for any modules with yes, you can turn off modules by setting the choice to no and then clicking this button.

You can NOT turn modules back on. To get the module back you need to restart the project and then the modules that are authorised in the nodes.4d file will again have yes displayed, and hence be turned on.
Program tab

![Image of Program tab]

**Name, Data**

grid

information about the 12d Model program and current project.

Continue to the next section 31.5 Email Info to 12d or return to 31 Help.
31.5 Email Info to 12d

Position of option on menu: Help => Email info to 12d

The Email info to 12d option emails information about the current version of 12d Model to 12d Solutions Pty Ltd. This is usually used for debugging authorization problems.

On selecting the Email info to 12d option, the 12d Model Information panel is displayed.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>First name/Last name/Company name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>information about the user and the Company owning the license of 12d Model.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>try to send an email containing information about 12d Model and the user to 12d Solutions Pty Ltd.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Save button

If the Email button does not send an email, the Save button can be used to write the information out to a file called 12d_auth.txt. This file can then be emailed to support@12d.com.

Continue to the next section 31.6 Dongles Administration or return to 31 Help.
31.6 Dongles Administration

Position of option on menu:  Project => Management => Dongles => Administration
Position of option on menu:  Help => Dongles

This option is documented in 7.6.5.2 Dongles Administration.

Continue to the next section 31.7 Check for Updates or return to 31 Help.
31.7 Check for Updates

Position of option on menu: Help => Check for updates

Selecting Check for updates will check if there are any newer versions and/or builds of 12d Model than the one currently being run.

The 12d Update Checker panel will give a link to the new versions or display the message that there is no update available if the current version and build of 12d Model is the latest one.

Continue to the next section 31.8 Microsoft 7 or return to 31 Help.
31.8 Microsoft 7

Position of option on menu: Help => Windows 7

12d Model has a context sensitive reference help system which can be accessed directly from most menus and panels:

(a) For most menus in 12d Model, when the menu is on the screen and has the Windows focus, simply press F1 and the 12d Help will open automatically at that menu

(b) For most panels in 12d Model, when the panel is on the screen and has the Windows focus, simply press F1 and the 12d Help will open automatically at that panel

(c) Most panels in 12d Model have a Help button on them and clicking on the Help button opens the 12d Help at that panel

(d) By clicking on the option Help => 12d Model

The 12d Model context sensitive help uses Microsoft’s WinHlp.

For Win 7 and 8, Microsoft no longer ships the WinHlp.exe executable and Microsoft will no longer allow it to be installed by the 12d Model installation DVD.

So if you are running Win 7 or Win 8, you need to download and install WinHlp.exe from Microsoft’s website to access the 12d Model Help files.

The link to the area for the download is Walking right on Microsoft 7 displays the Help on Windows 7 Not Working panel which has a link to the Microsoft web site to download Winhel32.exe.

![Help on Windows 7 not Working](image)

Try the hyperlinks below.

They are current as of 03 April 2014 but are subject to change by Microsoft

If the links become inactive, use the "Knowledge Base Search" and search on, Windows 7 winhlp32.exe download.

Note that we are not allowed to distribute Winhlp32.exe, so you must have a legal copy of Windows 7 to access this download from Microsoft.

- [Microsoft Download Page for Winhlp32.exe for Windows 7](#)
- [Microsoft Knowledge Base 917607](#)
- [Microsoft Knowledge Base Search](#)
To return to the start of the documentation on the Help menu, click on 31 Help.
32 Save and Exit

Save and Exit are available from both the Main Menu under Project or on the floating 12d Model menu.
32.1 Save and Exit from Main Menu

Selecting Save from the Main Menu=>Projects menu simply saves all data in the project modified since the last save.

When Exit is selected from the bottom of the Main Menu=>Projects menu and a save is not needed, 12d Model exits the project.

If Exit is selected from the bottom of the Main Menu=>Projects menu and a save is needed, then the Save Project? yes-no panel is placed on the screen.

If Yes is selected, then 12d Model saves the project and exits.
If No is selected, then 12d Model does not save the project and exits.
If Cancel is selected, then the Exit is aborted and 12d Model stays in the project.

Note: when exiting 12d Model, the user is reminded if any mtf files modified by the 12d Model mtf editor have not been saved, or any string editors are still running.

32.2 Save/Exit from Floating 12d Model Menu

When Save is selected from the left hand side of the bottom of the 12d Model menu (Save / Exit menu option), all the information modified since the last save is written to disk.

When Exit is selected from the right hand side of the bottom of the 12d Model menu (Save / Exit menu option), an Exit 12d Model panel is fired up.

Selecting No removes the yes-no pop-up and leaves the user in 12d Model.
If Yes is selected and a modification to the project has been made since the last project save, a Save Project panel is fired up.
If yes is selected, the project is saved and 12d Model terminates.
If no is selected, the project is not saved and 12d Model terminates.
If cancel is selected, the exit option is aborted and the user is left in 12d Model.

Note: When exiting 12d Model, the user is reminded if any mtf files modified by the 12d Model mtf editor have not been saved, or any string editors are still running.

Selecting No removes the yes-no pop-up and leaves the user in 12d Model.
If Yes is selected and a modification to the project has been made since the last project save, a Save Project panel is fired up.
Appendices
33 BIM

See

33.1 What is BIM ?
33.2 The 12d Approach to BIM
33.3 The UK Government and BIM
33.4 Common Terms in BIM
33.5 What is Wrong with Local Coordinates ?

33.1 What is BIM ?

What BIM is seems to depend on who you are talking to. And the various participants in the design, construction and management of the asset (building or infrastructure) also emphasise different aspects of BIM.

If a wide search of the literature for BIM and ISO Standards is made, and all the marketing fluff is ignored, one quickly sees that almost universally the BI in BIM is Building Information and although BIM is about the process, all the objects are for a Building on a site. The other constant is that the International Standard for transferring BIM data is the vendor independent format of IFCs. For more information on IFCs, see 8.2.19 IFC Output.

In 2011 the BIM movement received a major boost when the UK Government released the Government Construction Strategy which aimed to reduce he cost of government construction projects by 15-20% and BIM was identified as one of the strategies to achieve help the savings.

The Strategy contained an Action Plan that included the objective for BIM to introduce a progressive programme of mandated use of fully collaborative Building Information Modelling for Government projects by 2016.
One early outcome of the Strategy was for BuildingSMART to develop a national BIM standard with the principles of interoperability. This will be key to future delivery of Level 3 “Open & Shared” BIM.

buildingSMART is now the International group looking after the development of the Industry Foundation Classes (IFCs) which is the data model for the Open Standard for BIM. See http://www.buildingsmart-tech.org.

For more information, see 33.3 The UK Government and BIM and for some common BIM terms and the Levels of BIM outlined by the UK Government, see 33.4 Common Terms in BIM.

Under the umbrella of buildingSMART there are a number of International Committees currently grappling with the problem of extending IFCs from Buildings to Bridges, an Alignment for Roads, and for Roads and Railways in general, and to move IFCs from uncoordinated flat space with (0,0) in the corner, to a GIS and 12d environment with world coordinates and projections.

Beware that some groups talk BIM but then insist on data being supplied in an unpublished, encrypted proprietary format. In Australia this is often Revit, Navisworks, DWG or DGN.

This is diametrically opposed to the International Open BIM concept but apart from pointing that out to your client, you are caught between a rock and a hard place.

However for those users caught in the encrypted proprietary format trap, we are working to help solve your problems. For an overview of where we are currently at, please see the information in the next section 33.2 The 12d Approach to BIM.

Continue to 33.2 The 12d Approach to BIM or return to 33 BIM.
33.2 The 12d Approach to BIM

12d Solutions is actively involved in, and supporting, the International effort on IFCs.

12d Solutions is:

(a) a founding member of the Open BIM Alliance which supports the transferring of BIM data using the ISO Standard for IFCs.

(b) working with buildingSMART (the International Group looking after IFCs) on how non-Building data should be transferred using IFCs. See http://www.buildingsmart-tech.org.

(c) working with buildingSMART on how IFCs can be extended to Alignments, Roads and Railways.

(d) working on the Precinct Information Model project, part of the CRC for Low Carbon Living.

This project is looking at the problem of extending BIM from a few building on a site, to a larger area and including roads, drainage, sewerage etc.

For more information on 12d Model and IFCs, see 8.2.19 IFC Output

For those users caught in the encrypted proprietary format trap, although we do not have access to the formats, 12d Solutions will continue to look for ways to make that data accessible to our users.

To this end, the approaches we are pursuing with our users to write out BIM type data from 12d Model are:

(a) Writing Out Fully Structured IFCs

Using IFCs correctly means that the data to be output must have a fully defined hierarchical structure (known as the Spatial Structure).

This is the approach of the 12d Model IFC Writer. See 8.2.19 IFC Output.

(b) Writing Out Unstructured IFCs

The IFC format could also be used in an informal way as a method of transferring data where there is no concern for the spatial structure but just after the object shapes.

12d is currently working on an alternate IFC Writer to do this.

(c) Writing out OBJ and STL Files

Drainage and sewer strings, super strings with round or rectangular sections, extrusions and trimeshes can be written out as OBJ files (see 8.2.17 Export OBJ) or STL files (8.2.18 Export STL).

(d) Writing out Polyface Mesh in DWG

Drainage and sewer strings, super strings with round or rectangular sections, extrusions and trimeshes can be written out to DWG files as Polyface Meshes. See 8.2.7 Output DWG/DFX/DXB Files.

(e) Revit Routines to Read in 12d Model Data.

EXDS have developed routines that run from within Revit to read in 12d Model data in 12d.XML format See www.EXDS.com.au.

The approaches we are using to bring data into 12d Model are:

(a) Reading in OBJs

OBJ files can be read into 12d Model as trimeshes. See 8.1.18 Wavefront OBJ Input

(b) Reading in Polyface Mesh in DWG
Polyface mesh in a DWG file can be read into 12d Model as trimeshes. See 8.1.10 DWG/DXF Input.

(c) Getting Revit Data into 12d Model

Although the Revit database itself is unreadable, Revit can write data out in the Autodesk fbx format and there is an option in 12d Model to read in an fbx file trimeshes. See 8.1.11 FBX Input.

Also if data can be written out from Revit as Polyface Meshes to a DWG file then again that can be read in into 12d Model as trimeshes. See 8.1.10 DWG/DXF Input.

Continue to 33.3 The UK Government and BIM or return to 33 BIM.
33.3 The UK Government and BIM

In 2011, the UK Government released the Government Construction Strategy which was the framework for a range of work streams, all of which have the ultimate aim of reducing the cost of government construction projects by 15-20% (https://www.gov.uk/government/publications/government-construction-strategy).

One problems was identified in Section 2.30:

2.30 A lack of compatible systems, standards and protocols, and the differing requirements of clients and lead designers, have inhibited widespread adoption of a technology which has the capacity to ensure that all team members are working from the same data, and that:

- the implications of alternative design proposals can be evaluated with comparative ease;
- projects are modelled in three dimensions (eliminating coordination errors and subsequent expensive change);
- design data can be fed direct to machine tools, creating a link between design and manufacture and eliminating unnecessary intermediaries; and
- there is a proper basis for asset management subsequent to construction.

and the remedy, BIM, was mandated in Section 2.31:

2.31 The Cabinet Office will coordinate Government’s drive to the development of standards enabling all members of the supply chain to work collaboratively through Building Information Modelling (BIM). This will be a phased process working closely with industry groups, in order to allow time for industry to prepare for the development of new standards and for training

The Strategy also included an Action Plan with a timetable, and Section 7 was for Building Information Modelling (BIM):

7(i)Objective: To introduce a progressive programme of mandated use of fully collaborative Building Information Modelling for Government projects by 2016.

From the Government Construction Strategy: One Year On and Action Plan Update it reported for BIM:

A reciprocal Memorandum of Agreement has been reached with buildingSMART US to develop a national BIM standard with the principles of interoperability. This will be key to future delivery of Level 3 “Open & Shared” BIM.

Continue to 33.4 Common Terms in BIM or return to 33 BIM.
33.4 Common Terms in BIM

Here is a list of some need-to-know BIM terms and their definitions taken from the NBS website http://www.thenbs.com.

NBS is part of RIBA Enterprises Ltd, which is wholly owned by the Royal Institute of British Architects (RIBA) and was contracted by the UK Government to build the National BIM Library.

1. 4D, 5D, 6D
First there was 2D CAD, then 3D CAD – now there are extra dimensions to refer to the linking of the BIM model with time-, cost- and schedule-related information (although the precise order hasn’t to date been agreed across the whole industry).

2. Asset Information Model (AIM), Building Information Model (BIM)
Not only is there the ‘Building’ information model, but the ‘Asset’ information model – which is the name given to the same model post-construction, i.e. supplemented with the data needed to assist in the running of the completed asset. Note that ‘asset’ can also refer to civil engineering and infrastructure work.

3. Common Data Environment (CDE)
This is a central information repository that can be accessed by all stakeholders in a project. Whilst all the data within the CDE can be accessed freely, ownership is still retained by the originator.

The scope and requirements for a CDE are defined in PAS 1192-2 (see 8. PAS 1192).

4. Level 0 BIM, Level 1 BIM, Level 2 BIM, Level 3 BIM
The move to ‘full’ collaborative working via distinct and recognisable milestones, in the form of ‘levels’. These have been defined within a range from 0 to 3, and, whilst there is some debate about the exact meaning of each level, the broad concept is:

**Level 0** – no collaboration.
2D CAD drafting only. Output and distribution is via paper or electronic prints, or a mixture of both.

**Level 1** – a mixture of 3D CAD for concept work, and 2D for drafting of statutory approval documentation and Production Information.
CAD standards are managed to BS 1192:2007, and electronic sharing of data is carried out from a common data environment (CDE), often managed by the contractor.

There is no collaboration between different disciplines – each publishes and maintains its own data.

**Level 2** – collaborative working – all parties use their own 3D CAD models.
Design information is shared through a common file format, which enables any organisation to be able to combine that data with their own in order to carry out interrogative checks on it.

Hence any CAD software that each party used must be capable of exporting to a common file format.

This is the method of working that has been set as a minimum target by the UK government for all public-sector work, by 2016.

**Level 3** – integrated working between all disciplines by using a single, shared project model which is held in a common data environment.
All parties can access and modify that same model, removing the final layer of risk for conflicting information. This is known as ‘Open BIM’ (see 7. Open BIM), and the UK government’s target date for public-sector working is 2018, although the precise requirements have yet to be determined.

Note that the definition of BIM maturity Level 2 was originally developed as part of the UK Government strategy in 2011. It is also defined in PAS 1192-2, with reference to best practice and the adoption tools and standards.

It is also worth noting, though, PAS 1192-2 acknowledges that, given the early stages of adoption of managed methods of working in BIM at the time the PAS was drafted, it can be expected that Level 2 practices will continue to evolve, and that the scope of information sharing and exchange will vary from project to project.

Therefore, PAS 1192-2 anticipates that the definition of Level 2 BIM will continue to evolve around the core principles of the shared use of individually authored models in a CDE.

5. Construction Operations Building Information Exchange (COBie)

COBie is a data schema which is delivered in a spreadsheet data format, and contains a ‘subset’ of the information in the building model (all except graphical data, and hence a subset of IFC (see 6. Industry Foundation Class (IFC)), for FM handover. It was originally devised by the US Army Engineering Corps.

Over the course of a project, data can be added to it from a range of sources (besides CAD programs), relating to brief, design, construction, operation, refurbishment or demolition, as the case may be.

The UK Government’s Level 2 - mandated requirement is for COBie-compliant information exchange. BS 1192-4 documents best practice for the implementation of COBie.

6. Industry Foundation Class (IFC)

IFC is an object-based format, to enable exchange of information between different software. Developed by buildingSMART, a global alliance specialising in open standards for BIM, IFC is an official standard, BS ISO 16739, and contains geometric as well as other data.

7. Open BIM

An open-source approach to collaborative design, realisation and operation of buildings, based on open standards and work flows.

Open BIM is an initiative of several leading software vendors using the buildingSMART Data Model, which incorporates data to ISO 16739 (via the IFC file format), terms to ISO 12006-3 (using the International Framework for Dictionaries, which maps different technical terms that have the same meaning) and process to ISO 29481-1 (the Information Delivery Manual).

8. PAS 1192

The PAS 1192 framework sets out the requirements for the level of model detail (the graphical content), model information (non-graphical content, such as specification data), model definition (its meaning) and model information exchanges:

(a) PAS 1192-2 deals with the construction (CAPEX) phase, and specifies the requirements for Level 2 maturity; sets out the framework, roles & responsibilities for collaborative BIM working; builds on the existing standard of BS 1192, and expands the scope of the Common Data Environment (see 3. Common Data Environment (CDE)).

(b) PAS 1192-3 deals with the operational (OPEX) phase, focussing on use & maintenance of the Asset Information Model, for Facilities Management.

(c) BS 1192-4 documents best practice for the implementation of COBie.
(d) PAS 1192-5 is currently under development, and will cover security of data.

Continue to 33.5 What is Wrong with Local Coordinates? or return to 33 BIM.
33.5 What is Wrong with Local Coordinates?

What we mean by Local Coordinates is the placing of (0,0) somewhere on the site, with a
direction for the x or y axis, NOT a cartographic projection with (0,0) defined on the site.

There is nothing wrong with using a Local Coordinate system as long as you are aware of the
restrictions and consequences. As Einstein said for General Relativity "space is locally flat".

So as long as you are working on a small site (say under 5 kilometres long) and everyone is able
to reliably measure back to your (0,0) and use your definition of angle of the coordinate axes,
then there should be no major problems.

But if you are working on a large project, or trying to combine data from a variety of sources, or
want to coordinate work with a GPS, then you need to know more about how and why there are
problems with Local Coordinates.

One of the problems is that the earth is not flat.

See

- 33.5.1 An Exact Position for Everything on the Earth
- 33.5.2 Map (Cartographic) Projections - Eastings and Northings
- 33.5.3 Why Isn't MGA Used on a Small Building Site?
33.5.1 An Exact Position for Everything on the Earth

To give everything on earth a unique coordinates that fit in with GNSS systems (GPS, GLONASS, BeiDou and Galileo), a reference ellipsoid has been defined with:

(a) (0,0,0) at the Mass centre of the earth (geocentre), a semi major axis of 6,378,137 m, and an inverse flattening of 298.257222101. This is known as GRS80.

This is because satellites orbit around the mass centre of the earth.

(b) Longitude is an angular quantity measured from the Greenwich meridian.

(c) Latitude is an angular quantity measured from the equatorial plane, to the plane defined by the point position and the plumb line to the ellipsoid surface.

(d) Ellipsoid height is the height above the reference ellipsoid.

Using a GNSS system, the Geodetic coordinates of (Latitude, Longitude, Ellipsoid height) can be directly obtained for any position on earth that can see the satellites.

Note: Heights in Australia are not usually quoted as Ellipsoid heights h but instead in AHD (Australian Height Datum) H which is defined in terms of Means Sea Level. The difference between the ellipsoid height and the AHD is known as the N (AHD Value).

\[
\text{AHD (Geoid height)} = \text{Ellipsoid height} - N \ (\text{AHD Value})
\]

Continue to 33.5.2 Map (Cartographic) Projections - Eastings and Northings or return to 33.5 What is Wrong with Local Coordinates? or 33 BIM.
33.5.2 Map (Cartographic) Projections - Eastings and Northerings

Although Geodetic coordinate of Latitude and Longitude give unique coordinates for a point, they are not very appropriate for drawing up civil engineering projects. They are usually represented on a map by mathematically "projecting" them on to a surface, which can be laid flat.

A Map or Cartographic Projection is a transformation of the latitudes and longitudes of locations on the surface of an ellipsoid into locations on a plane. The projection coordinates are usually referred to as Eastings (x) and Northerings (y).

The important thing is that the Cartographic projection can be reversed. That is, has an inverse. So the Cartographic projection

(a) maps a (Latitude, Longitude) to a (Easting, Northing)

and

(b) the inverse projection maps an (Easting, Northing) to a (Latitude, Longitude).

Consequently if you have the (Easting, Northing) then can calculate the equivalent (Latitude, Longitude) and vice versa.

The most commonly used Cartographic projection for civil works is the Transverse Mercator projection.

In mathematical speak, Transverse Mercator projections are conformal projections and preserve angles locally, implying that they map infinitesimal circles of constant size anywhere on the Earth to infinitesimal circles of varying sizes on the map. In contrast, mappings that are not conformal distort most such small circles into ellipses of distortion. An important consequence of conformality is that relative angles at each point of the map are correct, and the local scale (although varying throughout the map) in every direction around any one point is constant.

Transverse Mercator projections are commonly used for road projects by the Road Authorities in each State of Australia. They are also used for the Meridional Circuits in New Zealand.

The Transverse Mercator projection is also used as the basis of the UTM (Universal Transverse Mercator). The UTM is not a single map projection but divides the Earth into sixty zones, each a six-degree band of longitude, and uses a Transverse Mercator projection.

In Australia, MGA coordinates (Map Grid of Australia) are based on the UTM using the ellipsoid GRS80 previously defined.

So an MGA coordinate (Easting, Northing) has a unique (Latitude, Longitude).

And a reading from a GNSS device (commonly known as GPS) uniquely converts to a MGA coordinate, and conversely a MGA coordinate converts to (Latitude, Longitude) for use in a GPS without knowing anything about a local coordinate system.

Continue to 33.5.3 Why Isn’t MGA Used on a Small Building Site? or return to 33.5 What is Wrong with Local Coordinates? or 33 BIM.
33.5.3 Why Isn’t MGA Used on a Small Building Site?

It is very easy to gloss over one very important point about Transverse Mercator projections as used in MGA.

Transverse Mercator projections are conformal projections and although they preserve angles, they do not preserve distances.

So a small circle will transform to a small circle but the radius will vary depending on where you are in an MGA zone.

The amount of the distortion is known as a scale factor and it varies from point to point. Over a small distance the scale factor is almost a constant but that constant value is rarely 1.

What that means in practise is if you draw everything up in MGA coordinates, the actual distance between two points in NOT the standard square root distance between the two points. This means that on a plan in MGA coordinates, you can’t simply use a ruler to measure he distance between two points. You need to allow for the scale factor. Over a small distance the scale factor will be a constant (for example 0.9996) but over a large distance you need to need to do the correct Geodetic calculations.

This also means that in a standard drafting system, the usual distance between two points that is used in conventional drafting dimensioning options, will not give the correct value.

For those working in a local coordinate project you may have noticed the scale factor effect when you have identified two points a good distance apart and you also have their MGA coordinates. If you measure between the points in your local coordinate system and then calculate the square root distance between the two MGA points using the actual MGA coordinates then you won’t get the same number.

This is probably why most projects defined in local coordinates only give the MGA coordinates for one point and a rotation of the axes.

The result of all this is that if you only have a small building site then you can obtain fairly accurate MGA coordinates by applying a 2D Helmert transformation to the local coordinates. That is, a translation, a rotation or the axis and a constant multiplication factor (which could be the Point Scale Factor of the given MGA point).

However, as the size of the project increases, the larger errors will be in the MGA coordinates for points further away from the origin.

Similarly if you apply a translation, rotating and scale to convert data given in MGA coordinates (say from a GIS system or the State Road Authority) to local coordinates, then there will be errors the further away from the "best fitted" point.

Note
If you are not a surveyor you will probably not be aware that in 12d Model, you can specify the Cartographic projection that the coordinates are in and can then obtain the (Latitude, Longitude) for selected points, measure between points and get the square-root distance and also the ellipsoid distance between the points.

Return to 33.5 What is Wrong with Local Coordinates? or 33 BIM.
The 12d Archive file format (called 12d ascii in Version 10 and earlier) is a text file definition from 12d Solutions which is used for reading and writing out string data from 12d Model. 12d Archive files normally end in ‘.12da’ and are often referred to as 12da files.

Unlike the earlier 12d Ascii files in Version 9, from Version 10 onwards the 12d Archive file is a Unicode file.

This document is for the 12d Archive file format used in 12d Model Version 11.

For General Comments about 12da, see 34.1 General Comments about a 12da File

For the 12da definitions:

- Attributes 34.2 Attributes
- Commands 34.3 Commands
- Each string type 34.4 12da Definition for each String Type
- Tin 34.3.7 Tin
- Super Tin 34.3.8 Super Tin

For documentation on the 12d XML file format, see 35 12d XML File Format.
34.1 General Comments about a 12da File

**Unicode** - 12d Archive file is a Unicode file.

```//
```
Anything written on a line after `//` is ignored. This is used to place comments in the file.

**Blank lines**
Unless they are part of a text string, blank lines are ignored.

**Spaces**
Unless enclosed in quotes (""), more than one consecutive space or tab is treated as one space. Except when it is the delimiter after a `//`, an end of line (<enter>) is also considered a space.

**Spaces and special characters in text strings**
Any text string that includes spaces and any characters other than a to z, A to Z or 0 to 9 (alphanumeric), must be enclosed in double quotes. In text strings, double quotes " and backslash \ must be preceded by a \. For example, " and \ define a " and a \ respectively in a text string.

**Names of models, tins, styles, colours and attributes**
Models, tins, styles (linestyles), colours and attributes can include the characters a to z, A to Z, 0 to 9 (alphanumeric characters) and space. Leading and trailing spaces are ignored. The names can be up to 255 characters in length. If the name includes spaces, the name must be enclosed in double quotes ("").

The names for models, tins, styles, colours or attributes can not be blank.

The names for models, tins, styles and colours can contain upper and lower alpha characters which are stored, but the set of model names, tin names, style names, colour names or attribute names for an object must be unique when case is ignored. For example, the model name "Fred" will be stored as "Fred" but "FRED" is considered to be the same model name as "Fred".

**String names**
String names can include the characters a to z, A to Z, 0 to 9 (alphanumeric characters), space, decimal point (.), plus (+), minus (-), comma (,), open and closed round brackets and equals (=). Leading and trailing spaces are ignored. String names can be up to 255 characters in length. If the string name includes anything other than alphanumeric characters, then the name must be enclosed in double quotes (""").

String names can contain upper and lower alpha characters which are retained but case is ignored when selecting by string name. That is, the string name Fred will be stored as Fred but FRED is not considered to be a different string name.

String names do not have to be unique and can be blank.

Continue to the next section 34.2 Attributes or return to 34 12d Archive File Format.
34.2 Attributes

Many 12d Model objects (models and elements such as individual strings and tins) can have an unlimited number of named attributes of type integer (numbers), real and text.

The attributes for an object are given in an attributes block which consists of the keyword attributes followed by the definitions of the individual attributes enclosed in start and end curly braces { and }. That is, an attributes_block is:

```
attributes {
 attribute_1
 attribute_2
 ...
 attribute_n
}
```

where the attribute definitions for the individual attributes attribute_i consists of:

```
 attribute_type attribute_name attribute_value
```

where

- attribute_type is integer, real or text
- attribute_name is the unique attribute name for the object.

If the attribute name includes spaces then the text of the name must be enclosed in double quote character ("")

and

- attribute_value is the appropriate value of the integer, real or a text.

Within an object, the attribute names are case sensitive and must be unique. That is, for attribute names, upper and lower case alphabet characters are considered to be different characters.

If the text for a text attribute includes spaces then the text must be enclosed in double quote characters ("."). If the text is blank, it is given as "".

An example of an attribute block defining four attributes named "pole id", "street", "pole height" and "pole wires" is:

```
attributes {
 text "pole id" "QMR-37"
 text "street" "477 Boundary St"
 real "pole height" 5.25
 integer "pole wires" 3
}
```

Continue to the next section 34.3 Commands or return to 34.12d Archive File Format.
34.3 Commands

Commands consist of a keyword followed by a space and then a value (a keyword and its value is often referred to as a keyword pair). A value must always exist.

```
keyword value // a keyword pair
```

There can be more than one command keyword pair per line as long as each keyword pair is separated by a space. In fact, the keyword can be on one line and the value on the next line.

Although the names of commands are only shown in lower case in these notes, commands are case insensitive and all combinations of case are recognised as the same command. That is model, MODEL and Model are all recognised as the command model.

For the definition of the commands in the 12da file see:

34.3.1 Model
34.3.2 Colour
34.3.3 Style
34.3.4 Breakline
34.3.5 Null
34.3.6 String
34.3.7 Tin
34.3.8 Super Tin

Or return to 34 12d Archive File Format.
34.3.1 Model

There are two formats for the model command:

(a) model command when there are no attributes for the model

```
model model_name
```

All elements (strings, tins, plot frames etc) following until the next model keyword are placed in the model `model_name`. This can be overridden for an element by a model command inside the element definition.

The default model name used for elements when no model name has been specified is `data`.

(b) model command when there are model attributes

If the model includes attributes, the following form of the model command must be used.

```
model {
 name model_name
 attributes_block
}
```

where the `attributes_block` is defined in 34.2 Attributes.

For example:

```
model {
 name "telegraph poles"
 attributes {
 text "pole id" "QMR-37"
 text "street" "477 Boundary St"
 real "pole height" 5.25
 integer "pole wires" 3
 }
}
```

Continue to the next section 34.3.2 Colour or return to 34.3 Commands or 34 12d Archive File Format.
34.3.2 Colour

The format of the `colour` command is:

```
colour colour_name
```

When reading a 12da file, there is a `current colour`, which has the default value of `red`, and when a `colour` command is read, the `current colour` is set to `colour_name`.

When strings are read in a 12da file, they are given the `current colour`.
This can be overridden for a string by a `string colour command` inside the string command defining that string. For the definition of the string command, see 34.3.6 String.

Continue to the next section 34.3.3 Style or return to 34.3 Commands or 34 12d Archive File Format.

34.3.3 Style

The format of the `style` command is:

```
style linestyle_name
```

When reading a 12da file, there is a `current linestyle`, which has the default value of `1`, and when a `style` command is read, the `current linestyle` is set to `linestyle_name`.

When strings are read in a 12da file, they are given the `current linestyle`.
This can be overridden for a string by a `string style command` inside the string command defining that string. For the definition of the string command, see 34.3.6 String.

Continue to the next section 34.3.4 Breakline or return to 34.3 Commands or 34 12d Archive File Format.

34.3.4 Breakline

The format of the `breakline` command is:

```
breakline breakline_type
```

where `breakline_type` is `point` or `line`.

When reading a 12da file, there is a `current breakline type`, which has the default value of `point`, and when a `breakline` command is read, the `current breakline type` is set to `breakline_type`.

When strings are read in a 12da file, they are given the `current breakline type`.
This can be overridden for a string by a `string breakline command` inside the string command defining that string. For the definition of the string command, see 34.3.6 String.

Continue to the next section 34.3.5 Null or return to 34.3 Commands or 34 12d Archive File Format.
34.3.5 Null

The format of the null command is:

```
null null_value
```

When reading a 12da file, there is a current null value, which has the default value of -999, and when a null command is read, the current null value is set to null_value.

When strings are read in a 12da file and the string has z-values equal to null_value, then the z-value is replaced by the 12d Model null value.

This can be overridden for a string by a null_value command inside the string command defining that string. For the definition of the string command, see 34.3.6 String.

Continue to the next section 34.3.6 String or return to 34.3 Commands or 34 12d Archive File Format.
34.3.6 String

The format of the string command is:

```
string string_type {
 attributes_block
 string_command_1
 string_command_2
 ...
 string_command_n
}
```

The *string_type* is compulsory and must be followed by all the string information enclosed in curly braces { and }.

So if a *string type*, or possibly information inside the string is not recognised, the 12da reader has a chance of being able to jump over the string by looking for the end curly brace }.

Inside the braces are *string commands* as keyword pairs defining information for the string.

There can be more than one *string command* keyword per line as long as each keyword pair is separated by a space. In fact, the *keyword* can be on one line and the *value* on the next line.

Any unrecognised *string commands* are ignored.

The *string command keyword pairs* include *model*, *colour*, *style* and *breakline*, which are all *optional* inside the string definition. However if any of them exist inside a string definition, then the *string command keyword* overrides the current value for *model*, *colour*, *style* or *breakline commands* but the override is only for that particular string.

Not all string types can have an *attributes_block*.

For some string types (e.g. super string) there is more data required than just the *string command* keyword pairs.

This extra data is contained is blocks consisting of a *keyword* followed by the required information enclosed in the curly braces { and }. For example attributes for all *string types* and (x,y,z) data for a super string.

For all string types, if there is not enough recognised information to define the string, the string is ignored.

For the definition for each *string type* and the allowed *string commands* and extra data that is required for that *string type*, see 34.4 12da Definition for each String Type.

**Note:** if the string does not have any attributes then the *attributes_block* can be left out entirely (see 34.2 Attributes for the definition of *attributes_block*).

Continue to the next section 34.3.7 Tin or return to 34.3 Commands or 34 12d Archive File Format.
34.3.7 Tin

Tins (triangulated irregular networks) and Super Tins can be written out and read in from a 12da.

```
tin {
 name tin_name // MANDATORY name of the tin when created in 12d Model
 time_created text // optional - time tin first created
 time_updated text // optional - time tin last modified

 // Attributes Block:

 // The attributes style, faces, null_length, null_angle, null_combined_value
 // and null_combined_angle are special attributes that has extra information used by
 // 12d Model to create the tin. These special attributes should not be deleted.
 //
 // The attributes in this block and the Attributes block itself are optional.
 // When a tin is read into 12d Model from a 12da file, the style is used
 // as the Tin style.

 attributes {
 text "style" text // name of line style for the tin
 integer "faces" 0/1 // 0 non triangle data, 1 triangle data
 real "null_length" value // values for null by angle/length
 real "null_angle" value // angle in radians
 real "null_combined_length" value // angle in radians
 real "null_combined_angle" value // angle in radians
 }
 // any other attributes
}
```

```
// Points Block

// Co-ordinates of the points at the vertices of the triangles
// The points are implicitly numbered by the order in the list (starting at point 1).
//
// The Points Block is MANDATORY

points {
 x-value y-value z-value // point 1
 "" "" "" // point 2
}
```

```
// Triangles Block

// Each triangle is given as a triplet of the point numbers that make up
// the triangle vertices (the point numbers are the implicit position of the points
// given in the Points Block.
// The order of the triangles is unimportant
//
// The Triangles Block is MANDATORY
```
triangles {  // points making up each triangle
    T1-1    T1-2    T1-3  // point numbers of the 3 vertices of first triangle.
    T2-1    T2-2    T3-3  // point numbers of the 3 vertices of second triangle.
}                        // end of triangles block

// Base Colour
// The tin has a base colour that is the default colour for all triangles

colour tin_base_colour     // optional - base colour of the tin

// Colours Block
// Triangles can be given colours other than the base colour by including
// a colours block. The colour for each triangle in then individually given
// (-1 means base colour). The order is the same as the order of the triangles in
// the Triangles Block.
// If all the triangles are the base colour, then simply omit the Colours Block

colours {  // colour for each triangle given in triangle order
    C1    C2    C3
    C4    C5    C6    C7  // colour "-1" means use the base tin colour.
}              // end of colours block

// Input Block
// More information about how the tin was created by 12d Model.
// None of this information is needed when reading a tin into 12d Model.
// This block can be omitted

input {  // data for reconstructing tin from strings
    preserve_strings true/false  // if true, preserve breaklines etc.
    remove_bubbles true/false
    weed_tin true/false
    triangle_data true/false
    sort_tin true/false
    cell_method true/false

    models {  // name of the first model making up the tin
        "model_name_1"
        "model_name_2"  // name of the second model making up the tin
    }                        // end of models block
}                              // end of input block
}                                 // end of tin 12a definition
Continue to the next section 34.3.8 Super Tin or return to 34.3 Commands or 34.12d Archive File Format.
34.3.8 Super Tin

*Super Tins*, which consists of a number of tins (triangulated irregular networks), can be written out and read in from a 12da.

```plaintext
super_tin {
 name tin_name // MANDATORY name of the super tin

 time_created text // optional - time super tin first created
 time_updated text // optional - time super tin last modified

 // Attributes Block:
 // This is mainly information used by 12d Model to create the super tin.
 // The attributes in this block and the Attributes block itself are optional.
 // When a super tin is read into 12d Model from a 12da file, the style is used
 // as the Super Tin style.

 attributes {
 text "style" text // name of line style for the tin
 // any other attributes
 } // end of attributes block

 // Super Tin Colour
 // The super tin has a base colour

 colour tin_base_colour // optional - base colour of the super tin

 // Tins Block
 // This is the list of tins that make up the super tin.
 // This block is MANDATORY

 tins {
 "tin_name_1" // name of the first tin making up the super tin
 "tin_name_2" // name of the second tin making up the super tin
 " " "
 }
}
```

Note that the tins that make up the super tin must exist in 12d Model for the super tin to be fully defined.

Continue to the next section 34.4 12da Definition for each String Type or return to 34.3 Commands or 34 12d Archive File Format.
34.4 12da Definition for each String Type

For the 12da definition of each string type, see:
- 34.4.1 Arc String
- 34.4.2 Circle String
- 34.4.3 Drainage String
- 34.4.4 Face String
- 34.4.5 Feature String
- 34.4.6 Interface String
- 34.4.7 Plot Frame String
- 34.4.8 Super String
- 34.4.9 Super Alignment String
- 34.4.10 Text String

And for the superceded strings, see:
- 34.4.11 2d String
- 34.4.12 3d String
- 34.4.13 4d String
- 34.4.16 Alignment String
- 34.4.14 Pipe String
- 34.4.17 Pipeline String
- 34.4.15 Polyline String

Or return to 34 12d Archive File Format.
34.4.1 Arc String

```cpp
string arc {
 model model_name name string_name
 colour colour_name style style_name
 chainage start_chainage interval value radius value
 xcentre value ycentre value zcentre value
 xstart value ystart value zstart value
 xend value yend value zend value
}
```

Continue to the next section 34.4.2 Circle String or return to 34.4 12da Definition for each String Type or 34.12d Archive File Format.
34.4.2 Circle String

```
string circle {
 model model_name name string_name
 colour colour_name style style_name
 chainage start_chainage interval value radius value
 zcentre value xcentre value ycentre value
}
```

Continue to the next section 34.4.3 Drainage String or return to 34.4 12da Definition for each String Type or 34 12d Archive File Format.
34.4.3 Drainage String

string drainage {
  chainage start_chainage
  model  model_name name string_name
  colour  colour_name  style style_name
  breakline  point or line
  attributes {
    text  Tin  finished_surface_tin
    text  NSTin  natural_surface_tin
    integer  "_floating"  1|0  // 1 for floating, 0 not floating
  }
  outfall  outfall_value  // z-value at the outfall
  flow_direction  0|1  // 0 drainage line is defined from downstream
                      // to upstream

  data {
    x-value  y-value  z-value  radius  bulge

    " "  " "  " "
  }

  pit {
    // pit/manhole - one pit record for each pit/manhole
    // in the order along the string
    name  text  // pit name
    type  text  // pit type
    road_name  text  // road name
    road_chainage  chainage  // road chainage
    diameter  value  // pit diameter
    floating  yes|no  // is pit floating or not
    chainage  pit_chainage  // internal use only
    ip  value  // internal use only
    ratio  value  // internal use only
    x  x-value  // x-value of top of pit
    y  y-value  // y-value of top of pit
    z  z-value  // z-value of top of pit
  }

  pipe {
    // one pipe record for each pipe connecting pits/manholes
    // in the order they occur along the string
    name  text  // pipe name
    type  text  // pipe type
    diameter  value  // pit diameter
    us_level  value  //
    ds_level  value  //
    us_hgl  value  //
    ds_hgl  value  //
    flow_velocity  value  //
    flow_volume  value  //
  }

  property_control {
    name  text  // lot name
    colour  colour_name
    grade  value  // grade of pipe in units of "1v in"
    cover  value  // cover of the of pipe
    diameter  value  // diameter of the of pipe
    boundary  value  // boundary trap value
    chainage  chainage  // internal use only
    ip  value  // internal use only
    ratio  value  // internal use only
  }
}
x         x-value // x value of where pipe connects to sewer
y         y-value // y value of where pipe connects to sewer
z         z-value // internal use only

data {     // key word - geometry of the property control
  x-value y-value z-value radius bulge
  "    "    "
}

house_connection { // warning - house connections may change in future versions
  name  text     // house connection name
  hcb   integer  // user given integer
  colour colour_name
  grade value    // grade of connection in units of "1v in"
  depth value
  diameter value
  side  left or right
  length value
  type  text     // connection type
  material text  // material type
  bush  text     // bush type
  level value
  adopted_level value
  chainage chainage // internal use only
  ip    value    // internal use only
  ratio value    // internal use only
  x     x-value // x value of where pipe connects to sewer
  y     y-value // y value of where pipe connects to sewer
  z     z-value // internal use only
}

// end of drainage-sewer data

Continue to the next section 34.4.4 Face String or return to 34.4 12da Definition for each String Type or 34 12d Archive File Format.
34.4.4 Face String

```c
string face {
 model model_name name string_name
 colour colour_name style style_name
 chainage start_chainage breakline point or line
 hatch_angle value
 hatch_distance value
 hatch_colour colour
 edge_colour colour
 fill_mode 0 or 1
 edge_mode 0 or 1
 data { // keyword
 x-value y-value z-value
 " " " "
 }
}
```

Continue to the next section 34.4.5 Feature String or return to 34.4 12da Definition for each String Type or 34.4 12d Archive File Format.
34.4.5 Feature String

```java
string feature {
 model model_name name string_name
 colour colour_name style style_name
 chainage start_chainage interval value radius value
 zcentre value xcentre value ycentre value
}
```

Continue to the next section 34.4.6 Interface String or return to 34.4 12da Definition for each String Type or 34 12d Archive File Format.
34.4.6 Interface String

```c
string interface {
 chainage start_chainage
 model model_name name string_name
 colour colour_name style style_name
 breakline point or line
 data { // keyword
 x-value y-value z-value mode
 " " " " // mode = -1 cut
 " " " " // 0 surface
 " " " " // 1 fill
 }
}
```

Continue to the next section 34.4.7 Plot Frame String or return to 34.4.12da Definition for each String Type or 34.4.12d Archive File Format.
### 34.4.7 Plot Frame String

Plot frames can be written out and read in from a 12da file.

```plaintext
string plot_frame {
 name frame_name
 title_file filename
 border 0 or 1
 viewport 0 or 1
 user_title_file 0 or 1
 title_1 text
 title_2 text
 plot_file filename
 text_size mm
 sheet_code text
 width value
 height value
 scale value
 rotation value
 xorigin value
 yorigin value
 left_margin mm
 right_margin mm
 top_margin mm
 bottom_margin mm
 plotter text
 colour colour
 textstyle textstyle_name
}
```

Continue to the next section 34.4.8 Super String or return to 34.4 12da Definition for each String Type or 34 12d Archive File Format.
34.4.8 Super String

Because the super string is so versatile, its 12da format looks complicated but it is very logical and actually quite simple.

In its most primitive form, the super string is simply a set of (x,y) values as in a 2d string, or (x,y,z) values as in a 3d string, or (x,y,z,radius,bulge_flag) as for a polyline string or even lines, arcs and transitions (spirals and non-spiral transitions).

Additional blocks of information can extend the definition of the super string. For example, text, pipe diameters and visibility.

Some of the properties of the super string extend what were constant properties for the entire string in other string types. For example, breakline type for the string extends to tinability of vertices and segments. One colour for the string extends to individual colours for each segment.

Other properties such as vertex id’s (point numbers), visibility and culvert data are entirely new.

For user attributes, the super string still has the standard user attributes defined for the entire string, but user attributes for each vertex and segment are also supported.

The definition of a closed string has been refined for polyline and super strings. For other string types, closing a string simply meant having the first vertex the same as the last vertex. Hence the vertex was duplicated.

For a super string, being closed is a property of the string and no extra vertex is needed. That is, the first and the last vertices are not the same for a closed super string and the super string knows there is an additional segment from the last vertex back to the first vertex.

Hence in the 12da format, there is a closed flag for the super string:

```
closed true or false
```

where true can be 1 or T or t or Y or y (or words starting with T, t, Y or y))
and false is 0 or F or f or N or n (or words starting with F, f, N or n).

Thus if a string has $n$ vertices, then an open string has $n-1$ segments joining the vertices and a closed string has $n$ segments since there is an additional segment from the last to the first vertex.

With the additional data for vertices and segments in the super string, the data is in vertex or segment order. So for a string with $n$ vertices, there must be $n$ bits of vertex data. For segments, if the string is open then there only needs to be $n-1$ bits of segment data but for closed strings, there must be $n$ bits of data. For an open string, $n$ bits of segment data can be specified and the $nth$ bit will be read in and stored. If the string is then closed, the $nth$ bit of data will be used for the extra segment.
The full 12da definition of the super string is:

```plaintext
string super {
 chainage start_chainage
 model model_name name string_name
 colour colour_name style style_name
 breakline point or line
 closed true or false
 interval {
 chord_arc value // chord-to-arc tolerance for curves
 distance value // chainage interval to break the geometry up
 }

 block of info {
 }
 block of info {
 }
 block of info {
 }
}
```

The blocks of info can be broken up into four types.

(a) blocks defining the position of the vertices in z, y and z

`data_2d` or `data_3d`
(b) blocks defining the geometry of the segments
   *radius_data* and *major_data* or *geometry_data*

(c) a superseded block defining vertices and segment geometry
   *data*

(d) extra information for the vertices and/or segments
   pipe diameters - *diameter_value* or *diameter_data*
   culvert dimensions - *culvert_value* or *culvert_data*
   pipe/culvert justification - *justify*
   colour - *colour* or *colour_data*
   vertex ids (point numbers) at each vertex- *point_data*
   tinability - *breakline* or *vertex_tinability_data* and *segment_tinability_data*
   visibility - *vertex_visible_data* and *segment_visible_data*
   vertex text and annotation - *vertex_text_data* and *vertex_annotation_data*
   segment text and annotation - *segment_text_data* and *segment_annotation_data*
   symbols at vertices - *symbol_value* or *symbol_data*
   vertex attributes - *vertex_attribute_data*
   segment attributes - *segment_attribute_data*
   extrudes
   image data
   holes

The definition for the blocks of each type now follows.

(a) Blocks Defining the Position of the Vertices

For (x, y) Values with a Constant z

If there is only (x,y) values at each vertex (like a 2d string):

```plaintext
data_2d { // keyword
 x-value y-value
 "
 "
}
```

and if there is a non-null constant z for the string

```plaintext
z value
```

For (x,y,z) Values

If there is (x,y,z) values at each vertex (like a 3d string):

```plaintext
data_3d { // keyword
 x-value y-value z-value
 " " "
 " " "
}
```

(b) Blocks Defining the Geometry of the Segments

Straights and Arcs Only for the Segments

If data_2d or data_3d was used, it is possible to add radius and bulge_flag data:

```plaintext
radius_data { // keyword
 radius for first segment
 radius for second segment
}
radius for last segment

major_data { // keyword
 bulge flag for first segment
 bulge flag for second segment
 ...
 bulge flag for last segment
}

Straights, Arcs and Transitions (Spiral and non-Spiral Transitions) for the Segments

If data_2d or data_3d was used, it is possible to specify if the segments are straight, arcs or transitions using a geometry_data block.

geometry_data {
 segment_info_1 { // information on the first segment
 }
 segment_info_2 { // information on the second segment
 }
 " "
 " "
 segment_info_n-1 { // the last segment if it is open
 information on the (n-1) segment
 }
 segment_info_n { // the last segment if it is closed
 information on the n-th segment
 }
}

where the segment_info blocks are from the following:

(a) Straight

No parameters are needed for defining a straight segment. The straight block is simply:

straight { // no parameters are needed for a straight
}

(b) Arc

There are four possibilities for an arc of a given radius placed between two vertices.

We use positive and negative radius, and a flag major which can be set to 1 (on) or off (0) to differentiate between the four possibilities.
So the arc block is:

```plaintext
arc {
  radius  value  // radius of the arc (+ve is above the line connecting the vertices)
  major   0 or 1  // 0 is the smaller arc, 1 the larger arc).
}
```

(c) Spiral - this covers both spiral and non-spiral transitions

There can be a partial transition between adjacent vertices. The partial transition is defined by the parameters:

- \(l_1 \): length of the full transition up to the start vertex
- \(r_1 \): radius of the transition at the start vertex
- \(a_1 \): angle in decimal degrees of the tangent to the transition at the start vertex
- \(l_2 \): length of the full transition up to the end vertex
- \(r_2 \): radius at the end vertex
- \(a_2 \): angle in decimal degrees of the tangent to the transition at the end vertex

Since a radius cannot be zero, a radius of infinity is denoted by zero.

The transition is said to be a leading transition if the absolute value of the radius is increasing along the direction of the transition (the transition will tighten). Otherwise it is a trailing transition.

If a leading transition is a full transition then \(r_1 = 0 \) and \(l_1 = 0 \). Similarly if a trailing transition is a full transition then \(r_2 = 0 \) and \(l_2 = 0 \).

For a partial transition, if the coordinates of the start of the full transition are needed then they can be calculated from \(l_1, r_1, a_1, l_2, r_2, a_2 \) and the co-ordinates of the start and end vertices.

Note that the radii can be positive or negative. If the radii’s are positive then a leading transition will curl to the right (and will be above the line joining the start and end vertices).
The parameters for the *spiral* block are:

```plaintext
spiral {
  type value // type can be clothoid, cubic parabola, westrail-cubic,
               // cubic spiral, natural clothoid, blossom,
               // blossom, sinusoidal, cosinusoidal
  leading 1 or 0 // 1 denotes a leading transition, 0 a trailing transition
  l1 value // length of the full transition at start vertex
  r1 value // radius at the start vertex
  a1 value // angle in decimal degrees of the tangent to the transition
               // at the start vertex
  l2 value // length of the full transition at end vertex
  r2 value // radius at end vertex
  a2 value // angle in decimal degrees of the tangent to the transition
               // at the end vertex
}
```

Notes

1. The *spiral* block covers both spiral and non-spiral transitions.
2. The transitions/spirals supported by 12d Model are:

- **Clothoid** - spiral approximation used by Australian road authorities and Queensland Rail.
- **Cubic parabola** – special transition curve used by NSW railways. Not a spiral.
- **Westrail cubic** – spiral approximating used by WA railways.
- **Cubic spiral** – low level spiral approximation. Only ever used in surveying textbooks.
- **Natural Clothoid** – the proper Euler spiral. Not used by any authority.
Bloss – special transition used by Deutsche Bahn. Not a spiral.
Sinusoidal - special transition. Not a spiral.
Cosinusoidal - special transition. Not a spiral.

(c) Block Defining the Vertices and Segments
For compatibility with the polyline, the *data* block gives the \((x,y,z,\text{radius},\text{bulge})\) values at each vertex of the string and so defines both the vertices and the geometry of the segments in the one block.

\[
data \{ \hspace{1cm} \text{// keyword} \\
x\text{-value} & y\text{-value} & z\text{-value} & \text{radius} & \text{bulge} \\
\% \% \% \% \\
\%
\}
\]

(d) Other Blocks

Pipe Diameters
There can be one pipe diameter value for the entire super string or the pipe diameter varies for each segment of the super string.

\[
diameter\text{_value} \hspace{0.5cm} \text{value} \\
\text{or} \\
diameter\text{_data} \{ \hspace{1cm} \text{// keyword} \\
\text{pipe diameter for first segment} \\
\text{pipe diameter for second segment} \\
\cdots \\
\text{pipe diameter for last segment} \\
\}
\]

Culvert Dimensions
There can be one culvert width and height for the entire super string or the culvert width and height vary for each segment of the super string.

\[
culvert\text{_value} \{ \\
\text{width value} \\
\text{height value} \\
\}
\text{or} \\
culvert\text{_data} \{ \text{properties} \{ \hspace{1cm} \text{// width and height for first segment} \\
\text{width value} \\
\text{height value} \\
\}
\text{properties} \{ \hspace{1cm} \text{// width and height for second segment} \\
\text{width value} \\
\text{height value} \\
\}
\cdots \\
\text{properties} \{ \hspace{1cm} \text{// width and height for last segment} \\
\text{width value} \\
\text{height value} \\
\}
\}
\]

Justification for Pipe or Culverts
There can be only one justification for the pipe or culvert for the entire super string.
justify justification // bottom or invert
// top or obvert
// centre (default)

Colour
There can be one colour for the entire super string which is given by the `colour` command at
the beginning of the string definitions (before the blocks of information) or the colour varies for
each segment of the super string and is specified in a `colour_data` block.

```
colour_data {  // keyword
    colour for first segment
    colour for second segment
    ...
    colour for last segment
}
```

Vertex Id’s (Point Numbers)
Each vertex can have a vertex id (point number). This is not the order number of the vertex in the
string but is a separate id which is usually different for every vertex in every string. The vertex id
can be alphanumeric.

```
point_data {  // keyword
    vertex id or first vertex  // alphanumeric
    vertex id for second vertex
    ...
    vertex id for last vertex
}
```

Tinability
For a `super string`, the concept of breakline has been extended to a property called `tinable` which
can be set independently for each vertex and each segment of the super string.

If a vertex is tinable, then the vertex is used in triangulations. If the vertex is not tinable, then the
vertex is ignored when triangulating.

If a segment is tinable, then the segment is used as a side of a triangle during triangulation. This
may not be possible if there are crossing tinable segments.

```
vertex_tinable_data {  // keyword
    tinable flag for first vertex  // 1 for tinable
    tinable flag for second vertex  // 0 for not tinable
    ...
    tinable flag for last vertex
}
```

```
segment_tinable_data {  // keyword
    tinable flag for first segment  // 1 for tinable
    tinable flag for second segment  // 0 for not tinable
    ...
    tinable flag for last segment
}
```

Note that even if a segment is set to tinable, is can only be used if both its end vertices are also
tinable.

Visibility
For a super string, the concept of visibility and invisibility for vertices and segments has been introduced.

```plaintext
vertex_visible_data {
    visibility flag for first vertex // 1 for visible
    visibility flag for second vertex // 0 for invisible
    ...
    visibility flag for last vertex
}

segment_visible_data {
    visibility flag for first segment // 1 for visible
    visibility flag for second segment // 0 for invisible
    ...
    visibility flag for last segment
}
```

Vertex Text and Vertex Annotation

There can be the same piece of text for every vertex in the super string or a different text for each vertex of the super string. How the text is drawn is specified by vertex annotation values. Note that in vertex annotations, all vertices must be either worldsize or all vertices papersize. That is, worldsize and papersize can not be mixed - the first one found is used for all vertices.

```plaintext
vertex_text_value
    text
or
vertex_text_data {
    text for first vertex // text string, enclose
    text for second vertex // by " " if there are any
    ...
    text for last vertex
}

vertex_annotate_value {
    angle value offset value raise value
    textstyle textstyle_name slant degrees xfactor value
    worldsize value or papersize value or screensize value
    justify "top|middle|bottom-left|centre|right"
    colour colour_name
}
or
vertex_annotate_data {
    properties {
        angle value offset value raise value
        textstyle textstyle_name slant degrees xfactor value
        worldsize value or papersize value or screensize value
        justify "top|middle|bottom-left|centre|right"
        colour colour_name
    }
    properties {
        text properties second vertex
    }
    properties {
        ...
    }
    properties {
        text properties for last vertex
    }
}
```

Segment Text and Segment Annotation
There can be the same piece of text for every segment in the super string or a different text for each segment of the super string. How the text is drawn is specified by segment annotation values. Note that in segment annotations, all segments must be either worldsize or all segments papersize. That is, worldsize and papersize can not be mixed - the first one found is used for all segments. However, vertex text and segment text do not both have to be papersize or worldsize.

```
segment_text_value
  text
or
segment_text_data {
  text for first segment
  // text string, enclose
  text for second segment
  // by " " if there are any
  ...
  // spaces in the text string
  text for last segment
}
```

```
segment_annotate_value {
  angle value offset value raise value
  textstyle textstyle slant degrees xfactor value
  worldsize value or papersize value or screensize value
  justify "top|middle|bottom-left|centre|right"
  colour colour_name
}
or
segment_annotate_data {
  properties {
    angle value offset value raise value
    textstyle textstyle slant degrees xfactor value
    worldsize value or papersize value or screensize value
    justify "top|middle|bottom-left|centre|right"
    colour colour_name
  }
  properties { text properties second segment }
  properties { ...
  }
  properties { text properties for last segment }
}
```

Symbols

There can be the same symbol (defined as a linestyle) for every vertex in the super string or a different symbol for each vertex of the super string. If a symbol does not have a colour, then it uses the string colour or the segment colour.

```
symbol_value {
  // keyword
  style linestyle_name colour colour_name size value
  rotation value    // in dms
  offset value    raise value
}
or
symbol_data {
  // keyword
  properties {
    style linestyle_name colour colour_name size value
    style linestyle colour colour size value
    rotation value    // in dms
    offset value    raise value
  }
  properties { symbol and properties for second vertex }
```
properties { ... }
properties { symbol and properties for last vertex }
}

Vertex Attributes
Each vertex can have one or more user defined named attributes.

```plaintext
vertex_attribute_data {
    attributes {
        attribute_type  attribute_name  attribute_value
        attribute_type  attribute_name  attribute_value
        ...
        attribute_type  attribute_name  attribute_value
    }
    attributes { named attributes for second vertex }
    attributes { ...
    }
    attributes { named attributes for last vertex }
}
```

Segment Attributes
Each segment can have one or more user defined named attributes.

```plaintext
segment_attribute_data {
    attributes {
        attribute_type  attribute_name  attribute_value
        attribute_type  attribute_name  attribute_value
        ...
        attribute_type  attribute_name  attribute_value
    }
    attributes { named attributes for second segment }
    attributes { ...
    }
    attributes { named attributes for last segment }
}
```

Continue to the next section 34.4.9 Super Alignment String or return to 34.4 12da Definition for each String Type or 34 12d Archive File Format.
34.4.9 Super Alignment String

In an alignment string, only the intersection point method (IP’s) could be used to construct the horizontal and vertical geometry. The IP definition is actually a constructive definition and the tangents points and segments between the tangent points (lines, arcs, transitions etc.) are calculated from the IP definition. For an alignment string, only the IP definitions are included in the 12da file.

For a super alignment, the horizontal and vertical geometry are also defined separately and with construction definitions but the construction definition can be much more complex than just IP’s. For example, an arc could be defined as being tangential to two offset elements, or constrained to go through a given point.

If the horizontal construction methods are consistent then the horizontal geometry can be solved, and the horizontal geometry expressed in terms of consecutive segments (lines, arcs, transitions) that are easily understood and drawn.

Similarly if the vertical construction methods are consistent then the vertical geometry can be solved, and the vertical geometry expressed in terms of consecutive segments (lines, arcs, parabolas) that are easily understood and drawn.

Unlike the alignment, the super alignment stores both the construction methods (the parts) and the resulting vertices and segments (lines, arcs, transitions etc.) that make up the horizontal and vertical geometry (the data).

For many applications such as uploading to survey data collectors or machine control devices, only the horizontal data and the vertical data are required, not the construction methods (i.e. the horizontal and vertical parts). When reading the 12da of a super alignment, only the horizontal and vertical data needs to be read in and the constructive methods (the horizontal and vertical parts) can be skipped over.

Vertices and Segments Forming the Horizontal Data for a Super Alignment
Notes

1. Just using the horizontal and vertical data is valid as long as the super alignment geometry is consistent (and solves) and the horizontal and vertical parts can be created. There are flags in the 12da of the super alignment to say that the horizontal and vertical geometry is consistent and solves.

2. Segments meeting at a common vertex do not have to be tangential although for most road and rail applications, they should be.

The full 12da definition of the super alignment is:

```c
string super_alignment {
    //
    name                string_name
    chainage            start_chainage
    colour              colour_name
    style               style_name
    breakline           point or line
    closed              true or false
    spiral_type         transition_type
    // the spiral_types are clothoid,
    // cubic parabola, westrail-cubic,
    cubic spiral,
    // natural clothoid, blossom, sinusoidal
    and
    // cosinusoidal. Note that some
    spiral_type's
    // are non-spiral transitions
    valid_horizontal    true or false
    valid_vertical      true or false
    // if true then the horizontal geometry
    // is consistent and solves
    // if true then the horizontal geometry
    // is consistent and solves
    block of info { }
    block of info { }
    block of info { }
} // end of super alignment
```

where the block of info can be one of more of:

- attributes, horizontal_parts, horizontal_data, vertical_parts, vertical_data.

The attributes block has been described in the earlier section 34.2 Attributes.

The structure of the blocks horizontal_parts, horizontal_data which define the horizontal geometry, and vertical_parts and vertical_data which define the vertical geometry will now be described in more detail.

For information on horizontal geometry, go to Horizontal Geometry.

For information on vertical geometry, go to Vertical Geometry.
Horizontal Geometry

The horizontal geometry is described by two blocks - the `horizontal_parts` block and the `horizontal_data` block.

The `horizontal_parts` block contains the methods to construct the horizontal geometry such as float (fillet) an arc of a certain radius between two given lines or create a transition (spiral or non-spiral transition) between a line and an arc.

If the horizontal construction methods are consistent, then they can be solved to form a string made up of lines, arcs and transitions. The `horizontal_data` block is simply a list of the vertices and segments (lines, arcs etc.) that make up the solved geometry.

If the geometry in the `horizontal_parts` can be solved and produces a valid `horizontal_data` block, then the flag `valid_horizontal` in the super_alignment block is set to `true`.

```plaintext
valid_horizontal true or false  // true if the horizontal geometry can be solved and
// hence create a valid horizontal_data

horizontal_parts {                  // methods for creating the horizontal geometry
...;
}

horizontal_data {                     // the horizontal segments that make up the solved
  geometry
...;
}
```

For information on `horizontal_parts`, go to the section `Horizontal_parts` and `horizontal_data` `Horizontal_data`

Horizontal_parts

The `horizontal_parts` block describes the methods used to construct the horizontal geometry of the super alignment. The parts that make up the horizontal geometry are defined in chainage order from the start to the end of the super alignment.

```plaintext
horizontal_parts {  // methods for creating the horizontal geometry
  blocks defining the sequential parts
  making up the horizontal geometry
}
```

Apart from the special case of parts defined by horizontal intersection points and their accompanying transitions and arcs, the other parts in the `horizontal_parts` block are not documented.

Horizontal_parts for defined by IP Method Only

For a horizontal intersection point (HIP) with no transitions or arc defined at that HIP, the part is defined by:

```plaintext
ip {
  id value  // part id - a number that is unique for each horizontal and vertical part,
  x value  // and the value of part id is a multiple of 100
  y value  // x co-ordinate of the horizontal intersection point
}
```

For a horizontal intersection point (HIP) with an arc but no transitions defined at that HIP, the part is defined by
arc {
 id value // part id - a number that is unique for each horizontal and vertical part,
 // and the value of part id is a multiple of 100
 r value // radius of the arc at the HIP
 x value // x co-ordinate of the HIP
 y value // y co-ordinate of the HIP
}

For a horizontal intersection point (HIP) with an arc and transitions defined at that HIP, the part is defined by

spiral {
 id value // part id - a number that is unique for each horizontal and vertical part,
 // and the value of part id is a multiple of 100
 r value // radius of the arc at the HIP
 l1 value // length of the leading transition at the HIP
 l2 value // length of the trailing transition at the HIP
 x value // x co-ordinate of the HIP
 y value // y co-ordinate of the HIP
}

Note that the transition used in the spiral block is given by spiral_type in the super_alignment block.

Hence a super alignment with horizontal geometry defined by IP methods only would consist of a horizontal_parts section with only the above ip, arc and spiral blocks in it.

horizontal_parts {
 ip_spiral_arc {
 values // values defining the ip_spiral_arc block
 "
 values
 }

 ip_spiral_arc {
 values // values defining the ip_spiral_arc block
 "
 values
 }
}

For example,
Horizontal data

The `horizontal_data` block contains the solved horizontal geometry of the super alignment. The solved horizontal geometry is made up of a series of \((x,y) \) vertices given in a `data_2d` block followed by a `geometry_data` block specifying the geometry of the segments between adjacent vertices. The segment can be a straight line, an arc, a transition (e.g. a spiral) or a partial transition.

If the horizontal geometry has \(n \) vertices, then there will be \((n-1)\) segments for an open super alignment or \(n \) segments if the super alignment is closed.

The format of the `horizontal_data` block is:

```
horizontal_data {
  name ""
  chainage
  breakline line or point
  colour
  style linestyle
  closed 0 or 1 // 0 if the string is open, 1 if it is closed
}
```
interval {
 chord_arc value // chord-to-arc tolerance for curves
 distance value // chainage interval to break the geometry up
}

data_2d {
 x1-value y1-value // co-ordinates of the first vertex
 x2-value y2-value // co-ordinates of the second vertex
 " "
 xn-value yn-value // co-ordinates of the n-th vertex
}

geometry_data {
 segment_info_1 {
 information on the first segment
 }
 segment_info_2 {
 information on the second segment
 }
 " "
 segment_info_n-1 {
 information on the (n-1) segment
 }
 segment_info_n {
 information on the n-th segment
 }
}

where the segment_info blocks are from the following:

(a) Straight

No parameters are needed for defining a straight segment. The straight block is simply:

straight {
 // no parameters are needed for a straight
}

(b) Arc

There are four possibilities for an arc of a given radius placed between two vertices. We use positive and negative radius, and a flag major which can be set to 1 (on) or off (0) to differentiate between the four possibilities.
So the arc block is:

```
arc {
    radius value // radius of the arc (+ve is above the line connecting the vertices)
    major 0 or 1 // 0 is the smaller arc, 1 the larger arc.
}
```

(c) Spiral - this covers both spiral and non-spiral transitions

There can be a partial transition between adjacent vertices. The partial transition is defined by the parameters

- \(l_1 \) length of the full transition up to the start vertex
- \(r_1 \) radius of the transition at the start vertex
- \(a_1 \) angle in decimal degrees of the tangent to the transition at the start vertex
- \(l_2 \) length of the full transition up to the end vertex
- \(r_2 \) radius at the end vertex
- \(a_2 \) angle in decimal degrees of the tangent to the transition at the end vertex

Since a radius cannot be zero, a radius of infinity is denoted by zero.

The transition is said to be a leading transition if the absolute value of the radius is increasing along the direction of the transition (the transition will tighten). Otherwise it is a trailing transition.

If a leading transition is a full transition then \(r_1 = 0 \) and \(l_1 = 0 \). Similarly if a trailing transition is a full transition then \(r_2 = 0 \) and \(l_2 = 0 \).

For a partial transition, if the coordinates of the start of the full transition are needed then they can be calculated from \(l_1, r_1, a_1, l_2, r_2, a_2 \) and the co-ordinates of the start and end vertices.

Note that the radii can be positive or negative. If the radii's are positive then a leading transition will curl to the right (and will be above the line joining the start and end vertices).

The parameters for the spiral block are:

```
spiral {
    type transition_type // any of the transitions supported in 12d
    leading 1 or 0 // 1 denotes a leading transition, 0 a trailing transition
    l1 value // length of the full transition at start vertex
    r1 value // radius at the start vertex
    a1 value // angle in decimal degrees of the tangent to the transition at start vertex
    l2 value // length of the full transition at end vertex
    r2 value // radius at the end vertex
    a2 value // angle in decimal degrees of the tangent to the transition at end vertex
}
```
r2 value // radius at end vertex
a2 value // angle in decimal degrees of the tangent to the transition
// at the end vertex

Notes
1. The **spiral** block covers both spiral and non-spiral transitions.
2. The transitions/spirals supported by **12d Model** are:

```
Select Choice

- clothoid
- cubic parabola
- westrail cubic spir
- cubic spiral
- natural clothoid
- bloss
- sinusoidal
```

Clothoid - spiral approximation used by Australian road authorities and Queensland Rail.

Cubic parabola – special transition curve used by NSW railways. Not a spiral.

Westrail cubic – spiral approximating used by WA railways.

Cubic spiral – low level spiral approximation. Only ever used in surveying textbooks.

Natural Clothoid – the proper Euler spiral. Not used by any authority.

Bloss – special transition used by Deutsche Bahn. Not a spiral.

Sinusoidal - special transition. Not a spiral.

Cosinusoidal - special transition. Not a spiral.
Vertical Geometry

The vertical geometry is described by two blocks - the vertical_parts block and the vertical_data block.

The vertical_parts block contains the methods to construct the vertical geometry such as float (fit) a parabola of a certain length between two given lines.

If the vertical construction methods are consistent, then they can be solved to form a string made up of lines, parabolas and arcs. The vertical_data block is simply a list of the vertices and segments (lines, parabolas and arcs) that make up the solved geometry.

If the geometry in the vertical_parts can be solved and produces a valid vertical_data block, then the flag valid_vertical in the super_alignment block is set to true.

```plaintext
valid_vertical  true or false /// true if the vertical geometry can be solved and // hence create a valid vertical_data
vertical_parts { // methods for creating the vertical geometry
    ....
}
vertical_data { // the vertical geometry
    ....
}
```

For information on vertical_parts, go to the section Vertical_parts Vertical_data

Vertical_parts

The vertical_parts block describes the methods used to construct the vertical geometry of the super alignment. The parts that make up the vertical geometry are defined in chainage order from the start to the end of the super alignment.

```plaintext
vertical_parts { // methods for creating the vertical geometry
    blocks defining the sequential parts
    making up the vertical geometry
}
```

Apart from the special case of parts defined by vertical intersection points and their accompanying parabolas and arcs, the other parts in the vertical_parts block are undocumented.

Vertical_parts for defined by IP Method Only

For a vertical intersection point (VIP) with no parabola or arc defined at that VIP, the part is defined by:

```plaintext
ip {
    id  value  // part id - a number that is unique for each horizontal and vertical part,
    x   value  // and the value of part id is a multiple of 100
    y   value  // chainage co-ordinate of the VIP
}
```

For a vertical intersection point (VIP) with a parabola defined by a k value at that VIP, the part is defined by

```plaintext
kvalue {
    id  value  // part id - a number that is unique for each horizontal and vertical part
}
```
tical part,
 // and the value of part id is a multiple of 100
 k value // k-value of the parabola at the VIP
 x value // chainage co-ordinate of the VIP
 y value // height co-ordinate of the VIP
 }

For a vertical intersection point (VIP) with a parabola defined by length at that VIP, the part is
defined by

 length {
 id value // part id - a number that is unique for each horizontal and vertical part,
 // and the value of part id is a multiple of 100
 l value // length of the parabola at the VIP
 x value // chainage co-ordinate of the VIP
 y value // height co-ordinate of the VIP
 }

For a vertical intersection point (VIP) with a parabola defined by an effective radius at that VIP,
the part is defined by

 radius {
 id value // part id - a number that is unique for each horizontal and vertical part,
 // and the value of part id is a multiple of 100
 r value // effective radius of the parabola at the VIP
 x value // chainage co-ordinate of the VIP
 y value // height co-ordinate of the VIP
 }

For a vertical intersection point (VIP) with an asymmetric parabola defined by the start and end
lengths at that VIP, the part is defined by

 length {
 id value // part id - a number that is unique for each horizontal and vertical part,
 // and the value of part id is a multiple of 100
 l1 value // start length of the asymmetric parabola at the VIP
 l2 value // end length of the asymmetric parabola at the VIP
 x value // chainage co-ordinate of the VIP
 y value // height co-ordinate of the VIP
 }

For a vertical intersection point (VIP) with an arc defined by a radius at that VIP, the part is
defined by

 arc {
 id value // part id - a number that is unique for each horizontal and vertical part,
 // and the value of part id is a multiple of 100
 r value // radius of the arc at the VIP
 x value // chainage co-ordinate of the VIP
 y value // height co-ordinate of the VIP
 }

Hence a super alignment with vertical geometry defined by IP methods only would consist of a
vertical_parts section with only the above ip, parabola and arc blocks in it.
vertical_parts {
 ip_parabola_arc {
 values // values defining the ip_parabola_arc
 block
 "
 values
 }

 ip_parabola_arc {
 values // values defining the ip_parabola_arc
 block
 "
 values
 }
 }
}

For example,
The \textit{vertical_data} block contains the solved vertical geometry of the super alignment.

The solved vertical geometry is made up of a series of (chainage, height) vertices given in a \textit{data_2d} block followed by a \textit{geometry_data} block specifying the geometry of the segments between adjacent vertices. The segment can be a straight line, a parabola or an arc.

If the vertical geometry has \(n\) vertices, then there will be \((n-1)\) segments for an open super alignment or \(n\) segments if the super alignment is closed.

The format of the \textit{vertical_data} block is:

\begin{verbatim}
vertical_data {

\end{verbatim}
name ""
chainage value
breakline line or point
colour colour
style linestyle
closed 0 or 1 // 0 if the string is open, 1 if it is closed
interval {
 chord_arc value // chord-to-arc tolerance for curves
 distance value // chainage interval to break the geometry up
}
data_2d {
 ch1-value ht1-value // co-ordinates of the first vertex
 ch2-value ht2-value // co-ordinates of the second vertex
 " "
 chn-value htn-value // co-ordinates of the n-th vertex
}
geometry_data {
 segment_info_1 {
 information on the first segment
 }
 segment_info_2 {
 information on the second segment
 }" "
 " "
 segment_info_n-1 { // the last segment if it is open
 information on the (n-1) segment
 }
 segment_info_n { // the last segment if it is closed
 information on the n-th segment
 }
}

where the segment_info blocks are from the following:

(a) Straight
No parameters are needed for defining a straight segment. The straight block is simply:

 straight { // no parameters are needed for a straight
}

(b) Arc
Since vertical geometry can’t go backwards in chainage value, the majors arcs can not be used and hence there are only possibilities for an arc of a given radius placed between two vertices.

We use positive and negative radius to differentiate between the four possibilities.

So the arc block is:

 arc {
 radius value // radius of the arc (+ve is above the line connecting vertices)
 major value // this is ignored since only minor arcs are used
 }
Parabola

There can be a parabola between adjacent vertices. The parabola is defined by giving the coordinates of the vertical intersection point for the parabola:

- **chainage**: chainage of the VIP of the parabola
- **height**: height of the VIP of the parabola

The parameters for the *parabola* block are:

```plaintext
parabola {
  chainage value // chainage of the VIP of the parabola
  height value // height of the VIP of the parabola
}
```

Continue to the next section [34.4.10 Text String](#) or return to [34.4 12da Definition for each String Type](#) or [34.12d Archive File Format](#).
34.4.10 Text String

string text {
 x value y value z value
 model model_name name string_name colour colour_name
 text text_value
 angle value offset value raise value
 textstyle textstyle_name slant degrees xfactor value
 worldsize value or papersize value or screensize value
 justify "top|middle|bottom-left|centre|right"
}

The string types in the following sections have been superceded.

Continue to the next section 34.4.11 2d String or return to 34.4 12da Definition for each String Type or 34.12d Archive File Format.
34.4.11 2d String

The 2d string has been superceded and has been replaced by the super string (see 34.4.8 Super String).

```plaintext
string 2d {
  z  value  chainage  start_chainage
  model  model_name  name  string_name
  colour  colour_name  style  style_name
  breakline  point or line
  data {  // keyword
    x-value  y-value
    "    "
  }
}
```

Continue to the next section 34.4.12 3d String or return to 34.4 12da Definition for each String Type or 34.12d Archive File Format.
34.4.12 3d String

The 3d string has been superceded and has been replaced by the super string (see \texttt{34.4.8 Super String}).

```c
string 3d {
    chainage \textit{start\_chainage}
    model \textit{model\_name} name \textit{string\_name}
    colour \textit{colour\_name} style \textit{style\_name}
    breakline point or line
    data { // keyword
        x-value y-value z-value
        " " " \\
        " " "
    }
}
```

Continue to the next section \texttt{34.4.13 4d String} or return to \texttt{34.4 12da Definition for each String Type} or \texttt{34.12d Archive File Format}.
34.4.13 4d String

The 4d string has been superceded and has been replaced by the super string (see 34.4.8 Super String).

```plaintext
string 4d {
    angle value  offset value  raise value
    worldsize value  or  papersize value  or  screensize value
    chainage start_chainage
    model model_name  name string_name
    colour colour_name  style style_name
    breakline point or line
    textstyle text  slant degrees  xfactor value
    justify "top|middle|bottom-left|centre|right"
    data {       // keyword
        x-value  y-value  z-value  text       // text can not be blank
            " "       " "       " "       // use "" for no text.
    }
}
```

Continue to the next section 34.4.14 Pipe String or return to 34.4 12da Definition for each String Type or 34.12d Archive File Format.
34.4.14 Pipe String

The pipe string has been superceded and has been replaced by the super string (see 34.4.8 Super String).

```plaintext
string pipe {
  diameter value  chainage start_chainage
  model  model_name  name  string_name
  colour  colour_name  style  style_name
  breakline  point or line
  data { // keyword
    x-value  y-value  z-value
      "      "      "
      "      "      "
  }
}
```

Continue to the next section 34.4.15 Polyline String or return to 34.4 12da Definition for each String Type or 34.12d Archive File Format.
34.4.15 Polyline String

The polyline string has been superceded and has been replaced by the super string (see 34.4.8 Super String).

The definition of a closed string has been refined for polyline and super strings. For other string types, closing a string simply meant having the first vertex the same as the last vertex. Hence the vertex was duplicated.

For a polyline string, being closed is a property of the string and no extra vertex is needed - the first and the last vertices are not the same and the polyline string knows there is an additional segment from the last vertex back to the first vertex.

In the 12da format, there is a new closed flag for the polyline string:

```
closed true or false
```

where true can be 1 or T or t or Y or y (or words starting with T, t, Y or y))
and false is 0 or F or f or N or n (or words starting with F, f, N or n).

```
string polyline {
  model model_name name string_name
  colour colour_name style style_name
  breakline point or line
  closed true or false

  data { // keyword
    x-value y-value z-value radius bulge_flag
    " " " "
  }
}
```

Continue to the next section 34.4.16 Alignment String or return to 34.4 12da Definition for each String Type or 34 12d Archive File Format.
34.4.16 Alignment String

The alignment string has been superceded and has been replaced by the super alignment (see 34.4.9 Super Alignment String).

In an alignment string the horizontal and vertical geometry are given separately and both can only be defined by the intersection point method (IP’s).

For the horizontal geometry, the \((x,y)\) position of the horizontal intersection points (HIPS) are given in the order that they appear in the string, plus the circular radius and left and right transition lengths on each HIP.

Hence a horizontal intersection point is given by either

\[
\begin{align*}
\text{x-value} &\quad \text{y-value} &\quad \text{radius} &\quad \text{// circular curve, no transition} \\
\text{x-value} \quad \text{y-value} &\quad \text{radius} \quad \text{spil1} \quad \text{left-transition-length} \quad \text{spil2} \quad \text{right-transition-length}
\end{align*}
\]

\(\text{radius, left-transition-length, right-transition-length}\) can be zero (meaning they don't exist).

For the vertical geometry, the \((\text{chainage, height})\) position of the vertical intersection points (VIPs) are given in increasing chainage order, plus either the radius of the circular arc or the length of the parabolic curve on each VIP.

Hence for a vertical intersection point is given by either

\[
\begin{align*}
\text{ch_value} &\quad \text{z-value} &\quad \text{length} &\quad \text{parabola} \\
\text{ch_value} \quad \text{z-value} &\quad \text{radius} &\quad \text{circle}
\end{align*}
\]

where

the word \text{parabola} is optional. \text{length} and \text{radius} can be zero, meaning that the parabola or arc doesn't exist.

\[
\begin{align*}
\text{string alignment} &\quad \{
\text{model model_name} \quad \text{name string_name} \\
\text{colour colour_name} \quad \text{style style_name} \\
\text{chainage start_chainage} \quad \text{interval value} \\
\text{draw_mode value} &\quad \text{// 1 to draw crosses at HIPs and VIPs, 0 don’t draw} \\
\text{spiral_type text} &\quad \text{// spiral_type covers both spiral and non-spiral transitions.} \\
&\quad \text{// For an alignment string, the supported transition types} \\
&\quad \text{// are clothoid, cubic parabola, westrail-cubic, cubic spiral} \\
&\quad \text{// More transition are supported in the super alignment} \\
&\quad \text{//}
\}

\text{hipdata} \quad \{
\text{x-value y-value} \quad \text{radius} &\quad \text{// or} \\
\text{x-value y-value} &\quad \text{radius} \quad \text{spil1} \quad \text{left-transition-length} \quad \text{spil2} \quad \text{right-transition-length}
\}

\text{vipdata} \quad \{
\text{ch_value z-value} \quad \text{parabolic-length} &\quad \text{// or} \\
\text{ch_value z-value} \quad \text{parabolic-length} &\quad \text{parabola} \quad \text{// or} \\
\text{ch_value z-value} &\quad \text{radius} &\quad \text{circle}
\}
\]

Continue to the next section 34.4.17 Pipeline String or return to 34.4 12da Definition for each String Type or 34.1 12d Archive File Format.
34.4.17 Pipeline String

The pipeline string has been superceded and has been replaced by the super alignment (see 34.4.9 Super Alignment String).

This is the same as an alignment string except that it has the additional keywords

- **diameter**, which gives the diameter of the pipeline in world units
- **length** of the typical pipe making up the pipeline (used for deflections).

```plaintext
string pipeline {
    model model_name  name string_name
    colour colour_name  style style_name
    diameter diameter  length pipe-length
    chainage start_chainage  interval value
    spiral_type text  // spiral_type covers both spiral and non-spiral transitions
                        // supported by 12d. For an alignment string, the
                        // supported transition types are clothoid, cubic parabola,
                        // westrail-cubic, cubic spiral. Other transition types
                        // are supported in the super alignment
    hipdata {
        x-value y-value radius  // some hips must exist and precede vips
        x-value y-value radius  spill1  left-transition-length  spill2  right-transition-length
    }
    vipdata {  // vips optional
        ch-value z-value parabolic-length
        ch-value z-value parabolic-length  parabola  // or
        ch-value z-value radius  circle
    }
}
```

Return to 34.4 12da Definition for each String Type or 34 12d Archive File Format.
35 12d XML File Format

Extensible Markup Language (XML) is a markup language that defines a set of rules for encoding documents in a format which is both human-readable and machine-readable. It is defined by the World Wide Web Consortium’s (W3C) XML Specifications which are free open standards.

The 12d XML file format is a text file definition from 12d Solutions which is used for reading and writing out string data from *12d Model*. 12d XML files normally end in `.12dxml`.

The 12d XML file is a Unicode file.

This document is for the 12d XML file format used in *12d Model* Version 11.

For general comments see:

- 35.1 General Information about XML
- 35.2 General Information about a 12d XML File

For the 12d XML definitions see:

- 35.4 Attributes
- 35.5 Model
- 35.6 Elements Contained in Models which includes
 - 35.6.1 Tin
 - 35.6.2 Super Tin
 - 35.6.5 Arc String
 - 35.6.6 Circle String
 - 35.6.7 Drainage String
 - 35.6.8 Feature String
 - 35.6.9 Plot Frame String
 - 35.6.10 Super String
 - 35.6.11 Super Alignment String
 - 35.6.12 Text String
 - 35.6.13 Trimesh

For documentation on the 12d Archive (12da) file format, see 34 12d Archive File Format.
35.1 General Information about XML

(Unicode) Character
By definition, an XML document is a string of characters. Almost every legal Unicode character may appear in an XML document.

Markup and Content
The characters making up an XML document are divided into markup and content, which may be distinguished by the application of simple syntactic rules.

Generally, strings that constitute markup either begin with the character < and end with a >, or they begin with the character & and end with a ;.

Strings of characters that are not markup are content.

However, in a CDATA section, the delimiters <![CDATA[and]]> are classified as markup, while the text between them is classified as content. In addition, whitespace before and after the outermost element is classified as markup.

Characters "<", ">", and "&"
The characters "<", ">", and "&" are key syntax markers and may never appear in content outside a CDATA section. They need to be represented by special escape sequences:

- < represents "<"
- > represents ">"
- & represents "&"

Tag
An XML tag is a markup construct that begins with < and ends with >.
Tags come in three flavours:
(a) start-tags - for example: <section>
(b) end-tags - for example: </section>
(c) empty-element tags - for example: <line-break />

XML Element
A logical document component which either begins with a start-tag and ends with a matching end-tag or consists only of an empty-element tag.
The characters between the start- and end-tags, if any, are the element’s content, and may contain markup, including other elements, which are called child elements.

An example of an element is <Greeting>Hello, world.</Greeting>. Another is <line-break />.

Note: Because elements are 12d Model items that are in a model, in the documentation of 12d XML we will refrain from using element for the element in XML. Instead we will use the words keyword block to refer to special XML Elements in 12d XML.

Empty XML Elements <keyword/>
When an XML element has no content it is called an empty element.
For example <name> </name>
There is special shorthand for empty elements:
<keyword/> is shorthand for <keyword></keyword>

XML Attribute
A markup construct consisting of a name/value pair that exists within a start-tag or empty-element tag. In the example (below) the element *img* has two attributes, *src* and *alt*:

```xml
<img src="madonna.jpg" alt='Foligno Madonna, by Raphael'/>
```

Another example would be

```xml
<step number="3">Connect A to B.</step>
```

where the name of the attribute is "number" and the value is "3".

An XML attribute can only have a single value and each attribute can appear at most once on each element.

Note: Because attributes are fundamental *12d Model* items, in the documentation of 12d XML the word attribute will refer to *12d Model* attributes.

The words **XML attribute** will always be used when there is need to refer to an XML attribute.

XML declaration

XML documents may begin by declaring some information about themselves, as in the following example:

```xml
<?xml version="1.0" encoding="UTF-8"?>
```

Escaping

XML provides escape facilities for including characters which are problematic to include directly. For example:

There are five predefined entities:

- **<** represents "<"
- **>** represents ">
- **&** represents "&"
- **'** represents '
- **"** represents "
- **
** represents a new line.

XML Comments

Comments may appear anywhere in a document outside other markup. Comments cannot appear before the XML declaration.

Comments start with "<!--" and end with "-->".

For compatibility with SGML, the string "--" (double-hyphen) is not allowed inside comments; this means comments cannot be nested.

The ampersand has no special significance within comments, so entity and character references are not recognized as such, and there is no way to represent characters outside the character set of the document encoding.

An example of a valid comment: "<!--no need to escape <code> & such in comments-->

Continue to the next section 35.2 General Information about a 12d XML File or return to 35 12d XML File Format.
35.2 General Information about a 12d XML File

Unicode

12d XML file is a Unicode file.

Blank lines

Unless they are part of a string of characters making up text, blank lines are ignored.

Names of models, tins, styles, colours and attributes

Models, tins, styles (linestyles), colours and attributes can include the characters a to z, A to Z, 0 to 9 (alphanumeric characters) and space. Leading and trailing spaces are ignored. The names can be up to 255 characters in length.

The names for models, tins, styles, colours or attributes can not be blank.

The names for models, tins, styles and colours can contain upper and lower alpha characters which are stored, but the set of model names, tin names, style names, colour names or attribute names for an object must be unique when case is ignored. For example, the model name "Fred" will be stored as "Fred" but "FRED" is considered to be the same model name as "Fred".

String names

String names can include the characters a to z, A to Z, 0 to 9 (alphanumeric characters), space, decimal point (.), plus (+), minus (-), comma (,), open and closed round brackets and equals (=).

Leading and trailing spaces are ignored.

String names do not have to be unique and can be blank.

String names can contain upper and lower alpha characters which are retained but case is ignored when selecting by string name. That is, the string name Fred will be stored as Fred but FRED is not considered to be a different string name.

Keywords Blocks

There are many regularly used blocks of information in 12d XML that are identified and documented by keywords.

The keyword and its block consist of a starting <keyword>, followed by the information in the keyword block, and ending in </keyword>

That is

<keyword> information in the keyword block </keyword>

Continue to the next section 35.3 Regularly Used Keyword Blocks or return to 35 12d XML File Format.
35.3 Regularly Used Keyword Blocks

In the documentation of 12d XML the term **keyword block** refers to a `<keyword>` followed by various information then a `</keyword>`. For the definition of some of the regularly used keyword blocks used in the 12d XML see:

- 35.3.1 Name
- 35.3.2 Colour
- 35.3.3 Line Style
- 35.3.4 Chainage
- 35.3.5 Weight
- 35.3.6 Interval
- 35.3.7 Time Created
- 35.3.8 Time Updated
- 35.3.9 Breakline
- 35.3.10 Null

Or return to 35 12d XML File Format.

35.3.1 Name

The format of the name keyword block is:

```
<name>name_text</name>
```

where **name_text** is a string of characters.

What characters can be in the name depends on where the name is used. See [Names of models, tins, styles, colours and attributes](#) and [String names](#).

Continue to the next section 35.3.2 Colour or return to 35.3 Regularly Used Keyword Blocks or 35 12d XML File Format.

35.3.2 Colour

The format of the colour keyword block is:

```
<colour>colour_name</colour>
```

where **colour_name** is a string of characters that is to be the name of a colour or the colour number.

When reading a 12d XML file, there is a current colour, which has the default value of red, and when a colour command is read, the current colour is set to colour_name.

When strings are read in a 12d XML file, they are given the current colour.

This can be overridden for a string by a string colour command inside the string command defining that string. For the definition of the string commands, see 35.6.3 String Header Block.

Continue to the next section 35.3.3 Line Style or return to 35.3 Regularly Used Keyword Blocks or 35 12d XML File Format.
35.3.3 Line Style

The format of the **line style** keyword block is:

```xml
<style>line_style_name</style>
```

where `line_style_name` is the name of a line style. It is a string of characters.

When reading a 12d XML file, there is a **current linestyle**, which has the default value of 1, and when a **style** command is read, the **current linestyle** is set to `linestyle_name`.

When strings are read in a 12d XML file, they are given the **current linestyle**. This can be overridden for a string by a **string style command** inside the string command defining that string. For the definition of the string command, see Section 35.6.3 String Header Block.

Continue to the next section 35.3.4 Chainage or return to 35.3 Regularly Used Keyword Blocks or 35 12d XML File Format.

35.3.4 Chainage

The format of the **chainage** keyword block is:

```xml
<chainage>chainage_real</chainage>
```

where `chainage_real` is a real value.

Continue to the next section 35.3.5 Weight or return to 35.3 Regularly Used Keyword Blocks or 35 12d XML File Format.

35.3.5 Weight

The format of the **weight** keyword block is:

```xml
<weight>weight_real</weight>
```

where `weight_real` is a real value.

Continue to the next section 35.3.6 Interval or return to 35.3 Regularly Used Keyword Blocks or 35 12d XML File Format.

35.3.6 Interval

For all elements other than the super string, the format of the **interval** keyword block is:

```xml
<interval>interval_real</interval>
```

where `interval_real` is a real value.

For a super string, the format of the **interval** keyword block is:

```xml
<interval>
    <chord_arc>chord_arc_real</chord_arc>
    <distance>distance_real</distance>
</interval>
```

where `chord_arc_real` and `distance_real` are real values.

Continue to the next section 35.3.7 Time Created or return to 35.3 Regularly Used Keyword Blocks or 35 12d XML File Format.
35.3.7 Time Created

The format of the `time_created` keyword block is:

\[
\text{<time_created>time_text</time_created>}
\]

where `time_text` is a string of characters in the W3C time format.

\[
\text{DD-MMM-YYYYThh:mm:ssZ}
\]

and

- `dd` in the day of the month
- `MMM` in the first three letters of the month
- `YYYY` in the year
- `hh` in the hour in the 24-hour clock
- `mm` in the number of minutes
- `ss` in the number of seconds

For example, 28-Apr-2015T06:42:45Z

Continue to the next section 35.3.8 Time Updated or return to 35.3 Regularly Used Keyword Blocks or 35.12d XML File Format.

35.3.8 Time Updated

The format of the `time_updated` keyword block is:

\[
\text{<time_updated>time_text</time_updated>}
\]

where `time_text` is a string of characters in the W3C time format.

\[
\text{DD-MMM-YYYYThh:mm:ssZ}
\]

and

- `dd` in the day of the month
- `MMM` in the first three letters of the month
- `YYYY` in the year
- `hh` in the hour in the 24-hour clock
- `mm` in the number of minutes
- `ss` in the number of seconds

For example, 28-Apr-2015T06:42:45Z

Continue to the next section 35.3.9 Breakline or return to 35.3 Regularly Used Keyword Blocks or 35.12d XML File Format.

35.3.9 Breakline

The format of the `breakline` keyword block is:

\[
\text{<breakline>breakline_type_text </breakline>}
\]

where `breakline_type_text` is text and can only have the values `point` or `line`.

When reading a 12d XML file, there is a current `breakline` type, which has the default value of `point`, and when a `breakline` command is read, the current `breakline` type is set to `breakline_type_text`.
When strings are read in a 12d XML file, they are given the current breakline type. This can be overridden for a string by a string breakline command inside the string command defining that string. For the definition of the string command, see 35.6.3 String Header Block.

Continue to the next section 35.3.10 Null or return to 35.3 Regularly Used Keyword Blocks or 35 12d XML File Format.

35.3.10 Null

NOT CERTAIN ABOUT NULL ??

The format of the null command is:

```
null null_value
```

When reading a 12d XML file, there is a current null value, which has the default value of -999, and when a null command is read, the current null value is set to null_value.

When strings are read in a 12d XML file and the string has z-values equal to null_value, then the z-value is replaced by the 12d Model null value.

This can be overridden for a string by a null_value command inside the string command defining that string. For the definition of the string command, see 35.6.3 String Header Block.

Continue to the next section 35.3.11 Radius or return to 35.3 Regularly Used Keyword Blocks or 35 12d XML File Format.

Continue to the next section 35.4 Attributes or return to 35 12d XML File Format.

35.3.11 Radius

The format of the radius keyword block is:

```
<radius>
  radius_real
</radius>
```

where radius_real is a real value.

Continue to the next section 35.3.12 data_2d or return to 35.3 Regularly Used Keyword Blocks or 35 12d XML File Format.

35.3.12 data_2d

For some strings, there is a constant z for the entire string, or even no z value at all. For such strings only the (x,y) coordinates are required for each vertex and no space is taken up by redundant z values. Vertex data with no z-values is written out in a data_2d block.

The definition of a data_2d block is:

```
<data_2d>
  <p>x_value_1  y_value_1</p>
  <p>x_value_2  y_value_2</p>
  ...
  <p>x_value_n  y_value_n</p>
</data_2d>
```

where (x_value_i, y_value_i) are the 2D coordinates of the i’th vertex.

Continue to the next section 35.3.13 data_3d or return to 35.3 Regularly Used Keyword Blocks or 35 12d XML File Format.
35.3.13 data_3d

For most string, the z value can vary for each vertex along the string and so the (x,y,z) values are required for each vertex. This vertex data is written out as a data_3d block.

The definition of a data_3d block is:

```xml
<data_3d>
  <p>x_value_1  y_value_1  z_value_1</p>
  <p>x_value_2  y_value_2  z_value_2</p>
  ...
  <p>x_value_n  y_value_n  z_value_n</p>
</data_3d>
```

where (x_value_i, y_value_i, z_value_i) are the 3D coordinates of the i'th vertex.

For example, for a string of 5 vertices

```xml
<data_3d>
  <p>42578.27649249 37366.79821468 null</p>
  <p>42523.36402317 37252.26649295 null</p>
  <p>42575.1386371 37043.59910954 null</p>
  <p>42826.16706828 37026.34090489 null</p>
  <p>42766.49603263 37412.54781911 61.53707464</p>
</data_3d>
```

35.3.14 radius_data and major_data

If there are only straight and arc segments for the string, then for either data_2d or data_3d, it is possible to add a radius and major/minor arc flag for each segment of the string using the radius_data and major_data blocks respectively.

The order of the entries in the radius_data and major_data blocks must match the order of the segments in the string (which is also the order in the data_2d or data_3d block).

So there is exactly one entry for each segment.

Note: If there are n vertices in the super string, then there are (n-1) segments for a open string (not closed) and n segments for a closed string.

For each segment there are five possibilities for an arc going between the vertices and these are specified by using positive, zero or negative values for the radius, and 1 or 0 for the major flag.

1. Straight segment - radius = 0. Major flag can be 1 or 0.
2. Positive radius and major flag 0
 The arc is above the straight line joining the two vertices but the arc is the smaller of the two possibilities (minor arc).
3. Positive radius and major flag 1
 The arc is above the straight line joining the two vertices but the arc is the larger of the two possibilities (major arc).
4. Negative radius and major flag 0
 The arc is below the straight line joining the two vertices but the arc is the smaller of the two possibilities (minor arc).
5. Negative radius and major flag 1
 The arc is below the straight line joining the two vertices but the arc is the larger of the two possibilities (major arc).
The *radius_data* block is

```xml
<radius_data>
    radius_for_segment_1
    radius_for_segment_2
    ...
    radius_for_segment_m
</radius_data>
```

where

- `radius_for_segment_i` is the radius for the i’th segment and can be positive, zero or negative, and
- \(m = n-1 \) for an open string or \(m = n \) for a closed string.

If the *radius_block* is missing then the radius is taken to be 0 and all the segments are straight lines.

The *major_data* block is

```xml
<major_data>
    major_flag_for_segment_1
    major_flag_for_segment_2
    ...
    major_flag_for_segment_m
</major_data>
```

where

- `major_flag_for_segment_i` for the i’th segment is 1 or t if the arc is a major arc, and 0 or f if it is a minor arc, and
- \(m = n-1 \) for an open string or \(m = n \) for a closed string.

If the *major_block* is missing then the major flag is taken to be 0 and any segments with arcs are always the minor arcs.

For example, for a closed string of five vertices

```xml
<radius_data>
    100 -300 0 0 0
</radius_data>
<major_data>
    f f f f f
```
35.3.15 Available Transition Types

The transition that are available are

where

- **clothoid**, (or **spiral**) is the spiral approximation used by Australian road authorities and Queensland Rail
- **cubic parabola** (or **state wide rail nsw**) is a special transition curve used by NSW Railways. It is not a spiral.
- **westrail cubic** spiral (or **westrail-cubic**) is a spiral approximation used by WA railways.
- **cubic spiral** (or **spiral**) is a low level spiral approximation. Mainly only used in surveying textbooks.
- **natural clothoid** (or landxml spiral or clothoid landxml) is the full Euler spiral. Not used by any Authority in Australia or New Zealand.
- **bloss** is a Bloss curve.
- **sinusoidal** is a sinusoidal curve.
- **cosinusoidal** is a cosinusoidal curve.
35.4 Attributes

Many 12d Model objects (models and elements such as individual strings and tins) can have an unlimited number of named attributes of type integer (numbers), real and text. Super strings and drainage strings can also have attributes on each vertex and segment.

The attributes for an object are given in an attributes block which consists of the keyword attributes followed by the definitions of the individual attributes enclosed in start and end curly braces { and }. That is, an attributes block is

```
<attributes>
  attribute_1
  attribute_2
  ...
  attribute_n
</attributes>
```

where the attribute definitions for the individual attributes attribute_i consists of

```
<attribute_type>
  <name> attribute_name </name> <value> attribute_value </value>
</attribute_type>
```

where

- attribute_type is integer, real or text
- attribute_name is the unique attribute name for the object.
- attribute_value is the appropriate value of the integer, real or a text.

OR

where attribute_type is group

```
<group>
  <name> group_name </name> attributes_block
</group>
```

where

- group_name is the unique name of the group at this level
- attributes_block is another attributes_block.

Note that the definition of <group> includes an attributes_block which can contain another <group> so the definition is recursive.

Hence you can have a hierarchy or tree of attributes going down to any level.

Within an object, the attribute names are case sensitive and must be unique. That is, for attribute names, upper and lower case alphabet characters are considered to be different characters.

An example of an attributes block defining four attributes named "pole id", "street", "pole height" and "pole wires" is:

```
<attributes>
  <text> <name>pole id</name> <value>QMR-37</value> </text>
  <text> <name>street</name> <value>477 Boundary St</value> </text>
</attributes>
```
<real> <name>pole wires</name> <value>3</value> </text>
</attributes>

Continue to the next section 35.5 Model or return to 35 12d XML File Format.
35.5 Model

Within a 12d Model project, information is collected in units called MODELS. The items that can be stored in a model are called elements and elements include strings, tins, super tins, grid tins, trimeshes and plot frames.

Each model has a unique user-defined text name, model_name, of up to two hundred alphanumeric characters and spaces.

The format for the model keyword block is:

```xml
<model>
  <name>model_name</name>
  attribute_block
  time_created_block
  time_updated_block
  <children>
    element_data_1
    ...  
    element_data_n
  </children>
</model>
```

where:

- model_name is a string of characters for the model name. For the characters allowed, see
- attribute_block is option. For attributes_block see 35.4 Attributes.
- time_created_block is optional. See 35.3.7 Time Created.
- time_updated_block is optional. See 35.3.8 Time Updated.
- element_data_i is an element stored in the model. See 35.6 Elements Contained in Models.

The children block is optional and is mainly there so that in an xml editor, the element_data_i items can be collapsed into the children section.

An example of a model with no elements and no children block:

```xml
<model>
  <name>telegraph poles</name>
  <attributes>
    <text> <name>pole id</name> <value>QMR-37</value> </text>
    <text> <name>street</name> <value>477 Boundary St</value> </text>
    <real> <name>pole wires</name> <value>3</value> </real>
  </attributes>
</model>
```

Continue to the next section 35.6 Elements Contained in Models or return to 35 12d XML File Format.
35.6 Elements Contained in Models

See

35.6.1 Tin
35.6.2 Super Tin
35.6.5 Arc String
35.6.6 Circle String
35.6.7 Drainage String
35.6.8 Feature String
35.6.9 Plot Frame String
35.6.10 Super String
35.6.11 Super Alignment String
35.6.12 Text String
35.6.1 Tin

A tin (triangulated irregular networks) is an element that may, or may not, be in a model. Each tin has a text name, \textit{tin_name}, of up to two hundred alphanumeric characters and spaces and the names of each tin and super tin in the project must be unique.

The format for the \textit{tin} element is:

\begin{verbatim}
<tin>
 <name>tin_name</name>
 attribute_block
 time_created_block
 time_updated_block
 colour_block
 points_block
 triangles_block
 colours_block
 input_block
</tin>
\end{verbatim}

where

\textit{tin_name}

is a string of characters for the tin name and can't be blank. This must be unique in a project.

For the characters that can make up a tin_name, see \underline{Names of models, tins, styles, colours and attributes}.

\textit{time_created_block}

is the time the tin was originally created, This is optional. For the syntax see \underline{35.3.7 Time Created}.

\textit{time_updated_block}

is the last time the tin was last modified, This is optional. For the syntax see \underline{35.3.7 Time Created}.

\textit{colour_block}

this colour number is the primary (base) colour for all the triangles in the tin. A triangle in the tin will have this colour unless it is overridden by a \textit{colours_block}. For the syntax of colour_block, see \underline{35.3.2 Colour}.

\textit{attribute_block} is optional: For the syntax of an \textit{attributes_block} see \underline{35.4 Attributes}.

The attributes in this block and the attributes_block itself are optional.

The attributes \textit{Style}, \textit{Weed}, \textit{Faces}, \textit{Boundary_String}, \textit{null_length}, \textit{null_angle}, \textit{null_combined_length} and \textit{null_combined_angle} are special attributes that have extra information used by \underline{12d Model} to create the tin. These special attributes should not be deleted.

The format of the special attributes inside the \langle\textit{attributes}\rangle \ldots \langle/\textit{attributes}\rangle is:

\begin{verbatim}
<text> <name>Style</name> <value>style_name</value> </text>
<integer> <name>Weed</name> <value>weed_value</value> </integer>
<integer> <name>Faces</name> <value>faces_value</value> </integer>
<text> <name>Boundary_String</name> <value>full_string_name</value> </text>
<real> <name>null_length</name> <value>null_len_val</value> </real>
<real> <name>null_angle</name> <value>null_angle_rad</value> </real>
<real> <name>null_combined_length</name> <value>null_com_ln</value> </real>
\end{verbatim}
<real> <name>null_combined_angle</name><value>null_com_rad</value></real>

where

- **style_name** is the style for the tin
- **weed_value** is 0 or 1
- **faces_value** is 0 if the data is not from triangles, 1 if the data is from triangles
- **full_string_name** is the name of a polygon for nulling outside. This is optional.
- **null_len_val** is value for nulling by angle
- **null_angle_rad** is in radians value for nulling by angle
- **null_com_ln** is for nulling by combined angle and length
- **null_com_rad** is in radians for nulling by combined angle and length

points_block

This gives the coordinates of the points that will be vertices of the triangles in the tin. The points are implicitly numbered by the order in the list (starting at point 1). The Points Block is MANDATORY.

```xml
<points>
  <p>x_value_1  y_value_1  z_value_1</p>
  <p>x_value_2  y_value_2  z_value_2</p>
  ...
  <p>x_value_m  y_value_m  z_value_m</p>
</points>
```

where (x_value_j, y_value_j, z_value_j) are the coordinates of the j'th point.

triangles_block

This gives the triangles that make up the tin.

Each triangle is given as a triplet of the point numbers in the Points block that are the triangle vertices. The order of the triangles is unimportant. The Triangles Block is MANDATORY.

```xml
<triangles>
  <t>t1_pt_1  t1_pt_2  t1_pt_3</t>
  <t>t2_pt_1  t2_pt_2  t2_pt_3</t>
  ...
  <t>tn_pt_1  tn_pt_2  tn_pt_3</t>
</triangles>
```

where tk_pt_1 tk_pt_2 tk_pt_3 are point numbers from the points_block of the three vertices of the k'th triangle.

colours_block

Triangles can be given colours other than the base colour by including a Colours Block. The colour for each triangle in then individually given where -1 means use the base colour. The order of the entries in the colours block must match the order of the triangles in the Triangles Block. So there is exactly one entry for each triangle.

If all the triangles are the base colour, then the Colours Block is omitted.

```xml
<colours>
</colours>
```
where \(c_k \) is the colour number of the \(k \)'th triangle in the \(\text{triangles}_\text{block} \).
\(c_k \) equals -1 when there is no special colour set and the triangle is drawn in the base colour.

input_block

The **input_block** gives more information about how the tin was created by 12d Model.

None of this information is needed when reading a tin into 12d Model and the **input_ block** can be omitted.

\[
\begin{align*}
\text{<input>}
\text{<preserve_strings> \ pres_str_textLogical </preserve_strings>}
\text{<remove_bubbles> \ rem_bub_textLogical </remove_bubbles>}
\text{<weed_tin> \ weed_tin_textLogical </weed_tin>}
\text{<triangle_data> \ triangle_data_textLogical </triangle_data>}
\text{<sort_tin> \ sort_tin_textLogical </sort_tin>}
\text{<cell_method> \ cell_method_textLogical </cell_method>}
\text{<models>}
\text{ \ \ \ \ model_name_1}
\text{ \ \ \ \ model_name_2}
\text{ \ \ \ \ ...}
\text{ \ \ \ \ model_name_p}
\text{</models>}
\text{<input>}
\end{align*}
\]

where

\(\text{pres_str_textLogical, rem_bub_textLogical, weed_tin_textLogical, triangle_data_textLogical, sort_tin_textLogical and cell_method_textLogical} \) are text and can only have the values true or false.

\(<\text{models}> \text{...} <\text{models}> \) is the list of models in the tin where
\(\text{model_name}_i \) is the name of the \(i \)'th model making up the tin.

Continue to the next section **35.6.2 Super Tin** or return to **35.3 Regularly Used Keyword Blocks** or **35 12d XML File Format**.
35.6.2 Super Tin

A Super Tins consists of a number of tins (triangulated irregular networks).

Each super tin has text name, tin_name, of up to two hundred alphanumeric characters and spaces and the names of each tin and super tin in the project must be unique.

The format for the super_tin element is:

```xml
<super_tin>
  <name>tin_name</name>
  attribute_block
  time_created_block
  time_updated_block
  colour_block
  exact_block
  tins_block
</super_tin>
```

where

- **tin_name**

 is a string of characters for the super tin name and can’t be blank. This must be unique in a project.

 For the characters that can make up a tin_name, see [Names of models, tins, styles, colours and attributes](#).

- **time_created_block**

 is the time the super tin was originally created, This is optional. For the syntax see [35.3.7 Time Created](#).

- **time_updated_block**

 is the last time the super tin was last modified, This is optional. For the syntax see [35.3.7 Time Created](#).

- **colour_block**

 this colour number is the primary (base) colour for the super tin. For the syntax of colour_block, see [35.3.2 Colour](#).

- **attribute_block** is optional: For the syntax of an attributes_block see [35.4 Attributes](#).

 The attributes in this block and the attributes_block itself are optional.

 The attribute **Style** is a special attribute that is used by 12d Model to create the super tin. This special attribute should not be deleted.

 The format of the **Style** attribute inside the <attributes> ... </attributes> is:

  ```xml
  <text> <name>Style</name> <value>style_name</value> </text>
  ```

 where

 - **style_name** is the style for the super tin

- **exact_block**

  ```xml
  <exact> exact_text_logical </exact>
  ```

 where

 - **exact_text_logical** is text and can only have the value true or false.
tins_block

This gives the tins that make up the super tin within the keyword block **tins**.

```xml
<tins>
  tin_info_1
  tin_info_2
  ...
  tin_info_p
</tins>
```

where

there are p tins in the super tin and **tin_info_i** is information about the i’th tin. The information about a tin is contained in a **tin** block.

```xml
<tin>
  <name>tin_name_i</name>
  <active>active_text_logical</active>
  <mode>mode_text_logical</mode>
</tin>
```

where

tin_name_i is the name of the i’th tin making up the super tin.

active_text_logical and **mode_text_logical** are text and can only have the value **true** or **false**.

For example

```xml
<super_tin>
  <name>super tin</name>
  <colour>green</colour>
  <attributes>
    <text> <name>Style</name> <value>1</value> </text>
  </attributes>
  <time_created>28-Apr-2015 06:42:45</time_created>
  <time_updated>28-Apr-2015 06:42:45</time_updated>
  <exact>true</exact>
  <tins>
    <tin>
      <name>DESIGN ALL</name>
      <active>true</active>
      <mode>replace</mode>
    </tin>
    <tin>
      <name>HILL</name>
      <active>true</active>
      <mode>replace</mode>
    </tin>
  </tins>
</super_tin>
```

Note that the tins that make up the super tin must exist in **12d Model** for the super tin to be fully defined.

Continue to the next section **35.6.3 String Header Block** or return to **35.3 Regularly Used Keyword Blocks** or **35.12d XML File Format**.
35.6.3 String Header Block

Strings are special types of elements that reside in a model. Strings have common header information and this will be documented in this one spot as a *string_header_block*.

The format for the string_header_block is:

```
string_name_block
chainage_block
colour_block
style_block
weight_block
interval_block
time_created_block
time_updated_block
attribute_block
```

where

- **string_name_block**
 - The format of the *string_name_block* is:

 `<name> string_name_text </name>

 where

 string_name_text is a string of allowable characters that is the name of the string. For the characters that can make up a string_name, see *String names*. Any leading and trailing spaces will be removed in the string name.

- **chainage_block**
 - is the start chainage of the string. This is optional. For the syntax see *35.3.4 Chainage*.

- **colour_block**
 - the colour name is the primary colour for the string. For the syntax of colour_block, see *35.3.2 Colour*.

- **style_block**
 - is the line style of the string. This is optional. For the syntax of style_block see *35.3.3 Line Style*.

- **weight_block**
 - is the weight (thickness) of the string. This is optional. For the syntax of weight_block see *35.3.5 Weight*.

- **interval_block**
 - the chainage interval to temporarily introduce extra vertices into the string when the string is in a triangulation to form a tin. For the syntax of interval_block, see *35.3.6 Interval*.

- **time_created_block**
 - is the time the super tin was originally created. This is optional. For the syntax of time_created_block see *35.3.7 Time Created*.

An example of a string name is:

```
<string>
  design 100.0
</string>
```
time_updated_block

is the last time the super tin was last modified. This is optional. For the syntax of

time_updated_block see 35.3.8 Time Updated.

attribute_block

The string attributes are in this block. For the syntax of an attributes_block see 35.4 Attributes.
The attributes_block is optional.

For example

```
<string_arc>
  <name>arc</name>
  <chainage>0</chainage>
  <breakline>line</breakline>
  <colour>yellow</colour>
  <style>1</style>
  <weight>2</weight>
  <time_created>28-Apr-2015 07:46:57</time_created>
  <time_updated>28-Apr-2015 07:46:57</time_updated>
  <interval>10</interval>
  <centre>1067.40263766 530.14953857 0</centre>
  <radius>226.6814323</radius>
  <chord_arc>0.1</chord_arc>
  <start>867.42825529 423.40349345 0</start>
  <end>1118.02452861 751.10631241 0</end>
</string_arc>
```

Continue to the next section 35.6.4 Text Information or return to 35.6 Elements Contained in Models or 35.12d XML File Format.
35.6.4 Text Information

See

35.6.4.1 Vertex Annotation Information
35.6.4.2 Segment Annotation Information

35.6.4.1 Vertex Annotation Information

The vertex_annotation_information is

\[\begin{align*}
&\text{<worldsize> world_size_real </worldsize>} \\
&\text{<textstyle> textstyle_name </textstyle>} \\
&\text{<angle> angle_dec_deg_real </angle>} \\
&\text{<x_factor> x_factor_real </x_factor>} \\
&\text{<slant> slant_dec_deg_real </slant>} \\
&\text{<offset> offset_real </offset>} \\
&\text{<raise> raise_real </raise>} \\
&\text{<text_colour> text_colour_name </text_colour>} \\
&\text{<justify> text_justification_text </justify>}
\end{align*} \]

where

- \text{world_size_real} is the size of the text in world units.
- \text{textstyle_name} is the name of the textstyle for the text.
- \text{angle_dec_deg_real} is the angle of the text. The value is in decimal degrees and is measured in a counter clockwise direction from the positive x-axis.
- \text{x_factor_real} is the factor to apply to the width of the text.
- \text{slant_dec_deg_real} is the angle the text is slanted from the vertical. The value is in decimal degrees and is measured in a clockwise direction from the positive y-axis.
- \text{offset_real} is distance to offset the text from the text vertex.
- \text{raise_real} is the perpendicular distance the text is off the direction line of the text.
- \text{text_colour_name} is the colour of the text. This should be the same as the colour in the string_header_block. For the syntax of colour_block, see 35.3.2 Colour.
- \text{text_justification_text} is the text giving the justification point of the text.
35.6.4.2 Segment Annotation Information

The segment_annotation_information is

```
<worldsize> world_size_real </worldsize>
<textstyle> textstyle_name </textstyle>
<angle> angle_dec_deg_real </angle>
<x_factor> x_factor_real </x_factor>
<slant> slant_dec_deg_real </slant>
<offset> offset_real </offset>
<raise> raise_real </raise>
<text_colour> text_colour_name </text_colour>
<justify> text_justification_text </justify>
```

where

- `world_size_real` is the size of the text in world units.
- `textstyle_name` is the name of the textstyle for the text.
- `angle_dec_deg_real` is the angle of the text. The value is in decimal degrees and is measured in a counter clockwise direction from the segment.
- `x_factor_real` is the factor to apply to the width of the text.
- `slant_dec_deg_real` is the angle the text is slanted from the vertical. The value is in decimal degrees and is measured in a clockwise direction from the positive y-axis.
- `offset_real` is distance to offset the text from the centre of the segment.
- `raise_real` is the perpendicular distance the text is off the direction line of the text.
- `text_colour_name` is the colour of the text. This should be the same as the colour in the string_header_block. For the syntax of colour_block, see 35.3.2 Colour.
- `text_justification_text` is the text giving the justification point of the text.
35.6.5 Arc String

The format for the `string_arc` element is:

```xml
<string_arc>
    string_header_block
    centre_block
    radius_block
    chord_arc_block
    start_block
    end_block
</string_arc>
```

where

- **string_header_block**
 - the common header block for each string. for the contents and the syntax, see 35.6.3 String Header Block.

- **centre_block**
 - The format of the `centre_block` is:
    ```xml
    <centre>
        x_centre_real  y_centre_real  z_centre_real
    </centre>
    ```
 - where

    ```plaintext
    (x_centre_real, y_centre_real, z_centre_real) is the centre of the arc.
    ```

- **radius_block**
 - the radius of the arc. For the syntax of radius_block, see 35.3.9 Breakline.
 - A positive radius means that the arc goes from the start point in a clockwise direction (goes to the right) and a negative radius means that the arc goes in a counter clockwise direction (goes to the left).

- **chord_arc_block**
 - The format of the `chord_arc_block` is:
    ```xml
    <chord_arc>
        chord_arc_real
    </chord_arc>
    ```
 - where

    ```plaintext
    chord_arc_real is a real number and is the chord to arc tolerance to use to temporarily insert vertices into the arc when the arc is included in a triangulation to form a tin.
    ```

- **start_block**
 - The format of the `start_block` is:
    ```xml
    <start>
        x_start_real  y_start_real  z_start_real
    </start>
    ```
 - where

    ```plaintext
    (x_start_real, y_start_real, z_start_real) is the start coordinate of the arc.
    ```

- **end_block**
 - The format of the `end_block` is:
    ```xml
    <end>
        x_end_real  y_end_real  z_end_real
    </end>
    ```
 - where

    ```plaintext
    (x_end_real, y_end_real, z_end_real) is the end coordinate of the arc.
    ```

For example
<string_arc>
 <name>arc</name>
 <chainage>0</chainage>
 <breakline>line</breakline>
 <colour>yellow</colour>
 <style>1</style>
 <weight>2</weight>
 <time_created>28-Apr-2015 07:46:57</time_created>
 <time_updated>28-Apr-2015 07:46:57</time_updated>
 <interval>10</interval>
 <centre>1067.40263766 530.14953857 0</centre>
 <radius>226.6814323</radius>
 <chord_arc>0.1</chord_arc>
 <start>867.42825529 423.40349345 0</start>
 <end>1118.02452861 751.10631241 0</end>
</string_arc>

Continue to the next section 35.6.6 Circle String or return to 35.6.3 String Header Block or 35 12d XML File Format.
35.6.6 Circle String

The format for the `string_circle` element is:

```xml
<string_circle>
  string_header_block
  centre_block
  radius_block
  chord_arc_block
</string_circle>
```

where

- **string_header_block**
 - the common header block for each string. for the contents and the syntax, see Section 35.6.3 String Header Block.

- **centre_block**
 - The format of the `centre_block` is:
    ```xml
    <centre>
      x_centre_real  y_centre_real  z_centre_real
    </centre>
    ```
 - where

 \((x_{\text{centre_real}}, y_{\text{centre_real}}, z_{\text{centre_real}})\) is the centre of the circle.

- **radius_block**
 - the radius of the circle. For the syntax of radius_block, see Section 35.3.9 Breakline.
 - A positive radius means that the circle goes in a clockwise direction (goes to the right) and a negative radius means that the circle goes in a counter clockwise direction (goes to the left).

- **chord_arc_block**
 - The format of the `chord_arc_block` is:
    ```xml
    <chord_arc>
      chord_arc_real
    </chord_arc>
    ```
 - where

 `chord_arc_real` is a real number and is the chord to arc tolerance to use to temporarily insert vertices into the circle when the circle is included in a triangulation to form a tin.

For example

```xml
<string_circle>
  <name>circle</name>
  <chainage>0</chainage>
  <breakline>line</breakline>
  <colour>yellow</colour>
  <style>1</style>
  <weight>5</weight>
  <interval>10</interval>
  <time_created>28-Apr-2015 07:45:53</time_created>
  <time_updated>28-Apr-2015 07:46:23</time_updated>
  <centre>409.93551 548.76354 null</centre>
  <radius>100</radius>
  <chord_arc>0.1</chord_arc>
</string_circle>
```

Continue to the next section 35.6.7 Drainage String or return to 35.6.3 String Header Block or 35.12d XML File Format.
35.6.7 Drainage String

The full 12dXML definition of the drainage string is:

```xml
<string_drainage>
  string_header_block
  outfall_block
  flow_direction_block
  use_pit_con_points_block
  drainage_sewer_block
  data_3d_block
  radius_data_block
  major_data_block
  pit_records
  pipe_records
</string_drainage>
```

where

- **string_header_block**
 - the common header block for each string. For the contents and the syntax, see 35.6.3 String Header Block.
 - There are also some special attributes in the string attributes in the String Header Block that provide extra information for the drainage string.

- **outfall_block**
 - `<outfall> outfall_real </outfall>`
 - where `outfall_real` is the z-value of the outfall (the low end of the string).

- **flow_direction_block**
 - `<flow_direction> flow_direction_flag </flow_direction>`
 - where `flow_direction_flag` is 1 if the flow is the same as the string direction, or 0 if the flow is opposite to the string direction.

- **use_pit_con_points_block**
 - `<user_pit_con_points> use_pit_connection_points_logical_text </user_pit_con_points>`
 - where `use_pit_connection_points_logical_text` is true if pit connection points are used, or false if pit connection points are not being used and hence the pipes go to the centre of the pits.

- **drainage_sewer_block**
 - `<drainage_sewer> drainage_sewer_choice_text </drainage_sewer>`
 - where `drainage_sewer_choice_text` is drainage (storm water) if it is for drainage and sewer if it is for sewer (foul water).

- **data_3d_block, radius_data_block and major_data_block**
 - The drainage string has an underlying string that is used to define locations of the pits and the geometry for the pipes. The underlying string can have straight and arc segments.
 - The vertex data for the underlying string is given in a data_3d block, and if there are any arcs, then these are specified in radius_data and major_data blocks. See 35.3.13 data_3d and 35.3.14 radius_data and major_data.
Chapter 35 12d XML File Format

pit_records
In plan the pits sit on the underlying string and there is one pit record for each pit. The pits
do not have to be on a vertex of the underlying string.

There is one pit block for each pit in the string and they are in the order that they occur
along the string.

The information for each pit is:

<pit>
 <name> pit_name_text </name>
 <type> pit_type_text </type>
 <chainage> pit_chainage_real </chainage>
 <ip> pit_ip_text </ip>
 <ratio> pit_ratio_real </ratio>
 <x> pit_x_real </x>
 <y> pit_y_real </y>
 <z> pit_z_real </z>
 <road_chainage> pit_road_chainage_real </road_chainage>
 <diameter> pit_diameter_real </diameter>
 <width> pit_width_real </width>
 <sump_level> pit_sump_level_real </sump_level>
 <floating_sump> pit_floating_sump_flag </floating_sump>
 <thickness> pit_thickness_real </thickness>
 <thickness_bottom> pit_thickness_bottom_real </thickness_bottom>
 <thickness_back> pit_thickness_back_real </thickness_back>
 <thickness_left> pit_thickness_left_real </thickness_left>
 <thickness_right> pit_thickness_right_real </thickness_right>
 <con_point_mode> pit_con_points_mode_text </con_point_mode>
 <floating> pit_floating_logical_text </floating>
 <hgl> pit_hgl_real </hgl>
</pit>

where

pipe_records
In plan the pipes sit on the underlying string and the plan geometry is based on the
underlying string. Each pipe goes between two adjacent pits.

There is one pipe block for each pipe in the string and they are in the order that they occur
along the string.

<pipe>
 <name> pipe_name_text </name>
 <type> pipe_type_text </type>
 <colour> pipe_colour_text </colour>
 <diameter> pipe_diameter_real </diameter>
</pipe>
string drainage {
 chainage start_chainage
 model model_name name string_name
 colour colour_name style style_name
 breakline point or line
 attributes {
 text Tin finished_surface_tin
 text NSTin natural_surface_tin
 integer " _floating" 1|0 // 1 for floating, 0 not floating
 }
 outfall outfall_value // z-value at the outfall
 flow_direction 0|1 // 0 drainage line is defined from downstream
 // to upstream
}
data {
 // key word - geometry of the drainage string
 x-value y-value z-value radius bulge
 " " " " " "
}
pit {
 // pit/manhole - one pit record for each pit/manhole
 // in the order along the string
 name text // pit name
 type text // pit type
 road_name text // road name
 road_chainage chainage // road chainage
 diameter value // pit diameter
 floating yes|no // is pit floating or not
 chainage pit_chainage // internal use only
}
Elements Contained in Models

Chapter 35 12d XML File Format

ip value // internal use only
ratio value // internal use only
x x-value // x-value of top of pit
y y-value // y-value of top of pit
z z-value // z-value of top of pit

}

pipe { // one pipe record for each pipe connecting pits/manholes
 // in the order they occur along the string

 name text // pipe name
 type text // pipe type
 diameter value // pit diameter
 us_level value //
 ds_level value //
 us_hgl value //
 ds_hgl value //
 flow_velocity value //
 flow_volume value //

}

property_control { // lot name

 name text // lot name
 colour colour_name
 grade value // grade of pipe in units of "1v in"
 cover value // cover of the of pipe
 diameter value // diameter of the of pipe
 boundary value // boundary trap value
 chainage chainage // internal use only
 ip value // internal use only
 ratio value // internal use only
 x x-value // x value of where pipe connects to sewer
 y y-value // y value of where pipe connects to sewer
 z z-value // internal use only

 data { // key word - geometry of the property control
 x-value y-value z-value radius bulge
 " " " "

 }

}

house_connection { // warning - house connections may change in future versions

 name text // house connection name
 hcb integer // user given integer
 colour colour_name
 grade value // grade of connection in units of "1v in"
 depth value
 diameter value
 side left or right
 length value
 type text // connection type
 material text // material type
 bush text // bush type
 level value
 adopted_level value
 chainage chainage // internal use only
 ip value // internal use only
 ratio value // internal use only
 x x-value // x value of where pipe connects to sewer
 y y-value // y value of where pipe connects to sewer
 z z-value // internal use only

}
} // end of drainage-sewer data

Continue to the next section 35.6.8 Feature String or return to 35.6.3 String Header Block or 35.12d XML File Format.
35.6.8 Feature String

The full 12dXML definition of the drainage string is:

```xml
<string_feature>
  string_header_block
  <radius>feature_radius_real</radius>
  <centre>x_centre_real y_centre_real z_centre_real</centre>
</string_feature>
```

where

- **string_header_block**
 - the common header block for each string, for the contents and the syntax, see *35.6.3 String Header Block*.
 - There are also some special attributes in the string attributes in the String Header Block that provide extra information for the drainage string.

- **feature_radius_real** is the radius of the feature string.

- **(xcentre_real, y_centre_real, z_centre_real)** is the centre of the feature string.

For example

```xml
<string_feature>
  <name>Line 1</name>
  <chainage>0</chainage>
  <breakline>line</breakline>
  <colour>cyan</colour>
  <style>1</style>
  <time_created>2015-05-19T08:06:01Z</time_created>
  <time_updated>2015-05-19T08:06:01Z</time_updated>
  <centre>42200.06055 37384.05873 null</centre>
  <radius>20</radius>
</string_feature>
```

Continue to the next section *35.6.9 Plot Frame String* or return to *35.6.3 String Header Block* or *35.12d XML File Format*.
35.6.9 Plot Frame String

The format for the `string_plot_frame` element is:

```xml
<string_plot_frame>
  info_block
  time_created_block
  time_updated_block
  sheet_details_block
  title_block_block
  origin_block
  scale_block
  rotation_block
  plotter_details_block
</string_plot_frame>
```

where

info_block

The format of the `info_block` is:

```xml
<info>
  <name> plot_frame_name_text </name>
  <colour> plot_frame_name_colour_text </colour>
  <plot_file> plot_file_name_text </plot_file>
</info>
```

where

- `plot_frame_name_text` is a string of allowable characters that is the name of the plot file string. For the characters that can make up a string_name, see [String names](#).
- `plot_frame_name_colour_text` is the colour of the plot frame. For the syntax of colour_block, see [35.3.2 Colour](#).
- `plot_file_name_text` is the name of file that the plot frame will plot to.

time_created_block

is the time the plot frame was originally created, This is optional. For the syntax of the time_created_block see [35.3.7 Time Created](#).

time_updated_block

is the last time the plot frame was last modified, This is optional. For the syntax of the time_updated_block see [35.3.8 Time Updated](#).

sheet_details_block

The format of the `sheet_details_block` is:

```xml
<sheet_details>
  <sheet_code> sheet_code_text </sheet_code>
  <width> sheet_width_real </width>
  <height> sheet_height_real </height>
  <left_margin> sheet_left_margin_real </left_margin>
  <right_margin> sheet_right_margin_real </right_margin>
  <top_margin> sheet_top_margin_real </top_margin>
</sheet_details>
```
<bottom_margin> sheet_bottom_margin_real </bottom_margin>
<border> sheet_border_text_logical </border>
<viewport> sheet_viewport_text_logical </viewport>
</sheet_details>

where

sheet_code_text is the name of the sheet. This can be blank.

sheet_width_real, sheet_height_real, sheet_left_margin_real, sheet_right_margin_real,
sheet_top_margin_real, sheet_bottom_margin_real are all real values and give the size and
margins for the sheet that the plot frame will plot. The units for all of them is millimetres.

plot_frame_border_text_logical and plot_frame_viewport_text_logical are text and can only
have the value true or false.

origin_block

The format of the origin_block is:

<origin> x_real y_real z_real </origin>

where

(x_real, y_real, z_real) is the coordinates of the origin of the plot frame.

scale_block

The format of the scale_block is:

<scale> scale_real </scale>

where

scale_real is the 1: scale for the plots created by the plot frame.

rotation_block

The format of the rotation_block is:

<rotation> rotation_dec_deg_real </rotation>

where

rotation_dec_deg_real is rotation of the plot frame. The value is in decimal degrees and is
measured in a counter clockwise direction from the positive x-axis.

plotter_details_block

The format of the plotter_details_block is:

<plotter_details>

<title_1> title_1_text </title_1>
<title_2> title_2_text </title_2>
<use_title_file> title_file_text_logical </use_title_file>
<title_file> title_file_name_text </title_file>
<text_size> title_text_size_real_mm </text_size>
<textstyle> title_text_style </textstyle>

</plotter_details>

where

title_1_text and title_2_text are two lines of text for the title block. They can be blank.

use_title_file_text_logical is text and can only have the value true or false.

title_file is the path name of the file to use as a title block file. This can be blank.

title_text_size_real_mm is the size of the text in the title block. The units are millimetres.
For example

```xml
<string_plot_frame>
  <info>
    <name>Plot frame</name>
    <colour>green</colour>
    <plot_file>plot</plot_file>
  </info>
  <sheet_details>
    <sheet_code>A0</sheet_code>
    <width>1189</width>
    <height>841</height>
    <left_margin>5</left_margin>
    <right_margin>10</right_margin>
    <bottom_margin>5</bottom_margin>
    <top_margin>10</top_margin>
    <border>true</border>
    <viewport>true</viewport>
  </sheet_details>
  <title_block>
    <title_1>Title 1</title_1>
    <title_2>Title 2</title_2>
    <use_title_file>true</use_title_file>
    <title_file>A0 title.tbf</title_file>
    <text_size>5</text_size>
    <textstyle>1</textstyle>
  </title_block>
  <origin>695.2353 1464.6248</origin>
  <scale>100</scale>
  <rotation>45</rotation>
  <plotter_details>
    <id>9</id>
    <type>model</type>
  </plotter_details>
  <time_created>29-Apr-2015 01:11:52</time_created>
  <time_updated>29-Apr-2015 01:11:52</time_updated>
</string_plot_frame>
```

Continue to the next section 35.6.10 Super String or return to 35.6.3 String Header Block or 35
12d XML File Format.
35.6.10 Super String

Because the super string is so versatile, its 12d XML format looks complicated but it is very logical and actually quite simple.

In its most primitive form, the super string is simply a set of (x,y) values as in a 2d string, or (x,y,z) values as in a 3d string.

Additional blocks of information can extend the definition of the super string and only need to be included if they exist. For example, segment arcs or transitions, vertex ids, vertex and segment text, round pipe diameters or box pipes widths and heights and tinability.

Some of the properties of the super string can be constant for the entire string or can vary for each vertex and/or segment. For example, there can be one colour for the entire string or individual colours for each segment.

For user attributes, the super string not only has the standard user attributes defined for the entire string (string attributes), but also can have user attributes for each vertex (vertex attributes) and for each segment (segment attributes).

Being closed or not is another property of the super string and if the super string is closed then the super string knows there is an additional segment going from the last vertex back to the first vertex. This means that there is no duplication of the first and last vertex needed.

Thus if a super string has \(n \) vertices, then an open super string has \(n-1 \) segments joining the vertices and a closed super string has \(n \) segments since there is an additional segment from the last to the first vertex.

With the additional data for vertices and/or segments in the super string, the data is in vertex or segment order.

So for a string with \(n \) vertices, there must be \(n \) bits of vertex data.
For segments, if the string is open then there only needs to be \(n-1 \) bits of segment data but for closed strings, there must be \(n \) bits of data.

For an open string, \(n \) bits of segment data can be specified and the \(n \)th bit will be read in and stored. If the string is then closed, the \(n \)th bit of data will be used for the extra segment.

Important Note
For a super string, the arcs, transitions and offset transitions are that shape in plan.
Hence an arc with a z-value at each end is actually a **helix** and **NOT** part of a three dimensional circle.

Transitions and offset transitions are helixes with a constantly changing radius.
The 12dXML definition of the super string is:

```
<string_super>
  string_header_block
  closed_block
  interval_block
  blocks_of_info_1
  blocks_of_info_2
  ...
  blocks_of_info_n
</string_super>
```

where

- **string_header_block**
 - the common header block for each string. For the contents and the syntax, see 35.6.3 String Header Block.

- **closed_block**
 - `<closed>` closed_text_logical `<closed>`
 - where `closed_text_logical` is true if the super string is closed and false if the super string is open.

- **interval_block**
The interval_block for a super string has a distance (a chainage interval) and a chord_to_arc_real

where

the distance to temporarily introduce extra vertices into the string at the given chainage
distance when the string is in a triangulation to form a tin.

chord_arc_real is a real number and is the chord to arc tolerance to use on any arcs in the
super string to temporarily insert vertices into the arc when the arc is included in a
triangulation to form a tin.

For the syntax of interval_block, see 35.3.6 Interval.

blocks_of_info
The blocks of info can be broken up into four types.

(a) blocks defining the position of the vertices in z, y and z

Each vertex must have at least an (x,y) value but there may be one z-value for the entire
string and (x,y) at each vertex (data_2d), or an (x,y,z) for each vertex (data_3d).

See 35.6.10.1 Defining the Coordinates of the Vertices

(b) blocks defining the geometry of the segments

Segments can be straights, arcs, transitions or offset transitions.

radius_data and major_data or geometry_data.

See 35.6.10.2 Geometry of the Horizontal Segments

(c) extra information for the vertices and/or segments such as colour, attributes, vertex ids,
symbols tinability etc.

The definition for the blocks of each type now follows.

35.6.10.1 Defining the Coordinates of the Vertices
35.6.10.2 Geometry of the Horizontal Segments
35.6.10.3 Colour
35.6.10.4 String, Vertex and Segment Attributes
35.6.10.5 Vertex Id’s (Point Id’s)
35.6.10.6 Symbols at Vertices
35.6.10.7 Tinability
35.6.10.8 Round or Box (Culvert) Pipes
35.6.10.9 Vertex Text and Vertex Annotation
35.6.10.10 Segment Text and Segment Annotation
35.6.10.1 Defining the Coordinates of the Vertices

See

35.6.10.1.1 One Z or No Z for the String
35.6.10.1.2 Varying Z Values along the String

35.6.10.1.1 One Z or No Z for the String

If there is a non-null constant z value for the entire string then the z value is given by a z block:

<z> z_value </z>

where z_value is the constant z value for the entire string.

And when there is a constant z, or no z, for the string, then only the (x,y) coordinates are required for each vertex and these are given in a data_2d block. See 35.3.12 data_2d

35.6.10.1.2 Varying Z Values along the String

If the z value can vary for different vertices along the string then the (x,y,z) values must be given for each vertex and the data is then written out as a data_3d block. See 35.3.13 data_3d.
35.6.10.2 Geometry of the Horizontal Segments

If the segments are straight lines only then that is the default and no further information is required.

If the segments are only straight lines and arcs, then the radius_data and major_data blocks are used to define a radius and bulge_flag data for each segment of the super string. See 35.6.10.2.1 Only Straights and Arcs for Segments.

If any of the segments are transitions or offset transitions then geometry_data must be used for each segment. geometry_data can represent a straight, arc, transition or offset transition. See 35.6.10.2.2 Straights, Arcs and Transitions for Segments.

35.6.10.2.1 Only Straights and Arcs for Segments

If there are only straight and arc segments for the string, then for either data_2d or data_3d, it is possible to add a radius and major/minor arc flag for each segment of the super string using the radius_data and major_data blocks respectively. See 35.3.14 radius_data and major_data.

35.6.10.2.2 Straights, Arcs and Transitions for Segments

When some of the segments are transitions or offset transitions, then the geometry_data block must be used to give the geometry for each segments.

Either a data_2d or data_3d block defines the coordinates for the vertices and the geometry_data block defines for each segment whether the segment is a straight, an arc or a transition or offset transition.

The definition of the geometry_data block is

```
<geometry_data>
    info_for_segment_1_block
    info_for_segment_2_block
    ...
    info_for_segment_m_block
</geometry_data>
```

where

```
info_for_segment_i_block
```

is the information defining the i'th segment as either a straight, an arc or an offset transition (offset transition or transition), and

m = n-1 for an open string or m = n for a closed string.

For the definition of info_for_segment_i_block see:

35.6.10.2.2.1 Straight
35.6.10.2.2.2 Arc
35.6.10.2.2.3 Offset Transitions
35.6.10.2.2.1 Straight
No parameters are needed for defining a straight segment. The \textit{straight} block is simply:
\begin{verbatim}
<straight> </straight>
\end{verbatim}
or simply
\begin{verbatim}
<straight/>
\end{verbatim}

35.6.10.2.2.2 Arc
There are four possibilities for an arc of a given radius placed between two vertices. We use \textit{positive} and \textit{negative} radius, and a flag \textit{major} which can be set to 1 (on) or off (0) to differentiate between the four possibilities.

\begin{center}
\begin{tikzpicture}
\node at (0,0) {Arcs with same radius but with major on or off};
\node at (-2,0) {Arcs with +ve radius};
\node at (2,0) {Arcs with -ve radius};
\node at (0,-2) {start vertex};
\node at (0,2) {end vertex};
\draw [-] (0,0) circle (2cm);
\draw [-] (-2,0) arc (180:0:2cm);
\draw [-] (2,0) arc (0:180:2cm);
\draw [-] (0,0) circle (1cm);
\draw [-] (-1,0) arc (180:0:1cm);
\draw [-] (1,0) arc (0:180:1cm);
\end{tikzpicture}
\end{center}

The \textit{arc} block is:
\begin{verbatim}
<arc>
 <radius> radius_for_segment </radius>
 <major> major_flag_for_segment </major>
</arc>
\end{verbatim}
where
\begin{itemize}
\item \textit{radius_for_segment} is the radius for the segment and
\item \textit{major_flag_for_segment} is 1 if the arc is a major arc and 0 if it is a minor arc.
\end{itemize}
35.6.10.2.2.3 Offset Transitions

An offset transition is a fixed perpendicular offset (offset_real) of a base transition where the base transition is a Euler spiral (or a certain approximation to it) or some other specially defined curve. The base transition has a start point where the absolute radius of the curve is infinity and then has a continuously decreasing absolute radius as you continue along the curve (this may be in a forward or reverse direction).

The base transition is defined by giving its starting point (xorigin, yorigin) where the radius is infinity and the angle of the tangential line at the start point is angle_decimal_degrees_real and the fact that the radius radius_real occurs at a given curve length length_real along the base transition.

The offset transition is a fixed offset (offset_real) from the base transition and goes from a start point that is specified by giving the length on the base transition where the start point drops perpendicularly onto the base transition (start_length_real) and to the end point that is specified by length on the base transition where the end point drops perpendicularly onto the base transition (end_length_real). The offset can be positive or negative.

If you are travelling along the curve in a forward direction (increasing chainage) then the base transition is said to be a leading transition if the absolute radius decreases as you go along the curve, and a trailing transition if the absolute radius decreases.

The end radius can be positive or negative.

If you are travelling along the curve in a forward direction then for a leading transition, if the end radius is positive then the curve curls to the right, and for a negative end radius, the curve curls to the left.

The curve block covers both spiral and non-spiral transitions with a zero or non zero offset. The curve block is:

```xml
<curve>
  <curve_type> curve_type_text </curve_type>
  <leading> leading_logical_text </leading>
</curve>
```
<xorigin> xorigin_real</xorigin>
<yorigin> yorigin_real</yorigin>
<radius> radius_real</radius>
<length> length_real</length>
<start> start_length_real</start>
<end> end_length_real</end>
<angle> angle_decimal_degrees_real</angle>
<offset> offset_real</offset>
<mvalue> mvalue_real</mvalue>
</curve>

where

curve_type_text is the type of base transition.

For more information on the choices, see 35.3.15 Available Transition Types.

leading_logical_text is true if it is a leading base transition or false if it is a trailing base transition.

(xorigin, yorigin) is the origin of the base transition. That is, where the radius is infinity.

radius_real is the radius at the end of the base transition. The radius is positive if the curve goes to the right when travelling in decreasing absolute radius.

length_real is the curve length and the end of the base transition and the radius is radius_real.

start_length_real is the curve length on the base transition where the start of the offset transition drops perpendicularly onto the base transition.

delimiters

delimiters

delimiters

end_length_real is the curve length on the base transition where the end of the offset transition drops perpendicularly onto the base transition.

angle_decimal_degrees_real is the angle of the tangent of the base transition at the origin of the base transition. It is measured in decimal degrees in a counter clockwise direction from the positive x-axis.

offset_real is the perpendicular offset distance of the transition from the base transition. For a leading transition, a positive value offsets the base transition to the right and a negative value offsets it to the left as you travel in a forward direction.

mvalue_real - if the transition is a cubic parabola then mvalue_real is the mvalue for the cubic parabola, otherwise, mvalue_real is zero.

For example, for a string with four segments

<geometry_data>
<arc>
 <radius>-222.77841769</radius>
 <major>0</major>
</arc>
<curve>
 <type>clothoid</type>
 <leading>false</leading>
 <xorigin>114.78632204</xorigin>
 <yorigin>22.22840069</yorigin>
 <radius>222.77841769</radius>
 <length>194.18990415</length>
 <start>50.95749554</start>
 <end>194.18990415</end>
 <angle>174.01773651</angle>
 <offset>0</offset>
 <mvalue>0</mvalue>
</curve>
<arc>
 <radius>-848.96871636</radius>
 <major>0</major>
</arc>
<straight/>
</geometry_data>
35.6.10.3 Colour

There can be one colour for the entire super string which is given by the \texttt{<colour>} keyword block in the \texttt{string_header_block}, or the colour varies for each segment of the super string and is then specified in a \texttt{<colour_data>} block.

The order of the entries in the \texttt{<colour_data>} block must match the order of the segments in the super string. So there is exactly one entry for each segment.

If all the segment are the string colour, then simply omit the \texttt{<colour_data>} block.

For a super string with \textit{n} vertices

\[
\begin{align*}
\texttt{<colour_data>} \\
\texttt{colour_text_for_segment_1} \\
\texttt{colour_text_for_segment_2} \\
\texttt{...} \\
\texttt{colour_text_segment_m} \\
\texttt{</colour_data>}
\end{align*}
\]

where

\texttt{colour_text_segment_i} is the colour name or colour number for the \textit{i}th segment OR is \texttt{no_colour} when no special colour has been set for the segment and the string colour is then used for that segment. If the name includes spaces then it must be enclosed in \texttt{"}, and

\textit{m = n-1} for an open string or \textit{m = n} for a closed string.

For example for a string with four segments

\[
\begin{align*}
\texttt{<colour_data>} \\
\texttt{"off yellow" magenta no_colour no_colour} \\
\texttt{</colour_data>} \\
\texttt{<leading>false</leading>}
\end{align*}
\]
35.6.10.4 String, Vertex and Segment Attributes

The super string can have attributes for the entire string (string attributes) but can also have attributes for each vertex (vertex attributes) and attributes for each segment (segment attributes).

See

35.6.10.4.1 String Attributes
35.6.10.4.2 Vertex Attributes
35.6.10.4.3 Segment Attributes

35.6.10.4.1 String Attributes

There can be attributes for the entire string. They are part of the String Header Block and are described in 35.6.3 String Header Block.

For example

```xml
<string_super>
  <name>Line 1</name>
  <chainage>0</chainage>
  <breakline>line</breakline>
  <colour>cyan</colour>
  <style>1</style>
  <attributes>
    <text>
      <name>Street</name>
      <value>Weemala Road</value>
    </text>
  </attributes>
  <time_created>2015-05-11T09:08:06Z</time_created>
  <time_updated>2015-05-11T11:59:29Z</time_updated>
</string_super>
```

...
35.6.10.4.2 Vertex Attributes

Each vertex can have one or more user defined attributes.

For a super string with n vertices

```xml
<vertex_attribute_data>
  vertex_attributes_for_vertex_1_block
  vertex_attributes_for_vertex_2_block
  ...
  vertex_attributes_for_vertex_n_block
</vertex_attribute_data>
```

where

`vertex_attributes_for_vertex_j_block` is the attribute_block for vertex j. The attribute_block is defined in 35.4 Attributes.

For example, for a string with four vertices

```xml
<vertex_attribute_data>
  <attributes>
    <real>
      <name>Flow</name>
      <value>27.4</value>
    </real>
  </attributes>
  <attributes/>
  <attributes/>
  <attributes/>
</vertex_attribute_data>
```
35.6.10.4.3 Segment Attributes

Each segment can have one or more user defined attributes.

For a super string with \(n \) vertices

\[
\text{<segment_attribute_data>}
\begin{align*}
&\text{segment_attributes_for_segment}_1\text{_block} \\
&\text{segment_attributes_for_segment}_2\text{_block} \\
&\quad \ldots \\
&\text{segment_attributes_for_segment}_m\text{_block}
\end{align*}
\]

\[
\text{</segment_attribute_data>}
\]

where \(\text{segment_attributes_for_segment}_j\text{_block} \) is an attribute_block for segment \(j \). The attribute_block is defined in 35.4 Attributes, and \(m = n-1 \) for an open string or \(m = n \) for a closed string.

For example, for an open string with four vertices

\[
\text{<segment_attribute_data>}
\begin{align*}
&\text{<attributes>} \\
&\quad \text{<real>} \\
&\quad \quad \text{<name>Material</name>} \\
&\quad \quad \text{<value>clay</value>} \\
&\quad \text{</real>} \\
&\text{</attributes>} \\
&\text{<attributes/>} \\
&\text{<attributes/>} \\
&\text{<attributes/>} \\
&\text{</segment_attribute_data>}
\end{align*}
\]
35.6.10.5 Vertex Id’s (Point Id’s)

Each vertex can have a vertex id (point id).
This is not the number position of the vertex in the string but is a separate id which is usually different for every vertex in every string.
The **vertex id** can be alphanumeric and include spaces.
The definition is:
For a super string with \(n \) vertices

\[
\begin{align*}
\text{point_data} & \\
& point_id_text_for_vertex_1 \\
& point_id_text_for_vertex_2 \\
& \ldots \\
& point_id_text_for_vertex_n \\
\end{align*}
\]

where

- \(point_id_text_for_vertex_i \) is the point id of the \(i \)th vertex.
- \(m = n-1 \) for an open string or \(m = n \) for a closed string.

\(point_id_text_for_vertex_i \) is the actual text enclosed in ", even if the text does not include spaces. If the point id has not been set for a vertex, the value should be included as "".

For example "Point 1" or "Point2" or "".
If the **point_data** block does not exist then there are no Vertex Ids.

For example, for a string with 4 vertices

\[
\begin{align*}
\text{point_data} & \\
& "Point 1" "Point2" "" ""
\end{align*}
\]
35.6.10.6 Symbols at Vertices

There can be no symbols at all, or the same symbol for every vertex in the using the symbol_value block or the symbol varies for each vertex of the super string using the symbol_data block.

If a symbol does not have a colour, or there is no colour in the symbol definition, then it uses the string colour.

The definitions are:

```
<symbol_value>
  symbol_properties_block
</symbol_value>
```

where

symbol_properties_block is the description for the symbol to be used at every vertex of the super string, and

OR

For a super string with \(n \) vertices

```
<symbol_data>
  symbol_properties_for_vertex_1_block
  symbol_properties_for_vertex_2_block
  ...
  symbol_properties_for_vertex_\( n \)_block
</symbol_data>
```

where

symbol_properties_for_vertex_\(i \)_block is the description for the symbol at vertex \(i \).

The format of **symbol_properties_block** and **symbol_properties_for_vertex_\(i \)_block** is:

```
<properties>
  <style> symbol_name_text </style>
  <colour> symbol_colour_name_text </colour>
  <size> symbol_size_real </size>
  <rotation> angle_dec_deg_real </rotation>
  <offset_x> symbol_offset_x_real </offset_y>
  <offset_y> symbol_offset_y_real </offset_y>
</properties>
```

where

symbol_name_text is the name of the symbol.

symbol_colour_name is the colour of the symbol is there is no colours in the symbol definition. If the **colour** block is missing and there is no colours in the symbol definition then the string colour is used. For the syntax of the **colour** block, see 35.3.2 Colour.

symbol_size_real is the size of the symbol in the units of the symbol.

angle_dec_deg_real is the angle of the symbol. The value is in decimal degrees and is measured in a counter clockwise direction from the positive x-axis.

offset_x_real is x distance to offset the symbol from the super string vertex.
offset_y_real is the y distance to offset the symbol from the super string.

The position of the symbol justification point is defined by the offset_x and offset_y from the vertex.

Position of super string vertex

Symbol at a Vertex
35.6.10.7 Tinability

Tinability

For a super string, the concept of breakline has been extended to a property called tinable which can be set independently for each vertex and each segment of the super string.

If a vertex is tinable, then the vertex is used in triangulations. If the vertex is not tinable, then the vertex is ignored when triangulating.

If a segment is tinable, then the segment is used as a side of a triangle during triangulation. This may not be possible if there are crossing tinable segments.

Vertex tinability is given by the vertex_tinable_data block where for a string of n vertices,

```xml
<vertex_tinable_data>
  tinable_flag_for_vertex_1
  tinable_flag_for_vertex_2
  ...
  tinable_flag_for_vertex_n
</vertex_tinable_data>
```

where

`tunable_flag_for_vertex_i` for the i'th vertex is 1 or t if the vertex is tinable, or 0 or f if the vertex is not tinable.

Segment tinability is given by the segment_tinable_data block where

```xml
<segment_tinable_data>
  tinable_flag_for_segment_1
  tinable_flag_for_segment_2
  ...
  tinable_flag_for_segment_m
</segment_tinable_data>
```

where

`tunable_flag_for_segment_i` for the i'th segment is 1 or t if the segment is tinable, or 0 or f if the segment is not tinable, and

m = n-1 for an open string or m = n for a closed string.

For example, for a open string with four vertices

```xml
<vertex_tinable_data>
  t
  t
  f
  t
</vertex_tinable_data>
<segment_tinable_data>
  f
  t
</segment_tinable_data>
```

Note that even if a segment is set to tinable, it can only be used in a triangulation if both its end vertices are also tinable.
35.6.10.8 Round or Box (Culvert) Pipes

All the super string segments can be round or all box (culvert). That is, some can’t be round and others box.

There is also a justification that applies to all round pipes or box pipes in the string.

See

35.6.10.8.1 Pipe Diameters
35.6.10.8.2 Culvert Dimensions
35.6.10.8.3 Justification for Round or Culvert Pipes

35.6.10.8.1 Pipe Diameters

There can be one pipe diameter value for the entire super string using the pipe_value block or the pipe diameter varies for each segment of the super string using the pipe_data block.

The definitions are:

\[
\text{<pipe_value> pipe_diameter_real </pipe_value>}
\]

where pipe_diameter_real is the diameter for every segment of the string.

OR

For a super string with \(n \) vertices

\[
\text{<pipe_data>}
\]

\[
\text{<properties>}
\]

\[
\text{<diameter> pipe_diameter_for_segment_1 </diameter>}
\]

\[
\text{<properties>}
\]

\[
\text{<diameter> pipe_diameter_for_segment_2 </diameter>}
\]

\[
\text{...}
\]

\[
\text{<properties>}
\]

\[
\text{<diameter> pipe_diameter_for_segment_m </diameter>}
\]

\[
\text{</properties>}
\]

\[
\text{</pipe_data>}
\]

where

pipe_diameter_for_segment_i is the pipe diameter for the i'th segment, and

\(m = n-1 \) for an open string or \(m = n \) for a closed string.

35.6.10.8.2 Culvert Dimensions

There can be one culvert width and height for the entire super string using the culvert_value block or the culvert width and height vary for each segment of the super string using the culvert_data block.

The definitions are:

\[
\text{<culvert_value>}
\]

\[
\text{<width> pipe_width_real </width>}
\]
where \textit{pipe_width_real} is the width and \textit{pipe_height_real} is the height for every segment of the string.

OR

For a super string with \textit{n} vertices

\begin{verbatim}
<culvert_data>
 <properties>
 <width> pipe_width_for_segment_1 </width>
 <height> pipe_height_for_segment_1 </height>
 </properties>
 ...
 <properties>
 <width> pipe_width_for_segment_m </width>
 <height> pipe_height_for_segment_m </height>
 </properties>
</culvert_data>
\end{verbatim}

where

\textit{pipe_width_for_segment_i} is the width and \textit{pipe_height_for_segment_i} is the height for the \textit{i}'th segment and

\textbf{m} = \textit{n}-1 for an open string or \textbf{m} = \textit{n} for a closed string.

35.6.10.8.3 Justification for Round or Culvert Pipes

There can be only one justification for all the round or culvert pipe segments in the super string. The definition is:

\begin{verbatim}
<justify> pipe_justification_text </justify>
\end{verbatim}

where

\textit{pipe_justification_text} is the justification for the entire pipe and can have the values \textbf{centre}, \textbf{top}, \textbf{obvert}, \textbf{bottom} or \textbf{invert}.

If the \textbf{justify} block is missing then the round pipe or culvert pipe is \textbf{centre} justified.
35.6.10.9 Vertex Text and Vertex Annotation

See

35.6.10.9.1 Vertex Text
35.6.10.9.2 Vertex Annotation

35.6.10.9.1 Vertex Text

There can be not text at each vertex, the same piece of text for every vertex in the super string or a different text for each vertex of the super string.

Note: How the vertex text is drawn is specified by the vertex annotation. See 35.6.10.9.2 Vertex Annotation.

If there is a constant text value for each vertex in the string, then the text value is given by a vertex_text_value block:

<vertex_text_value> text_value_text </vertex_text_value>

where text_value_text is the constant text value for each vertex in the string.

For example, for a string of 5 vertices

<vertex_text_value>Constant text</vertex_text_value>

If there is a different text value for each vertex in the string, then the value of the text for each vertex is given in a vertex_text_data block.

<vertex_text_data>
 <p> text_value_for_vertex_1 </p>
 <p> text_value_for_vertex_2 </p>
 ...
 <p> text_value_for_vertex_n </p>
</vertex_text_data>

where text_value_for_vertex_i is the vertex text for the i’th vertex.

For example, for a string of four vertices

<vertex_text_data>
 <p>First vertex</p>
 <p>Second vertex</p>
 <p>/p>
 </vertex_text_data>
35.6.10.9.2 Vertex Annotation

How the vertex text is drawn at each vertex is specified by the vertex annotation. There can be no vertex annotations at all, or the same vertex annotation is used for every vertex in the string using the `vertex_annotation_value` block, or the vertex annotation varies for each vertex of the super string using the `vertex_annotation_data` block.

Note that in vertex annotations, the size of the text for all vertices must be either world size or all paper size or all screen size. That is, world size, paper size and screen size can not be mixed. The first one found is used for all vertices.

The definitions are:

```
<vertex_annotate_value>
    vertex_annotation_information
</vertex_annotate_value>
```

where

`vertex_annotation_information` is the annotation to be used for drawing the text at every vertex of the super string. For the definition of `vertex_annotation_information` see 35.6.4.1 Vertex Annotation Information.

OR

For a super string with n vertices

```
<vertex_annotation_data>
    annotation_for_vertex_1_block
    annotation_for_vertex_2_block
    ...
    annotation_for_vertex_n_block
</vertex_annotation_data>
```

where

`annotation_for_vertex_i_block` is the description for the vertex annotation for vertex i.

The format of the `annotation_for_vertex_i_block` is:

```
<properties>
    vertex_annotation_information
</properties>
```

where

`vertex_annotation_information` is the annotation for drawing the text at the vertex. For the definition of `vertex_annotation_information` see 35.6.4.1 Vertex Annotation Information.
35.6.10.10 Segment Text and Segment Annotation

See

35.6.10.10.1 Segment Text
35.6.10.10.2 Segment Annotation

35.6.10.10.1 Segment Text

There can be no text on each segment, the same piece of text for every segment in the super string or a different text for each segment of the super string.

Note: How the segment text is drawn is specified by the segment annotation. See 35.6.10.10.2 Segment Annotation.

If there is a constant text value for each segment in the string, then the text value is given by a segment_text_value block:

 <segment_text_value> text_value_text </segment_text_value>

where text_value_text is the constant text value for each segment in the string.

For example, for a string of 5 vertices

 <segment_text_value>Constant text</segment_text_value>

If there is a different text value for each segment in the string, then the value of the text for each segment is given in a segment_text_data block.

 <segment_text_data>
 <p>text_value_for_segment_1</p>
 <p>text_value_for_segment_2</p>
 ...
 <p>text_value_for_segment_m</p>
 </segment_text_data>

where

 text_value_for_segment_i is the segment text for the i'th segment, and
 m = n-1 for an open string or m = n for a closed string.

For example, for a string of four segments

 <segment_text_data>
 <p>First segment</p>
 <p>Second Segment Two lines</p>
 <p>seg3</p>
 <p/>
 </segment_text_data>
35.6.10.10.2 Segment Annotation

How the segment text is drawn at each segment is specified by the segment annotation. There can be no segment annotations at all, or the same segment annotation is used for every segment in the string using the `segment_annotation_value` block, or the segment annotation varies for each segment of the super string using the `segment_annotation_data` block.

Note that in segment annotations, the size of the text for all segments must be either world size or all paper size or all screen size. That is, world size, paper size and screen size can not be mixed. The first one found is used for all segments.

The definitions are:

```xml
<segment_annotate_value>
    segment_annotation_information
</segment_annotate_value>
```

where

`segment_annotation_information` is the annotation to be used for drawing the text at every segment of the super string. For the definition of `segment_annotation_information` see 35.6.4.2 Segment Annotation Information.

OR

For a super string with n vertices

```xml
<segment_annotation_data>
    annotation_for_segment_1_block
    annotation_for_segment_2_block
    ...
    annotation_for_segment_m_block
</segment_annotation_data>
```

where

`annotation_for_segment_i_block` is the description for the annotation at segment i, and.

m = n-1 for an open string or m = n for a closed string.

The format of the `annotation_for_segment_i_block` is:

```xml
<properties>
    segment_annotation_information
</properties>
```

where

`segment_annotation_information` is the annotation for drawing the text at the segment. For the definition of `segment_annotation_information` see 35.6.4.2 Segment Annotation Information.

Continue to the next section 35.6.11 Super Alignment String or return to 35.6 Elements Contained in Models or 35.12d XML File Format.
35.6.11 Super Alignment String

The 12d XML for the Super Alignment String has not yet been documented.

In an alignment string, only the intersection point method (IP's) could be used to construct the horizontal and vertical geometry. The IP definition is actually a constructive definition and the tangents points and segments between the tangent points (lines, arcs, transitions etc.) are calculated from the IP definition. For an alignment string, only the IP definitions are included in the 12d XML file.

For a super alignment, the horizontal and vertical geometry are also defined separately and with construction methods but the construction definition can be much more complex than just IP's. For example, an arc could be defined as being tangential to two offset elements, or constrained to go through a given point.

If the horizontal construction methods are consistent then the horizontal geometry can be solved, and the horizontal geometry expressed in terms of consecutive segments (lines, arcs, transitions) that are easily understood and drawn.

Similarly if the vertical construction methods are consistent then the vertical geometry can be solved, and the vertical geometry expressed in terms of consecutive segments (lines, arcs, parabolas) that are easily understood and drawn.

For the super alignment both the construction methods (the parts) and the resulting vertices and segments (lines, arcs, transitions etc.) that make up the horizontal and vertical geometry (the data) are written out to the 12d XML file.

For most applications such as uploading to survey data collectors or machine control devices, only the horizontal data and the vertical data are required, not the construction methods (i.e. the horizontal and vertical parts). So when reading the 12d XML of a super alignment, only the horizontal and vertical data needs to be read in and the constructive methods (the horizontal and vertical parts) can be skipped over.

Consequently only the horizontal data and the vertical data is full documented for the super alignment.

Notes

1. Just using the horizontal and vertical data is valid as long as the super alignment geometry is consistent (and solves) and the horizontal and vertical parts can be created. There are flags in the 12d XML of the super alignment to say that the horizontal and vertical geometry is consistent and solves.

2. Segments meeting at a common vertex do not have to be tangential although for most road and rail centre lines, they should be.

3. When 12d Model reads in a 12d XML file and there is only horizontal_parts and no horizontal_data then if possible, 12d Model generates the horizontal_data from the horizontal parts. This is very useful if you are creating a 12d XML file for a super alignment string that only uses HIP methods as it is fairly simple to create the horizontal_parts for such a string and that is fully documented in 35.6.11.2 Horizontal Parts When Geometry is Defined by IP Method Only.

4. When 12d Model reads in a 12d XML file and there is only vertical_parts and no vertical_data then if possible, 12d Model generates the vertical_data from the vertical parts. This is very useful if you are creating a 12d XML file for a super alignment string that only uses VIP methods as it is fairly simple to create the vertical_parts for such a string and that is fully documented in 35.6.11.5 Vertical_parts When VG is Defined by IP Method Only.
The 12d XML definition of the super alignment string is:

```
<string_super_alignment>
  string_header_block
drawables_block
spiral_type_block
closed_block
valid_horizontal_block
valid_vertical_block
synch_vertical_block
label_style_block
horizontal_parts_block
horizontal_data_block
vertical_parts_block
vertical_data_block
geometry_modifiers_block
</string_super_alignment>
```

where

- **string_header_block**
 - the common header block for each string. for the contents and the syntax, see 35.6.3 String Header Block.

- **drawables_block**
 - the drawables block contains information on how the super alignment is labelled.
 - This block is not documented.

- **spiral_type_block**
 - `<spiral_type> transition_type_text </spiral_type>`
 - where transition_type_text is the default transition type use in the super alignment and is one of

<table>
<thead>
<tr>
<th>Select Choice</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>clothoid</td>
<td></td>
</tr>
<tr>
<td>cubic parabola</td>
<td></td>
</tr>
<tr>
<td>westrail cubic spiral</td>
<td></td>
</tr>
<tr>
<td>cubic spiral</td>
<td></td>
</tr>
<tr>
<td>natural clothoid</td>
<td></td>
</tr>
<tr>
<td>bloss</td>
<td></td>
</tr>
<tr>
<td>sinusoidal</td>
<td></td>
</tr>
<tr>
<td>cosinusoidal</td>
<td></td>
</tr>
</tbody>
</table>

 For more information on the choices, see 35.3.15 Available Transition Types.

- **closed_block**
 - `<closed> closed_text_logical </closed>`
 - where closed_text_logical is true if the super alignment string is closed and false if the super alignment string is open.

- **valid_horizontal_block**
where valid_horizontal_text_logical is true if the super alignment string horizontal geometry solves and false if the horizontal geometry does not solve.

If the horizontal geometry does not solve then the horizontal_data may be rubbish.

valid_vertical_block

where valid_vertical_text_logical is true if the super alignment string vertical geometry solves and false if the vertical geometry does not solve.

If the vertical geometry does not solve then the vertical_data may be rubbish.

synch_vertical_block

where synch_vertical_text_logical is true if the super alignment vertical geometry is to be synchronized to the horizontal geometry whenever the horizontal geometry is modified.

This is an internal 12d Model flag.

label_style_block

where label_style_text is the name of the super alignment label style used for drawing the super alignment.

horizontal_parts_block

the horizontal_parts block contains the methods to construct the super alignment horizontal geometry. For example float (fillet) an arc of a certain radius between two given lines or create a transition (spiral or non-spiral transition) between a line and an arc.

The parts that make up the horizontal geometry are defined in chainage order from the start to the end of the super alignment.

If the horizontal construction methods are consistent, then they can be solved to form a plan string made up of lines, arcs and transitions and this is given in the horizontal_data block.

Because the construction methods can be very complex, the horizontal_parts block will only be documented for the case where all the horizontal parts are horizontal intersection points (HIPs) with an arc and leading and trailing transitions. See 35.6.11.2 Horizontal_Parts When Geometry is Defined by IP Method Only.

horizontal_data_block

the horizontal_data block contains the segments that define the horizontal geometry.

The horizontal_data block needs to be read in.

For the description of the horizontal_data block, see 35.6.11.1 Horizontal Data Block.

vertical_parts_block

the vertical_parts block contains the methods to construct the super alignment vertical geometry. For example float (fillet) an arc of a certain radius between two given lines.

The parts that make up the vertical geometry are defined in chainage order from the start to the end of the super alignment.

If the vertical construction methods are consistent, then they can be solved to form a string in (chainage, offset) space made up of lines, arcs and parabolas and this is given in the vertical_data block.

Because the construction methods can be very complex, the vertical_parts block will only be documented for the case where all the vertical parts are vertical intersection points (VIPs) with an arc or a parabola on the VIP. See 35.6.11.5 Vertical_parts When VG is Defined by IP Method Only.
vertical_data_block

the vertical_data block contains the segments that define the vertical geometry.

The vertical_data block needs to be read in.

For the description of the vertical_data block, see 35.6.11.3 Vertical Data Block.

geometry_modifiers_block

the geometry_modifiers_parts block contains extra construction information for the super alignment.

This block is not documented.
35.6.11.1 Horizontal Data Block

The *horizontal_data* block contains the *solved* horizontal geometry of the super alignment.

The *solved horizontal geometry* is made up of a series of (x,y) vertices given in a *data_2d* block followed by a *geometry_data* block specifying the geometry of the segments between adjacent vertices. Each segment can be a straight line, an arc, a transition or an offset transition.

If the solved horizontal geometry has *n* vertices, then there will be *n-1 segments* for an *open* super alignment or *n segments* if the super alignment is *closed*.

```
<horizontal_data>
  string_header_block
  closed_block
  interval_block
  data_2d_block
  geometry_data_block
  blocks_of_info_1
  blocks_of_info_2
  ...
```
blocks_of_info_n
</horizontal_data>

where

string_header_block

the common header block for each string, for the contents and the syntax, see 35.6.3 String Header Block. This provides information such as colour for the horizontal data.

interval_block

The interval_block for a super string has a distance (a chainage interval) and a chord_to_arc_real

where

the **distance** to temporarily introduce extra vertices into the string at the given chainage distance when the string is in a triangulation to form a tin.

chord_arc_real is a real number and is the chord to arc tolerance to use on any arcs in the horizontal data to temporarily insert vertices into the arc when the arc is included in a triangulation to form a tin.

For the syntax of interval_block, see 35.3.6 Interval.

data_2d_block

the data_2d block defines the (x,y) value of the vertices that makes up the horizontal data.

For the definition of the data_2d block, see 35.3.12 data_2d.

geometry_data_block

the segments of the horizontal data can be straights, arcs, transitions or offset transitions.

For the definition of the geometry_data block, see 35.6.10.2 Geometry of the Horizontal Segments

blocks_of_info

extra information for the vertices and/or segments such as colour, attributes, vertex text, vertex uids etc are defined in the same way as for super strings.
35.6.11.2 Horizontal Parts When Geometry is Defined by IP Method Only

When the horizontal geometry is defined by IP methods only, then the horizontal_parts is fairly straightforward.

When 12d Model reads in a 12d XML file and there is no horizontal_data section, then 12d Model will calculate the horizontal_parts. So you are writing a 12d XML with only IP methods for the horizontal geometry then simply leave out the horizontal_data section and 12d Model will calculate it for you.

For a horizontal geometry is defined by IP methods only, the horizontal_parts definition is:

```
<horizontal_data>
  info_for_HIP_1_block
  info_for_HIP_2_block
  ...
  info_for_HIP_n_block
</horizontal_data>
```

where info_for_HIP_i_block is the information about the successive HIPs in the super alignment and is one of:

(a) A horizontal intersection point (HIP) with no arc. This is defined by:

```
<ip>
  <id> part_id_integer </id>
  time_created_block
  time_updated_block
  <x> x_ip_coordinate_real </x>
  <y> y_ip_coordinate_real </y>
</ip>
```

where

- part_id_integer is a number that is unique for each horizontal and vertical part and the value is a multiple of 100.
- time_created_block is the time the super tin was originally created, This is optional. For the syntax see 35.3.7 Time Created.
- time_updated_block is the last time the super tin was last modified, This is optional. For the syntax see 35.3.7 Time Created.
- x_ip_coordinate_real is the x coordinates of the HIP.
- y_ip_coordinate_real is the y coordinates of the HIP.

(b) A horizontal intersection point (HIP) with an arc of a given radius at the HIP. This is defined by:

```
<arc>
  <id> part_id_integer </id>
  time_created_block
  time_updated_block
  <r> arc_radius_real </r>
</arc>
```
Chapter 35 12d XML File Format

Elements Contained in Models

<x> x_ip_coordinate_real </x>
<y> y_ip_coordinate_real </y>
</arc>

where

part_id_integer is a number that is unique for each horizontal and vertical part and the value is a multiple of 100.

time_created_block
is the time the super tin was originally created, This is optional. For the syntax see 35.3.7 Time Created.

time_updated_block
is the last time the super tin was last modified, This is optional. For the syntax see 35.3.7 Time Created.

arc_radius_real is the radius of the arc on the HIP.

x_ip_coordinate_real is the x coordinate of the HIP.

y_ip_coordinate_real is the y coordinate of the HIP.

(c) A horizontal intersection point (HIP) with an arc of a given length at the HIP
This is defined by:

<length>
 <id> part_id_integer </id>
 time_created_block
 time_updated_block
 <l> arc_length_real </l>
 <x> x_ip_coordinate_real </x>
 <y> y_ip_coordinate_real </y>
</length>

where

part_id_integer is a number that is unique for each horizontal and vertical part and the value is a multiple of 100.

time_created_block
is the time the super tin was originally created, This is optional. For the syntax see 35.3.7 Time Created.

time_updated_block
is the last time the super tin was last modified, This is optional. For the syntax see 35.3.7 Time Created.

arc_length_real is the length of the arc on the HIP.

x_ip_coordinate_real is the x coordinate of the HIP.

y_ip_coordinate_real is the y coordinate of the HIP.

(d) A horizontal intersection point (HIP) with an arc and transitions
This is defined by:

<spiral>
 <id> part_id_integer </id>

...
time_created_block
time_updated_block
transition_type_block
 <r> arc_radius_real </r>
 <l1> leading_transition_length_real </l1>
 <l2> trailing_transition_length_real </l2>
 <x> x_ip_coordinate_real </x>
 <y> y_ip_coordinate_real </y>
</spiral>

where

part_id_integer is a number that is unique for each horizontal and vertical part and the value is a multiple of 100.

time_created_block is the time the super tin was originally created, This is optional. For the syntax see [35.3.7 Time Created](#).

time_updated_block is the last time the super tin was last modified, This is optional. For the syntax see [35.3.7 Time Created](#).

transition_type_block

 <transition_type> transition_type_text </transition_type>

where *transition_type_text* is the default transition type use in the super alignment and is one of

<table>
<thead>
<tr>
<th>Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>clothoid</td>
</tr>
<tr>
<td>cubic parabola</td>
</tr>
<tr>
<td>westrail</td>
</tr>
<tr>
<td>cubic spiral</td>
</tr>
<tr>
<td>natural clothoid</td>
</tr>
<tr>
<td>blossom</td>
</tr>
<tr>
<td>sinusoidal</td>
</tr>
<tr>
<td>cosinusoidal</td>
</tr>
</tbody>
</table>

This block is optional and if it is missing then the *default transition type* for the super alignment is used.

For more information on the choices, see [35.3.15 Available Transition Types](#).

arc_radius_real is the radius of the arc on the HIP.

leading_transition_length_real is the length of the leading transition on the HIP.

trailing_transition_length_real is the length of the trailing transition on the HIP.

x_ip_coordinate_real is the x coordinate of the HIP.

y_ip_coordinate_real is the y coordinate of the HIP.

Notes

1. A <length> block with *arc_length_real* equal to zero, or a <spiral> block with the *arc_radius_real, leading_transition_length_real* and *trailing_transition_length_real* all zero,
will also represent a HIP with no arcs or transitions on it.:

```xml
<length>
  <id> part_id_integer </id>
  time_created_block
  time_updated_block
  <l> 0 </l>
  <x> x_ip_coordinate_real </x>
  <y> y_ip_coordinate_real </y>
</length>

OR

<spiral>
  <id> part_id_integer </id>
  time_created_block
  time_updated_block
  transition_type_block
  <r> 0 </r>
  <l1> 0 </l1>
  <l2> 0 </l2>
  <x> x_ip_coordinate_real </x>
  <y> y_ip_coordinate_real </y>
</spiral>
```

2. If the HIP is the first HIP or the last HIP then no arc or transitions will be drawn even if the relevant parameters are non zero.

As an example of horizontal_parts with only HIP methods:
<horizontal_parts>
 <ip>
 <id>100</id>
 <x>42606.66161172</x>
 <y>37239.28824481</y>
 </ip>
 <ip>
 <id>200</id>
 <x>43134.36832349</x>
 <y>37330.26705997</y>
 </ip>
 <spiral>
 <id>300</id>
 <r>50</r>
 <l1>30</l1>
 <l2>40</l2>
 <x>43336.6595</x>
 <y>37469.2563</y>
 </spiral>
 <arc>
 <id>400</id>
 <r>75</r>
 <x>43481.15324268</x>
 <y>37331.6431906</y>
 </arc>
 <ip>
 <id>500</id>
 <x>43627.02308964</x>
 <y>37544.94343852</y>
 </ip>
</horizontal_parts>

Plan View of Super Alignment

Super Alignment Being Edited

Horizontal Parts with IP Methods Only
35.6.11.3 Vertical Data Block

The vertical_data block contains the solved vertical geometry of the super alignment.

The solved vertical geometry is made up of a series of (chainage,height) vertices given in a data_2d block followed by a geometry_data block specifying the geometry of the segments between adjacent vertices. The segment can be a straight line, a parabola or an arc.

Note that the chainage is the chainage of the horizontal geometry defined in the horizontal_data block (see 35.6.11.1 Horizontal Data Block).

If the vertical geometry has n vertices, then there will be n-1 segments for an open super alignment or n segments if the super alignment is closed.

The format of the vertical_data block is the same as for the segments in a horizontal_data block except that the data is (chainage, height) rather than (x,y) and there is no transitions but a parabola instead.

The definition of the vertical_data block is:

```xml
<vertical_data>
  string_header_block
  closed_block
  interval_block
data_2d_block
  geometry_data_block
  blocks_of_info_1
  blocks_of_info_2
  ...
  blocks_of_info_n
</vertical_data>
```

where

string_header_block

the common header block for each string. for the contents and the syntax, see 35.6.3 String Header Block. This provides information such as colour for the vertical data.

interval_block

The interval_block for a super string has a distance (a chainage interval) and a chord_to_arc_real

where

the distance to temporarily introduce extra vertices into the string at the given chainage distance when the string is in a triangulation to form a tin.

chord_arc_real is a real number and is the chord to arc tolerance to use on any arcs in the vertical data to temporarily insert vertices into the arc when the arc is included in a triangulation to form a tin.

For the syntax of interval_block, see 35.3.6 Interval.

data_2d_block

the data_2d block defines the (chainage,height) value of the vertices that makes up the vertical data.

For the definition of the data_2d block, see 35.3.12 data_2d where x is chainage and y is height.

geometry_data_block
the segments of the vertical data can be straights, arcs or parabolas.
For the definition of the geometry_data block, see 35.6.11.4 Geometry of the Vertical Segments.

blocks_of_info
extra information for the vertices and/or segments such as colour, attributes, vertex text, vertex uids etc are defined in the same way as for super strings.
35.6.11.4 Geometry of the Vertical Segments

If the segments are straight lines only then that is the default and no further information is required.

If the segments are only straight lines and arcs, then the radius_data and major_data blocks are used to define a radius and bulge_flag data for each segment of the super string. See 35.6.11.4.1 Only Straights and Arcs for Segments.

If any of the segments are parabolas then geometry_data must be used for each segment. geometry_data can represent a straight, arc, transition or offset transition. See 35.6.11.4.2 Straights, Arcs and Parabolas for Segments.

35.6.11.4.1 Only Straights and Arcs for Segments

If there are only straight and arc segments for the string, then for the data_2d it is possible to add a radius and major/minor arc flag for each segment of the super string using the radius_data and major_data blocks respectively. See 35.3.14 radius_data and major_data.

35.6.11.4.2 Straights, Arcs and Parabolas for Segments

When some of the segments are parabolas then the geometry_data block must be used to give the geometry for each segments.

When the vertical_data has n vertices, then the definition of the geometry_data block is

```
<geometry_data>
  info_for_segment_1_block
  info_for_segment_2_block
  ...
  info_for_segment_m_block
</geometry_data>
```

where

```
info_for_segment_i_block
```

is the information defining the i'th segment as either a straight, an arc or a parabola and m = n-1 for an open string or m = n for a closed string.

For the definition of info_for_segment_i_block see:

- 35.6.11.4.2.1 Straight
- 35.6.11.4.2.2 Arc
- 35.6.11.4.2.3 Parabola
35.6.11.4.2.1 Straight
No parameters are needed for defining a straight segment. The *straight* block is simply:

```
<straight> </straight>
```
or simply

```
<straight/>
```

35.6.11.4.2.2 Arc
Since vertical geometry can’t go backwards in chainage value, the majors arcs can not be used and hence there are only possibilities for an arc of a given radius placed between two vertices.

We use *positive* and *negative* radius to differentiate between the four possibilities.

![Arc with +ve radius](image)

The *arc* block is:

```
<arc>
  <radius> radius_for_segment </radius>
  <major> major_flag_for_segment </major>
</arc>
```

where

radius_for_segment is the radius for the segment where positive is above the line connecting the vertices.

major_flag_for_segment is ignored because only minor arcs are allowed.
35.6.11.4.2.3 Parabola

There can be a parabola between adjacent vertices. The parabola is defined by giving the coordinates of the vertical intersection point for the parabola

chainage chainage of the VIP of the parabola
height height of the VIP of the parabola

The parabola block is:

```
<parabola>
  <chainage> vip_chainage_real </chainage>
  <height>  vip_height_real </height>
</parabola>
```

where

vip_chainage_real is the chainage of the VIP of the parabola
vip_height_real is the height of the VIP of the parabola
35.6.11.5 Vertical_parts When VG is Defined by IP Method Only

When the vertical geometry is defined by IP methods only, then the `vertical_parts` is fairly straightforward.

When **12d Model** reads in a 12d XML file and there is no `vertical_data` section, then **12d Model** will calculate the `vertical_parts`. So if you are writing a 12d XML with only VIP methods for the vertical geometry then simply leave out the `vertical_data` section and **12d Model** will calculate it for you.

For a vertical geometry is defined by VIP methods only, the `vertical_parts` definition is:

```
<vertical_data>
  info_for_VIP_1_block
  info_for_VIP_2_block
  ...
  info_for_VIP_n_block
</vertical_data>
```

where `info_for_VIP_i_block` is the information about the successive VIPs in the super alignment and is one of:

(a) A vertical intersection point (VIP) with no arc or parabola.

 This is defined by:

   ```xml
   <ip>
     <id> part_id_integer </id>
     time_created_block
     time_updated_block
     <x> chainage_ip_coordinate_real </x>
     <y> height_ip_coordinate_real </y>
   </ip>
   ```

 where

 `part_id_integer` is a number that is unique for each horizontal and vertical part and the value is a multiple of 100.

 `time_created_block` is the time the super tin was originally created, This is optional. For the syntax see 35.3.7 Time Created.

 `time_updated_block` is the last time the super tin was last modified, This is optional. For the syntax see 35.3.7 Time Created.

 `chainage_ip_coordinate_real` is the chainage of the VIP.

 `height_ip_coordinate_real` is the height of the VIP.

 (b) A vertical intersection point (VIP) with an parabola of a given chainage length at the VIP.

 This is defined by:

   ```xml
   <length>
     <id> part_id_integer </id>
     time_created_block
     time_updated_block
     <l> parabola_chainage_length_real </l>
   </length>
   ```
<x> chainage_ip_coordinate_real </x>
<y> height_ip_coordinate_real </y>

where

part_id_integer is a number that is unique for each horizontal and vertical part and the value is a multiple of 100.

time_created_block
is the time the super tin was originally created, This is optional. For the syntax see 35.3.7 Time Created.

time_updated_block
is the last time the super tin was last modified, This is optional. For the syntax see 35.3.7 Time Created.

parabola_chainage_length_real is the chainage length of the parabola on the VIP.
chainage_ip_coordinate_real is the chainage of the VIP.
height_ip_coordinate_real is the height of the VIP.

(c) A vertical intersection point (VIP) with an parabola of a given k value at the VIP
This is defined by:

<kvalue>
 <id> part_id_integer </id>
 time_created_block
 time_updated_block
 <k> parabola_k_value_real </k>
 <x> chainage_ip_coordinate_real </x>
 <y> height_ip_coordinate_real </y>
</kvalue>

where

part_id_integer is a number that is unique for each horizontal and vertical part and the value is a multiple of 100.

time_created_block
is the time the super tin was originally created, This is optional. For the syntax see 35.3.7 Time Created.

time_updated_block
is the last time the super tin was last modified, This is optional. For the syntax see 35.3.7 Time Created.

parabola_k_value_real is the k value of the parabola on the VIP.
chainage_ip_coordinate_real is the chainage of the VIP.
height_ip_coordinate_real is the height of the VIP.

(d) A vertical intersection point (VIP) with an parabola of a given effective radius value at the VIP
This is defined by:

<radius>
 <id> part_id_integer </id>

"
Elements Contained in Models

- **time_created_block**
- **time_updated_block**

 `<r> parabola_effective_radius_value_real </r>`

 `<x> chainage_ip_coordinate_real </x>`

 `<y> height_ip_coordinate_real </y>`

 </kvalue>

 where

 - **part_id_integer** is a number that is unique for each horizontal and vertical part and the value is a multiple of 100.

 - **time_created_block**

 is the time the super tin was originally created, This is optional. For the syntax see 35.3.7 Time Created.

 - **time_updated_block**

 is the last time the super tin was last modified, This is optional. For the syntax see 35.3.7 Time Created.

 - **parabola_effective_radius_value_real** is the effective radius of the parabola on the VIP.

 - **chainage_ip_coordinate_real** is the chainage of the VIP.

 - **height_ip_coordinate_real** is the height of the VIP.

(e) A vertical intersection point (VIP) with an arc of a given radius at the VIP.

 This is defined by:

 `<arc>`

 `<id> part_id_integer </id>`

 `<r> time_created_block </r>`

 `<r> time_updated_block </r>`

 `<r> arc_radius_real </r>`

 `<x> chainage_ip_coordinate_real </x>`

 `<y> height_ip_coordinate_real </y>`

 </arc>

 where

 - **part_id_integer** is a number that is unique for each horizontal and vertical part and the value is a multiple of 100.

 - **time_created_block**

 is the time the super tin was originally created, This is optional. For the syntax see 35.3.7 Time Created.

 - **time_updated_block**

 is the last time the super tin was last modified, This is optional. For the syntax see 35.3.7 Time Created.

 - **arc_radius_real** is the radius of the arc on the VIP.

 - **chainage_ip_coordinate_real** is the chainage of the VIP.

 - **height_ip_coordinate_real** is the height of the VIP.

(f) A vertical intersection point (VIP) with an asymmetric parabola defined by the start and end
chainage lengths at that VIP
This is defined by:

```xml
<asymmetric>
  <id> part_id_integer </id>
  time_created_block
  time_updated_block
  <l1> parabola_start_chainage_length_real </l1>
  <l2> parabola_end_chainage_length_real </l2>
  <x> chainage_ip_coordinate_real </x>
  <y> height_ip_coordinate_real </y>
</asymmetric>
```

where

- `part_id_integer` is a number that is unique for each horizontal and vertical part and the value is a multiple of 100.
- `time_created_block` is the time the super tin was originally created. This is optional. For the syntax see 35.3.7 Time Created.
- `time_updated_block` is the last time the super tin was last modified. This is optional. For the syntax see 35.3.7 Time Created.
- `parabola_start_chainage_length_real` is the start chainage length of the asymmetric parabola on the VIP.
- `parabola_end_chainage_length_real` is the end chainage length of the asymmetric parabola on the VIP.
- `chainage_ip_coordinate_real` is the chainage of the VIP.
- `height_ip_coordinate_real` is the height of the VIP.

Notes

1. A `<length>` block with `arc_length_real` equal to zero, or a `<spiral>` block with the `arc_radius_real`, `leading_transition_length_real` and `trailing_transition_length_real` all zero, will also represent a HIP with no arcs or transitions on it.

```xml
<length>
  <id> part_id_integer </id>
  time_created_block
  time_updated_block
  <l> 0 </l>
  <x> x_ip_coordinate_real </x>
  <y> y_ip_coordinate_real </y>
</length>
```

OR

2. If the VIP is the first VIP or the last VIP then no parabola or arc will be drawn even if the relevant parameters are non zero.
As an example of **vertical_parts** with only VIP methods:

```
<vertical_parts>
  <ip>
    <id> 600 </id>
    <x>-50.8459652 <x>
    <y> 59.79764161 <y>
  </ip>
  <kvalue>
    <id> 700 </id>
    <k> 1.25 <k>
    <x> 38.4627 <x>
    <y> 179.2126 <y>
  </kvalue>
  <length>
    <id> 800 </id>
    <l> 50 <l>
    <x> 172.61694837 <x>
    <y> 154.72967932 <y>
  </length>
  <asymmetric>
    <id> 900 </id>
    <l1> 25 <l1>
    <l2> 75 <l2>
    <x> 270.0182 <x>
    <y> 208.1493 <y>
  </asymmetric>
  <arc>
    <id> 1000 </id>
    <r> 1000 <r>
    <x> 424.2402 <x>
    <y> 196.5637 <y>
  </arc>
  <radius>
    <id> 1100 </id>
    <r> 200 <r>
    <x> 201.5302 <x>
    <y> 198.71894484 <y>
  </radius>
  <ip>
    <id> 1200 </id>
    <x> 637.69216273 <x>
    <y> 198.71894484 <y>
  </ip>
</vertical_parts>
```

1st VIP
VIP only

2nd VIP
Parabola defined by k value

3rd VIP
Parabola defined by length

4th VIP
Asymmetric parabola defined by two lengths

5th VIP
Arc with radius

6th VIP
Parabola defined by effective radius

7th VIP
VIP only

Continue to the next section 35.6.12 Text String or return to 35.6 Elements Contained in Models or 35.12d XML File Format.
35.6.12 Text String

The format for the `string_text` element is:

```xml
<string_text>
    string_header_block
    point_block
    vertex_text_value_block
    vertex_annotate_value_block
</string_text>
```

where

string_header_block

the common header block for each string. for the contents and the syntax, see [35.6.3 String Header Block](#).

point_block

The format of the `point_block` is:

```xml
<point>
    x_real  y_real  z_real
</point>
```

where

`(x_real,y_real,z_real)` is the vertex of the text.

vertex_text_value_block

The text for the text string.

The format of the `vertex_text_value_block` is:

```xml
<vertex_text_value>
    characters_of_the_text
</vertex_text_value>
```

where

`characters_of_the_text` is the characters of the text with the except of some character that are special characters and are replace by something else.

For example `&` in the text is replaced `&` and a new line is given by `&\#xa;`. See [Characters "<", "]" and "]" and Escaping](#).

vertex_annotate_block

These are the setting for displaying text at a vertex.

The format of the `vertex_annotate_block` is:

```xml
<vertex_text_value>
    vertex_annotation_information
</vertex_text_value>
```

where

`vertex_annotation_information` is the annotation to be used for drawing the text. For the definition of `vertex_annotation_information` see [35.6.4.1 Vertex Annotation Information](#).

For example

```xml
<string_text>
    <name>text</name>
    <chainage>0</chainage>
    <breakline>line</breakline>
    <colour>yellow</colour>
    <style>1</style>
    <time_created>28-Apr-2015 07:48:35</time_created>
    <time_updated>28-Apr-2015 07:49:33</time_updated>
</string_text>
```
Elements Contained in Models

Continue to the next section 35.6.13 Trimesh or return to 35.6 Elements Contained in Models or 35 12d XML File Format.
35.6.13 Trimesh

A trimesh is a special type of primitive_3 object. A trimesh is made up of 3D triangles and can be described by giving the list of m vertices in the trimesh and the three vertices that make up each of the n triangular faces.

The 12d XML definition of a trimesh is:

```xml
<primitive_3d>
  string_header_block
  trimesh_3d_block
</primitive_3d>
```

where

- `string_header_block` is the common header block for each string. For the contents and the syntax, see 35.6.3 String Header Block.

The `colour` in the `string_header_block` is the base colour for the trimesh.

- `trimesh_block` gives the vertices of the trimesh and then the faces of the trimesh in terms of the vertex numbers.

```xml
<trimesh_3d>
  <vertices>
    <v> x_value_1  y_value_1  z_value_1 </v>
    <v> x_value_2  y_value_2  z_value_2 </v>
    ...
    <v> x_value_n  y_value_n  z_value_n </v>
  </vertices>
  <faces>
    <f> face_1_vertex_1  face_1_vertex_2  face_1_vertex_3 </f>
    <f> face_2_vertex_1  face_2_vertex_2  face_2_vertex_3 </f>
    ...
    <f> face_m_vertex_1  face_m_vertex_2  face_m_vertex_3 </f>
  </faces>
</trimesh_3d>
```

where

- n is the number of vertices and $(x_value_i, y_value_i, z_value_i)$ are the 3D coordinates of the ith vertex
- m is the number of faces in the trimesh and $face_j_vertex_1$, $face_j_vertex_2$, $face_j_vertex_3$ are the number of the vertices in the `vertex` block for the jth face.

Return to 35.6 Elements Contained in Models or 35 12d XML File Format
36 12d Survey Guide

The information contained in this appendix outlines the general options, terminology, definitions and methods used by 12d Model for the purpose of the input, reduction and output of survey information. It is a general guide, with the appendices following relating to specific instruments and the interactions with 12d Model.

See
- Guide to Survey Reduction in 12d Model
- Guide to Survey Coding in 12d Model
- Field Coding
- Field Templates
- Shape field coding
- Traverse coding
- Field Coding for Leica Instruments
- Field Coding for Non Leica Instruments
- Data Collector Definitions
- The 12d Field File Format
- Batch Typed Entry

Please continue to the next section 36.1 Guide to Survey Reduction in 12d Model.

36.1 Guide to Survey Reduction in 12d Model

The 12d Model survey options are used to reduce electronically recorded survey information and produce 12d Model strings, a process called survey reduction.

In the most general case, there are three steps involved:

1. 12d Model downloads raw data from a data collector and stores it on the computer.

2. The raw data file is converted to a standard 12d Model raw field file format, normally with extension of ".fld". For simplicity, the standard 12d Model raw field file is called the "12d field file".

3. The 12d field file is read into a 12d Model Survey Reduction function (12d Survey function) and reduced. If errors occur, the field data for 12d Survey function can be interactively and/or graphically edited. The reduction produces 12d Model super strings in one or many 12d Model models.

In some circumstances, not all steps are necessary. For example, Step 1 is not necessary when the raw data file is already on the computer (and hence doesn't need downloading).

This often occurs when data collectors have PCMCIA cards and PCMCIA card readers on the computer. Another example is when the raw data file has already been downloaded to the computer using another package such as HyperTerminal. Or maybe the raw data file has already been downloaded in a previous 12d Model session.

Steps 1 and 2 are not necessary when the data is already in the form of a 12d field file. This occurs when other software packages, such as TP Setout, can produce a 12d field file. Or the 12d field file was created in a previous 12d Model session, maybe even on a different computer.
A data flow diagram for the survey reduction process is:

A: Downloading raw data from data collector
 - Download and convert to 12d field file

B: Already have raw file on the computer
 - Convert to 12d field file

C: Already have 12d field file on the computer
 - No conversion required

12d field file

load into 12d Survey function

12d Survey Function
(Data Reduction and Editing Engine)
- field data
- reduction
- interactive field data edits and auto reduction
- graphical field data edits and auto reduction
- produce 12d Model strings

Data Flow for Survey Reduction

Please continue to the next section 36.2 Guide to Survey Coding in 12d Model.
36.2 Guide to Survey Coding in 12d Model

At first the whole process may seem confusing because there are a multitude of methods of setting up coding in the field. Why isn’t there just one way of doing things?

Firstly, each brand of survey instrument has a totally different format for recording information. Unfortunately there is no industry standard. In fact, different instruments from the same survey instrument manufacturer can have different formats for recording data.

Secondly, many of our customers were already familiar with another survey package and if possible, wished to continue field coding in the same way. Where possible, 12d Model has tried to accommodate this wish. Since 12d Model has replaced a number of survey packages, this led to yet more possible configurations.

12d Model has also been developing its own preferred method of field coding for each instrument. It is not compulsory to use the 12d method but of course it is the only way of taking advantage of features that are not available in other coding systems. For example, defining and using field templates and recording user-defined attributes on points and segments.

So to make help guide you through survey coding section:

(a) There are field coding concepts used in 12d Model that are common to all instruments. For example, feature codes and string numbers, offset, close strings etc.
 These are described in 36.3 Field Coding

(b) There are template field coding concepts used in 12d Model that are common to all instruments. These are described in 36.4 Field Templates

(c) There are shape field coding concepts used in 12d Model that are common to all instruments. These are described in 36.5 Shape field coding

(d) There are traverse field coding concepts used in 12d Model that are common to all instruments. These are described in 36.6 Traverse coding

(e) For leica instruments, the coding methods are different from most other types. These are described in 36.7 Field Coding for Leica Instruments

(f) For non-leica instruments, the concepts used in coding are similar for each type. These are described in 36.8 Field Coding for Non Leica Instruments
36.3 Field Coding

EDM equipment is used to make readings of points in the field. However, rather than just collecting points, it is usually desirable to add extra information by coding the readings in a way that can be interpreted during the data reduction process and produce more valuable information.

Unfortunately, there is no industry standard for this extra coding and it is software specific. In 12d Model, the extra information is included in one or both of

- a feature code and string number
- extra commands called field codes

How the feature codes, string number and field codes are added in the field depends on the data collector being used and the coding convention set up by the user in 12d Model.

For example, some surveyors like to enter the feature code before the string number, others like to enter the feature code after the string number. Other surveyors don’t use string numbers at all but prefer to use a New String command to start new strings (mainly ex SDR Map users).

In 12d Model, a particular field coding convention is defined by the user and stored with a unique name as a data collector definition in the file survey.4d. New data collector definitions can be created and existing ones modified using the Survey Data Collectors section of Project=>Browse.

12d Model converts all the raw data files from the different survey instruments and data recorders with different coding conventions, into the one 12d Model standard field file format before being loaded into a 12d Model Survey Reduction function and reduced. The 12d Model standard field file will simply be referred to as the 12d field file or just the field file.

The use of many of the commands allowed in the 12d field file will now be described. The complete definition of all the 12d field file commands will be described later.

The coding methodology for specific data recorders will be described in separate Sections.

Please continue to the next section 36.3.1 Stringing in the Field.
36.3.1 Stringing in the Field

In the coding convention, it is possible to specify that

(a) feature codes and string numbers are used
or
(b) just feature codes.

Case (a) feature codes and string numbers

If feature codes and string numbers are entered with measurements in the field, a coding methodology is used so that strings are automatically created during the reduction process. To allow this stringing, the feature code and string number are interpreted in the following manner:

During reduction, 12d Model connects measurement points with the same feature code and string number in the order they are measured in. That is, the feature code and string number determines which points are joined together to form the vertices of a super string. At the end of the reduction, the string number is dropped and just the feature code remains as the name for the super string.

Hence the feature code and string number combination allows any number of different super strings with the same name (feature code) to be produced.

If the string number is zero, then the point-line type of the super string is set to point. If the string number is non-zero, the point-line type of the super string is set to line.

Finally, during reduction, the feature code can be used as the key to a Map File to specify the name, model, colour, point-line type, linestyle, tinability and other details for the super string.

Note that the measurements of points with different feature codes and string numbers can be intertwined. That is, not all the points in one super string need to be measured before the points in a different super string.

Hence at the end of the reduction, 12d Model super strings are created for each unique feature code and string number combination in the input data.

Note - if the string number is blank, the string number defaults to 0

Case (b) just feature codes

If just feature codes are used then a New String command is used to start a new super string rather than giving a new string number.

During reduction, 12d Model connects measurement points with the same feature code in the order they are measured in until a New String command is found. That is, just the feature code determines which points are joined together to form a super string and the New String command defines when a new super string begins.

At the end of the reduction, the feature code remains as the name for the super string.

Also during reduction, the feature code can be used as the key to a Map File to specify the name, model, colour, point-line type, linestyle, tinability and other details for the super string.

Note that the measurements of points with different feature codes can be intertwined. That is, not all the points in one super string need to be measured before the points in a different super string.

An Example of Coding to String Points Together

Two super strings are to be created, one joining points a and c, the other joining points b and d.
Points may be measured and assigned feature codes and string numbers as follows:

<table>
<thead>
<tr>
<th>Measurement to point</th>
<th>Feature code</th>
<th>String Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>123</td>
<td>01</td>
</tr>
<tr>
<td>b</td>
<td>ABC</td>
<td>01</td>
</tr>
<tr>
<td>c</td>
<td>123</td>
<td>01</td>
</tr>
<tr>
<td>d</td>
<td>ABC</td>
<td>01</td>
</tr>
</tbody>
</table>

Alternatively, the points could have been measured in the order a, c, b, d as long as the correct feature codes and string numbers were entered.

<table>
<thead>
<tr>
<th>Measurement to point</th>
<th>Feature code</th>
<th>String Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>123</td>
<td>01</td>
</tr>
<tr>
<td>c</td>
<td>123</td>
<td>01</td>
</tr>
<tr>
<td>b</td>
<td>ABC</td>
<td>01</td>
</tr>
<tr>
<td>d</td>
<td>ABC</td>
<td>01</td>
</tr>
</tbody>
</table>

Because the string numbers are non-zero, the default point-line type for both super strings is line.

Please continue to the next section 36.3.2 Offsets.
36.3.2 Offsets

It is not always possible to measure a point directly but it may be possible to measure a point nearby and then measure an offset to adjust the measured point by and so produce the coordinates of the required point.

The three offsets that are allowed in the 12d field file are:

Height - The height offset adjusts the height of a non-null point. A positive offset adds to the height and a negative offset reduces the height.

Radial - The radial offset adjusts the position of the specified point by a plan distance from the specified points original position, along the plan line joining the current station to the specified point. A positive offset is away from the station and a negative offset is toward the station.

Tangential - The tangential offset adjusts the position of the specified point by a plan distance from the specified points original position, at rights angles to the plan line joining the current station to the specified point. A positive offset is to the right (looking from the station to the point) and a negative offset is to the left.

Please continue to the next section **36.3.3 Start New String**.
36.3.3 Start New String

A new string is automatically started whenever a different string number is used. However there is also a **start new string** command which begins a new super string even if the string number is the same as the string number for previous points.

The *New String* command is particularly useful for correcting the field error of forgetting to change the string number.

Please continue to the next section 36.3.4 Close String.
36.3.4 Close String

The close string command closes a super string by joining the first and last points of the super string. If a super string is already closed, then the close has no effect. The string closed command can be given at the recording of any point of the string, and the entire string is closed.

Please continue to the next section 36.3.5 Rectangle.
36.3.5 Rectangle

The rectangle command acts on last three points of a string and adds a new point after the last point to form a parallelogram (squashed rectangle). The string is then closed.

The height of the added point is set to null.

```
point 1

point 2

point 3

construct point 4 to form a parallelogram. Its height is null.
```

Form Rectangle

Please continue to the next section 36.3.6 Rectangle by 2 Points.
36.3.6 Rectangle by 2 Points

The rectangle by 2 pts command acts on last two points of a string and adds two new points at a given offset after the last point to form a rectangle. The string is then closed.

The height of the added points are set to null.

Form Rectangle By 2 Points

Points 3 and 4 constructed from a given offset relative to the reference line from 1 to 2. (Positive)

Please continue to the next section 36.3.7 Feature.
36.3.7 Feature

A feature string is a circle with a z-value at the centre but only null values on the circumference of the circle.

The feature commands creates a feature string with the picked up point as its centre and the radius/diameter being set by the feature command.

If a feature string is given a world line style, then the style is centred on the centre point of the feature string and scaled up to the radius of the feature string.

If a feature string is given a screen or paper line style, then the style is wrapped around the circumference of the feature string.

Feature String

Please continue to the next section 36.3.8 Joining Strings.
36.3.8 Joining Strings

There are three commands for joining two strings together.

Join last points of strings - the last point of the first string is joined to the last point of the second string. The direction of the final string is along the forward direction of the first string, across to the end of the second string and then in the reversed direction of the second string.

Join first to last points of strings - the first point of the first string is joined to the last point of the second string. The direction of the final string is in the reverse direction of the first string, across to the start of the second string and then in the forward direction of the second string.

Join first points of strings - the first point of the first string is joined to the first point of the second string. The direction of the final string is in the reverse direction of the first string, across to the start of the second string and then in the forward direction of the second string.

Please continue to the next section 36.3.9 Arcs Through Points.
36.3.9 Arcs Through Points

There are a number of commands to fit arcs through sequences of three or more points. Note that this is an arc in plan, with different z-values at each of the three points. The z-values are linearly interpolated around the arc between the points.

Hence it is a helix and not a circle in the plane containing the three points. Note that an 3d-arc in a plane not parallel to the x-y plane does not project onto an arc in the x-y plane.

There are arc commands to

(a) fit an arc through the next three points
(b) fit an arc through the previous three points.
(c) fit arcs to sets of three points until stopped.

The first two cases need no explanation but in the final case, a arc is fitted to the first three points, and then another arc to points 3, 4 and 5 and then an arc through 5,6 and 7 and so on. If at any stage there is only one point left, then no arc can be fitted and a straight line is drawn to the final point.

Please continue to the next section 36.4 Field Templates.
36.4 Field Templates

If a series of points are being picked up along the one string then the feature code and string number only need to be entered once since the default is for a measurement to use the last feature code and string number if no new ones are given.

However it is often much more efficient to pick up one point from a number of strings before moving onto the next point of each string (this is called a cross section pick up).

For example when picking up a road, it would be preferable to pick up the points for a section across the road and then move onto the next section rather than picking up all of one string at a time.

In the diagram below, this means picking up one point from each of the strings LV, LS, LK, CL, RK, RS, RV and then moving onto the next cross section rather than picking up all of LV and then all of LS and so on.

Normally if each measurement is from a different string, then the feature code and string number would need to be re-entered with each measurement which is a very time consuming process. To simplify the coding for section pick up, 12d Model uses field templates.

Basically, a 12d Model field template consists of defining a sequence of feature codes and string numbers pairs for the field template. The field template can be given a unique name or have no name at all.

When a field template is used, measurements are taken without entering a feature code and string number and the feature code and string number for the measurement come from the field template definition.
For example, a field template could be defined as the sequence:

LV 01, LS 01, LK 01, CL 01, RK 01, RS 01, RV 01

When the field template is used, measurements are taken without giving a feature code or string number and the measurements will be sequentially given the codes LV 01, LS 01, LK 01 etc.

To define a 12d Model field template, there is a command to start recording the field template.

The feature codes and string numbers for the next series of measurements until the stop recording command is given, are stored as the field template. There are also commands to insert and delete a point in the template when it is being used for picking up points.

When a field template is used, the feature code and string number from the field template can be used:

(a) in the same order as the codes are defined in the field template (forward direction).
(b) in the opposite order to how the codes are defined in the field template (reverse direction).
(c) in an alternating same and opposite order that the codes are defined in field template (zig-zag)

These three modes of usage of a field template will be described in the following sections.

Please continue to the next section 36.4.1 Forward Direction.
36.4.1 Forward Direction

If the field template is used in the *forward* direction, then the feature codes and string numbers are used in the same order that they were defined to be in the field template. Once the end of the field template is reached, the feature codes and string numbers re-start at the beginning of the field template.

Please continue to the next section **36.4.2 Reverse Direction**.
36.4.2 Reverse Direction

If the field template is used in the reverse direction, then the feature codes and string numbers are used in the reverse order to what they were defined to be in the field template. That is, the feature codes and string numbers start at the end of the field template definition and are used in the reverse order. Once the beginning of the field template is reached, the feature codes and string numbers re-start at the end of the field template and are used in the reverse order.

Please continue to the next section 36.4.3 Zig-Zag.
36.4.3 Zig-Zag

When picking up a road in sections, it is often quickest to pick up the first section going from one side of the road to the other side, and then move onto to the next section point on the other side of the road and pick up points coming back across the road. Hence the points for the second section are in the reverse order to those in the first section. This process is known as zig-zagging.

This situation can be covered in two ways. A field template could be defined containing all the points for two sections and the field template used in the forward (or reverse) direction. For example, the field template to be used in the forward mode could be defined as:

LV 01, LS 01, LK 01, CL 01, RK 01, RS 01, RV 01, RV 01, RS 01, RK 01, CL 01, LK 01, LS 01, LV 01

However, in 12d Model it is only necessary to define the one section

LV 01, LS 01, LK 01, CL 01, RK 01, RS 01, RV 01, RV 01

and when the field template is used, it is specified that it is being used as a zig-zag field template starting on either the zig (the forward direction of the field template) or the zag (the reverse direction of the field template).

Once a zig is completed, 12d Model automatically uses the reverse order of the field template and hence produces a zag. Similar, once a zag is completed, 12d Model uses the forward order of the field template and produces a zig.

Thus a zag automatically follows a zig and a zig follows a zag.

Hence if a field template is used in the zig-zag mode, it can be used as either:

(a) a zig-zag field template starting on the zig
(b) a zig-zag field template starting on the zag.

Please continue to the next section 36.4.4 Skipping Field Template Points.
36.4.4 Skipping Field Template Points

When picking up points using a field template, 12d Model allows for one or more points to be skipped. By default, the points on the strings on either side of the skipped points will then be joined together.

By combining skipping points and start new string commands, points can be skipped and new strings started on the other side of the skipped points.

Please continue to the next section 36.4.5 Insert Template Points or Insert Multiple Codes.
36.4.5 Insert Template Points or Insert Multiple Codes

When picking up points using a field template, 12d Model allows for one or more points to be inserted. The inserted points change the template from that point onwards so that extra strings can be picked up as they arise.

If the insert point command is given after the last point of a template, a flag can be applied to specify which template pick-up the inserted point is to be added to. That is, add it to the last series of points or the next series. This flag is called the "insert special" flag.

If ticked on in the insert panel, or if the flag given in the offset code is 1, the point will be added to the current series of points in the template being picked up.

In the case shown below where SH 01 is inserted, the insert special flag should be set to on so that the next picked up point will be on the current template. The insert would have been made after the last LV 01 observation in the last pick-up direction. The following pick-up will use the redefined template definition.

Note - in the example below, it is a zig-zag template so SH 01 is then used again straight away as the first point of the pickup when coming from left to right.

With the Insert, rather than insert new template points, it is also possible to give multiple codes to existing points in the template so that more than one code can be assigned to the one pick-up point (insert multiple codes).

In the case shown below, an insert was made on the next pick-up direction after the LV 01 observation. The multiple code tick box or flag was set on so that the last picked up point will be assigned the extra code specified, in this case DR 01. The template will be applied to all subsequent measurements so that the observed LV 01 string will also be coded DR 01.

Inserting Points in a ZigZag Template

An **Insert with Multiple code** turned on so no new point is inserted into the template but instead the current template point is multiple coded with the given Feature code DR and String number 01.

An **Insert with Multiple code** turned off. A new point is added into the template with the given Feature code SH and String number 01.

Please continue to the next section 36.4.6 Delete Template Points.
36.4.6 Delete Template Points

When picking up points using a field template, 12d Model allows for one or more points to be deleted. The deleted points change the template from the next specified number of points inclusive of the current point. i.e. They are removed from the template.

If a template delete command was given after the LS 01 string in the next pick-up direction, and the number of specified points were 3, the template will be altered such that the next observed string will be RS 01.
36.5 Shape field coding

If an object of a standard section is to be picked up such as a length of kerb, a shape can be defined and extruded/paralleled along a single pick-up string related to that shape.

For example, a kerb shape can be defined by observing all points on a typical section of the kerb and assigning a shape name. Then when picking up the length of kerb, only one reference string to the shape (defined when recording the shape) has to be picked up e.g. lip of kerb. On reduction, 12d can extrude or parallel the shape such that the strings/shape of the kerb are produced for the entire kerb pick-up.

Normally if each measurement is from a different string e.g back of kerb, lip kerb etc., then the feature code and string number would need to be re-entered with each measurement which is a very time consuming process. To simplify the coding for section pick up, 12d Model uses shape field coding.

Basically, a 12d Model shape consists of observing a number of points on a given section of an object. The shape can be given a unique name or have no name at all.

For example, a shape can be defined by observations shown in order above

1- being the reference point, 2- 7 being the shape points. In this case, the 1st point of the shape pick-up coincides with the reference point.

To define a 12d Model shape, there is a command to start and end the recording of the shape. The feature codes and string numbers for the next series of measurements until the stop recording command is given, are stored in the final shape.

As the shape is defined, other field codes can be used in conjunction such as offset. In this example an observation may be made at 5 for the position of 6 using a vertical offset. Similarly for point 7 using the observation at a point near point 2. In addition, points 6 and 7 can be made non-tinable so that formation of a tin is constrained to the surface of the kerb.

The next step is to pick up the entire length of the kerb at the reference string position using the same feature code and string number used for the reference string in the shape pick-up. In this example the lip of kerb.

Once completed, the shape can be extruded or paralleled using the extrude or parallel com-
mands. The parallel command will create a number of strings according to the number of points on the shape. The extrude will create a super string with a shape defined like a pipe string.
36.6 Traverse coding

If a traverse is undertaken as part of a survey, a traverse code and string number can be coded so that 12d can extract the traverse information. The specific traverse code can be supplied in the survey reduction panel under the traverse tab. An example is shown below:

In this case, the feature code of TL will be searched in the field file on reduction, so that a traverse string can be extracted. The user is required to nominate the foresight measurement with the TL code in this example. If they also include the TL code in a backsight to a previously defined traverse leg, a reciprocal calculation will be made. It uses the pair of observations (Foresight and Backsight observations of the same line e.g. Foresight 1001 to 1002 and backsight from 1002 to 1001). This reciprocal calculation takes the mean of the distance and vertical angles eliminating the effects of refraction.

A number of separate but interrelated traverses can be extracted using differing string numbers in the field.

The traverse code also allows for adjustments to be made between known stations. This adjustment maybe be chosen in the reduction panel. This field is optional.
36.7 Field Coding for Leica Instruments

For Leica instruments, the Leica GSI format breaks lines of data into fixed length ‘words’ and cannot use the same encoding method as the other instruments. The 12d Model coding system for the Leica TPS instruments is covered in the section 37.1 12d and Leica TPS Instruments.
36.8 Field Coding for Non Leica Instruments

EDM equipment is used to make readings of points in the field.

Rather than just collecting points, it is usually desirable to add extra information by coding the readings in a way that can be interpreted during the data reduction process and produce more valuable information. Unfortunately, this extra coding is non-standard and software specific.

In 12d Model, all the raw data files from different data collectors are converted into the one standard field file format (the 12d Model field file) before being loaded into a 12d Model Survey Reduction function and reduced. Hence the method for coding information in the data collector in the field needs to be well defined so that it can be sensibly converted into a 12d Model field file (the section 36.10 The 12d Field File Format contains the complete description of the 12d field file).

When a measurement is taken, most data collectors (Sokkia, Geodimeter, Topcon, Nikon etc.) allow the user to enter text which is then output with the measurement data. Depending on the data collector, the total number of characters of text may be strictly limited and may also be restricted to only one line of text. In 12d Model, a coding system has evolved so the text can be interpreted in a meaningful way.
36.8.1 Blocks and the Block (Command) Delimiter

To allow the one line of text to hold a variety of different information, the line of text is broken up into smaller blocks and each block is processed separately.

The character (or characters) used as the block separator is called the command delimiter or block delimiter.

Obviously the command delimiter can not appear in any of the commands inside a block.

What is used for the command delimiter is user defined in the data collector definition and is found on the Delimiters tab of the Survey.4d Create/Edit panel in the section 36.9 Data Collector Definitions.

The default command delimiter is * and this will be used in the examples in this appendix.

Hence using the command delimiter, the text line is broken into separate blocks for processing.

For example, the text string

EB01*XA.road

breaks into the separate blocks.

EB01
XA.road

A block can be either a control code block or a feature code block.

A control code block is any block that start with a valid control code.

Valid control codes are simply the one or more characters of text designated in the Delimiters, Features, Templating, Pipes/Culverts, Not Tinable and Strings tabs in the Survey.4d Create/Edit panel for the selected data collector definition.

If no control code appears at the start of the block, then the block is taken to be a feature code.
For example, for the *Sokkia Feature String* data collector definition which is installed with *12d Model*, the valid control codes are: *, dot (.), space, +, BS, CHK, X, C, R, S, E, ST,XA, XB, XC, XD, XE, XF, NH, XP, XL, XN, I, O and A.

Any block starting with any of above control codes is a *control code block*. Blocks that aren’t control code blocks are *feature code blocks*.

Tabs on the *Sokkia Feature String* data collector definition which define Control Codes

<table>
<thead>
<tr>
<th>Translation</th>
<th>Feature Coding</th>
<th>Delimiters</th>
<th>Download</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset code</td>
<td>,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>String</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backsight</td>
<td>BS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forecasts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check measuremen</td>
<td>CHK'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra coding</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non Visible</th>
<th>Strings</th>
<th>Others</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectangle</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectangle by 2 pts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start arc fitting</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End arc fitting</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New string</td>
<td>ST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End string</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Non Visible | Strings | Others | Features | Templates | Shapes | Pipes/Culverts | Non Trible |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>by radius</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>by diameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Templates | Shapes | Pipes/Culverts | Non Trible |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Invert</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obvvert</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centre</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Templates | Shapes | Pipes/Culverts | Non Trible |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove height</td>
<td>NH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point</td>
<td>XP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous segment</td>
<td>XL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next segment</td>
<td>XN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Blocks can include *comments* and how a comment is specified is given in the next section 36.8.2.
Comments in a Block.
The feature code block is discussed in the section 36.8.3 Feature Code Blocks.
The explanation of each control code is given in the section 36.8.4 Control Code Blocks.
Please continue to the next section 36.8.2 Comments in a Block.
36.8.2 Comments in a Block

Comments are supported in a block. There is a Comment delimiter and all characters after the comment delimiter to the end of the block are treated as a comment.

Comments are attached to the measurement point as text.

Hence the measurement will create a vertex on a super string and the comment will create text at that vertex of the super string.

The default for the Comment delimiter is / and it is defined by the Comment field on the Delimiters tab of the Survey 4d Create/Edit panel.

For example, if * is the command (block) delimiter and / is the comment delimiter, then in

EB01/first point of a template*XA.road

there are two blocks EB01/first point of a template and XA.road

and the text "first point of a template" in the first block is a comment and will be added to the super string as vertex text.

Another common character to use as a comment delimiter is a space (' '). For example, if * is the command delimiter and space is the comment delimiter, then in

EB01 first point of a template*XA.road

"first point of a template" is a comment.

The comment delimiter for the Sokkia Feature String data collector is a space

Please continue to the next section 36.8.3 Feature Code Blocks.
36.8.3 Feature Code Blocks

Feature Code, String Number and String Delimiter

In a feature code block, the *feature codes* and *string numbers* are given so that strings are automatically created during the reduction process.

The *feature code* and *string number* appear at the start of the feature code block and can be entered in a variety of ways.

Some surveyors like to enter the *string number* before the *feature code* and other surveyors prefer to enter the *string number after the feature code*. Some surveyors prefer to use *no string numbers* at all (SDRmap users) and use a *new string control code* to start a new string.

All three methods are supported in 12d. The setting is made on the *String number position* field on the *Feature Coding* tab of the Survey.4d Create/Edit panel. The default is 'before feature code'.

If string numbers are going to be used (either *before feature code* or *after feature code*) then there are rules for determining what is the feature code and what is the string number. Note that the *string number* is always *numeric* and can be any length.

Firstly, the *feature code* and *string numbers* can be separated by an *optional String* delimiter given by the *String* field on the *Delimiters* tab of the Survey.4d Create/Edit panel. The default character for the *string delimiter* is `+`.

For example, `20+110KVA` is interpreted as string number '20' and feature code '110KVA' if the string number comes before the feature code.
If a **string delimiter is not used**, then there are **some restrictions** on the feature code so that the feature code and string number can be split apart. Note that the **string number** is always **numeric** and can be any length.

If a string delimiter is not used, then either

(a) **the feature code** must be purely **alpha** and then the feature code can be of any length.

or

(b) **the feature code** is purely numeric. Then the feature code must the **fixed length** given by the **Numeric feature coding field** on the **Feature Coding** tab of the **Survey.4d Create/Edit panel**. If the **Numeric feature coding field** is not set and the feature code is numeric, then the whole thing is interpreted as a feature code with a string number of 0.

If a **feature code** is a **mixture of alpha and numeric**, then a **string delimiter must be used** to separate the feature code from the string number. Once a string delimiter is used, feature code can be any length.

Tinability as Part of the String Number

For compatibility with other software coding schemes, the tinability of a point can be included as part of the string number. This is **not normally recommended** since 12d has more flexible methods of defining tinability.

The field **Tinability position** on the **Feature Coding** tab of the **Survey.4d Create/Edit panel** controls whether it is used or not. The default is ‘no tinability’ as part of the string number.

If tinability is used as part of the string number, then it consists of either a **0** or a **1**.

If **Tinability position** is set to **before string**, the first character of the **string number** is stripped off and taken as the tinability flag. A value of 1 means the point is tinable and 0 is non-tinable.

If **Tinability position** is set to **after string**, the last character of the **string number** is stripped off and taken as the tinability flag. A value of 1 means the point is tinable and 0 is non-tinable.
Offset Codes

It is not always possible to measure a point directly but it may be possible to measure a point nearby and then measure an offset to adjust the measured point by and so produce the co-ordinates of the required point. The three offsets that are allowed in 12d Model are height, radial and tangential. See the Section 36.3.2 Offsets for more information.

The three offsets height, radial and tangential have the codes H, R and T respectively.

The offset codes come after the feature code-string number combination and are separated by the Offset code delimiter whose default value is a decimal point (.) and is defined by the Offset code field on the Delimiters tab of the Survey 4d Create/Edit panel.

After the offset code delimiter, the offset code is given as either H, R or T and then a real value for the offset (with no spaces in between). The offset can be positive or negative with the sign only being recorded if negative. A second and third offset code (H, R or T) can follow the first but no offset code delimiter is used for the second or third offset codes. The offset code delimiter is only used to separate the field code-point number from the offset codes.

In the example 20+110KVA.H2.1T0.5 there is a horizontal offset of 2.1 and a tangential offset of 0.5.

Multiply Coded Points

It is possible to have more than one Feature code block and this will create a multiply coded point.

For example, if the command delimiter is *, then EB01*PP would have the two feature code blocks 'EB01' and 'PP'.

Please continue to the next section 36.8.4 Control Code Blocks.
36.8.4 Control Code Blocks

Control Codes on the Delimiters tab

Extra Coding
This code is only for the instruments supporting the Sokkia SDR format.

The default for the extra coding control code is X and it is defined by the Extra coding field on the Delimiters tab of the Survey 4d Create/Edit panel.

For some instruments, extra lines of information can be entered after a measurement. For example on a Sokkia by using the note (13NM) to add more information to the previous measurement line (07).

The extra coding control code is used to append this additional information to the information on the measurement line. Hence it is then possible to have extra blocks of information on the line (or lines) following the measurement line.

The block containing the extra coding control code must be the last block on the measurement line.

For example,

EB01/first point of a template*XA.road*X
/ this is some extra info that happens to be a comment

is the same as

EB01/first point of a template*XA.road*/ this is some extra info that happens to be a comment

Note that there must be a feature code block on the measurement line otherwise a point will be created with no name.

Backsight
The default for the backsight control code is BS and it is defined by the Backsight field on the Delimiters tab of the Survey 4d Create/Edit panel.

The rest of the block after the backsight control code is the name of the station that the backsight was to, or the point number that the backsight was to.

For example, if BS is the backsight control code

BSPSM3

would designate a backsight to the station PSM3.
If only the backsight control code exists, the point number from the reading is taken as the point number for the backsight. This may be data collector dependent.

Warning for feature codes starting with the *backsight* control code.

If the feature codes comes before the string number, then feature codes for ordinary measurements **can not** start with the backsight control code because they would be interpreted as backsight measurements and no measurement point would be created.

If the feature codes comes after the string number, then whenever a feature codes for ordinary measurements is used that starts with the backsight control code, a string number (which may be zero for a point string) **must** be used otherwise the feature code will be interpreted as a backsight measurement and no measurement point would be created.

Foresight

There is no default for the *foresight* control code. It is defined by the Foresight field on the Delimiters tab of the Survey.4d Create/Edit panel.

The rest of the block after the *foresight* control code is the name of the station that the foresight was to, or the point number that the foresight was to.

For example, if *FS* is the backsight control code

FSPSM3

would designate a backsight to the station PSM3.

If only the foresight control code exists, the point number from the reading is taken as the point number for the foresight. This may be data collector dependent.

Warning for feature codes starting with the *foresight* control code if the Allow point numbers as stations flag is *not set* on the Advanced tab of the Survey.4d Create/Edit panel.

If the feature codes comes before the string number, then feature codes for ordinary measurements **can not** start with the foresight control code because they would be interpreted as foresight measurements and no measurement point would be created.

If the feature codes comes after the string number, then whenever a feature codes for ordinary measurements is used that starts with the check measurement control code, a string number (which may be zero for a point string) must be used otherwise the feature code will be interpreted as a foresight measurement.

If the Allow point numbers as stations flag is set on, then a point number used as a foresight will create a measurement point for that point number.

Check Measurement

The default for the *check measurement* control code is **CHK** and it is defined by the Check measurement field on the Delimiters tab of the Survey.4d Create/Edit panel.

The rest of the block after the *check measurement control code* is the name of the station that
the check measurement was to, or the point number that the check measurement was to.

For example, if CHK is the check measurement control code

\[\text{CHKPSM3} \]

would designate a check measurement to the station PSM3.

If only the check measurement control code exists, the point number from the reading is taken as the point number that the check measurement is made to. This may be data collector dependent.

Warning for feature codes starting with the check measurement control code.

If the feature codes comes before the string number, then feature codes for ordinary measurements **can not** start with the check measurement control code because they would be interpreted as check measurements and no measurement point would be created.

If the feature codes comes after the string number, then whenever a feature codes for ordinary measurements is used that starts with the check measurement control code, a string number (which may be zero for a point string) **must** be used otherwise the feature code will be interpreted as a check measurement and no measurement point would be created.

Control Codes on the Strings tab

Strings tab on the Survey.4d Create/Edit Panel

<table>
<thead>
<tr>
<th>Non Visible</th>
<th>Strings</th>
<th>Others</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectangle</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectangle by 2 pts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start arc fitting</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End arc fitting</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New string</td>
<td>ST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End string</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Close String

The default for the close string control code is **C** and it is defined by the Close field on the Strings tab of the Survey.4d Create/Edit panel.

The close string control code closes the string that the measurement is a point of.

See the Section **36.3.4 Close String** for more information on closing a string.

Rectangle

The default for the rectangle control code is **R** and it is defined by the Rectangle field on the Strings tab of the Survey.4d Create/Edit panel.

The rectangle control code uses the current point and the previous two points in the same string (three points total) and creates a new point to form a parallelogram.

See the Section **36.3.5 Rectangle** for more information on forming a rectangle.

Rectangle by 2 Pts

A rectangle_2 control code can be defined by the Rectangle by 2 pts field on the Strings tab of the Survey.4d Create/Edit panel.

The rectangle_2 control code uses the current point, last point and an offset. The rectangle is
defined by two points (reference side) and a offset.

If a positive offset value is given, two points will be created to the right of the reference side.
If a negative offset value is given, two points will be created to the left of the reference side.
If no Description is given, the two new points will be joined to the given points in a closed rectangular string, and will have the same feature code as the points given.
If the feature code and string number exist, then a search is made for the last occurrence of two points with the same feature code and string number. If found, then these points are used to define the reference side of the rectangle.

If the point number exists, then a search is made for the last occurrence of two points with the same feature code and string number as the point given by the point number. If found, then these points are used to define the reference side of the rectangle.
Two consecutive rectangles are unable to be defined side by side. In other words if the two points given are part of string of greater than two vertices, the command will only work for sets of two points that are exclusively defined. i.e. For a 5 point string, a rectangle can be defined by points 1 and 2, and 4 and 5.
See the Section 36.3.6 Rectangle by 2 Points for more information on forming a rectangle by 2 points.

Start Arc Fitting
The default for the start arc fitting control code is S and it is defined by the Start arc fitting field on the Strings tab of the Survey.4d Create/Edit panel.
The start arc fitting control code starts arc fitting with the current point.
See the Section 36.3.9 Arcs Through Points for more information on arc fitting.

End Arc Fitting
The default for the end arc fitting control code is E and it is defined by the End arc fitting field on the Strings tab of the Survey.4d Create/Edit panel.
The end arc fitting control code ends arc fitting at the current point. That is, the current point is included in the arc fitting but it is the last point used in the arc fitting.
See the Section 36.3.9 Arcs Through Points for more information on arc fitting.

New String
The default for the new string control code is ST and it is defined by the New string field on the Strings tab of the Survey.4d Create/Edit panel.
The new string control code starts a new string with the current point even if the feature code and string number haven’t changed.
See the Section 36.3.3 Start New String for more information on starting a new string.

End String
The end string control code ends the current string even if the feature code and string number haven’t changed for the next point.

Control Codes on the Features tab
Feature by Radius

There is no default for the feature by radius control code. It is defined by the by radius field on the Features tab of the Survey.4d Create/Edit panel.

The feature by radius control code denotes that the feature has a given radius. For example, if RA was used then TRE*RA2 would denote a feature code TRE with a radius of 2 units.

See the Section 36.3.7 Feature for more information on feature strings.

Feature by Diameter

There is no default for the feature by diameter control code. It is defined by the by diameter field on the Features tab of the Survey.4d Create/Edit panel.

The feature by diameter control code denotes that the feature has a given diameter. For example, if DI was used then TRE*DI2 would denote a feature code TRE with a diameter of 2 units.

See the Section 36.3.7 Feature for more information on feature strings.

Control Codes on the Pipes/Culverts tab

Invert Point for Pipe or Culvert

The default for the invert level control code is I and it is defined by the Invert field on the Pipe/Culverts tab of the Survey.4d Create/Edit panel.

The invert level control code denotes that the point is an invert level (bottom).

The invert commands can also denote the diameter of a pipe or width and height of a culvert. For example, I.3 denotes the measurement was an invert level and it was a pipe of diameter 0.3 units. I.3x.4 denotes the measurement was an invert level and it was a box culvert of width 0.3 and height 0.4 units.

Obvert Point for Pipe or Culvert

The default for the obvert level control code is O and it is defined by the Obvert field on the Pipe/Culverts tab of the Survey.4d Create/Edit panel.
The obvert level control code denotes that point is an obvert level (top). The obvert command can also define the diameter of a pipe or width and height of a culvert. For example, O.3 denotes the measurement was an invert level and it was a pipe of diameter 0.3 units. O.3x.4 denotes the measurement was an invert level and it was a box culvert of width 0.3 and height 0.4 units.

Centre Point for Pipe or Culvert
The default for the centre level control code is A and it is defined by the Centre field on the Pipe/Culverts tab of the Survey.4d Create/Edit panel.

The centre level control code denotes that point is an centre level (axial).

The centre command can also define the diameter of a pipe or width and height of a culvert. For example, A.3 denotes the measurement was an invert level and it was a pipe of diameter 0.3 units. A.3x.4 denotes the measurement was an invert level and it was a box culvert of width 0.3 and height 0.4 units.

Control Codes on the Non Tinable tab

<table>
<thead>
<tr>
<th>Control Code</th>
<th>Non Tinable tab on the Survey.4d Create/Edit Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove height</td>
<td>NH</td>
</tr>
<tr>
<td>Point</td>
<td>XP</td>
</tr>
<tr>
<td>Previous segment</td>
<td>XL</td>
</tr>
<tr>
<td>Next segment</td>
<td>XN</td>
</tr>
</tbody>
</table>

Remove Height
The control code to set the height of the current point to null.

The default for the remove height from point control code is NH and it is defined by the Remove height field on the Non-Tinable tab of the Survey.4d Create/Edit panel.

Point
The default for the make point non-tinable control code is XP and it is defined by the Point field on the Non-Tinable tab of the Survey.4d Create/Edit panel.

The make point non-tinable control code makes the current point non-tinable. That is, the point is not used in tins (triangulations).

Previous Segment
The default for the make previous segment non-tinable control code is XL and it is defined by the Previous segment field on the Non-Tinable tab of the Survey.4d Create/Edit panel.

The make previous segment non-tinable control code makes the previous segment non-tinable. That is, the segment that the current point is the end of is non-tinable and hence not used as a breakline in tins (triangulations).

Next Segment
The default for the make next segment non-tinable control code is XN and it is defined by the Next segment field on the Non-Tinable tab of the Survey.4d Create/Edit panel.
The *make next segment non-tinable* control code makes the next segment point non-tinable. That is, the segment that the current point is the start of is non-tinable and hence not used as a breakline in tins (triangulations).

Control Codes on the Templating tab

<table>
<thead>
<tr>
<th>Control Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Record</td>
<td>Denotes the first point of a new field template definition. The field template definition continues until the next stop recording a field template control code or a start using a field template control code.</td>
</tr>
<tr>
<td>Start</td>
<td>Denotes that a field template is being used. This point takes the feature code and string number from the field template. If it is a named field template, then the control code is followed by the offset code delimiter and then the name of the field template.</td>
</tr>
<tr>
<td>End</td>
<td></td>
</tr>
<tr>
<td>Pause</td>
<td></td>
</tr>
<tr>
<td>Pause after</td>
<td></td>
</tr>
<tr>
<td>Continue</td>
<td></td>
</tr>
<tr>
<td>Skip</td>
<td></td>
</tr>
<tr>
<td>Insert</td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td></td>
</tr>
</tbody>
</table>

Record

The control code to denote that this is the first point of a new field template definition. The field template definition continues until the next stop recording a field template control code or a start using a field template control code.

If the field template is to have a name, then the start recording control code is followed by the offset code delimiter and then the name for the field template. If no name is given, then the field template defines the default field template.

For example, if XA starts recording for the default template, XA.road starts recording the field template called road.

The default for the start recording a field template control code is XA and it is defined by the Record field on the Templating tab on the Survey.4d Create/Edit panel.

See the Section 36.4 Field Templates for more information on field templates.

Start

The control code to denote that a field template is being used. This point takes the feature code and string number from the field template. If it is a named field template, then the control code is followed by the offset code delimiter and then the name of the field template.

The field template can also be used as a forward template, a reverse template or as a zig-zag template starting on either a zig or on a zag. The denote using the field template as a forward template, add the offset code delimiter and for. To denote using the field template as a reverse template, add the offset code delimiter and rev. To denote zig-zag mode starting on a zig, add the offset code delimiter and zig. To denote zig-zag mode starting on a zag, add the offset code delimiter and zag.

If anything other than ‘for’, ‘rev’ or ‘zag’ is given, the field template is used as a zig-zag template starting on a zig.

For example, if XB starts using the default template, XB.road.zag starts using the field template
called road as a zig-zag field template starting on a zag.

The default for the start using a template control code is **XB** and it is defined by the Start field on the Templating tab of the Survey.4d Create/Edit panel.

See the Section [36.4 Field Templates](#) for more information on field templates.

End

The control code to end the use of the current field template after the current point. That is, the current point uses the field template but subsequent measurements don’t.

The default for the stop using a template control code is **XC** and it is defined by the End field on the Templating tab of the Survey.4d Create/Edit panel.

See the Section [36.4 Field Templates](#) for more information on field templates.

Pause

The control code to pause using the current field template. The current point does not use the field template.

The default for the pause using a template control code is **XD** and it is defined by the Pause field on the Templating tab of the Survey.4d Create/Edit panel.

See the Section [36.4 Field Templates](#) for more information on field templates.

Pause after

The control code to pause using the current field template and the current point does not use the field template.

There is no default for the pause after control code and it is defined by the Pause after field on the Templating tab of the Survey.4d Create/Edit panel.

See the Section [36.4 Field Templates](#) for more information on field templates.

Continue

The control code to continue the use of a paused field template. The current point uses the field template.

The default for the continuing using a field template control code is **XE** and it is defined by the Continue field on the Templating tab of the Survey.4d Create/Edit panel.

See the Section [36.4 Field Templates](#) for more information on field templates.

Skip

The control code to skip point one or more points of the field template. The current point uses the next point after the skipped points from field template.

If more than one point is to be skipped then the control code is followed by the *offset code* delimiter and then number of points to be skipped.

For example, if **XF** is the skip points control code, **XF.2** skips two points. Note that just **XF** skips one point and the ‘.1’ is not required.

The default for the skipping field template points control code is **XF** and it is defined by the Skip field on the Templating tab of the Survey.4d Create/Edit panel.

See the Section [36.4 Field Templates](#) for more information on field templates.

Insert

A default control code to insert a point in the field template can be added to this field. The point in inserted after the last point.
See the Section 36.4 Field Templates for more information on field templates.

Delete

A default control code to delete a point in the field template can be added to this field. A number of points can be nominated for deletion.

See the Section 36.4 Field Templates for more information on field templates.
36.8.5 Feature coding for traverse extraction
(Non- Leica instruments)

In the example shown above, three distinct traverses were observed. The main traverse between stations 900 and 901 were given a feature code of TL and a string number of 1 (TL1). A typical observation description follows:

Setup on station 900. A foresight measurement was taken from 900 to 1001. A typical feature code may be:
TL1 FS1001. Where the block delimiter is a space (" ") breaking the feature code up into TL1 and FS1001. This tells the reduction that the observation was a traverse because it has a feature code of TL as specified in the traverse tab of the reduction panel. The foresight control code may be FS, telling the reduction that the observation is a foresight observation to a named point

Setup on station 1001. A backsight to station 900 was observed. A typical feature code may be:
TL1 BS900. Where BS is the backsight control code

A foresight to 1002 may be coded as:
TL1 FS1002.

And so forth.

The observation to station 1013 may be made at the same time as when observing to station 1007 from the setup station 1006. Simply changing the string number to 2 for the observation to 1013 will ensure that it is treated as a different traverse, i.e. TL2 FS1013.

The second traverse between stations 1006 and 902 were given a feature code of TL and a string number of 2 whilst the traverse between stations 1010 and 903 were given a feature code of TL and a string number of 3.

The feature code/ string number needs to be present for at least the foresight or measured leg of each of the traverse legs. If they are also present for the backsight, then foresight/backsight pairs will be grouped together and reciprocal calculations done for that leg.
36.9 Data Collector Definitions

Unfortunately, each brand of data collector has its own method of communicating with a computer and a software package.

To allow for a variety of data collectors, **12d Model** lets the user create and edit data collector definitions which are simply user defined sets of data collector parameters stored under user specified names.

The set of data collector definitions are stored in a file but are created and edited using the **12d Model** panel **Survey.4d Create/Edit**.

The **Survey.4d Create/Edit panel** is accessed via **Project => Management =>Tree**.

First select **Project => Management =>Tree** and then click on the + beside the Project name to expand the list of available information for the project. Then click on the + beside **Survey data collectors** to see the list of existing 12d data collector definitions.

Double click LB on **Create data collector** to create a new data collector definition, or double click LB on an existing data collector definition to examine and/or modify it.

The **Survey.4d Create/Edit** panel will then appear.
The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector</td>
<td>input name of the data collector to create/edit.</td>
<td>available</td>
<td>data</td>
<td>collectors</td>
</tr>
<tr>
<td>Defaults</td>
<td>button set all the panel fields to default values.</td>
<td></td>
<td>values</td>
<td></td>
</tr>
<tr>
<td>Clear</td>
<td>button clear the values in the panel fields in all the tabs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>button set the values in the panel fields for the given data collector for this session of 12d Model.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Save</td>
<td>button store the data collector definitions to the survey.4d file.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For descriptions of each of the tabs on the panel, go to:
- *Translation* [Translation tab](#)
- *Feature coding* [Feature Coding tab](#)
- *Delimiters* [Delimiters tab](#)
- *Download* [Download tab](#)
Advanced
Upload
Instrument
V4 Columns
Templating
Shapes
Pipe/Culverts
Non tinable
Non visible
Attributes
Strings
Other
Features

Translation tab

Instrument input
Geodimeter, Leica
Nikon DR1, Nikon AP700, Sokkia 20/33
Topcon GT700, Topcon FC5

Raw file extension input
file ending to use for the raw file when it is downloaded.

Macro tick box
if tick, then the Translator pop-up list only shows **12d Model** macros.
If not ticked, then the Translator pop-up list only shows programs.
Data Collector Definitions

Translator input list of translators in library
name of the macro/program to translate the raw survey file into the 12d field file format.

Vertical circle input zenith zenith, nadir
define the vertical circle zero.

Feature Coding tab

String number position input before before feature code
no string number after feature code
defines if the string number is before or after the feature code or is not used at all (no string number).
When 'no string number' then the New string command is used to start new strings with the same feature code.

Tinability position input no tinability before string
no tinability after string
defines the position or absence, of the tinability flag. This should only be used for compatibility with data coded for other systems such as CivilCAD. 12d has more flexible methods of defining tinability.

Numeric feature coding integer
if 'no string number' is given for String number position then Number feature coding is ignored.
If a number is given, then the feature code must be numeric and the given number is the length of the feature code (that is, the number of digits in the feature code).
If no number is given, then feature codes are alphabetical characters only except when a String code is used to separate the feature code and string number.
Delimiters tab

Command
input *
defines the separator between the feature code/string number and op code commands. The delimiter characters can not be used in any other part of the command line.

Comment
input /
defines the separator for comments. Note that this can be a space.

Offset code
input dot (.)
defines the beginning of the offset code block. If the offset code block exists, it must come immediately after the Feature code/string number/itenability block. The offset code used R for radial, T for tangential, H for height.

String
input +
separates the feature code from the string number. Used when the feature code includes numbers. For example 110KVA+20 would be a feature code of 110KVA and a string number of 20.

Backsight
input BS
if the feature code is this control code then the measurement is to a backsight and not a point.

Foresight
input
if the feature code is this control code then the measurement is to a foresight and not a point.

Check measurement
input CHK
if the feature code is this control code then the measurement is a check measurement and not a point.

Extra coding
input X
denotes that the information following is appended to the previous information for the measurement. This allows extra coding than may be allowed for on the measurement line. Mainly for Sokkia using the note (13NM) to add more information to the previous measurement line (07).
A feature code block must be on the measurement line or a measurement with no name will be created. Also a command block can’t be split between two lines.

Download tab

![Image of Data Collector Definitions](image)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Input</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>input</td>
<td>COM1 to COM4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>port on the computer to use to communicate with the data collector for downloads.</td>
</tr>
<tr>
<td>Baud rate</td>
<td>input</td>
<td>9600, 110, 300 ... 256000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>baud rate to use for the computer port.</td>
</tr>
<tr>
<td>Data bits</td>
<td>input</td>
<td>5, 6, 7, 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>number of data bits to use.</td>
</tr>
<tr>
<td>Stop bits</td>
<td>input</td>
<td>0, 1, 1.5, 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>number of stop bits to use.</td>
</tr>
<tr>
<td>Parity</td>
<td>input</td>
<td>none, even, odd, mark, space</td>
</tr>
<tr>
<td></td>
<td></td>
<td>parity to use.</td>
</tr>
<tr>
<td>DTR/DSR, RTS/CTS, XON/XOFF, ACK/NAK</td>
<td>tick boxes</td>
<td>flow control settings.</td>
</tr>
</tbody>
</table>

Advanced tab
Comment raw files
tick box
if tick, include the data from the raw survey file as comments in the 12d field file.

Report header
tick box
if tick, include some header information as comments in the 12d field file.

Allow bad line lengths
tick box
if tick, ignore the fact that the length of the line from the data collector is incorrect. This may lead to other errors so it should be used sparingly.

Verbose
tick box
if tick, then extra information is written to the Output window.

Allow point numbers as stations
tick box
if tick, the point numbers for previous measurements can be used as stations for instrument setups, backsights, foresights and check measurements.

Note

When 12d Model starts up, it checks to see if an environment variable called DATA_COLLECTORS_4D exists and if it does, then the file it points to is used to provide the definitions for the data collectors.

If the environment variable is not set, then 12d Model searches for a file called survey.4d (this was data_collectors_definitions in V3.0) in the standard 12d Model search sequence for set up files.

Upload tab
Data Collector Definitions

Port
- Input
- COM1 to COM4
- Port on the computer to use to communicate with the data collector for uploads.

Baud rate
- Input
- 9600
- 110, 300 ... 256000
- Baud rate to use for the computer port.

Data bits
- Input
- 7
- 5, 6, 7, 8
- Number of data bits to use.

Stop bits
- Input
- 1
- 0, 1, 1.5, 2
- Number of stop bits to use.

Parity
- Input
- None
- None, even, odd, mark, space
- Parity to use.

DTR/DSR, RTS/CTS, XON/XOFF, ACK/NAK
- Tick boxes
- Flow control settings.

Extension
- Input
- Ending of the file that will be uploaded. For example, typing in `.sdr` means the file to upload ends in ".sdr"

CR/LF ?
- Input
- CR, LF, CR LF, None
- End of line characters - characters needed by the data recorder to denote the end of a line of data being uploaded to the data recorder.

Delay 1
- Input
- The time between sending lines of data to the data recorder.
Process input
for some data recorders after a data line is sent, a text string needs to be sent to the data recorder to make it process the data line (e.g. GRE3 used a P).

Delay 2 input
the time between sending the process string and sending the next data line.

Ignore comms errors tick box
if tick, ignore any communication errors whilst uploading to the data recorder.

Instrument tab

Measurement/code order input after measurement code before measurement code after measurement

For Leica only where the feature code/string number record is separate to the measurement record. For all other data recorders the feature code block is in the same record as the measurement.
If ‘code before measurement’, then the feature code/ string number record for a measurement is entered before taking the measurement.
If ‘code after measurement’, then the feature code/ string number record for a measurement is entered after taking the measurement.

Sokkia 08KI as GPS points tick box
if tick, when converting reading an Sokkia SDR file, the "08KI" records are treated as points and no directly entered station co-ordinates.

V4 Columns tab
The V4 columns tab is for compatibility with 12d Model V4 field files which were of fixed column widths.

Feature code start/end
input 1/6
the start and end column position for the feature code in the field file record.

String number start/end
input 7/9
the start and end column position for the string number in the field file record.

Point name/Attribute/Point number start/end
input 22/30, 10/16, 17/20
the start and end column position for the point name/Attribute/Point number in the field file record.

Total length
input
the total length of line expected.

** Templating tab**

For information on field templating, see [36.4 Field Templates](#).
Record input XA text characters to denote the start of recording a field template. For example XA starts recording for the default template, XA.road starts recording the field template called road. See 55 Start recording a field template.

Start input XB text characters to denote the start of using a field template. For example XB starts using the blank field template, XB.road starts using the field template called 'road'. XB.road.zig starts using ‘road’ a zig-zag field template and begins as a zag. See 51 Start using an existing field template.

End input XC text characters to denote stop using the current field template. See 52 Finish using a field template or finish recording a field template.

Pause input XD text characters to denote temporarily stop using the current field template to take other measurements. The current point does not use the field template. See 53 Pause using the current field template.

Pause after input XD text characters to denote temporarily stop using the current field template to take other measurements. The current point does use the field template. See 51 Start using an existing field template.

Continue input XE text characters to denote continuing to use the current field template after a pause. See 54 Continue the current field template.

Skip input XF text characters to denote that template points are to be skipped. For example XF means skip one field template point, XF.3 means skip three field template points. See 56 Skipping picking up points when using a field template.
Insert

input XI text
characters to denote that template points are to be inserted. For example XI.FE01 means insert a template point of FE01 into the template after the last measured template point. See 58 Insert points when using a field template - after the measurement of last point.

Delete

input XQ text
characters to denote that template points are to be deleted. For example XQ.3 means delete the next 3 pts from the template after the last measured template point. See 57 Delete points on a field template - after the measurement of last point.

Shapes tab

For information on shapes, see 36.5 Shape field coding.

Record

input text
characters to denote the start of recording a shape. For example if RS was used, the code RS starts recording for the default shape, RS.shape_name defines the recording of a shape of name shape_name. See 83 Start recording a shape - before the measurement.

End

input text
characters to denote stop using the current shape. See 84 Finish using a shape definition or finish recording a shape - after the measurement.

Parallel

input text
characters to denote the application of a shape by parallelling to the shape reference string. The code may be LK01*PS.shape_name
Where the Parallel command is PS, the shape reference string is LK01 and the shape name = shape_name. See 85 Shape parallel.
Extrude input text characters to denote the application of a shape by extrusion to the shape reference string. The code may be LK01*ES.shape_name. Where the Extrusion command is ES, the shape reference string is LK01 and the shape name = shape_name. See 86 Shape extrude.

Pipes/Culverts tab

Invert input text characters to denote that the measurement was the an invert level. See 80 Pipe invert point (bottom of the pipe).

Obvert input text characters to denote that the measurement was the an obvert level. See 82 Pipe obvert point (top of the pipe).

Centre input text characters to denote that the measurement was the a centreline (axial) level. See 81 Pipe axial point (centre of the pipe).

Note that these commands can also denote the diameter of a pipe or width and height of a culvert. For example, I.3 denotes the measurement was an invert level and it was a pipe of diameter 0.3 units. I.3x.4 denotes the measurement was an invert level and it was a box culvert of width 0.3 and height 0.4 units.

Non Tinnable tab
Remove height
characters to denote that the measurement has a null height. See 30 Remove height from a point - that is make it a null height.

Point
characters to denote that the measurement is a non-tinable point. See 40 Make a point non-tinable.

Previous segment
characters to denote that the next segment of the current string is non-tinable. See 38 Make the previous segment non-tinable.

Next segment
characters to denote that the previous segment of the current string is non-tinable. See 39 Make the next segment non-tinable.

Non visible tab
Point
characters to denote that the measurement is a non-visible point. That is, the point is not visible and is not included in a triangulation. See \texttt{109 Make a point invisible - after the measurement}.

Previous segment
characters to denote that the measurement is the end of a non-visible segment. That is, the previous segment is not used as a breakline in a triangulation and it is not visible. See \texttt{107 Make the previous segment invisible - after the measurement}.

Next segment
characters to denote that the measurement is the start of a non-visible segment. That is, the next segment is not used as a breakline in a triangulation and is not visible. See \texttt{108 Make the next segment invisible - after the measurement for the first point of the segment}.

Attributes tab
String tab (Attributes)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer</td>
<td>input text</td>
<td>68 Add an integer user defined attribute to the current string.</td>
</tr>
<tr>
<td>Real</td>
<td>input text</td>
<td>69 Add a real user defined attribute to the current string.</td>
</tr>
<tr>
<td>Text</td>
<td>input text</td>
<td>70 Add text user defined attribute to the current string.</td>
</tr>
<tr>
<td>Measure</td>
<td>input text</td>
<td></td>
</tr>
</tbody>
</table>

Vertex tab (Attributes)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer</td>
<td>input text</td>
<td>71 Add integer user defined attribute to the current point.</td>
</tr>
<tr>
<td>Real</td>
<td>input text</td>
<td>72 Add real user defined attribute to the current point.</td>
</tr>
</tbody>
</table>
Text
characters to denote that the next text is to be taken as a user defined text attribute of the current
text
vertex. See 73 Add text user defined attribute to the current point.

Measure

Previous segment tab (Attributes)

Integer
characters to denote that the next text is to be taken as a user defined integer attribute of the previous
integer
text
segment. See 77 Add integer user defined attribute to the previous segment.

Real
characters to denote that the next text is to be taken as a user defined real attribute of the previous
real
text
segment. See 78 Add real user defined attribute for the previous segment.

Text
characters to denote that the next text is to be taken as a user defined text attribute of the previous
text
segment. See 79 Add text user defined attribute to the previous segment.

Measure

Next segment tab (Attributes)

Integer
characters to denote that the next text is to be taken as a user defined integer attribute of the next
integer
text
segment. See 74 Add integer user defined attribute to the next segment.

Real
characters to denote that the next text is to be taken as a user defined real attribute of the next segment.
real
text
See 75 Add real user defined attribute to the next segment.

Text
characters to denote that the next text is to be taken as a user defined text attribute of the next segment.
text
See 76 Add text user defined attribute to the next segment.

Measure

Strings tab

For information on the string commands, see 36.3 Field Coding.
Close characters to denote that the string is closed. That is the current measurement is joined to the first point of the string. See 20 Close string.

Rectangle characters to denote that the string is a rectangle. That is the current measurement and the previous two points of the string are three points of a parallelogram and the fourth point is automatically created (and given a null height). See 45 Make a parallelogram from the last three measurement points.

Rectangle by 2 pts characters to denote that the string is a rectangle. That is the previous two points of the string define one side and an offset defines the opposite side. Positive being to the right. The created points are given null height. See 37 Rectangle by two points.

Start arc fitting characters to denote the start of arc fitting. See 61 Start of arc through sets of three points until end of string, or a 62 occurs.

End arc fitting characters to denote the end of arc fitting. See 62 End the arcs begun by a 61 command.

New string characters to denote that the current measurement is the start of a new string, even if the string number has not changed. See 47 Start a new string using the same feature code and string number.

End string characters to denote that the current measurement is at the end of a string, even if the string number has not changed on the next measurement. See 48 End a string.
Others tab

Under development.

![Survey 4d Create/Edit window](image)

Features tab

For information on Feature string, see 36.3.7 Feature.
By radius

Characters to denote that the feature has a given radius. For example, if RA was used then TRE*RA2 would denote a feature code TRE with a radius of 2 units.

There can be more than one set of characters that define ‘By radius’. The sets are entered into the By radius field separated by a space. For example

RA RAD RD

would specify that RA and RAD and RD can be used to denote that the feature is defined by radius.

By diameter

Characters to denote that the feature has a given diameter. For example, if DI was used then TRE*DI2 would denote a feature code TRE with a diameter of 2 units.

There can be more than one set of characters that define ‘By diameter’. The sets are entered into the By diameter field separated by a space. For example

DI DIA DR

would specify that DI and DIA and DR can be used to denote that the feature is defined by diameter.
36.10 The 12d Field File Format

The detailed definition of the standardised 12d Field File will now be given. This is the file that all raw files are converted to before reduction in 12d Model.

A few definitions will be given, followed by the complete description of the 12d Field File.

The raw data files from different data collectors are all converted to the 12d field file format. The 12d field file is text and has a name ending in .fld

Each line in the 12d field file is called a record and consists of an operation code (or op code for short) followed by zero or more tabs and pieces of information.

(a) zero fields

What actually follows the fixed header depends on the op code.

Hence the 12d field file record is:

<table>
<thead>
<tr>
<th>op code</th>
<th>tab</th>
<th>value</th>
<th>...</th>
<th>tab</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td></td>
<td>abcS</td>
<td></td>
<td></td>
<td>fred</td>
</tr>
</tbody>
</table>

A number of conventions and definitions will be now given, followed by the complete description of the 12d Field File.

Important Note

Op codes are not the same as field codes. Field codes are entered by the surveyor in the field and may lead to one or more op codes being created in the 12d field file.

Please continue to the next section 36.10.1 Point Description.
36.10.1 Point Description

The feature codes and string numbers are entered by the surveyor whilst surveying in the field and the point numbers are usually automatically created by the surveying instrument but may sometimes be entered into the instrument by the surveyor.

Other information can also be entered by the surveyor using field codes and associated information. How each field code and associated information is entered in the field depends on the data recorder and the coding convention being used. This is set up in the Data Collector definitions in 12d Model.

The data file from the instrument or data collector (raw file) is first converted in 12d Model to the 12d field file ready for loading into a 12d Model Survey Reduction function for reduction.

In most lines of the 12d field file, a feature code, string number, point number, point name and point text are given and are stored next to each other separated by tabs.

The feature code and string number have already been described.

The point number is the EDM tacheometry measurement point number which is not normally entered by the user but is written in the raw data file by the data collector. This is stored as the point number for the vertex of the super string.

The point name is used to store the name of a station (see the next section on named measurements) and is supplied by the user with certain op codes. It is also used by some op codes that do not require an actual point name but have other special information that needs to be stored.

The point text is stored as vertex text for that vertex of the super string.

In the 12d field file, the feature code, string number, point number, point name and point text are given in this order and are separated by tabs. Each can be up to sixty-three characters in length. If the item is missing then a tab is still needed so there may be two or more sequential tabs.

For simplicity in describing the 12d field file, the feature code, string number, point number, point name and point text are grouped together and called the point description.

Hence the point description consists of the following pieces of information separated by tabs:

- feature code (string name)
- string number
- point number
- point name
- text

So it is convenient to think of the point description record as five columns of information:

<table>
<thead>
<tr>
<th>feature code</th>
<th>string number</th>
<th>point number</th>
<th>point name</th>
<th>text</th>
</tr>
</thead>
<tbody>
<tr>
<td>abc</td>
<td>01</td>
<td>1002</td>
<td>STN 4</td>
<td>freddie</td>
</tr>
</tbody>
</table>

Please continue to the next section 36.10.2 Measurements and Named Measurements.
36.10.2 Measurements and Named Measurements

The 12d field file allows five types of measurements that create points (vertices) in super strings. They are
(a) directly entered co-ordinates measurement
(b) EDM measurement (HA,VA,SD, + point_description.)
(c) EDM measurement VD (HA,HD,VD + point_description.)
(d) EDM measurement HT (HA,HD,HT, + point_description.)
(e) three hair stadia measurement

Each type of measurement creates a new point which is appended to the previous points with the same feature code and string number.

The last such measurement is referred to as the current measurement point or current point and the string it is appended to is the current string.

If a point_name exists in the point_description for any of the three types of measurements, then it is called a named measurement and a one point super string of name point_name is created and mapped using the Map File. The vertex text for the one point super string is the station prefix followed by point_name. The point_name is added to an internal list of named points for searching for co-ordinates.

Please continue to the next section 36.10.3 Existing Station Co-ordinates.
36.10.3 Existing Station Co-ordinates

When setting up a new instrument, measuring to a backsight, doing a check measurement or manually entering a bearing to use as the bearing datum difference, the point_name or point number from the point_description is used to specify a point. The (x,y,z) co-ordinates for point_name are found by searching in the following order:

The difference between point names and point numbers is that point names are usually given by the user and should be a unique identifier for a point whilst for that same physical point a number of measurements (and hence point numbers) may be assigned (usually by the data collector). This may be particularly true of control station measurements where measurements are made to a given point name but each measurement is given a different point number by the data collector. In most instances, a measurement to a point has a point number (from the data collector) and 12d automatically gives it the same point name as it is rare to measure a non-control point more than once (the point name can be over ridden by the user).

The names allow the reduction routine to search for the details of that point (e.g. coordinates) to allow for the reduction of further measurements. The order in which this searching takes place is as follows:

First search the Control model (if it exists):

1. A search is made of the control model for a string whose name is the same as the specified point name. If a string is found, the first point of the string is used for the (x,y,z) co-ordinates.
2. A search is made of the control model for a vertex of a string whose point number is the same as the specified point name. If a vertex is found its (x,y,z) co-ordinates are used.
3. If only a point number was specified, a search is made of the control model for a vertex of a string whose point number is the same as the specified point number. If a vertex is found its (x,y,z) co-ordinates are used.

Next search the already entered directly entered co-ordinates (DEC) in the field file:

4. A search is made of previously entered directly entered co-ordinates in the field file for a directly entered co-ordinate whose point name is the same as the specified point name. If a DEC is found, its (x,y,z) co-ordinates are used.
5. A search is made of previously entered directly entered co-ordinates in the field file for a directly entered co-ordinate whose point number is the same as the specified point name. If a DEC is found, its (x,y,z) co-ordinates are used.
6. A search is made of previously entered directly entered co-ordinates in the field file for a directly entered co-ordinate whose point number is the same as the specified point number. If a DEC is found, its (x,y,z) co-ordinates are used.

Next search the previous measurements in the field file:

7. A search is made of previous measurements in the field file for a measurement whose point name is the same as the specified point name. If a measurement is found, its (x,y,z) co-ordinates are used.
8. A search is made of previous measurements in the field file for a measurement whose point number is the same as the specified point name. If a measurement is found, its (x,y,z) co-ordinates are used.
9. A search is made of previous measurements in the field file for a measurement whose point number is the same as the specified point number. If a measurement is found, its (x,y,z) co-ordinates are used.
10. or finally, the user is asked to type in the (x,y,z) co-ordinates in a Survey Data Define Station panel. If a model is specified in the Add to model field of the panel, then a new one point super string is created with the name point_name, and as the vertex text for the point, the Station label prefix field value followed by point_name.

For a summary of the 12d Field File Op Codes, go to the section 36.10.5 Summary of 12d Field File Op Codes.
For the full description of the **12d Field File Op Codes**, go to the section [36.10.4 Full Description of 12d Field File Op Codes](#36.10.4)
36.10.4 Full Description of 12d Field File Op Codes

For a summary of the 12d Field File Op Codes, go to the section 36.10.5 Summary of 12d Field File Op Codes.

The record for each op code allowed in the 12d field file will now be described in detail.

For each op code record, two lines and a paragraph of description are given:

- The first line consists of the op code and a short description of the purpose of the code.
- The second line gives the full syntax of the record for that op code.
- The paragraph gives a detailed description of the op code record.

Optional information is enclosed in the square brackets []

All angles in the 12d field file are given in decimal degrees.

Important Note

Op codes are not the same as field codes. Field codes are entered by the surveyor in the field and may lead to one or more op codes being created in the 12d field file.

<table>
<thead>
<tr>
<th>Op Code</th>
<th>Description of Record</th>
</tr>
</thead>
</table>
| 1 | Four 10 character information blocks
01 block1 block2 block3 block4
This information is ignored. |
| 2 | Directly entered coordinate measurement
02 Point_description X Y Z
A measurement point is created with the feature code and string number from the point_description and given (x, y,z) co-ordinates. No reduction is needed.
The point_number and text from the point_description are recorded as the point number and text for that vertex of the super string.
If a point_name exists in the point_description, then it is a named measurement and a 4d point string of name point_name is created and mapped using the Map File. The 4d text is the station prefix followed by point_name. The point_name is added to the internal list of named points for searching for co-ordinates. |
| 3 | New instrument point
03 Point_description instrument_height
Setting up an instrument at the point with name given in the point_name section of the point_description. The (x,y,z) co-ordinates for point_name are found by first searching the control model, then the list of previously named point in the reduction, point numbers of previous measurements and finally if point_name is still not found, the user is asked to type in the (x,y,z) co-ordinates. A record is written to the report file. |
| 4 | Measurement to backsight
04 Point_description horizontal_circle vertical_circle slope_distance azimuth
Measurement to a backsight whose name is given in the point_name section of the point_description. If the Display panel for backsights field in the Survey Data Reduce panel is tick, then the Survey Data Bearing Datum Difference panel shows the bearing datum difference and the horizontal distance.
difference. A record is written to the report file. The units for horizontal_circle and vertical_circle are decimal degrees. The azimuth may be specified where no coordinate for the backsight point exists in decimal degrees.

5 New target height
 05 Target_height
 Set a new target height.

6 Check measurement
 06 Point_description horizontal_circle vertical_circle slope_distance
 A check measurement is made to the station given in the point_name section of the point_description. A two point super string (with name point_name) from the instrument point to the measured point is created in the default model for the check measurement. The instrument point name, the station name and the differences between the measurement point co-ordinates and the station co-ordinates are written as text along the super string. The differences between the measurement and the known point is also written to the report file. The units for horizontal_circle and vertical_circle are decimal degrees.

7 Measurement - HA, VA, SD
 07 Point_description horizontal_circle vertical_circle slope_distance
 Measurement made by the instrument. A measurement point is created with the feature code and string number from the point_description. The units for horizontal_circle and vertical_circle are decimal degrees.
 The point_number and text from the point_description are recorded as the point number and text for that vertex of the super string.
 If a point_name exists in the point_description, then it is a named measurement and a 4d point string of name point_name is created and mapped using the Map File. The 4d text is the station prefix followed by point_name. The point_name is added to the internal list of named points for searching for co-ordinates.

9 Scale factor for subsequent distances
 09 Scale_factor
 Scale factor to apply to subsequent slope distances.

10 Three hair stadia measurement
 10 Point_description horizontal_circle vertical_circle bottom middle top
 Manual measurement. A measurement point is created with the feature code and string number from the point_description. The units for horizontal_circle and vertical_circle are decimal degrees.
 The point_number and text from the point_description are recorded as the point number and text for that vertex of the super string.
 If a point_name exists in the point_description, then it is a named measurement and a 4d point string of name point_name is created and mapped using the Map File. The 4d text is the station prefix followed by point_name. The point_name is added to the internal list of named points for searching for co-ordinates.

11 Measurement - HA, HD, Height
 11 Point_description horizontal_circle horizontal_distance height
 Measurement made by the instrument. A measurement point is created with the feature code and string number from the point_description. The unit for horizontal_circle is decimal degrees.
 The point_number and text from the point_description are recorded as the point number and text for that vertex of the super string.
 If a point_name exists in the point_description, then it is a named measurement and a 4d point string of name point_name is created and mapped using the Map File. The 4d text is the station prefix
followed by point_name. The point_name is added to the internal list of named points for searching for co-ordinates.

Measurement - HA, HD, Height difference

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Point_description horizontal_circle horizontal_distance height_difference</td>
</tr>
</tbody>
</table>

Measurement made by the instrument. A measurement point is created with the feature code and string number from the point_description. The unit for horizontal_circle is decimal degrees.

The point_number and text from the point_description are recorded as the point number and text for that vertex of the super string.

If a point_name exists in the point_description, then it is a named measurement and a 4d point string of name point_name is created and mapped using the Map File. The 4d text is the station prefix followed by point_name. The point_name is added to the internal list of named points for searching for co-ordinates.

Vertical circle correction

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>09</td>
<td>Vertical_circle_in_decimal_degrees</td>
</tr>
</tbody>
</table>

The vertical_circle_in_decimal_degrees is subtracted from the vertical circle value in any measurements. The units for vertical_circle_in_decimal_degrees is decimal degrees.

Multiply coded point

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Point_description</td>
</tr>
</tbody>
</table>

Additional coding for the current measurement point created by op codes 02, 07 or 10. A new measurement point is created at the same position as the current measurement point but with the feature code and string number from the point_description for this op code.

The point_number and text from the point_description are recorded as the point number and text for that vertex of the super string.

If a point_name exists in the point_description, then it is a named measurement and a 4d point string of name point_name is created and mapped using the Map File. The 4d text is the station prefix followed by point_name. The point_name is added to the internal list of named points for searching for co-ordinates.

Arc through previous three points

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>[Point_description]</td>
</tr>
</tbody>
</table>

If no point_description is given, then the current measurement point and the two previous points with the same feature code and string number as the current measurement point, are joined by an arc. If there is less than three such points, no arc is fitted.

If a point_description exists, then either the feature code and string number or the point_number section of the point_description can be used.

If the feature code and string number from the point_description exist, the last three previous measurement points of the same feature code and string number are joined by an arc. If the current measurement point has that feature code and string number, then it is the third of the three points used. If there is less than three points, no arc is fitted.

If Point_number exists, then the feature code and string number are taken from the previous measurement point with that point number. That point and the two measurement points previous to the predefined point of the same feature code and string number, are joined by an arc. If there is less than three points, no arc is fitted.

See 36.3.9 Arcs Through Points

Circle Feature

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Radius</td>
</tr>
</tbody>
</table>

Creates a feature string with the given radius and centred on the current measurement point.
See 36.3.7 Feature

20 Close string
20 [Point_description]

If no point_description is given, the current string is closed.
If a point_description exists, then either the feature code and string number or the point number section of the point_description can be used.
If the feature code and string number from the point_description exist, the last previous string with that feature code and string number is closed.
If the point number from the point_description exists, then the string containing that point number will be closed.
See 36.3.4 Close String

21 Join last points of strings
21 Feature_code string_number_1 string_number_2

In the final reduction, the last point of the string with the given feature_code and string_number_1 is joined to the last point of the string with given feature_code and string_number_2. The created string has the given feature_code (no string number is needed since it is the final phase of reduction when the string numbers are dropped).
See 36.3.8 Joining Strings

22 Join first to last point of strings
22 Feature_code string_number_1 string_number_2

In the final reduction, the first point of the string with the given feature_code and string_number_1 is joined to the last point of the string with given feature_code and string_number_2. The created string has the given feature_code (no string number is needed since it is the final phase of reduction when the string numbers are dropped).
See 36.3.8 Joining Strings

23 Join first points of strings
23 Feature_code string_number_1 string_number_2

In the final reduction, the first point of the string with the given feature code and string_number_1 is joined to the fist point of the string with given feature code and string_number_2. The created string has the given feature code (no string number is needed since it is the final reduction when the string numbers are then dropped).
See 36.3.8 Joining Strings

28 Add text to the string name
28 [Point_description] Text

Text is appended to the string name. For example, if 1.200 is entered, “1.200” is appended to the string name.
If no point_description is given, Text is appended to the string name of the current string.
If a point_description exists, then either the feature code and string number or the point number section of the point_description can be used.
If the feature code and string number exist, then the last previous string with that feature code and string number has Text appended to the string name.
If the point number exists, then the string containing that point number has Text appended to the string name.
29 Note or memo
29 Comments
Any text may be entered and will be added to the check measurements model at the position of the current measurement point.

30 Remove height from a point - that is make it a null height
30 [Point_description]
If no point_description is given, the height of the current measurement point is set to null.
If a point_description exists, then either the feature code and string number or the point number section of the point_description can be used.
If the feature code and string number exist, then the height of the last point of the previous string with that feature code and string number is set to null.
If the point number exists, then the height of the point with that point number is set to null.

37 Rectangle by two points
37 [Point_description] offset_in_metres
The rectangle is defined by two points (reference side) and a offset.
If a positive offset value is given, two points will be created to the right of the reference side.
If a negative offset value is given, two points will be created to the left of the reference side.
If no point_description is given, the two new points will be joined to the given points in a closed rectangular string, and will have the same feature code as the points given.
If the feature code and string number exist, then a search is made for the last occurrence of two points with the same feature code and string number. If found, then these points are used to define the reference side of the rectangle.
If the point number exists, then a search is made for the last occurrence of two points with the same feature code and string number as the point given by the point number. If found, then these points are used to define the reference side of the rectangle.
Two consecutive rectangles are unable to be defined side by side. In other words if the two points given are part of string of greater than two vertices, the command will only work for sets of two points that are exclusively defined. i.e. For a 5 point string, a rectangle can be defined by points 1 and 2, and 4 and 5.
See 36.3.6 Rectangle by 2 Points

38 Make the previous segment non-tinable
38 [Point_description]
If no point_description is given, the previous segment containing the current measurement point is set to non-tinable. That is, it will not be treated as a breakline in triangulations.
If a point_description exists, then either the feature code and string number or the point number section of the point_description can be used.
If the feature code and string number exist, then the last segment of the previous string with that feature code and string number is set to non-tinable.
If the point number exists, then the segment containing the point with that point number as an end point, is set to non-tinable.

39 Make the next segment non-tinable
39 [Point_description]
If no point_description is given, the next segment containing the current measurement point as a starting point is set to non-tinable. That is, it will not be treated as a breakline in triangulations.
If a `point_description` exists, then either the `feature code` and `string number` or the `point number` section of the `point_description` can be used.

If the `feature code` and `string number` exist, then the segment that is created in the future from the last point of the previous string with that `feature code` and `string number` is set to non-tinable.

If the `point number` exists, then the segment containing the point with that point number as a start point, is set to non-tinable.

40 **Make a point non-tinable**

40 `[Point_description]`

If no `point_description` is given, the current measurement point is set to non-tinable. That is, it will not be included in triangulations.

If a `point_description` exists, then either the `feature code` and `string number` or the `point number` section of the `point_description` can be used.

If the `feature code` and `string number` exist, then the last point of the previous string with that `feature code` and `string number` is set to non-tinable.

If the `point number` exists, then the point with that point number is set to non-tinable.

41 **Add additional text for the current measurement point**

41 `Text`

The given `text` is added to the end of any existing text for the current measurement point. Any spaces from column four onwards will be part of the text.

42 **Add a radial offset**

42 `[Point_description]` `Radial_offset_in_metres`

The `radial_offset_in_metres` is used to adjust the position of the specified point by a plan distance from the specified points original position, along the plan line joining the current station to the specified point. A positive offset is away from the station, negative is toward the station.

If no `point_description` is given, the offset is used to adjust the position of the current measured point.

If a `point_description` exists, then either the `feature code` and `string number` or the `point number` section of the `point_description` can be used.

If the `feature code` and `string number` exist, then the last point of the previous string with that `feature code` and `string number` is adjusted.

If the `point number` exists, then the point with that point number is adjusted.

See 36.3.2 Offsets

43 **Add a tangential offset**

43 `[Point_description]` `Tangential_offset_in_metres`

The `tangential_offset_in_metres` is used to adjust the position of the specified point by a plan distance from the specified points original position, at rights angles to the plan line joining the current station to the specified point. A negative offset is to the left (looking from the station), and positive is to the right (looking from the station).

If no `point_description` is given, the offset is used to adjust the position of the current measured point.

If a `point_description` exists, then either the `feature code` and `string number` or the `point number` section of the `point_description` can be used.

If the `feature code` and `string number` exist, then the last point of the previous string with that `feature code` and `string number` is adjusted.

If the `point number` exists, then the point with that point number is adjusted.

See 36.3.2 Offsets
Add a height offset

If the height of the specified point is not null, then the `height_offset_in_metres` adjusts the height of the point. A positive offset adds to the height, a negative offset reduces the height.

If no `point_description` is given, the offset is used to adjust the position of the current measured point. If a `point_description` exists, then either the feature code and string number or the point number section of the `point_description` can be used.

If the feature code and string number exist, then the last point of the previous string with that feature code and string number is adjusted.

If the point number exists, then the point with that point number is adjusted.

See 36.3.2 Offsets

Make a parallelogram from the last three measurement points

If no `point_description` is given, the current measurement point and the two previous points from the current string are used and a fourth point is created to form a parallelogram (squashed rectangle) and the height of the fourth point is set to null. The string is then closed.

If a `point_description` exists, then either the feature code and string number or the point number section of the `point_description` can be used.

If the feature code and string number exist, the last three points with that feature code and string number are used and a fourth point is created to form a parallelogram (squashed rectangle) and the height of the fourth point is set to null. The string is then closed.

If the point number exists, then the feature code and string number of the point with that point number are used and processed as above. Note that the point with the point number is not necessarily used.

See 36.3.5 Rectangle

Make the string a breakline or not

The `point_description` is used to select a string and the `mode` is used specify if the string is a breakline or not.

If no `point_description` is given, the current string is selected.

If a `point_description` exists, then either the feature code and string number or the point number section of the `point_description` can be used.

If the feature code and string number exist, the last string with that feature code and string number is selected.

If the point number exists, then the string containing the point with that point number is selected.

If no `mode` is given, the selected string is set as a point string (that is, not a breakline).

If `mode` is given, then

- if `mode` is 0, the selected string is set to a point string and hence is not a breakline.
- if `mode` is 1, the selected string is set to a `line` string and is therefore a breakline

Start a new string using the same feature code and string number

If no `point_description` is given, the current string is terminated (without including the current
measurement point) and the current measurement point becomes the first point of a new string with the same feature code and string number.

If a `point_description` exists, then either the `feature code` and `string number` or the `point number` section of the `point_description` can be used.

If the `feature code` and `string number` exist, then the last point of the previous string with that feature code and string number becomes the first point of a new string with the same `feature code` and `string number`.

If the `point number` exists, then the previous string containing the point with that point number is terminated before the point number point, and the point becomes the first point of a new string with the same `feature code` and `string number`.

See 36.3.3 Start New String

48 End a string
48 [Point_description]

If no `Point_description` exists, the current string is terminated (including the current measurement point).

If `Feature_code` and `String_number` exist, then the last point of the previous string with that feature code and string number becomes the last point of that string.

If `Point_number` exists, then the previous string containing the point with that point number is terminated after the point number point

50 Specify the bearing to correct for true north - used as the bearing datum difference
50 `Point_description` `bearing_in_decimal_degrees`

The `bearing_in_decimal_degrees` is used as the bearing datum difference for the current instrument set up. The `point_name` in the `point_description` and the `bearing_in_decimal_degrees` are written to the report file.

51 Start using an existing field template
51 `Template_name` `zig_zag_mode`

Start using the field template `Template_name`. If `Template_name` is blank, the default field template is used.

If `mode` is "for", then the field template is used as a forward template.
"rev", then the field template is used as a reverse template.
"zig", then the field template is used as a zig_zag template and is used in the forward definition direction first (that is starts on a zig).
"zag", then the template is used as a zig_zag template and is used in the reverse direction first (that is, starts on a zag).

If `mode` is blank, or anything other than "for", "rev", or "zag" then the field template is used as a zig-zag template starting on a zig.

See 36.4 Field Templates

52 Finish using a field template or finish recording a field template
52

Stops using the current field template or stops recording a field template.

See 36.4 Field Templates

53 Pause using the current field template
53

Pause using the current field template or defining a field template, until a continue field template (54) or a finish field template (52) code is given.

See 36.4 Field Templates
54 Continue the current field template

Continue using or defining the current field template, which has been stopped by a Pause field template command (53). The Continue command only needs to be given once and applies to all following measurements until another Pause or Finish command is given.

See 36.4 Field Templates

55 Start recording a field template

Start recording a field template with the name Template_name. If Template_name is blank, then it is the default field template that is defined. The feature_code and string_number of the following measurements until a Finish code (52) are stored as the field template. There is no limit to the number of points in a field template.

See 36.4 Field Templates

56 Skipping picking up points when using a field template

Allows the user to skip picking up one or more points from the field template currently being used. The next measurement takes the feature_code and string_number from the next point of the field template definition. If num_skipped_points is missing, then only one point is skipped otherwise num_skipped_points are skipped.

See 36.4.4 Skipping Field Template Points

57 Delete points on a field template - after the measurement of last point

Allows the user to delete one or more points from the field template currently being used. The next measurement takes the feature_code and string_number from the next point of the field template definition.

See 36.4 Field Templates

58 Insert points when using a field template - after the measurement of last point

Inserts points into the field template currently being used, or gives an existing point a multiple code. If the Multiple_code_flag = 1, then the feature_code will be added to the previous defined template point else if Multiple_code_flag = 0 (default), it will be added to the template as a separate point. If the insert is done at the end of a section and the Insert_special_flag = 1 the point will be added to the end of the current template section else it will be at the start of the next section. The next measurement takes the feature_code and string_number from the next point of the field template definition.

See 36.4.5 Insert Template Points or Insert Multiple Codes

60 Arc through next three points

If no point_description is given, an arc is inserted through the current measurement point and the next two measured points with the same feature code and string number as the current measurement point. If there is less than three points, no arc is fitted.

If a point_description exists, then either the feature code and/or string number and/or the point number section of the point_description can be used.

If the feature code or string number from the point_description exist, a search is made for a previously
defined measurement with the same feature code or string number. An arc is inserted through this previous measurement and the next two measured points following this previous measurement with the same feature code and string number, as given in \textit{point_description}. If the current point has that feature code and string number, then it is the first of the three points. If there is less than three points, no arc fitted.

If the \textit{point number} exists, then the \textit{feature code} and \textit{string number} are taken from the previous measurement point \textbf{with} that point number, and an arc is inserted through that point and the next two measurement points with the same \textit{feature code} and \textit{string number}. If there is less than three points, no arc is fitted.

See \texttt{36.3.9 Arcs Through Points}

\section{61 Start of arc through sets of three points until end of string, or a 62 occurs}

61 \texttt{[Point_description]}

If no \textit{point_description} is given, arcs are inserted through the following sets of measurement points with the same feature code and string number as the current measurement point. The current measurement point is the first of the points.

The arcs are fitted as follows - the first arc is fitted through points one, two and three, the next arc through points three, four and five etc. If the current point has that feature code and string number, then it is the first of the points. If there is less than three points, then no arc is fitted.

If a \textit{point_description} exists, then either the \textit{feature code} and \textit{string number} or the \textit{point number} section of the \textit{point_description} can be used.

If the \textit{feature code} and \textit{string number} exist, a search is made for a previously defined measurement with the same feature code and string number. An arc is inserted through the following measured points with the same feature code and string number as given in \textit{point_description}. If the current point has that feature code and string number, then it is the first of the points.

If the \textit{point number} exists, then the \textit{feature code} and \textit{string number} are taken from the previous measurement point \textbf{with} that point number, and arcs are inserted through that point and the following measured points with the same \textit{feature code} and \textit{string number}.

See \texttt{36.3.9 Arcs Through Points}

\section{62 End the arcs begun by a 61 command}

62 \texttt{[Point_description]}

If no \textit{point_description} is given, then the fitting of arcs through the points of the current string is stopped. The current measurement point is the last of the points used in the arc fitting.

If a \textit{point_description} exists, then either the \textit{feature code} and \textit{string number} or the \textit{point number} section of the \textit{point_description} can be used.

If the \textit{feature code} and \textit{string number} from the \textit{point_description} exist, then the fitting of arcs through the points of the previous string with the same feature code and string number is stopped. If the current measurement point has that feature code and string number, then it is the last point used in the arc fitting.

If the \textit{point number} from the \textit{point_description} exists, then the point with that point number is the last point used in the arc fitting.

If 12d \texttt{Model} encounters an \texttt{End Arcs} (62) but no \texttt{Start Arcs through sets of three points} (61) command for the string, then a \texttt{Start Arcs through sets of three points} (61) is assumed to apply at the beginning of the string and hence arc fitting will be applied to the entire string.

See \texttt{36.3.9 Arcs Through Points}

There are op codes for adding user defined attributes to:

(a) the current string being measured (i.e. the string containing the current measurement point)
(b) the current measurement point
(c) the next segment from the current measurement point (i.e. the segment joining the current measurement point and the next measured point of the same feature code and string number)

or

(d) the previous segment to the current measurement point (i.e. the segment joining the current measurement point to the previous measured point of the same feature code and string number).

If there is no name for the attribute (name is just spaces or a tab), then the attribute is unnamed. The attributes are coded in the following way:

68 Add an integer user defined attribute to the current string
 68 Name Integer
 Add an user defined integer attribute to the current string.

69 Add a real user defined attribute to the current string
 69 Name Real
 Add a real (floating point) user defined attribute to the current string.

70 Add text user defined attribute to the current string
 70 Name Text
 Add a text user defined attribute to the current string.

71 Add integer user defined attribute to the current point
 71 Name Integer
 Add an integer user defined attribute to the current measurement point.

72 Add real user defined attribute to the current point
 72 Name Real
 Add a real (floating point) user defined attribute to the current measurement point.

73 Add text user defined attribute to the current point
 73 Name Text
 Add a text user defined attribute to the current measurement point.

74 Add integer user defined attribute to the next segment
 74 Name Integer
 Add an integer user defined attribute to the next segment from the current measurement point.

75 Add real user defined attribute to the next segment
 75 Name Real
 Add a real (floating point) user defined attribute to the next segment from the current measurement point.

76 Add text user defined attribute to the next segment
 76 Name Text
 Add a text user defined attribute to the next segment from the current measurement point.

77 Add integer user defined attribute to the previous segment
 77 Name Integer
 Add an integer user defined attribute to the previous segment for the current measurement point.
78 Add real user defined attribute for the previous segment
78 Name Real
Add a real (floating point) user defined attribute to the previous segment for the current measurement point.

79 Add text user defined attribute to the previous segment
79 Name Text
Add a text user defined attribute to the previous segment for the current measurement point.

In addition, extra codes allow special 12d Model pipe strings to be coded in the field

80 Pipe invert point (bottom of the pipe)
80 [Point_description]
If no point_description is given, the current measurement point is on the invert (bottom) of a pipe. This is the default for measurements to points on pipe strings. If the point is not part of a pipe string, it is ignored.

If a point_description exists, then either the feature code and string number or the point number section of the point_description can be used.

If the feature code and string number exist, the last point of the previous string with the same feature code and string number as given in point_description is on the invert (bottom) of a pipe. If the point is not part of a pipe string, it is ignored.

If the point number exists, then the point with that point number is on the invert (bottom) of a pipe. If the point is not part of a pipe string, it is ignored.

81 Pipe axial point (centre of the pipe)
81 [Point_description]
If no point_description is given, the current measurement point is on the axis (centre) of a pipe. If the point is not part of a pipe string, it is ignored.

If a point_description exists, then either the feature code and string number or the point number section of the point_description can be used.

If the feature code and string number exist, the last point of the previous string with the same feature code and string number as given in point_description is on the axis (centre) of a pipe. If the point is not part of a pipe string, it is ignored.

If the point number exists, then the point with that point number is on the axis (centre) of a pipe. If the point is not part of a pipe string, it is ignored.

82 Pipe obvert point (top of the pipe)
82 [Point_description]
If no point_description is given, the current measurement point is on the obvert (top) of a pipe. If the point is not part of a pipe string, it is ignored.

If a point_description exists, then either the feature code and string number or the point number section of the point_description can be used.

If the feature code and string number exist, the last point of the previous string with the same feature code and string number as given in point_description is on the obvert (top) of a pipe. If the point is not part of a pipe string, it is ignored.

If the point number exists, then the point with that point number is on the obvert (top) of a pipe. If the point is not part of a pipe string, it is ignored.
83 **Start recording a shape - before the measurement**

83 [Shape_name]

Start recording a shape with the name *Shape_name*. If *Shape_name* is non-blank, then the default field Shape is defined by the *feature_code* and *string_number* of the following measurements until a *Finish* code (84) are stored as the shape. There is no limit to the number of points in a shape.

See 36.5 *Shape field coding*

84 **Finish using a shape definition or finish recording a shape - after the measurement**

Stops using the current shape or stops recording a shape.

See 36.5 *Shape field coding*

85 **Shape parallel**

85 [Shape_name] [Point_description]

Takes all the points on the defined shape of *Shape_name* and parallels them the entire length of the string. Once paralleled, a number of strings are created.

If *Feature_code* and *String_number* exist, the last string with the same *feature code* and *string number* has the shape applied to the entire length of the string.

If *Point_number* exists, then the string containing that point number has the shape applied to the entire length of the string.

See 36.5 *Shape field coding*

86 **Shape extrude**

86 [Shape_name] [Point_description]

Takes the defined shape of *Shape_name* and extrudes it along the entire length of the string. Once extruded, only one strings is created which contains all the shape information.

If *Feature_code* and *String_number* exist, the last string with the same *feature code* and *string number* has the shape applied to the entire length of the string.

If *Point_number* exists, then the string containing that point number has the shape applied to the entire length of the string.

See 36.5 *Shape field coding*

92 **Remove all z-values for a string (i.e. make all z-values null)**

92 [Point_description]

If no *point_description* is given, all z-values for the current string are removed.

If a *point_description* exists, then either the *feature code* and *string number* or the *point number* section of the *point_description* can be used.

If the *feature code* and *string number* exist, the last string with the same *feature code* and *string number* has all its z-values removed.

A *point-line type* can be embedding as a 0 or 1 in the *point name* part of the *point description* field. A zero value specifies a point string, and a non-zero value specifies a line string. If the field was omitted, a line string is assumed.

The *point-line type* may be overridden by the Map File.

93 **Set the Point-line type**

93 [Point_description]

A *point-line type* can be embedding as a 0 or 1 in the *point name* part of the *point description* field. A zero value specifies a point string, and a non-zero value specifies a line string. If the field was omitted, a line string is assumed.
If no `point_description` is given, the point-line type for the current string is set to `line`.

If a `point_description` exists, then either the `feature code` and `string number` or the `point number` section of the `point_description` can be used.

If the `feature code` and `string number` exist, the point-line type is set for the last previous string with the same `feature code` and `string number`.

If the `point number` exists, then the point-line type is set for the string containing that point number.

The point-line type may be overridden by the Map File.

94 Use name library file/ Map File for vertex text on the string - name mapping

94 [Point_description]

If this op code exists then during reduction, vertex text is creating using either the name library, or if the name library doesn’t exist, the map file. If neither exist then the op code is ignored.

if a name library is used and the feature code of the string is found in the first column of the name library, then the entry from the second column of that row will be used as text for all vertices of the string that don’t already have vertex text. As a default, the string is set as a point string.

if the map file is used and the feature code of the string is found in the first column of the map file, then the `string name` field of the map file is used as vertex text for all vertices that don’t already have text. As a default, the string is set as a point string.

If no `point_description` is given, then name mapping is applied to the current string.

If a `point_description` exists, then either the `feature code` and `string number` or the `point number` section of the `point_description` can be used.

If the `feature code` and `string number` exist, then name mapping is applied to the last previous string with the same `feature code` and `string number`.

If the `point number` from the `point_description` exists, then name mapping is applied to the string containing that point number.

A point-line type can be embedding as a 0 or 1 in the `point name` part of the `point_description` field. A zero value specifies a point string, and a non-zero value specifies a line string. If the field was omitted, a line string is assumed.

The point-line type may be overridden by the mapping file.

95 Pipe string

95 [Point_description] diameter

Pipe strings are always line strings and are stored with the justification of the majority of the string points. Individual pipe points are picked up either top (obvert), centre (axial) or bottom (invert) of the pipe using op codes 80, 81 and 82.

If no `point_description` is given, the current string is created as a pipe string with the given diameter.

If a `point_description` exists, then either the `feature code` and `string number` or the `point number` section of the `point_description` can be used.

If the `feature code` and `string number` exist, the last string with the same `feature code` and `string number` is created as a pipe with the given diameter.

If the `point number` exists, then the string containing that point number is created as a pipe string with the given diameter.

96 Culvert string

96 [Point_description] width height

Culvert strings are always line strings and are stored with the justification of the majority of the string points. Individual culvert points are picked up either top (obvert), centre (axial) or bottom (invert) of the culvert using op codes 80, 81 and 82.
If no `point_description` is given, the current string is created as a culvert string with the given width and height.

If a `point_description` exists, then either the `feature code` and `string number` or the `point number` section of the `point_description` can be used.

If the `feature code` and `string number` exist, the last string with the same `feature code` and `string number` is created as a culvert with the given width and height.

If the `point number` exists, then the string containing that point number is created as a culvert string with the given width and height.

99 Terminate processing
99
Stop processing the 12d field file at this line. Useful for debugging errors.

107 Make the previous segment invisible - after the measurement
107 [Point_description]
If no `Point_description` exists, the previous segment containing the current measurement point is set to invisible.

If the `Feature_code` and `String_number` exist, then the last segment of the previous string with that `feature code` and `string number` is set to invisible.

If `Point_number` exists, then the segment containing the point with that point number as an end point, is set to invisible.

108 Make the next segment invisible - after the measurement for the first point of the segment
108 [Point_description]
If no `Point_description` exists, the next segment containing the current measurement point as a starting point is set to invisible.

If the `Feature_code` and `String_number` exist, then the segment that is created in the future from the last point of the previous string with that `feature code` and `string number` is set to invisible.

If `Point_number` exists, then the segment containing the point with that point number as a start point, is set to invisible.

109 Make a point invisible - after the measurement
109 [Point_description]
If no `Point_description` exists, the current measurement point is set to invisible.

If `Feature_code` and `String_number` exist, then the last point of the previous string with that `feature code` and `string number` is set to invisible.

If `Point_number` exists, then the point with that point number is set to invisible.

110 Start buildings face observations - before the measurements
110 [Building_name]
Start recording a field template with the name `Building_name`. If `Building_name` is non-blank, then the default building face is defined. The `feature code` and `string number` of the following measurements until a `Finish` code (111) are stored as the building face. There is no limit to the number of points in a building face.

111 End building face observations
111 [Building_name]
If no `Building_name` exists, the current building face observation set is finished (including the current measurement point).
Notes

1. Arc fitting is applied after the Joins are processed. Hence the new joined strings are created and then curve fitting is applied according to the arc codes (start arc, end arc, fit arcs, stop fitting arcs etc.) on any vertex of the string.

2. The point description has several pieces of information embedded in it and has been described in the previous section. For some op codes, the point name section of the point description is used to hold other information.

For a summary of the 12d Field File Op Codes, go to the section 36.10.5 Summary of 12d Field File Op Codes.
36.10.5 Summary of 12d Field File Op Codes

<table>
<thead>
<tr>
<th>Op Code</th>
<th>Description of Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>Comment</td>
</tr>
<tr>
<td>-1</td>
<td>Error</td>
</tr>
<tr>
<td>01</td>
<td>Header Information</td>
</tr>
<tr>
<td>02</td>
<td>Directly entered coordinate measurement</td>
</tr>
<tr>
<td>03</td>
<td>New instrument setup point</td>
</tr>
<tr>
<td>04</td>
<td>Measurement to backsight</td>
</tr>
<tr>
<td>05</td>
<td>New target height</td>
</tr>
<tr>
<td>06</td>
<td>Check measurement</td>
</tr>
<tr>
<td>07</td>
<td>Measurement - HA, VA, SD</td>
</tr>
<tr>
<td>09</td>
<td>Scale factor for subsequent distances</td>
</tr>
<tr>
<td>10</td>
<td>Three hair stadia measurement</td>
</tr>
<tr>
<td>11</td>
<td>Measurement - HA, HD, Ht</td>
</tr>
<tr>
<td>12</td>
<td>Measurement - HA, HD, Ht diff</td>
</tr>
<tr>
<td>15</td>
<td>Vertical circle correction</td>
</tr>
<tr>
<td>16</td>
<td>Multiply coded point</td>
</tr>
<tr>
<td>17</td>
<td>Arc through previous three points</td>
</tr>
<tr>
<td>18</td>
<td>Circle Feature</td>
</tr>
<tr>
<td>20</td>
<td>Close string</td>
</tr>
<tr>
<td>21</td>
<td>Join last points of strings</td>
</tr>
<tr>
<td>22</td>
<td>Join first to last point of strings</td>
</tr>
<tr>
<td>23</td>
<td>Join first points of strings</td>
</tr>
<tr>
<td>28</td>
<td>Add text to the string name</td>
</tr>
<tr>
<td>29</td>
<td>Note or memo</td>
</tr>
<tr>
<td>30</td>
<td>Remove height from a point - that is make it a null height</td>
</tr>
<tr>
<td>37</td>
<td>Rectangle by two points</td>
</tr>
<tr>
<td>38</td>
<td>Make the previous segment non-tinable</td>
</tr>
<tr>
<td>39</td>
<td>Make the next segment non-tinable</td>
</tr>
<tr>
<td>40</td>
<td>Make a point non-tinable</td>
</tr>
<tr>
<td>41</td>
<td>Add additional text for the current measurement point</td>
</tr>
<tr>
<td>42</td>
<td>Add a radial offset</td>
</tr>
<tr>
<td>43</td>
<td>Add a tangential offset</td>
</tr>
<tr>
<td>44</td>
<td>Add a height offset</td>
</tr>
<tr>
<td>45</td>
<td>Make a parallelogram from the last three measurement points</td>
</tr>
<tr>
<td>46</td>
<td>Make the string a breakline or not</td>
</tr>
<tr>
<td>47</td>
<td>Start a new string using the same feature code and string number</td>
</tr>
<tr>
<td>48</td>
<td>String end</td>
</tr>
<tr>
<td>50</td>
<td>Specify the bearing to correct for true north - used as the bearing datum difference</td>
</tr>
<tr>
<td>51</td>
<td>Start using an existing field template</td>
</tr>
<tr>
<td>52</td>
<td>Finish a field template or finish recording a field template</td>
</tr>
<tr>
<td>53</td>
<td>Pause the current field template until a continue op code (54) or a finish template (52)</td>
</tr>
<tr>
<td>54</td>
<td>Continue the current field template</td>
</tr>
<tr>
<td>55</td>
<td>Start recording a field template</td>
</tr>
<tr>
<td>56</td>
<td>Skip picking up one or more points from a field template</td>
</tr>
<tr>
<td>57</td>
<td>Delete one or more points from a field template</td>
</tr>
<tr>
<td>58</td>
<td>Insert a point into a field template</td>
</tr>
<tr>
<td>60</td>
<td>Arc through next three points</td>
</tr>
<tr>
<td>61</td>
<td>Start of arc through sets of three points until end of string, or a 62 occurs</td>
</tr>
<tr>
<td>62</td>
<td>End the arcs begun by a 61 command</td>
</tr>
<tr>
<td>68</td>
<td>Add an integer user defined attribute to the current string</td>
</tr>
<tr>
<td>69</td>
<td>Add a real user defined attribute to the current string</td>
</tr>
<tr>
<td>70</td>
<td>Add text user defined attribute to the current string</td>
</tr>
<tr>
<td>71</td>
<td>Add integer user defined attribute to the current point</td>
</tr>
<tr>
<td>72</td>
<td>Add real user defined attribute to the current point</td>
</tr>
<tr>
<td>73</td>
<td>Add text user defined attribute to the current point</td>
</tr>
<tr>
<td>74</td>
<td>Add integer user defined attribute to the next segment</td>
</tr>
</tbody>
</table>
75 Add real user defined attribute to the next segment
76 Add text user defined attribute to the next segment
77 Add integer user defined attribute to the previous segment
78 Add real user defined attribute for the previous segment
79 Add text user defined attribute to the previous segment
80 Pipe or culvert invert point (bottom of the pipe or culvert)
81 Pipe or culvert axial point (centre of the pipe or culvert)
82 Pipe or culvert obvert point (top of the pipe or culvert)
83 Start recording/measuring a shape
84 End measuring a shape
85 Parallel an existing shape
86 Extrude an existing shape
92 Remove all z-values for a string (i.e. make all z-values null)
93 Set the Point-line type
94 Use name library file/ mapping file for vertex text on the string - name mapping
95 Pipe string
96 Culvert string
99 Terminate processing
107 Last segment of point invisible
108 Next segment of point invisible
109 Point invisible
110 Building face start recording
111 Building face end recording
36.11 Batch Typed Entry

Typed entry can be used to enter survey data into a 12d Field File and reduced using the Survey data Editor.

12d Model uses the following 12d field file ops code:

<table>
<thead>
<tr>
<th>Op Code</th>
<th>Description of Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>Comment</td>
</tr>
<tr>
<td>-1</td>
<td>Error</td>
</tr>
<tr>
<td>01</td>
<td>Header Information</td>
</tr>
<tr>
<td>02</td>
<td>Directly entered coordinate measurement</td>
</tr>
<tr>
<td>03</td>
<td>New instrument setup point</td>
</tr>
<tr>
<td>04</td>
<td>Measurement to backsight</td>
</tr>
<tr>
<td>05</td>
<td>New target height</td>
</tr>
<tr>
<td>06</td>
<td>Check measurement</td>
</tr>
<tr>
<td>07</td>
<td>Measurement - HA, VA, SD</td>
</tr>
<tr>
<td>09</td>
<td>Scale factor for subsequent distances</td>
</tr>
<tr>
<td>10</td>
<td>Three hair stadia measurement</td>
</tr>
<tr>
<td>11</td>
<td>Measurement - HA, HD, Ht</td>
</tr>
<tr>
<td>12</td>
<td>Measurement - HA, HD, Ht diff</td>
</tr>
<tr>
<td>15</td>
<td>Vertical circle correction</td>
</tr>
<tr>
<td>16</td>
<td>Multiply coded point</td>
</tr>
<tr>
<td>17</td>
<td>Arc through previous three points</td>
</tr>
<tr>
<td>18</td>
<td>Circle Feature</td>
</tr>
<tr>
<td>20</td>
<td>Close string</td>
</tr>
<tr>
<td>21</td>
<td>Join last points of strings</td>
</tr>
<tr>
<td>22</td>
<td>Join first to last point of strings</td>
</tr>
<tr>
<td>23</td>
<td>Join first points of strings</td>
</tr>
<tr>
<td>28</td>
<td>Add text to the string name</td>
</tr>
<tr>
<td>29</td>
<td>Note or memo</td>
</tr>
<tr>
<td>30</td>
<td>Remove height from a point - that is make it a null height</td>
</tr>
<tr>
<td>37</td>
<td>Rectangle by two points</td>
</tr>
<tr>
<td>38</td>
<td>Make the previous segment non-tunable</td>
</tr>
<tr>
<td>39</td>
<td>Make the next segment non-tunable</td>
</tr>
<tr>
<td>40</td>
<td>Make a point non-tunable</td>
</tr>
<tr>
<td>41</td>
<td>Add additional text for the current measurement point</td>
</tr>
<tr>
<td>42</td>
<td>Add a radial offset</td>
</tr>
<tr>
<td>43</td>
<td>Add a tangential offset</td>
</tr>
<tr>
<td>44</td>
<td>Add a height offset</td>
</tr>
<tr>
<td>45</td>
<td>Make a parallelogram from the last three measurement points</td>
</tr>
<tr>
<td>46</td>
<td>Make the string a breakline or not</td>
</tr>
<tr>
<td>47</td>
<td>Start a new string using the same feature code and string number</td>
</tr>
<tr>
<td>48</td>
<td>String end</td>
</tr>
<tr>
<td>50</td>
<td>Specify the bearing to correct for true north - used as the bearing datum difference</td>
</tr>
<tr>
<td>51</td>
<td>Start using an existing field template</td>
</tr>
<tr>
<td>52</td>
<td>Finish a field template or finish recording a field template</td>
</tr>
<tr>
<td>53</td>
<td>Pause the current field template until a continue op code (54) or a finish template (52)</td>
</tr>
<tr>
<td>54</td>
<td>Continue the current field template</td>
</tr>
<tr>
<td>55</td>
<td>Start recording a field template</td>
</tr>
<tr>
<td>56</td>
<td>Skip picking up one or more points from a field template</td>
</tr>
<tr>
<td>57</td>
<td>Delete points from a field template</td>
</tr>
<tr>
<td>58</td>
<td>Insert points in a field template</td>
</tr>
<tr>
<td>60</td>
<td>Arc through next three points</td>
</tr>
<tr>
<td>61</td>
<td>Start of arc through sets of three points until end of string, or a 62 occurs</td>
</tr>
<tr>
<td>62</td>
<td>End the arcs begun by a 61 command</td>
</tr>
<tr>
<td>68</td>
<td>Add an integer user defined attribute to the current string</td>
</tr>
<tr>
<td>69</td>
<td>Add a real user defined attribute to the current string</td>
</tr>
</tbody>
</table>
70 Add text user defined attribute to the current string
71 Add integer user defined attribute to the current point
72 Add real user defined attribute to the current point
73 Add text user defined attribute to the current point
74 Add integer user defined attribute to the next segment
75 Add real user defined attribute to the next segment
76 Add text user defined attribute to the next segment
77 Add integer user defined attribute to the previous segment
78 Add real user defined attribute for the previous segment
79 Add text user defined attribute to the previous segment
80 Pipe or culvert invert point (bottom of the pipe or culvert)
81 Pipe or culvert axial point (centre of the pipe or culvert)
82 Pipe or culvert obvert point (top of the pipe or culvert)
83 Start recording/measuring a shape
84 End measuring a shape
85 Parallel an existing shape
86 Extrude an existing shape
89 Remove all z-values for a string (i.e. make all z-values null)
93 Set the Point-line type
94 Use name library file/ mapping file for vertex text on the string - name mapping
95 Pipe string
96 Culvert string
99 Terminate processing
107 Last segment of point invisible
108 Next segment of point invisible
109 Point invisible
110 Building face start recording
111 Building face end recording

Users can enter text for each measurement (observation 09 record or position 08 record) which is appended to the end of the record and this is used as the text of blocks that are interpreted according to the descriptions given in the earlier section 36.8 Field Coding for Non Leica Instruments.

The '13' record can also be used after a measurement record to add additional information to the preceding blocks using the extra coding control code at the end of the previous line (see Extra Coding in the section 36.8.4 Control Code Blocks.

Strictly speaking the Sokkia SDR20/33 formats use fixed length lines and if the lengths are incorrect, an error message will be written to the Output Window. For example,

'Line 248 line incorrect length. required length is 58. received length is 50.'

These messages often appear after a raw file has been manually edited because most editors remove space padding at the end of a line.

For the full description of the 12d Field File Op Codes, go to the section 36.10.4 Full Description of 12d Field File Op Codes
37 12d and Survey Instruments

See

37.1 12d and Leica TPS Instruments
37.2 Sokkia Instruments (SDR Files)
37.3 12d and the Trimble Total Station ACU
37.4 12d and Trimble GPS Controllers
37.5 12d and Geodimeter Instruments
37.6 12d and Topcon Instruments
37.1 12d and Leica TPS Instruments

The Leica GSI data format produced by the Leica TPS is used as a raw data file by 12d Model and is converted into a 12d Field File. The contents of the recorded data can be manipulated by use of the Leica’s recording masks. The setup of which is explained in the section 37.1.6 Setup of Leica 1100 instrument for Detail Pickup and use with 12d.

Each line (data block) of the Leica GSI file consists of between 1 and 12 words, with the words containing either 16 (8 characters for data) or 24 (16 characters for data) characters. The two formats will be referred to as the 8 format and 16 format respectively.

Measurement lines in the 8 format start with 11 and code lines start with 41.

For the 16 format, measurement lines start with *11 and code lines start with *41.

For an example of a GSI file in the 8 format, go to the section 37.1.6.7.2 Example of Leica GSI File.

When using a Leica, the Leica screen can be standard or controlled by using a code.hex file on the 1000 series or a Geobasic program or Leica Codelist (.crf file) on the 1100 series.

12d Solutions provide a basic code.hex, Geobasic program and various Codelists (.crf files) on the 12d Model Installation CD in the folder ‘Other_Software\Leica’. These can be customised to your requirements - please contact 12d Solutions for more information.

For an example of a Leica screen with standard set-up, Codelist and Geobasic program, please go to the section 37.1.5 Examples of Leica Screens.

See the sections:

37.1.1 Feature Codes and String Numbers
37.1.2 Leica Field Codes
37.1.3 Full Description of Leica Field Codes
37.1.4 Summary of Leica Field Codes
37.1.5 Examples of Leica Screens
37.1.6 Setup of Leica 1100 instrument for Detail Pickup and use with 12d
37.1.6.7.2 Example of Leica GSI File

Please continue to the next section 37.1.1 Feature Codes and String Numbers.
37.1.1 Feature Codes and String Numbers

The feature code and string number for a measurement are entered in the Leica by giving the feature code in the first word and the string number as the second word of a code line. The feature codes and string numbers can be alpha or numeric and up to 8 (16) characters long.

For example, the feature code ABC with string number 1 is recorded as:

410003+000000ABC 42....+00000001 for the 8 format

or

*410003+0000000000000ABC 42....+0000000000000001 for the 16 format.

Some surveyors like to define the feature code and string number before they make a measurement. Other surveyors prefer to define the feature code and string number after they make a measurement.

When defining a Data Collector setup, 12d Model allows the user to specify whether the feature code comes before or after a measurement:

code before measurement

The given feature code and string number applies to the next measurement and all subsequent measurements until another feature code and string number is entered.

code after measurement

The given feature code and string number applies to the last measurement and all subsequent measurements until another feature code and string number is entered.

However, for a particular data collector setup, it can be only be defined as one of the two choices. That is you can't change between having feature codes before or after measurements in the one raw file.
Summarising:

Whether feature code definitions come before or after the measurements is defined in the Survey Data Collector definition and is set by the Measurement/Code order field on the Instrument tab of the Survey.4d Create/Edit panel.

For a data collector definition, there is the choice of code before or after the measurement.

Pop-up list of data collector definitions

Please continue to the next section 37.1.2 Leica Field Codes.
37.1.2 Leica Field Codes

12d Model also uses code lines to supply extra information using field codes. All *field codes* are entered as the first word of the code line and to differentiate it from a *feature code*, the *field code* is proceeded by a ".". Depending on the field code, more information may be required and it is entered in words 2 and above in the code line.

Each *field code* will now be described in detail.

For each *field code*, two lines and a paragraph of description are given:

- The first line consists of the *field code* and a short description of the purpose of the code.
- The second line gives the full syntax of the record for that *field code*.
- The paragraph gives a detailed description of the *field code*.

A 12d Model code list containing 12d Model field codes is available for the TPS to help coding in the field.

Field Code Conventions

In the syntax for the *field codes*, optional Words or groups of Words are enclosed in the square brackets `[]`.

However, when the Leica TPS creates the Leica GSI format, the data in all Words is right justified and left filled with zeros. Consequently, 12d Model strips leading zeros from all Words before processing the data.

This means that

(a) an *optional Word* still exists in the file but its data field is simply filled with zeros.

(b) any *text* in a Word cannot start with a zero. You would need to start with a space and then a zero.

In the *field code* descriptions, the point just measured is referred to as the current measurement point, the current point or the last measurement point.

The *string* that the current measurement point belongs to is called the current string.

For a summary of the Leica Field Codes, go to the section 37.1.4 Summary of Leica Field Codes

For the full description of the Leica Field Codes, go to the section 37.1.3 Full Description of Leica Field Codes.

For an example of a raw Leica file, please go to the section 37.1.6.7.2 Example of Leica GSI File.
37.1.3 Full Description of Leica Field Codes

For a summary of the Leica Field Codes, go to the section 37.1.4 Summary of Leica Field Codes

<table>
<thead>
<tr>
<th>Field Code</th>
<th>Description of Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>.2</td>
<td>Directly entered coordinates</td>
</tr>
<tr>
<td></td>
<td>Word 1 .2 Word 2 X Word 3 Y Word 4 Z Word 5 Feature_code</td>
</tr>
<tr>
<td></td>
<td>Word 6 String_number [Word 7 Point_number Word 8 Point_name]</td>
</tr>
<tr>
<td></td>
<td>A measurement point is created with the given feature code and string number and given (x, y, z) co-ordinates. No reduction is needed.</td>
</tr>
<tr>
<td></td>
<td>If a Point_name exists, then it is a named measurement and in the reduction, a 4d point string of name Point_name is created and mapped using the Map File. The 4d text is the station prefix followed by Point_name. The Point_name is added to the internal list of named points for searching for co-ordinates.</td>
</tr>
<tr>
<td></td>
<td>Note that the Leica GSI format includes directly entered coordinates in a code line by data blocks with word indices 81, 82, 83 (Easting, Northing and Elevation).</td>
</tr>
<tr>
<td>.3</td>
<td>New instrument point - before the measurement</td>
</tr>
<tr>
<td></td>
<td>Word 1 .3 Word 2 Point_name Word 3 Instrument_height</td>
</tr>
<tr>
<td></td>
<td>Set up an instrument at the point with name Point_name. In the reduction, the (x, y, z) co-ordinates for Point_name are found by first searching the control model, then the list of previously named points in the reduction, point numbers of previous measurements and finally if Point_name is still not found, the user is asked to type in the (x, y, z) co-ordinates.</td>
</tr>
<tr>
<td></td>
<td>Note that the Leica GSI format includes setting up on a station in a measurement line by data blocks with word indices 84, 85, 86 (Station easting, Station northing and Station elevation) and 88 (Instrument height).</td>
</tr>
<tr>
<td>.4</td>
<td>Next measurement is a backsight - before the measurement</td>
</tr>
<tr>
<td></td>
<td>Word 1 .4 Word 2 Station_name [Word 3 Feature_code Word 4 String_number Word 5 Target_height]</td>
</tr>
<tr>
<td></td>
<td>The next measurement is to a backsight with name Station_name.</td>
</tr>
<tr>
<td></td>
<td>For traverse reduction, if the traverse code specified in the reduction panel matches the Feature code given in Word 3, the data will be included in a traverse reduction, string number can also be specified. Also the target height to the backsight can be given in the backsight command.</td>
</tr>
<tr>
<td>.5</td>
<td>New target height for subsequent measurements - before the measurement</td>
</tr>
<tr>
<td></td>
<td>Word 1 .5 Word 2 Target_height</td>
</tr>
<tr>
<td></td>
<td>Set a new target height to be used for all subsequent measurement points.</td>
</tr>
<tr>
<td></td>
<td>Note that the Leica GSI format can include the target height on each measurement line (word index 97).</td>
</tr>
<tr>
<td>.6</td>
<td>Next measurement is a Check measurement - before the measurement</td>
</tr>
<tr>
<td></td>
<td>Word 1 .6 Word 2 Station_name</td>
</tr>
<tr>
<td></td>
<td>The next measurement is a check measurement made to the station Station_name.</td>
</tr>
</tbody>
</table>
| | During reduction a two point super string (with name Station_name) from the instrument point to the measured point is created in the default model for the check measurement. The instrument point name, the station name and the differences between the measurement point co-ordinates and station co-ordinates are written as text along the super string. The differences between the measurement and the known point is also written to the report file.
.9 Scale factor for subsequent distances

Word 1 .9 Word 2 Scale_factor

Scale factor to apply to subsequent slope distances.

.11 Next measurement is to a named station - before the measurement

Word 1 .11 Word 2 Station_name [Word 3 Feature_code Word 4 String_number Word 5 Target_height]

This field code gives a name to a measurement so that it can be used in other field codes for setting up an instrument on, backsighting to or doing a check measurement to.

The next measurement locates a new instrument station with the name Station_name. A point with vertex text of Station_name is created. The Station_name is added to the internal list of named points for searching for co-ordinates.

If Feature_code exists, the point is given that Feature_code, otherwise the current feature code is used.

For traverse reduction, if the traverse code specified in the reduction panel matches the Feature code given in Word 3, the data will be included in a traverse reduction, string number can also be specified. Also the target height to the foresight can be given in this command.

.14 Feature code and string number - before or after measurement depends on the data collector definition

Word 1 .14 Word 2 Feature_code Word 3 String_number [Word 4 text Word 5 text] ...

A field code for entering the feature code and string number rather than using the standard method of using word 1 and word 2. This is for use with Leica quick codes which must put out a fixed first word. Any additional text is added to the end of any existing vertex text for the current measurement point. Any leading zeros in the text words will be ignored.

This field code is used always before or always after measurements depending on the Measurement/code field on the Instrument tab of the Survey.4d Create/Edit panel for the selected data collector definition.

.15 Vertical circle correction for subsequent measurements - before the measurement

Word 1 .15 Word 2 Vertical_circle_in_decimal_degrees

The vertical_circle_in_decimal_degrees is subtracted from the vertical circle value in any subsequent measurements.

.16 Additional code for point (multiply coded point) - after the measurement

Word 1 .16 Word 2 Feature_code Word 3 String_number [Word 4 Point_name] [Word 5 Point_text]

Additional coding for the current measurement point. A new measurement point is created at the same position as the current measurement point but with the Feature_code and String_number from this field code. The same point number is used as for the current measurement point.

If Point_text exists, it is used as the vertex text for that vertex of the super string.

If Point_name exists, then it is a named measurement and during reduction, a 4d point string of name Point_name is created and mapped using the Map File. The 4d text is the station prefix followed by Point_name. The Point_name is added to the internal list of named points for searching for co-ordinates.

.17 Arc through previous three points - after the measurement of last point of arc

Word 1 .17 [Word 2 Feature_code Word 3 String_number] [Word 4 Point_number]

If only Word 1 exists, then the current measurement point and the two previous points with the same feature code and string number as the current measurement point, are joined by an arc. If there is less
than three such points, no arc is fitted.

If the Feature_code and String_number exist, the last three previous three measurement points of the same feature code and string number are joined by an arc. If the current measurement point has that feature code and string number, then it is the third of the three points used. If there is less than three points, no arc is fitted.

If Point_number exists, then the feature code and string number are taken from the previous measurement point with that point number, and that point and the two measurement points previous to the pre-defined point of the same feature code and string number, are joined by an arc. If there is less than three points, no arc is fitted.

See the Section 36.3.9 Arcs Through Points for more information on arc fitting.

.18 Circle Feature - after the measurement

Word 1 .18 Word 2 Radius [Word 2 Radius …]

Creates a feature string with the given radius and centred on the current measurement point. If there is more than one radius, then separate feature strings are created each with one of the radii.

.20 Close string - after the measurement

Word 1 .20 [Word 2 Feature_code Word 3 String_number] [Word 4 Point_number]

If only Word 1 exits, the current string is closed.

If the Feature_code and String_number exist, the last previous string with that feature code and string number is closed.

If Point_number exists, then the string containing that point number is closed.

See the Section 36.3.4 Close String for more information on closing a string.

.21 Join last points of strings

Word 1 .21 Word 2 Feature_code Word 3 String_number_1 Word 4 String_number_2

In the final reduction, the last point of the string with the given Feature_code and String_number_1 is joined to the last point of the string with given Feature_code and String_number_2. The created string has the given Feature_code (no string number is needed since it is the final phase of reduction when the string numbers are dropped).

See the Section 36.3.8 Joining Strings for more information on joining strings.

.22 Join first to last point of strings

Word 1 .22 Word 2 Feature_code Word 3 String_number_1 Word 4 String_number_2

In the final reduction, the first point of the string with the given Feature_code and String_number_1 is joined to the last point of the string with given Feature_code and String_number_2. The created string has the given Feature_code (no string number is needed since it is the final phase of reduction when the string numbers are dropped).

See the Section 36.3.8 Joining Strings for more information on joining strings.

.23 Join first points of strings

Word 1 .23 Word 2 Feature_code Word 3 String_number_1 Word 4 String_number_2

In the final reduction, the first point of the string with the given Feature_code and String_number_1 is joined to the first point of the string with given Feature_code and String_number_2. The created string has the given Feature_code (no string number is needed since it is the final reduction when the string numbers are then dropped).

See the Section 36.3.8 Joining Strings for more information on joining strings.

.28 Text appended to a string name

Word 1 .28 Word 2 Text [Word 3 Feature_code Word 4 String_number] [Word 5 Point_number]
Chapter 37 12d and Survey Instruments

Text is appended to the string name. For example, if 1.200 is entered, “ 1.200” is appended to the string name.

If only Text is given, Text is appended to the string name of the current string.

If the Feature_code and String_number exist, then the last previous string with that feature code and string number has Text appended to the string name.

If Point_number exists, then the string containing that point number has Text appended to the string name.

.29 Note or memo - after the measurement

Word 1 .29 [Word 2 text] [Word 3 text] ...

Any text may be entered and will be added to the check measurements model at the position of the current measurement point.

.30 Remove height from a point - that is make it a null height - after the measurement

Word 1 .30 [Word 2 Feature_code Word 3 String_number] [Word 4 Point_number]

If only Word 1 exists, the height of the current measurement point is set to null.

If Feature_code and String_number exist, then the height of the last point of the previous string with that feature code and string number is set to null.

If Point_number exists, then the height of the point with that point number is set to null.

.37 Rectangle by two points

Word 1 .37 Word 2 offset_in_metres [Word 3 Feature_code Word 4 String_number] [Word 5 Point_number]

The rectangle is defined by two points (reference side) and a offset.

If a positive offset value is given, two points will be created to the right of the reference side.

If a negative offset value is given, two points will be created to the left of the reference side.

If Feature_code and String_number exist, the last two points with that feature code and string number are used and a fourth points are created to form a rectangle. The height of the two new points are set to null. The string is then closed.

If Point_number exists, then the feature code and string number of the point with that point number are used and processed as above. Note that the point with the point number is not necessarily used.

Two consecutive rectangles are unable to be defined side by side. In other words if the two points given are part of string of greater than two vertices, the command will only work for sets of two points that are exclusively defined. i.e. For a 5 point string, a rectangle can be defined by points 1 and 2, and 4 and 5.

See the Section 36.3.5 Rectangle for more information.

.38 Make the previous segment non-tinable (not a breakline) - after the measurement

Word 1 .38 [Word 2 Feature_code Word 3 String_number] [Word 4 Point_number]

If only Word 1 exists, the previous segment containing the current measurement point is set to non-tinable. That is, it will not be treated as a breakline in triangulations.

If the Feature_code and String_number exist, then the last segment of the previous string with that feature code and string number is set to non-tinable.

If Point_number exists, then the segment containing the point with that point number as an end point, is set to non-tinable.

.39 Make the next segment non-tinable (i.e. not a breakline) - after the measurement for the first point of the segment

Word 1 .39 [Word 2 Feature_code Word 3 String_number] [Word 4 Point_number]
If only Word 1 exists, the next segment containing the current measurement point as a starting point is set to non-tinable. That is, it will not be treated as a breakline in triangulations.

If the Feature_code and String_number exist, then the segment that is created in the future from the last point of the previous string with that feature code and string number is set to non-tinable.

If Point_number exists, then the segment containing the point with that point number as a start point, is set to non-tinable.

.40 Make a point non-tinable - after the measurement
Word 1 .40 [Word 2 Feature_code Word 3 String_number] [Word 4 Point_number]
If only Word 1 exists, the current measurement point is set to non-tinable. That is, it will not be included in triangulations.

If Feature_code and String_number exist, then the last point of the previous string with that feature code and string number is set to non-tinable.

If Point_number exists, then the point with that point number is set to non-tinable.

.41 Add additional text to the current measurement point - after the measurement
Word 1 .41 Word 2 text [Word 3 text] ...
The given text is added to the end of any existing vertex text for the current measurement point. Any leading zeros in the text words will be ignored.

.42 Add a radial offset - after the measurement
Word 1 .42 Word 2 Radial_offset_in_metres [Word 3 Feature_code Word 4 String_number] [Word 5 Point_number]
The Radial_offset_in_metres is used to adjust the position of the specified point by a plan distance from the specified points original position, along the plan line joining the current station to the specified point. A positive offset is away from the station, negative is toward the station.

If only Word 1 and 2 exist, the offset is used to adjust the position of the current measured point.

If Feature_code and String_number exist, then the last point of the previous string with that feature code and string number is adjusted.

If Point_number exists, then the point with that point number is adjusted.
See the Section 36.3.2 Offsets for more information on offsets.

.43 Add a tangential offset - after the measurement
Word 1 .43 Word 2 Tangential_offset_in_metres [Word 3 Feature_code Word 4 String_number] [Word 5 Point_number]
The Tangential_offset_in_metres is used to adjust the position of the specified point by a plan distance from the specified points original position, at rights angles to the plan line joining the current station to the specified point. A negative offset is to the left (looking from the station), and positive is to the right (looking from the station).

If only Word 1 and 2 exist, the offset is used to adjust the position of the current measured point.

If Feature_code and String_number exist, then the last point of the previous string with that feature code and string number is adjusted.

If Point_number exists, then the point with that point number is adjusted.
See the Section 36.3.2 Offsets for more information on offsets.

.44 Add a height offset - after the measurement
Word 1 .44 Word 2 Height_offset_in_metres [Word 3 Feature_code Word 4 String_number] [Word 5 Point_number]
If the height of the specified point is not null, then the Height_offset_in_metres adjusts the height of the point. A positive offset adds to the height, a negative offset reduces the height.
If only Word 1 and 2 exist, the offset is used to adjust the position of the current measured point.

If Feature_code and String_number exist, then the last point of the previous string with that feature code and string number is adjusted.

If Point_number exists, then the point with that point number is adjusted.

See the Section 36.3.2 Offsets for more information on offsets.

.45 Make a parallelogram from the last three measurement points - after the measurement

Word 1 .45 [Word 2 Feature_code Word 3 String_number] [Word 4 Point_number]

If only Word 1 exists, the current measurement point and the two previous points from the current string are used and a fourth point is created to form a parallelogram (squashed rectangle) and the height of the fourth point is set to null. The string is then closed.

If Feature_code and String_number exist, the last three points with that feature code and string number are used and a fourth point is created to form a parallelogram (squashed rectangle) and the height of the fourth point is set to null. The string is then closed.

If Point_number exists, then the feature code and string number of the point with that point number are used and processed as above. Note that the point with the point number is not necessarily used.

See the Section 36.3.5 Rectangle for more information on forming a parallelogram.

.46 Make the entire string a breakline or not (tinable or non-tinable)

Word 1 .46 [Word 2 Breakline_type] [Word 3 Feature_code Word 4 String_number] [Word 5 Point_number]

Word 2: Breakline_type:

If Breakline_type is 0, the selected string is set to a point string and hence is not a breakline (non-tinable).

If Breakline_type is 1, the selected string is set to a line string and is therefore a breakline (tinable).

Words 3, 4, and 5:

If none of Words 3, 4 and 5 exist, the Breakline_type is applied to the current string.

If Feature_code and String_number exist, the Breakline_type is applied to the last string with that feature code and string number.

If Point_number exists, then the Breakline_type is applied to the string containing the point with that point number.

.47 Start a new string using the same feature code and string number - after the measurement of the first point of the new string

Word 1 .47 [Word 2 Feature_code Word 3 String_number] [Word 4 Point_number]

If only Word 1 exists, the current string is terminated (without including the current measurement point) and the current measurement point becomes the first point of a new string with the same feature code and string number.

If Feature_code and String_number exist, then the last point of the previous string with that feature code and string number becomes the first point of a new string with the same feature code and string number.

If Point_number exists, then the previous string containing the point with that point number is terminated before the point number point, and the point becomes the first point of a new string with the same feature code and string number.

.48 End a string

Word 1 .48 [Word 2 Feature_code Word 3 String_number] [Word 4 Point_number]

If only Word 1 exists, the current string is terminated (including the current measurement point).

If Feature_code and String_number exist, then the last point of the previous string with that feature
code and string number becomes the last point of that string. If \textit{Point_number} exists, then the previous string containing the point with that point number is terminated after the point number point.

.50 \textbf{Specify the bearing to correct for true north - used as the bearing datum difference}

\textit{Word 1} .50 \textit{Word 2} \texttt{Bearing_in_decimal_degrees} \ [\textit{Word 3} \texttt{Text}]

The \texttt{Bearing_in_decimal_degrees} is used as the bearing datum difference for the current instrument set up. The \texttt{Text} and the \texttt{Bearing_in_decimal_degrees} are written to the reduction report file.

.51 \textbf{Start using an existing field template - before the measurement}

\textit{Word 1} .51 \textit{Word 2} \ [\textit{Template_name}] \ [\textit{mode}]

Start using the template \texttt{Template_name}. If \texttt{Template_name} is blank, the default template is used. If \textit{mode} is "for", then the field template is used as a \texttt{forward} template. If \textit{mode} is "rev", then the field template is used as a \texttt{reverse} template. If \textit{mode} is "zig", then the field template is used as a \texttt{zig_zag} template and is used in the \texttt{forward} direction first. If \textit{mode} is "zag", then the field template is used as a \texttt{zig_zag} template and is used in the \texttt{reverse} direction first.

If \textit{mode} is blank, or 0, or anything other than "for", "rev", or "zag", then the field template is used as a \texttt{zig_zag} field template starting on a zig. See the Section \texttt{36.4 Field Templates} for more information on field templates.

.52 \textbf{Finish using a field template or finish recording a field template - after the measurement}

\textit{Word 1} .52

Stops using the current field template or stops recording a field template.

.53 \textbf{Pause using the current field template - after the measurement}

\textit{Word 1} .53

Pause using the current field template or defining a field template, until a continue template (54) or a finish field template (52) code is given.

.54 \textbf{Continue the current field template - before the measurement}

\textit{Word 1} .54

Continue using the current field template or defining the current field template, which has been stopped by a \texttt{Pause} command (53). The \texttt{Continue} command only needs to be given once and applies to all following measurements until another \texttt{Pause} or \texttt{Finish} command is given.

.55 \textbf{Start recording a field template - before the measurement}

\textit{Word 1} .55 \textit{Word 2} \ [\textit{Template_name}]

Start recording a field template with the name \texttt{Template_name}. If \texttt{Template_name} is non-blank, then the default field template is defined. The \textit{feature_code} and \textit{string_number} of the following measurements until a \texttt{Finish} code (52) are stored as the field template. There is no limit to the number of points in a field template. See the Section \texttt{36.4 Field Templates} for more information on field templates.

.56 \textbf{Skipping picking up points when using a field template - after the measurement of last point before skipping points}

\textit{Word 1} .56 \textit{Word 2} \ [\texttt{num_skipped_points}]

Allows the user to skip picking up one or more points from the field template currently being used. The \texttt{next measurement} takes the \textit{feature_code} and \textit{string_number} from the next point of the field template definition. If \texttt{num_skipped_points} is missing, then only one point is skipped otherwise \texttt{num_skipped_points} are skipped.
.57 Delete points on a field template - after the measurement of last point

Word 1 .57 Word 2 [num_points_to_delete]

Allows the user to delete one or more points from the field template currently being used. The next measurement takes the feature code and string number from the next point of the field template definition.

.58 Insert points when using a field template - after the measurement of last point

before inserting points

Word 1 .58 Word 2 Feature_code Word 3 String_number Word 4 Multiple_code_flag Word 5 Insert_special_flag

Allows the user to insert points into the field template currently being used. The next measurement takes the feature code and string number from the next point of the field template definition.

If the Multiple_code_flag = 1, then the feature code will be added to the previous defined template point else if Multiple_code_flag = 0 (default), it will be added to the template as a separate point.

If the insert is done at the end of a section and the Insert_special_flag = 1 the point will be added to the end of the current template section else it will be at the start of the next section.

.60 Start of arc through next three points - after the measurement of the first point of the arc

Word 1 .60 [Word 2 Feature_code Word 3 String_number] [Word 4 Point_number]

If only Word 1 exists, an arc is inserted through the current measurement point and the next two measured points with the same feature code and string number as the current measurement point. If there is less than three points, no arc is fitted.

If Feature_code and String_number exist, a search is made for a previously defined measurement with the same feature code or string number. An arc is inserted through the previous measurement and the next two measured points following this previous measurement with the same feature code and string number. If the current point has that feature code and string number, then it is the first of the three points. If there is less than three points, no arc is fitted.

If Point_number exists, then the feature code and string number are taken from the previous measurement point with that point number, and an arc is inserted through that point and the next two measurement points with the same feature code and string number. If there is less than three points, no arc is fitted.

See the Section 36.3.9 Arcs Through Points for more information on arc fitting.

.61 Start of arc through sets of three points until end of string, or a 62 occurs - after the measurement of the first point of the arc

Word 1 .61 [Word 2 Feature_code Word 3 String_number] [Word 4 Point_number]

The arcs are fitted as follows - the first arc is fitted through points one, two and three, the next arc through points three, four and five etc. If there is less than three points remaining at the end, then no arc is fitted to the end points.

If only Word 1 exists, arcs are inserted through the following sets of measurement points with the same feature code and string number as the current measurement point. The current measurement point is the first of the points.

If the current point has that feature code and string number, then it is the first of the points. If there is less than three points, then no arc is fitted.

If the feature code and string number exist, a search is made for a previously defined measurement with the same feature code or string number. An arc is inserted through the following measured points with the same feature code and string number as given in point_description. If the current point has that feature code and string number, then it is the first of the points.

If Point_number exists, then the feature code and string number are taken from the previous measurement point with that point number, and arcs are inserted through that point and the following measured points with the same feature code and string number.
If **12d Model** encounters a *Start Arcs through sets of three points* but no *End Arcs* command for the string, then an *End Arcs* is assumed at the end of the string.

See the Section [36.3.9 Arcs Through Points](#) for more information on arc fitting.

.62 End the arcs begun by a 61 command - after the measurement of the last point of the arcs

```
Word 1 .62 [Word 2 Feature_code Word 3 String_number] [Word 4 Point_number]
```

If only Word 1 exists, then the fitting of arcs through the points of the current string is stopped. The current measurement point is the last of the points used in the arc fitting.

If Feature_code and String_number exist, then the fitting of arcs through the points of the previous string with the same feature code and string number is stopped. If the current measurement point has that feature code and string number, then it is the last point used in the arc fitting.

If Point_number exists, then the point with that point number is the last point used in the arc fitting.

If **12d Model** encounters an *End Arcs* (62) but no *Start Arcs through sets of three points* (61) command for the string, then an *Start Arcs through sets of three points* (61) is assumed to apply at the beginning of the string and hence arc fitting will be applied to the entire string.

See the section [36.3.9 Arcs Through Points](#) for more information on arc fitting.

There are field codes for adding user defined attributes to:

(a) the current string being measured (i.e. the string containing the current measurement point)
(b) the current measurement point
(c) the next segment from the current measurement point (i.e. the segment joining the current measurement point and the next measured point of the same feature code and string number)

or

(d) the previous segment to the current measurement point (i.e. the segment joining the current measurement point to the previous measured point of the same feature code and string number).

The attributes can be named or unnamed and are coded in the following way:

If Word 2 is missing (i.e. all zeros), then the attribute is an un-named attribute and the rest of the Words on the line is the attribute value. The attribute is given the special name "unnamed attribute n" for n=1, 2,

.68 Add an integer user defined attribute to the current string

```
Word 1 .68 [Word 2 Name] Word 3 Integer
```

Add an user defined integer attribute to the current string.

.69 Add a real user defined attribute to the current string

```
Word 1 .69 [Word 2 Name] Word 3 Real
```

Add a real (floating point) user defined attribute to the current string.

.70 Add text user defined attribute to the current string

```
Word 1 .70 [Word 2 Name] Word 3 Text [Word 4 Text] ...
```

Add a text user defined attribute to the current string.

.71 Add integer user defined attribute to the current point

```
Word 1 .71 [Word 2 Name] Word 3 Integer
```
Add an integer user defined attribute to the current measurement point.

.72 Add real user defined attribute to the current point

```
Word 1 .72  [Word 2 Name]  Word 3 Real
```

Add a real (floating point) user defined attribute to the current measurement point.

.73 Add text user defined attribute to the current point

```
Word 1 .73  [Word 2 Name]  Word 3 Text  [Word 4 Text] ...
```

Add a text user defined attribute to the current measurement point.

.74 Add integer user defined attribute to the next segment

```
Word 1 .74  [Word 2 Name]  Word 3 Integer
```

Add an integer user defined attribute to the next segment from the current measurement point.

.75 Add real user defined attribute to the next segment

```
Word 1 .75  [Word 2 Name]  Word 3 Real
```

Add a real (floating point) user defined attribute to the next segment from the current measurement point.

.76 Add text user defined attribute to the next segment

```
Word 1 .76  [Word 2 Name]  Word 3 Text  [Word 4 Text] ...
```

Add a text user defined attribute to the next segment from the current measurement point.

.77 Add integer user defined attribute to the previous segment

```
Word 1 .77  [Word 2 Name]  Word 3 Integer
```

Add an integer user defined attribute to the previous segment from the current measurement point.

.78 Add real user defined attribute to the previous segment

```
Word 1 .78  [Word 2 Name]  Word 3 Real
```

Add a real (floating point) user defined attribute to the previous segment from the current measurement point.

.79 Add text user defined attribute to the previous segment

```
Word 1 .79  [Word 2 Name]  Word 3 Text  [Word 4 text] ...
```

Add a text user defined attribute to the previous segment from the current measurement point.

In addition, extra codes allow **12d Model** pipe strings to be coded in the field.

.80 Pipe invert point (bottom of the pipe) - after the measurement

```
Word 1 .80  [Word 2 Feature_code  Word 3 String_number]  [Word 4 Point_number]
```

If only Word 1 exists, the current measurement point is on the invert (bottom) of a pipe. This is the default for measurements to points on pipe strings. If the point is not part of a pipe string, it is ignored.

If **Feature_code** and **String_number** exist, the last point of the previous string with the same feature code and string number is on the invert (bottom) of a pipe. If the point is not part of a pipe string, it is ignored.

If **Point_number** exists, then the point with that point number is on the invert (bottom) of a pipe. If the point is not part of a pipe string, it is ignored.

.81 Pipe axial point (centre of the pipe) - after the measurement

```
Word 1 .81  [Word 2 Feature_code  Word 3 String_number]  [Word 4 Point_number]
```
If only Word 1 exists, the current measurement point is on the axis (centre) of a pipe. If the point is not part of a pipe string, it is ignored.

If Feature_code and String_number exist, the last point of the previous string with the same feature code and string number is on the axis (centre) of a pipe. If the point is not part of a pipe string, it is ignored.

If Point_number exists, then the point with that point number is on the axis (centre) of a pipe. If the point is not part of a pipe string, it is ignored.

.82 Pipe obvert point (top of the pipe) - after the measurement

Word 1 .82 [Word 2 Feature_code Word 3 String_number] [Word 4 Point_number]

If only Word 1 exists, the current measurement point is on the obvert (top) of a pipe. If the point is not part of a pipe string, it is ignored.

If Feature_code and String_number exist, the last point of the previous string with the same feature code and string number is on the obvert (top) of a pipe. If the point is not part of a pipe string, it is ignored.

If Point_number exists, then the point with that point number is on the obvert (top) of a pipe. If the point is not part of a pipe string, it is ignored.

.83 Start recording a shape - before the measurement

Word 1 .83 [Word 2 Shape_name]

Start recording a shape with the name Shape_name. If Shape_name is non-blank, then the default field Shape is defined by the feature_code and string_number of the following measurements until a Finish code (84) are stored as the shape. There is no limit to the number of points in a shape.

See the Section 36.4 Field Templates for more information on field templates.

.84 Finish using a shape definition or finish recording a shape - after the measurement

Word 1 .84

Stops using the current shape or stops recording a shape.

.85 Shape parallel

Word 1 .85 Word 2 Shape_name [Word 3 Feature_code Word 4 String_number] [Word 5 Point_number]

If Feature_code and String_number exist, the last string with the same feature code and string number has the shape applied to the entire length of the string.

If Point_number exists, then the string containing that point number has the shape applied to the entire length of the string.

Parallelling the shape will produce separate strings for each point of the shape.

.86 Shape extrude

Word 1 .86

Word 1 .85 Word 2 Shape_name [Word 3 Feature_code Word 4 String_number] [Word 5 Point_number]

If Feature_code and String_number exist, the last string with the same feature code and string number has the shape applied to the entire length of the string.

If Point_number exists, then the string containing that point number has the shape applied to the entire length of the string.

Extruding the shape will produce a single string for the shape.
.92 Remove all z-values for a string (i.e. make all z-values null) - after the measurement

Word 1 .92 [Word 2 Point_line_type] [Word 3 Feature_code Word 4 String_number] [Word 5 Point_number]

If only Word 1 exists, all z-values for the current string are removed.

If Feature_code and String_number exist, the last string with the same feature code and string number has all its z-values removed.

If Point_number exists, then the string containing that point number has all its z-values removed.

If Point_line_type is 0, the selected string is set to a point string.

If Point_line_type is 1, the selected string is set to a line string.

.93 Set the Point-line type - after the measurement

Word 1 .93 [Word 2 Point_line_type] [Word 3 Feature_code Word 4 String_number] [Word 5 Point_number]

If only Word 1 exists, the current string is created as a point string.

If Feature_code and String_number exist, the last previous string with the same feature code and string number has its point-line type modified.

If the point_number exists, then the string containing that point number has its point-line type modified.

If Point_line_type is 0, the selected string is set to a point string.

If Point_line_type is 1, the selected string is set to a line string.

.94 Use name library/mapping file for vertex text on the string - name mapping - after the measurement

Word 1 .94 [Word 2 Point_line_type] [Word 3 Feature_code Word 4 String_number] [Word 5 Point_number]

If this field code exists then during reduction, vertex text is creating using either the name library, or if the name library doesn’t exist, the map file. If neither exist then the field code is ignored.

if a name library is used and the feature code of the string is found in the first column of the name library, then the entry from the second column of that row will be used as text for all vertices of the string that don’t already have vertex text. As a default, the string is set as a point string.

if the map file is used and the feature code of the string is found in the first column of the map file, then the string name field of the map file is used as vertex text for all vertices that don’t already have text. As a default, the string is set as a point string.

If only Word 1 exists, then name mapping is applied to the current string.

If Feature_code and String_number exist, then name mapping is applied to the last previous string with the same feature code and string number.

If Point_number exists, then name mapping is applied to the string containing that point number.

If Point_line_type is 0, the selected string is set to a point string.

If Point_line_type is 1, the selected string is set to a line string.

.95 Circular Pipe string - after the measurement

Word 1 .95 Word 2 Diameter [Word 3 Feature_code Word 4 String_number] [Word 5 Point_number]

Pipe strings are always line strings and are stored with the justification of the majority of the string points. Individual pipe points are picked up either top (obvert), centre (axial) or bottom (invert) of the pipe using field codes 80, 81 and 82.

If only Word 1 and 2 exists, the current string is created as a pipe string with the given diameter.

If Feature_code and String_number exist, the last string with the same feature code and string number is created as a pipe with the given diameter.
If Point_number exists, then the string containing that point number is created as a pipe string with the
given diameter.

.96 Box Culvert string - after the measurement
Word 1 .95 Word 2 Width Word 3 Height [Word 4 Feature_code Word 5 String_number] [Word 6 Point_number]

Culvert strings are always line strings and are stored with the justification of the majority of the string
points. Individual culvert points are picked up either top (obvert), centre (axial) or bottom (invert) of
the culvert using field codes 80, 81 and 82.

If only Word 1, 2 and 3 exist, the current string is created as a culvert string with the given width and
height.

If Feature_code and String_number exist, the last string with the same feature code and string number
is created as a culvert with the given width and height.

If Point_number exists, then the string containing that point number is created as a culvert string with
the given width and height.

.99 Terminate processing
Word 1 .99

Stop processing the field file at this line. Useful for debugging errors.

.107 Make the previous segment invisible - after the measurement
Word 1 .107 [Word 2 Feature_code Word 3 String_number] [Word 4 Point_number]

If only Word 1 exists, the previous segment containing the current measurement point is set to
invisible.

If the Feature_code and String_number exist, then the last segment of the previous string with that
feature code and string number is set to invisible.

If Point_number exists, then the segment containing the point with that point number as an end point, is
set to invisible.

.108 Make the next segment invisible - after the measurement for the first
point of the segment
Word 1 .108 [Word 2 Feature_code Word 3 String_number] [Word 4 Point_number]

If only Word 1 exists, the next segment containing the current measurement point as a starting point is
set to invisible.

If the Feature_code and String_number exist, then the segment that is created in the future from the last
point of the previous string with that feature code and string number is set to invisible.

If Point_number exists, then the segment containing the point with that point number as a start point, is
set to invisible.

.109 Make a point invisible - after the measurement
Word 1 .109 [Word 2 Feature_code Word 3 String_number] [Word 4 Point_number]

If only Word 1 exists, the current measurement point is set to invisible.

If Feature_code and String_number exist, then the last point of the previous string with that feature
code and string number is set to invisible.

If Point_number exists, then the point with that point number is set to invisible.

.110 Start buildings face observations - before the measurements
Word 1 .110 Word 2 [Building_name]

Start recording a field template with the name Building_name. If Building_name is non-blank, then the
default building face is defined. The feature_code and string_number of the following measurements
until a Finish code (111) are stored as the building face. There is no limit to the number of points in a
building face.

.111 End building face observations
 Word 1 .111 Word 2 [Building_name]

If only Word 1 exists, the current building face observation set is finished (including the current measurement point).

Notes

1. Arc fitting is applied after the Joins are processed. Hence the new joined strings are created and then curve fitting is applied according to the arc codes (start arc, end arc, fit arcs, stop fitting arcs etc.) on any vertex of the string.

For a summary of the Leica Field Codes, go to the section 37.1.4 Summary of Leica Field Codes
37.1.4 Summary of Leica Field Codes

Most of the field codes are entered after the measurement is taken and they will have a (AM) after the description. Some of the field codes are entered before the measurement is taken (mainly set up codes) and will have a (BM) after the description.

<table>
<thead>
<tr>
<th>Field Code</th>
<th>Description of Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Directly entered coordinate measurement</td>
</tr>
<tr>
<td>3</td>
<td>New instrument setup point (BM)</td>
</tr>
<tr>
<td>4</td>
<td>Measurement to backsight (BM)</td>
</tr>
<tr>
<td>5</td>
<td>New target height (BM)</td>
</tr>
<tr>
<td>6</td>
<td>Check measurement (BM)</td>
</tr>
<tr>
<td>9</td>
<td>Scale factor for subsequent distances (BM)</td>
</tr>
<tr>
<td>10</td>
<td>Three hair stadia measurement</td>
</tr>
<tr>
<td>11</td>
<td>Measurement to a named station (BM)</td>
</tr>
<tr>
<td>15</td>
<td>Vertical circle correction (BM)</td>
</tr>
<tr>
<td>14</td>
<td>A field code for entering Feature code and String number - BM or AM depends on data collector definition</td>
</tr>
<tr>
<td>16</td>
<td>Multiply coded point (AM)</td>
</tr>
<tr>
<td>17</td>
<td>Arc through previous three points (AM of last point of arc)</td>
</tr>
<tr>
<td>18</td>
<td>Circle Feature (AM)</td>
</tr>
<tr>
<td>20</td>
<td>Close string (AM)</td>
</tr>
<tr>
<td>21</td>
<td>Join last points of strings</td>
</tr>
<tr>
<td>22</td>
<td>Join first to last point of strings</td>
</tr>
<tr>
<td>23</td>
<td>Join first points of strings</td>
</tr>
<tr>
<td>28</td>
<td>Add text to the string name (AM)</td>
</tr>
<tr>
<td>29</td>
<td>Note or memo (AM)</td>
</tr>
<tr>
<td>30</td>
<td>Remove height from a point - that is make it a null height (AM)</td>
</tr>
<tr>
<td>37</td>
<td>Rectangle by two points</td>
</tr>
<tr>
<td>38</td>
<td>Make the previous segment non-tinable (AM of end point of segment)</td>
</tr>
<tr>
<td>39</td>
<td>Make the next segment non-tinable (AM of first point of segment)</td>
</tr>
<tr>
<td>40</td>
<td>Make a point non-tinable (AM)</td>
</tr>
<tr>
<td>41</td>
<td>Add additional text (AM)</td>
</tr>
<tr>
<td>42</td>
<td>Add a radial offset (AM)</td>
</tr>
<tr>
<td>43</td>
<td>Add a tangential offset (AM)</td>
</tr>
<tr>
<td>44</td>
<td>Add a height offset (AM)</td>
</tr>
<tr>
<td>45</td>
<td>Make a parallelogram from the last three measurement points (AM)</td>
</tr>
<tr>
<td>46</td>
<td>Make the string a breakline or not</td>
</tr>
<tr>
<td>47</td>
<td>Start a new string using the same feature code and string number (AM of first point of new string).</td>
</tr>
<tr>
<td>48</td>
<td>End a string -</td>
</tr>
<tr>
<td>50</td>
<td>Specify the bearing to correct for true north - used as the bearing datum difference</td>
</tr>
<tr>
<td>51</td>
<td>Start using an existing field template (BM)</td>
</tr>
<tr>
<td>52</td>
<td>Finish using a field template or finish recording a field template (AM)</td>
</tr>
<tr>
<td>53</td>
<td>Pause the current field template until a continue op code (54) or a finish template (52)</td>
</tr>
<tr>
<td>54</td>
<td>Continue the current field template (BM)</td>
</tr>
<tr>
<td>55</td>
<td>Start recording a field template (BM)</td>
</tr>
<tr>
<td>56</td>
<td>Skip picking up one or more points from a field template (AM of last point before skipping)</td>
</tr>
<tr>
<td>57</td>
<td>Delete one or more points from a field template (AM)</td>
</tr>
<tr>
<td>58</td>
<td>Insert a point into a field template (BM)</td>
</tr>
<tr>
<td>60</td>
<td>Arc through next three points (AM of first point of arc)</td>
</tr>
<tr>
<td>61</td>
<td>Start of arc through sets of three points until end of string, or a 62 occurs (AM of first point of arc)</td>
</tr>
<tr>
<td>62</td>
<td>End the arcs begun by a 61 command (AM of last point of arcs)</td>
</tr>
<tr>
<td>68</td>
<td>Add an integer user defined attribute to the current string (AM of any point of the string)</td>
</tr>
<tr>
<td>69</td>
<td>Add a real user defined attribute to the current string (AM of any point of the string)</td>
</tr>
<tr>
<td>70</td>
<td>Add text user defined attribute to the current string (AM of any point of the string)</td>
</tr>
<tr>
<td>71</td>
<td>Add integer user defined attribute to the current point (AM)</td>
</tr>
<tr>
<td>72</td>
<td>Add real user defined attribute to the current point (AM)</td>
</tr>
<tr>
<td>73</td>
<td>Add text user defined attribute to the current point (AM)</td>
</tr>
</tbody>
</table>
Add integer user defined attribute to the next segment (AM of first point of the segment)
Add real user defined attribute to the next segment (AM of first point of the segment)
Add text user defined attribute to the next segment (AM of first point of the segment)
Add integer user defined attribute to the previous segment (AM of last point of the segment)
Add real user defined attribute for the previous segment (AM of last point of the segment)
Add text user defined attribute to the previous segment (AM of last point of the segment)
Pipe invert point (bottom of the pipe) (AM)
Pipe axial point (centre of the pipe) (AM)
Pipe obvert point (top of the pipe) (AM)
Start recording a shape - before the measurement
Finish using a shape definition or finish recording a shape - after the measurement
Shape parallel
Shape extrude
Remove all z-values for a string (i.e. make all z-values null) (AM of point of the string)
Set the Point-line type
Use name library file/ mapping file for vertex text on the string - name mapping
Circular pipe string with diameter (AM)
Box culvert string with dimensions (AM)
Terminate processing
Make the previous segment invisible - after the measurement
Make the next segment invisible - after the measurement for the first point of the segment
Make a point invisible - after the measurement
Start buildings face observations - before the measurements
End building face observations

For a full description of the Leica codes, please go to the section 37.1.3 Full Description of Leica Field Codes.
For an example of a raw Leica file, please go to the section 37.1.6.7.2 Example of Leica GSI File.
37.1.5 Examples of Leica Screens

Standard Screen

When using a Leica instrument with no code.hex on the 1000 series, or Geobasic program or Codelist (.crf file) on the 1100 series, hitting the *Code* button brings up the standard Leica screen:

![Standard Leica Screen](image)

The information entered in *Code* goes to Word 1 of the line written to the Leica GSI file.

The information in *Info 1* to *Info 8* go to Word 2 to Word 9 respectively of the line written to the GSI file.

As an example, to enter a *directly entered co-ordinate* (the 2 field code),

*"2" is entered in the *Code* field*

X, Y and Z in Info 1, Info 2 and Info 3 respectively.

the feature code (STN) is entered into Info 4

the station name "10" is entered into Info 7
To enter a feature code and string number to be used for measurements, the feature code is entered into the Code field and the string number is entered into Info 1.
Leica Geobasic Program

A Leica Geobasic program gives the programmer full control over the Leica screen.

WARNING

Only one Geobasic program can exist on the Leica at any one time. Loading a Geobasic program will over write the existing Geobasic program on the instrument. Make sure you have a backup copy of the existing Geobasic program on your computer before loading a new one onto the instrument.

If you do not have a backup copy of the existing Geobasic program, do not load a new one.

The front screen of the 4D Solutions supplied Geobasic program
Leica Codelist

A Leica Codelist (.crf file) controls what is displayed and validated on the Leica screen and what values are recorded whenever the Code button is selected. For example, when using the 4D Solutions supplied Codelists, a list of defined feature codes and descriptions are displayed.

The Codelist controls what codes are displayed and whenever a code is selected, what information is required for that code. The Codelist also specifies what information is written out to the GSI file for that code.

After hitting the Code button, the list of codes from the Codelist is displayed in alphanumerical order. Because the 12d Model field codes start with a ".", they will appear at the top of the list.

A code can be typed in or the list can be scrolled through using the arrow keys.

The highlighted code is selected by pressing the Leica Enter Key. The menu for the selected code then appears. The line of data is written out to the GSI file when the F1 (REC) button is selected.

![Scrolling through the 12d Model Codelist](image1)

![The menu after selecting .21 from the 12d Model Codelist](image2)
37.1.6 Setup of Leica 1100 instrument for Detail Pickup and use with 12d

The following relates to the setup of a Leica 1100 series instrument for topographic/detail pickup and use with 12d.

37.1.6.1 Setting up the Instrument

37.1.6.1.1 Copying the CRF file

A number of example .crf files are included on the installation CD. These can be found in the directory Other Software\Leica\. For the purpose of this documentation, we will use the file 12D_DS.CRF which is designed for detail pickup. This file should be copied from the 12d CD to the folder “Code” on the Leica card.

This file contains all of the field codes used in 12d Model along with a sample code listing.

37.1.6.1.2 Set up the display and record masks

Turn on and level instrument

Press F1 to Continue
Press 5 to configure the instrument

Press 1 for instrument configuration
Press 05 for Display and Record mask setup

Display mask:
Press F3 to set up display mask
Type in the description DETAIL SURVEY for the Mask name

Select the following settings:

1st Word……Point Id
2nd Word……Code
3rd Word……Info 1
4th Word……Ref1. Ht.
5th Word……Hz
6th Word……Horiz. Dist
7th Word……East
8th Word……North
9th Word……Elev

Press F1
Record mask:
Press F4 to set up record mask

Type in the description DETAIL SURVEY for the Mask name

Select the following settings:

REC format….GSI16 (16 char)
1st Word……Point Id (11)
2nd Word……Hz (21)
3rd Word……V (22)
4th Word……Slope Dist (31)
5th Word……Ref. Ht. (87)
6th Word……East (81)
7th Word……North (82)
8th Word……Elev (83)

Press F1

Press F1

Press F1 to exit menu
Press F1 to exit menu
37.1.6.1.3 Leica field codes

It is important to know when the code is entered into the instrument as some codes should precede a reading (BM) and some come after (AM). In this manual if a code is related to the current string then it is placed before the reading.

Below is a list of the commonly used codes to be used:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>.2</td>
<td>Directly entered coordinates</td>
</tr>
<tr>
<td>.3</td>
<td>New instrument station</td>
</tr>
<tr>
<td>.4</td>
<td>Backsight reading (BM)</td>
</tr>
<tr>
<td>.5</td>
<td>Height of target (BM)</td>
</tr>
<tr>
<td>.6</td>
<td>Check measurement (BM)</td>
</tr>
<tr>
<td>.9</td>
<td>Scale factor (BM)</td>
</tr>
<tr>
<td>.11</td>
<td>Foresight station (BM)</td>
</tr>
<tr>
<td>.14</td>
<td>Feature code and string number (Use for Leica quick codes only)</td>
</tr>
<tr>
<td>.15</td>
<td>Vertical circle correction (d.dddd) (BM)</td>
</tr>
<tr>
<td>.16</td>
<td>Additional code for point (AM)</td>
</tr>
<tr>
<td>.17</td>
<td>Arc thru last 3 points (AM)</td>
</tr>
<tr>
<td>.18</td>
<td>Circle (AM)</td>
</tr>
<tr>
<td>.20</td>
<td>Close string (AM)</td>
</tr>
<tr>
<td>.29</td>
<td>Note (AM)</td>
</tr>
<tr>
<td>.30</td>
<td>Remove height from point (AM)</td>
</tr>
<tr>
<td>.37</td>
<td>Rectangle by two points (AM)</td>
</tr>
<tr>
<td>.38</td>
<td>Make last segment non tinable (AM)</td>
</tr>
<tr>
<td>.39</td>
<td>Make next segment non tinable (AM)</td>
</tr>
<tr>
<td>.40</td>
<td>Make point non tinable (AM)</td>
</tr>
<tr>
<td>.42</td>
<td>Add radial offset (AM)</td>
</tr>
<tr>
<td>.43</td>
<td>Add tangential offset (AM)</td>
</tr>
<tr>
<td>.44</td>
<td>Add height offset (AM)</td>
</tr>
<tr>
<td>.45</td>
<td>Create parallelogram from last three points (AM)</td>
</tr>
<tr>
<td>.47</td>
<td>Start new string with same code and string no. as previous string (AM)</td>
</tr>
<tr>
<td>.48</td>
<td>End string (AM)….Not generally used</td>
</tr>
</tbody>
</table>

Templates

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>.51</td>
<td>Start template readings (BM)</td>
</tr>
<tr>
<td>.52</td>
<td>Finish template readings (AM)</td>
</tr>
<tr>
<td>.53</td>
<td>Pause template (AM)</td>
</tr>
<tr>
<td>.54</td>
<td>Continue a template (BM)</td>
</tr>
<tr>
<td>.55</td>
<td>Start recording template (BM)</td>
</tr>
<tr>
<td>.56</td>
<td>Skip points on template (BM)</td>
</tr>
</tbody>
</table>

Arcs
.60 Arc thru next 3 points (AM)…..See also .17
.61 Arc through sets of 3 points until .62 code entered (BM)
.62 End of arc from .61 (AM)

Pipes
.80 Reading taken to invert level of pipe (AM)
.81 Reading taken to centre of pipe (AM)
.82 Reading taken to obvert level of pipe (AM)
.95 Circular pipe diameter (AM)
.96 Box culvert dimensions (AM)

.92 Remove heights from string (AM)
.107 Make previous segment invisible (AM)
.108 Make next segment invisible (AM)
37.1.6.2 Setting up files

The existing station coordinates for a pickup can be entered into the Leica by hand or they can be uploaded using 12d. The 12d upload sequence will be described here.

37.1.6.2.1 Uploading coordinate file

Select option Survey=>Upload=>Create points upload file

![Create Instrument Points Upload File](image)

- Select the instrument **Leica GSI 16**
- Select the model of station points
- Type the start and end point if applicable
- Type in the file name to create
- Select Write file

37.1.6.2.2 Copy the upload file

The file upload file should be copied to the folder "GSI" on the Leica card

37.1.6.2.3 Data file setup

Turn on and level instrument
Press F1 to Continue

Press 2 to select Data job file.

This is the file containing the control points if uploaded or if entered during the survey. Keep the file name separate from the measured data file name.
Select the file to use followed by the F1 key or press F2 to create a new file.

Press F1 to continue.

37.1.6.3 Measured file setup

Select 1 to set up Measured job file. This is the file that will contain the detail survey readings.
Select F2 to create new file

Type in new job name

Press F1 to continue

Press F1 to continue
37.1.6.4 Code list selection

Press 3 to select code list
Select the code list 12D_DS.CRF

Press F1 to continue
37.1.6.5 Station setup

We can use Quick set (See the section 37.1.6.6 Setup using Quick set (QSET)) for the station setup or manually select the Station.

The following notes assume that the data file contains station coordinates. If not the user will have to follow prompts to insert the coordinates.

37.1.6.5.1 Manual setup

Press F5 for set up.
Press F1 to select station

Type in setup station number
Type in the instrument height

Press F5 to read the coordinates from the data file
To view the bearing between the setup station and backsight station select FNC
Press 4 to check orientation

Type in the backsight station number

The Azimuth is displayed
Type in the reflector height of the backsight
Sight to the backsight station and press F4 to set the bearing.

The Bearing is set. Notice that the Azimuth and HZ values are set to the same value. Press F2 to take a distance to the backsight station.
Arrow down to view the distance error

If acceptable press F1 to continue
To save the station information press F3 then F1 to continue
Take Backsight reading:
Type in the start point number of the survey
Type in the reflector height. This can also be done as part of the backsight measurement as shown below.
Select CODE

Type in .4 for backsight code followed by the enter key
Type in backsight station number
Type in traverse code and traverse no. string number if using traverse coding. For more information about traverse coding see the section 36.6 Traverse coding.

Scroll down using the arrow keys to show other parameters

Press F1 to record the code

Point to backsight station and press F1 to take and record reading
37.1.6.6 Setup using Quick set (QSET)

IMPORTANT NOTE: If using QSET, you **MUST** take a check reading to your backsight station as described below.

Press F5 for set up

Press F4 for Quick set
Type in setup station number

Type in the backsight station number
Type in instrument height

Type in height of target then Press F2 to take reading to backsight to initialise the QSET function.
Press F4 to continue

Press F3 to record the station setup information.

IMPORTANT NOTE: If using QSET, you MUST take a check reading to your backsight station as described below.
Take Check reading (Mandatory):
Type in reflector height
Select CODE

Type in .6 for check measurement code followed by the enter key
Type in the check station number
Type in the description

Press F1 to record code
Type in the reflector height

Select F1 to take reading
37.1.6.7 Normal readings

Always change the code prior to starting a new feature and ensure the reflector height is correct.

37.1.6.7.1 Select Code

Type in the required code and string number.

Press F1
37.1.6.7.2 Example of Leica GSI File

The following GSI file has been coded with the Feature Code being recorded after the measurement. The Feature code definition is then applied to all subsequent measurements until another measurement with a following Feature Code definition is found.

The data collector definition Leica GSI 12D which is shipped with 12d Model, is an appropriate data collector definition for converting the example GSI file to a 12d Field File ready for processing.

For the data collector definition Leica GSI 12D, the feature code comes after the measurement.

The data collector definition Leica 12D which is shipped with 12d Model is selected using the option Survey=>Setup.
12d and Leica TPS Instruments

Directly entered co-ords for station 10

Instrument set-up on 10 with instrument height of 1.715

Next measurement is backsight to 931

Measurement to backsight - has point number 1765

New target height of 1.338

Measurement FC DHW SN 0 - Pt no 1766

Set feature code DHW string number 0

Set feature code RDG string number 1

Next measurement is backsight to 931

儀器於776米高處測量

Description

Leica GSI File in 8 Format using 12d Model Field Coding and Giving Feature Codes After a Measurement

Close the previous string RDG

has point number 1770

Measurement - FC RDG SN 1

has point number 1769

Measurement - FC RDG SN 1

has point number 1768

Measurement - FC RDG SN 1
37.2 Sokkia Instruments (SDR Files)

This Section deals with interfacing 12d with Sokkia SDR20/33 data formats specifically with the SDR33 electronic field book (Controller). Other controllers and instruments such as the powerset range of total stations also use these formats.

A large number of instruments support the Sokkia SDR data format including (Trimble Total Station ACU), not just those from Sokkia.

For the topic:
1. Field Coding see the section 37.2.1 Coding For SDR Files
2. Sending raw file from controller to 12d 37.2.1.1.1 Downloading SDR File To 12d
3. Converting raw data to field file see the section 37.2.1.1.2 Converting SDR Raw File To Field File
4. Creating Points upload file see the section 37.2.1.1.3 Creating SDR Point Upload File
5. Creating Road upload file see the section 37.2.1.1.4 Creating SDR Roads Upload File
6. Creating Tin upload file see the section 37.3.7 Create Tin Upload File

Also, SDRMap users should also read the section 37.2.1.1 Special Notes for SDRmap Users
37.2.1 Coding For SDR Files

The Sokkia SDR20/33 data formats are used as raw data files by 12d Model and are converted into a 12d Field File before reduction. 12d Model uses the following Sokkia records:

01 Record header - SDR format
02 Station details
03 Target height
07 Back bearing details
08 Position - directly entered co-ordinates
09 Observation - measurement
13 Comment or continuation of blocks
15 RTK station details
16 RTK observation - measurement
57 RTK antenna height

Users can enter text for each measurement (observation 09 record or position 08 record) which is appended to the end of the record and this is used as the text of blocks that are interpreted according to the descriptions given in the earlier section 36.8 Field Coding for Non Leica Instruments.

The ‘13’ record can also be used after a measurement record to add additional information to the preceding blocks using the extra coding control code at the end of the previous line (see Extra Coding in the section 36.8.4 Control Code Blocks).

Strictly speaking the Sokkia SDR20/33 formats use fixed length lines and if the lengths are incorrect, an error message will be written to the Output Window. For example,

‘Line 248 line incorrect length. required length is 58. received length is 50.’

These messages often appear after a raw file has been manually edited because most editors remove space padding at the end of a line.

To ignore such error messages, there is a setting Allow bad line lengths on the Advanced tab of the Survey.4d Create/Edit panel. If this is set for a data collector, then lines of incorrect length will not be rejected.

For non SDRmap users, please proceed to the section 37.2.1.1.1 Downloading SDR File To 12d.

SDRmap users, please continue to the next section 37.2.1.1 Special Notes for SDRmap Users.
37.2.1.1 Special Notes for SDRmap Users

SDRmap does not use String numbers - only Feature codes are used and a New String command to denote the start of a new string.

12d Model supports only using a Feature code by setting the String number position on the Feature Coding tab to no string number.

If no string number is set for the data collector (and so no string numbers are used in the field), then there is no way of telling from the field data whether the string is a point string or a line string (setting the pt-line type for the string).

For the no string number case, the method of defining the point-line type is to:

(a) use a map file during the reduction

and

(b) have a key in the map file to match the feature code and have the pt-line type set for that key. If the feature code does not match any key in the map file, the string defaults to a point string.

and

(c) because by default the pt-string column in the map file is ignored during reduction (the string number usually defines the pt-line type), the Use pt/line mapping tick box in the Survey Data Reduction Function panel must be set to tick to force the pt-line column in the mapping file to be used.

Please continue to the next section 37.2.1.1 Downloading SDR File To 12d.
37.2.1.1 Downloading SDR File To 12d

Raw SDR files can be input to 12d for reduction by two basic methods:

1. Download directly from the instrument
2. Copy the SDR file to the working folder directly from a PCMCIA card or by using a data transfer product such as "HyperTerminal" or "Wincomms". For this method, see the following section 37.2.1.1.2 Converting SDR Raw File To Field File.

An option exists within 12d to download the raw SDR file from the instrument. This option has the added functionality that is reduces the raw propriety format (SDR file) to a 12d field file format at the same time. This conversion requires that the data collector definition be set before the download of the file is commenced.

Select the data collector type

Select option Survey=>Setup
The raw file will be converted to the 12d field file format using the specified translator macro.

Select **Survey=>Download**
Prepare the data collector for download by connecting to appropriate port, selecting file to download etc.

Ensure that the correct values are set for the comms settings i.e. they match the data collector parameters.
Enter a name for the field file.

Press **download**.

The 12d download window is shown.

Prepare the data collector for download by connecting to appropriate port, selecting file to download etc.
From the Data collector main menu select the **FUNC** (function) menu.

Toggle down to the **Communications** menu.

Press **OK** to select menu.
Select the **Options** menu to view the current settings.

Select the **Current view** to **Yes** only. If the POS view were set to **Yes** also, the POS points would be sent also and eventually reduced twice in 12d (once from observations and the other from the POS record). Press **Clear** to leave menu.
Select the **COM** menu to view the current comms settings.

Ensure the comms settings are as per the values set in the 12d download option.

Select **Clear** to leave the menu.
Select the **SEND** menu

Select the file to download

Press **OK** to send
Chapter 37 12d and Survey Instruments

37.2.1.1.2 Converting SDR Raw File To Field File

The file is shown downloading line by line in the 12d download window.

<table>
<thead>
<tr>
<th>Comms</th>
<th>X0</th>
<th>X1</th>
<th>Y0</th>
<th>Y1</th>
<th>Z0</th>
<th>Z1</th>
<th>NS</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3NM04.44000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3NM14.44000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3NM24.44000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When the download is finished select the **stop** button and then **finish**

Please continue to the next section 37.2.1.1.2 Converting SDR Raw File To Field File
37.2.1.1.2 Converting SDR Raw File To Field File

If a raw SDR file is copied to the working folder from a PCMCIA card or other means such as transferring it from a third party software package, it must be converted to a 12d field file for reduction inside 12d.

Select the data collector type

Select option *Survey=>Setup*

Select the **Data collector** choice icon

Select *Sokkia String Feature*

Select **set** and **finish**

Select option *Survey=>Convert raw*
Any errors will be listed in the Output window. If the Output window is not shown, it can be opened using the option Window=>Output Window

37.2.1.1.3 Creating SDR Point Upload File

Create upload file in 12d

After creating the setout points an upload file can be created for the sdr format

Select option Survey=>Upload=>Create points upload file
Fill in the rest of the screen as per normal

Select Write File

A SDR33 file is created ready to send to the instrument directly using the upload facility or by copying the file to PCMCIA cards etc.
Loading file into controller using 12d upload facility

The points upload file can be transferred to the controller for setout using the upload panel.

Connect the controller to the PC
Select option *Survey=>Upload=>Upload*

Ensure that the correct values are set for the comms settings i.e. they match the data collector parameters

Select the upload file by selecting the folder icon and selecting the appropriate file

Prepare the data collector for uploading.
From the communication menu, select the receive button.

Once the data collector is ready, the data can be sent from 12d.
37.2.1.1.3 Creating SDR Point Upload File

Create upload file in 12d

After creating the road alignment an upload file can be created for the SDR33 format

Select option Survey=>Upload=>Create roads upload file

Select Instrument choice icon

Select Sokkia Roading - Alignment Road
A SDR33 file is created ready to send to the instrument directly using the upload facility or by copying the file to PCMCIA cards etc. The steps involved in uploading the file to the controller using the 12d upload facility can be seen in the previous section Loading file into controller using 12d upload facility.

Please continue to the next section 37.2.1.2 Example of Sokkia SDR File

37.2.1.2 Example of Sokkia SDR File

The raw Sokkia SDR file ‘detail1.sdr’ has been coded in accordance with the data collector definition Sokkia String Feature which is shipped with 12d Model.

The data collector Sokkia String Feature is set using the option Survey=>Setup.
Sokkia Instruments (SDR Files)
For the *Sokkia String Feature* data collector definition, the *string number* is given before the *feature code*.

Some of the control codes defined for the *Sokkia String Feature* data collector that are used in the example are:

* is used as the Command (Block) delimiter
space is used as the comment delimiter
S and *E* are used to start arc fitting and end arc fitting respectively
R is the Rectangle (make a parallelogram) command
the template commands *XA*, *XB*, *XC* and *XD* are used
the invert I and obvert O commands are used,
XN for the next segment to be non-tinable (that is, not a breakline).

The listing of the raw file 'Detail1.sdr' is now given, followed by a dump of a *12d Model* view displaying the job. No Map File has been used in the reduction so no line styles appear on the view.
WARNING - The raw file 'Detail1.sdr' is in the Survey area of the training data but the file has been manually edited and if read in with the standard Sokkia String Feature data collector, will have bad line lengths and the data ignored. To read the file in, the *Allow bad line lengths* on the **Advanced** tab of the Sokkia String Feature data collector will need to be set before converting the raw file to a 12d field file.

```
<table>
<thead>
<tr>
<th>Advanced</th>
<th>Upload</th>
<th>Instrument</th>
<th>Y4 Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment raw files</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report header</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allow bad line lengths</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allow point numbers as stations</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

need to tick on to read in raw files with invalid line lengths
37.3 12d and the Trimble Total Station ACU

This Section deals with interfacing 12d with the Trimble Total Station ACU unit data formats.

These notes are not meant to take the place of the operations manuals for the Trimble ACU but rather to act as a guide for ensuring the correct file types are used between the two systems.

See the sections:

37.3.1 Coding
37.3.2 Sending Raw file to 12d
37.3.3 Creating and Setting Data Collector Type
37.3.4 Convert Raw File
37.3.5 Creating Point Upload File
37.3.6 Create Roads Upload File
37.3.7 Create Tin Upload File
37.3.1 Coding

On the ACU the user can either manually type in a code for field readings or use a code library to pre-define codes which can then be selected from a list.

To use a code library the user should select the relevant library when creating the job.

If using string numbers the Feature library can be set to **None** and the string number, feature code, field code and delimiters can be manually typed in.

Codes are typed in to the ACU in the **Measure Points** option.
Please continue to the next section 37.3.2 Sending Raw file to 12d
37.3.2 Sending Raw file to 12d

The raw file can be transferred from the ACU as a format similar to the SDR33. This is called the SDR33 DC file format.

Connect the ACU to the PC using TRIMBLE DATA TRANSFER

Select Receive tab then select Add

Select the Job to download using the format SDR33 FORMAT DC FILE
Select **Transfer All** to transfer the file.

Please continue to the next section 37.3.3 Creating and Setting Data Collector Type.
37.3.3 Creating and Setting Data Collector Type

Create new data collector type

We will create a specific name for the Trimble data collector even though it is similar to the SDR33 format.

Select Project=>Browse

Select the Survey data collectors branch

Double click on **Sokkia String Feature**
This loads up the default parameters for the SDR33 format.

Type in the new name **Trimble String Feature**
Select **Set** then **Save**

Select **User directory**
Select **Save** then **Finish**

Select **Finish** back in the previous panel
To set the changes the project has to be restarted by selecting **Project=>Restart**

Select the data collector type
Select option **Survey=>Setup**

Select the **Data collector** choice icon

Double click on **Trimble String Feature**

Select **Set** then **Finish**

Please continue to the next section **37.3.4 Convert Raw File**
37.3.4 Convert Raw File

To convert raw file to field file select option **Survey=>Convert raw**

Select the **Raw file** choice icon
Select the Trimble file (extension should be .sdr)
Pick **Select**
The Field file name will be generated

Any errors can be listed by opening the Output window using option **Window=>Output Window**

```
format = sdr33
Line 7 command not implemented <OSNM>
Line 8 non supported derivation code <02>
Line 14 command not implemented <OSNM>
Line 15 non supported derivation code <02>
```
Close the Error panel

Select **Finish**

The field file can now be reduced in the normal manner

Please continue to the next section 37.3.5 Creating Point Upload File
37.3.5 Creating Point Upload File

Create upload file in 12d

After creating the setout points an upload file has to be created for the Trimble format.

Select option Survey=>Upload=>Create points upload file

Select Instrument choices icon
Select Trimble XYZ

Fill in the rest of the screen as per normal

Select Write File

A standard comma delimited file is created ready to send to the ACU
Loading file into job in ACU

The points upload file can be transferred to the ACU for setout.

Connect the ACU to the PC using TRIMBLE DATA TRANSFER

Select **Send** tab then select **Add**
Select the file to upload using format **Comma delimited coordinate file**
Select **Transfer All** to transfer the file.

To load the file into the current job on the ACU select **Menu=>Files**

Select **Import / Export**
Select **Receive ASCII data**

Select **File format** choice icon then pick **Comma Delimited (*.CSV, *.TXT)**

Select **Receive from** choice icon and pick **Trimble Data**

Select **From file** choice icon and select file
Select the field order for the file as (1) Point number, (2) Easting, (3) Northing, (4) Level and (5) Code

Select the Next page icon

Select Receive
Select **OK** to finish.

The points can be displayed by selecting **Map** and zooming all of the job.

Please continue to the next section [37.3.6 Create Roads Upload File](#).
37.3.6 Create Roads Upload File

Create upload file in 12d

After creating the road alignment an upload file has to be created for the Trimble format.
Select option **Survey=>Upload=>Create roads upload file**

Select **Instrument** choice icon

Select **Trimble Roading**

Select **Select H-Align**

Pick and accept the alignment string

Type in a road name

To include Vertical geometry tick check box

To include Cross sections tick check box

To assume last segment of each section is a batter tick check box then type in default cut and fill grades

Select **Cross section model**

Type in a file name

Select **Write** then **Finish**
Loading file to the ACU

The road upload file can be transferred to the ACU for setout.

Connect the ACU to the PC using **TRIMBLE DATA TRANSFER**

Select **Send** tab then select **Add**
Select the road file to upload using format **Survey Controller file**
Select **Transfer All** to transfer the file

Once the road file has been copied into the ACU it can be setout using option **Survey=>Stakeout=>Roads**
Please continue to the next section 37.3.7 Create Tin Upload File
37.3.7 Create Tin Upload File

Create upload file in 12d

After creating the triangulation an upload file has to be created for the Trimble format.

Select option **Survey=>Upload=>Create triangle upload file**

Select the **File Type** choice icon and select **Trimble**

Type in Job name

Type in output file name

Select the tin to list

Select the boundary string for the tin

Select **Write** then **Finish**

Select **Yes** to create the file
Loading and using the file in the ACU

The tin upload file can be transferred to the ACU for setout.

Connect the ACU to the PC using **TRIMBLE DATA TRANSFER**

Select **Send** tab then select **Add**
Select the tin file to upload using format **Triangulated Terrain model**
Select **Transfer All** to transfer the file.

Once the tin has been copied into the ACU it can be called up when using the Stakeout option

Survey=>Stakeout=>DTM

Select the uploaded tin file to setout
The cut to the tin is calculated and displayed.
37.4 12d and Trimble GPS Controllers

The Trimble Geomatics Office software which comes with most Trimble GPS units can produce a Sokkia SDR file which is used by 12d Model as a raw data file.

However, the Trimble software writes out the (x,y,z) co-ordinates of GPS points as a "08KI" record which is normally treated by 12d Model as directly entered co-ordinates for a Station.

To overcome this problem, there is a flag in the data collector definitions to treat the Sokkia 08KI records as GPS points.

So before converting a Sokkia SDR file from a Trimble GPS unit, define a data collector which has a tick for the field Sokkia 08KI as GPS points on the Instrument tab of the Survey.4d Create/Edit panel.

The code information that is entered on the Trimble in the field is appended the Sokkia 08KI record and is processed as blocks of information as given in the section 36.8 Field Coding for Non Leica Instruments and the appendix 37 12d and Survey Instruments.
37.5 12d and Geodimeter Instruments

This appendix deals with interfacing 12d with Geodimeter files.

See the sections:

37.5.1 12d UDS’s
37.5.2 Using 12d Field Ops Codes on the Geodimeter
37.5.3 Example of Geodimeter File
37.5.1 12d UDS’s

The geodimeter allows the recording of information in a format specified by the user. Data for each label can be prompted for and measurements from the instrument can be registered. The user can assign a certain series of labels to a User Defined Sequence or UDS.

For 12d to reduce files from the geodimeter instruments, the recorded information from the instrument must be in a specific format that 12d can understand. A number of Geodimeter UDS files are supplied on the 12d Model Installation CD in the folder ‘Other_Software\Geodimeter’.

For uploading or direct entry of UDS’s to your particular instrument see your instrument manual.

These UDS’s have been set up so that 12d can convert the raw files from the instrument in a 12d field file. These UDS’s should be installed prior to undertaking surveys that are to be reduced by 12d. The standard UDS that 12d supply is as follows:

- UDS 1 - used within UDS 8 to record 12d field op codes.
- UDS 2 - prompts for additional data for a 12d field op code.
- UDS 5 - job administration at the start of a job
- UDS 6 - station co-ordinates entry
- UDS 7 - station set up - name and instrument height
- UDS 8 - data pick-up

UDS 5 is run at the beginning of the job and it runs UDS 6, which runs UDS 7 which runs UDS 8. UDS 1 can be run as required from within UDS8 to give 12d field file op codes.

12d standard UDS’s for pick-up with Geodimeter

<table>
<thead>
<tr>
<th>UDS 1 - used within</th>
<th>UDS 5 - job admin at start of day</th>
<th>UDS 7 - station set up - name and instrument height</th>
<th>UDS 8 - data pick-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDS 8 to record 12d</td>
<td>42=5</td>
<td>42=7</td>
<td>42=8</td>
</tr>
<tr>
<td>field op codes</td>
<td>43=TCC-ADMIN</td>
<td>43=TCC-STN-ID</td>
<td>43=TCC-DATA-PICKUP</td>
</tr>
<tr>
<td>91=1</td>
<td>79=10</td>
<td>5=4</td>
<td>5=4</td>
</tr>
<tr>
<td>79=7/2</td>
<td>0=1</td>
<td>4=8</td>
<td>4=8</td>
</tr>
<tr>
<td>UDS 2 - used for</td>
<td>43=OP-CODE-SELECT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>additional data for</td>
<td>92=1</td>
<td>9=0</td>
<td></td>
</tr>
<tr>
<td>12d field ops codes</td>
<td>79=5</td>
<td>8=0</td>
<td></td>
</tr>
<tr>
<td>42=2</td>
<td></td>
<td>79=7/6</td>
<td></td>
</tr>
<tr>
<td>43=OP-CODE DATA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92=1</td>
<td>79=7/2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12d and Geodimeter Instruments

Page 7107
The Geodimeter data format is used as a raw data file by 12d Model and is converted into a 12d Field File before reduction by potentially 2 different macros:

1) geodat4d.4do (default) for use with the 12d standard UDS’s.
2) geodat_qmrd.4do (Specialised reduction) for use with Queensland MRD UDS’s.

For the geodat4d.4do macro (default) 12d Model uses the following Geodimeter labels:

- 0= Information
- 1= Attributes
- 2= Station name or named point
- 3= Instrument height
- 4= Blocks
- 5= Point number
- 6= Target (signal) height
- 7= Horizontal angle
- 8= Vertical angle
- 9= Slope distance
- 37= Northing (X) value
- 38= Easting (Y) value
- 39= Height (Z) value
- 51= Date
- 53= Operator
- 90= End of record, flush buffer
- 91= 12d Model field file op code
- 92= Parameters for the previous 12d op code
- 95=

In particular, the Geodimeter PCode label block (4=) is used as the text of blocks that are interpreted according to the descriptions given in the earlier section 36.8 Field Coding for Non-Leica Instruments.

A new conversion macro for V6.0, geodat_qmrd.4do recognises geodimeter Program 22 and Program 32 commands if the following setup/procedures are used:

1. The geodimeter should be set to record program numbers. This is shown by the label 0=Pn in the raw file, where n is the program number and is assigned by the instrument. To set this up on the instrument use MENU 6 1(Switches) and turn Prg_Num on.

2. For 12d to convert raw files using geodimeter programs such as P22 and P32 the data must contain a label 61=n each time an UDS or onboard program is started (Where n is the program number). This allows 12d to be able to determine when one program is finished and another started. Queensland MRD have created their own UDS’s which utilise the 61= label so that it is prompted for within the UDS’s. They have also set up a UDS (UDS 6) which is used to place the label at the commencement of an onboard program such as program 22.

Please continue to the next section 37.5.2 Using 12d Field Ops Codes on the Geodimeter.
37.5.2 Using 12d Field Ops Codes on the Geodimeter

In additional to the commands accessible from the blocks, most of the 12d field file op codes are accessible directly from the Geodimeter.

The label '91=' label is used to specify a 12d field file op code and any following '92=' labels provide any additional information required by the 12d op code.

The 12d field file ops codes apply to the measurement before the op code.

For a complete definition of the 12d Model field file and the 12d Model field file op codes, see the section 36.10 The 12d Field File Format

Please continue to the next section 37.5.3 Example of Geodimeter File.
37.5.3 Example of Geodimeter File

The raw file 'Geodimeter.job' has been coded in accordance with the data collector definition Geodimeter 12D which is shipped with 12d Model. The 12d Model Geodimeter UDS's were used in the field pick-up.

The data collector Geodimeter 12D is set using the option Survey=>Setup

Some of the tabs on the Geodimeter 12D data collection definition as show below. Note that * is used as the Command (Block) delimiter, the string number is given after the feature code, S is used to start arc fitting and R is the Rectangle (make a parallelogram) command.

The listing of the raw file is now given, followed by a dump of a 12d Model view displaying the
job with string names (feature codes) and point numbers toggled on. The raw file 'Geodimeter.job' is in the Survey area of the training data. It can be converted into a 12d field file by using the default conversion macro geodat4d.4do.
<table>
<thead>
<tr>
<th>Description</th>
<th>Geodimeter file</th>
<th>Description</th>
<th>Geodimeter file</th>
</tr>
</thead>
<tbody>
<tr>
<td>run UDS 5 job name operator</td>
<td>0=OP CODE TEST 5=1005</td>
<td>point no 1005</td>
<td>5=1005</td>
</tr>
<tr>
<td>date</td>
<td>2=O CODE TEST</td>
<td>vertical angle</td>
<td>8=90.1203</td>
</tr>
<tr>
<td>UDS 6 station co-ordinates</td>
<td>3=1.500</td>
<td>slope distance</td>
<td>9=45.80</td>
</tr>
<tr>
<td></td>
<td>31=2001.0525</td>
<td>horizontal</td>
<td>7=149.4706</td>
</tr>
<tr>
<td></td>
<td>32=5000.000</td>
<td>target height</td>
<td>6=1.500</td>
</tr>
<tr>
<td></td>
<td>33=10.000</td>
<td>FC DL SN 1</td>
<td>4=DL1</td>
</tr>
<tr>
<td></td>
<td>34=10000.000</td>
<td></td>
<td>1=</td>
</tr>
<tr>
<td></td>
<td>35=1.654</td>
<td></td>
<td>90=0</td>
</tr>
<tr>
<td></td>
<td>36=2=1</td>
<td></td>
<td>5=1006</td>
</tr>
<tr>
<td>Feature code (FC) PISP</td>
<td>37=4=PSHT</td>
<td></td>
<td>8=90.1159</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9=65.80</td>
</tr>
<tr>
<td>UDS 8 point no 1000 vertical angle</td>
<td></td>
<td></td>
<td>7=149.4706</td>
</tr>
<tr>
<td>slope distance</td>
<td></td>
<td></td>
<td>6=1.500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4=DL1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1=</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90=0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5=1006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8=90.1159</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9=65.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7=149.4706</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6=1.500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4=DL1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1=</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90=0</td>
</tr>
<tr>
<td>*note that the string no. (SN)</td>
<td>UDS 1 12d op code 45</td>
<td></td>
<td>91=45</td>
</tr>
<tr>
<td>defaults to 0 point no 1001</td>
<td></td>
<td></td>
<td>91=41</td>
</tr>
<tr>
<td>vertical angle</td>
<td></td>
<td></td>
<td>92=THIS IS TO CHECK</td>
</tr>
<tr>
<td>slope distance</td>
<td></td>
<td></td>
<td>92=HOW TO USE THE</td>
</tr>
<tr>
<td>horizontal</td>
<td></td>
<td></td>
<td>92=OP CODE FN</td>
</tr>
<tr>
<td>target height</td>
<td></td>
<td></td>
<td>5=1007</td>
</tr>
<tr>
<td>FC EP SN 1 start arc</td>
<td></td>
<td></td>
<td>8=90.1219</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9=35.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7=139.4711</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6=1.500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4=EP2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1=</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90=0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5=1008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8=90.1214</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9=25.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7=139.4706</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6=1.500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4=RC1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1=</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90=0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5=1009</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8=90.1211</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9=15.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7=139.4706</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6=1.500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4=EP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1=</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90=0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>continue on next page</td>
</tr>
<tr>
<td>Description</td>
<td>Geodimeter file</td>
<td>Description</td>
<td>Geodimeter file</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------------</td>
<td>------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>point no 1010</td>
<td>5=1010</td>
<td>point no 1015</td>
<td>5=1015</td>
</tr>
<tr>
<td>vertical angle</td>
<td>8=90.1209</td>
<td>vertical angle</td>
<td>8=90.1141</td>
</tr>
<tr>
<td>slope distance</td>
<td>9=5.80</td>
<td>slope distance</td>
<td>9=75.80</td>
</tr>
<tr>
<td>horizontal</td>
<td>7=139.4709</td>
<td>horizontal</td>
<td>7=119.4709</td>
</tr>
<tr>
<td>target height</td>
<td>6=1.500</td>
<td>target height</td>
<td>6=1.500</td>
</tr>
<tr>
<td>FC PSHT SN 0</td>
<td>4=PSHT</td>
<td>FC TR SN 1</td>
<td>4=TR1</td>
</tr>
<tr>
<td>1=</td>
<td></td>
<td>1=</td>
<td></td>
</tr>
<tr>
<td>90=0</td>
<td></td>
<td>90=0</td>
<td></td>
</tr>
<tr>
<td>5=1011</td>
<td></td>
<td>5=1016</td>
<td></td>
</tr>
<tr>
<td>8=90.1141</td>
<td></td>
<td>UDS 1 12d op code 18</td>
<td></td>
</tr>
<tr>
<td>9=5.80</td>
<td></td>
<td>UDS 2 Radius 5</td>
<td></td>
</tr>
<tr>
<td>7=159.4714</td>
<td></td>
<td>which is ‘circle feature’</td>
<td></td>
</tr>
<tr>
<td>6=1.500</td>
<td></td>
<td>with a radius of 5</td>
<td></td>
</tr>
<tr>
<td>4=PSHT</td>
<td>1=</td>
<td>4=EP2</td>
<td></td>
</tr>
<tr>
<td>1=</td>
<td>90=0</td>
<td>1=</td>
<td></td>
</tr>
<tr>
<td>5=1012</td>
<td>90=0</td>
<td>90=0</td>
<td></td>
</tr>
<tr>
<td>8=90.1138</td>
<td>91=47</td>
<td>91=18</td>
<td></td>
</tr>
<tr>
<td>9=15.80</td>
<td>91=18</td>
<td>92=5</td>
<td></td>
</tr>
<tr>
<td>7=159.4711</td>
<td>5=1017</td>
<td>5=1016</td>
<td></td>
</tr>
<tr>
<td>6=1.500</td>
<td>8=90.1146</td>
<td>UDS 2 Radius 5</td>
<td></td>
</tr>
<tr>
<td>4=EP1</td>
<td>9=35.80</td>
<td>which is ‘circle feature’</td>
<td></td>
</tr>
<tr>
<td>1=</td>
<td>7=179.4713</td>
<td>with a radius of 5</td>
<td></td>
</tr>
<tr>
<td>90=0</td>
<td>6=1.500</td>
<td>6=1.500</td>
<td></td>
</tr>
<tr>
<td>5=1013</td>
<td>4=EP2</td>
<td>4=EP2</td>
<td></td>
</tr>
<tr>
<td>8=90.1141</td>
<td>1=</td>
<td>1=</td>
<td></td>
</tr>
<tr>
<td>9=25.80</td>
<td>90=0</td>
<td>90=0</td>
<td></td>
</tr>
<tr>
<td>7=159.4709</td>
<td>5=1018</td>
<td>point no 1018</td>
<td>5=1018</td>
</tr>
<tr>
<td>6=1.500</td>
<td>8=90.1145</td>
<td>vertical angle</td>
<td>8=90.1145</td>
</tr>
<tr>
<td>4=RC1</td>
<td>9=55.80</td>
<td>slope distance</td>
<td>9=55.80</td>
</tr>
<tr>
<td>1=</td>
<td>7=119.4713</td>
<td>horizontal</td>
<td>7=119.4713</td>
</tr>
<tr>
<td>90=0</td>
<td>6=1.500</td>
<td>target height</td>
<td>6=1.500</td>
</tr>
<tr>
<td>point no 1014</td>
<td>point no 1018</td>
<td>FC PFPP SN 1</td>
<td>point no 1018</td>
</tr>
<tr>
<td>vertical angle</td>
<td>5=1018</td>
<td>4=PFPP</td>
<td>4=PFPP</td>
</tr>
<tr>
<td>slope distance</td>
<td>8=90.1145</td>
<td>1=</td>
<td>1=</td>
</tr>
<tr>
<td>horizontal</td>
<td>9=55.80</td>
<td>90=0</td>
<td></td>
</tr>
<tr>
<td>target height</td>
<td>7=119.4713</td>
<td>UDS 1 12d op code 40</td>
<td></td>
</tr>
<tr>
<td>FC EP SN 2</td>
<td>6=1.500</td>
<td>which is ‘make a point</td>
<td></td>
</tr>
<tr>
<td>4=EP2</td>
<td></td>
<td>non-tinable’ This applied</td>
<td></td>
</tr>
<tr>
<td>1=</td>
<td></td>
<td>to the previous point</td>
<td></td>
</tr>
<tr>
<td>90=0</td>
<td></td>
<td>(1018)</td>
<td></td>
</tr>
<tr>
<td>UDS 1 12d op code 17</td>
<td>91=17</td>
<td>continued in next column</td>
<td></td>
</tr>
<tr>
<td>which is ‘arc through</td>
<td></td>
<td>UDS 1 12d op code 40</td>
<td></td>
</tr>
<tr>
<td>previous three points’</td>
<td></td>
<td>which is ‘make a point</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>non-tinable’ This applied</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>to the previous point</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1018)</td>
<td></td>
</tr>
</tbody>
</table>
Plan View with of the Reduced Geodimeter Data Displayed
with Point Numbers and String Names (Feature Codes) Turned On
The following raw field file has been taken from an QMRD Geodimeter 610 which has the QMRD UDS’s installed. The file can be converted into a 12d field file by using the geodat_qmrd.4do. Note the inclusion of the activity codes (61=) that have been added to the file with the use of the UDS’s. It also shows the use program 22 and the traverse extraction facility. For more information on traverse extraction see the section 36.6 Traverse coding.
<table>
<thead>
<tr>
<th>Description</th>
<th>Geodimeter file</th>
<th>Description</th>
<th>Geodimeter file</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity code from UDS</td>
<td>50=030602</td>
<td>5=STN1</td>
<td>4=TL1 ROSTN1</td>
</tr>
<tr>
<td></td>
<td>61=1</td>
<td>6=1.475</td>
<td>6=1.475</td>
</tr>
<tr>
<td></td>
<td>6=1.458</td>
<td>7=10.1654</td>
<td>7=10.1654</td>
</tr>
<tr>
<td></td>
<td>54=ROGER-RANGER</td>
<td>8=90.2218</td>
<td>8=90.2218</td>
</tr>
<tr>
<td></td>
<td>STN</td>
<td>9=162.710</td>
<td>9=162.710</td>
</tr>
<tr>
<td></td>
<td>0=OVERLAY</td>
<td>17=190.1657</td>
<td>17=190.1657</td>
</tr>
<tr>
<td></td>
<td>53=RAF</td>
<td>18=269.3740</td>
<td>18=269.3740</td>
</tr>
<tr>
<td></td>
<td>51=03-06-2002</td>
<td>24=10.1652</td>
<td>24=10.1652</td>
</tr>
<tr>
<td>Run UDS 6 to place activity code (61=) before program 22</td>
<td>61=22</td>
<td>25=90.2216</td>
<td>25=90.2216</td>
</tr>
<tr>
<td></td>
<td>0=P22</td>
<td>5=STN3</td>
<td>5=STN3</td>
</tr>
<tr>
<td></td>
<td>2=PSM45026 PBMK</td>
<td>4=TL1 FSSTN3</td>
<td>4=TL1 FSSTN3</td>
</tr>
<tr>
<td></td>
<td>3=1.561</td>
<td>6=1.486</td>
<td>6=1.486</td>
</tr>
<tr>
<td></td>
<td>5=STN1</td>
<td>7=195.4510</td>
<td>7=195.4510</td>
</tr>
<tr>
<td>foresight to STN1, traverse line(TL), string 1</td>
<td>4=TL1 FSSTN1</td>
<td>8=90.0511</td>
<td>8=90.0511</td>
</tr>
<tr>
<td></td>
<td>6=1.475</td>
<td>9=257.710</td>
<td>9=257.710</td>
</tr>
<tr>
<td></td>
<td>7=213.0004</td>
<td>17=15.4508</td>
<td>17=15.4508</td>
</tr>
<tr>
<td></td>
<td>8=89.1413</td>
<td>18=269.5452</td>
<td>18=269.5452</td>
</tr>
<tr>
<td></td>
<td>9=98.297</td>
<td>24=195.4513</td>
<td>24=195.4513</td>
</tr>
<tr>
<td></td>
<td>17=33.0014</td>
<td>25=90.0514</td>
<td>25=90.0514</td>
</tr>
<tr>
<td></td>
<td>18=270.4550</td>
<td>61=22</td>
<td>61=22</td>
</tr>
<tr>
<td></td>
<td>24=213.0009</td>
<td>0=P22</td>
<td>0=P22</td>
</tr>
<tr>
<td></td>
<td>25=89.1417</td>
<td>2=STN3 PISP</td>
<td>2=STN3 PISP</td>
</tr>
<tr>
<td>UDS 6 run to label activity code</td>
<td>61=22</td>
<td>3=1.581</td>
<td>3=1.581</td>
</tr>
<tr>
<td></td>
<td>0=P22</td>
<td>5=STN2</td>
<td>5=STN2</td>
</tr>
<tr>
<td></td>
<td>2=STN1 PISP</td>
<td>4=TL1 ROSTN2</td>
<td>4=TL1 ROSTN2</td>
</tr>
<tr>
<td></td>
<td>3=1.570</td>
<td>6=1.448</td>
<td>6=1.448</td>
</tr>
<tr>
<td></td>
<td>5=PSM45026</td>
<td>7=187.1306</td>
<td>7=187.1306</td>
</tr>
<tr>
<td>Backsight(RO) reading, trav line 1 to PSM45026</td>
<td>4=TL1 RPSM45026</td>
<td>8=89.5740</td>
<td>8=89.5740</td>
</tr>
<tr>
<td></td>
<td>6=1.468</td>
<td>9=257.710</td>
<td>9=257.710</td>
</tr>
<tr>
<td></td>
<td>7=32.5955</td>
<td>17=7.1306</td>
<td>17=7.1306</td>
</tr>
<tr>
<td></td>
<td>8=90.5246</td>
<td>18=270.0232</td>
<td>18=270.0232</td>
</tr>
<tr>
<td></td>
<td>9=98.300</td>
<td>24=187.1306</td>
<td>24=187.1306</td>
</tr>
<tr>
<td></td>
<td>17=212.5956</td>
<td>25=89.5752</td>
<td>25=89.5752</td>
</tr>
<tr>
<td></td>
<td>18=269.05716</td>
<td>5=STN4</td>
<td>5=STN4</td>
</tr>
<tr>
<td></td>
<td>24=32.5955</td>
<td>4=TL1 FSSTN4</td>
<td>4=TL1 FSSTN4</td>
</tr>
<tr>
<td></td>
<td>25=90.5249</td>
<td>6=1.400</td>
<td>6=1.400</td>
</tr>
<tr>
<td></td>
<td>5=STN2</td>
<td>7=23.1437</td>
<td>7=23.1437</td>
</tr>
<tr>
<td>foresight to STN2, traverse line(TL), string 1</td>
<td>4=TL1 FSSTN2</td>
<td>8=87.3949</td>
<td>8=87.3949</td>
</tr>
<tr>
<td></td>
<td>6=1.448</td>
<td>9=173.958</td>
<td>9=173.958</td>
</tr>
<tr>
<td></td>
<td>7=182.1037</td>
<td>17=203.1434</td>
<td>17=203.1434</td>
</tr>
<tr>
<td>and so forth....</td>
<td>8=89.4211</td>
<td>18=272.2031</td>
<td>18=272.2031</td>
</tr>
<tr>
<td></td>
<td>9=162.710</td>
<td>24=23.1440</td>
<td>24=23.1440</td>
</tr>
<tr>
<td></td>
<td>17=2.1040</td>
<td>25=87.4008</td>
<td>25=87.4008</td>
</tr>
<tr>
<td></td>
<td>18=270.1759</td>
<td>61=22</td>
<td>61=22</td>
</tr>
<tr>
<td></td>
<td>24=182.1032</td>
<td>0=P22</td>
<td>0=P22</td>
</tr>
<tr>
<td></td>
<td>25=89.4221</td>
<td>2=STN4 PISP</td>
<td>2=STN4 PISP</td>
</tr>
<tr>
<td></td>
<td>61=22</td>
<td>3=1.546</td>
<td>3=1.546</td>
</tr>
<tr>
<td></td>
<td>0=P22</td>
<td>5=STN3</td>
<td>5=STN3</td>
</tr>
<tr>
<td></td>
<td>2=STN2 PISP</td>
<td>4=TL1 ROSTN3</td>
<td>4=TL1 ROSTN3</td>
</tr>
<tr>
<td></td>
<td>3=1.542</td>
<td>6=1.487</td>
<td>6=1.487</td>
</tr>
<tr>
<td></td>
<td>5=STN1</td>
<td>continue on next page</td>
<td>continue on next page</td>
</tr>
<tr>
<td>Description</td>
<td>Geodimeter file</td>
<td>Description</td>
<td>Geodimeter file</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>7=199.0404</td>
<td>0=P22</td>
<td>8=92.2432</td>
<td>2=STN6 PISP</td>
</tr>
<tr>
<td>8=92.2432</td>
<td></td>
<td>9=173.963</td>
<td>3=1.591</td>
</tr>
<tr>
<td>9=173.963</td>
<td></td>
<td>17=19.0353</td>
<td>5=STN5</td>
</tr>
<tr>
<td>17=19.0353</td>
<td></td>
<td>18=267.3552</td>
<td>4=TL1 ROSTN5</td>
</tr>
<tr>
<td>18=267.3552</td>
<td></td>
<td>24=199.0414</td>
<td>6=1.458</td>
</tr>
<tr>
<td>24=199.0414</td>
<td></td>
<td>25=92.2456</td>
<td>7=179.5456</td>
</tr>
<tr>
<td>25=92.2456</td>
<td></td>
<td>5=STN5</td>
<td>8=90.0633</td>
</tr>
<tr>
<td>5=STN5</td>
<td></td>
<td>4=TL1 FSSTN5</td>
<td>9=179.821</td>
</tr>
<tr>
<td>4=TL1 FSSTN5</td>
<td></td>
<td>6=1.457</td>
<td>17=359.5457</td>
</tr>
<tr>
<td>6=1.457</td>
<td></td>
<td>7=34.4057</td>
<td>18=269.5333</td>
</tr>
<tr>
<td>7=34.4057</td>
<td></td>
<td>8=88.1846</td>
<td>24=179.5456</td>
</tr>
<tr>
<td>8=88.1846</td>
<td></td>
<td>9=151.526</td>
<td>25=90.0639</td>
</tr>
<tr>
<td>9=151.526</td>
<td></td>
<td>17=214.4059</td>
<td>5=STN7</td>
</tr>
<tr>
<td>17=214.4059</td>
<td></td>
<td>18=271.4140</td>
<td>4=TL1 FSSTN7</td>
</tr>
<tr>
<td>18=271.4140</td>
<td></td>
<td>24=34.4055</td>
<td>6=1.453</td>
</tr>
<tr>
<td>24=34.4055</td>
<td></td>
<td>25=88.1912</td>
<td>7=7.5532</td>
</tr>
<tr>
<td>25=88.1912</td>
<td></td>
<td>61=22</td>
<td>8=91.2051</td>
</tr>
<tr>
<td>61=22</td>
<td></td>
<td>0=P22</td>
<td>9=149.687</td>
</tr>
<tr>
<td>0=P22</td>
<td></td>
<td>2=STN5 PISP</td>
<td>17=187.5533</td>
</tr>
<tr>
<td>2=STN5 PISP</td>
<td></td>
<td>3=1.552</td>
<td>18=268.3914</td>
</tr>
<tr>
<td>3=1.552</td>
<td></td>
<td>5=STN4</td>
<td>24=7.5531</td>
</tr>
<tr>
<td>5=STN4</td>
<td></td>
<td>4=TL1 ROSTN4</td>
<td>25=91.2056</td>
</tr>
<tr>
<td>4=TL1 ROSTN4</td>
<td></td>
<td>6=1.452</td>
<td>61=22</td>
</tr>
<tr>
<td>6=1.452</td>
<td></td>
<td>7=184.4113</td>
<td>0=P22</td>
</tr>
<tr>
<td>7=184.4113</td>
<td></td>
<td>8=91.4601</td>
<td>2=STN7 PISP</td>
</tr>
<tr>
<td>8=91.4601</td>
<td></td>
<td>9=151.527</td>
<td>3=1.547</td>
</tr>
<tr>
<td>9=151.527</td>
<td></td>
<td>17=4.4111</td>
<td>5=STN6</td>
</tr>
<tr>
<td>17=4.4111</td>
<td></td>
<td>18=268.1402</td>
<td>4=TL1 ROSTN6</td>
</tr>
<tr>
<td>18=268.1402</td>
<td></td>
<td>24=184.4114</td>
<td>6=1.496</td>
</tr>
<tr>
<td>24=184.4114</td>
<td></td>
<td>25=91.4603</td>
<td>7=196.4115</td>
</tr>
<tr>
<td>25=91.4603</td>
<td></td>
<td>5=STN6</td>
<td>8=88.4357</td>
</tr>
<tr>
<td>5=STN6</td>
<td></td>
<td>4=TL1 FSSTN6</td>
<td>9=149.679</td>
</tr>
<tr>
<td>4=TL1 FSSTN6</td>
<td></td>
<td>6=1.496</td>
<td>17=16.4116</td>
</tr>
<tr>
<td>6=1.496</td>
<td></td>
<td>7=19.0418</td>
<td>18=271.1600</td>
</tr>
<tr>
<td>7=19.0418</td>
<td></td>
<td>8=89.5731</td>
<td>24=196.4115</td>
</tr>
<tr>
<td>8=89.5731</td>
<td></td>
<td>9=179.824</td>
<td>25=88.4353</td>
</tr>
<tr>
<td>9=179.824</td>
<td></td>
<td>17=199.0420</td>
<td>5=STN8</td>
</tr>
<tr>
<td>17=199.0420</td>
<td></td>
<td>18=270.0229</td>
<td>4=TL1 FSSTN8</td>
</tr>
<tr>
<td>18=270.0229</td>
<td></td>
<td>24=19.0416</td>
<td>6=1.478</td>
</tr>
<tr>
<td>24=19.0416</td>
<td></td>
<td>25=89.5730</td>
<td>7=8.1420</td>
</tr>
<tr>
<td>25=89.5730</td>
<td></td>
<td>61=22</td>
<td>8=91.5307</td>
</tr>
<tr>
<td>61=22</td>
<td></td>
<td>continued in next column</td>
<td>continue on next page</td>
</tr>
<tr>
<td>Description</td>
<td>Geodimeter file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17=188.1422</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18=268.0657</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24=6.1418</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25=91.5310</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61=22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0=P22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2=STN8 PISP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3=1.574</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5=STN7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4=TL1 ROSTN7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6=1.453</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7=181.1643</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8=88.1026</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9=205.939</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17=1.1647</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18=271.4934</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24=181.1638</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25=88.1026</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5=STN9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4=TL1 FSSTN9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6=1.517</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7=89.1311</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9=199.132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17=179.0523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18=270.4648</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24=359.0523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25=89.1310</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61=22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0=P22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2=STN9 PISP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3=1.614</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5=STN8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4=TL1 ROSTN8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6=1.478</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7=173.0014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8=90.5031</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9=199.132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17=353.0017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18=269.0934</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24=173.0011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25=90.5037</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>continued in next column</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Geodimeter file</th>
</tr>
</thead>
<tbody>
<tr>
<td>5=STN10</td>
<td></td>
</tr>
<tr>
<td>4=TL1 FSSTN10</td>
<td></td>
</tr>
<tr>
<td>6=1.400</td>
<td></td>
</tr>
<tr>
<td>7=345.0918</td>
<td></td>
</tr>
<tr>
<td>8=86.2903</td>
<td></td>
</tr>
<tr>
<td>9=221.043</td>
<td></td>
</tr>
<tr>
<td>17=165.0917</td>
<td></td>
</tr>
<tr>
<td>18=273.3103</td>
<td></td>
</tr>
<tr>
<td>24=345.0920</td>
<td></td>
</tr>
<tr>
<td>25=86.2908</td>
<td></td>
</tr>
<tr>
<td>61=22</td>
<td></td>
</tr>
<tr>
<td>0=P22</td>
<td></td>
</tr>
<tr>
<td>2=STN10 PISP</td>
<td></td>
</tr>
<tr>
<td>3=1.583</td>
<td></td>
</tr>
<tr>
<td>5=STN9</td>
<td></td>
</tr>
<tr>
<td>4=TL1 ROSTN9</td>
<td></td>
</tr>
<tr>
<td>6=1.517</td>
<td></td>
</tr>
<tr>
<td>7=165.4152</td>
<td></td>
</tr>
<tr>
<td>8=93.3413</td>
<td></td>
</tr>
<tr>
<td>9=221.053</td>
<td></td>
</tr>
<tr>
<td>17=345.4122</td>
<td></td>
</tr>
<tr>
<td>18=266.2600</td>
<td></td>
</tr>
<tr>
<td>24=165.4221</td>
<td></td>
</tr>
<tr>
<td>25=93.3425</td>
<td></td>
</tr>
<tr>
<td>5=STN11</td>
<td></td>
</tr>
<tr>
<td>4=TL1 FSSTN11</td>
<td></td>
</tr>
<tr>
<td>6=1.460</td>
<td></td>
</tr>
<tr>
<td>7=0.2903</td>
<td></td>
</tr>
<tr>
<td>8=86.1535</td>
<td></td>
</tr>
<tr>
<td>9=215.241</td>
<td></td>
</tr>
<tr>
<td>17=180.2930</td>
<td></td>
</tr>
<tr>
<td>18=273.4438</td>
<td></td>
</tr>
<tr>
<td>24=0.2836</td>
<td></td>
</tr>
<tr>
<td>25=86.1548</td>
<td></td>
</tr>
<tr>
<td>5=ERICC</td>
<td></td>
</tr>
<tr>
<td>61=1</td>
<td></td>
</tr>
<tr>
<td>50=ERICC</td>
<td></td>
</tr>
<tr>
<td>54=ROGER-RANGER STN</td>
<td></td>
</tr>
<tr>
<td>53=ECB</td>
<td></td>
</tr>
<tr>
<td>51=04-06-2002</td>
<td></td>
</tr>
<tr>
<td>61=22</td>
<td></td>
</tr>
<tr>
<td>continue on next page</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Geodimeter file</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>0=P22</td>
<td>2=STN11 PISP</td>
</tr>
<tr>
<td>4=TL1 ROSTN10</td>
<td>6=1.520</td>
</tr>
<tr>
<td>9=215.253</td>
<td>17=311.1639</td>
</tr>
<tr>
<td>25=93.4738</td>
<td>5=STN12</td>
</tr>
<tr>
<td>4=TL1 FSSTN12</td>
<td>8=87.2924</td>
</tr>
<tr>
<td>6=1.477</td>
<td>18=272.3034</td>
</tr>
<tr>
<td>25=93.4738</td>
<td>18=272.3034</td>
</tr>
<tr>
<td>6=1.477</td>
<td>18=272.3034</td>
</tr>
<tr>
<td>61=22</td>
<td>0=P22</td>
</tr>
<tr>
<td>5=STN11</td>
<td>4=TL1 ROSTN11</td>
</tr>
<tr>
<td>6=1.477</td>
<td>8=92.3416</td>
</tr>
<tr>
<td>18=267.2611</td>
<td>24=11.1449</td>
</tr>
<tr>
<td>5=STN13</td>
<td>4=TL1 FSSTN13</td>
</tr>
<tr>
<td>6=1.443</td>
<td>8=89.1045</td>
</tr>
</tbody>
</table>
37.6 12d and Topcon Instruments

The Topcon data format is used as a raw data file by 12d Model and is converted into a 12d Field File before reduction.
Description	Sokkia SDR 20 File
00 - SDR format	00NMSDR20 V03-05 03-Aug-00 09:00 111121
10NM1697 DETAIL	
13CPSea level crn: N	
13CPC and R crn: N	
13CPAtmos crn: N	
06NM1.0000000	
13OOCurrent view	
13TS02-Aug-00 08:23	
13JS10000	
13TS02-Aug-00 08:25	
01NM:	000000
13NPC.P. mm Applied: 0.000	
02 - station details for pt 902	02TP09020982.770005096.700000115.7500001.7400000STN
02TP09011000.000000500.00000100.00001.6650000STN	
07 - back bearing from pt 901 to 902	07TP09010902349.895000349.895000
03NPC.P. mm Applied: 0.000	
03 - target height	03NM1.44000000
check shot from pt 901 to pt 902	
measurement	FC TBL SN 1 Pt 1003
FC TBL SN 1 Pt 1003	
FC BB SN 1 Pt 1006	
FC ES SN 3 Pt 1009 start template	
FC CR SN 4 Pt 1010	
FC ES SN 5 Pt 1011	
start using template in zig mode	
using template	
pause template - meas FC PP SN 0	
continue with template	
start arc through 3 points	
start arc through 3 points	
start arc through 3 points	
end arc through 3 points	
end arc through 3 points	
end arc, stop template	
FC BB SN 6 Pt 1030	
FC SWUG SN 7 Pt 1032 obv 0.225 dia	
FC SWUG SN 7 Pt 1033 invert meas	
FC BB SN 8 Pt 1034	
FC WA SN 11 Pt 1040	
FC WA SN 11 Pt 1042
FC WA SN 11 Pt 1043 close string
FC WA SN 12 Pt 1044
FC WA SN 12 Pt 1045
FC WA SN 12 Pt 1046 create rect
FC PL SN 13 Pt 1048
omit part of file
FC TBL SN 21 Pt 1103
FC TR0306 SN 0 comment GUM
FC TR0309 SN 0 comment GUM
FC TR0306 SN 0 comment GUM
FC TR0308 SN 0 comment GUM
02 station details pt 902
07 back bearing from pt 902 to 901
03 target height
check measurement to pt 901
FN DW SN 21 Pt 1202
FC DW SN 21 Pt 1203
omit part of file
FC FE SN 25 Pt 1346 non tin segm
FC FE SN 25 Pt 1347
omit part of file
Pt 2135 FC DW SN 25 start arc
and also FC WA SN 28

09F10901104206.213000089.720000305.83194411WA
09F10901104306.116000090.3575000300.03777711WA*C
09F10901104403.100000090.0911111314.07277712WA
09F10901104502.970000089.6530555327.17166612WA
09F10901104600.760000099.521944351.28472212WA*R
09F109011048027.452000090.7930555258.30333313PL
omit part of file
09F109011103021.21900088.8433333293.5322221TBL
09F109011105012.690000087.209444438.3036111TR0306 GUM
09F109011106017.95900086.5733333336.3436111TR0309 GUM
09F109011107019.97400086.607777723.2163889TR0306 GUM
09F109011108026.78400086.450833323.7155556TR0309 GUM
09F109011109027.38900085.6861111358.7341666TR0608 GUM
02TP09020982.7700005096.710000115.7500001.7100000STN
07TP09020910169.895000169.895000
03NM1.440000000
09F1090212001099.43000099.2611111169.8936111CHK901
09F109021202038.369000100.2900000182.12666612DW*S
09F109021203033.80100099.7461111190.31638821DW
omit part of file
09F10902134604.867000085.2255555.8144444025FE*NX
09F109021347010.66400085.510000060.870277825FE
omit part of file
09F10902135708.003000085.01361113.5244444027DW*S*28WA
omit to end of file
Plan View with of the Reduced Sokkia Data Displayed
Note that no linestyles or symbols have been turned on.
38 Geodetics Summary

Various options in 12d Model use geodetic calculations to present and change data. These options use terminology that are common to the field of geodetics, which will be defined here.

Most of the terminology adopted follows definitions given in the Australian GDA Technical Manual which is published by the Intergovernmental Committee on Surveying and Mapping (ICSM). This publication is a valuable reference document and the reader is encouraged to obtain a copy for a full understanding of the topic. The document can be accessed on the internet at the following address http://www.icsm.gov.au/gda/tech.html

See

38.1 Shape Of The Earth
38.2 Geodetic Coordinates
38.3 Map (Cartographic) Projections
38.4 Terminology
38.5 Converting Between AMG, ISG and MGA
38.1 Shape Of The Earth

The determination of the Earth’s shape is a science known as Geodesy. Today, it is widely accepted that the Earth’s shape best approximates an ellipsoid that has been revolved around the Earth’s polar axis. Put another way, the shape is a sphere that has been squashed at the north and south poles. The non-spherical shape is due to gravity.

A number of ellipsoids have been calculated to best approximate the Earth’s shape at local locations and the earth as a whole. The best fit is concerned with matching the Earth’s equipotential gravity field (the Geoid that is best approximated by Mean Sea Level), to a geometric ellipsoid shape. As such, there a wide number of definitions.

Some commonly used ellipsoids are:

1. **GRS80**

<table>
<thead>
<tr>
<th>Ellipsoid</th>
<th>Semi-major axis</th>
<th>Inverse flattening</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRS80</td>
<td>6,378,137.0</td>
<td>298.257222101</td>
</tr>
</tbody>
</table>

From GDA Technical Manual
This ellipsoid is used for Australia's GDA definition (Geocentric Datum of Australia GDA 94) used for MGA (Map Grid of Australia) calculations, New Zealand's NZGD2000 datum as well as other geocentric earth model datums around the world.

2. ANS

<table>
<thead>
<tr>
<th>Ellipsoid</th>
<th>Semi-major axis</th>
<th>Inverse flattening</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANS</td>
<td>6,378,160</td>
<td>298.25</td>
</tr>
</tbody>
</table>

This was the ellipsoid used to define the Australian Geodetic datum (AGD 84) used for AMG (Australian Map Grid) calculations and ISG (Integrated Survey Grid) co-ordinates.

3. NZ Geodetic 49

<table>
<thead>
<tr>
<th>Ellipsoid</th>
<th>Semi-major axis</th>
<th>Inverse flattening</th>
</tr>
</thead>
<tbody>
<tr>
<td>NZ Geodetic 49</td>
<td>6,378,399.065</td>
<td>297.0</td>
</tr>
</tbody>
</table>

This was the ellipsoid used to define the NZ 1949 Geodetic datum. The semi-major axis given here has been adjusted to compensate for errors in units conversion from links to meters.

Continue to the next section 38.2 Geodetic Coordinates or return to 38 Geodetics Summary.
38.2 Geodetic Coordinates

Once an ellipsoid or **Geodetic Datum** is defined, a position on the earth’s surface can be described in terms of Geodetic coordinates. These coordinates are **Longitude**, **Latitude** and **Ellipsoid height**.

Longitude is a angular quantity measured from the Greenwich meridian. It is most commonly described in terms of degrees, minutes, seconds East or west of the Greenwich meridian.

Latitude is a angular quantity measured from the equatorial plane, to the plane defined by the point position and the plumb line to the ellipsoid surface. It is most commonly described in terms of degrees, minutes, seconds South or North to the equator.

The **ellipsoid height**, \(h \) is the height above the reference ellipsoid. Most height datums are not based on ellipsoid height but are based on the **geoid**. e.g. AHD in Australia.
As such, levels from GPS observations (which are *ellipsoid* heights) need to be corrected to a *geoidal* or *orthometric height*. To do this, we require the separation or gap distance between the two different surfaces. This separation is known as the *N value*.

The **Ellipsoid height** = Geoid height + N value

or

\[h = H + N \]

N values can be defined in a geoidal model such as *Ausgeoid98* which represents grids of *N* values over all of Australia.

For a given Geodetic coordinate, an N value can be interpolated from the model and applied to the ellipsoid height to give a geoidal height. Similarly, the N value can be used to convert a geoidal height to an ellipsoid height.

Since most geodetic calculations are made on the ellipsoid, the **ellipsoid height** is required for precise calculations.

Continue to the next section *38.3 Map (Cartographic) Projections* or return to *38 Geodetics Summary*.
38.3 Map (Cartographic) Projections

In order to represent ellipsoid data on a flat surface for mapping, it is necessary to use a projection. A projection enables points on the earth's surface to be mathematically projected onto an imaginary developable surface. This surface can then be developed or "rolled flat". Typically, this surface is a cylinder or cone.

The Transverse Mercator system (TM) projects coordinates onto a cylinder that is tangent to the equator and the entire length of a meridian of Longitude.

12d Model allows a number of projections to be specified including, Universal Transverse Mercator (UTM), Transverse Mercator (TM) and Rectified Skew Orthomorphic (RSO). There are many more available using the General type.

Within 12d Model, a projection can be defined that specifies both the reference ellipsoid and projection type. This then can be used for geodetic calculations.

A projection has various parameters that define it. These are specific to the projection and are clearly defined for major mapping systems. For example MGA94 zone 56 projection is defined as follows:

Continue to the next section 38.4 Terminology or return to 38 Geodetics Summary.
38.4 Terminology

The various geodetic options in 12d Model mostly use standard geodetic terminology as defined in the Australian GDA technical manual. For clarity, they will be defined again here. For some options it is important to note that some terminology used in Australia has quite a differing meaning in other countries.

See

38.4.1 Ellipsoid Distance
38.4.2 Bearings and Distances - Plane and Grid
38.4.3 Plane Bearing, Projection Bearing
38.4.4 Australian Grid Bearing, Ellipsoid Bearing
38.4.5 Plane Distance
38.4.6 Australian Grid Distance
38.4.7 Datum
38.4.8 Zone
38.4.9 Arc-to-Chord Correction (l-T correction)
38.4.10 Point Scale Factor
38.4.11 Line Scale Factor
38.4.12 Combined Point Scale Factor
38.4.13 Azimuth and Convergence
38.4.1 Ellipsoid Distance

The **ellipsoid distance** is the reduced distance along the *surface* of the ellipsoid. Standard survey measurements are reduced to the horizontal but require a correction due to the height above the ellipsoid. This is usually done by a **height scale factor** which takes into account the ellipsoid height at each end of the measured line. i.e.

\[
HeightScaleFactor = 1 - \frac{h_M}{R + h_M}
\]

Where:

- \(h_M \) = Mean terrain height (mean of the two ellipsoid heights at either end of the measured line)
- \(R \) = Radius of the earth in the azimuth of the line.

Note: An error of 60 meters in the value of \(h_M \) will introduce an error of 10 ppm in the reduced ellipsoid distance. With the introduction of the Australian Geocentric datums, the N values have increased markedly over Australia. So even if a survey is undertaken at sea level (Geoid height approximately 0.0), the ellipsoid heights may very well be greater than 60 meters. As The Ellipsoid height = Geoid height + N value, N values should be considered when reducing measured distances to these datums.

For older Australian ellipsoids, Mean seal level approximated the surface of the ellipsoid (i.e. N value approximately 0.0), so corrections could use geoidal heights to bring the distances down onto the reference surface.

The ellipsoid distance can be calculated using the calculated height factor:

Ellipsoid Distance = Reduced Horizontal Distance \(\times \) height scale factor.

Continue to the next section 38.4.2 **Bearings and Distances - Plane and Grid** or return to 38.4 **Terminology** or 38 **Geodetics Summary**.
38.4.2 Bearings and Distances - Plane and Grid

If you have a point on an ellipsoid and a Transverse Mercator projection (such as UTM), the projection co-ordinates are known as the grid co-ordinates of the point (Easting and Northing).

On an ellipsoid, the straight line joining two points is the Great circle between the two points. If each point along the Great circle is projected onto the grid, the path that is traced out is an arc between the points.

That is, the straight lines on an ellipsoid project onto the TM grid as arcs.

In the diagram below, the Great circle arc through points A and B on the ellipse projects onto the arc shown through Points A and B in grid co-ordinates.

So the straight line joining the two points in the plane is different from the projection of the great circle (straight line on the ellipse) joining the two points on the ellipse.

Continue to the next section 38.4.3 Plane Bearing, Projection Bearing or return to 38.4 Terminology or 38 Geodetics Summary.
38.4.3 Plane Bearing, Projection Bearing

If a straight line is drawn in the plane between two points on a grid, the angle between grid north and this line is equal to the plane bearing.

In other words, if the two point's coordinates are known, standard plane trigonometry can be used to calculate the bearing of the line.

\[
\tan(\text{plane bearing}) = \frac{(E_2 - E_1)}{(N_2 - N_1)}
\]

Projection bearing and plane bearing is used interchangeably in 12d Model.

Continue to the next section 38.4.4 Australian Grid Bearing, Ellipsoid Bearing or return to 38.4 Terminology or 38 Geodetics Summary.

38.4.4 Australian Grid Bearing, Ellipsoid Bearing

In Australia, the grid bearing is the angle between grid north and the tangent to arc at a point on the arc. e.g Point A. The grid bearing at point A is not equal to the reverse grid bearing from point B.

This term is also known as the ellipsoid bearing in some countries.

Warning: In some countries, including New Zealand and the US, the term Grid bearing is used for the previously defined term Plane bearing. However, as defined in the Australian GDA technical manual, the definition of Grid bearing is different to that of a plane bearing.

To avoid confusion, we will use the term ellipsoid bearing.

Continue to the next section 38.4.5 Plane Distance or return to 38.4 Terminology or 38 Geodetics Summary.

38.4.5 Plane Distance

The plane distance is the length in the plane of the straight line joining two points on a grid - that is, the standard distance between two points in a plane.

\[
\text{plane distance} = \sqrt{(E_2 - E_1)^2 + (N_2 - N_1)^2}
\]

Continue to the next section 38.4.6 Australian Grid Distance or return to 38.4 Terminology or 38 Geodetics Summary.
38.4.6 Australian Grid Distance

On an ellipsoid, the *straight line* joining two points on the ellipsoid is the Great circle between the two points. The *straight lines* on an ellipsoid project onto the UTM grid as arcs. In the diagram below, the arc shown through points A and B is the projection of the Great circle arc through points A and B on the ellipse.

In Australia, the *grid distance* is the distance on this *arc* from point A to B.

The difference between the plane distance and the grid distance is usually negligible.

Warning: In some countries, the term *grid distance* is used for the definition of plane distance here.

Continue to the next section 38.4.7 *Datum* or return to 38.4 *Terminology* or 38 *Geodetics Summary*.
38.4.7 Datum

Within the Geodetic sections of 12d Model, the term *datum* relates to the reference ellipsoid adopted by countries/organisations for mapping projects.

For example AGD is the Australian Geodetic Datum, using the ANS ellipsoid parameters. GDA refers to the Geodetic Datum of Australia, using the GRS80 ellipsoid as the basis for defining geodetic coordinates.

In New Zealand, the NZGD49 datum refers to the NZ Geodetic 49 ellipsoid. The NZGD2000 datum is the New Zealand geodetic datum which again refers to the GRS80 ellipsoid.

Continue to the next section 38.4.8 Zone or return to 38.4 Terminology or 38 Geodetics Summary.

38.4.8 Zone

The meaning of *zone* is specific to the UTM projection type which is commonly used around the world as a mapping projection. This includes AMG and MGA in Australia.

The Universal Transverse Mercator projection splits the world into 60 zones of 6 degrees of longitude. The zone numbering starts at 180 degrees West, longitude. Each zone has a specific central meridian and range of longitude that defines it. As such, by supplying a zone number, a number of parameters about a projection can be deduced.

For example, Australia is covered by the UTM zones 49 to 56.

Continue to the next section 38.4.9 Arc-to-Chord Correction (\(t-T\) correction) or return to 38.4 Terminology or 38 Geodetics Summary.
38.4.9 Arc-to-Chord Correction (t-T correction)

The *arc-to-chord* correction is the quantity to be added algebraically to an ellipsoid bearing (Australian grid bearing) to obtain a plane bearing.

\[
\text{Plane Bearing} = \text{Ellipsoid Bearing} + \text{Arc-To-Chord Correction}
\]

\[
\text{Plane Bearing} = \text{Australian Grid Bearing} + \text{Arc-To-Chord Correction}
\]

This correction is only really applicable for lines over 10 km but it is included in calculations for completeness. The correction shown in the example below is negative in sign but it can also be positive.

Continue to the next section 38.4.10 Point Scale Factor or return to 38.4 Terminology or 38 Geodetics Summary.
38.4.10 Point Scale Factor

The **point scale factor** is the ratio of an infinitesimal plan distance at a point on a grid to a corresponding ellipsoid distance.

It can be used as an approximation to convert (factor) measured ellipsoid distances to plane distances.

Continue to the next section 38.4.11 Line Scale Factor or return to 38.4 Terminology or 38 Geodetics Summary.

38.4.11 Line Scale Factor

The **line scale factor** is the ratio of the plane distance on a grid to a corresponding ellipsoid distance. i.e.

\[
\text{LineScaleFactor} = \frac{\text{PlanDist}}{\text{EllipsoidDist}}
\]

This factor can be used to calculate either the plane or ellipsoid distance given the Line Scale Factor and the other distance. i.e.

Plane distance = Ellipsoid distance x Line scale factor,

Similarly,

Ellipsoid distance = Plane distance / Line scale factor.

Continue to the next section 38.4.12 Combined Point Scale Factor or return to 38.4 Terminology or 38 Geodetics Summary.

38.4.12 Combined Point Scale Factor

The **combined point scale factor** is the product of the point scale factor and the height scale factor. i.e.

Combined Scale Factor = Point Scale Factor x Height Scale Factor.

Continue to the next section 38.4.13 Azimuth and Convergence or return to 38.4 Terminology or 38 Geodetics Summary.
38.4.13 Azimuth and Convergence

Azimuth is the horizontal angle measured from an *ellipsoidal meridian clockwise from north* and the great circle between measured points.

It is also known as the *True Azimuth*. In general, this value will be calculated internally in 12d Model.

Convergence or *Grid Convergence* is the angular quantity to be added algebraically to an *Azimuth* to obtain an ellipsoid bearing (Australian grid bearing). i.e.

Ellipsoid Bearing = Azimuth + Grid Convergence

Australian Grid Bearing = Azimuth + Grid Convergence

Warning: In some countries, the *Grid Convergence* has the opposite sign.

Combining

Ellipsoid Bearing = Azimuth + Grid Convergence

Australian Grid Bearing = Azimuth + Grid Convergence

and

Plane Bearing = Ellipsoid Bearing + Arc-To-Chord Correction

Plane Bearing = Australian Grid Bearing + Arc-To-Chord Correction

produces the equation

Plane Bearing = Azimuth + Grid Convergence + Arc-To-Chord Correction

or
Azimuth = Plane Bearing - Grid Convergence - Arc-To-Chord Correction
True Azimuth = Plane Bearing - Grid Convergence - Arc-To-Chord Correction

Warning: In some countries, the *Grid Convergence* has the opposite sign.

Please continue to the next section [38.5 Converting Between AMG, ISG and MGA](#) or return to [38.4 Terminology](#) or [38 Geodetics Summary](#).
38.5 Converting Between AMG, ISG and MGA

In Australia the ellipsoid used to represent the shape of the earth used to be defined by AGD 84 but it has now has been changed to an ellipsoid that has its centre at the centre of mass of the earth (geocentric - GDA 94). See 38.1 Shape Of The Earth.

This is to fit in with GPS because satellites orbits are centred on the centre of mass.

This means that the Latitude and Longitude of every point has changed.

The use of UTM projections (Universal Transverse Mercator - see 38.3 Map (Cartographic) Projections) and Zones still apply but because the latitude and longitude of each point has change, its Easting and Northing for a UTM zone has also changed.

AMG 84 Zones are the co-ordinates for the UTM Projections defined for six degree zones using the ellipsoid defined by AGD 84.

MGA 94 Zones are the co-ordinates for the UTM Projections defined for six degree zones using ellipsoid define by GDA 94.

Note - ISG 84 Zones are the co-ordinates for the TM Projections defined for two degree zones using the ellipsoid defined by AGD 84.

For converting between the different datums AGD66/84 and GDA94 (i.e. AMG, ISG, Long Lat <-> MGA, Long Lat), use the option

Survey =>Conversions =>AGD66/84 <-> GDA94 (see 17.10.4 AGD66/84 <-> GDA94)

For converting between different AMG Zones (AMG <->AMG) or different MGA Zones (MGA->MGA) use the option

Survey =>Conversions =>Australian conversions. See 17.10.1 Australian Conversions.

For converting between different ISG/AMG Zones (AMG,ISG <->AMG, ISG)
Survey => Conversions => Cartographic. See 17.10.2 Cartographic.

Return to 38 Geodetics Summary.
This appendix contains information about files used for setting up and configuring 12d Model.

See

39.1 Folder Structure Installed by 12d Model
39.2 Files for Setting Up 12d
39.3 Library, User Library, Customer Library
39.4 Environment Variables
39.5 12d Model Options Map
39.6 Monitoring 12d Model Usage
39.7 Running Macros and Chains on Start Up
39.8 Arguments When Starting 12d Model
39.1 Folder Structure Installed by 12d Model

12d Model has Set Up files to define how new projects are created, define colours, linestyles, symbols etc. and control many other aspects of 12d Model.

12d Model comes with defaults for these things but most users wish to customise many of the settings, share them between groups of users across a network etc.

To make customisation easier, all the 12d Model customisation files (called Set Up files) have default names and on installation, are stored in a folder called Set_ups.

To customise 12d Model, users only need to which file to modify for that particular customisation.

When 12d Model 11 is installed on a Windows computer, the major components are installed in the Microsoft preferred installation folder Program Files, in the sub folders 12d\12dmodel\11.00.

That is, the software and associated files are installed in Program Files\12d\12dmodel\11.00.

However, without Administrator privilege, users do no have write access to Program Files.

To allow non-administrator users access to Set Up areas that users can store modified files, 12d Model 11 also installs extra folders in an area that could be accessed by the user. The default folder structure for this area is C:\12d\11.00

So the customisation system allows the use of both the areas Program Files\12d\12dmodel\11.00

and

C:\12d\11.00 for storing Set Up and other files necessary for the tailoring and running of 12d Model.

Please continue to the next section 39.2 Files for Setting Up 12d.
39.2 Files for Setting Up 12d

When 12d Model fires up, it looks for special files (called Setting Up or Setup files) to define many of its features. Hence the Setup files can be used to customize 12d Model for a site, a client or even a user.

When 12d Model creates a new project, or changes to another project, then for each Setting Up file

EITHER

(a) an environment variable for the Setup file exists, and the value of the environment variable is taken as the full path name of the file to be used as that Setup file.

OR if the environment variable does not exist for the Setup file

(b) a file with the default Setup file name is searches for in specially named folders, in a fully defined order.

The search for each Setup file is independent of any other Setup file. That is, for each Setup file, the folders are searched in the specific order until that file is first found and the searching stops for that Setup file. and then the search is begun again for the next Setting Up file.

Consequently the Setup files do not all have to be in the same folder. This greatly increases the tailorability of 12d Model.

The description, default name and any environment variable for each Setup file are given in the sections 39.2.1 Setup Files Only Used for a New Project, 39.2.2 Setup Files Only Used for an Existing Project and 39.2.3 Setup Files Used for New and Existing Projects.

The folders searched for Setup files, and the folder search order, is described in the section 39.2.4 Folders Searched for Setup Files.

See

39.2.1 Setup Files Only Used for a New Project
39.2.2 Setup Files Only Used for an Existing Project
39.2.3 Setup Files Used for New and Existing Projects
39.2.4 Folders Searched for Setup Files
39.2.5 Searching Order for Setup Files
39.2.6 Writing Out Setup Files
39.2.7 Some Special Setup Files
39.2.1 Setup Files Only Used for a New Project

The two Setup files, setups.4d and defaults.4d, are only used when creating a **NEW 12d Model** project, and after the project is created, the information supplied in these two Setup files is **stored within the 12d Model project** and is then modified from within **12d Model** when in that project.

Similarly the file macros.4d is a file of macros or chains (one per line) that are only run when a **new** project is created (**project_macros.4d** is a run when an **existing** project is opened).

defaults.4d

- define the defaults for a **new** project.
- Modified by the **Defaults** panel from the **Projects => Management => Defaults** option.
- Once a project is created, the defaults can be modified inside 12d Model.
- The defaults are then saved with the project.
- The environment variable is **DEFAULTS_4D**.
- For more information go to the section 39.2.7.3 **Defaults File (defaults.4d)**

setups.4d

- define the layout of views on the screen for a **new** project.
- Once a project is created, the view layout can be modified inside **12d Model**.
- The view layout is then saved with the project.
- The environment variable is **SETUPS_FILE_4D**.
- For more information go to the section 39.2.7.1 **Set Ups File (setups.4d)**

macros.4d

- a file of macros and/or chains (one per line) that are run when a **new** project is created (see 5.9 **Running Macros and Chains on Start Up**).
- The environment variable is **RUN_MACROS_FILE_4D**.
39.2.2 Setup Files Only Used for an Existing Project

The file `project_macros.4d` is a file of macros or chains (one per line) that are only run when an existing project is opened. So `project_macros.4d` is modified between accesses to the project then the modified version of the file is used for the project.

`project_macros.4d`

a file of macros (one per line) that are run when an existing project is opened (see 5.9 Running Macros and Chains on Start Up).

The environment variable is `RUN_PROJECT_MACROS_FILE_4D`.
39.2.3 Setup Files Used for New and Existing Projects

The other Setting Up files are searched for each time a project is created or opened. So if these files are modified between accesses to the project then the modified versions of the files are used for the project.

Some of the Setup files that 12d Model searches for each time a project is opened are:

colours.4d // sets the colour names and red, green, blue mix; also defines the default pens that the colours map to (as displayed in the panel colours to pens). See 39.2.7.2 Colours File (colours.4d).

The environment variable is COLOURS_4D.

digitize.4d // list and defines the digitizers available in 12d Model. See 8.5.7 Digitizer Definitions File.

The environment variable is DIGITIZERS_4D.

ev.4d // contains values for environment variables See 39.4 Environment Variables.

The environment variable is ENVIRONMENT_4D.

fonts.4d // defines the fonts used in text styles. See 40.3 Textstyles and Fonts.

The environment variable is FONTS_4D.

gui.4d // define the fonts and colours used in panels and menus, spacing between items in panels and menus and the maximum pop-up length. See 39.2.7.6 GUI.

The environment variable is GUI_4D.

layout.4d // a file containing the screen layout file information (slx/slf) for placing menus or panels on the screen. The layout file is used every time a project is opened. The layout file can have most menus and panels in it. See 42.2.3 Screen Layout File in the appendix 42 Special File Formats.

The environment variable is LAYOUT_FILE_4D.

linestyl.4d // defines the line styles (linestyles, worldstyles, groupstyles and twoptstyles). See 40.1 Line Styles.

The environment variable is LINESTYLES_4D.

names.4d // a special name mapping file which is used to define for given string names, information such as colours, model etc. This is used in some panels to fill out other panels fields after entering the string names in the panel.

The environment variable is NAME_MAPPINGS_4D.

plotters.4d // defines the plotters that appear in the pop-up for the plotter type panel field. See 43.2 Defining Plotters - Plotters.4d.

The environment variable is PLOTTERS_4D.

pmf.4d // plotter mapping file for defining mapping of 12d Model colours to pens with thicknesses, and the rgb for the pens See 43.3.2.1 Definition of a Plotter Mapping File.

The environment variable is PLOTTER_MAPPING_4D.

sheets.4d // gives sheet sizes and names used in the pop-up for the sheet size panel field. See 39.2.7.4 Sheet Sizes File (sheets.4d)

The environment variable is SHEET_SIZES_4D.

survey.4d // lists and defines the data collectors available in 12d Model See 7.9.3 Survey Data Collectors

The environment variable is DATA_COLLECTORS_4D.

symbols.4d // defines the symbols. See 40.2 Symbols
The environment variable is `SYMBOLS_4D`.

textstyl.4d // defines the text styles. See 40.3 Textstyles and Fonts.
The environment variable is `TEXTSTYLES_4D`.

textstyle_names.4d // defines the textstyle favourites
The environment variable is `TEXTSTYLE_MAPPINGS_4D`.

toolbars.4d // defines the toolbars. See 41.3 User Defined Toolbars.
The environment variable is `TOOLBARS_4D`.

userkeys.4d // defines the action of function keys. See 41.1 User Defined Function Keys.
The environment variable is `FUNCTION_KEYS_4D`.

usermenu.4d // defines the user defined walk-right menus for User on 12d Model menus. See 41.2 User Defined Menus.
The environment variable is `USER_OPTIONS_4D`.

xtramenu.4d // defines the 12d Solutions defined walk-right menus for User on 12d Model menus. See 41.2 User Defined Menus.
The environment variable is `EXTRA_OPTIONS_4D`.

The folders searched for Setting Up files, and the folder search order, is described in the next section 39.2.4 Folders Searched for Setup Files.
39.2.4 Folders Searched for Setup Files

When 12d Model 11 is installed on a Windows computer the major components installed by 12d Solutions are under the Microsoft preferred installation folder Program Files, in the sub folders 12d\12dmodel\11.00. That is Program Files\12d\12dmodel\11.00.

Without Administrator privilege, users do no have access to this area.

Note: these are the folders used for 32-bit 12d Model on a 32-bit Windows and 64-bit 12d Model on a 64-bit Windows. For a 32-bit 12d Model on a 64-bit Windows, the software is installed in Program Files (X86)\12d\12dmodel\11.00

Other information that can be accessed and modified by the user, will be installed in the sub folders C:\12d\11.00 in an area that the user has access to.

The structure of the folders containing Setting Ups files are Set_ups and User. How the various folders are searched for Set Up files will be described in the following sections.

set_ups

The 12d Model installation creates a number of specific folders such as the operating system-cpu specific folder (for example nt.x86 for 32-bit 12d Model on Intel chips and nt.x64 for 64-bit 12d Model on Intel chips), and areas for set up files: namely an o/s-cpu specific set_ups under the o/s-specific folder and a set_ups under Program files\12d\12dmodel\11.00 (or Program files (X86)\12d\12dmodel\11.00 for 32-bit 12d Model on 64-bit Windows).

It is also possible to move the set_ups folder Program files\12d\12dmodel\11.00\set_ups to another location, and even give it another name, by defining an environment variable SET_UPS_4D which gives the path of the moved folder

```
SET_UPS_4D folder // 12d supplied folder of Setting Up files
```
User and Customer_User

Users usually want to customise 12d Model by modify one or more of the Setup files but most users do not have written access to the Program Files folder, and Program files\12d\12dmodel\11.0\set_ups. Also, any files in the set_ups folders may be overwritten by future 12d Model installations.

To overcome these two problem, there are two special folders (reserved for customers) that are searched before set_ups for any Setting Up files.

One folder is only looked for when it has been created by a user and is pointed to by the environment variable CUSTOMER_USER_4D. It has no default name but is whatever name has been set up for it. We will call it as cust_user.

The other folder has the default name user.

The folders cust_user and user should NOT be under Program Files but in 12d\11.0 which the 12d Model installer usually creates in a folder that the 12d Model user has read/write access to. The default folder to contain user and cust_user is C:\12d\11.0

During the 12d Model installation, if user does not exist, an empty user folder is created.

The folder cust_user is not created and if required, must be created by the user and the environment variable CUSTOMER_USER_4D set up to point to it.

To find a Setting Up file, the folder cust_user will be searched for before user, and user is searched for before set_Ups.

Consequently any modified Setting Up files should be placed in cust_user or user and then they will be found before the file of the same name in set_ups (user may contain o/s-cpu specific folders).

When a new 12d Model version is issued (e.g. 11), the contents of cust_user and user from the previous version of 12d Model (e.g. V10) need to be copied over to the new cust_user and user area. This is NOT done automatically during the installation in case there are files that need to be modified for the newer version.

There is also an environment variable USER_4D which can be set to point to another user defined folder which will be searched for Setting Up files before the default user is searched.
This is a common method for having all users on a network share the same Setup files. The common files are placed on a disk drive accessible by all the users and the environment variable USER_4D defined to point to that folder.

Note - both user and the folder pointed to by USER_4D can exist.

Current and Home

The folder that a project is in (the current folder) and the users home folder are also searched for Setup files.
39.2.5 Searching Order for Setup Files

When 12d Model creates a new project, or changes to another project, it searches folders for the Setup files in a well defined order.

Each Setup file has a default name, and unless there is an environment variable for that specific Setup file defining its exact name and path, folders are searched in a specific order until the file is found. The search is begun afresh for each Setup file so different Setup files may come from different folders.

The fixed search order for any Setup files is

1. check for the appropriate environment variable defining the full path to the specific Setup file.

If the environment variable is not defined, or the file pointed to does not exist, then the folders are searched for in the following order for the specific Setting Up file with its default name (e.g. colours.4d)

2. the projects current folder
3. the users home folder
4. specific cpu folder in CUSTOMER_USER_4D
5. file folder defined by CUSTOMER_USER_4D
6. specific cpu folder in USER_4D e.g. nt.x86 for Intel
7. file folder defined by USER_4D
8. specific cpu folder in User under C:\12d\11.00
9. User under C:\12d\11.00
10. the folder defined by SET_UPS_4D
11. set_ups folder under the specific cpu folder under Program Files\12d\12dmodel\11.0
12. set_ups folder under Program Files\12d\12dmodel\11.00

Once the appropriate Setup file is found, the search is terminated and that, and only that file, is used.

Notes

(a) When an existing project is opened by 12d Model, the Setting Up files setups.4d,
defaults.4d and macros.4d are not used. These files are only used for defining a NEW project.

(b) project_macros.4d is only used when opening an EXISTING project and not a new project.

(c) A Setup file such as colours.4d may exist in one or more of the above folder. However, only the first occurrence of the file found when using the above search order, is used.

Please continue to the next section 39.2.6 Writing Out Setup Files.
39.2.6 Writing Out Setup Files

Most of the Setup files can be created and edited within 12d Model using panels such as Projects => Management => Defaults.

When the Write button is selected on these panels, a Write Setup File panel comes up to specify where the file is to be written out to.

The choices on the panel allow the file to be written out to:

Found folder - the folder where the file currently being used by 12d Model resides. This will be unavailable (greyed out) if the user doesn’t have access to the folder.

Current folder - the folder where the project currently being used by 12d Model resides. This will be unavailable (greyed out) if the user doesn’t have access to the folder.

User folder - the user folder. This will be unavailable (greyed out) if the user doesn’t have access to the folder.

Other folder - any folder can be selected.

A project restart is required for the new file to take effect.

If you are having problems writing to the file, click on the Properties button to bring up the Properties panel for the selected file (if it exists) and check the Security for the file.
Please continue to the next section 39.3 Library, User Library, Customer Library.
39.2.7 Some Special Setup Files

See

39.2.7.1 Set Ups File (setups.4d)
39.2.7.2 Colours File (colours.4d)
39.2.7.3 Defaults File (defaults.4d)
39.2.7.4 Sheet Sizes File (sheets.4d)
39.2.7.5 Transitions and Spirals File
39.2.7.1 Set Ups File (setups.4d)

The St Up file, setups.4d, is used to define the initial screen set-ups. It can be used for
- the system font used for text
- the size of the initial window
- the position of the main menu, header menu, function menu, function recalc menu, snaps menu, volumes menu, geometry menu, sewer menu, pipeline menu
- the position of the screen message box, xyz message box
- the position of the save project panel (now redundant)
- the position, size, name and viewing parameters for the initial views

The co-ordinate system used for specifying the position of the left hand top corner of items on the screen is by column and row. For items which include an area of the screen (such as the window and views), a width and depth are also specified.

The column value is measured from the left hand size of the screen and the row value is measured from the top of the screen.

The units for row, column, width and depth are screen pixels.

```
columns      width
rows         depth
```

Note - If any views are defined in the set_up_file, then the position of the screen message box must be also be defined and it must be before the definition of any view.

The format of the commands in the file setups.4d is

```
WINDOW      column_value  row_value  width    depth
// main window
MAIN MENU    column_value  row_value
FUNCTION MENU column_value  row_value
FUNCTION RECALC MENU column_value  row_value
GEOMETRY MENU column_value  row_value
PIPELINE MENU column_value  row_value
SEWER MENU   column_value  row_value
SURVEY MENU  column_value  row_value
VOLUMES MENU column_value  row_value
SNAPS MENU   column_value  row_value
SNAPS BUTTONS HORIZONTAL column_value  row_value
SNAPS BUTTONS VERTICAL column_value  row_value
PROJECT SAVE PANEL column_value  row_value

// Views

PLAN VIEW     column_value  row_value  width    depth  name
```
The following parameters were used for V5.00 but are ignored for V5.0 onward:

SCREEN MESSAGE BOX

XYZ MESSAGE BOX

Continue to the next section 39.2.7.2 Colours File (colours.4d) or return to 39.2.7 Some Special Setup Files.
39.2.7.2 Colours File (colours.4d)

12d Model allows the use of up to 10,240 distinct colours for drawing in any view.

The colours are numbered from 0 to 10,239 and the user can define how the colour appears on the screen by giving the red, green and blue intensities (RGB) for each colour, and what name is used throughout the program when referring to a particular colour number.

The *colour names* and RGB mix associated with each colour number, pop up order etc are defined in the file **colours.4d**.

Each line of the file refers to a particular colour number.

There are nine items on each line, each separated by one of more spaces, with an optional comment at the end which is preceded by //.

The items in their order on a colour line are:

1. **red intensity value** - a value between 0 and 255
2. **green intensity value** - a value between 0 and 255
3. **blue intensity value** - a value between 0 and 255
4. **plotter pen number** - 0 or a positive integer

 When plotting, the plotter pen number is the default pen number that the colour is mapped to. This may be overridden by a plotter mapping file.

5. **colour name** - the name that can be used instead of the colour number.

 The colour name used to describe the colour is given in quotes. Colour names can be alphanumeric with a decimal point, although upper and lower case are considered the same. Each colour must have a unique colour name. If an underscore "_" is used in a colour name in the colours.4d file then a space is inserted in **12d Model**. The colour name must be enclosed within quotes. For example, "dark red".

6. **colour number** - 0 or a positive integer. the actual colour number that the line refers to.

 The colour number is the actual colour number that the line refers to and what is actually stored in **12d Model**. A colour numbers can only occur once in the colours.4d file but there can be gaps in the colour numbers.

7. **colour pop-up number**

 The colour pop-up number is an integer that can be negative, zero or positive. Colour pop-up numbers can only occur once in the colours.4d file but there can be gaps in the colour pop-up numbers.

 The colour pop-up number is used to decide which colours are should in the Colour box. If **Display colours** is set to n in **Project =>Management =>Defaults**, then the colours with the n smallest pop-up numbers are displayed in the Colour box pop-up. So the order that the colours are chosen to appear in the colour pop-up is independent of the colour number.

8. **colour group**

 The colour group is simply text and does not have to be unique. The colour group is enclosed in quotes. For example, "vis".

 The colour group is not currently used in **12d Model** but in the future will be used to give a tree structure to the colours pop-up.

9. **colour legacy name**

 This is another name that the colour number could be known as. This was introduced to allow upward compatibility when going from the colours.4d supplied in v10 to that supplied in v11.

10. // **comment**

 text that is treated as a comment. It must be preceded by //.

The colours.4d file is displayed and modified by using the Edit Colours panel brought up from the
[Edit] item on the Colours pop-up, Select Colour. For more information, go to the section 4.22 Colours.

Continue to the next section 39.2.7.3 Defaults File (defaults.4d) or return to 39.2.7 Some Special Setup Files.
39.2.7.3 Defaults File (defaults.4d)

The `defaults` file, `defaults.4d`, defines the initial default settings used in the 12d Model Default and the Systems Defaults panels.

The `defaults` file can contain:

// general defaults

<table>
<thead>
<tr>
<th>Default Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFAULT COLOUR</td>
<td>red</td>
</tr>
<tr>
<td>DEFAULT POINT COLOUR</td>
<td>yellow</td>
</tr>
<tr>
<td>DEFAULT TIN COLOUR</td>
<td>brown</td>
</tr>
<tr>
<td>DEFAULT CONTOUR COLOUR</td>
<td>cyan</td>
</tr>
<tr>
<td>DEFAULT CONTOUR INDEX COLOUR</td>
<td>magenta</td>
</tr>
<tr>
<td>DEFAULT TEXT SIZE</td>
<td>8</td>
</tr>
</tbody>
</table>

// view settings

<table>
<thead>
<tr>
<th>Default Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFAULT CULLING OFF/ON</td>
<td></td>
</tr>
<tr>
<td>DEFAULT CULLING SIZE</td>
<td>1.0</td>
</tr>
<tr>
<td>DEFAULT SECTION VIEW EXAGGERATION</td>
<td>10.0</td>
</tr>
<tr>
<td>DEFAULT PERSPECTIVE VIEW EXAGGERATION</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFAULT FAST TEXT CULL SIZE</td>
<td>4.5</td>
</tr>
<tr>
<td>DEFAULT NONE TEXT CULL SIZE</td>
<td>2.0</td>
</tr>
</tbody>
</table>

// highlighting

<table>
<thead>
<tr>
<th>Default Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFAULT ANGLE MODE</td>
<td>BEARINGS/DEGREES</td>
</tr>
<tr>
<td>DEFAULT HIGHLIGHT COLOUR</td>
<td>white</td>
</tr>
<tr>
<td>DEFAULT HIGHLIGHT CROSS COLOUR</td>
<td>yellow</td>
</tr>
<tr>
<td>DEFAULT HIGHLIGHT CROSS SIZE</td>
<td>2.0</td>
</tr>
</tbody>
</table>

// drawing points

<table>
<thead>
<tr>
<th>Default Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFAULT CHORD ARC TOLERANCE</td>
<td>0.1</td>
</tr>
<tr>
<td>DEFAULT POINT CROSS SIZE MMS</td>
<td>2.0</td>
</tr>
<tr>
<td>DEFAULT POINT CROSS SIZE PIXELS</td>
<td>3</td>
</tr>
</tbody>
</table>

// trash model and mode

<table>
<thead>
<tr>
<th>Default Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFAULT TRASH MODEL</td>
<td>model_name</td>
</tr>
<tr>
<td>DEFAULT TRASH MODE</td>
<td>trash string</td>
</tr>
<tr>
<td></td>
<td>delete string</td>
</tr>
<tr>
<td></td>
<td>keep string</td>
</tr>
</tbody>
</table>

// miscellaneous

<table>
<thead>
<tr>
<th>Default Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFAULT NAME SETTINGS</td>
<td>file_name</td>
</tr>
</tbody>
</table>

The information panel for each editor can be toggled on/off and the initial state when a new edit operation is begun is given by

<table>
<thead>
<tr>
<th>Default Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFAULT EDIT INFORMATION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

When output report are created, the scripts/programs pointed to by EDITOR_4D and PRINTER_4D will be run depending on the values of the defaults display reports and print reports.

<table>
<thead>
<tr>
<th>Default Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFAULT DISPLAY REPORT FILES</td>
<td>1</td>
</tr>
</tbody>
</table>
Similarly when plots are created, the script/program pointed to by PLOTTER_4D and will be run depending on the value of the default `send plots`

```
DEFAULT PRINT REPORT FILES 1 // run PRINTER_4D
0 // don’t run 

0 // don’t run 
```

Similarly when plots are created, the script/program pointed to by PLOTTER_4D and will be run depending on the value of the default `send plots`.

```
DEFAULT SEND PLOT FILES 1 // run PLOTTER_4D
0 // don’t run 

0 // don’t run 
```

The number of minutes between displays of the `save project` yes-no box is given by

```
DEFAULT SAVE INTERVAL minutes // 0 for never
```

The file defining string colours can have up to 10,240 colours in it however this number is usually inconvenient to display in the standard colour pop-up so there is a setting to set how many colours are displayed from the list.

```
DEFAULT POPUP COLOURS number_of_colours // default 16
```

The precision for displaying real numbers in the information panel and in boxes and panel fields can be set.

```
DEFAULT PRECISION integer // info panel - default 3
DEFAULT BOX PRECISION integer // boxes & panels -default 4
```

The sign for cut areas and volumes can be positive or negative (fill is the opposite) and is given by

```
DEFAULT CUT VOLUME SIGN -1 // negative for cut (default)
1 // positive for cut
```

Text in text string, 4d strings and linestyles may be in pixels and must be given a millimetre size for plotting. Pixel text is multiplied by a factor to convert it to a millimetre size. The pixels to mm plot

```
DEFAULT PIXELS TO MM PLOT FACTOR real // default 1.0
```

Continue to the next section 39.2.7.4 Sheet Sizes File (sheets.4d) or return to 39.2.7 Some Special Setup Files.
39.2.7.4 Sheet Sizes File (sheets.4d)

For plot frames, long and x plots, the overall size of the plot sheet can be given by a pop-up containing defined sheet size.

The sheet size names, width and heights can be specified by the user in a file named sheets.4d which is in the normal Set Up areas, or is pointed to by the environment variable

```
SHEET_SIZES_4D file // file of plotter sheets sizes
```

The layout of the sheet sizes file is

```
// User definition file for sheets sizes in 12d Model
// Heights and widths are in mm.

// sheet name  width  height
A0           1189  841
A1           841   594
A2           594   420
A3           420   297
A4           297   210
B1           1000  707
```

Continue to the next section 39.2.7.5 Transitions and Spirals File or return to 39.2.7 Some Special Setup Files.
39.2.7.5 Transitions and Spirals File

A transition is a means of easing from a straight to a curve (full transition) or from one radius curve to another radius curve (partial transition).

There is often confusion between the words spirals and transition curves come in a variety of formulae and spiral is just one type of transition curve.

See

39.2.7.5.1 Spirals
39.2.7.5.2 Left/Right, Leading/Trailing Transitions
39.2.7.5.3 Transitions/Spirals Supported by 12d Model

39.2.7.5.1 Spirals

A spiral curve (Euler spiral) is a special type of transition where the radius of curvature is proportional to the length along the curve.

That is

\[\text{Radius of curvature at a point } x \text{ length from start of spiral to that point} = \text{Constant} \]
\[r_l = K \]

Although the above definition fully defines a spiral (or Euler curve), spiral calculations are difficult by hand and so no authority uses the full definition but uses an approximation to the Euler spiral.

A Euler spiral can be uniquely defined in terms of a start tangent vector, a final radius of curvature (R) and a total spiral length (L).

The equation for this spiral can be given in terms of a local co-ordinate system where the origin is at the start of the spiral and the x-direction (abscissa) is along the tangent vector at the start of the spiral. The y-direction (ordinate) is given as the offset from the x-axis of the point on the spiral.

Formulae for the local co-ordinates of a point on the spiral can then be derived in terms of the distance of the point along the spiral (the spiral length to the point) and the given constants L (the total spiral length) and R (the final radius of curvature of the spiral).

These formulae for the local co-ordinates of a point on the spiral are polynomial series in terms of the spiral length to that point.

For use in calculations, the local co-ordinates can be approximated by restricting the polynomial series for the abscissa and the offset to a fixed number of terms.

So for example, the so called clothoid spiral used by Australian road authorities is defined as using exactly 5 terms for the abscissa (x) polynomial and exactly 4 terms of the offset (y) polynomial.

Note that a spiral is a transition but not all transitions are spirals.

Continue to the next section 39.2.7.5.2 Left/Right, Leading/Trailing Transitions or return to 39.2.7 Some Special Setup Files.
39.2.7.5.2 Left/Right, Leading/Trailing Transitions

The radius of curvature R (or simply the radius) of a transition is allowed to be positive or negative.

To agree convention of going to the left or right when travelling along a road and the sign of the curve radius, the radius of curvature R of a transition is allowed to be positive or negative.

If R is positive, the transition will then curve to the right.

If R is negative, the transition will then curve to the left.

Also depending on the direction of travel along a transition, the absolute radius of curvature will be increasing or decreasing going along the transition.

If the radius is decreasing along the transition, it is called a leading transition.

If the radius is increasing along the transition, it is called a trailing transition.

Leading and Trailing Transitions with Positive Radius

If the direction of the travel along the string is reversed, the radius of the transitions, and the arc, will be negative and the leading transition become trailing transition and the trailing transition becomes a leading transition.
Leading and Trailing Transitions with Negative Radius

Continue to the next section 39.2.7.5.3 Transitions/Spirals Supported by 12d Model or return to 39.2.7 Some Special Setup Files.
39.2.7.5.3 Transitions/Spirals Supported by 12d Model

Users must be aware of the exact transition definitions that are to be used in their work.

In Australia, totally different transitions are used by NSW Rail, Queensland Rail and WA Rail.

Luckily all the road authorities in Australia use the same spiral approximation, and that is the same spiral approximation used by Queensland Rail.

So if work is being done in Western Australia or New South Wales, a different transition type is needed in the road alignments from that used in any rail alignments.

The transitions/spirals supported by 12d Model are:

- **Clothoid** - spiral approximation used by Australian road authorities and Queensland Rail.
- **Cubic parabola** – special transition curve used by NSW railways. Not a spiral.
- **Westrail cubic** – spiral approximating used by WA railways.
- **Cubic spiral** – low level spiral approximation. Only ever used in surveying textbooks.
- **Natural Clothoid** – the proper Euler spiral. Not used by any authority.
- **Bloss** – special transition used by Deutsche Bahn. Not a spiral.
- **Sinusoidal** - special transition. Not a spiral.
- **Cosinusoidal** - special transition. Not a spiral.

Return to 39.2.7 Some Special Setup Files.
39.2.7.6 GUI

Note - this section is only for versions earlier than V4.0 and is here for historical reasons

The file *gui.4d* defined the colours used for screen objects (the graphical user interface objects), screen fonts, maximum pop-up length, and spacing in the menus and panels.

The *gui.4d* file is read every time a project (new or old) is opened.

39.2.7.6.1 GUI Colours

The colours associated with each screen object are given in terms of intensity values of red, green and blue. The intensity values are between 0 and 255, where 0 represents no colour and 255 full colour.

The layout for screen colours in the *gui.4d* file is:

```plaintext
// object RGB values- red green blue
VIEW BACKGROUND COLOUR   0    0     0  // black
VIEW BORDER COLOUR        255  255    0 // yellow
BUTTON HIGHLIGHT COLOUR   255  255    0 // yellow
BUTTON TEXT COLOUR        127  127    127 // grey
BUTTON BACKGROUND COLOUR  60    60    200 // dark blue
MENU BACKGROUND COLOUR    150   90     0 // brown
MENU BORDER COLOUR        255  255    0 // yellow
PANEL BACKGROUND COLOUR   150   90     0 // brown
PANEL BORDER COLOUR       255  255    0 // yellow
FRONT SCREEN LOGO COLOUR  255  255    0 // yellow
FRONT SCREEN TEXT COLOUR  0    255    0 // green
FRONT SCREEN BACKGROUND COLOUR 60   60    200 // dark blue
WINDOW BACKGROUND COLOUR 1  64   128     0 // half green
WINDOW BACKGROUND COLOUR 2  0   128   196 // cyan
```

39.2.7.6.2 Maximum Pop-Up Length

The maximum number of items in a pop-up list before splitting into walk-right pop-ups is given by (necessary when using VGA screens on PC’s)

```plaintext
POPUP LENGTH integer //maximum number of items in a pop-up
```

39.2.7.6.3 Fonts for Menus and Panels

A font can be defined for use in the menu and panel titles areas and a separate font for the rest of the text in the menus and panels.

The fonts are defined in the *gui.4d* file as:

```plaintext
SYSTEM TITLE FONT font_name // font for titles
SYSTEM FONT font_name // font used elsewhere
```

For X-Windows, the `font_name` is the name of the required font from the font list given by the command `xlsfonts`.

For Windows NT, the `font_name` is made up of the Windows font name plus zero or more parameter values for the font.

The font name and parameter values are given as one text name, `font_name`, by concatenating the font name and values with only a minus separating them.
If the font name consists of more than one word, the font name is enclosed in double quotes (").

Hence for NT, an example of defining fonts is:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Font</td>
<td>font name (less than 32 characters)</td>
</tr>
<tr>
<td>Height</td>
<td>number</td>
</tr>
<tr>
<td>italic</td>
<td></td>
</tr>
<tr>
<td>underline</td>
<td></td>
</tr>
<tr>
<td>strikeout</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>thin extralight light normal medium semibold bold extrabold heavy</td>
</tr>
<tr>
<td>Quality</td>
<td>draft proof</td>
</tr>
<tr>
<td>Pitch</td>
<td>default_pitch fixed_pitch variable_pitch</td>
</tr>
<tr>
<td>Family</td>
<td>decorative modern roman script swiss</td>
</tr>
</tbody>
</table>

Defaults

- Height 14
- Weights fw_dontcare (family weight don't care)
- Pitch font default pitch
- Family ff_dontcare (font family don't care)
- Quality default_quality
- italic false
- underline false
- strikeout false

For example:

- Arial-14-bold-italic is the font Arial, of height 14 and bold and italic
- "Courier New"-16-italic is the font Courier New, of height 16 and bold.

Under NT, if the font is not properly defined or doesn't exist, then the system font is used.

Under X-Windows, if the font does not exist, the font fixed is tried. If fixed does not exist, 12d Model will not start up.

39.2.7.6.4 Spacing for Borders and Panels

There are parameters to control the amount of space in border, between items etc. for menus and borders. These are normally set by 12D Solutions and should not need to be modified.

- SCREEN TEXT BORDER X pixels
- SCREEN TEXT BORDER Y pixels
- SCREEN TEXT EXTRA X pixels
- SCREEN TEXT EXTRA Y pixels
- EDIT BOX BORDER X pixels
- EDIT BOX BORDER Y pixels
- PANEL BORDER X pixels
- PANEL BORDER Y pixels
- PANEL GAP Y pixels
- VERTICAL BORDER X pixels
- VERTICAL BORDER Y pixels
- VERTICAL GAP Y pixels
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>HORIZONTAL BORDER X</td>
<td>pixels</td>
</tr>
<tr>
<td>HORIZONTAL BORDER Y</td>
<td>pixels</td>
</tr>
<tr>
<td>HORIZONTAL GAP Y</td>
<td>pixels</td>
</tr>
<tr>
<td>INPUT BOX BORDER X</td>
<td>pixels</td>
</tr>
<tr>
<td>INPUT BOX BORDER Y</td>
<td>pixels</td>
</tr>
</tbody>
</table>
39.3 Library, User Library, Customer Library

Apart from Setting Up files which are only accessed when a project is opened or first created, there are two or three special library areas that are searched for files with the appropriate file ending whenever the folder icon at the end of a panel file field is selected. For example, clicking on the folder icon for a Map File panel field would display a list of files ending in .mapfile and .mf.

One folder, Library, is supplied by 12d Solutions Pty Ltd and is installed by 12d Model, and two other folders, User_Lib and Customer_Lib are not touched in an install and only contains files placed there by users.

39.3.1 Library

In a manner similar to the folder set_ups, the location of Library can be modified defining the environment variable

LIB_4D

If the environment variable LIB_4D doesn’t exist, or the folder it points to doesn’t exist, then the folder Library installed by 12d as Program files\12d\12dmodel\11.00\Library is used.

The files of the required ending in library are listed under the [Lib] walk right of pop-ups.

39.3.2 User Library

Because most users do not have write access to Program files\12d\12dmodel\11.00\Library, and the fact that any files in that area may be deleted or overwritten by future 12d Model installations, there is a special user library folder called User_lib where user library files should be placed.

The user library, is also a folder and is pointed to by the environment variable

USER_LIB_4D

or if the environment variable USER_LIB_4D or the folder that it points to doesn’t exist, in a folder called User_lib directly under the user accessible area C:\12d\11.00

The files from the User library are listed under the [User Lib] walk right of the pop-up.

So unlike the files in the folders set_ups or user, files in the 12d supplied area Library and the user file in User_lib, are all displayed.
39.3.3 Customer Library

There is one more folder that is only looked for when it has been created by a user and is pointed to by the environment variable CUSTOMER_LIB_4D. It has no default name but is whatever name the user gave it. For convenience, we will call it Customer_lib.

So the customer library, is also a folder and is pointed to by the environment variable CUSTOMER_LIB_4D

If the environment variable CUSTOMER_LIB_4D or the folder that it points to doesn’t exist, then no Customer Library is used.

The files from the Customer library are listed under the [Customer Lib] walk right of the pop-up.

So unlike the files in the folders set_ups or user, files in the 12d supplied area Library and the users files in User_lib and Customer_lib, are all displayed.

Notes
1. The list of special endings for files is given in the Appendix, Special File Formats.
2. A full list of environment variables is given in the later section 39.4 Environment Variables.

Please continue to the next section 39.4 Environment Variables.
39.4 Environment Variables

When **12d Model** is invoked for a new or existing project, it uses environment variables to tailor the system.

In Windows, environment variables can be set for each User from the Control Panel, but a much easier method to set the environment variables used by **12d Model** is to include them in a special file which is read in each time a project (new or existing) is opened by **12d Model**.

The environment variables that **12d Model** recognises can be broken into two types

(a) mode type where the environment variable is only a flag setting a mode

and

(b) a second type which point to a file, program or folder. For the environment variables of the second type, a default file/program is often searched for if the environment variable is not defined.

The folder search order for the default files for the file group of environment variables is given in the previous sections.

The list of environment variables will be given in alphabetical order but it will be obvious from the documentation which type the environment variable is.
39.4.1 Alphabetical Environment Variables List

For environment variables that simply set a flag or value (the default value is shown in bold), the documentation will be:

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Value</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
</table>

For environment variables that point to a file, program or folder, and their associated default files/programs, the documentation will be:

<table>
<thead>
<tr>
<th>Environment Variable Name</th>
<th>Type</th>
<th>Default</th>
</tr>
</thead>
</table>

Environmental Variables List

ACAD_SEEDFILES_4D

ACAD_SEEDFILES_4D folder no default
if not blank, the full path name of the folder holding Autocad template files.

ADAC_VERSION_4D

ADAC_VERSION_4D text
the ADAC Schema version, e.g. 4.1.0 or 4.0.0

ALIGNMENT_CORRIDOR_FIXUP_4D

ALIGNMENT_CORRIDOR_FIXUP_4D value 0 or 1 default 1
if not zero, alignment corridor calculations introduced in V8 are used.
If zero, the V7 alignment corridor calculations are used.

ALLOW_ANONYMOUS_FUNCTIONS_4D

ALLOW_ANONYMOUS_FUNCTIONS_4D value 0 or 1
if tick, when a file is read with a File input option, a function is automatically created and named.
This function must exist to allow data to be added to a view after it is read in, to be able to delete all the data read in at a later time, and to re-run the function to reread the data file and replace the data read in last time.

ALLOW_NAMED_POINT_ATTRIBUTES_4D

ALLOW_NAMED_POINT_ATTRIBUTES_4D value 0 or 1

ALLOW_OLD_PLOTTING_4D

ALLOW_OLD_PLOTTING_4D value 0 or 1
If not zero, then a menu Plot =>Old plotting is included which has all the old text ppf options.

ALLOW_SUPER_TINS_EXACT_CALCS_4D

ALLOW_SUPER_TINS_EXACT_CALCS_4D value 0 or 1
Options using tins are split into two categories:
(1) options that require sections through tins
(2) options that require the triangles of the tin
if ticked, this allows super tins to be used in options where triangles are required for calculations.
if not ticked, this prevents super tins to be used in options where triangles are required for calculations.

Note: ticking this option requires super tins to be updated when a tin within the super tin changes, so
there is a time, storage, and memory cost. It was found that some projects only ever required options that used sections (not triangles), so for these type of projects, there is an efficiency gain by turning off this option.

ALWAYS_VALIDATE_PROJECTDETAILS_4D

if ALLOW_ANONYMOUS_FUNCTIONS_4D is set to 1, then when a file is read with a File input option, a function is automatically created and named. This function can be used to delete all the data at a later time, to allow the data to be added to a view after it is read in, and to re-run the function to reread in the data file.

ASK_ON_CHAIN_COMMAND_DELETE_4D

AUTHORIZATION_4D

The authorization file is normally called *nodes.4d*, and is under the folder `c:\12d\model\version_number`. However, the file name and path can be set by the user with the AUTHORIZATION_4D environment variable.

The full path-name of the file is given.

AUTO_CERTIFY_DONGLE_4D

if non zero, then when the warning period is active for the CodeMeter Container (dongle) being used by 12d Model, 12d Model will automatically attempt to certify the dongle and if successful, no intervention by the user is required. See 7.6.5.4 Certify CodeMeter.

Note that the computer must have internet access for Certification to take place.

AUTO_DELETE_WALKRIGHTS_4D

If not zero, the environment variable AUTO_DELETE_WALKRIGHTS_4D sets the distance in pixels that is used to collapse the cascade of walk-right menus when the cursor moves that distance past the end of the last walk-right menu.

The default value is 32.

AUTO_HIDE_PANEL_SELECTS_4D

This mode was introduced so that the panel was not in the way when selecting a string. It is particularly useful on tablets with limited screen area.

AUTO_MODEL_SYNC_4D

if auto-model sync is set to on, the server projects for any shared models added to this project are checked to see if they have been modified (checked every SHARE_CHECK_INTERVAL seconds). If any models have been modified, they are re-copied to this project.
AUTO_PAN_SELECT_4D
AUTO_PAN_SELECT_4D value 0 or 1 default 1
if non zero, if you have accepted but not accepted a string and are zoomed in on the strings and type ch value where the position at that chainage is off the view, the view will autopan so that the new selection point (at chainage value) is on the view. This applies for all typed selects.

AUTO_RESET_SELECT_4D
AUTO_RESET_SELECT_4D 0 Don’t use auto-reset reselect
1 Use auto-reset reselect

The reset mechanism for picking has been modified for V5.0 and above. Reset is now done automatically if the cursor is moved a user specified distance (given by AUTO_RESET_TOLERANCE_4D) after a pick (without accepting), and a separate user specified distance (given by AUTO_RESET_DRAG_TOLERANCE_4D) after a directional pick (without accepting).

The default value is 1.

AUTO_RESET_SELECT_DRAG_TOLERANCE_4D
AUTO_RESET_SELECT_DRAG_TOLERANCE_4D value
Reset distance for directional picks.

If AUTO_RESET_SELECT_4D is non zero, then AUTO_RESET_SELECT_DRAG_TOLERANCE_4D is the distance in pixels to move the cursor to reset the picking rejection list for a directional pick.

The default value is 50.

AUTO_RESET_TOLERANCE_4D
AUTO_RESET_TOLERANCE_4D value
Reset distance for non-directional picks.

If AUTO_RESET_SELECT_4D is non zero, then AUTO_RESET_TOLERANCE_4D is the distance in pixels to move the cursor to reset the picking rejection list for a non-directional pick.

The default value is 5.

AUTO_TIN_SYNC_4D
AUTO_TIN_SYNC_4D 0 Don’t auto sync tins default 0
1 Auto sync tins

if auto-tin sync is set to on, the server projects for any shared tins added to this project are checked to see if they have been modified (checked every SHARE_CHECK_INTERVAL seconds). If any tins have been modified, they are re-copied to this project.

AUTOCAD_PATTERNS_4D
AUTOCAD_PATTERNS_4D folder no default
if non blank, the full path name of the AutoCAD patterns file.

BISECTORS_4D
BISECTORS_4D 0 Don’t use bisector section default 0
1 Use bisector section

When applying templates to a horizontal intersection point with a sharp change of direction, (that is, it is not an end point and the HIP has no curve on it and there is a change of direction at the HIP), either two sections can be applied at the HIP point (applied perpendicular to the line on either side of the HIP point) or just a single bisector section applied to the bisector of the change of angle through the HIP.
The default value is 0.

BOXING_CONTINUE_ON_FAIL_4D

BOXING_CONTINUE_ON_FAILURE_4D

value 0 or 1
default 0

if non zero, the boxing stops if there is an error such as not being able to intersect with a tin.
If zero, the boxing stops when an error is found.

BOXING_RULES_COLOUR_4D

BOXING_RULES_COLOUR_4D

colour
default blue

the colour of the text in the Type column in the Boxing Rules panel for all Boxing command other than Comment, Decision, Goto and Labels.

BOXING_COMMENT_COLOUR_4D

BOXING_COMMENT_COLOUR_4D

colour
default yellow

background colour for the Comment boxing command grid row in the Boxing Rules panel. The text in the grid row is black.

BOXING_DECISION_GOTO_COLOUR_4D

BOXING_DECISION_GOTO_COLOUR_4D

colour
default mauve

the colour of the text in the Type column for the Decision and Goto commands in the Boxing Rules panel.

BOXING_LABEL_COLOUR_4D

BOXING_LABEL_COLOUR_4D

colour
default light red

the colour of the text in the Type column for the Label command in the Boxing Rules panel.

BOXING_REGION_COLOUR_4D

BOXING_REGION_COLOUR_4D

colour

the colour of the text in the row for the Region command in the Boxing Rules panel.

BOXING_WALL_OFFSET_4D

BOXING_WALL_OFFSET_4D

real
default 0.000001

when boxing automatically creates a vertical wall, this is the offset distance between the top and bottom of the vertical wall.

CAD_START_IN_MULTI_PICK_4D

CAD_START_IN_MULTI_PICK_4D

tick box

CHECK_FOR_UPDATES_4D

CHECK_FOR_UPDATES_4D

integer

if non zero, the 12d web site is checked on startup for any newer updates to **12d Model**.
If zero, the 12d web site is not checked.

CIVILCAD_PATH_4D

CIVILCAD_PATH_4D

folder
no default

if non blank, the full path name of the folder holding CivilCAD files.

There is no default.

COLOURS_4D

COLOURS_4D

filename
default colours.4d
file of colour rgb definitions and names. See 39.2.7.2 Colours File (colours.4d).
The default is colours.4d.

CONSTRUCTION_SNAP_MODEL_4D

CONSTRUCTION_SNAP_MODEL_4D model name
If non blank, the model to use for objects created during construction snaps.

CUBED_CHARACTER_4D

CUBED_CHARACTER_4D integer (base 10) default 179
The integer (base 10) value of the character to use as the cubed symbol.

CUSTOMER_LIB_4D

CUSTOMER_LIB_4D folder name no default name
if the environment variable exists and the folder exists, then the folder is available when selecting
a library file (see 39.3 Library, User Library, Customer Library).
There is no default folder name.

CUSTOMER_USER_4D

CUSTOMER_USER_4D folder name no default name
if the environment variable exists and the folder exists, then the folder is part of the search for
locating setup files (see 39.2 Files for Setting Up 12d).
There is no default folder name.

CUT_HEIGHT_ZONE_COLOUR_4D

CUT_HEIGHT_ZONE_COLOUR_4D colour default dark red
the colour of the text in the Type column for the Cut commands involving height, in the Modifiers
section of the Left/Right MTF Modifiers panel.

CUT_WIDTH_ZONE_COLOUR_4D

CUT_WIDTH_ZONE_COLOUR_4D colour default light red
the colour of the text in the Type column for the Cut commands involving width, in the Modifiers
section of the Left/Right MTF Modifiers panel.

CUT_SLOPE_ZONE_COLOUR_4D

CUT_SLOPE_ZONE_COLOUR_4D colour default dark red
the colour of the text in the Type column for the Cut commands involving slope, in the Modifiers
section of the Left/Right MTF Modifiers panel.

CUT_ZONE_COLOUR_4D

CUT_ZONE_COLOUR_4D colour default red
the colour of the text in the Type column for the Cut commands (other than those involving width,
high or slope) in the Modifiers section of the Left/Right MTF Modifiers panel.

DATA_COLLECTOR_4D

DATA_COLLECTOR_4D data collect name
the data collector that is used if no data collector is set for a project.
There is no default.

DATA_COLLECTORS_4D

DATA_COLLECTORS_4D filename default survey.4d
file of definitions of available data collectors
The default is survey.4d.

DATA_TIPS_4D

<table>
<thead>
<tr>
<th>DATA_TIPS_4D</th>
<th>0</th>
<th>Don’t show data tips</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>Show data tips</td>
</tr>
</tbody>
</table>

When non zero, data tips are displayed when the cursor moves over vertices in a plan view.
The default value is 0.

DEBUG_DONGLE_ACCESS_4D

DEBUG_DONGLE_ACCESS_4D positive integer
time between searches for a dongle

DECISION_ZONE_COLOUR_4D

DECISION_ZONE_COLOUR_4D colour default green
the colour of the text in the Type column for the Decision commands in the Modifiers section of the Left/Right MTF Modifiers panel.

DEFAULTS_4D

DEFAULTS_4D filename default defaults.4d
file of defaults - only used for new project
The default is defaults.4d. See 39.2.7.3 Defaults File (defaults.4d).

DEFAULT_PLAN_PLOT_SCALE_4D

DEFAULT_PLAN_PLOT_SCALE_4D value
value is the scale (1:value) for new plan views
If a value is given, then it is used the default scale for any new plan view created in a project.
Note that the scale is used in the plan view for displaying text, linestyles and symbols that have been defined in paper units.

DEFAULT_RASTER_DPI_4D

DEFAULT_RASTER_DPI_4D real_dots_per_inch
default dots per inch to use for plotting rasters
The default value is 150.0

DEFAULT_TABLE_WIDTH_4D

DEFAULT_TABLE_WIDTH_4D number_of_characters default 32
Gives the number of characters displayed in tables such as decisionals and mtf editor.
The default value is 32.

DEFAULT_VIEW_COLOUR_4D

DEFAULT_VIEW_COLOUR_4D colour_number default 0
The default background colour for views.

DEGREES_CHARACTER_4D

DEGREES_CHARACTER_4D integer (base 10) default 176
The integer (base 10) value of the character to use as the degrees symbol.
DGN_PLOT_SEED_FILE_4D
DGN_PLOT_SEED_FILE_4D filename
if non blank, the full path name of the file to use as a seed file for Microstation plots.

DIAMETER_LARGE_CHARACTER_4D
DIAMETER_LARGE_CHARACTER_4D integer (base 10) default 216
The integer (base 10) value of the character to use as the large diameter symbol.

DIAMETER_SMALL_CHARACTER_4D
DIAMETER_SMALL_CHARACTER_4D integer (base 10) default 248
The integer (base 10) value of the character to use as the small diameter symbol.

DIGITIZERS_4D
DIGITIZERS_4D filename default digitize.4d
file of digitizer definitions
The default is digitize.4d. See 8.5.7 Digitizer Definitions File.

DISABLE_MTF_WARNINGS_4D
DISABLE_MTF_WARNINGS_4D 0 Display the mtf warnings in the text editor
1 Write mtf warnings to the background window
Controls whether the mtf warnings go to a file or to the output window.
If non zero, write mtf warnings to the background window
If zero, display the mtf warnings in the text editor.
The default value is 0.

DONGLE_4D - no longer used

Important Note: this environment variable is not used for 12d Model 11 and above.
Hardlock dongles will not work for 12d Model 11 and above so this environment variable is ignored by these versions of 12d Model.
The environment variable can have a number of parameters to control the use of Hardlock network and stand alone dongles.
(a) DONGLE_4D -local OR -no_local
usually used when there is a network dongle and need to know if any stand alone Hardlock dongle is to be looked for on the computer that the user is on.
if -local, then a stand alone Hardlock dongle is looked for on the computer the user is on.
If -no_local, then no stand alone Hardlock dongle is looked for on the computer the user is on.
For example DONGLE_4D - local or -no local
(b) DONGLE_4D -no network OR -network first OR -network last
need to specify if any network Hardlock network dongle is to be looked for.
if -no network, then no Hardlock network dongle is looked for.
If -network first, then a Hardlock network dongle is looked for before a stand alone local dongle.
If -network last, then a Hardlock network dongle is looked for after looking for a stand alone local dongle.
For example DONGLE_4D -no_network or - network_first or -network_last
(c) DONGLE_4D -login_retries number of retries to find a Hardlock dongle
the number nn of retries to make when searching for a Hardlock dongle and it is not found.
For example DONGLE_4D -login_retries 3
(d) **DONGLE_4D** -login_wait ss
the number of seconds **ss** to wait between retries to find a network Hardlock dongle.
For example **DONGLE_4D** -login_wait 5

(e) **DONGLE_4D** -no_dongle
if the parameter -no_dongle is found, then no search is made for a Hardlock dongle.
For example **DONGLE_4D** -no_dongle

(f) **DONGLE_4D** -debug
if the parameter -debug is found, then Hardlock dongle debug information is written to the
For example **DONGLE_4D** -debug

See the separate notes on installing a network dongle for more details.

DONGLE_ORDER_4D - no longer used

Important Note: this environment variable is not used for **12d Model 11** and above.
Hardlock dongles will not work for **12d Model 11** and above so this environment variable is ignored by these versions of **12d Model**.

DONGLE_ORDER_4D choice box Hardlock/Wibu, Wibu/Hardlock
the order to search for network dongles.
If **Wibu/Hardlock**, then Wibu networks dongles are searched for before any Hardlock dongles.
If **Hardlock/Wibu**, then Hardlock networks dongles are searched for before any Wibu dongles.
All new dongles are Wibu so most **12d Model** sites now only have Wibu dongles.

DONGLES_4D
DONGLES_4D full path name to dongles.4d
The dongles file is normally called **dongles.4d** and is searched for as a Set Up file. However, the
file name and path can be set by the user with the **DONGLES_4D** environment variable.
The full path-name of the file is then given.

DOUBLE_CONFIRM_DELETE_4D

DOUBLE_CONFIRM_DELETE_4D 0 Confirm deletes/cleans without undos once
1 Confirm deletes/cleans without undos twice

Controls whether or not the user is asked once or twice to confirm that deletes and cleans that do not have undos are to be done.
If non zero, the user is asked twice to confirm for deletes and cleans.
If zero, the user is asked once to confirm for deletes and cleans.
The default value is 1.

DRAFTING_SPLIT_MESSAGE_4D

DRAFTING_SPLIT_MESSAGE_4D 0 Confirm deletes/cleans without undos once
1 Confirm deletes/cleans without undos twice

If non zero, for CAD Dimensions, Leaders and Tables, long messages that are written to the screen message area are broken up into two shorter lines with the first one being displayed. Both the shorter lines have a (m)ore on them to get to the other line. However all the typed commands for the options are still recognised regardless of whether they are visible or not in the split message.
If zero, the messages are not split into two lines.
The default value is 0.
Environment Variables

DRAINAGE_4D
DRAINAGE_4D filename default drainage.4d
file of definitions for the drainage option
The default is drainage.4d.

DRAINAGE_EDIT_GRADE_4D
DRAINAGE_EDIT_GRADE_4D tick box

DRAINAGE_PPF_4D
DRAINAGE_PPF_4D full path name of .ppf file no default
Points to the file used as the default plot parameter file (.ppf) for the panel New Plot Drainage Network.
The path name to the .ppf file can contain $LIB which expands out to the path of the library area.
For example, $LIB/drainage.ppf points to the file drainage.ppf in the area defined by $LIB_4D.

DRAINAGE_FLOW_DIR_4D
DRAINAGE_FLOW_DIR_4D 0 Flow direction is opposite to the string direction
1 Flow direction is the same as string direction
Defines the default flow direction used in the creating a drainage string.
The environment variable DRAINAGE_FLOW_DIR_4D specified whether the default flow direction that appears in the Create Drainage String panel is that the flow direction in the line is in the same direction as the direction of the drainage string (ascending chainage) or that the flow direction in the drainage line is in the opposite direction to the direction of the drainage string (descending chainage).

If non zero, the drainage flow direction is the same as the string direction.
If zero, the drainage flow direction is in the opposite direction to the string direction.
The default value is 0.

DWG_PLOT_SEED_FILE_4D
DWG_PLOT_SEED_FILE_4D filename
if non blank, the full path name of the file to use as a template file for AutoCAD plots.

DWG_PLOT_UNIT_4D
DWG_PLOT_UNIT_4D English OR Metric
if non blank, the units to use for AutoCAD files.

EDIT_BOX_WIDTH_IN_CHARACTERS_4D
EDIT_BOX_WIDTH_IN_CHARACTERS_4D number default 10
if non blank, the number of characters to make the width of an Edit Box on a panel.

EDITOR_4D
EDITOR_4D script/program 10.00\cpu_area\te
the script or program that is fired up when a report is created. It usually points to an editor.
If the parameter display reports in the panel sys default settings (given by the menu option Utilities => Default=>Sys defaults) is set to yes, the editor displays each report as it is created.
The default is 10.00\cpu_area\te.

ENVIRONMENT_4D
ENVIRONMENT_4D full path name of file default env.4d
It is possible to set all the environment variables from a file normally called env.4d. The environment variable file is searched for in the standard Set Up areas (local, USER_4D, user, set_ups) or is set by the environment variable ENVIRONMENT_4D.

The default is env.4d.

The format of the environment variable file is given in the section 39.4.2 Setting Environment Variables.

EXTRA_OPTIONS_4D

EXTRA_OPTIONS_4D file default xtramenu.4d

If non blank, the full path name of the 12d Solutions supplied file of definitions for some extra menus.

The default is xtramenu.4d. See 41.2 User Defined Menus

EXTRA_START_END_MTF_4D

EXTRA_START_END_MTF_4D 0 extra start/end on default 1

1 extra start/end on

Used in the Modifiers section of the MTF.

If EXTRA_START_END_MTF_4D =1, then the Extra start and Extra end tick boxes on the MTF panels are ticked.

If EXTRA_START_END_MTF_4D =0, then the Extra start and Extra start tick boxes on the MTF panels are not ticked.

The default value is 1.

EXTRUSIONS_4D

EXTRUSIONS_4D filename default extrusions.4d

This points to the file which contains the definition of the extrusions in the Extrusions Library. Please see 12.13.6 Extrusions for more information about extrusions.

The default is extrusions.4d.

FAST_ACCEPT_4D

FAST_ACCEPT_4D 0 don’t set fast accept snap to on for new projects default 0

1 set fast accept snap on for new projects

If non zero, the Fast Accept snap (A snap) is turned on by default for new projects.

If fast accept is turned on, then when an item is picked and there is only one item in the selection list, that item is automatically selected without clicking MB.

FAST_CONSTRUCTION_SNAPS_4D

FAST_CONSTRUCTION_SNAPS_4D 0 don’t set construction snap to on for new projects default 0

1 set construction snap to on for new projects

If non zero, the Fast Construction snap (K snap) is turned on by default for new projects.

The default value is 0.

FAST_ZOOM_PAN_4D

FAST_ZOOM_PAN_4D

FLD_IGNORE_XTRA_WORDS_4D

FLD_IGNORE_XTRA_WORDS_4D 0,1

If non zero, trailing tabs are not considered words in a field file. Mainly for Leica when it is writing a format file which can’t suppress trailing tabs when writing a 12d Field file.

The default value is 0.
FILE_READ_ADD_TO_VIEW_4D

FILE_READ_ADD_TO_VIEW_4D choice box
if anonymous function are set, the data created by the File input option can be added to a view. The choices are:

Do nothing - don’t add the data read in to any view
Add to current view - add the data read in to the current view (the current view is the view that highlighted)
Add to new view - automatically create a new view and add the data read in to that view
Add to named view - add the data read in to the view given by FILE_READ_ADD_TO_VIEW_NAME_4D

FILE_READ_ADD_TO_VIEW_NAME_4D

FILE_READ_ADD_TO_VIEW_NAME_4D text box
name of the view to use if FILE_READ_ADD_TO_VIEW_4D is set to Add to named view. If the view does not exist then it is created.

FILL_HEIGHT_ZONE_COLOUR_4D

FILL_HEIGHT_ZONE_COLOUR_4D colour default dark green
the colour of the text in the Type column for the Fill commands involving height, in the Modifiers section of the Left/Right MTF Modifiers panel.

FILL_SLOPE_ZONE_COLOUR_4D

FILL_SLOPE_ZONE_COLOUR_4D colour default dark green
the colour of the text in the Type column for the Fill commands involving slope, in the Modifiers section of the Left/Right MTF Modifiers panel.

FILL_WIDTH_ZONE_COLOUR_4D

FILL_WIDTH_ZONE_COLOUR_4D colour default light green
the colour of the text in the Type column for the Fill commands involving width, in the Modifiers section of the Left/Right MTF Modifiers panel.

FILL_ZONE_COLOUR_4D

FILL_ZONE_COLOUR_4D colour default green
the colour of the text in the Type column for the Fill commands (other than those involving width, height or slope) in the Modifiers section of the Left/Right MTF Modifiers panel.

FINAL_CUT_SLOPE_ZONE_COLOUR_4D

FINAL_CUT_SLOPE_ZONE_COLOUR_4D colour default black
the colour of the text in the Type column for the Final command for Final Cut slope, in the Modifiers section of the Left/Right MTF Modifiers panel.

FINAL_FILL_SLOPE_ZONE_COLOUR_4D

FINAL_FILL_SLOPE_ZONE_COLOUR_4D colour default black
the colour of the text in the Type column for the Final command for Final Fill slope, in the Modifiers section of the Left/Right MTF Modifiers panel.

FINAL_NO_CUT_SLOPE_ZONE_COLOUR_4D

FINAL_NO_CUT_SLOPE_ZONE_COLOUR_4D colour default black
the colour of the text in the Type column for the Final command for No Cut slope, in the Modifiers section of the MTF Modifiers panel.
FINAL_NO_CUT_FILL_SLOPE_ZONE_COLOUR_4D
 FINAL_NO_CUT_FILL_SLOPE_ZONE_COLOUR_4D colour default dark brown
 the colour of the text in the Type column for the Final commands for No cut/fill, in the Modifiers section of the MTF Modifiers panel.

FINAL_NO_FILL_SLOPE_ZONE_COLOUR_4D
 FINAL_NO_FILL_SLOPE_ZONE_COLOUR_4D colour default black
 the colour of the text in the Type column for the Final command for No Fill slope, in the Modifiers section of the MTF Modifiers panel.

FINAL_WIDTH_ZONE_COLOUR_4D
 FINAL_WIDTH_ZONE_COLOUR_4D colour default light brown
 the colour of the text in the Type column for the Final commands involving width, in the Modifiers section of the MTF Modifiers panel.

FINAL_ZONE_COLOUR_4D
 FINAL_ZONE_COLOUR_4D colour default brown
 the colour of the text in the Type column for the Final commands (other than those involving width or slope) in the Modifiers section of the MTF Modifiers panel.

FIXED_DECISION_ZONE_COLOUR_4D
 FIXED_DECISION_ZONE_COLOUR_4D colour
 the colour of the text in the Type column for the Fixed Decision commands in the Left/Right MTF Modifiers panel.

FIXED_HEIGHT_ZONE_COLOUR_4D
 FIXED_HEIGHT_ZONE_COLOUR_4D colour default dark blue
 the colour of the text in the Type column for the Fixed commands involving height, in the Modifiers section of the Left/Right MTF Modifiers panel.

FIXED_WIDTH_ZONE_COLOUR_4D
 FIXED_WIDTH_ZONE_COLOUR_4D colour default light blue
 the colour of the text in the Type column for the Fixed commands involving width, in the Modifiers section of the Left/Right MTF Modifiers panel.

FIXED_XFALL_ZONE_COLOUR_4D
 FIXED_XFALL_ZONE_COLOUR_4D colour default dark blue
 the colour of the text in the Type column for the Fixed commands involving xfall, in the Modifiers section of the Left/Right MTF Modifiers panel.

FIXED_ZONE_COLOUR_4D
 FIXED_ZONE_COLOUR_4D colour default blue
 the colour of the text in the Type column for the Fixed commands in the Modifiers section of the Left/Right MTF Modifiers panel.

FONTS_4D
 FONTS_4D filename default fonts.4d
 font definitions
 The default is fonts.4d. See 40.3 Textstyles and Fonts

FULL_HYDRAULIC_REPORT_4D
Environment Variables

FULL_HYDRAULIC_REPORT_4D 0, 1 default 0

The rational hydraulic report contains hydrology data. If non zero, the hydrology calculations for each catchment set (1 to 3) are written to the hydraulic report.

FUNCTION_KEYS_4D

FUNCTION_KEYS_4D filename default userkeys.4d

function key definitions

The default is userkeys.4d. See [41.1 User Defined Function Keys](#).

GENIO_WILDCARD_4D

GENIO_WILDCARD_4D text default *.mos

Sets the ending of the files selected for the pop-up list for the File field in the Read Genio Data panel.

The default value is "*.mos".

GIS_ARCSDE_PATH_4D

GIS_ARCSDE_PATH_4D filename the full path name to the ArcSDE DLL. This is only required when using the ArcSDE Server.

GIS_ORACLE_PATH_4D

GIS_ORACLE_PATH_4D filename the full path name to the Oracle DLL. This is only required when using the Oracle Server.

GUI_4D

GUI_4D Standard default Standard

Non Standard

Defines the mouse button usage within 12d Model. The default value is Standard.

GUI_COLOURS_4D

GUI_COLOURS_4D filename default gui.4d

file of colour definitions used in the GUI

The default is gui.4d. See [39.2.7.6 GUI](#).

HARDLOCK_4D

HARDLOCK_4D 1, 0

if non zero, search for 12d Hardlock dongles.

If zero, don’t search for Hardlock dongles

HARDWARE_ARCS_4D

HARDWARE_ARCS_4D 1 Use hardware arcs default 1

0 Hardware arcs are not used

if non zero, use computer hardware to draw arcs (rather than software).

If zero, draw arcs in software

The default value is 1.

HEIGHT_MAX_DEFAULT_4D

HEIGHT_MAX_DEFAULT_4D integer (world units) default 0
set the default value to use in Plan Settings panels that have a **Height max (w)** field.

HELP_4D

HELP_4D folder default 11.00\help

folder containing the 12d Model help files.

The default is **11.00\help**.

HELP_BUTTONS_4D

HELP_BUTTONS_4D 0 Disable help buttons on panels

1 Enable help buttons on panels.

If non zero, **Help** buttons are added to panels.

The default value is **0**.

HIMETRIC_4D

HIMETRIC_4D 0 Printer resolution of 0.04 mm - for Win 95,98,ME default 0

1 Printer resolution of 0.01 mm - for Win NT, 2000, XP

For Windows 95, 98 and ME, the printer resolution can only be 0.04 mm when covering an A0 sheet.

Under Windows NT, 2000 and XP, no such restriction exists and the full resolution of 0.01 mm can be used so the environment variable HIMETRIC_4D allows access to the higher resolution for Windows NT, 2000 and XP.

The default value is **0**.

See also **WINDOWS_PRINTERS_4D** for enabling access to Windows printers.

HINGE_OFFSET_ZONE_COLOUR_4D

HINGE_OFFSET_ZONE_COLOUR_4D colour

the colour of the text in the Type column for the Hinge Offset commands in the **Hinge Modifiers** panel.

HINGE_HEIGHT_ZONE_COLOUR_4D

HINGE_HEIGHT_ZONE_COLOUR_4D colour

the colour of the text in the Type column for the Hinge Height commands in the **Hinge Modifiers** panel.

HINGE_POSITION_ZONE_COLOUR_4D

HINGE_POSITION_ZONE_COLOUR_4D colour

the colour of the text in the Type column for the Hinge Position commands in the **Hinge Modifiers** panel.

HLS_IPADDR

HLS_IPADDR list of IP addresses and/or computer names

if **non blank**, a list of IP addresses and/or computer names to search for a 12d Hardlock network dongle. The items in the list are separated by commas

If **blank**, search the entire network for a 12d Hardlock network dongle

HOME_4D

HOME_4D folder

three folder levels up from where 12d.exe is

12d Model home folder
INTERPRET_DMS_INPUT_OLD_4D

INTERPRET_DMS_INPUT_OLD_4D $0, 1$
if non zero, the special case of 0.mms is interpreted as mm minutes and s seconds. That is, 0.123 is interpreted as 12 minutes and 3 seconds.
If zero, the special case of 0.mms is interpreted as mm minutes and 10 x s seconds. That is, 0.123 is interpreted as 12 minutes and 30 seconds.

LABEL_PVC_150_PIPES_4D

LABEL_PVC_150_PIPES_4D $0, 1$ default 1
If non zero, the 150 PVC pipes are labelled on the drainage long section.
If zero, the 150 PVC pipes are not labelled on the drainage long section.

LAYOUT_FILE_4D

LAYOUT_FILE_4D filename default layout.4d
a file containing the screen layout file information (slx/slf) for placing menus or panels on the screen. The layout file is used each time a project is opened to place the menus and panels in it on the screen. See 42.2.3 Screen Layout File in the appendix 42 Special File Formats.
The default is layout.4d.

LIB_4D

LIB_4D folder HOME_4D\11.00\library
12D Solutions library folder for input files such as mapping, template and macros (4DML’s).
The default is HOME_4D\11.00\library.

LINESTYLE_BOX_HEIGHT_4D

LINESTYLE_BOX_HEIGHT_4D value
If non blank, the pixel height of the linestyle and symbol scrolling pop-ups.
The default is 512

LINESTYLE_BOX_WIDTH_4D

LINESTYLE_BOX_WIDTH_4D value
If non blank, the pixel width of the linestyle and symbol scrolling pop-ups.
The default is 256

LINESTYLE_DUPLICATE_MODE_4D

LINESTYLE_DUPLICATE_MODE_4D choice box
This environment variable manages what to do if symbols or linestyles with the same name are read from the symbols.4d or linestyle.4d file
Do nothing - accept all instances of symbols/linestyles of the same name
Take first - accept only the first instance of the symbol/linestyle
Take last - accept only the last instance of the symbol/linestyle

LINESTYLES_4D

LINESTYLES_4D filename default linestyl.4d
file of linestyle definitions
The default is linestyl.4d. See 40.1 Line Styles

LIST_POPUPS_4D

LIST_POPUPS_4D 1 Pop-up lists as scrolling lists
0 Pop-up lists as menus (as in versions up to V3.2)

Defines the look of pop-up lists.
If non zero, the popup lists are scrolling lists.
If zero, the pop-ups are menus which turn into walk-right menus when the list is too long.
The default value is 1.

LOOK3D_4D 1 3D look and greenish background default 1

The default value is 1.

LOG_DIR_4D

LOG_DIR_4D folder-path-name default is local folder

An error log file is created each time 12d Model is invoked. The error log name automatically
created by 12d Model and has the form:

log?????.4de

where ?????? is a hashed number using your login name, process id & the current time.
The folder that the error log file is created in is given by the environment variable LOG_DIR_4D.
The full path-name of the folder is given.
If LOG_DIR_4D is not used, 12d Model tries to create the log file in the current folder, the HOME
folder, the TMP folder and the TEMP folder.
If creating an error log file fails in all these areas, 12d Model does not create an error log file.

LONG_SECTION_PPF_4D

LONG_SECTION_PPF_4D path name to .ppf file no default

This environment points to the file used as the default plot parameter file (.ppf) for the panel
section long plot.
The path name to the .ppf file can contain $LIB which expands out to the path of the library area.
For example, $LIB/long.ppf points to the file long.ppf in the area defined by $LIB_4D.

MACRO_INPUT_MODE_4D

MACRO_INPUT_MODE_4D 0 Don’t put current value into the console default 0

1 Put current value into console.

Controls whether or not the value passed down in the variable to receive the answer for any
macro prompt, is actually placed into the console panel as the default answer so that it can be
accepted by just typing <enter> into the console panel.
The default value is 0.

MAXIMUM_TRASH_SIZE_4D

MAXIMUM_TRASH_SIZE_4D positive integer default 0

the maximum number of Mb that the size of the trash file can be.
If the value is 0, the Trash Bin is not limited in size.
The default value is 0.

MIDDLE_DOT_CHARACTER_4D

MIDDLE_DOT_CHARACTER_4D integer (base 10) default 183

The integer (base 10) value of the character to use as the squared symbol.

MINI_DUMP_LEVEL_4D

MINI_DUMP_LEVEL_4D choice box
MODEL_FOR_TIN_PREFIX_4D

MODEL_FOR_TIN_PREFIX_4D pre*pos default is "tin"

This environment variable is used to customize the default model for the tin in the panels for creating triangulations. Text can be defined for prepending and/or appending to tin name to create a default model name from the tin name.

The text for prefixing and postfixing is given in a special form: pre-text*post-text

If pretext only, just give the text. If post text is required, precede it by a ".".

If the environment variable is not set, the default "tin " is used.

MODEL_VIEW_WALKRIGHTS_4D

MODEL_VIEW_WALKRIGHTS_4D 0 Use data source in options
1 Walk-rights for model/view as in up to V3.2

Defines whether the Data source field is used instead of model/view walk-rights used in V3.2.

The default value is 0.

MOVIE_4D

MOVIE_4D executable default xanim

X-Windows only - program for running perspective movie

MS_SEEDFILES_4D

MS_SEEDFILES_4D folder no default

if non blank, the full path name of the folder of Microstation seed files.

MTF_TMP_4D

MTF_TMP_4D anything not defined

If defined, then the temporary files for mtf calculations go to the Windows temp folder. This is to get over a bug in Novell under Windows 95.

MTF_CONSTRUCTION_HINGE_NAME_4D

MTF_CONSTRUCTION_HINGE_NAME_4D text

the default name used to refer to the Hinge string as a link in a new MTF. After a MTF is created, the value can be changed within the MTF, and saved with the MTF.

MTF_DESIGN_LAYER_NAME_4D

MTF_DESIGN_LAYER_NAME_4D text

the default name for the design layer in a new MTF. After a MTF is created, the value can be changed within the MTF, and saved with the MTF.

MTF_EXTRA_START_END_VAL_4D

MTF_EXTRA_START_END_VAL_4D real value

the default extra start/end value for a new MTF. After a MTF is created, the value can be changed within the MTF, and saved with the MTF.

MTF_NAMED_PART_HIGHLIGHT_TEXT_SIZE_4D

MTF_NAMED_PART_HIGHLIGHT_TEXT_SIZE_4D real value

the size of the text to use when the name of the named part is highlighted.

MTF_SEED_INCLUDE_MTFS_4D

MTF_SEED_INCLUDE_MTFS_4D 0 or 1

if non zero, existing MTF files are included (in addition to files of type .MTF_Seed) in the choices.
of files which can be used as a MTF Seed file.

if zero, only files of type .MTF_Seed are included in the choices of files which can be used as a MTF Seed file.

MTF_SNIPPET_TEMP_FILE_EXTENSION_4D

MTF_SNIPPET_TEMP_FILE_EXTENSION_4D text

if not blank, the standard .tmp_mtf file extension will be replaced with this value.

If blank, the standard .tmp_mtf file extension will be used.

For more information on snippets, see 21.5 Defining and Using Snippets.

MTF_SNIPPET_TEMP_FILE_USE_SNIPPET_NAME_4D

MTF_SNIPPET_TEMP_FILE_USE_SNIPPET_NAME_4D 0 or 1

if non zero, the temporary file created after the preprocessing occurs for the snippet is given the same name as the snippet, with the file extension .tmp_mtf

If zero, the MTF name is used. Note: If there is more than one snippet, this file will be overwritten.

For more information on snippets, see 21.5 Defining and Using Snippets.

MTF_SNIPPET_TEMP_FILE_USE_SNIPPET_NAME_KEEP_4D

MTF_SNIPPET_TEMP_FILE_USE_SNIPPET_NAME_KEEP_4D 0 or 1

if non zero, the temporary files created after the preprocessing occurs for the snippet are left on the hard drive.

If zero, the temporary files are deleted.

NOTE: If the snippet is compiled, the temporary files are always deleted.

For more information on snippets, see 21.5 Defining and Using Snippets.

MULTI_LINE_TEXT_4D

MULTI_LINE_TEXT_4D value 0 or 1 default 0

If non zero, a Text Edit Box is used instead of the Input Box and more than one line of text can be typed into the Text Edit Box.

NAME_MAPPINGS_4D

NAME_MAPPINGS_4D filename default names.4d

A name mapping file can be specified which is used to fill out information such as colour, model etc. for given string names.

The name mapping works in two ways. After typing part or all of a string name,
(a) if <enter> is entered, the map file is searched for a match in the first column.
 If a match is found, the name, colour, model, style etc. from the other columns in the name mapping file are used to fill out the panel fields.

(b) if a <tab> is entered, the second column is searched for a list of completions (if a * is found, the first column is used for that check) which are displayed in a pop-up. When an entry is selected from the completion list, the name, colour, model, style etc. from the columns in the name mapping file are used to fill out the panel fields.

(c) name mapping file is used to fill out the panel fields.

NEVER_SNAP_ITSELF_4D

NEVER_SNAP_ITSELF_4D 1 try to stop a string snapping to itself during editing

0 let a string snap to itself - behaviour in V3.2

Tries to stop a string snapping to itself during editing.
The default value is 1.

NEW_DRAINAGE_PPF_4D
new path name of binary pff file no default
Points to the file used as the default binary parameter file (.drainppf) for the long section plot produced by the panel Drainage Plot PPF Editor.
The path name to the binary pff file can contain $LIB which expands out to the path of the library area. For example, $LIB/drainage_long.drainppf points to the file drainage_long.drainppf in the area defined by $LIB_4D.

NEW_DRAINAGE_MELB_PPF_4D
new path name of binary pff file no default
Points to the file used as the default binary parameter file (.melbppf) for the long section plot produced by the panel Sewer Plot Melbourne Water PPF Editor.
The path name to the binary pff file can contain $LIB which expands out to the path of the library area. For example, $LIB/melb_water.melbppf points to the file melb_water.melbppf in the area defined by $LIB_4D.

NEW_DRAINAGE_PLAN_PPF_4D
new path name of binary pff file no default
Points to the file used as the default binary parameter file (.drainplanppf) for the plan annotation produced by the panel Drainage Plan Plot PPF Editor.
The path name to the binary pff file can contain $LIB which expands out to the path of the library area. For example, $LIB/drainage_plan.drainplanppf points to the file drainage_plan.drainplanppf in the area defined by $LIB_4D.

NEW_LONG_SECTION_PPF_4D
new path name of binary pff file no default
Points to the file used as the default binary parameter file (.lplotppf) for the long section plot produced by the panel Section Long Plot PPF Editor.
The path name to the binary pff file can contain $LIB which expands out to the path of the library area. For example, $LIB/long_section.lplotppf points to the file long_section.lplotppf in the area defined by $LIB_4D.

NEW_MTF_EDITOR_AUTOPAN_DEFAULT_4D
new MTFEDITOR_ZOOM BUFFER 4D 0, 1 default 1
if non zero, the default for Autopan is on for the MTF Left/Right MTF Modifiers panel.
if zero, the default for Autopan is off for the MTF Left/Right MTF Modifiers panel.

NEW_MTF_EDITOR_DEFAULT_HEIGHT_4D
real_value
real_value is the height in pixels of the MTF Left/Right MTF Modifiers panel.
The default value is 250

NEW_MTF_EDITOR_DEFAULT_WIDTH_4D
real_value
real_value is the width in pixels of the MTF Left/Right MTF Modifiers panel.
The default value is 750

NEW_MTF_EDITOR_PASTED_MODIFIER_COLOUR_4D
NEW_MTF_EDITOR_PASTED_MODIFIER_COLOUR_4D colour
when you cut/paste the modifiers, the background colour of the pasted rows will remain that
colour until you edit them, i.e. this option lets you know the pasted rows until you edit them.

NEW_MTF_EDITOR_ZOOM_BUFFER_4D
NEW_MTF_EDITOR_ZOOM_BUFFER_4D real_value
real_value is a percentage.
if Autopan is on for the Left/Right MTF Modifiers panel, then when a command is clicked on in
the panel and the region to pan into is not displayed on the view, then the extent displayed it the
required amount increased by the real_value percentage.
The default value is 5

NEW_PIPELINE_PPF_4D
NEW_PIPELINE_PPF_4D full path name of binary pff file no default
Points to the file used as the default binary pipeline plot parameter file (.pipelineppf) for the long
section plot produced by the panel Pipeline Plot PPF Editor.
The path name to the binary pff file can contain $LIB which expands out to the path of the library
area. For example, $LIB/pipeline_long_section.pipelineppf points to the file
pipeline_long_section.pipelineppf in the area defined by $LIB_4D.

NEW_PLOT_FRAME_PPF_4D
NEW_PLOT_FRAME_PPF_4D full path name of binary pff file no default
Points to the file used as the default binary parameter file (.plotframeppf) for the plan plot
produced by the panel Plot Frame PPF Editor.
The path name to the binary pff file can contain $LIB which expands out to the path of the library
area. For example, $LIB/plot_frame.plotframeppf points to the file plot_frame.plotframeppf in
the area defined by $LIB_4D.

NEW_STRING_CREATES_4D
NEW_STRING_CREATES_4D

NEW_TOOLBARS_VISIBLE_4D
NEW_TOOLBARS_VISIBLE_4D 1, 0 default
if non zero, when a project starts up, all the toolbars are checked to see if they are listed in the
workspace (visible or invisible) and if the toolbar does not exist, then the toolbar will be
displayed.
This is to allow any new toolbars added to toolbars.4d to be automatically displayed so that the
user knows that it exists.
if zero, then new toolbars are not displayed. That is, only toolbars listed in the workspace (visible
are displayed.

NEW_X_SECTION_PPF_4D
NEW_X_SECTION_PPF_4D full path name of binary pff file no default
Points to the file used as the default binary plot parameter file (.xplotppf) for the cross section
plots produced by the panel Section X Plot PPF Editor.
The path name to the binary pff file can contain $LIB which expands out to the path of the library
area. For example, $LIB/cross_section.xplotppf points to the file cross_section.xplotppf in
the area defined by $LIB_4D.

NOP_ZONE_COLOUR_4D
NOP_ZONE_COLOUR_4D colour
Chapter 39 Setting Up & Configuring 12d

Environment Variables

the colour of the text in the Type column for the commands that aren't in the Fixed, Cut, Fill or Final sections of the modifiers in the Left/Right MTF Modifiers panel, e.g. Interval commands.

NVALUES_4D
NVALUES_4D filename default nvalues.4d
This points to the file which is used as the file of n value definitions. These are described in 7.6.7 N values and the editing of the n values file is documented in 7.6.7.2 Create/Edit N-Values.
The default is nvalues.4d.

OPENGL_CACHE_4D
OPENGL_CACHE_4D value 0 or 1 default 1
If non zero, rasters and textures are cached in the graphics card memory for potential speed ups. More memory in the graphics card allows more caching and usually more performance gains.

OPENGL_CACHE_TINS_4D
OPENGL_CACHE_TINS_4D value 0 or 1 default 0
If non zero, tins are cached in the graphics card memory for potential speed ups. More memory in the graphics card allows more caching and usually more performance gains.

OPENGL_MIPMAP_4D
OPENGL_MIPMAP_4D value 0 or 1
If ticked, the graphics card down samples for rasters when the image is further away. Default value is 1.

OPENGL_MIPMAP_BILLBOARDS_4D
OPENGL_MIPMAP_BILLBOARDS_4D value 0 or 1
If ticked, the graphics card down samples for billboards when the image is further away.

OPENGL_MIPMAP_PLAN.Images_4D
OPENGL_MIPMAP_PLAN.Images_4D value 0 or 1 default 1
If ticked, the graphics card down samples plan images when draped onto a tin.

OPENGL_MIPMAP_PROJECTOR.Images_4D
OPENGL_MIPMAP_PROJECTOR.Images_4D value 0 or 1 default 1
If ticked, the graphics card down samples projector images (a projector is for the "hidden" perspective image data object of a super string).

OPENGL_OFFSET_4D
OPENGL_OFFSET_4D value 0 or 1 default 1
If non zero, the coordinates are localised for OpenGL calls. This is to work around problems with some graphics cards that can’t handle large coordinates.

OPENGL_VIEW_BACKING_STORE_4D
OPENGL_VIEW_BACKING_STORE_4D value 0 or 1
if 1, a backing store is used.
if 0, a backing store is not used.
For Window Vista/Windows 7, the default is 1. Otherwise the default is 0.

ONSCREEN_KEYBOARD_4D
ONSCREEN_KEYBOARD_4D value 0, 1 or 2
if 0, then no onscreen keyboard comes up when you double click in a panel field.
if 1, when you double click in a panel field that takes typed input, then a dockable onscreen keyboard come up for the user to type the data for the panel field into.
if 2, when you double click in a panel field that takes typed input, then a full screen onscreen keyboard come up for the user to type the data for the panel field into.

The default is 0.

ONSCREEN_KEYBOARD_FONT_SIZE_4D

ONSCREEN_KEYBOARD_FONT_SIZE_4D number
if non blank, the pixel size of the font for the onscreen keyboard.
If blank, it defaults to the normal system font size.
The default is the normal system font size.

ONSCREEN_KEYBOARD_LAYOUT_4D

ONSCREEN_KEYBOARD_LAYOUT_4D value 0, or 1
if 0, then when there is an onscreen keyboard, it comes up with a full keyboard.
if 1, then when there is an onscreen keyboard, it comes up with just a numeric keyboard.
The default is 0.

OVERFLOWING_TRASH_MODE_4D

OVERFLOWING_TRASH_MODE_4D choice box default Auto manage
the action to take when the trash bin exceeds the maximum trash bin size.
If Auto manage, the oldest files in the trash bin are deleted until the new item can fit in the trash bin.
if Auto empty, files in the trash bin are deleted.

Note - if a large model or tin is deleted and it is bigger than the maximum trash bin size, the user is alerted and asked to decide if they want the element to go in the trash bin anyway, or if they want to permanently delete it.
The default value is Auto manage.

PAN_MODE_4D

PAN_MODE_4D 0 Use standard pan for pan, pans on views
1 Use pan deltas for pan, pans on views

Sets whether pan or pan delta is used for the pan and pans buttons on views.
The default value is 0.

PATTERNS_4D

PATTERNS_4D filename default patterns.4d
Points to the file used to define the patterns used for super string fills.
The default is patterns.4d.

PDF995_TIME_LIMIT_4D

PDF995_TIME_LIMIT_4D number
the number of seconds to wait for PDF995 to finish producing the current PDF file.

PICK_ONLY_ON_SELECTS_4D

PICK_ONLY_ON_SELECTS_4D

PLAN_TABLE_SETTINGS_4D
Environment Variables

Chapter 39 Setting Up & Configuring 12d

Plan Table Settings 4D 0 Don’t allow setting by model default 0

1 Allow setting by model

Trial only - allow the drawing of z-values, vertices etc. on the plan view to be set by individual models rather than for all models on the view.

The default value is 0.

Plotter 4D

Plotter 4D script/program no default

This environment variable points to a script/program which can be fired up whenever a plot is generated. The name of the plot is given as the first script parameter of the script.

If the parameter Send plots on the ‘System Settings’ tab of the menu option Utilities => Defaults is set to yes, the plotter script is run as each plot is created.

If more than one plot is created by an option (e.g. x plot) then the script is called separately for each of the plots.

An example of a script to send the plot to port lpt1 for Windows NT would be

```
@echo off
copy %1 lpt1
```

An example for Windows NT which looks for hp files is

```
@echo off
echo.
echo ------------------------------------------------------:

next_file
if "%1" == "" goto done
echo %1 | find /i ".hp" > nul
if ERRORLEVEL 0 if not ERRORLEVEL 1 goto hp_plotter
echo Plotting file %1
shift
goto next_file
:hp_plotter
echo Plotting %1 to HP plotter
shift
goto next_file
:done
echo ------------------------------------------------------:
```

Plotter Mapping 4D

Plotter Mapping 4D filename default pmf.4d

This points to the file which is used as the default plotter mapping file. The format for the plotter mapping file is described in the section 43.3 Mapping 12d Colours to Pens and RGBs in the Appendix 39 Setting Up & Configuring 12d.

The default is pmf.4d.

Plotters 4D

Plotters 4D filename default plotters.4d

This points to the file which contains user defined plotters. The format for the file of user defined plotters is described in the section 43.2 Defining Plotters - Plotters.4d in the Appendix 39 Setting Up & Configuring 12d.

The default is plotters.4d.
Environment Variables

PLOT_SYMBOLS_4D filename default plotsymb.4d
Points to the file used to define the symbols used in long and cross section plots.
The default is plotsymb.4d.

POLYPOLYLINES_4D

POLYPOLYLINES_4D 0 Don’t use speed ups default 2
1 Intermediate speed ups
2 Faster speed ups.

A few experimental techniques are available for speeding up the drawing on the screen.
For some specific things such as fast contours, fast mesh and point crosses, the techniques can result in some redraws being up to three times faster.
The default env.4d shipped with 12d Model has this set to 2.

PREVIEW_VIEW_4D

PREVIEW_VIEW_4D text
if non blank, the name of the view whose image is dumped on exiting the project. The image is used as the project preview.
If blank then the last active view is used.

PRINTER_4D

PRINTER_4D script/program no default
Points to a script or program which can be fired up whenever a report is generated. The name of the report is given as the first parameter of the script.
If the parameter Print reports on the ‘System Settings’ tab on the menu option Utilities => Defaults is set to yes, the printer script is run as each report is created.

PROCESSOR_AFFINITY_4D

PROJECT_DETAILS_4D

PROJECT_DETAILS_4D file name
If non blank, the full path name of the file of project details file to use for new projects.

PROJECT_NAMES_4D

PROJECT_NAMES_4D 0 Use long filenames for internal files default
1 Use short names (8.3 format)
The use of long or short extension names for internal 12d Model files for items such as models, tins, templates etc. is controlled by the environment variable PROJECT_NAMES_4D.
Opening a new project with the short name format, project-name.4dp, will automatically create a short name project (i.e. a project using the short extension names - 3 characters after the .).
The default value is 0.

PROJECTIONS_4D

PROJECTIONS_4D filename default carto.4d
This points to the file which is used as the file of projections. These are described in 7.6.6 Projections and the editing of the projections file is documented in 7.6.6.2 Create/Edit Projection.
The default is carto.4d.

PROMPT_ON_VIEW_CLOSE_4D

PROMPT_ON_VIEW_CLOSE_4D 0, 1
If non zero, when a view is closed/deleted, a prompt asks for a confirmation of deleting/closing. If zero, no confirmation is requested when a view is closed/deleted. The default is 0.

PURGE_TRASH_DAYS_4D

`PURGE_TRASH_DAYS_4D number_of_days default 0`

`number_of_days` is a positive integer and is the number of days before the Trash Bin is automatically purged of tins and models.

If `number_of_days` is zero, the Trash Bin is **not** purged.

The default value is 0.

RECENT_PROJECTS_4D

`RECENT_PROJECTS_4D positive integer default 20`

The maximum number of accessed projects displayed in the Projects list when **12d Model** starts up.

REMEMBER_MTF_PANEL_SIZE_4D

`REMEMBER_MTF_PANEL_SIZE_4D 0 or 1`

If non zero, when a MTF panel is placed on the screen and closed with Finish, its final position and size are recorded and used when the panel is opened again.

REPORT_HEADER_4D

`REPORT_HEADER_4D 0 Report files have no header page`

`1 Some header information is used`

`2 A full header page is produced. default 2`

Controls the amount of header information in reports.

For the cases 1 and 2, the header information includes

(a) the 12d Model Project
(b) the name of the user
(c) the organization
(d) the current date
(e) the current report file name

The default value is 2.

RUN_MACROS_FILE_4D

`RUN_MACROFILE_4D filename default macros.4d`

if non blank, the full pathname of the file of macros (one per line) that are run when a new project is created.

Note: This is only run for new projects. **RUN_PROJECT_MACROS_FILE_4D** is run when opening an existing project.

The default is macros.4d

RUN_PROJECT_MACROS_FILE_4D

`RUN_PROJECT_MACROS_FILE_4D filename default project_macros.4d`

if non blank, the full path name of the file of macros (one per line) that are run when an existing project is opened.

Note: This is only run when opening existing projects. **RUN_MACROS_FILE_4D** is run when creating a new project.

The default is project_macros.4d
Environment Variables

SDR_DISPLAY_V8_FORMAT_4D

SDR_DISPLAY_V8_FORMAT_4D

SETUPS_FILE_4D

SETUPS_FILE_4D filename default setups.4d

file setting up the initial screen layout for new projects. This is not to be confused with
SET_UPS_4D which is where the standard Set Up files are installed. See SETUPS_FILE_4D.
The default is setups.4d. See 39.2.7.1 Set Ups File (setups.4d).

SET_UPS_4D

SET_UPS_4D folder HOME_4D\11.00\set_ups

directory for storing the standard Set Up files installed by 12D Solutions.
The default is HOME_4D\11.00\set_ups.

SEWER_PPF_4D

SEWER_PPF_4D path name to .ppf file no default

points to the file used as the default plot parameter file (.ppf) for the panel new plot sewer

network.

SHARE_CHECK_INTERVAL_4D

SHARE_CHECK_INTERVAL_4D positive integer default 0

if non zero, the number of seconds between checks to see if any of the shared tins or models
added to the project have been modified.

SHARE_LOCKS_FOLDER_4D

SHARE_LOCKS_FOLDER_4D folder default no folder

if non blank, the full path name of the folder used to keep lock files for shares.
If no folder is given, the locking files are stored inside the project.

SHARE_MAP_FILE_4D

SHARE_MAP_FILE_4D filename default blank

if non blank, the full path name of the map file to be applied to shared models.

SHARED_ELEMENT_COLOUR_4D

SHARED_ELEMENT_COLOUR_4D colour default blue

the colour to use in a list of tins/models for showing shared tins/models. That is, the tins/models
that have been added to the project as shared tins/models are shown in this colour.
Setting the colour to black will disable this feature.

SHARING_CACHE_4D

SHARING_CACHE_4D folder default no folder

if non blank, the full path name of the folder that is used to store the models and tins and tins that
are shared into the project. Each time the project is started, each model and tin that is shared
into the project is checked to see if has changed since the last time it was used in the project,
and if has not changed then the copy in the Sharing Cache Folder is used. This can greatly
improve performance when the models and tins are being shared into your project from across
the network.
If no folder is given, no caching of models or tins is done.

SHARED_ELEMENT_COLOUR_4D
SHARING_ELEMENT_COLOUR_4D colour default rgb 255,165,0

the colour to use in a list of tins/models for showing the tins/models in the project that you are allowing to be shared. That is, those tins/models in the project that the user has allowed others to share are shown in this colour.

Setting the colour to black will disable this feature.

SHEET_SIZES_4D

SHEET_SIZES_4D filename default sheets.4d

For plot frames, long and x plots, the overall size of the plot sheet can be given by a pop-up containing defined sheet size.

The sheet size name and width and heights can be specified by the user in a file named sheets.4d which is in the normal Set Up areas, or is pointed to by the environment variable SHEET_SIZES_4D.

The default is sheets.4d. See 39.2.7.4 Sheet Sizes File (sheets.4d).

SHOW_OPTION_EXECUTION_TIME_4D

SHOW_OPTION_EXECUTION_TIME_4D integer 0

if non zero, the time taken for an option to run is written to the output window.

If zero, the information is not written to the output window.

SHOW_PATHS_4D

SHOW_PATHS_4D anything

If non blank, then when 12d Model fires up the actual file names defined by any environment variables are written to the output window. This is useful for debugging.

SHOW_PROJECT_DETAILS_4D

SHOW_PROJECT_DETAILS_4D 0, 1 default 1

If non zero, the Edit Project Details panel is displayed when a new project is created.

SHOW_TITLE_VARIABLES_4D

SHOW_TITLE_VARIABLES_4D 0 any $variable not used is left as blank
1 any $variable not used is shown as $variable
2 all $variable’s are plotted with no substitution

This is used for debugging the title block file.

If 0, any $variable not used in the title blank file is left as blank.

If 1, any $variable not used is shown as $variable.

If 2, all $variable are plotted with no substitution.

The default value is 0.

SHOW_VISTA_VIRTUAL_STORE_PATHS_4D

SHOW_VISTA_VIRTUAL_STORE_PATHS_4D tick box

if ticked, then for Microsoft Vista, when 12d Model fires up, the actual file names defined by any environment variables are written to the output window. This is useful for debugging due to the fact that Vista may put file sin strange places.

SNIPPET_ZONE_COLOUR_4D

SNIPPET_ZONE_COLOUR_4D colour default light grey (RGB(155, 140, 150)

the colour of the text in the Type column for the Snippet command in the Modifiers section of the Left/Right MTF Modifiers panel.
SORT_COLOURS_BY_POPUP_NUM_4D

SORT_COLOURS_BY_POPUP_NUM_4D 0,1 default 1

Controls the display order of the colours in the Select Colour popup that you get when you click on a Colour icon.

If SORT_COLOURS_BY_POPUP_NUM_4D is 1, the colours in the Select Colour popup are sorted by the Pop-up Number given for the colours in the Colours.4d file.

If SORT_COLOURS_BY_POPUP_NUM_4D is 0, the colours in the Select Colour popup are sorted alphabetically.

The default value is 1.

SPECIAL_OFFSET_CHAINAGES_4D

SPECIAL_OFFSET_CHAINAGES_4D

SPEED_TABLES_4D

SPEED_TABLES_4D

SQUARE_CHARACTER_4D

SQUARE_CHARACTER_4D integer (base 10) default 178

The integer (base 10) value of the character to use as the squared symbol.

STATION_PREFIX_4D

STATION_PREFIX_4D text There is no default.

The default prefix to use in the Survey Data Setup panel or to use if no prefix has been set for the project.

There is no default value.

SUPER_ADVANCED_MODE_4D

SUPER_ADVANCED_MODE_4D

SUPER_ALIGNMENT_STYLE_4D

SUPER_ALIGNMENT_STYLE_4D filename default astyles.4d

Points to the file used to define the symbology used for super alignments.

The default is astyles.4d.

SUPER_STRINGS_4D

SUPER_STRINGS_4D 1 Use the super string

0 Don’t use the super string.

Controls whether the super string is accessible or not.

The default value is 1.

SYMBOLS_4D

SYMBOLS_4D filename default symbols.4d

Points to the file used to define the symbols used for super strings.

The default is symbols.4d.

SYSTEM_NAMES_4D

SYSTEM_NAMES_4D 1 Only use the longer names

2 Only use the 8.3 file names

3 Use short names first then look for a long name.

For file name compatibility with DOS 8.3 format, the default names for all Set Up files can be
restricted to just short names (8.3), long names, or short and then long. The default value is 3.

TRANSFORMATIONS_4D
TRANSFORMATIONS_4D filename default 7params.4d
This points to the file which is used as the file of seven parameter transformations. These are described in 7.6.8 7 Parameters and the editing of the transformations file is documented in 7.6.8.1 Create/Edit 7 Parameters.
The default is 7params.4d.

TEXTSTYLE_MAPPINGS_4D
TEXTSTYLE_MAPPINGS_4D filename default textstyle_names.4d
file of textstyles favourites definitions
The default is textstyle_names.4d

TEXTSTYLES_4D
TEXTSTYLES_4D filename default textstyl.4d
file of textstyles definitions
The default is textstyl.4d. See 40.3 Textstyles and Fonts.

TEXTURE_MAP_4D
TEXTURE_MAP_4D filename default texture_map.4d
This points to the file which defines the tables of texture mappings. These are described in 12.13.4 Texture Map Edit.
The default is texture_map.4d.

TICK_DRAW_CROSS_4D
TICK_DRAW_CROSS_4D 0 Nothing for off
1 Cross for off
The default value is 0.

TIN_VIEWPORT_CLIP_4D
TIN_VIEWPORT_CLIP_4D 0 Drawing tins, fast contours as per V3.1
1 A speed up for drawing tins, fast contours
Use some experimental techniques for speeding up the drawing of tins, fast contours.
The env.4d file shipped with 12d Model has this set to 1.

TOOLBAR_DUPLICATE_MODE_4D
TOOLBAR_DUPLICATE_MODE_4D choice box
This environment variable manages what to do if toolbars with the same name are read from a toolbars.4d file. The choices are

Do nothing - accept all toolbars of the same name
Take first - accept only the first instance of the toolbar
Take last - accept only the last instance of the toolbar

TOOLBARS_4D
TOOLBARS_4D filename default toolbars.4d
file of toolbar definitions and names
The default is toolbars.4d. See 41.3 User Defined Toolbars
Environment Variables

TP_STAKEOUT_PATH_4D

TP_STAKEOUT_PATH_4D folder - no default

If non-blank, the full path name of the folder of TP Stakeout files.

TRIMESH_TO_DWG_MODE_4D

TRIMESH_TO_DWG_MODE_4D - Do not write OR Faces OR Polyface mesh

If **Do not write**, trimeshes are not written out to a DWG file.

If **Faces**, a trimesh is written out to DWG file as individual 3D Faces.

If **Polyface mesh**, a trimesh is written out to a DWG file as a Polyface mesh.

Note that a Polyface mesh has only one colour.

TYPED_UNITS_MODE_4D

TYPED_UNITS_MODE_4D

0 - International units only e.g. f and F are both International feet

1 - USA units only e.g. f and F are both US feet

2 - Mixed e.g. f is International feet and F is US feet

Controls the typed input units for feet - international and/or US

The default value is 0.

UNDO_4D

UNDO_4D

0 - Don't allow undo's

1 - Allow undo/redos - default 1

Undo and Redo is available for most operations from **12d Model V3.1 onwards**. The availability of Undo/Redo facility is controlled by the environment variable:

The default value is 1.

USAGE_LOG_4D

USAGE_LOG_4D folder - no default

When set, log files of the form

<log file folder>/<dongle> <user> <computer> <time stamp> <process ID>.log

will be created in the given folder.

That is, the log files will all be in the one folder.

USAGE_LOGS_4D

USAGE_LOGS_4D folder - no default

When set, log files of the form

<log file folder>/<dongle>/<user>/<computer>/<time stamp> <process ID>.log

will be created in the given folder.

That is, the log files will be in subfolders dongle:<user>:computer.

USE_ALL_USERS_PROFILE_4D

USE_ALL_USERS_PROFILE_4D - 0, 1

If no-zero then the file env.4d and the folders user and user_lib are looked for in **Documents and Setting All Users**.

USE_BACKUPS_4D_FOLDER_4D

USE_BACKUPS_4D_FOLDER_4D - 0, 1 - default 1

If non-zero: in the places where **12d Model** creates a backup file when a new file is created
Environment Variables

Chapter 39 Setting Up & Configuring 12d

(Using the file endings 1, 2, ... for the old file) then the backup file is placed in the folder backups.4d.

Backups are created for options such as env.4d editor, mtf editor, boxing editor, survey.4d editor, whenever the "Write Setup File(s)" is displayed, plus the macro calls Backup_version_file and Restore_version_file.

The backups.4d folder is created in the project working folder (that is, in the folder containing the .project folder).

USE_DENSITY_CHECKS_4D

USE_DENSITY_CHECKS_4D 0 Don’t do density checks
1 Do density checks default 1

If non zero then for a new project, the default for Use density drawing in the Defaults panel is tick.

If zero then for a new project, the default for Use density drawing in the Defaults panel is no tick.

For more information on density drawing, see Use density drawing tick box.

Note: This setting is only applicable to the 250M version of 12d Model.

USE_DISPLAY_MANY_SNAP_4D

USE_DISPLAY_MANY_SNAP_4D

USE_ECW_SERVER_4D

USE_ECW_SERVER_4D

USE_IMAGE_SERVER_4D

USE_IMAGE_SERVER_4D

USE_NAMES_COMMENT_4D

USE_NAMES_COMMENT_4D

USE_NEW_LINESTYLE_LIST_BOX_4D

USE_NEW_LINESTYLE_LIST_BOX_4D value 0, 1

If non zero, the linestyle and symbol pop-up lists are in scrolling boxes so they don’t run over the bottom of the screen. The list of linestyles/symbols is displayed in a tree structure with the Groups as the nodes of the tree.

If zero, the linestyle and symbols lists are one long list with each Groups being an item in the list. The list may get too long to fit on the screen.

The default value is 1.

USE_NEW_SELECT_4D

USE_NEW_SELECT_4D

USE_SUPER_STRINGS_4D

USE_SUPER_STRINGS_4D

USE_TRASH_BIN_4D

USE_TRASH_BIN_4D 0 Don’t use the Trash Bin default 1
1 Use the Trash Bin

The Trash Bin is used to store copies of deleted tins and models, and cleaned models. The items can be retrieved from the Trash Bin. The Trash Bin is automatically purged of contents after PURGE_TRASH_DAYS_4D.
The default value is 1.

USE_VALIDATION_COLOURS_4D

USE_VALIDATION_COLOURS_4D value 0 or 1 default 1

If 1, when a panel field fails to validate, the panel field is filled with the colour given by

USER_4D

USER_4D folder HOME_4D\11.00\user

user folder containing Set Up files

The default is HOME_4D\11.00\user.

USER_LIB_4D

USER_LIB_4D folder HOME_4D\11.00\user_lib

user library folder for input files such as mapping, template and macros (4DML's).

The default is HOME_4D\11.00\user_lib.

USER_OPTIONS_4D

USER_OPTIONS_4D file default usermenu.4d

To help customise 12d Model, the walk-right menu User on the main 12d Model menu, can be user defined. The text for each button of User, plus the action taken when the button is selected is user specified. Any of the buttons can include further walk-right menus.

The definitions for the menus on User's is given in the file usermenu.4d which is searched for in the standard Set Up areas (local, USER_4D, user, set_ups) or set by the environment variable USER_OPTIONS_4D.

if USER_OPTIONS_4D is blank, usermenu.4d is searched for in the standard search path for User files.

if USER_OPTIONS_4D is not blank, then it is used as the full path name of the user supplied file of definitions for user defined menus.

The default is usermenu.4d. See 41.2 User Defined Menus

V7_TITLE_BLOCKS_4D

V7_TITLE_BLOCKS_4D value 0 or 1 default 1

if non zero, the title block file is in 12da format.

If zero, the title block is in the pre V7 title block .tf format

VALIDATION_FAIL_COLOUR_4D

VALIDATION_FAIL_COLOUR_4D text

If not blank, the colour to fill the panel field with when there is a validation error for the field. The text is either a colour name, a colour number or RGB(x,y,z).

This is only used if USE_VALIDATION_COLOURS_4D is non zero (or at least not set to zero since the default is one).

If blank, the default colour is RGB(255,72,72),

VEHICLE_PATH_4D

VEHICLE_PATH_4D folder no default

The DOS Version of Vpath is no longer supported.

The environment variable VEHICLE_PATH_4D points to the folder where the Dos version of the Vpath executable is located. Note that WINDOWS_VEHICLE_PATH_4D points to the Windows
version.

VIEW_BITMAP_BUTTONS_4D

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>User text for view buttons</td>
</tr>
<tr>
<td>1</td>
<td>Use icons for view buttons</td>
</tr>
</tbody>
</table>

The default value is 1

VIEW_BUTTONS_4D

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No view buttons are displayed</td>
</tr>
<tr>
<td>1</td>
<td>The view buttons are displayed</td>
</tr>
</tbody>
</table>

If non zero, then menu items (view buttons) are displayed on the views (as icons or text). If zero, menu items (view buttons) are not displayed on the views.

The default value is 1

Note: displaying *view buttons* as icons or text is controlled by **VIEW_BITMAP_BUTTONS_4D**

WARP_CURSOR_HIDE_4D

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Don’t hide the cursor before moving it</td>
</tr>
<tr>
<td>1</td>
<td>Hides the cursor before moving it</td>
</tr>
</tbody>
</table>

Controls whether the cursor is hidden before moving - only needed on some computers. If non zero, don’t hide the cursor before moving it. If zero, hides the cursor before moving it.

The default value is 0.

WEB_SEARCH_4D

WEB_SEARCH_4D search engine web address *www.google.com*

web address of the search engine that is fired up from the 12d option

Help =>12d on the Web =>Search the web.

WEED_TOLERANCE_4D

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Don’t weed</td>
</tr>
<tr>
<td>1</td>
<td>Weed tolerance</td>
</tr>
</tbody>
</table>

used in Alignment and Super strings so that when arcs have been chord-to-arc’d, the resulting points are weeded so that no point is closer than the weed tolerance. Is is also used in Apply and Apply MTF so that no cross sections are closer than the weed tolerance.

WIBU_4D

WIBU_4D 1, 0

if non zero, search for 12d Wibu dongles.

If zero, don’t search for Wibu dongles

WIBU_DONGLE_4D

The environment variable can have a number of parameters to control the use of Wibu network and stand alone dongles.

(a) **WIBU_DONGLE_4D** -local OR -no_local

usually used when there is a network dongle and need to know if any stand alone Wibu dongle is to be looked for on the computer that the user is on.

if **local**, then a stand alone Wibu dongle is looked for on the computer the user is on.

If **-no local**, then no stand alone Wibu dongle is looked for on the computer the user is on.

For example **WIBU_DONGLE_4D** -local or -no local
(b) \texttt{WIBU_DONGLE_4D} \texttt{-no_network OR -network_first OR -network_last}

need to specify if any network Wibu network dongle is to be looked for.

if \texttt{-no_network}, then no Wibu network dongle is looked for.
If \texttt{-network_first}, then a Wibu network dongle is looked for before a stand alone local dongle.
If \texttt{-network_last}, then a Wibu network dongle is looked for after looking for a stand alone local dongle.

For example \texttt{WIBU_DONGLE_4D} \texttt{-no_network} or \texttt{-network_first} or \texttt{-network_last}

(c) \texttt{WIBU_DONGLE_4D} \texttt{-login_retries number of retries to find a Wibu dongle}

the number \texttt{nn} of retries to make when searching for a Wibu dongle and it is not found.

For example \texttt{WIBU_DONGLE_4D} \texttt{-login_retries 3}

(d) \texttt{WIBU_DONGLE_4D} \texttt{-login_wait ss}

the number of seconds \texttt{ss} to wait between retries to find a network Wibu dongle.

For example \texttt{WIBU_DONGLE_4D} \texttt{-login_wait 5}

(e) \texttt{WIBU_DONGLE_4D} \texttt{-no_dongle}

if the parameter \texttt{-no_dongle} is found, then no search is made for a Wibu dongle.

For example \texttt{WIBU_DONGLE_4D} \texttt{-no_dongle}

(f) \texttt{WIBU_DONGLE_4D} \texttt{-debug}

if the parameter \texttt{-debug} is found, then Wibu dongle debug information is written to the

For example \texttt{WIBU_DONGLE_4D} \texttt{-debug}

See the separate notes on installing a network dongle for more details.

\texttt{WIBU_IPADDR}

\texttt{WIBU_IPADDR} \hspace{1cm} list of IP addresses and/or computer names

if \texttt{non blank}, a list of IP addresses and/or computer names to search for a 12d Wibu network dongle. The items in the list are separated by commas

If \texttt{blank}, search the entire network for a 12d Wibu network dongle

\texttt{WINDOWS_PRINT_MODE_4D}

\texttt{WINDOWS_PRINT_MODE_4D} \hspace{1cm} value

value is an integer representing "bit mask".

If \texttt{bit 1} set (contributes 1 to value): Windows 2000/XP print dialog means PrintDlgEx otherwise if bit 1 is not set, then PrintDlg.

if \texttt{bit 2} set (contributes 2 to value): Use exclusive access to the printer to force direct printing to the printer (may need Printer admin access)

if \texttt{bit 3} set (contributes 4 to value): Use an intermediate print file so that printing is first done to a file and then that file is submitted to the printer

So the legal values are from 0 to 7

\texttt{WINDOWS_PRINTER_SET_DOCUMENT_PROPERTIES_4D}

\texttt{WINDOWS_PRINTER_SET_DOCUMENT_PROPERTIES_4D}

\texttt{WINDOWS_PRINTERS_4D}

\texttt{WINDOWS_PRINTERS_4D} \hspace{1cm} value

0 \hspace{1cm} Don't allow Windows printers
1 \hspace{1cm} Enable Windows printers

The default value is 1.

\texttt{WINDOWS_VEHICLE_PATH_4D}
Chapter 39 Setting Up & Configuring 12d

Environment Variables

WINDOWS_VEHICLE_PATH_4D folder no default
if non blank, the full path name of the folder where the Windows program Vpath is located.

Note - Vpath is the Vehicle Turning Path program written by Queensland Department of Transport and Main Roads that is provided free of charge.

WINTER_4D

WINTER_4D path name to WINTER program

12d Model no longer uses the external Winter program and so this environment variable is no longer used.

Points to the WINTER program for calculation N-values for Australia.

WINTER_DATA_4D

WINTER_DATA_4D folder no default
Folder containing the Winter data of N-values for Australia.

WINTER_USE_NEW_METHOD_4D

WINTER_USE_NEW_METHOD_4D value 0, 1 default 1
if tick, re-reading the Winter data is avoided and this speeds up the calculation for the Winter interpolations.

WORKSPACE_FILE_4D

WORKSPACE_FILE_4D path name
if non blank, the full path name of the workspace file for new projects.

WRITE_ALL_PLOT_PARAMETERS_4D

WRITE_ALL_PLOT_PARAMETERS_4D 0 Only write out the plot parameters that are used in the ppf.

WRITE_ALL_PLOT_PARAMETERS_4D 1 Write out all plot parameters to a ppf file
Controls whether all plot parameters are written out to a ppf file or just those that have been used in the ppf file.

The default value is 1.

X_SECTION_PPF_4D

X_SECTION_PPF_4D path name to .ppf file no default
points to the file used as the default plot parameter file (.ppf) for the panel section X plot.

The path name to the .ppf file can contain $LIB which expands out to the path of the library area. For example, $LIB/cross.ppf points to the file cross.ppf in the area defined by $LIB_4D.

ZOOM_ORIGIN_DYNAMIC_4D

ZOOM_ORIGIN_DYNAMIC_4D 0 The centre of the view is the zoom centre point

ZOOM_ORIGIN_DYNAMIC_4D 1 The point you pick is the zoom centre point
Controls the origin of the dynamic zoom.

If non zero then the point selected in the view to indicate which view to dynamically zoom (and to be the zoom-in, zoom-out definition point) becomes the point to dynamically zoom about. Whilst the dynamic zoom is running, another point can be selected to become the new zoom origin.

The default value is 0.

ZOOM_PAN_DYNAMIC_4D

ZOOM_PAN_DYNAMIC_4D 0 Dynamic pan is not the default

ZOOM_PAN_DYNAMIC_4D 1 Dynamic pan is the default for pan
If non zero then **dynamic pan** is the default for the pan options. The middle mouse button (or `d`) is not required to place the pan option in dynamic mode. In fact, it would then toggle it off.

The default value is 0.

Notes

(a) If any of the environment variables (pointing to files) are not set, or the file pointed to does not exist, then 12d Model searches for the default files in a number of locations. The search order is given at the beginning of this Appendix.

(b) The eagle pen mapping file, `eagleplt.emf` is also searched for in the same order as the default files.

(c) When an **existing** project is opened by 12d Model, the setups.4d and defaults.4d are not used.

Please continue to the next section **39.4.2 Setting Environment Variables**.
39.4.2 Setting Environment Variables

The simplest method for setting the required environment used in 12d Model is to place them into a file, called the environmental file (default name env.4d).

Environment Variables File

It is possible to define a file which sets the value for one or more environment variables.

The file format consists of one line for each environment variable being set and each line contains the environment variable name, followed by one or more spaces and then the value for the environment variable:

```
environment_variable_name  value
```

The value of any environment variable given in the environment variable file overrides any other definition for that environment variable.

The file used as the environmental variable file is checked for in the following order - as soon as a file is found, the search terminates and that file is used:

1. as a command line argument when 12d Model is fired up. The syntax is
   ```
   12d  -env  path_name
   ```
 where path_name is the full path name of the file
2. pointed to by the environment variable ENVIRONMENT_4D
   ```
   ENVIRONMENT_4D file  // file of environment variables
   ```
 // default env.4d
3. a file called env.4d which is searched for in the standard Set Up areas (local, USER_4D, user, set_ups).

An example of an environment variable file is

```
EDITOR_4D  te  // set the text editor used
SHOW_PATHS_4D  1  // show file names set by environment variables
SHEET_SIZES_4D  c:\standards\shfile
```

Setting Environment Variables not in a File

Environment variables can be set in Windows NT for a user from the Environment tab on the System Properties panel brought up by clicking on the System icon in the Control Panel of Windows.

To bring up the Control Panel, click on Start in the Windows Task bar, walk right on Settings and then click on Control Panel.

Please continue to the next section 39.2.7.1 Set Ups File (setups.4d).
39.5 12d Model Options Map

The 12d Model menu map shows the menu structure for all the sub-menus on the main 12d Model menu and the menus on the views.

The map is designed to be printed out for users who wish to affix it to a wall.

The PDF file of the menu map on the 12d Model Installation CD in the folder Documentation\12d Model menu map

Or in the Updates section of the web site www.12d.com.

Please continue to the next section 39.6 Monitoring 12d Model Usage.
39.6 Monitoring 12d Model Usage

See

39.6.1 Overview of 12d Usage
39.6.2 Generating the .log files
39.6.3 Installing 12d_usage.exe
39.6.4 Running 12d_usage.exe
39.6.5 Consolidating the .log files
39.6.6 Reporting on 12d Model Usage
39.6.1 Overview of 12d Usage

12d Model usage can be monitored for single-user and network licenses (or a mix of both), whether installed on a single computer, a local-area network, or a wide-area network across different time zones.

Monitoring the usage is a 3 stage procedure:
1. Generating individual .log files for each **12d Model** session run.
2. Consolidating all the completed .log files into a CSV file.
3. Reporting the usage details, using the CSV file as input.

The 1st stage is achieved by setting an environment variable in your env.4d file(s).
The last 2 stages are achieved by running the supplied program: 12d_usage.exe.

Continue to the next section 39.6.2 Generating the .log files or return to 39.6 Monitoring 12d Model Usage.

39.6.2 Generating the .log files

By setting one of two possible environment variables in the env.4d file(s) used for your **12d Model** sessions, uniquely named .log files can be generated in a specified folder on your network.

For example, by adding the lines:

```
usage_log_4d F:\12d model usage
```

or

```
usage_logs_4d F:\12d model usage
```

to your env.4d file(s), then each time a **12d Model** session is run, a .log file will be created in the "F:\12d model usage" folder. This folder, referred to as the <log file folder>, can be anywhere on your network and can have any name, but it must be created beforehand, and all 12d Model users must have write-access to it.

In the first case, using variable “usage_log_4d”, log files will be generated in the form:

```
<log file folder>\(<dongle> <user> <computer> <time stamp> <process ID>.log)
```

In the second case, using variable “usage_logs_4d”, log files will be generated within sub-folders of the form:

```
<log file folder>\<dongle>\<user>\<computer>\(<time stamp> <process ID>.log)
```

Note that the <time stamp> represents the start time of the **12d Model** session in GMT (also known as UTC or Zulu Time).

It does not matter which variable you decide to use, and you can even use a mix of the variables, if you have more than one env.4d file. However, regardless of which variable you use, it is recommended that the <log file folder> is the same for all **12d Model** users on your network so that all **12d Model** sessions can be easily included in the reports.

The .log file generated in the <log file folder> for each individual **12d Model** session run on your network, contains all the information required about that session. While the session is still running, the log file will be updated at a minimum of every 75 seconds, with the time that the session has been active. At the close of the **12d Model** session, the log file is again updated and is set as “completed”.

Continue to the next section 39.6.3 Installing 12d_usage.exe or return to 39.6 Monitoring 12d Model Usage.
39.6.3 Installing 12d_usage.exe

You can put the 12d_usage.exe program wherever you like on your network. Then, simply create a shortcut to the program on your desktop, making sure the shortcut properties are set as follows:

- **Target:** `<path to program location>\12d_usage.exe`
- **Start in:** `<path to Working Folder>`

The Working Folder is the folder that you run the 12d_usage.exe program from (it does not have to be the same as the location of the 12d_usage.exe file). After running the program for the first time, a file named 12d_usage.defaults will be created in the Working Folder. This file is used to save your settings from the last run of the program and to load your settings for the next run of the program. In addition, you might also wish to use the Working Folder to store your 12d Model Usage report files (although you are free to store them elsewhere).

Continue to the next section 39.6.4 Running 12d_usage.exe or return to 39.6 Monitoring 12d Model Usage.

39.6.4 Running 12d_usage.exe

To run the 12d_usage program, simply double-click on the shortcut icon you created at install time. This will open up a DOS window from where the program’s keyboard-driven menu system can be run.

From the Main menu within the 12d_usage program, your keyboard-driven menu options are:
- **C** Bring up the Consolidate menu
- **R** Bring up the Report menu
- **Q** Exit (quit) the 12d_usage program

Continue to the next section 39.6.5 Consolidating the .log files or return to 39.6 Monitoring 12d Model Usage.
39.6.5 Consolidating the .log files

After a while, you should notice that a lot of .log files are being generated in your specified <log file folder>. To consolidate all these .log files into a single Comma-Separated-Variable (CSV) file, you will need to run the 12d_usage.exe program, and press the “C” key to bring up the Consolidate menu.

From the Consolidate menu, your keyboard-driven menu options are:

F Specify the <log file folder>

O Specify the output CSV file name

T Toggle whether to delete or rename consolidated log files

C Consolidate 12d Model session log files

Q Exit the Consolidate menu and return to the Main menu

When specifying the name of the CSV file you wish to consolidate your log files to (using the “O” key), if you want a .csv file extension (to allow the file to be easily loaded into MS?Excel for your own custom reports, for example), you must include the .csv in the file name. It is recommended that all users of the 12d_usage program consolidate log files to the same CSV file every time. Newly consolidated logs are always appended to an existing CSV file. If there is to be more than one user of the 12d_usage program, it might be a good idea to specify the CSV file to be in the <log file folder> or the Working Folder (or at least, some folder that all 12d_usage users can access).

You also need to specify how to tidy up the log files, after they have been consolidated, so that they are not consolidated more than once. Your options here are to rename or to delete the log files (the “T” key toggles between rename and delete). If you choose to rename them, they will be renamed with a .logc extension. If you choose to delete them, they will be lost forever, and the only record you will have of your consolidated sessions will be contained in the CSV file. As such, you should be very careful not to delete your CSV file.

Pressing the “C” key will then go ahead and consolidate the log files. Note that consolidation will only take place on “completed” log files (or on log files that have not been updated for more than 24 hours - to handle the case of a power failure, for instance).

Continue to the next section 39.6.6 Reporting on 12d Model Usage or return to 39.6 Monitoring 12d Model Usage.
39.6.6 Reporting on 12d Model Usage

After creating or adding to your consolidated CSV file, you can press the “R” key from the Main menu, in order to bring up the Report menu.

From the Report menu, your keyboard-driven menu options are:

I Specify the input CSV file name (generated from the Consolidate menu)
O Specify the output report file name
M Toggle whether to overwrite or append to existing report file
D Add/Remove Dongle constraints
C Add/Remove Computer constraints
U Add/Remove User constraints
F Add/Remove Folder constraints
P Add/Remove Project constraints
E Add/Remove Program constraints
V Add/Remove Version constraints
T Specify Start and End times for report (in Local Time of 12d_usage User*)
S Specify which summary tables you want in the report
R Generate the 12d Model Usage report
Q Exit the Report menu and return to the Main menu

After generating the report (using the “R” key), you will be asked if you want to view the report file. If you answer yes (using the “Y” key), the report file will be opened using Notepad.exe as the default file editor. If you would prefer to use a different file editor, you can specify it by manually editing the 12d_usage.defaults file (see Installing 12d_usage.exe), and replacing the word “notepad” (last line of the file), with the command to start your preferred editor.

*Note: In general, if reporting on 12d Model sessions running on a WAN across different time zones, Local Time of 12d Model User and Local Time of 12d_usage User may be different.

Return to 39.6 Monitoring 12d Model Usage.

Or continue to the non related next section 39.7 Running Macros and Chains on Start Up.
39.7 Running Macros and Chains on Start Up

To allow for tailoring 12d Model when a new project is created or an existing project opened, 12d Model runs user supplied files of macros and/or chains.

For new projects, the default name of the file is macros.4d

This can be changed to a different file by setting the environment variable

RUN_MACROS_FILE_4D file_of_macros_to_run_for_new_projects

For existing projects, the default name of the file is project_macros.4d

This can be changed to a different file by setting the environment variable

RUN_PROJECT_MACROS_FILE_4D file_of_macros_to_run_for_existing_projects

(the environment variables can be set on the Extra A tab of the env.4d editor - see 7.6.3 env.4d)

The files consist of macros and/or chains, one per line, where

- for macros, just the name of the macro is needed on the line
- and for chains, the command run_chain name_of_the_chain is needed on the line.

The macros and chains are run in the order that they occur in the file.

Please continue to the next section 39.8 Arguments When Starting 12d Model.
39.8 Arguments When Starting 12d Model

12d Model can be started from an icon, or it can be started from a command line in a batch file by pointing to the *12d Model* executable, *12d.exe*. For example,

```
"C:\Program Files\12d\12dmodel\11.00\nt.x64\12d.exe"
```

fires up the 64-bit *12d.exe*.

Note This is what is used in the **Target:** field for a 12d icon. See 5.6 Project Shortcuts.

For a command line and the **Target:** field, new projects can be created and opened, existing projects can be opened, and/or a user specified *env.4d* file used.
39.8.1 Creating a New Project

The command

```
path_to_12d.exe -create full_path_name_to_12d_project_to_create
```

creates a **new** project of the given name, and *12d Model* starts up and opens up the new project. If any of the path names contain spaces, then they must be enclosed in double quotes (").
39.8.2 Opening an Existing Project

If the full pathname to an existing project is given after the `12d.exe` command, **12d Model** starts up and opens the existing project.

```
path_to_12d.exe full_path_name_to_existing_12d_project
```

For example

"C:\Program Files\12d\12dmodel\11.00\int.x86\12d.exe" "C:\12d jobs\airport\airport.project"

If any of the path names contain spaces, then they must be enclosed in double quotes (" ").
39.8.3 Environment Variables Shortcut

If a file of 12d Model environment variables has been set up by the user (see section 39.4 Environment Variables in Appendix 39 Setting Up & Configuring 12d), then instead of setting the environment variable ENVIRONMENT_4D to point to the file or setting it up with the default name, env.4d, the environment file can be passed to 12d.exe using the -env command.

For example

"C:\Program Files\12d\12dmodel\11.00\nt.x64\12d.exe" -env F:\12d\env.4d would fire up the 64-bit 12d.exe using the file of environment variables called F:\12d\env.4d

The command

"C:\Program Files\12d\12dmodel\11.00\nt.x64\12d.exe" -env F:\12d\env.4d
"C:\12d jobs\airport\airport.project"

would fire up the 64-bit 12d.exe using the file of environment variables called F:\12d\env.4d and also automatically open the project "C:\12d jobs\airport\airport.project".

If any of the path names contain spaces, then they must be enclosed in double quotes ("").

To return to the beginning of this appendix, click on 39 Setting Up & Configuring 12d.
40 Linestyles, Symbols, Textstyles & Patterns

This appendix contains information about how linestyles, symbols and text is defined and used in 12d Model.

See
- 40.1 Line Styles
- 40.2 Symbols
- 40.3 Textstyles and Fonts
- 40.4 Patterns
40.1 Line Styles

Users can define their own lines styles to use when drawing 12d Model strings. The definition of linestyles are stored in a file called linestyl.4d. (note that there is no e at the end of linestyl).

Line styles in the file can be created/edited/deleted using the Linestyle Create/Edit/Delete panel which is brought up by double clicking on Create linestyle in the Linestyles expansion of the Project Tree (see 7.9.4 Linestyles) brought up by the Project =>Tree option.

The Linestyle Create/Edit/Delete panel acts as an interactive editor to a text file which contains the linestyle definitions.

The user defined line styles can be broken into three types depending on how many origin points the line style has, plus a group style.

(a) **one origin** line styles - linestyle, paperstyle, worldstyle

These can be repeated along the string (continuous mode) or just be applied at each vertex of the string (vertex mode).

The units for the one origin line style can be in pixels, millimetres or world units and the line styles are given specific names depending on the units. The one origin line styles are called

- **linestyle** if the definition of the one origin style is given in **pixel** units
- **paperstyle** if the definition of the one origin style is given in **paper** units
- **worldstyle** if the definition of the one origin style is given in **world** units

The line styles *linestyle, paperstyle, worldstyle* can be made up of lines, arcs, circles and text.
Chapter 40 Linestyles, Symbols, Textstyles & Patterns

Note - to provide more flexibility, for most applications vertex mode has been replaced by symbols on super strings. Unlike vertex mode, symbols can be independently scaled and rotated.

(b) two origins line style - twoptstyle
The line style that can be is stretched between two adjacent vertices is called a twoptstyle style and has two origins.
Because the size is determined by two vertices which are only in world units, the twoptstyle is always in world units.
The line style twoptstyle can be made up of lines, arcs, circles and text.

(c) three origins line style
The line style that can be is stretched in two directions using three adjacent vertices is called a threeptstyle style and has three origins.
Because the size is determined by three vertices which are only in world units, the threeptstyle is always in world units.
The line style threeptstyle can only be made up of lines.

(d) group line style
The final type of line style is called a groupstyle and is a combined style made up of one or more linestyles, paperstyles, worldstyles or twoptstyles.

Warning
The words line style have been used to cover all the different types linestyle, paperstyle, worldstyle, twoptstyle, threeptstyle or groupstyle but for historical reasons, the word linestyle has also been used for all the different types although it also refers to a particular line style.

For further information about line styles, see
40.1.1 Defining Line Styles
40.1.2 Linestyl_4d
40.1.3 Line Style Definitions

Or return to 40.1 Line Styles
40.1.1 Defining Line Styles

A line style is defined in a (x,y) co-ordinate system as a series of moves, drawn, arcs, circles and text commands.

The bounding box of the line style is the smallest rectangle parallel to the (x,y) axis which contains all the moves, draws, circles and arcs of the line style. Note that moves are included in the bounding box even if a line isn’t drawn to the point.

The default origin of the line style is defined to be the midpoint of the bounding box surrounding the line style. The bounding box includes the points moved to and drawn to, but does not automatically include (0,0). Hence the calculated origin may not be (0,0).

There are xorigin and yorigin commands to override the default origin of the line style.

If a yorigin is set, then it is used as the y-coordinate of the line style. If the xorigin isn’t given, then the xorigin is the midpoint of the x-extent of the bounding box of the line style.

Similarly, if a xorigin is set, then it is used as the x-coordinate of the line style.

If the yorigin isn’t given, then the yorigin is the midpoint of the y-extent of the bounding box of the line style.

The default length of the line style is the horizontal size of the bounding box.

There is a length commands to override the default length of the line style.

The length must always be positive but it can be larger or smaller than the line styles’s calculated horizontal length.
The origin and the length of the line style are both used in positioning and redrawing the line style.

For continuous mode, the origin of the line style is initially placed at a distance of half of the length of the line style along the first link in the string, and then moved the distance length along the string and redrawn. This is repeated along the string until the end of the string is reached. Hence for continuous mode, the style is continually repeated along the string.

For vertex mode, the origin of the line style is placed at each point of the string and the line style drawn around the origin.

Continue to 40.1.2 Linestyl.4d or return to 40.1 Line Styles.
40.1.2 Linestyl.4d

The definitions for the available linestyles are normally stored in a file called *linestyl.4d* which is read in each time 12d Model opens an existing project or creates a new project. *Linestyl.4d* is searched for in the standard set up paths, or is pointed to by the environment variable

```
LINESTYLES_4D       filename
```

The definition of the line styles will be given in the following section 40.1.3 *Line Style Definitions*.

Continue to 40.1.3 *Line Style Definitions* or return to 40.1 *Line Styles*.
40.1.3 Line Style Definitions

See

40.1.3.1 Linestyles, Paperstyles and Worldstyles
40.1.3.2 Twoptstyles
40.1.3.3 Threeptstyles
40.1.3.4 Groupstyles
40.1.3.5 Description of the draw_commands for Linestyles

40.1.3.1 Linestyles, Paperstyles and Worldstyles

The line style with one origin is called a

- **linestyle** if the definition of the style is given in pixel units
- **paperstyle** if the definition of the style is given in paper units
- **worldstyle** if the definition of the style is given in world units.

Aside:
A line style with two origins is called a **twoptstyle**, and a line style with three origins is called a **threeptstyle**. These behave differently to linestyles, paperstyles and worldstyles and will be documented separately.

The one origin style can be drawn at each point of a string (vertex mode) or redrawn regularly along the lines joining string vertices (continuous mode).

The definition of a **linestyle** of a given name *name* is

```plaintext
linestyle name {
    set_up_commands
    draw_commands
}
```

A **paperstyle** is

```plaintext
paperstyle name {
    set_up_commands
    draw_commands
}
```

and a **worldstyle** is

```plaintext
worldstyle name {
    set_up_commands
    draw_commands
}
```

where the set_up_commands must be before the draw_commands.

The linestyle/paper/worldstyle must have a name and if the name includes imbedded spaces, it must be enclosed in double quotes "".

The line style itself is defined inside the braces where there can be zero or more set_up_commands from the list

- **length** value
- **group** name
- **mode** value
factor value
xorigin value
yorigin value

followed by zero or more draw_commands from the list
move x-value y-value
draw x-value y-value
rmove dx-value dy-value
rdraw dx-value dy-value
colour colour_name
circle radius
arc radius start-angle end-angle
text "text" angle height "justification"
text "text" angle height "justification" "textstyle"
text "text" angle height "justification" "textstyle" xfactor slant offset_width offset_height
repeat num_repeats{ repeat_commands repeat_draw_commands}

The repeat command is a positive integer num_repeats
and zero or more repeat_commands from the list
xpos x-value
ypos y-value
rfactor value

and zero or more repeat_draw_commands where repeat_draw_commands include all the
draw_commands except repeat.

The set_up commands for linestyles, paperstyles and worldstyles will now be described. The
draw_commands will be described after the definition of a groupstyle since they are the same
for linestyles, paperstyles, worldstyles and twoptstyles.

set_up_commands for Linestyles, Paperstyles and Worldstyles

group
The group is used to associate line styles in pop-up menus.
If the group is not defined, the style is placed in a default (blank) group.
If the group name includes imbedded spaces, then it must be enclosed in double quotes "."

mode
mode specifies whether the linestyle, paperstyle or worldstyle is drawn at the individual
vertices on a string (vertex mode) or it is to be redrawn regularly along the lines joining the
vertices on the string (continuous mode).
If the mode is not specified, the mode used for a string depends on the breakline type of the
string and the number of vertices on the string.

<table>
<thead>
<tr>
<th>Breakline Type</th>
<th>Number of Vertices</th>
<th>mode: vertex</th>
<th>mode: continuous</th>
<th>mode: not-given</th>
</tr>
</thead>
<tbody>
<tr>
<td>point</td>
<td>1</td>
<td>vertex</td>
<td>cross</td>
<td>vertex</td>
</tr>
<tr>
<td></td>
<td>>1</td>
<td>vertex</td>
<td>continuous</td>
<td>vertex</td>
</tr>
<tr>
<td>line</td>
<td>1</td>
<td>vertex</td>
<td>cross</td>
<td>vertex</td>
</tr>
<tr>
<td></td>
<td>>1</td>
<td>vertex</td>
<td>continuous</td>
<td>continuous</td>
</tr>
</tbody>
</table>
NOTE: in early versions of 12d Model, mode was known as pointline and had the values point instead of vertex, and line instead of continuous.

factor
This command factors up/down the drawing co-ordinates, heights and radii.

xorigin, yorigin
The default origin of the line style is defined to be the midpoint of the bounding box of the line style. The bounding box includes the points moved to and drawn to but does not automatically include (0,0). Hence the calculated origin may not be (0,0).

The xorigin and yorigin commands are used to override the default origin of the line style.

length
If length is omitted, then length is taken to be the horizontal size of the calculated bounding box of the style.

The length must always be positive but it can be larger or smaller than the line style’s calculated horizontal size.

The origin of the line style and the length are both used in positioning and redrawing the line style.

In vertex mode, the origin of the line style is placed at the string points.

In continuous mode, the origin is initially placed at a distance of half of length along the first line in the string, and then moved the distance length along the string for each redraw.

Examples

```plaintext
// Fence1
worldstyle "FENCE1"{
  group SWCS
  factor 20
  move 0 0
  rdraw 1 0
  rmove 0.25 -0.25
  rdraw 0.25 0.50
  rmove 0.25 -0.25
  rdraw 1 0
}
```

Linestyles and Worldstyles
// Drainage

worldstyle drainage {
 group "4d"
 factor 0.1
 colour green
 move 0.0 -2.0 draw 30 -2.0
 move 30 -1.5 draw 15 -1.5
 move 15 -1.0 draw 30 -1.0
 move 30 -0.5 draw 15 -0.5
 move 15 0.0 draw 30 0.0
 move 30 0.5 draw 15 0.5
 move 15 1.0 draw 30 1.0
 move 30 1.5 draw 15 1.5
 move 30 2.0 draw 0 2.0
}

// Floodlight

worldstyle FLOODLIGHT {
 group "Energex"
 mode vertex
 xorigin 0
 yorigin 0
 colour "yellow"
 circle 0.225
 move -.45 0
draw -0.225 0
 move 0.45 0
draw 0.225 0
 move 0 -.45
draw 0 -0.225
 move 0 0.45
draw 0 0.225
 move -.159 0.159
draw -0.318 0.318
 move 0.159 0.159
draw 0.318 0.318
 move 0.159 -0.159
draw 0.318 -0.318
 move -0.159 -0.159
draw -0.318 -0.318
 move 0 0.8
 text "FL" 0 0.5 "centre-middle"
}

Continue to 40.1.3.2 Twoptstyles or return to 40.1.3 Line Style Definitions or 40.1 Line Styles.
40.1.3.2 Twoptstyles

A twoptstyle is a line style which is stretched so that one cycle fits between consecutive vertices on a string (line or arc segments). This is achieved by defining two origins for the twoptstyle and the first and second origins are mapped to the consecutive vertices on the string.

Hence the mapping of the two origins defines the final size of the size in world units.

The twoptstyle can stretch in just the direction along the string, or both along and perpendicular to the direction of the string.

Also the twoptstyle can be drawn for each line/arc on the string, or for every second line/arc of the string.

For a feature/circle string, the first origin is placed at the centre of the feature/circle and the second origin is placed on the circumference of the feature/circle. Hence the size of the twoptstyle is determined by the radius of the feature/circle string.

The definition of a twoptstyle of a given name is

```
twoptstyle name {
  set_up_commands
  draw_commands
}
```

where the set_up_commands must be before the draw_commands.

The twoptstyle must have a name and if the name includes imbedded spaces, it must be enclosed in double quotes “”.

The twoptstyle itself is defined inside the braces where there can be zero or more set_up_commands from the list

- group
- stretch_mode
- cycle_mode
- xorigin1
- yorigin1
- xorigin2
- yorigin2

followed by zero or more draw_commands from the list

- move x-value y-value
- draw x-value y-value
- remove dx-value dy-value
- rdraw dx-value dy-value
- colour colour_name
- circle radius
- arc radius start-angle end-angle
- text "text" angle height justification
- text "text" angle height justification textstyle
- text "text" angle height justification textstyle xfactor slant offset width offset_height
- repeat num_repeats { repeat_commands repeat_draw_commands}

The repeat command is a positive integer num_repeats and zero or more repeat_commands from the list

- xpos x-value
- ypos y-value
- rfactor value
and zero or more repeat_draw_commands where repeat_draw_commands include all the draw_commands except repeat.

The set_up commands for a twoptstyle will now be described. The draw_commands will be described after the definition of a groupstyle since they are the same for linestyles, paperstyles, worldstyles and twoptstyles.

set_up_commands for Twoptstyles

group

The group is used to associate line styles in pop-up menus.

If the group is not defined, the line style is placed in a default (blank) group.

If the group name includes imbedded spaces, then it must be enclosed in double quotes “”.

stretch_mode

stretch_mode controls whether the symbol stretches in just the direction along the string, or both along and perpendicular to the direction of the string.

<table>
<thead>
<tr>
<th>stretch_mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>// stretch in one direction only (default)</td>
</tr>
<tr>
<td>2</td>
<td>// stretch in both directions</td>
</tr>
</tbody>
</table>

A twoptstyle stretches between two vertices in one or both directions.

cycle_mode

cycle_mode controls whether the symbol is drawn for each line/arc on the string, or for every second line/arc of the string.

<table>
<thead>
<tr>
<th>cycle_mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>// draws on every line/arc (default)</td>
</tr>
<tr>
<td>2</td>
<td>// draws every second line/arc</td>
</tr>
</tbody>
</table>

A twoptstyle draws on each line/arc or every second line/arc

xorigin1, yorigin1

The point (xorigin1, yorigin1) is mapped to the first vertex that the twoptstyle is being applied to.

The default first point of origin of the twoptstyle is defined to be the minimum x value and the average of the minimum and maximum y values \((x_{\text{min}},(y_{\text{min}}+y_{\text{max}})/2)\).

The xorigin1 and yorigin1 commands are used to override the default first origin of the twoptstyle.

xorigin2, yorigin2

The point (xorigin2, yorigin2) is mapped to the second vertex that the twoptstyle is being applied to.

The default second point of origin of the twoptstyle is defined to be the maximum x value.
and the average of the minimum and maximum y values \((x_{\text{max}}, (y_{\text{min}} + y_{\text{max}})/2)\).

The `xorigin2` and `yorigin2` commands are used to override the default second origin of the `twoptstyle`.

Examples

```plaintext
// Gate
twoptstyle GATE {
    group "Two Points"
    stretch_mode 2
    cycle_mode 2
    colour red
    move 100 105
draw 140 95
draw 140 105
draw 100 95
draw 100 105
}

// two point tree
twoptstyle 2PT_TREE {
    group "4d_standards"
    stretch_mode 2
    cycle_mode 2
    xorigin10
    yorigin10
    // xorigin22.5
    // yorigin2 1.25

colour "green"
move 0 0
circle 2.5
move 2.48 0.2
draw 0.5 0
draw 2.48 -0.2
move 2.2 -1.2
draw 1.2 -0.9
draw 1.8 -1.7
move 0.7 -2.4
```
Chapter 40 Linestyles, Symbols, Textstyles & Patterns

// Culvert
twoptstyle CULV {
 group "Two Points"
 stretch_mode 2
 cycle_mode 2
 move 8 12
 draw 10 10
 draw 14 10
 move 16 10
 draw 20 10
 move 22 10
 draw 26 10
 move 28 10
 draw 32 10
 move 34 10
 draw 38 10
 move 40 10
 draw 44 10
 move 46 10
 draw 50 10
 move 52 10
 draw 56 10
 draw 58 12
 move 58 6
 draw 56 8
 draw 56 10
 move 10 10
 draw 10 8
 draw 8 6
 move 10 8
 draw 14 8
 move 16 8
 draw 20 8
 move 22 8
 draw 26 8
 move 28 8
 draw 32 8
 move 34 8
 draw 38 8
move 40 8
draw 44 8
move 46 8
draw 50 8
move 52 8
draw 56 8
}

Continue to 40.1.3.3 Threepstyles or return to 40.1.3 Line Style Definitions or 40.1 Line Styles.
40.1.3.3 Threeptstyles

A **threeptstyle** is a line style that one cycle fits between groups of three consecutive vertices on a string (line or arc segments). This is achieved by defining **three origins** for the threeptstyle.

The threeptstyle is fitted to three consecutive vertices by stretching the threeptstyle differently in two perpendicular directions.

The **first** and **second origins** are **mapped** to the **first two consecutive vertices** of the groups of three vertices on the string and that defines a stretching in the direction from vertex one to vertex two.

The second stretching is perpendicular to the line joining the first two origins and is in the direction of the third origin. When fitting the threeptstyle to the three points, the threeptstyle is stretched in the direction **perpendicular** by the factor equal to:

\[
\frac{\text{(perpendicular distance of the third point from the line joining the first two vertices)}}{\text{(perpendicular distance of the third origin from the line joining the first two origins)}}.
\]

So the **third origin** is usually **not mapped** to the **third vertex**. But the third origin will be on the line through the third vertex and parallel to the line through the first two vertices.

Hence the mapping of the three origins defines the final size of the size in world units.

Important Note - because of the stretching in two independent directions, the threeptstyle can only be made up of straight lines.

The definition of a **threeptstyle** of a given name is

```markdown
threeptstyle  name {
  set_up_commands
  draw_commands
}
```

where the **set_up_commands** **must** be before the **draw_commands**.

The **threeptstyle** must have a name and if the name includes imbedded spaces, it must be enclosed in double quotes ".

The **threeptstyle** itself is defined inside the braces where there can be zero or more **set_up_commands** from the list

- `group` name
- `xorigin1` value
- `yorigin1` value
- `xorigin2` value
- `yorigin2` value
- `xorigin3` value
- `yorigin3` value

followed by zero or more **draw_commands** from the list

- `move` x-value y-value
- `draw` x-value y-value
- `rmove` dx-value dy-value
- `rdraw` dx-value dy-value
- `colour` colour_name
- `repeat` num_repeats{ repeat_commands repeat_draw_commands }

The **repeat** command is a positive integer **num_repeats** and zero or more **repeat_commands** from the list

- `xpos` x-value
and zero or more repeat_draw_commands where repeat_draw_commands include all the
draw_commands except repeat.

The set_up commands for a threeptstyle will now be described. The draw_commands will be
described after the definition of a groupstyle since they are the same for linestyles, paperstyles,
worldstyles and twoptstyles.

set_up_commands for Threeptstyles

group

The group is used to associate line styles in pop-up menus.
If the group is not defined, the line style is placed in a default (blank) group.
If the group name includes imbedded spaces, then it must be enclosed in double quotes ".

xorigin1, yorigin1

The point (xorigin1, yorigin1) is mapped to the first vertex that the threeptstyle is being applied
to.

The default first point of origin of the threeptstyle is defined to be the minimum x value and
the average of the minimum and maximum y values (x_min,(y_min+y_max)/2).

The xorigin1 and yorigin1 commands are used to override the default first origin of the
threeptstyle.

xorigin2, yorigin2

The point (xorigin2, yorigin2) is mapped to the second vertex that the threeptstyle is being
applied to.

The default second point of origin of the threeptstyle is defined to be the maximum x value and
the average of the minimum and maximum y values (x_max,(y_min+y_max)/2).

The xorigin2 and yorigin2 commands are used to override the default second origin of the
threeptstyle.

xorigin3, yorigin3

The point (xorigin3, yorigin3) is mapped to the a point on the line parallel to the line through
the first two vertices and going through the third vertex of the three vertices that the
threeptstyle is being applied to.

The default third point of origin of the threeptstyle is defined to be the maximum x value and
the maximum y value (x_max,y_max).

The xorigin3 and yorigin3 commands are used to override the default third origin of the
threeptstyle.

Examples
A threeptstyle stretches between two vertices in one direction and has a different stretch in the perpendicular direction.

```plaintext
threeptstyle "simple turn arrow" {
    group "3 pts"
    xorigin1 0
    yorigin1 0
    xorigin2 10
    yorigin2 0
    xorigin3 10
    yorigin3 3

    colour cyan
    move 0.0 0.0
    draw 10.0 0.0

    colour magenta
    move 10.0 0.0
    draw 10.0 3.0

    colour yellow
    move 10.0 3.0
    draw 9.0 2.0
    move 10.0 3.0
    draw 11.0 2.0
}
```

Continue to 40.1.3.4 Groupstyles or return to 40.1.3 Line Style Definitions or 40.1 Line Styles.
40.1.3.4 Groupstyles

A **groupstyle** is a combined line style which is made up of one or more **linestyles**, **paperstyles**, **worldstyles** and/or **twoptstyles**.

The definition of a **groupstyle** is simply an optional **group** for the line style to belong to, and a list of linestyle, paperstyles, worldstyle and twoptstyle names which must have already been defined in the file.

```
groupline style name {
    group name
    style_name_1
    style_name_2
    ...
}
```

If the **groupstyle** name contains spaces, then it must be enclosed in double quotes "". For example, ""style 1"".

Example

```
// POLE
worldstyle POLE {
    group "Electricity"
    mode vertex
    circle 0.5
}
// FN
worldstyle FN {
    group "Fences"
    length 5
    draw 4 0
    move 4.4 0.6
    draw 4.6 -0.6
}
// PF
}groupstyle "PF" {
    group "Miscellaneous"
    "POLE"
    "FN"
}
```
40.1.3.5 Description of the draw_commands for Linestyles

move \[x-value \quad y-value \]
move the pen from the current pen position to the new position \((x-value, y-value)\).

draw \[x-value \quad y-value \]
draw from the current pen position to the new position \((x-value, y-value)\).

rmove \[dx-value \quad dy-value \]
move relative from the current pen position through the distance \((dx-value, dy-value)\).

rdraw \[dx-value \quad dy-value \]
draw relative from the current pen position through the distance \((dx-value, dy-value)\).

colour \[colour-name \]
change colour (line styles can contain more than one colour).
If colour is not defined, the line style is drawn in the colour of the string that the line style is applied to. If the colour-name includes imbedded spaces, then it must be enclosed within double quotes ".

circle \[radius \]
draw a circle of the given radius at the current pen position.
After drawing a circle, the current pen position is left at the centre of the circle.

arc \[radius \quad start-angle \quad end-angle \]
draw an arc of the given radius from the start angle to the end angle. A positive radius denotes that the arc is drawn in a clockwise direction, a negative radius means anti-clockwise. Angles are given in degrees, minutes and seconds in the ddd.mmssfff format.
After drawing an arc, the current pen position is left at the centre of the arc.

text \[text \quad angle \quad height \quad "justification" \]
the characters text are drawn at the current pen position with the given angle, height, justification and possibly textstyle, xfactor, slant, offset_width and offset_height. Angle and slant are given in degrees, minutes and seconds in the ddd.mmssfff format. Slant is between -45 and 45 degrees.
The allowed justifications are
top-left top-centre top-right
middle-left middle-centre middle-right
bottom-left bottom-centre bottom-right
and the value is enclosed inside double quotes (").
After drawing text, the current pen position is left where it was before the text was drawn.

repeat \[num_repeats \{ repeat_commands \quad repeat_draw_commands \} \]
The repeat command allows the set of repeat_draw_commands inside the braces (the repeat-style) to be re-drawn a number of times (num_repeats), and with each redraw, the size of the repeat-style is modified.
In the definition of repeat, there can be zero or more repeat_commands from the list

xpos \[x-value \]
ypos y-value
rfactor value

and zero or repeat_draw_commands where repeat_draw_commands include all
draw_commands except repeat.

Unlike style, the repeat-style is defined in terms of a local origin at (0,0). The repeat-style is
actually drawn with this origin at the position given by the values of xpos and ypos.
The repeat-style is drawn num_repeats times and on each redraw, the distances, heights and
radii are factored by the amount

\[\text{repeat_factor} = (1 - i \cdot \text{rfactor}) \]
\[\text{where } i = 0, 1, ..., \text{num_repeats}-1 \]

If rfactor is not specified, it is given the default value of 1/num_repeats. The factor is then

\[\text{repeat_factor} = (\text{num_repeats} - i)/\text{num_repeats} \]
\[\text{where } i = 0, 1, ..., \text{num_repeats}-1 \]

Examples of the Repeat Command
1. To produce circles of radius 10,9,8,...1 about the origin.
 repeat 10 { circle 10}

2. To produce circles of radius 10,9.5,9,...5.5 about the origin
 repeat 10 { rfactor 0.05 circle 10}

More Examples of Line, Paper and World Styles
1. draw a circle of radius 20. The origin of the style is (0,0)
 worldstyle "circle" {
 move 0 0
 circle 20
 }

2. draw a circle of radius 20. The origin of the style is (100,100)
 paperstyle "circle" {
 move 100 100
 circle 20
 }

3. draw a circle of radius 20. The origin of the style is (0,0)
 linestyle "circle" {
 xorigin 0
 yorigin 0
 move 100 100
 circle 20
 }

4. draw a gate symbol as a twoptstyle.
 worldstyle "circle" {
 group "fences"
 stretch_mode 1 // one direction stretch
 cycle_mode 2 // draw every second line
 move 0 0
 }

Line Styles
draw 0 0.1
draw 1 0
draw 1 0.1
draw 0 0
}

5. draw concentric circles of centre (0,0) inside a box

linestyle "dot" {
xorigin 0
yorigin 0
move -5 -5
draw -5 25
draw 25 25
draw 25 -5
draw -5 -5
repeat 10 {
 move 0 0
 circle 10
}
}

6. draw an arc of absolute radius 10 in the clockwise direction from the angle 45 to the angle -45.

linestyle "arc" {
 move 0 0
 arc 10 45 -45
}

7. draw an arc of absolute radius 10 in the anti-clockwise direction from the angle 45 to the angle -45.

worldstyle "arc 1" {
 move 0 0
 arc -10 45 -45
}

8. top-left justified text with a circle centred on the actual text position

linestyle "top-left" {
 group text
 move 0 0
 circle 4
 text "<top left>" 0 10 "top-left"
}

Return to 40.1.3 Line Style Definitions or 40.1 Line Styles.
40.2 Symbols

Users can define their own symbols to draw at vertices of 12d Model strings. The definition of symbols are stored in a file called symbols.4d.

Symbols in the file can be created/edited using the Symbols Create/Edit/Delete panel which is brought up by double clicking on Create symbol in the Symbols expansion of the Project Tree (see 7.9.5 Symbols) brought up by the Project =>Tree option.

The Symbol Create/Edit/Delete panel acts as an interactive editor to a text file which contains the symbol definitions.

The user defined symbols can be applied to each vertex of a string. Each symbol can be made up of lines, arcs, circles and text.

A symbol applied to vertices.

The units for the symbol can be in pixels, millimetres or world units. The symbol is called a

- paperstyle if the definition of the symbol is given in paper units
- worldstyle if the definition of the symbol is given in world units

For further information about Symbols, see
40.2.1 Defining Symbols
40.2.2 Symbol.4d
40.2.3 Symbol Definition

Or return to 40.2 Symbols
40.2.1 Defining Symbols

A symbol is defined in a (x,y) co-ordinate system as a series of moves, drawn, arcs, circles and text commands.

The bounding box of the line style is the smallest rectangle parallel to the (x,y) axis which contains all the moves, draws, circles and arcs of the line style. Note that moves are included in the bounding box even if a line isn’t drawn to the point.

The default origin of the symbol is defined to be the midpoint of the bounding box surrounding the symbol. The bounding box includes the points moved to and drawn to, but does not automatically include (0,0). Hence the calculated origin may not be (0,0).

There are xorigin and yorigin commands to override the default origin of the symbol.

If a yorigin is set, then it is used as the y-coordinate of the symbol. If the xorigin isn’t given, then the xorigin is the midpoint of the x-extent of the bounding box of the symbol.

Similarly, if a xorigin is set, then it is used as the x-coordinate of the symbol. If the yorigin isn’t given, then the yorigin is the midpoint of the y-extent of the bounding box of the symbol.

The default length of the line style is the horizontal size of the bounding box.

There is a length commands to override the default length of the symbol. The length must always be positive but it can be larger or smaller than the symbols calculated horizontal length.

The origin and the length of the symbol are both used in positioning and sizing the symbol.

Continue to 40.2.2 Symbol 4d or return to 40.2 Symbols.
40.2.2 Symbol.4d

The definitions for the available symbols are normally stored in a file called `symbols.4d` which is read in each time 12d Model opens an existing project or creates a new project. `Symbol.4d` is searched for in the standard set up paths, or is pointed to by the environment variable

```
SYMBOLS_4D filename
```

The definition of the symbols will be given in the following section 40.2.3 Symbol Definition.

Continue to 40.2.3 Symbol Definition or return to 40.2 Symbols.
40.2.3 Symbol Definition

The definition of a worldstyle symbol of a given name name is

```
worldstyle name {
    set_up_commands
    draw_commands
}
```

where the set_up_commands must be before the draw_commands.

The linestyle/paper/worldstyle must have a name and if the name includes imbedded spaces, it must be enclosed in double quotes ““.

The symbol itself is defined inside the braces where there can be zero or more set_up_commands from the list

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>value</td>
</tr>
<tr>
<td>group</td>
<td>name</td>
</tr>
<tr>
<td>factor</td>
<td>value</td>
</tr>
<tr>
<td>xorigin</td>
<td>value</td>
</tr>
<tr>
<td>yorigin</td>
<td>value</td>
</tr>
</tbody>
</table>

followed by zero or more draw_commands from the list

```
move  x-value y-value
draw   x-value y-value
rmove dx-value dy-value
rdraw dx-value dy-value
colour colour_name
circle radius
arc   radius start-angle end-angle
text "text" angle height "justification"
text "text" angle height "justification" "textstyle"
text "text" angle height "justification" "textstyle" xfactor slant offset_width offset_height
```

The repeat command is a positive integer num_repeats

```
repeat num_repeats {
    repeat_commands repeat_draw_commands
}
```

and zero or more repeat_commands from the list

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xpos</td>
<td>x-value</td>
</tr>
<tr>
<td>ypos</td>
<td>y-value</td>
</tr>
<tr>
<td>rfactor</td>
<td>value</td>
</tr>
</tbody>
</table>

and zero or more repeat_draw_commands where repeat_draw_commands include all the draw_commands except repeat.

The set_up commands for symbols will now be described followed by the draw_commands.

See

40.2.3.1 set_up_commands for symbols
40.2.3.2 Description of the draw_commands for Symbols

Or return to 40.2 Symbols
40.2.3.1 set_up_commands for symbols

group

The *group* is used to associate symbols in pop-up menus.

If the group is not defined, the symbol is placed in a default (blank) group.

If the group name includes imbedded spaces, then it must be enclosed in double quotes ".

factor

This command factors up/down the drawing co-ordinates, heights and radii.

xorigin, yorigin

The default origin of the symbol is defined to be the midpoint of the bounding box of the line style. The bounding box includes the points moved to and drawn to but does not automatically include (0,0). Hence the calculated origin may not be (0,0).

The *xorigin* and *yorigin* commands are used to override the default origin of the symbol.

length

If length is omitted, then *length* is taken to be the horizontal size of the calculated bounding box of the symbol.

The *length* must always be positive but it can be larger or smaller than the symbols calculated horizontal size.

The origin of the symbol and the length are both used in positioning and sizing of the symbol.

Examples

```
// Floodlight
worldstyle FLOODLIGHT {
  group "Energex"
  mode vertex
  xorigin 0
  yorigin 0
  colour "yellow"
  circle 0.225
  move -.45 0
  draw -0.225 0
  move 0.45 0
  draw 0.225 0
  move 0 -.45
  draw -0.225
  move 0 0.45
  draw 0 0.225
  move -.159 0.159
  draw -0.318 0.318
  move 0.159 0.159
  draw 0.318 0.318
```
move 0.159 -0.159
draw 0.318 -0.318
move -0.159 -0.159
draw -0.318 -0.318
move 0 0.8
text "FL" 0 0.5 "centre-middle"
}

Continue to 40.2.3.2 Description of the draw commands for Symbols or return to 40.2.3 Symbol Definition or 40.2 Symbols.
40.2.3.2 Description of the draw_commands for Symbols

move \(x\text{-value} \ y\text{-value}\)
move the pen from the current pen position to the new position \(x\text{-value}, y\text{-value}\).

draw \(x\text{-value} \ y\text{-value}\)
draw from the current pen position to the new position \(x\text{-value}, y\text{-value}\).

rmove \(dx\text{-value} \ dy\text{-value}\)
move relative from the current pen position through the distance \(dx\text{-value}, dy\text{-value}\).

rdraw \(dx\text{-value} \ dy\text{-value}\)
draw relative from the current pen position through the distance \(dx\text{-value}, dy\text{-value}\).

colour \(colour\text{-name}\)
change colour (line styles can contain more than one colour).
If colour is not defined, the symbol is drawn in the colour of the string that the symbol is applied to. If the colour-name includes imbedded spaces, then it must be enclosed within double quotes ".

circle \(radius\)
draw a circle of the given radius at the current pen position.
After drawing a circle, the current pen position is left at the centre of the circle.

arc \(radius \ start\text{-angle} \ end\text{-angle}\)
draw an arc of the given radius from the start angle to the end angle. A positive radius denotes that the arc is drawn in a clockwise direction, a negative radius means anti-clockwise. Angles are given in degrees, minutes and seconds in the ddd.mmssfff format.
After drawing an arc, the current pen position is left at the centre of the arc.

text \(text \ angle \ height \ "justification"\)
the characters \text are drawn at the current pen position with the given angle, height, justification and possibly textstyle, xfactor, slant, offset_width and offset_height. Angle and slant are given in degrees, minutes and seconds in the ddd.mmssfff format. Slant is between -45 and 45 degrees.
The allowed justifications are

- top-left
- top-centre
- top-right
- middle-left
- middle-centre
- middle-right
- bottom-left
- bottom-centre
- bottom-right
and the value is enclosed inside double quotes (").
After drawing text, the current pen position is left where it was before the text was drawn.

repeat \(num\text{-repeats}\) \{ \(repeat_commands\ \ repeat_draw_commands\) \}
The repeat command allows the set of repeat_draw_commands inside the braces (the repeat-style) to be re-drawn a number of times \(num\text{-repeats}\), and with each redraw, the size of the repeat-style is modified.
In the definition of repeat, there can be zero or more repeat_commands from the list

xpos \(x\text{-value}\)
and zero or repeat_draw_commands where repeat_draw_commands include all draw_commands except repeat.

Unlike symbol, the repeat-style is defined in terms of a local origin at (0,0). The repeat-style is actually drawn with this origin at the position given by the values of xpos and ypos.

The repeat-style is drawn \textit{num_repeats} times and on each redraw, the distances, heights and radii are factored by the amount

\[\text{repeat_factor} = (1 - i \times \text{rfactor}) \]

where \(i = 0, 1, \ldots, \text{num_repeats}-1 \)

If rfactor is not specified, it is given the default value of \(1/\text{num_repeats} \). The factor is then

\[\text{repeat_factor} = (\text{num_repeats} - i)/\text{num_repeats} \]

where \(i = 0, 1, \ldots, \text{num_repeats}-1 \)

\textbf{Examples of the Repeat Command}

1. To produce circles of radius 10,9,8,...1 about the origin.

 \[\text{repeat 10 \{ circle 10 \}} \]

2. To produce circles of radius 10,9.5,9,...5.5 about the origin

 \[\text{repeat 10 \{ rfactor 0.05 circle 10 \}} \]

\textbf{More Examples of World Styles}

1. draw a circle of radius 20. The origin of the style is (0,0)

 \[\text{worldstyle "circle" \{ move 0 0 \text{circle 20} \}} \]

2. draw a circle of radius 20. The origin of the style is (100,100)

 \[\text{worldstyle "circle" \{ move 100 100 \text{circle 20} \}} \]

3. draw a circle of radius 20. The origin of the style is (0,0)

 \[\text{worldstyle "circle" \{ xorigin 0 yorigin 0 move 100 100 \text{circle 20} \}} \]

4. draw concentric circles of centre (0,0) inside a box

 \[\text{worldstyle "dot" \{ xorigin 0 yorigin 0 move -5 -5 \text{draw -5 25} \text{draw 25 25} \}} \]
draw 25 -5
draw -5 -5
repeat 10 {
 move 0 0
 circle 10
}

5. draw an arc of absolute radius 10 in the clockwise direction from the angle 45 to the angle -45.

 worldstyle "arc" {
 move 0 0
 arc 10 45 -45
 }

6. draw an arc of absolute radius 10 in the anti-clockwise direction from the angle 45 to the angle -45.

 worldstyle "arc 1" {
 move 0 0
 arc -10 45 -45
 }

7. top-left justified text with a circle centred on the actual text position

 worldstyle "top-left" {
 group text
 move 0 0
 circle 4
 text "<top left>" 0 10 "top-left"
 }

Return to 40.2.3 Symbol Definition or 40.2 Symbols.
40.3 Textstyles and Fonts

Users can define any number of textstyles and specify how they are mapped to AutoCAD style names or Microstation (DGN, Intergraph) font numbers.

There is one fixed spaced textstyle called "1" (the default) which is identical to the textstyle used in earlier versions of 12d Model.

Each textstyle has a font definition (or font 1 as the default) which defines the stroking for each character in the font. True Type fonts are supported and most AutoCAD SHP files can be used to define the fonts.

Textstyles using True Type fonts or shape file which do not use arcs in their font definition, can also have a slant and a x_factor.

Textstyles can be used in text strings, 4d strings, super strings, linestyles, plots and user defined title blocks.

For further information about Textstyles and Fonts, see

40.3.1 Textstyles Definitions File
40.3.2 Fonts Definitions File
40.3.1 Textstyles Definitions File

Textstyles can be created/edited using the Create/Edit Textstyle panel which is brought up by double clicking on Create textstyle in the Textstyles expansion of the Project Tree (see 7.9.6 Textstyles) brought up by the Project => Tree option.

The Create/Edit Textstyle panel acts as an interactive editor to a text file which contains the textstyle definitions. The full description of the text file will now be given.

The definitions for the available textstyles are normally stored in a file called textstyl.4d which is read in each time 12d Model opens an existing project or created a new project. Textstyl.4d is searched for in the standard set up paths, or is pointed to by the environment variable TEXTSTYLES_4D filename

Inside textstyl.4d, a textstyle of a given name is defined by

```
  textstyle    textstyle_name    {
    textstyle commands
  }
```

Each textstyle must have a name and if the name includes imbedded spaces, it must be enclosed in double quotes " ".

The textstyle itself is defined inside the braces where there can be zero or textstyle commands from the list

```
  font_name    text
  hardware_text_dxf
  stroked_text_dxf
```


The commands for reading and writing dxf files are similar to those for dgn except that dxf has font numbers.

```
output_name_dxf     text
input_name_dxf     text

or

hardware_text_dxf
stroked_text_dxf

output_name_dgn     integer
input_name_dgn     integer

hardware_text_model
stroked_text_model

or

stroked_text
hardware_text

fixed_height     value
variable_height

fixed_slant     value
variable_slant

fixed_xfactor     value
variable_xfactor
```

The description of each command is

```
font_name     text
```

Name of the font to be used to draw the characters of the textstyle. The stroking of the font characters can be defined in the file fonts.4d. If no font_name is given, or the stroking is not given in the font file, then the standard 12d Model font is used ("1").

```
hardware_text_dxf     or stroked_text_dxf
```

If stroked_text_dxf appears, then any text in this textstyle written out to dxf will be stroked - that is, broken into straights, lines and curves.

If hardware_text_dxf is in the file, then any text in this textstyle sent to dxf will be given as actual dxf text (not stroked).

```
output_name_dxf     dxf_style_name
```

If text is sent to dxf as hardware text, the dxf style of the text will be dxf_style_name.

```
input_name_dxf     dxf_style_name
```

When reading in dxf files, any text of style dxf_style_name will be given the 12d Model textstyle name textstyle_name.

The commands for reading and writing dgn files are similar to those for dxf except that dgn has font numbers.

```
output_name_dgn     dgn_font_number
input_name_dgn     dgn_font_number

hardware_text_model     or stroked_text_model
```

Similarly, when writing out to a 12d Model model. For hardware_text_model, text will be sent to text with the same textstyle.

```
stroked_text     or hardware_text
```

If stroked_text appears in the definition and there is no other hardware_text flag set, then the text will be stroked - that is, broken into straights, lines and curves.

If hardware_text appears in the definition, then the text is written out as hardware text.
By default, the height, slant and xfactor for the text can be set when text is defined however it is possible to set each of height, slant and xfactor to a fixed value.

\[\text{fixed_height \hspace{0.5cm}} \text{value} \]

or

\[\text{variable_height} \]

If fixed_height and a value are specified, then all text in this textstyle is drawn at a fixed height. If fixed_height is missing or variable_height (the default) appears, then each text string in the textstyle has its own height.

\[\text{fixed_slant \hspace{0.5cm}} \text{value} \]

or

\[\text{variable_slant} \]

If fixed_slant and a value are specified, then all text in this textstyle is drawn at a fixed slant. If fixed_slant is missing or variable_slant (the default) appears, then each text string in the textstyle has its own slant. Slant is given in degrees, minutes and seconds in the ddd.mmssfff format and must be between -45 and 45 degrees.

\[\text{fixed_xfactor \hspace{0.5cm}} \text{value} \]

or

\[\text{variable_xfactor} \]

If fixed_xfactor and a value are specified, then all text in this textstyle is drawn at a fixed xfactor. If fixed_xfactor is missing or variable_xfactor (the default) appears, then each text string in the textstyle has its own xfactor.

Example of a Textstyle File

textstyle "1" { // DGN FONT 0 ACAD FONT STANDARD
 output_name_dxf STANDARD
 input_name_dxf STANDARD
 input_name_dgn "0"
 output_name_dgn "0"
 stroked_text
 hardware_text_model
 hardware_text_dgn
 hardware_text_dxf
}

textstyle ISO { // DGN FONT 1 ACAD FONT ISO
 font_name ISO
 input_name_dxf ISO
 output_name_dxf ISO
 input_name_dgn "1"
 output_name_dgn "1"
 stroked_text
 hardware_text_model
 hardware_text_dgn
 hardware_text_dxf
}

textstyle MONO { // DGN FONT 2 ACAD FONT MONO
 font_name MONO
 output_name_dxf MONOTXT
 input_name_dxf MONOTXT
 input_name_dgn "2"
 output_name_dgn "2"
 stroked_text
 hardware_text_model
 hardware_text_dgn

hardware_text_dxf

}
textstyle SCRIPT { // DGN FONT 3 ACAD FONT

font_name SCRIPT
output_name_dxf SCRIPTC
input_name_dxf SRCIPTC
input_name_dgn "3"
output_name_dgn "3"
stroked_text
hardware_text_model
hardware_text_dgn
hardware_text_dxf

}

Continue to the next section 40.3.2 Fonts Definitions File for a description of the fonts file, or return to 40.3 Textstyles and Fonts.
40.3.2 Fonts Definitions File

The definition of any fonts referred to in the textstyl.4d file are given in the fonts.4d file which is searched for in the standard 12d Model set up paths, or is pointed to by the environment variable

```plaintext
FONTS_4D filename
```

The stroking for each character in the font (which is used when drawing the text on the screen and when required, stroking the text for outputs and plots) can be given in a separate file in the Autocad shape file format.

Inside fonts.4d, a font of a given name is defined by

```plaintext
class   font_name {     
    font commands
}
```

Each font must have a name and if the name includes imbedded spaces, it must be enclosed in double quotes " ".

The font itself is defined inside the braces where there can be zero or more font commands from the list

```plaintext
stroke_file filename
proportional
fixed
```

The description of each command is

```plaintext
stroke_file stroke_file_name
```

The name of the file containing the stroking for each character in the font in AutoCAD ascii shape file format (.shp). The stroke_file_name is searched for in the standard 12d Model set up paths. If the stroking for a character is not defined, the standard 12d Model character is used instead.

```plaintext
proportional
fixed
```

If a stroke file is not given, then the font could be a fixed (mono) or proportional font.

Example of a Font File

```plaintext
font ISO {
    proportional
    stroke_file "ISO"
}
font GOTHIC {
    proportional
    stroke_file "GOTHICE.SHP"
}
font MONO {
    proportional
    stroke_file "MONOTXT.SHP"
}
```
Continue to the next section 40.3.2 Fonts Definitions File for a description of the fonts file, or return to 40.3 Textstyles and Fonts.

Return to 40.3 Textstyles and Fonts or 40 Linestyles, Symbols, Textstyles & Patterns.
40.4 Patterns

12d Pattern Fills provide the definitions of the patterns used for filling Super Strings.

The definitions of patterns are stored in a file called patterns.4d and users can add their own patterns to this file. See 40.4.1 Patterns.4d.

If a patterns file has been read, the pop-up for the Pattern field in the Pattern tab of the Change Super String Filling panel will list the patterns read from the file. See 14.12.9.5 Fills.

Any groups in the pattern file will be displayed as Folders in the pop-up list.
there are two patterns star and solid dot without a group and group called BCC with one pattern Cement.

Continue to 40.4.2 12d Patterns Definitions File or return to 40.4 Patterns.
40.4.1 Patterns.4d

Some patterns are installed with 12d Model and users can also define their own patterns.

The definitions of the available 12d patterns are stored in a file called patterns.4d which is read in each time 12d Model opens an existing project or creates a new project.

patterns.4d is searched for in the standard set up paths, or the full path of file to use can be given by the environment variable

```
    PATTERNS_4D    path_name_of_file
```

The definition of the 12d patterns is given in the section 40.4.2 12d Patterns Definitions File.

Continue to 40.4.2 12d Patterns Definitions File or return to 40.4 Patterns.
40.4.2 12d Patterns Definitions File

The definitions for the available patterns is stored in a file called `patterns.4d` which is read in each time 12d Model opens an existing project or created a new project. `Patterns.4d` is searched for in the standard set up paths, or is pointed to by the environment variable `PATTERNS_4D` filename.

There is no inbuilt 12d editor for patterns.4d and a text editor is used to create it. The full description of the text file will now be given.

The `patterns.4d` file consists of the word `patterns` followed by at least one space and the an open brace `{`, then the definitions of each pattern and finally a closing brace `}`.

That is,

```
patterns  
  { 
    definition_of_pattern_group_1 
    definition_of_pattern_group_2 
    . . . 
    definition_of_pattern_group_n 
  } 
```

where each `definition_pattern_group_i` is the definition of a group of patterns.

The format of each `definition_of_pattern_group_i` is

(a) group `{
 name group_name
 definition_of_pattern_1
 definition_of_pattern_2
 . . .
 definition_of_pattern_n
}

where `group_name` is the name of the group for all the patterns defined inside the `definition_of_pattern_group_1`, and `definition_of_pattern_i` is the definition of an individual pattern or just

(b) `definition_of_pattern_i`

where `definition_of_pattern_i` is the definition of an individual pattern. In this case the pattern does not belong to any group.

data defining how the pattern draws (looks like).

Each `definition_of_pattern_i` is the definition of a single pattern and its format is

```
pattern  
  { 
    name  pattern_name 
    pattern_data_1 
    pattern_data_2 
    . . . 
    pattern_data_n 
  } 
```

where `pattern_name` is the name of the pattern and each `pattern_data_i` is the data defining
how part of the pattern draws (looks like).
Each pattern_name must be unique within the patterns.4d file and if the name includes
imbedded spaces then the name must be enclosed in double quotes ".

The format of pattern_data_i is that of a super string (without pattern fills) in 12da format except
that in the super string definition:

 string super {

is replaced by

 data {

The super strings must not include any patterns.
For the 12da format of a super string, see 34.4.8 Super String.

So a definition_of_pattern_i consists of a a unique name and the drawing sections of 0 or
more super strings.

An example of patterns and the patterns.4d file defining them is:

![Patterns Diagram]

patterns {

 pattern {
 name "star"
 data {
 chainage 0
 breakline line
 colour green
 style 1
 closed 1
 data_2d {
 0 40
 6.66666667 20
 30 20
 11.57894737 5.26315789
 20 -20
 0 -4
 -19.65412111 -19.72329689
 -11.57894737 5.26315789
 -30 20
 -6.66666667 20
 }
 }
 }

 pattern {
 name "concrete"
 data {
 chainage 0
 breakline line
 colour yellow
 style 1
 closed 1
 data_2d {
 0 40
 6.66666667 20
 30 20
 11.57894737 5.26315789
 20 -20
 0 -4
 -19.65412111 -19.72329689
 -11.57894737 5.26315789
 -30 20
 -6.66666667 20
 }
 }
 }

 pattern {
 name "solid dot"
 data {
 chainage 0
 breakline line
 colour white
 style 1
 closed 1
 data_2d {
 0 40
 6.66666667 20
 30 20
 11.57894737 5.26315789
 20 -20
 0 -4
 -19.65412111 -19.72329689
 -11.57894737 5.26315789
 -30 20
 -6.66666667 20
 }
 }
 }
}
pattern {
 name "solid dot"
 data {
 chainage 0
 breakline line
 colour yellow
 style 1
 closed 1
 data_2d {
 -10 0
 10 0
 }
 radius_data {
 10 10
 }
 major_data {
 f f
 }
 solid_fill {
 colour "rgb(200,0,200)"
 }
 }
}

group {
 name "BCC"
 pattern {
 name "Cement"
 data {
 name ""
 chainage 0
 breakline line
 colour yellow
 style 1
 weight 0.25
 closed 0
 z 0
 data_2d {
 0.13875 0.10125
 0.1625 0.184375
 }
 }
 data {
 name ""
 chainage 0
 breakline line
 colour yellow
 style 1
 weight 0.25
 closed 0
 z 0
 data_2d {
 0.22624999 0.48874999
 0.30562499 0.46124999
 }
 }
 }
}
Patterns

Chapter 40 Linestyles, Symbols, Textstyles & Patterns

```cpp
data {
  name      ""
  chainage  0
  breakline line
  colour    yellow
  style     1
  weight    0.25

  closed 0
  z 0
  data_2d {
    0.155 1.08812498
    0.22624999 1.03249998
  }
}

data {
  name      ""
  chainage  0
  breakline line
  colour    yellow
  style     1
  weight    0.25

  closed 0
  z 0
  data_2d {
    0.32937499 1.38312497
    0.37687499 1.43812497
  }
}

data {
  name      ""
  chainage  0
  breakline line
  colour    yellow
  style     1
  weight    0.25

  closed 0
  z 0
  data_2d {
    0.24999999 1.96374996
    0.32124999 1.97312496
  }
}

data {
  name      ""
  chainage  0
  breakline line
  colour    yellow
  style     1
  weight    0.25

  closed 0
  z 0
  data_2d {
    0.44812499 2.24999995
  }
}
```
data {
 name ""
 chainage 0
 breakline line
 colour yellow
 style 1
 weight 0.25
 closed 0
 z 0
 data_2d {
 0.51187499 2.31437495
 }
}

data {
 name ""
 chainage 0
 breakline line
 colour yellow
 style 1
 weight 0.25
 closed 0
 z 0
 data_2d {
 0.71749998 2.30499995
 0.76562498 2.28687495
 }
}

data {
 name ""
 chainage 0
 breakline line
 colour yellow
 style 1
 weight 0.25
 closed 0
 z 0
 data_2d {
 0.65437499 1.98249996
 0.58312499 1.88999996
 }
}

data {
 name ""
 chainage 0
 breakline line
 colour yellow
 style 1
 weight 0.25
 closed 0
 z 0
 data_2d {
 1.09812498 1.90874996
 1.17749997 1.88124996
 }
}

data {
 name ""
 chainage 0
 breakline line
 colour yellow
 style 1
 weight 0.25
 closed 0
 z 0
 data_2d {
 1.09812498 1.90874996
 1.17749997 1.88124996
 }
}
data_2d {
 0.86874998 1.34624997
 0.92374998 1.31874997
}
}
data {
 name ""
 chainage 0
 breakline line
 colour yellow
 style 1
 weight 0.25
 closed 0
 z 0
 data_2d {
 0.89249998 1.00499998
 0.80499998 0.97749998
 }
 }
 data {
 name ""
 chainage 0
 breakline line
 colour yellow
 style 1
 weight 0.25
 closed 0
 z 0
 data_2d {
 0.55937499 0.76562498
 0.62249999 0.74687498
 }
 }
 data {
 name ""
 chainage 0
 breakline line
 colour yellow
 style 1
 weight 0.25
 closed 0
 z 0
 data_2d {
 0.63062499 0.110625
 0.64624999 0.156875
 }
 }
 data {
 name ""
 chainage 0
 breakline line
 colour yellow
 style 1
 weight 0.25

closed 0
z 0
data_2d {
 1.24124997 0.24937499
 1.30437497 0.22125
}
data {
 name ""
 chainage 0
 breakline line
 colour yellow
 style 1
 weight 0.25

closed 0
z 0
data_2d {
 1.67749996 0.175
 1.72499996 0.138125
}
data {
 name ""
 chainage 0
 breakline line
 colour yellow
 style 1
 weight 0.25

closed 0
z 0
data_2d {
 1.55062497 0.89437498
 1.49499997 0.94062498
}
data {
 name ""
 chainage 0
 breakline line
 colour yellow
 style 1

weight 0.25

closed 0
z 0
data_2d {
 1.32062497 1.47499997
 1.26499997 1.51187497
}
}
data {
 name ""
 chainage 0
 breakline line
 colour yellow
 style 1
 weight 0.25

closed 0
z 0
data_2d {
 1.39187497 2.35124995
 1.44749997 2.37874995
}
}
data {
 name ""
 chainage 0
 breakline line
 colour yellow
 style 1
 weight 0.25

closed 0
z 0
data_2d {
 1.63749996 1.95499996
 1.61374996 1.89937496
}
}
data {
 name ""
 chainage 0
 breakline line
 colour yellow
 style 1
 weight 0.25

closed 0
z 0
data_2d {
 1.96249996 2.44312495
 1.99437496 2.37874995
}
}
data {
 name ""
 chainage 0
 breakline line

colour yellow
style 1
weight 0.25

closed 0
z 0
data_2d {
 2.33499995 2.28687495
 2.30374995 2.21312495
}
}
data {
 name ""
 chainage 0
 breakline line
 colour yellow
 style 1
 weight 0.25

closed 0
z 0
data_2d {
 2.02624995 1.95499996
 2.08937495 1.90874996
}
}
data {
 name ""
 chainage 0
 breakline line
 colour yellow
 style 1
 weight 0.25

closed 0
z 0
data_2d {
 2.32749995 1.63187496
 2.30374995 1.56749996
}
}
data {
 name ""
 chainage 0
 breakline line
 colour yellow
 style 1
 weight 0.25

closed 0
z 0
data_2d {
 1.89937496 1.42937497
 1.83562496 1.43812497
}
}
data {
 name ""

chainage 0
breakline line
colour yellow
style 1
weight 0.25

closed 0
z 0
data_2d {
 2.01812495 1.03249998
 1.97874996 0.97749998
}
}
data {
 name ""
 chainage 0
 breakline line
 colour yellow
 style 1
 weight 0.25

closed 0
z 0
data_2d {
 2.19249995 0.47062499
 2.14499995 0.41499999
}
}
data {
 name ""
 chainage 0
 breakline line
 colour yellow
 style 1
 weight 0.25

closed 0
z 0
data_2d {
 2.40687495 1.05124998
 2.37499995 1.12499997
}
}
} // end of pattern Cement
} // end of BCC group
} // end of patterns

Patterns
41 Functions Keys, Menus, Toolbars

This appendix contains information about how user defined function keys, menus and toolbars are defined and used in 12d Model.

See
41.1 User Defined Function Keys
41.2 User Defined Menus
41.3 User Defined Toolbars

41.1 User Defined Function Keys

The user can define function keys (with possible modifiers) to be used to
(a) bring up most 12d Model menus or panels
(b) toggle certain snaps on or off.
(c) start some geometry snaps
(d) read a layout file
(e) execute a batch file or a program (system call).
(f) run 12d Model 12dPL’s (macros) or chains

The function key definitions are given in the file

userkeys.4d

which is searched for in the standard set up areas (local, USER_4D, user, set_ups etc.) or is pointed to by the environment variable

FUNCTION KEYS_4D file // function key definitions

The format of the function_keys file is simply a list of function key definitions with only one per lines. Blank lines in the file are ignored and anything on a line after a // is a comment.

The function key definition is

MODIFIERS FUNCTION_KEY OPERATION

where MODIFIERS can be totally missing or any combination of

shift
close
or
alt

FUNCTION_KEY is one of

f1, f2,...f12 (f7 should be avoided since it is used in 12d Model for typed input,
f1 & f10 should be avoided since they are reserved by Windows NT)

and OPERATION is one of

menu menu_name // raise a menu
panel panel_name // raise a panel
snap toggle_snap // list of toggle_snaps given below
snap cogo_snap // list of cogo_snaps given below
cogo_command // list of cogo_commands given below
layout layout_file_name // run a screen layout file
system batch_file // run a batch file
system program // run a program
or for macros

```
    macro    options          user_macro_name      macro_arguments
```

where the macros options are:

- **-no_console** // don’t display macro console
- **-close_on_exit** // remove console when macro terminates
- **-buttons** // have buttons for finish, restart and quit on console
- **-allow_defaults** // allow default answers for console questions

The default when there are no macro options is to run the macro with a console but without buttons, and to leave the macro console on the screen when the macro terminates.

For information on how to use each item with function keys, see

- Menus and Panels
- View Menus and Panels
- View Toggle Menus
- Available Snaps to be Toggled
- Available Cogo Snaps
- Available Cogo Commands
- Layout Files
- System Calls
- 12dPLs (Macros)
- Chains

For using $LIB and $User_Lib, see $LIB and $USER_LIB.
For an example of userkeys.4d, see Example of a User Function Key File.

Menus and Panels

Menus and panels can be programmed by functions keys by simply giving the name of the menu and panel after the `panel` command.

For example,

```
f5    panel       "String Inquire"       // this is a panel
f6    panel       "String Create"       // this is a menu
```

Note: the names for each menus and panel (together) must have unique names so there is no confusion about what is to be run by just giving the name after the command `panel`.

View Menus and Panels

Menus and panels for views can be programmed by functions keys by substituting the text `$PLAN_VIEW`, `$SECTION_VIEW` or `$PERSPECTIVE_VIEW` in place of the view name in the panel name or menu name.

For example,

```
f9    panel       "Plan Plot $PLAN_VIEW"
```

A panel for each view type can be programmed for the same modifier and function key combination. If the cursor is over the appropriate view type when the function key is selected, then the panel is fired up.

For example, the three definitions for f5

```
f5    panel       "Section Plot $SECTION_VIEW"
f5    panel       "Plan Plot $PLAN_VIEW"
f5    panel       "Perspective Plot $PERSPECTIVE_VIEW"
```

means that a panel will come up when f5 is selected over any of the three view types.
View Toggle Menus

The **toggle menus** available on each view can be set to a function key by

<table>
<thead>
<tr>
<th>MODIFIERS</th>
<th>FUNCTION_KEY</th>
<th>menu</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FUNCTION_KEY</td>
<td>menu</td>
<td>"Toggle PLAN_VIEW"</td>
</tr>
<tr>
<td></td>
<td>FUNCTION_KEY</td>
<td>menu</td>
<td>"Toggle SECTION_VIEW"</td>
</tr>
<tr>
<td></td>
<td>FUNCTION_KEY</td>
<td>menu</td>
<td>"Toggle PERSPECTIVE_VIEW"</td>
</tr>
</tbody>
</table>

As for the view menus, the cursor must be over the appropriate view type when the function key is selected.

For example,

```
shift f8 menu "Toggle $PLAN_VIEW"
```

brings up the plan view toggle menu if shift f8 is selected when in a plan view.

Available Snaps to be Toggled

- toggle_point_snap
- toggle_line_snap
- toggle_grid_snap
- toggle_cursor_snap
- toggle_tin_snap
- toggle_input_height_snap
- toggle_show_information

For example,

```
control f2 toggle_point_snap
```

Available Cogo Snaps

- snap create_edit
- snap line_create_edit
- snap tangent_items_edit
- snap fillet_3_points_edit
- snap fillet_item_item_cp_edit
- snap fillet_item_item_radius_cp_edit
- snap locate_divide_edit
- snap locate_divide_distance_edit
- snap parallel_edit
- snap intersect_edit
- snap intersect_offset_edit
- snap bearings_intersect_edit
- snap between_points_edit
- snap locate_edit
- snap locate_chainage_edit
- snap locate_offset_edit
- snap locate_deflection_edit
- snap locate_drop_perpendicular_edit
- snap locate_projection_edit
- snap locate_two_point_distances_edit

For example,

```
shift f1 snap locate_chainage_edit
```

Available Cogo Commands

All the new cogo commands can be activated by a function key.

- create_edit
- line_create_edit
- tangent_items_edit
- fillet_3_points_edit
- fillet_item_item_cp_edit
- fillet_item_item_radius_cp_edit
locate_divide_edit
locate_divide_distance_edit
parallel_edit
intersect_edit
intersect_offset_edit
bearings_intersect_edit
between_points_edit
locate_edit
locate_chainage_edit
locate_offset_edit
locate_deflection_edit
locate_drop_perpendicular_edit
locate_projection_edit
locate_two_point_distances_edit

For example,

```
f2 between_points_edit
```

Layout Files

Layout files can be called up using the `layout` command.

For example,

```
f8 layout "temp/contours.slf"
```

System Calls

Programs and batch files can be called up using the `system` command. The directories defined by the environment variables `$LIB_4D` and `$USER_4D` are included in the PATH environment variables so that any batch files or executables in these areas will be accessible without including any path name in the system call.

For example,

```
f4 system special.exe // run the program special.exe
shift f4 system batch.bat // run a batch file
control f4 system "start cmd /k dir" // do a dir in a command shell
```

12dPLs (Macros)

12d supplied and User 12dPLs (macros) can be run and the macros brought up with or without buttons, and with leaving or removing the macro console when the macro has finished.

The macro command structure and options are:

```
macro options user_macro_name macro_arguments
```

where the macros options are:

- `-no_console` // don't display macro console
- `-close_on_exit` // remove console when macro terminates
- `-buttons` // have buttons for `finish`, `restart` and `quit` on console
- `-allow_defaults` // allow default answers for console questions

The default when there are no macro options is to run the macro with a console but without buttons, and to leave the macro console on the screen when the macro terminates.

For example,

```
f8 macro -no_console -close_on_exit"/area/drape_align.4do"
f9 macro -buttons"/games/lots.4do"
```

For compatibility with earlier versions of **12d Model**, the following macro commands are also supported:

```
macro user_macro_name // run macro without buttons,
```
macrow user_macro_name // leave console panel on exit
macrow_with_buttons user_macro_name // run macro without buttons,
// remove console panel on exit
macrow_with_buttons_2 user_macro_name // run macro with buttons,
// leave console panel on exit

Chains
12d supplied and User chains can be run by using the chain command.
 chain chain_name
For example,
 f8 chain "tri_cont_label.chain"

$LIB and $USER_LIB
The variable $LIB and $USER_LIB can be used as part of the layout_file_name and
user_macro_name to pick up files from either the library or user library.
For example,
 f7 macro "$LIB/drape_align.4do"
 f8 macro "$USER_LIB/lots.4do"
 f9 layout "$LIB/contours.slf"
Note - if $LIB_4D is not defined, then 12dmodel/6.00/library is used. If $USER_LIB_4D is not
defined, then 12dmodel/6.00/user_lib is used

Example of a User Function Key File
// File to define function key usage
// Note: f1, f6 & f10 are reserved by Windows NT
// f7 is reserved by 4D Solutions for typed input
// Available function key modifiers are
// shift control alt
// Note: some alt key combinations are reserved by Windows NT
// Some sample lines may be
// f5 toggle_point_snap
// shift f5 toggle_line_snap
// control shift f7 toggle_input_height_snap
// Note that all function key modifiers must come before the function key itself.
// ---
// snaps
f3 toggle_point_snap
f4 toggle_line_snap
f5 toggle_grid_snap
f5 toggle_cursor_snap
f8 toggle_input_height_snap
// snaps cogo
f9 snap intersect_offset_edit
f11 snap locate_chainage_edit
f12 snap locate_drop_perpendicular_edit
// panels
f2 panel "String Inquire"
shift f1 panel "Edit String"
shift f2 panel "String Delete"
shift f3 panel "Clean Model"
shift f4 panel "Delete Model"
shift f5 panel "Strings Edit Ops"
shift f6 panel "Points Edit Ops"
shift f7 panel "String Attributes"
shift f8 panel "Toggle $PLAN_VIEW"

// layout files
control f4 layout "$LIB/tri_contour_clean.slf"

// user macros
control f5 macro -no_console -close_on_exit "$LIB/Culd.4do"

// ---

Continue to the next section 41.2 User Defined Menus or return to 41 Functions Keys, Menus, Toolbars.
41.2 User Defined Menus

To help customise 12d Model, there is a pull down menu User on the Main menu and User menus on each of the pull down menus on the Main menu, and some other Menus.

The User menus can run 12d Model macros, external programs, chains, and bring up 12d Model screen layout files, panels and menus.

User menus can have walk-right menus, and any walk-right menus can have further walk-right menus so User menus can be used to build sophisticated tailored additions to 12d Model. Each of the User Defined menus are also floating (tear away) menus just like standard 12d Model menus.

All the User menus are defined in the two files: Usermenu.4d, which is created by the user, and Xtramenu.4d, which supplied by 12d Solutions.

When displayed, each User menu is divided into two sections with menu options supplied by User in the file Xtramenu.4d on the top, and any options supplied by the user (in the file Usermenu.4d) underneath.

The default name for the User Defined Menus definition file is

```
usermenu.4d
```

which is searched for in the standard set up areas (local, USER_4D, user, set_ups etc.) or set by the environment variable

```
USER_OPTIONS_4D file // Customers User menu definition
```

The default name for the 12d Solutions definition file which includes some macro for User is

```
xtramenu.4d
```

which is also searched for in the standard set up areas (local, USER_4D, user, set_ups etc.) or set by the environment variable
EXTRA_OPTIONS_4D file // 12D Solutions User menu definitions

The format for the User Defined Manu’s file is given in the next section 41.2.1 Full Definition of User Menus.

Important Note

The file `xtramenu.4d` is for use by **12d Solutions** only. Please do not modify it because it may be overwritten in future updates. The file `usermenu.4d` is for Customer use.

See

- 41.2.1 Full Definition of User Menus
- 41.2.2 Using `$LIB` and `$USER_LIB` in User Menus
- 41.2.3 Placing User Defined Menus on User and Other 12d Menus
- 41.2.5 Example of a User Defined Menu
41.2.1 Full Definition of User Menus

The User Defined Menus are made up of buttons which have text on them and when the left hand mouse button (LB) is pushed down and released on a button, a command is executed.

A button can also have a walk-right menu which appears when the left hand mouse button (LB) is moved over the arrow on the right hand side of the button. Walk-right menus can have walk-right menus.

The text for each button in the User menus, plus the action taken when the button is selected, is user specified. Any of the buttons can include further walk-right menus.

When a button is selected, the action can be to

(a) run a 12d Model macro
(b) run a 12d Model chain
(c) bring up a 12d Model menu or User Defined menu
(d) bring up a 12d Model panel
(e) read a screen layout file
(f) execute a batch file or program (system call)

In the Usermenu.4d file, a menu is defined by:

```plaintext
Menu menu_name {
    button_1
    button_2
    ...
    button_n
}
```
where a button can include one or both of the keywords *Command* and *Walk_Right*, and the syntax for a button is

Button *button_name* {
 Walk_Right *menu_name_1*
 and/or Command *command_name*
}

The text displayed on the button is *button_name* and the definitions of the *Walk_Right* and *Command* commands are:

Walk_Right Menu for Buttons

The *Walk_Right* keyword specifies that there is a walk-right menu for the button and gives the name of the menu that is displayed when LB is moved over the walk-right arrow on the button.

The *Walk_Right* command consists of the word *Walk_Right* followed by one or more spaces and then the name of the menu that is displayed when over the walk-right arrow.

```
Walk_Right *menu_name*
```

where *menu_name* is the name of another menu defined elsewhere in the *usermenu.4d* file.

When the *Walk_Right* keyword exists, a walk-right arrow is created on the button.

If there is no *Walk_Right* keyword, then there is no walk right arrow on the button.

A *Walk_Right* line is optional.

NOTE - walk-right menus can contain walk-right menus.

Commands for Buttons

The *Command* keyword defines what action occurs if LB is clicked on the button.

The *Command* consists of the word *Command* followed by one or more spaces and then the name of the command and any arguments it requires.

```
Command "*command_name* *command_arguments*"
```

The *command_name* and *command_arguments* can do any of:

(a) Run a User Defined or 12d Supplied 12d Model 12dPL (Macro)

Command "*macro* *macro_options* *user_macro_name* *macro_parameters*" // run macro

where the *macros_options* are:

```
-no_console // don’t display macro console
-close_on_exit // remove console when macro terminates
-buttons // have buttons for finish, restart and quit on console
-allow_defaults // allow default answers for console questions
```

The default when there are no macro options is to run the macro with a console but without buttons, and to leave the macro console on the screen when the macro terminates.

For example

```
Button "Write Levels" {
   Command "macro Tinval.4do"
}

Button "ADAC - show attributed/not attributed" {
   Command "macro -no_console -close_on_exit Adac_show_panel.4do"
```
(b) Run a chain

Command "chain chain_file_name"

It is also possible to pass a chain parameter value file (pvf) to be used by the chain through to the chain. The command is

Command "chain -pvf pvf_file_name chain_file_name"

where pvf_file_name is the name of the pvf file to use when the chain chain_file_name is run.

For example

Button "Survey to ADAC 41 chain" {
 Command "chain -pvf $USER/BCC/ADAC_BCC_41.pvf $LIB/ADAC_survey_base.chain"
}

Also see 28.3.5.4 Running Chains from User Menus and Toolbars

(c) Bring up a 12d Model menu and/or a User Defined Menu

Command "12d_model_menu_name"

or

Command "user_defined_menu_name"

The 12d_model_menu_name is simply the name on the top of the 12d Model menu. The user_defined_menu_name is the name of a User Defined menu that is defined further down in the usermenu.4d file.

For example, for the menu called "Model Utilities", the

Button "Bring up the Model Utilities menu" {
 Command "Model Utilities"
}

Notice that for a menu, only the menu name in quotes follows the keyword Command.

Note: - this works because all the names must be unique amongst the 12d Model menus, 12d Model panels and User Defined menus.

A menu can occur as a Walk_Right menu and/or as a Command.

(d) Bring up a 12d Model panel

Command "12d_model_panel_name"

Every 12d Model menu and panel has a unique name and the 12d_model_panel_name is simply the name on the top of the panel.

For example, for the menu called "Test Helmert 2d (Advanced) panel", the

Button "Bring up a Helmert panel" {
 Command "Test Helmert 2d (Advanced)"
}

Notice that for a panel, only the panel name in quotes follows the keyword Command.

Note: - this works because all the names must be unique amongst the 12d Model menus, 12d Model panels and User Defined menus.

(e) Run a User Defined screen layout file
Command "layout layout_file_name"

For example

Button "Generate ADAC Tree Spreadsheet" {
 Command "layout ADAC_Tree_Report.slx"
}

(f) Execute a batch file or program

Command "system program_or_batch_file_name"

Notes
1. A Command Line is optional
2. A button can have both a Walk_Right and a Command defined for it.
3. If there is only a Walk_Right menu and no Command, clicking on the button will bring up the Walk_Right menu.
4. Both Walk_Right and Command can be left out.
 For example

 Button "-----------------------------" {
 }
 Button "" {
 }
will create a button with the text "-----------------------------" on it and a button with no text on it.
5. In the usermenu.4d file, blank lines are ignored and anything on a line after a // is a comment

Continue to the next section 41.2.2 Using $LIB and $USER_LIB in User Menus or return to 41.2 User Defined Menus.
41.2.2 Using $LIB and $USER_LIB in User Menus

The variable $LIB and $USER_LIB can be used in Commands as part of the user_macro_name, chain_file_name, layout_file_name and programe_or_batch_file_name to pick up files from either the 12d Library or the User library.

Note

If $LIB_4D is not defined, then 12dmodel/version_number.00/library is used.
If $USER_LIB_4D is not defined, then 12dmodel/version_number.00/user_lib is used

For example, the definition of a menu called "Lots" could be:

```plaintext
Menu "Lots" {
  Button "Create lots" { // button called "Create lots" which
    Command "macro -close_on_exit $USER_LIB/subdiv.4do" // fires up a 12d Model macro
  }
  Button "Roads" { // button with walk-right menu "Roads" and layout file
    Walk_Right "Roads" // walk-right menu "Roads"
    Command "layout $USER_LIB/road.slx" // button invokes a layout file if selected
  }
}
```

Continue to the next section 41.2.3 Placing User Defined Menus on User and Other 12d Menus or return to 41.2 User Defined Menus.
41.2.3 Placing User Defined Menus on User and Other 12d Menus

User Defined Buttons on Main User Menu

The place buttons or menus in the bottom of the User menu on the Main menu, put the buttons in a menu called User in the usermenu.4d file.

For example

```
Menu "User" {
    Button "Triangulate" { // button called Triangulate which brings up
        Command "Triangulate a View" // the "Triangulate a View" panel
    }
    Button "Lots" {  // button called Lots with its
        Walk_Right "Lots"  // own walk-right menu called Lots
        Command "Triangulate a View"  // plus clicking on the button brings up the
    }  // the "Triangulate a View" pane
}
```

User Defined Menus on Other 12d Menus

It is also possible to define a User submenu on any 12d Model menus or submenu.

In 12d Model, all menus and sub-menus on the Main menu have a unique name. So a User menu is defined for any of them by simply having a menu called "User menu_name" in the usermenu.4d file.

For example, the menu for the option Strings=>Create is called String Create (String not Strings) so a User menu for Strings=>Create would be called "User String Create":

```
Menu "User String Create" {
    Button "Create 4d strings" { // button called Create 4d strings which brings up
        Command "macro -close_on_exit $USER_LIB/ref_points.4do"
    }
    Button "Create point strings" {
        Command "macro -close_on_exit $USER_LIB/x_sects.4do"
    }
}
```
Chapter 41 Functions Keys, Menus, Toolbars

User Defined Menus
41.2.4 Names for User Defined Menus

Apart from the names of the special User menus just mentioned, all other menu names in `usermenu.4d` are user defined so they can be easily used in user defined walk-right menus.

And menu referred to in the file `usermenu.4d` that is not one of the special User menus, **must be defined** somewhere in the `usermenu.4d` file.

And remember, all the names must be unique amongst the 12d Model menus, 12d Model panels, special User menu and user named User Defined menus.

Continue to the next section 41.2.5 Example of a User Defined Menu or return to 41.2 User Defined Menus.
41.2.5 Example of a User Defined Menu

// the definition of buttons to go on the Main menu option "User"
Menu "User" { // User menu on Main menu
 Button "Triangulate" { // button called Triangulate which brings up
 Command "Triangulate a View" // the "Triangulate a View" panel
 }
 Button "Lots" { // button called Lots with its
 Walk_Right "Lots" // own walk-right menu called Lots
 }
 Button "Roads" { // button with walk-right menu "Roads"
 Walk_Right "Roads"
 Command "layout $LIB/road.slp" // button invokes a layout file if selected
 }
}

// the definition of the walk-right menu Lots
Menu "Lots" {
 Button "Create lots" {
 Command "macro $LIB/subdiv9.4do"
 }
 Button "Label lots" {
 Command "macro $LIB/subnum3.4do"
 }
 Button "Write Lot Levels" {
 Command "macro $LIB/Tinval.4do"
 }
}

// the definition of the walk-right menu Roads
Menu "Roads" {
 Button "Roundabout" {
 Command "macro $LIB/Round.4do"
 }
 Button "Culdesac bulb" {
 Command "macro $LIB/Culd.4do"
 }
 Button "Drape alignment string" {
 Command "macro $LIB/Drape_al.4do"
 }
 Button "Create Table drain" {
 Command "macro $LIB/Table_dr.4do"
 }
}

// the definition of User on the Main menu option Strings=>Create"
Menu "User String Create" { // User menu on option Strings=>Create
 Button "Create ref points" {
 Command "macro -close_on_exit $LIB/ref_points.4do"
 }
 Button "Create X-sections" {
 Command "macro -close_on_exit $LIB/x-Sects.4do"
 }
}

Continue to the next section 41.3 User Defined Toolbars or return to 41.2 User Defined Menus.
41.3 User Defined Toolbars

A toolbar is made up of buttons which can have a picture on them (icons) and when the left hand mouse button (LB) is pushed down and released on the button, a command is executed.

A button can also have a flyout toolbar which appears when the left hand mouse button (LB) is held down on the button (note that there can only be one level of flyouts).

Toolbars can be turned on and off, and their positions are remembered when 12d Model is saved. See 4.3.5 Toolbars and Controlbars.

The definitions for toolbars in 12d Model are stored in two files - user_toolbars.4d and toolbars.4d. When 12d Model is installed, toolbars.4d is installed in the 12d Model folder Set_Ups. user_toolbars.4d is for user defined toolbars and is created by the user and should be stored in the folder User.

So any user defined toolbars and simply added to user_toolbars.4d and saved in the folder Users.

The icon for each button on a toolbar, plus the action taken when the button is selected is user specified. A button can include a fly-out toolbar but flyouts can only be to one level (i.e. no flyouts on flyouts).

When a button is selected, the action can be to
(a) run a 12d Model12dPL (macro) or chain
(b) bring up a 12d Model menu
(c) bring up a 12d Model panel
(d) read a layout file
(e) execute a batch file or program (system call)

When 12d Model starts up, any toolbars defined in toolbars.4d and user_toolbars.4d that are not called as flyouts by another toolbar in toolbars.4d or user_toolbars.4d, are displayed in the main toolbar on the left hand side of the 12d Model screen.

When a toolbars is moved around, its position is saved when 12d Model is saved so the toolbars are in the same final position when the project is reopened.

Go to the next section 41.3.1 Full Definition of Toolbars.
41.3.1 Full Definition of Toolbars

The definition for Toolbars is given in the files called

Toolbars.4d and **user_toolbars.4d**

which are searched for in the standard set up areas (local, USER_4D, user, set_ups etc.)

Or instead of **toolbars.4d**, it can be defined and set by the environment variable

TOOLBARS_4D file // Toolbars definition

In the **toolbars.4d** and **user_toolbars.4d** files, a **toolbar** is defined by:

Toolbar toolbar_name {
 button_1
 button_2
 ...
 button_n
}

where a button can include none or more the commands **Icon**, **Command** and **Flyout**, and the syntax for button is:

Button button_name {
 Icon icon_name_1
 Command command_name_1
 Flyout toolbar_name_1 // only used if a flyout toolbar is required
}

For the definitions of the **Icon**, **Command** and **Flyout** commands see:

41.3.1.1 **Icons for Toolbars**
41.3.1.2 **Command for Toolbars**
41.3.1.3 **Flyout for Toolbars**

41.3.1.1 Icons for Toolbars

The **Icon** command defines the bitmap that is displayed for the button in the toolbar. The format of the bitmap is a bmp file (.bmp) of size 16x16. The **Icon** command consists of the word **Icon** followed by one or more spaces and then the name of the bitmap, **icon_name**.

Icon icon_name

The **icon_name** can include a pathname but if no pathname is present, the bitmap is searched for in the folder **Images** under the folders **User** or **Set_Ups**.

If the **Icon** command is missing then a default **Icon** command is used with the **icon_name**

button_name.bmp

Icon button_name.bmp

Go to the next section 41.3.1.2 **Command for Toolbars** or return to 41.3.1 Full Definition of Toolbars

41.3.1.2 Command for Toolbars

The **Command** command defines what action occurs if LB is clicked on the button. The **Command** command consists of the word **Command** followed by one or more spaces and then the name of the command and any arguments it requires.

Command command_name

The Commands are the same as those for a **User Defined Menu**. See Commands for Buttons
If the Command command is missing then a default Command is used with the command name **button_name** with no arguments

\[
\text{Command button_name}
\]

Go to the next section 41.3.1.3 Flyout for Toolbars or return to 41.3.1 Full Definition of Toolbars

41.3.1.3 Flyout for Toolbars

The **Flyout** command defines what toolbar is displayed when LB is help down on the button. The **Flyout** command consists of the word **Flyout** followed by one or more spaces and then the name of the toolbar that is displayed.

\[
\text{Flyout flyout_toolbar_name}
\]

where **flyout_toolbar_name** is the name of another toolbar defined elsewhere in the toolbars file.

When the **Flyout** command exists, **Icon** and **Command** are not required and if they are present, are ignored.

The icon on the **Flyout** button is the **Icon** from the first button in the flyout toolbar.

The command executed if LB is pressed and released on the Flyout button is the **Command** from the first button in the flyout toolbar.

NOTE - flyouts can not be nested so the toolbar **flyout_toolbar_name** can not contain a **Flyout** command.

NOTE - when 12d Model starts up, any toolbars defined in toolbars.4d that are not called as flyouts by another toolbar in toolbars.4d, are displayed in the main toolbar on the left hand side of the 12d Model screen.

Example of a User Defined Toolbar

// ---
// WARNING: you cannot have the same command using different icons
// ALSO: when using a flyout, the Command & Icon are ignored
// and the details are taken from the first button
// on the flyout
// ---

Toolbar "Cad" {
 Button "Points" {
 Command "Create Point" // this is ignore since it is a flyout
 Icon "Create Point.bmp" // this is ignore since it is a flyout
 Flyout "Cad Points"
 }
 Button "Change String" {
 Flyout "Change String"
 }
}

Toolbar "Cad Points" {
 // used as a flyout toolbar
 Button "Create Point" {
 Command "Create Point"
 Icon "Create Point.bmp"
 }
 Button "Chainage" {
 Command "Locate Chainage"
 Icon "Chainage.bmp"
 }
} // end of "Cad Points" toolbar
Toolbar "Change String" { // used as a flyout toolbar
 Button "String Close" {
 Command "String Close"
 Icon "String Close.bmp"
 }
 Button "String Reverse" {
 Command "String Reverse"
 Icon "String Reverse.bmp"
 }
 Button "String Trim" {
 Command "String Trim"
 Icon "String Trim.bmp"
 }
} // end of "Change String" toolbar

$LIB and $USER_LIB

As they were for Commands in User Defined menus, the variables $LIB and $USER_LIB can be used in Commands as part of the user_macro_name, chain_file_name, layout_file_name and program_or_batch_file_name to pick up files from either the 12d Library or the User library. See 41.2.2 Using $LIB and $USER_LIB in User Menus.

For example, the definition of a toolbar called "Lots" could be:

```
Toolbar "Lots" {
    Button "Create lots" { // button called "Create lots" which
        Command "macro -close_on_exit $USER_LIB/subdiv.4do" // fires up a 12d Model macro
    }
    Button "Roads" { // button with walk-right menu "Roads" and layout file
        Walk_Right "Roads" // walk-right menu "Roads"
        Command "layout $USER_LIB/road.slf" // button invokes a layout file if selected
    }
}
```

Notes

(a) The variables $LIB and $USER_LIB can be used as part of the layout_file_name and user_macro_name to pick up files from either of the libraries.

(b) blank lines in the toolbars file are ignored and anything on a line after a // is a comment

Another Example of a Toolbar

```
Toolbar "Cogo" {
    // in this case, the Command is assumed to be "Create Line"
    // the icon is "Create Line.bmp"
    // Command is normally the name of the panel/menu
        Button "Create Line" {
        }
    // this is a spacer
        Button "" {
        }
    // this is a command and also has a flyout capability
```

User Defined Toolbars
// calling the toolbar called Flyout
// flyouts cannot be nested
Button "Create Fillet by radius" {
 Command "Create Fillet by radius"
 Icon "Create Fillet by radius.bmp"
 Flyout "Flyout"
}

// The flyout toolbar for above (and a normal toolbar as well)
Toolbar "Flyout" {
 Button "Create Line" {
 }
 Button "" {
 }
 Button "Create Arc by Centre Radius" {
 Command "Create Arc by Centre Radius End Points"
 Icon "Create Arc by Centre Radius End Points.bmp"
 }
 Button "Create Fillet by radius" {
 Command "Create Fillet by radius"
 Icon "Create Fillet by radius.bmp"
 }
}

Return to [41.3.1 Full Definition of Toolbars](#) or [41 Functions Keys, Menus, Toolbars](#).
42 Special File Formats

42.1 Default File Ending

In any panel pop-up requiring a file name to be displayed, default file endings are used to restrict the names of the files selected from the current folder and if they exist, from the library and user library areas.

Whilst a panel is up, the extension being searched for can be changed by typing say ".xyz" into the panel field requiring a file name, and then pressing <enter>. The list of files ending in ".xyz" will be displayed and clicking B3 in the panel field will also bring up a list of all files ending in ".xyz". When a new panel is created, the panel fields revert to the default file ending.

A list of the default files used in 12d Model pop-ups and their endings is:

<table>
<thead>
<tr>
<th>File Type</th>
<th>Default Ending</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscellaneous Files</td>
<td></td>
</tr>
<tr>
<td>affine 2d</td>
<td>.aaf</td>
</tr>
<tr>
<td>affine 2d orthogonal</td>
<td>.ortho_aff</td>
</tr>
<tr>
<td>chains (V10 onwards)</td>
<td>.chain</td>
</tr>
<tr>
<td>chains (pre V10)</td>
<td>.rcn</td>
</tr>
<tr>
<td>boxing definitions file</td>
<td>.bf</td>
</tr>
<tr>
<td>digitizer registration</td>
<td>.aff</td>
</tr>
<tr>
<td>eagle mapping</td>
<td>.emf</td>
</tr>
<tr>
<td>Helmert 2d - no forced scale</td>
<td>.hel</td>
</tr>
<tr>
<td>Helmert 2d - allow forced scale</td>
<td>.hel_adv</td>
</tr>
<tr>
<td>Helmert 3d</td>
<td>.hel_3d</td>
</tr>
<tr>
<td>label map file (pre V10)</td>
<td>.lmm</td>
</tr>
<tr>
<td>label map file (V10 onwards)</td>
<td>.label_mapfile</td>
</tr>
<tr>
<td>many templates</td>
<td>.mtf</td>
</tr>
<tr>
<td>Map file (pre V10)</td>
<td>.mf</td>
</tr>
<tr>
<td>Map File (V10 onwards)</td>
<td>.mapfile</td>
</tr>
<tr>
<td>panel defaults file (pre V10)</td>
<td>.ddf</td>
</tr>
<tr>
<td>panel defaults file (V10 onwards)</td>
<td>.ddx</td>
</tr>
<tr>
<td>reports</td>
<td>.rpt</td>
</tr>
<tr>
<td>screen layout file (pre V10)</td>
<td>.slf</td>
</tr>
<tr>
<td>screen layout file (V10 onwards)</td>
<td>.slx</td>
</tr>
<tr>
<td>templates</td>
<td>.tpl</td>
</tr>
<tr>
<td>textstyle file</td>
<td>.tsf</td>
</tr>
</tbody>
</table>

Survey Files

12d Model field file | .fld |
reduction history | .rh |
12d field - Helmert 2.5 | .tdf_hel | see 18.2.2 GPS Localisation |

Input/Output Files

4d ascii | .4da |
12da | .12da |
AutoCAD | .dxf |
BCC Epson dat files | .dat |
BCC Epson sur files | .sur |
CivilCad V4 | .asc |
CivilCad V5 .as5
Eagle command .cmd
Eagle binary .mod
Geocomp .pts
Keays .trf
Microstation, Intergraph binary .dgn
MX, Moss .mos
TP Setout .pta
xyzs data .dat

Range Files
aspect range .arf
depth range .drf
height range .hrf
slope range .srf

Plot Parameter Files
Drainage long section .drainppf see 26.5 Drainage Long Plot PPF Editor
Drainage plan .drainplanppf see 26.8 Drainage Plan Plot PPF Editor
Long section .lplotppf see 26.4 Long Plot PPF Editor
Melbourne Water) sewer long section .melbppf see 26.6 Melbourne Water Plot PPF Editor
Plot frame .plotframeppf see 26.9 Plot Frame and PPF Editor
Pipeline long section .pipelineppf see 26.7 Pipeline Plot PPF Editor
Xsection .xplotppf see 26.3 Section X Plot PPF Editor
Pre V7 plot parameter files .ppf

Plot Format Files
AutoCAD .dxf
CalComp .cal
DGN (Microstation, Intergraph) .dgn
Dogs .par
Eagle .mod
Frame maker .mif
HP GL .hp
HP 7475 .hpa
HP GL 7600 .hpm
HP GL 2 (colour) .hpc
pcl5 .pcl5
PostScript .ps

Display Files - dumps, movies
gif .gif
jpeg .jpg
jpeg 2000 .j2k
PDF .pdf
PNG .png
PostScript .ps
Targa .tga
Tiff .tif
Windows bitmap .bmp
XPS .xps

4DML's - 12d Solutions programming/macro language
macro source file .4dm
<table>
<thead>
<tr>
<th>Macro Object/Executable</th>
<th>.4do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro Listing</td>
<td>.4dl</td>
</tr>
</tbody>
</table>

Note

This list is for the default files used in 12d Model panel fields. It does not include 12d Model setup files which are given in the appendix [39 Setting Up & Configuring 12d](#).
42.2 Special 12d Solutions File Formats

12d Solutions has a number of special file formats, most of which have already been specified. The remaining formats will now be given.

In any of the files, blank lines ignored and any information after // until the end of that line is ignored. Hence comments can easily be inserted into the files by preceding them by //.

Unless enclosed in quotes ("), more than one consecutive space or tab are treated as one space.
42.2.1 Eagle Map File

An eagle map file is a user created file consisting of a list of 12d Model colours and the Eagle pen, dash style, pen thickness and frag to be used for the colour.

The map file is set out with one 12d Model colour per line. The line begins with the 12d Model colour followed by the Eagle pen number, dash style, thickness and frag to be used for the 12d Model colour. Each item is separated by one or more spaces.

For example, if the 12d Model colour red is to be mapped to Eagle pen 3, dash style 4, thickness 2 and frag 1, then the line in the eagle map file would be

```
red 3 4 2 1
```

An eagle map file can be used for writing out three dimensional data to Eagle, or when producing plots in Eagle format.

For plotting, the map file must be called `eagleplt.emf`.

When writing three dimensional data out to Eagle, a user specified file name is allowed.

In the output case, as each string is written out, the map file is searched sequentially until a colour match is made. If no match is found, the colour of the string is used as a pen number and default values used for dash, thickness and frag.

Comments can be included in the map file by preceding the comment with a double forward slash (i.e. `//`). Anything on the line following the `//` will be ignored.

An example of an Eagle map file is,

```
//12d Model colour to Eagle mapping file
//
//12d Model colour  eagle pen   dash  thickness  frag
black          0     1 1 1 1
red            2     0 1 5
green          4     1 1 1
blue           4     2 1 11
cyan           5     1 1 1
yellow         6     1 1 1
magenta        7     1 1 1
white          1     1 1 1
orange         15    1 1 1
purple         14    1 1 1
grey           13    1 1 1
"dark green"   12    1 1 1
"dark red"     11    1 1 1
"off yellow"   4     1 1 1
"dark blue"    8     1 1 1
brown          11    1 1 1
```

```
42.2.2 Template File

The 12d Solutions Template file format is a simple text file definition for reading and writing out template definitions for use in the apply options in 12d Model.

The template definition begins with the key word `template` followed by the template name and then the definitions of

\[ \text{fixed, cut, fill and final parts of the template} \]

\[ \text{or fixed and decision parts} \]

all enclosed within curly braces `{ }`.

\[
\text{template fred} \{ \\
\text{fixed} \{ \\
\text{... or } \\
\} \\
\text{cut} \{ \\
\text{... decisional } \\
\} \\
\text{fill} \{ \\
\text{... } \\
\} \\
\text{final} \{ \\
\text{... } \\
\}
\]

The definition of the `fixed` part of the template begins with the key word `fixed` followed by a list of the links enclosed in curly braces `{ }`.

The links are defined one per line in order from the centre-line. Each link begins with the keyword `link` followed by the width, percent cross-fall, colour and name for each link. For the percent cross-fall, positive means up, negative is down and zero horizontal.

For example,

\[
\text{fixed} \{ \\
\text{link 3.5 -3 cyan kerb } \\
\text{link 1 -4 magenta shoulder } \\
\text{link 2 -5 blue verge } \\
\}
\]

describes a fixed template with three links, the first of width 3.5 with a 3% cross-fall downwards, the next link of width 1 with 4% cross-fall downwards and the third link of width 2 and 5% cross-fall downwards.

The definition of the `cut` part of the template begins with the key word `cut` followed by a list of the links enclosed in curly braces `{ }`.

The links are defined one per line in order from the end of the fixed template (or centre-line if no fixed part exists). Each link begins with the keyword `link` followed by the width, one in slope, colour and name for each link. For cut, the one in slope is positive for up, negative for down, and zero for horizontal.
For example,

```
cut {
 link 3 2 yellow a
 link 2 0 magenta b
 link 3 -1 yellow c
 link 2 0 magenta d
}
```

describes a cut template with four links, the first of width 3 with 1:2 slope upwards, the next link of width 2 horizontally, the third link of width 3 and 1:1 slope downwards and width 2 horizontally.

The definition of the **fill** part of the template begins with the key word **fill** followed by a list of the links enclosed in curly braces `{}`.

The links are defined one per line in order from the end of the fixed template (or centre-line if no fixed part exists). Each link begins with the keyword **link** followed by the width, one in slope, colour and name for each link. For fill, the one in slope is positive for down, negative for up, and zero for horizontal. Please note that this is the opposite to **cut**.

For example,

```
fill {
 link 5 2 yellow e
 link 1 0 magenta f
 link 10 -1 yellow g
}
```

describes a fill template with three links, the first of width 5 with 1:2 slope downwards, the next link of width 1 horizontally, and the third link of width 10 and 1:1 slope upwards.

The definition of the **final** part of the template begins with the key word **final** followed the cut slope, fill slope and search distance enclosed in curly braces `{}`. The key words for the three values are cut_slope, fill_slope and search_distance.

For example,

```
final {
 cut_slope 1 fill_slope 2 search_distance 100
}
```

describes a final cut slope of 1:1 (upwards), fill slope of 1:2 downwards and template with three links, the first of width 5 with 1:2 slope downwards, both going for a maximum distance of 100.

The definition of the **decisions** part of the template begins with the key word **decisional** followed by a list of the decision commands enclosed in curly braces `{}`.

The decision commands are defined one per line and have the format:

- **Fixed Xfall**: Width value Height value XFall value Name text Colour colour
- **Fixed Slope**: Width value Height value Slope value Name text Colour colour
- **Tin Width**: tin_name Strip value width value Name text Colour colour
- **String Offset**: string_name Strip value Offset value Name text Colour colour
- **Batter**: tin_name Strip value Width value Height value Slope value Name text Colour colour Goto label
- **Tin Decision**: tin_name Offset value Min value Max value Goto label
- **Label**: label_name
**Goto** label\_name

**End**

For example,

template "std" {
  fixed {
    link 3 unknown -3 cyan "kerb"
    link 1 unknown -4 magenta "shoulder"
    link 2 unknown -5 purple "verge"
  }
  decisional {
    Tin\_Decision "rock" 0 0 1000 "cut\_rock"
    Tin\_Decision "shale" 0 0 1000 "cut\_shale"
    Tin\_Decision "terrain" 0 0 1000 "cut\_terrain"
    Label "fill\_terrain"
    Batter "terrain" 0 8 unknown -3 "f1" blue "alldone"
    Batter "terrain" 0 1 unknown 0 "f2" "dark green" "alldone"
    Goto "fill\_terrain"
    Label "cut\_rock"
    Tin\_Decision "rock" 0 0 0.3 "cut\_rock\_done"
    Batter "rock" 0.3 5 unknown 0.5 "r1" cyan "cut\_rock\_done"
    Batter "rock" 0 2.5 unknown 0 "r2" yellow "cut\_rock\_done"
    Goto "cut\_rock"
    Label "cut\_rock\_done"
    Tin\_Decision "shale" 0 0 1000 "cut\_shale"
    Goto "cut\_shale\_done"
    Label "cut\_shale"
    Tin\_Decision "shale" 0 0 0.6 "cut\_shale\_done"
    Batter "shale" 0.6 6 unknown 1 "s1" magenta "cut\_shale\_done"
    Batter "shale" 0 3 unknown 0 "s2" "dark red" "cut\_shale\_done"
    Goto "cut\_shale"
    Label "cut\_shale\_done"
    Tin\_Decision "terrain" 0 0 1000 "cut\_terrain"
    Goto "alldone"
    Label "cut\_terrain"
    Batter "terrain" 0 3 unknown 1.5 "t1" red "alldone"
    Batter "terrain" 0 2 unknown 0 "t2" green "alldone"
    Goto "cut\_terrain"
    Label "alldone"
  }
}

**Notes**

1. spaces in text - any text string that includes spaces or only numbers, must be enclosed in double quotes "".
2. comments - anything after // until the end of the line is ignored.
3. blank lines - blank lines are ignored
42.2.3 Screen Layout File

The 12d Model screen layout file contains a simple text file definition for 12d Model panels and menus in either the pre-V10 format (slf) or the V10 XML format (slx).

The definition includes a screen position for the panel or menu, and for panels, values for any of the panel fields.

At any time, the layout of the menus and panels on the screen in a 12d Model session can be written out using the menu option

`File i/o=>Layouts =>Layout output`

Also, the layout for an individual panel or menu can be created by clicking RB in the menu/view title area and selecting the dump option to bring up the Menu/Panel Dump panel.

Note: If a screen layout file is created and added to the layout.4d file (by selecting layout.4d as the file name and selecting Append), then the menu/panel will appear whenever a project is opened. See layout.4d

A screen layout file can be read in using the menu options

`File i/o=>Layouts =>Layout input or File i/o=>Layouts =>Layout input files`

Also when a project starts up, the layout file layout.4d is read in and any menus and panels described in the file are placed on the screen (see 39.2.3 Setup Files Used for New and Existing Projects).

An example of a screen layout file for 'Read x y z s Data' in the V10 format is:

```xml
<?xml version="1.0"?>
<meta_data>
<brm>
<units>
<metric>
<linear>metre</linear>
<area>square metre</area>
<volume>cubic metre</volume>
<temperature>celsius</temperature>
<presure>millibars</presure>
<angular>decimal degrees</angular>
<direction>decimal degrees</direction>
</metric>
</units>
</meta_data>
<application>
<name>12d Model</name>
<manufacturer>12d Solutions Pty Ltd</manufacturer>
<manufacturer_url>www.12d.com</manufacturer_url>
<application>12d Model 10.0C1i Doco - Not For Production</application>
```
42.2.4 Map File for 12d Model V4.0

Up to 12d Model V4.0, the map file format consisted of one or more lines. Each line begins with a key (entity-mask) followed by a string name, model name, colour, breakline type (point or line), and line style separated by one or more spaces. The key can contain wild cards (*) and wild characters (?).

When a string is read in and satisfies a key, the key's corresponding string name, model, colour, breakline type and style is used for that string.

For example, any entity name beginning with 31 can be created as a 12d Model string with the name picket, colour cyan, breakline type line, line style 1 and model fences by the map file line

```
31* picket fences cyan line 1
```

If a map file is used, as each entity is read in, the map file is searched sequentially until a match with a key is made and the key's name, colour etc. used. If no match is found, the default colours and model (given in the read panel) are used.

Notes
1. If the entity-name is to be used as the new string name, use an asterisk (*) in place of the string name. For example,

```
fred * fences cyan line 1
```

2. If the default model for the reader is to be used as the model name, use an asterisk in place of the model name. For example,

```
31 31 * cyan line 1
```

3. A * for colour, breakline type and linestyle means that if the entity has a colour, breakline style or linestyle, then it is used rather than be mapped to another one.

4. All model names used in the map file can be given an extra (common) prefix by typing the prefix into the prefix for models field in the read panel.

5. If any information includes a space, then it must be enclosed in quotes ". For example, the model name may be "trial 1" or a style "large tanks".

6. Comments can be included in the map file by preceding them with a double forward slash //.

An example of a 12d Model map file is

```
// 12d Model map file
// key name model colour pt-line linestyle
102 break breaks red line solid
305 fence caddast green point dash
998 bdry bound cyan line solid
spots * spot yellow point 1
PS* * * yellow point 1
```

Map File for 12d Model V5.0 and Above

For 12d Model V5.0, the map file was extended to allow for defining properties such as tinability, symbols at vertices, vertex and segment text and pipe and culverts.

To allow for all the different type of mapping in the one file, the map file is broken up into sections (one section for each tab of the map file editor) and each section begins with a header record which is the section name enclosed in braces ({}). For example, the symbols section has the
Inside each section, the data is similar to the V4.0 map file with lines consisting of a key (entity-mask) followed by the data required for that section. The key can contain wild cards (*) and wild characters (?).

The exact format for the map file is not required since they are created and edited from within 12d Model by the option

File i/o => Map file
42.2.5 12d Patterns File

See 40.4 Patterns
43 Plotters and Plotting

The method of creating plots and sending them to a plotter, or to a pdf, or a Cad system such as AutoCad or Microstation, varies from site to site.

So 12d Model provides tools to enable the user to tailor the plotting system, especially the defining of Plotters and Plotter Mapping Files which are described in this chapter.

See

43.1 12d Model Plotters
43.2 Defining Plotters - Plotters.4d
43.3 Mapping 12d Colours to Pens and RGBs
43.4 Sending Plots to a Plotter
43.5 Sheet Sizes
43.6 Text Units in Plots
43.1 12d Model Plotters

When creating a plot, 12d Model has a variety of options about where the potting data goes to.

The user can:

(a) drive the plotters directly using Windows printer drivers, raster plotter drivers, hp plotter commands etc.

(b) plot indirectly by creating a computer disk file (the plot file) in a variety of formats containing the relevant plotter instructions for producing the plot. The formats include pdf, XPS, DWG and DGN.

(c) plot indirectly to a 12d Model model

Once the plotting device (plotter engine) the decided, there will still be a variety of ways that the 12d Model colours are to appear on the plot.

For example, for some plots you may want all the colours to be plotted as black and shades of grey rather than actual colours. Or for white to be plotted as black.

To control how a colour is plotted on a particular plot device, there are various user definable parameters and the most flexible for controlling colours is the plotter mapping file (pmf file).

There are a number of pmf files installed with 12d Model and/or users can also define their own.

So an 12d Model plotter consists of a

1. Unique name for the Plotter
2. The Plot Engine (plot device)
3. Other Parameters to control the plot engine and outputs

The definitions for each of the 12d Model plotters is given in the file plotters.4d and it is the list of plotter names from this file that is displayed as the choice list in the when the Select Plotter pop-up menu.

The list of 12d Model plotters installed with 12d Model is:
From the list you will see that there can be a number of Plotters using the same plot device (e.g. windows or pdf) and these will differ in one or more of the other plot parameters. For example, having a different plotter mapping file.

When a plot file is created, it can be passed to a user specified program or batch file which can do things like automatically directing the plot file to a plotter. See 43.3 Mapping 12d Colours to Pens and RGBs.

For information on plotters.4d, see 43.2 Defining Plotters - Plotters.4d
43.2 Defining Plotters - Plotters.4d

The file `plotters.4d` defines the names of the plotters that appear in the plotter type panel field, and the properties of each of these named plotters.

On opening a 12d Model project, if the environment variable `PLOTTERS_4D` exists then it has the pathname to the file that defines the plotters otherwise, the file `plotters.4d` is searched for in the standard set up paths. See `PLOTTER_4D` and 39.2.4 Folders Searched for Setup Files).

The pop-up list for the `plotters.4d` file shipped with 12d Model is:

![Select Plotter](image)

but users can delete plotters from this and/or add their own plotters to the file.

For each plotter in `plotters.4d`, it is possible to customize:

(a) the name of the plotter
(b) the plot device (plot engine)
(c) any plotter mapping for mapping colours
(d) a start and end sequence that is sent to a physical plotter
In the plotter file, the definition of a *plotter* of a given name *plotter_name* is set out as:

```
plotter plotter_name {
 set_up_command_1
 set_up_command_2
 ...
 set_up_command_n
}
```

*plotter_name* must not be blank, and if it includes imbedded spaces then the name must be enclosed in double quotes "".

Each *plotter_name* in the file must be unique in the file.

There can be zero or more *set up commands* inside the braces {} and each *set up command* is from the list:

- group
- engine
- extension
- map_file
- map_pens
- output_cmd
- colour
- header
- footer

These *set up commands* are documented in the next section 43.2.1 *Plotter Set Up Commands*.

For a description of some of the Plotters in the default plotters.4d file, see 43.2.2 *Some Plotters in the Default Plotters.4d File*.

For an example of a *plotters.4d* file, see 43.2.3 *Example of a Plotters.4d File*. 
43.2.1 Plotter Set Up Commands

**group**

although all the *plotter names* have to be different, rather than just listing them in a flat list, the plotter names can be displayed in a tree structure.

The **group** command gives the levels in the tree for the plotter name in the pop up list. Each level is separated by a forward slash `/`

For example, if the plotter name was **PDF black** and **group PDF/Full Scale** then it will show up in the pop-up list as:

![Select Plotter](image)

**engine**

the device that the plot is being created for. For example, model, pdf_12d, xps_writer, dwg_2010, dgn, dgn_v8, postscript and hpgl.

For a complete list of engines, see **43.2.1 Plotter Engines**.

**extension** "*.xxx"

the extension added to the file name used for the plot file written out by this plotter.

**map_file** *plotter_mapping_file_name*

if **map_file exists**, it exists then it points to the *plotter mapping file* which is used to define each 12d *Model colour* what **pen number** it is mapped to, and for each **pen number**, its **rgb** and **weight** (width).

If **map_file does not exist**, and a global mapping file is specified, then it will be used as the plotter mapping file. Otherwise the pen mapping in Colours.4d is used.

If the **engine** is any of the **dwg/dxf/dbx** variants, then the **map_file** is an **Autocad mapping file** with the extension of **.amf**, the plotter will use the **colour number** being plotted as the **key** in the Autocad mapping file. This allows the mapping from colour number directly into layer name, Autocad colour and linestyle. Note that if Autocad colour or linetype is BYLAYER, then 12d Model uses the correct values in Autocad. The '*' character means that the field is ignored. For an example of an amf file, see **43.2.1.3 Definition and Example of a .amf File**.

If the **engine** is **dgn/dgn_v8** then the **map_file** is a **table file** with the extension of **.tbl**. The plotter will use the **colour number** being plotted as the **key** in the **table file**. This allows the mapping from the colour number directly into dgn level, weight, style and colour. For an example of a tbl file, see **43.3 Mapping 12d Colours to Pens and RGBs**.

**map_pens** true or false
if `map_pens` is `true`, it uses the specified `map_file`.

If `map_pens` is `false`, it doesn't use any mappings (map_file, global plotter mapping file or pen mapping table). It leaves the pen number untouched.

`smap_pens` is ignored when

(a) the `map_file` is used as a tbl file (plotter engine is dgn and the map_file has an extension of .dgn. In this case any mapping is occurring via the tbl file where colour is the key.

(b) the map_file is used as a amf file (plotter engine is dxf or dwg and the map_file has an extension of .dxf. In this case, any mapping is occurring via the .dxf file where colour is the key.

`output_cmd` path to a script or program

for this plotter, the given script or program is used on the created plot file. This replaces the PLOTTER_4D definition of script or program for this plotter.

`colour` true or false

This is only used in hpgl2 and postscript.

If `false`, then

- for postscript don’t send the rgb for colours
- for hpgl2, don’t send down the block of information with the number of pens and the rgb for each pen.

That is, if false, it stops hpgl2 and postscript writing out the colour definition commands.

`header` and `footer`

The `header` information is placed in the plot file before any plot commands and the `footer` information is placed at the end of plot file after all the plot commands.

The format for the `header` or `footer` is:

```plaintext
header {// this information in placed in the plot file before any plot commands
 lines of text which can include plotter variables
}
```

or

```plaintext
footer {// this information is placed at the end of the plot file, after the plot commands
 lines of text which can include plotter variables
}
```

Each line of text is surrounded by quotes. For example, "this is some stuff".

The `plotter_variables` used in the `header` or `footer` are:

- username
- filename
- date
- time
- sheet_width
- sheet_height
- page_number - not used
- minimum_x, minimum_y// plotter dependent
- maximum_x, maximum_y// plotter dependent

and are included in the text by preceding them by a + and also following them by a cross if more text follows. For example:
"the user is " + username + " of 4D Solutions"

The appropriate information is substituted for the plotter_variables when a plot is created.

Hence

"the user is " + username + " of 12d Solutions"

would give

"the user is fred of 12d Solutions"

A plotter_variable may not be appropriate for a particular plotter and if a plotter_variable is specified but not used for a plotter, it is substituted by blank.

If header or footer is not specified, then appropriate default information for the plotter is used.

The header and footer set_up_commands are not used by all plotters. If they are not used for a particular plotter, the header or footer command is ignored.

At present, only the plotters hpgl, hpgl2, postscript and dxf use header and footer.

minimum_x etc for postscript, it is the extent of the plot in mm

sheet_width, sheet_height for postscript in mm

For hpgl2

sheet_width, sheet_height in mm/40.

Continue to the next section 43.2.1.1 Plotter Engines or return to 43.2 Defining Plotters - Plotters.4d.
43.2.1.1 Plotter Engines

When creating a plot, 12d Model can either use a Windows printer driver to plot directly, or instead of driving the plotter directly, create a computer disk file (the plot file) containing the relevant plotter instructions for producing the plot (which is then sent to the plotter), or in the case of the plotter type model, create a 12d Model model.

The available Plotter Engines are:

<table>
<thead>
<tr>
<th>Engine Name</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>model</td>
<td>creates a 12d Model model</td>
</tr>
<tr>
<td>pdf_12d</td>
<td>creates a pdf file</td>
</tr>
<tr>
<td>xps_writer</td>
<td>creates a xps file</td>
</tr>
<tr>
<td>windows</td>
<td>use Windows colour printer, or grey scale on mono printers</td>
</tr>
<tr>
<td>windows_xps</td>
<td>create a Windows xps file</td>
</tr>
<tr>
<td>raster</td>
<td>create a raster file</td>
</tr>
<tr>
<td>hp</td>
<td>creates HPGL commands with all of one pen being plotted before the next pen is used</td>
</tr>
<tr>
<td>hp_7475</td>
<td>small HP plotter, common hp emulation mode for lasers</td>
</tr>
<tr>
<td>hpgl_2</td>
<td>HPGL 2</td>
</tr>
<tr>
<td>dwg</td>
<td>creates a binary 2d DWG file</td>
</tr>
<tr>
<td>dwg_4d</td>
<td>creates a binary 2d DWG file</td>
</tr>
<tr>
<td>dwg_12</td>
<td>creates a binary 2d DWG V12 file</td>
</tr>
<tr>
<td>dwg_13</td>
<td>creates a binary 2d DWG V13 file</td>
</tr>
<tr>
<td>dwg_14</td>
<td>creates a binary 2d DWG V14 file</td>
</tr>
<tr>
<td>dwg_2000</td>
<td>creates a binary 2d DWG 2000 file</td>
</tr>
<tr>
<td>dwg_2002</td>
<td>creates a binary 2d DWG 2002 file</td>
</tr>
<tr>
<td>dwg_2004</td>
<td>creates a binary 2d DWG 2004 file</td>
</tr>
<tr>
<td>dwg_2006</td>
<td>creates a binary 2d DWG 2006 file</td>
</tr>
<tr>
<td>dwg_2007</td>
<td>creates a binary 2d DWG 2007 file</td>
</tr>
<tr>
<td>dwg_2010</td>
<td>creates a binary 2d DWG 2010 file</td>
</tr>
<tr>
<td>dwg_2010</td>
<td>creates a binary 2d DWG 2010 file</td>
</tr>
<tr>
<td>dwg_2013</td>
<td>creates a binary 2d DWG 2013 file</td>
</tr>
<tr>
<td>dxf</td>
<td>creates a 2d DXF file</td>
</tr>
<tr>
<td>dxf_4d</td>
<td>creates a 2d DXF file</td>
</tr>
<tr>
<td>dxf_12</td>
<td>creates a 2d DXF V12 file</td>
</tr>
<tr>
<td>dxf_13</td>
<td>creates a 2d DXF V13 file</td>
</tr>
<tr>
<td>dxf_14</td>
<td>creates a 2d DXF V14 file</td>
</tr>
<tr>
<td>dxf_2000</td>
<td>creates a 2d DXF 2000 file</td>
</tr>
<tr>
<td>dxf_2002</td>
<td>creates a 2d DXF 2002 file</td>
</tr>
<tr>
<td>dxf_2004</td>
<td>creates a 2d DXF 2004 file</td>
</tr>
<tr>
<td>dxf_2006</td>
<td>creates a 2d DXF 2006 file</td>
</tr>
<tr>
<td>dxf_2007</td>
<td>creates a 2d DXF 2007 file</td>
</tr>
<tr>
<td>dxf_2010</td>
<td>creates a 2d DXF 2010 file</td>
</tr>
<tr>
<td>dxf_2010</td>
<td>creates a 2d DXF 2010 file</td>
</tr>
<tr>
<td>dxf_2013</td>
<td>creates a 2d DXF 2013 file</td>
</tr>
<tr>
<td>dxb</td>
<td>creates a binary 2d DXB file</td>
</tr>
<tr>
<td>dxb_4d</td>
<td>creates a binary 2d DXB file</td>
</tr>
<tr>
<td>dxb_12</td>
<td>creates a binary 2d DXB V12 file</td>
</tr>
</tbody>
</table>
dxb

dxb_13 creates a binary 2d DXB V13 file
dxb_14 creates a binary 2d DXB V14 file
dxb_2000 creates a binary 2d DXB 2000 file
dxb_2002 creates a binary 2d DXB 2002 file
dxb_2004 creates a binary 2d DXB 2004 file
dxb_2006 creates a binary 2d DXB 2006 file
dxb_2007 creates a binary 2d DXB 2007 file
dxb_2010 creates a binary 2d DXB 2010 file
dxb_2013 creates a binary 2d DXB 2013 file

dgn
creates a Microstation binary model (.dgn file)
dgn_v8 creates a Microstation V8 binary model (.dgn file)

pcl5 creates a pcl5 file
eagle_single creates an Eagle single precision binary model
eagle_double creates an Eagle double binary model
postscript creates a postscript file (generally for laser printers)
dogs creates a Dogs parametric format file
calcomp creates a Calcomp plot format file
mif creates a frame maker interface format file.

Continue to the section 43.3 Mapping 12d Colours to Pens and RGBs or return to 43.2 Defining Plotters - Plotters.4d.
43.2.1.2 Definition and Example of a .tbl File

An example of an output mapping file for use with an Microstation (Intergraph) dgn plotter:

```
// File: vicplot.tbl
// column 12d colour name (any length - but only 1st four characters passed)
// column 2Vic roads code (only 1st four characters passed)
// column 3AS2482 feature code
// column 4description (any length but if embedded spaces then must be quoted)
// column 5line level (between 1 and 64)
// column 6line colour (between 1 and 256)
// column 7line weight (between 1 and ?)
// column 8line style

// notes: if column 2 is a * then the 12d name is transmitted (up to 4 characters that is)
// columns 9 through 16 are only used for point strings which map into characters
```

1 PM 38010000 "Permanent Survey Mark " 49 0 1 0
2 BM 38020000 "Bench Mark " 49 0 1 0
3 TPEG 31000001 "Title peg " 50 0 1 0
4 STN 38100000 "Instrument Station " 50 0 1 0
5 SM 38000000 "Survey mark (general) " 50 0 1 0
6 PCON 38040001 "Photo control point " 50 0 1 0
7 CHEK 38000001 "Check profile/point " 52 10 3 0
8 TRIG 38010000 "Trigonometric Station " 50 0 3 0
9 BMQS 38020001 "Bench Mark QS-1 " 49 11 1 0
10 BMS 38020002 "Bench Mark S-2 " 49 11 1 0
11 BMSH 38020003 "Bench Mark SH-1 " 49 11 1 0
12 RM 38000001 "Reference Mark - General " 50 11 1 0
* ROD 38000002 "Reference Mark - Rod " 50 11 1 0 // everything else

Continue to the section 43.2.1.3 Definition and Example of a .amf File or return to 43.2 Defining Plotters - Plotters.4d.
43.2.1.3 Definition and Example of a .amf File

An example of an AutoCad output mapping file for use with an Autocad plotter:

```
// File: acadplot.amf
// -------------
// column 1 match colour - can include wild cards * and wild characters ?
// column 2 new name - not output to DXF
// column 3 ACD layer -
// column 4 ACD colour - * for 12d Model colour (mapped to ACD),
// BYLAYER for ACD BYLAYER
// column 5 ACD line type- * for 12d Model linestyle,
// BYLAYER for ACD BYLAYER
// column 6 ACD text style- not yet used, * for 12d Model text style
//
// Notes:
// 1. column 5 (ACD colour) can only be a number between 0 and 256, or * or BYLAYER
// 2. The DWG/DXF file produced needs to be loaded into an existing Autocad drawing
// which has the ACD layers and linestyles defined.
//
// column 1 2 3 4 5 6
//
// 1 CONT ljg1 1 1 *
// 2 TOP ljg2 2 CONTINUOUS
// 3 TOP * 3 * *
// 4 TOP ljg4 * BYLAYER
// 5 TOP ljg5 BYLAYER DASH *
```

Continue to the section 43.2.2 Some Plotters in the Default Plotters.4d File or return to 43.2 Defining Plotters - Plotters.4d.
43.2.2 Some Plotters in the Default Plotters.4d File

**Full Scale >PDF black**
- The 12d standard **colour numbers 1-15 & 316** plot with **0.25mm black** pens.
- The "pen*" (400 series) colour numbers plot with **black pens** of **specific weights**.
- All "ppf*" (900 series) colour numbers plot with black/grey scale pens of specific weights.

**Full Scale >PDF black string weight**
- If the string has no weight then it is the same as **Full Scale >PDF black** but if the string has a weight then the string weight is used.
- So if a non standard weight is required for a particular string then you set the weight for that string. Otherwise do not give the string a weight.

**Full Scale >PDF colour**
- The 12d standard **colour numbers 1-15 & 316** plot with **0.25mm pens** of the matching colour, except:
  a) **white** (7) plots to **black**,
  b) **yellow** (5) plots to a **darker yellow**.
- The "pen*" (400 series) colour numbers plot with **black pens** of **specific weights**.
- All "ppf*" (900 series) colour numbers plot with **black/grey scale pens** of **specific weights**.

**Full Scale >PDF colour string weights**
- If the string has no weight then it is the same as **Full Scale >PDF colour** but if the string has a weight then the string weight is used.
- So if a non standard weight is required for a particular string then you set the weight for that string. Otherwise do not give the string a weight.

**Half Scale >PDF black, Half Scale >PDF black string weight**
**Half Scale >PDF colour, Half Scale >PDF colour string weight**
- These are the same the Full Scale plotters EXCEPT that the **pen width is 0.125mm**

Continue to the section 43.2.3 Example of a Plotters.4d File or return to 43.2 Defining Plotters - Plotters.4d.
43.2.3 Example of a Plotters.4d File

An example of a plotters.4d file is:

```plaintext
// ---
// File: plotters.4d
// Date: 2014-03-17
// Revised:
// Use: Version 11+ Standard Plotter Names
// ---

// 12d Model model
plotter "model" {
 group "12d" //this puts "model" at the bottom of the list in the hard-wired "12d" group
 engine model
 extension ""
}

// PDF
plotter "PDF black" {
 group "PDF/Full Scale"
 engine pdf_12d
 extension ".pdf"
 map_pens true
 map_file "pmf_black.pmf"
}
plotter "PDF black string weight" {
 Group "PDF/Full Scale"
 engine pdf_12d
 extension ".pdf"
 map_pens true
 map_file "pmf_black.pmf"
 stringhalt true //explicit string weights override PMF weights
}
plotter "PDF colour" {
 Group "PDF/Full Scale"
 engine pdf_12d
 extension ".pdf"
 map_pens true
 map_file "pmf_colour.pmf"
}
plotter "PDF unmapped" {
 group "PDF"
 engine pdf_12d
 extension ".pdf"
 map_pens false
}

//DWG (and DXF/DXB)
plotter "DWG unmapped" {
 group "DWG"
 //engine dwg_12
 //engine dwg_13
 //engine dwg_14
 //engine dwg_2000
 //engine dwg_2002
}```
//engine dwg_2004
//engine dwg_2005
//engine dwg_2006
//engine dwg_2007
engine dwg_2010
extension ".dwg"
}
plotter "DXF 2000 with amf" {// output to a dxf file using an autocad map file
engine dxf_2000
extension ".dxf_2000"
map_file "acadplot.amf"
}

// Windows

plotter "Windows colour" {
 group "Windows/Full Scale"
 engine windows
 map_pens true
 map_file "pmf_colour.pmf"
}

Continue to the section 43.3 Mapping 12d Colours to Pens and RGBs or return to 43.2 Defining Plotters - Plotters.4d.
43.3 Mapping 12d Colours to Pens and RGBs

12d Model uses up to 10,240 different colours and when it comes to plotting, it must be decided how these colours are mapped for the particular plotter device being used.

Some physical plotters may print colours and others only black. And even on a colour plotter, sometimes you may want to print out in black, or black and grey scale.

When plotting to devices such as PDF, or CAD systems such as AutoCad and Microstation, no physical plot is created but the plot image may need to be send colours to special colours, layers and styles in the other system.

For plotting to actual plotters, there are two methods of specifying the colour to pen mappings.

(a) **pen mapping using Colours.4d**

A simple "colour to pen number" mapping which is mainly used for older pen plotters that only had a fixed number of pens that could be used. It also provides the default pen numbers if they are not mentioned in the *plotters.4d* file. See 43.3.1 Pen Mapping in Colours.4d.

(b) **plotter mapping - Plotters.4d**

An extended colour to pen number mapping is more often used which not only maps colour numbers to pens but can also include a weight (thickness) in millimetres for each pen (pen_mapping).

Plus the red, green, blue definition for the pen numbers used on the plotter (pen_colour)

This is for the physical plotters such as laser, electrostatic, inkjet and bubblejet plotters, and the non-physical plotters such as pdf. See 43.3.2 Plotter Mapping File.

So for a plotter mapping

```
Colour number in 12d Model  |   pen_mapping   | Pen number and weight |  pen_colour  | RGB for Pen number
```

As Plotter mapping is an extension of pen mapping, only one of the two is used for a plot. See

43.3.1 Pen Mapping in Colours.4d.

43.3.2 Plotter Mapping File.

Or return to 43 Plotters and Plotting.
43.3.1 Pen Mapping in Colours.4d

The *colours.4d* file defines the rgb for drawing the colours on a view and also defines the default plotter pen associated with the colour numbers.

The Plots=>Pen mapping option or any other option that brings up the Edit Colours panel can be used to define the correspondence between 12d Model colours. See 39.2.7.2 Colours File (*colours.4d*).

Continue to 43.3.2 Plotter Mapping File or return to 43.3 Mapping 12d Colours to Pens and RGBs.
43.3.2 Plotter Mapping File

The plotter mapping file can be used with pen plotters but is more specifically designed for laser, electrostatic and inject plotters and allows the user to:

(a) map 12d Model colours to particular plotter pens and also specify a width (thickness or weight) to be used for the pen.

and

(b) specify the red, green and blue mix for the pens.

The plotter mapping file to be used can be set by either

1. by the environment variable PLOTTER_MAPPING_4D, or is the file pmf.4d found in the standard set up areas.

2. defined for a particular plotter in the Plotters.4d file. See 43.2 Defining Plotters - Plotters.4d

There are also two special formats of the plotter mapping file which are used for plotting to Autocad dwg/dxf and Microstation dgn. The special mapping files use the 12d Model colour number as a key to tables which control how the information is passed to DWG/DXF and DGN.

3. .tbl file used with plotting to Microstation dgn

4. .amf used with plotting to Autocad dwg, dxf or dxb

And a superseded method using a plotter mapping file in the Plotter Mapping Table panel.

5. Now superseded - the option Plots =>Plotting setups =>Plotter mapping. See 25.8.13 Plotter Mapping Table.

The definition of the Plotter Mapping File (pmf file) is given in the next section 43.3.2.1 Definition of a Plotter Mapping File and the initiation performed before the pmf file is used is described in 43.3.2.2 Initialisation of the Plotter Mapping File.
43.3.2.1 Definition of a Plotter Mapping File

The plotter mapping file (.pmf) consists of two default values followed by the two sections pen_mapping and pen_colours:

(a) the **default_weight** command that goes before the pen_mapping or pen_colours sections and which is used as the weight for any colour number that is mapped to a pen number but not given a weight in the pen_mapping section.

```
default_weight weight
```

(b) the **default_colour** command that also goes before the pen_mapping or pen_colours sections and which defines the default red, green and blue for any pens used but not set in the pen_colours section.

```
default_colour red green blue
```

(c) **pen_mapping** section which defines which pen a colour number is mapped to, and the weight for the pen.

The pen_mapping section consists of the key word **pen_mapping** followed by { and then one line for each colour number being mapped with the colour number, then the plotter pen number and finally the pen weight that the colour number is mapped to. This is finished with a }.

```
pen_mapping {
  // pen mapping and weight table
  // 12d plotter weight
  // colour pen no for pen
  0 1 0.15
  1 2 0.25
  3 1 0.5
  // etc.
}
```

(d) **pen_colours** section which defines the red, green and blue values to be used for the pens on the plotter.

The pen_colours section consists of the key word **pen_colours** followed by { and then one line for each plotter pen having the rgb defined with the plotter pen number followed by the red, green and blue values for the plotter pen. This is finished with a }.

```
pen_colours {
  // pen colours table
  // plotter
  // pen red green blue values 0-255 for red, green and blue
  0 0 0 0 // pen 0 is black
  1 255 0 0 // pen 1 is red
  // etc.
}
```

Continue to the section 43.3.2.2 Initialisation of the Plotter Mapping File or return to 43.3.2 Plotter Mapping File or 43.3 Mapping 12d Colours to Pens and RGBs.
43.3.2.2 Initialisation of the Plotter Mapping File

Before the plotter mapping file is used

(a) a default pen_mapping table is constructed from the colours in the colours.4d file by:

 colour n goes to pen n default_weight

 where default weight is the default_weight if one is given in the specified plotter mapping file or zero if the default_weight does not exist.

(b) a default pen_colours table for pens 0 to 10,240 is set up by:

 pen n default_red default_green default_blue

 where default_red, default_green, default_blue are the red, green and blue of the default_colour if one is given in the specified plotter mapping file, or rgb 0 0 0 if the default_colour does not exist.

The plotter mapping file is then processed and over writes any of the above initial mapping values.

This initialisation sequence means that if a colour number is not listed in the pen_mapping section of the pmf file, then the pen mapping as given for that colour number in the colours.4d file is used. Hence the pen_number in the colours.4d file is the default pen number.

Continue to the next section 43.4 Sending Plots to a Plotter or return to 43.3.2 Plotter Mapping File or 43.3 Mapping 12d Colours to Pens and RGBs.
43.4 Sending Plots to a Plotter

When the plot file is created, it can be passed to a user specified program or batch file that can
do things like automatically direct the plot file to a specific plotter.

The mechanism is that as plots are created, 12d Model can fire up a user supplied batch file/
program with the plot file as the first argument.

By checking the plot name suffix, the batch file could for example, decide which plotter the plot
must be sent to.

The environment variable

\texttt{PLOTTER_4D} \textit{points to batch file/program}

points to the batch file/program which can be fired up whenever a plot is generated. The name of
the plot is given as the first parameter of the batch file.

If the tick box \textbf{Send plots} in the panel tab \textbf{System Settings} of the panel \textbf{Defaults} (given by the
menu option \textit{Utilities} \rightarrow \textbf{Default}) is set to on, the batch file/program is run as each plot is created.

If more than one plot is created by an option (e.g. x plot) then the batch file/program is called
separately for each of the plots.

An example of a batch file to send the plot to port lpt1 for Windows would be

\begin{verbatim}
@echo off
copy %1 lpt1
\end{verbatim}

An example for Windows which looks out for hp files is

\begin{verbatim}
@echo off
echo.
\echo -----------------------------
:next_file
if "%1" == "" goto done
\echo %1 | find /I ".hp" > nul
if ERRORLEVEL 0 if not ERRORLEVEL 1 goto hp_plotter
\echo Plotting file %1
shift
\echo Plotting %1 to HP plotter
\echo %1 to HP plotter
\copy %1 \server_name\printer_name
shift
\echo -----------------------------
\echo
\end{verbatim}

Continue to the next section \textbf{43.5 Sheet Sizes} or return to \textbf{43 Plotters and Plotting}.
43.5 Sheet Sizes

For plot frames, long and x plots, the overall size of the plot sheet can be given by a pop-up containing defined sheet size.

The sheet size names, width and heights can be specified by the user in a file named sheets.4d which is in the normal set up areas, or is pointed to by the environment variable SHEET_SIZES_4D.

The layout of the sheet sizes file is given in the section 39.2.7.4 Sheet Sizes File (sheets.4d).

Continue to the next section 43.6 Text Units in Plots or return to 43 Plotters and Plotting.
43.6 Text Units in Plots

Text occurs in 12d Model plots in a number of ways -

- plotting **text strings**, text in super strings and other strings.
- automatic text such as grid values, x-section and long-section plot annotation.
- text within linestyles.

The most difficult thing about text is that because of the different uses of text, there needs to be more than one systems of **units** to define text heights.

The height of text for a given textstyle is defined to be the height of a capital A. However, in **12d Model**, there are three methods of defining the units for measuring this height.

- world units - the units used for data
- screen units - pixels
- plot paper units - millimetres.

World Units

World units are the units of user data. For most users, the base unit for user data is metres. However 12d Model is a almost a dimensionless system and the base unit is totally dependent on the user.

The height of world text when displayed in a view depends upon on the **text height** and the **scale** of the view.

When plotted, the height that world text appears on a plot sheet is the same as for any data defined in world units - the height depends on the **scale** used for the plot.

Text heights that are only given in world units have (w) after them.

For some text, the choice of units is either world, pixel or paper units. The text parameters then have a (u) after them.

Screen Units - Pixels

When screen units (pixels) are used, the text is a fixed height on the screen. If the user zooms in on text given in pixels, the text remains the same height.

To have a height on a plot, screen unit text needs a height defined in millimetres.

For some screen text, both a pixel and a millimetre height is supplied when the text is defined.

For text with only a pixel height, there is a plotting multiplication parameter called **pixels-to-millimetres** which is used to convert pixel heights to plot paper heights. The value of pixels-to-millimetres is set using the **Plots => Plotting setups => Pixels to mm** option and is stored for the project. See **25.7.5 Pixels to mm**.

Text heights that are only given in pixels have (pix) or (p) after them.

For some text, the choice of units is either world, pixel or paper units. The text parameters then have a (u) after them.

Plot Paper Units - Millimetres

Text defined in plot paper units (millimetres) has a well defined height on a plot sheet.

Text heights that are only given in millimetres have (mm) after them.

For some text, the choice of units is either world, pixel or paper units. The text parameters then have a (u) after them.

Return to 43 Plotters and Plotting.
44 Text Plot Parameters

IMPORTANT WARNING

This information on the text version of the plot parameters only includes those parameters needed up to 12d Model 7 and is only included for those users still working with old text pff files. Text PPFs have been replaced by the PPF Editors - see 26 PPF Editors.

This appendix contains information about the definitions in the text versions of the plot parameter files. The text plot parameter files are not normally seen by users because the Plot Parameter editors create binary plot parameter files.

See
44.1 Plot Frame Plot Parameter File
44.2 Cross Section Plot Parameter File
44.3 Long Section Plot Parameter File
44.4 Pipeline Plot Parameter File
44.5 #Include in Plot Parameter Files

44.1 Plot Frame Plot Parameter File

The plot frame section plot parameters are placed in a file with ending .ppf
Each parameter consists of a parameter name followed by one or more spaces and then the parameter value. There is only one parameter per line.
Anything on a line after a double forward slash // is considered to be a comment.
The set of all parameters for the plot frame plot is enclosed within a set of curly brackets { } with the header

 plot_frame_plot "plot set name"

before the curly brackets.
That is,

 plot_frame_plot "plot set name" {
 plot parameters
 one per line
 }

If there is more than one plot_frame_plot parameter set in the file, only the first set is used.
There may also be parameter sets for other plot types such as section_long_plot in the same file.
The other sets will be ignored when doing plot frame plots.
The only parameters not connected with title block file are

view_name view_name // name of view used for information
 // on the plot
single_frames frame_name // name of plot frame to be plotted
model_of_frames model_name // model of plot frames which may be
// plotted as a group

Both these parameters exist in the `plot frames plot` panel and when the parameter file is first read, if either of these parameters exist in the plot parameter file then they will be used to replace the corresponding parameters in the panel.

However, if the parameters are subsequently modified in the panel, the new panel value will be the value used for plotting.
44.1.1 Title Block Information

A plot frame plot can have a standard 12d Model title block or a user defined title block.

For a user defined title block, the title block drawing commands are kept in a file whose name is given by the user when setting up the plot frame. The title block drawing commands are almost identical to the linestyle drawing commands.

If a user defined title block has been set for the plot frame, plot frame parameters can be used to pass information though to the title block.

User Title Block

Some of the plot parameters are used to pass information down to variables in a user defined title block specified in the plot frame.

The parameters are:

- **time_format**
 - text
 - // format for $time

- **title_1**
 - text
 - // passed down to $title_1

- **title_2**
 - text
 - // passed down to $title_2

- **user_text_n**
 - text
 - // where n = 1,2,... 1000
 - // passed down to $user_text_n

- **start_page_number**
 - integer
 - // used as the starting value for $page_number.
 - // if missing, $page_number starts at 1.

- **start_drawing_number**
 - integer
 - // added to $drawing_number in title block file
 - // if missing, $drawing_number starts at 1.

- **drawing_number_prefix**
 - text
 - // passed down to $drawing_number_prefix

- **drawing_number_postfix**
 - text
 - // passed down to $drawing_number_postfix

Notes

1. A warning is given if the keyword in a plot parameter file does not exist.
2. A warning is also given if the key word pair is defined more than once in a pff.

Please continue to the next section 44.2 Cross Section Plot Parameter File.
44.2 Cross Section Plot Parameter File

The cross section plot parameters are placed in a file with ending .ppf. Each parameter consists of a parameter name followed by one or more spaces and then the parameter value. There is only one parameter per line. Anything on a line after a double forward slash // is considered to be a comment. The set of all parameters for the cross section plot is enclosed within a set of curly brackets { } with the header

```
section_x_plot "plot set name"
```

before the curly brackets.

That is,

```
section_x_plot "plot set name" {
    plot parameters
    one per line
}
```

If there is more than one section_x_plot parameter set in the file, only the first set is used. There may also be parameter sets for other plot types such as section_long_plot in the same file. The other sets will be ignored when doing cross section plots.

The plot parameters are documented in following groups:

For the Plot Sheet layout, please continue to the section 44.2.1 Plot Sheet Layout.

Boxes and datum area, please continue to the section 44.2.2 Boxes and Datum Area.

Only for the Centre line case:

Datum area, please continue to the section Datum Line.

Labelling the centreline, style etc., please continue to the section Labelling the Centreline Chainage.

Only for the Boxes case:

Datum area, please continue to the section Datum Line.

Labelling the centreline chainages, please continue to the section Labelling the Centreline Chainage.

Defining boxes and what is labelled in them, please continue to the section 44.2.5 Defining Boxes.

For Both the Centre Line and Boxes case:

Graph area parameters, please continue to the section 44.2.6 Graph Area.

Grade labelling, please continue to the section 44.2.7 Grade Labelling.

Labelling points on x-sections, please continue to the section 44.2.8 Labelling Points of the X-Sections.

Labelling cuts, please continue to the section 44.2.9 Labelling Cuts of X-Sections Through Strings in a Model.

Hatching cut/fill, please continue to the section 44.2.10 Hatching Cut and Fill Areas.

Drawing extra x-sections, please continue to the section 44.2.11 Extra Models of X-Sections.

Sorting x-sections, please continue to the section 44.2.12 Sorting X-Sections by Chainage.

Title block information, please continue to the section 44.2.13 Title Block Information.

Panel modifying parameters, please continue to the section 44.2.14 Parameters that Modify Fields In the Cross Plot Panel.

Example, please continue to the section 44.2.16 Example of a Cross Section Plot Parameter File.
44.2.1 Plot Sheet Layout

X-sections are normally generated at chainages along a given centreline. This centreline chainage is stored with each x-section string.

The chainages of the actual x-sections are referred to as offsets from the centreline position rather than x-section chainages. The offsets of the x-section are set up so that the zero offset occurs where the x-section crossed the centreline string.

The x-sections along the centreline are stored in the one model (the primary model) which is then used to generate the cross section plot.

\[\text{model} \to \text{plot} \]

Each x-section from the primary model of x-sections generates its own sub-plot for which the x-section is the primary string. Hence the cross section plot consists of many individual plots drawn on one or more plot sheets.

Each plot sheet is considered to have only positive co-ordinates with the origin (0,0) in the left hand corner. The units for the plot are millimetres.

The overall size of the plot sheet is given by either a defined sheet size, or by the width and height of the plot given in millimetres and separated by one or more spaces.

\[\text{sheet} \size \]

The sheet size name, width and heights can be specified by the user in a file named sheets.4d which is in the normal set up areas, or is pointed to by the environment variable SHEET_SIZES_4D file

The plotting area is restricted to within the plot sheet by giving margins which are:

If a User Defined Title Block is used:

\[\text{left} \margin \, \text{mm} \]
\[\text{right} \margin \, \text{mm} \]
\[\text{top} \margin \, \text{mm} \]
\[\text{bottom} \margin \, \text{mm} \]

If the default 12d title block is used, then the size of the bottom of title block depends on the text size. The following parameters are used in the default title block case and the bottom_border_gap is added to the calculated height of the bottom of the title block.

\[\text{left} \border_gap \, \text{mm} \]
\[\text{right} \border_gap \, \text{mm} \]
\[\text{top} \border_gap \, \text{mm} \]
\[\text{bottom} \border_gap \, \text{mm} \]

Because the user can easily select from the plotting panel whether a User Defined Title Block or the default 12d title block is used, both sets of margin and gap parameters can exist in the one plot parameter file.
The x-sections are plotted in the order they occur in the x-section model and start being plotted at the bottom left hand corner of the cross section plotting area.

The individual x-section plots are then drawn going up the column, and when the column is full, start from the bottom of the next column.

When a sheet is full, a follow on sheet is created.

Each individual x-section sub-plot is positioned with the surrounding gaps:

- `left_sub_plot_gap` mm
- `right_sub_plot_gap` mm
- `top_sub_plot_gap` mm
- `bottom_sub_plot_gap` mm
Definition of Plotting Areas for User Defined Title Blocks

(top_margin, 0)

(left_sub_plot_gap, top_sub_plot_gap)

(right_sub_plot_gap, top_sub_plot_gap)

(right_margin, 0)

(bottom_sub_plot_gap, 0)

((left_margin, bottom_margin), (right_margin, bottom_margin))

(bottom_sub_plot_gap, bottom_sub_plot_gap)

(cross_section plot area)

(bottom_sub_plot_gap, bottom_sub_plot_gap)

(sheet height)

(sheet width)

left_margin

right_margin

bottom_margin

left_sub_plot_gap

right_sub_plot_gap

top_sub_plot_gap

bottom_sub_plot_gap
If required, all the sub-plots in a column can be automatically positioned up so that the zero offsets (the centrelines) of each x-section line up.

```
line_up_cl yes/no  // yes - line up zero offsets
```

The width of the plot can be a fixed distance left or right of the centre line (zero offset) or for the full section plus an extra left and right distance:

```
absolute_extensions yes  // The section goes from the left_extension offset on the left to the right_extension offset on the right.
no  // The section goes for the entire section length plus the left and right extension distances.
```

```
left_extension world-units  // left extension value
right_extension world-units  // right extension value
```

The x-section can be drawn and labelled with either

(a) centreline case - the x-section is plotted and an upright, and the offset and height value at the zero offset (normally the centre line position)

(b) boxes case - the x-section is plotted and the heights of the x-section and the tins at all the x-section points are labelled in boxes under the plot of the x-section.
The x-section sub-plot itself consists of the three regions - graph, datum and boxes.

The **graph area** is the area where the actual plots of the strings are drawn. This exists for both the centreline and boxes case.

The **datum area** is the region between graph area and the datum line. This exists for both the centreline and boxes cases.

The **boxes area** is where the offset values and the heights for the strings drawn on the x-section plot are labelled. This only exists for the boxes case.

For both cases, the x-section sub-plot can be labelled with other information such as:

(a) grades across the x-section

(b) points across the x-section

(c) cuts the x-section makes through strings

(d) cut and fill areas

All the required parameters will be described in the following sections.

Please continue to the next section [44.2.2 Boxes and Datum Area](#).
44.2.2 Boxes and Datum Area

The x-section can be labelled with either

(a) an upright, and the offset and height value at the zero offset (normally the centre line position)

(b) the heights of the x-section and the tins at all the x-section points.

The choice is given by the parameter `label_type`:

- `label_type "centre line"` // type (a)
- `boxes` // type (b)

A datum line exists for both cases.

For the boxes case, a box area for the offset and heights is created below the datum line. The available parameters for tailoring the box area will be given after describing the datum line parameters.

For the centre line case, the centre line and offset and height of the centre line are shown.

In both cases, the actual cross section plot is drawn above the datum line in the graph area.

Please continue to the next section **44.2.3 Centre Line Case** for the centre line parameters.

Please continue to the section **44.2.4 Boxes Case** for the boxes parameters.
44.2.3 Centre Line Case

Datum Line

Each x-section sub-plot can be labelled with the datum value for the plot of the x-section string. This DATUM INFO label is made up of the text strings:

"datum_name" followed by the *datum-value*

and is above the datum line.

For the centreline case, the graph area is positioned the distance $\text{datum_above_gap_cl}$ above the datum line.

The $\text{datum_above_gap_cl}$ can be zero or positive.

The roundoff for the datum value is specified by the user (default 1.0) and the datum is automatically calculated for each sub-plot, and labelled.

The datum value can be placed on the left, centre or right side of the datum line.

- datum_roundoff
 - 1.0 // value to roundoff the datum value to
 - e.g. 0.5, 0.2, 1.0 (default 1.0)

- datum_decimals
 - integer // number of decimal places to display
 - the datum value (default 1).
 - If >0, trailing zeros are removed after the decimal point.
 - If <0, the absolute value is taken as the number of decimal places to report
 - i.e. no trailing zeros are removed

- datum_side_cl
 - 0 // datum text in middle of datum line
 - 1 // **""** left of datum line (default)
 - 2 // **""** right of datum line

- datum_linestyle
 - linestyle // datum line linestyle (default solid)

- datum_name
 - text // text to write before the datum value

- datum_textstyle
 - text // textstyle for datum information

- datum_text_size
 - mm // size of datum text and value

- datum_colour
 - colour // colour of the datum text

- datum_line_colour
 - colour // colour of the datum line
datum_text_justification_cl just // justification for datum text
// NOTE - this is not normally required since
// by default the text justification is set to
// match datum_side_cl

datum_x_cl mm // distance to move the datum text
// along the datum line

datum_y_cl mm // distance to raise the datum text
// above the datum line (used to be
// called datum_offset)

The datum_x_cl and datum_y_cl can be positive, zero or negative.

Labelling the Centreline Chainage

Each x-section sub-plot can be labelled with the centreline chainage of the x-section string.

This CHAINAGE INFO label is made up of the text strings:

"chainage_title" followed by the chainage-value

and is drawn under the datum line.

The chainage value can be placed on the left, centre of right side of the datum line.

chainage_side_cl 0 // text in middle of datum line (default)
1 // " " " left of datum line
2 // " " " right of datum line

The parameters controlling the labelling are:

chainage_label 0/1 // 1 = label sub-plot with centreline
// chainage, 0 don’t label.
chainage_title text // text before the chainage value
chainage_decimals integer // number of decimals in the chainage
// value. If <0, the absolute value
// is taken as the number of decimal
// places i.e. no trailing zeros are
// removed for the values in the
// chainage values.
chainage_colour colour // colour of the text
chainage_size \hspace{1cm} mm \hspace{1cm} // size of the text
chainage_textstyle \hspace{1cm} colour \hspace{1cm} // textstyle for the chainage label
chainage_text_justification_cl \hspace{1cm} just \hspace{1cm} // justification of the chainage text
chainage_x_offset \hspace{1cm} mm \hspace{1cm} // x position of text
chainage_y_offset \hspace{1cm} mm \hspace{1cm} // y position of text

The \texttt{chainage_x_offset} is measured from the beginning of the datum line.

The \texttt{chainage_y_offset} is measured from the bottom of the datum line with positive being \textbf{down}.

\textbf{Centre Line Linestyle}

The upright at the centre line position can have its own linestyle.

\texttt{cl_linestyle \hspace{1cm} linestyle \hspace{1cm} //linestyle for centreline}
Labelling the Design Height, X and Y Co-ordinates and Tin Heights at Offset Zero

The values of the height and X and Y co-ordinates of the primary string (usually the design cross section) at the zero offset can be labelled. Note that zero offset is normally where the alignment string cuts the cross section.

The heights of any tins (such as the natural surface) at the zero offset can also be labelled.

The labels are made up of:

\[
\text{pre_text} \ \text{value} \ \text{post_text}
\]

where value is either a height or a co-ordinate.

The label is positioned at either the left, right or middle of the datum line, with an x and y adjustment and a rotation.

Parameters for labelling the X Co-ordinate at Zero Offset:

- **primary_x0_draw_mode**: 0 // don’t draw the label -default
 1 // draw the label

- **primary_x0_position**: 0 // label in middle of datum line (default)
 1 // " " " " left of datum line
 2 // " " " " right of datum line

- **primary_x0_pre_text**: text // pre-text for label - def "

- **primary_x0_post_text**: text // post-text for label - def "

- **primary_x0_decimals**: integer // number of decimal places to display - def 1
 // If > 0, trailing zeros are removed after
 // the decimal point
 // If < 0, the absolute value is taken as the
 // number of decimal places to report
 // i.e. no trailing zeros are removed

- **primary_x0_x**: mm // x adjustment to position of label - def 0

- **primary_x0_y**: mm // y adjustment to position of label - def 0

- **primary_x0_angle**: degrees // angle of the label - def 0

- **primary_x0_colour**: colour // colour of the label

- **primary_x0_size**: mm // size (in mm) of the label

- **primary_x0_textstyle**: textstyle // textstyle of the label

- **primary_x0_justify**: just // justification for text

Parameters for Labelling the Y Co-ordinate at Zero Offset:

- **primary_y0_draw_mode**: 0 // don’t draw the label -default
 1 // draw the label

- **primary_y0_position**: 0 // label in middle of datum line (default)
 1 // " " " " left of datum line
Chapter 44 Text Plot Parameters

Cross Section Plot Parameter File Page 7351

Parameters for Labelling the Height of Primary String at Zero Offset:

primary_height_draw_mode 0 // don’t draw the label -default
1 // draw the label
primary_height_position 0 // label in middle of datum line (default)
1 // " " " left of datum line
2 // " " " right of datum line
primary_height_pre_text text // pre-text for label - def " "
primary_height_post_text text // post-text for label - def " "
primary_height_decimals integer // number of decimal places to display - def 1
// If > 0, trailing zeros are removed after
// the decimal point
// If < 0, the absolute value is taken as the
// number of decimal places to report
// i.e. no trailing zeros are removed
primary_height_x mm // x adjustment to position of label - def 0
primary_height_y mm // y adjustment to position of label - def 0
primary_height_angle degrees // angle of the label - def 0
primary_height_colour colour // colour of the label
primary_height_size mm // size (in mm) of the label
primary_height_textstyle textstyle // textstyle of the label
primary_height_justify just // justification for text

Parameters for Placing Some Text:

extra_text_draw_mode 0 // don’t draw the label -default
1 // draw the label
extra_text_position 0 // label in middle of datum line (default)
1 // " " " left of datum line
2 // " " " right of datum line
extra_text text // text for label - def " "
extra_text_x mm // x adjustment to position of label - def 0
extra_text_y mm // y adjustment to position of label - def 0
extra_text_angle degrees // angle of the label - def 0
extra_text_colour colour // colour of the label
extra_text_size mm // size (in mm) of the label
extra_text_textstyle textstyle // textstyle of the label
extra_text_justify just // justification for text

Parameters for Labelling the Height of a Tin at Zero Offset:

A section along the primary string through each tin on the section view is automatically drawn on
the cross section plot but the user can specify whether the tin height at the zero offset is labelled or not.

Hence although there may be a number of tins drawn on the section plot, not all of them need to have their height at zero offset labelled.

The default order for labelling the tins is the order that they were added to the view but it is possible to specify which tin is used for labelling by giving the tin name rather than just using the tin on the section view.

In fact, it is possible to use any tin in the project to label the height at zero offset, not just those drawn on the section view.

If a tin of the name given by *tin_n_name* does not exist, then the plot is not produced and an error message is given.

The parameters for labelling the height of the tin at zero offset are:

```
tin_n_name text // n=1, ... no of tins on the section view.
// use the tin called text to label the nth row of tin heights.
```

The parameters for labelling the height of the tin at zero offset are:

- **tin_n_name**
 - text
 - // n=1, ... no of tins on the section view.
 - // use the tin called text to label the nth row of tin heights.
 - // if a tin of the name given by *tin_n_name* does not exist, then the plot is not produced and an error message is given.

The parameters for labelling the height of the tin at zero offset are:

- **tin_n_height_draw_mode**
 - 0 // don’t draw the label -default
 - 1 // draw the label

- **tin_n_height_position**
 - 0 // label in middle of datum line (default)
 - 1 // " " " left of datum line
 - 2 // " " " right of datum line

- **tin_n_height_pre_text**
 - text // pre-text for label - def " "

- **tin_n_height_post_text**
 - text // post-text for label - def " "

- **tin_n_height_decimals**
 - integer // number of decimal places to display - def 1
 - // If > 0, trailing zeros are removed after the decimal point
 - // If < 0, the absolute value is taken as the number of decimal places to report
 - // i.e. no trailing zeros are removed

- **tin_n_height_x**
 - mm // x adjustment to position of label - def 0

- **tin_n_height_y**
 - mm // y adjustment to position of label - def 0

- **tin_n_height_angle**
 - degrees // angle of the label - def 0

- **tin_n_height_colour**
 - colour // colour of the label

- **tin_n_height_size**
 - mm // size (in mm) of the label

- **tin_n_height_textstyle**
 - textstyle // textstyle of the label
Labelling the Centre Line Offset and Height

In the centre line case, the value of the height of the primary string (usually the design cross section) at the zero offset can be labelled. This is normally where the alignment string cuts the cross section.

The label is made up of the texts:

```
primary_title  offset_title  offset_value  height_text  height_value
```

NOTE: These parameters have now been superseded. The parameters for labelling the height of the primary string at zero offset covers this case. To use the zero offset parameters instead, the primary_height_pre_text would include all text required for the Primary_title, offset_title, offset_value and height_text (offset_value is always 0.0).

The parameter primary_mode_cl controls whether the primary_title is included in the label.

```
primary_mode_cl  0  // don’t include primary_title, primary_value
                 1  // incl. primary_title, primary_value default
```

The parameter height_mode_cl controls whether the height_title and height_value are included in the label.

```
height_mode_cl  0  // don’t include height_title, height_value
                1  // include height_title, height_value default
```

The parameter offset_mode_cl controls whether the offset_title and offset_value are included in the label.

```
offset_mode_cl  0  // don’t include offset_title, offset_value
                1  // include offset_title, offset_value default
```

The label can be placed on the left, centre, of right side of the datum line.

```
offset_height_side_cl  0  // text in middle of datum line (default)
                      1  // " " " left of datum line
                      2  // " " " right of datum line
```

The size, colour, text justification and text style for the label is given by:

```
primary_title  text  //primary title
offset_title   text  // offset label (default "Offset")
height_text    text  // height text label (default "Height")
primary_textstyle  textstyle  // textstyle used for offset and height label
primary_colour  colour // colour for offset and height label
primary_size    mm //size of the offset and height label
offset_height_text_justification_cl  justif // text justification
                                      // NOTE - this is not normally required since
                                      // by default the text justification is set to
                                      // match offset_height_side_cl
```

The number of decimals in the offset-value and height-value is controlled by:

```
number_of_decimals  integer  // number of decimal places in the offset,
                      // height boxes. If <0, the absolute value
                      // is taken as the number of decimal
                      // places i.e. no trailing zeros are
                      // removed for the values in the offset,
                      // heights area.
```

The label is placed an distance offset_x_cl along the datum line and a distance offset_y_cl
below the datum line of the plot.

- **offset_x_cl** \(mm \) // distance to move the text along the datum line
- **offset_y_cl** \(mm \) // distance to shift the text below the datum line

The **offset_y_cl** is measured from the datum line with positive being **down**.

Please continue to the next section **44.2.4 Boxes Case** for the boxes parameters.

Please continue to the section **44.2.6 Graph Area** if you are not using boxes parameters.
44.2.4 Boxes Case

Datum Line

For the boxes case, the datum line is positioned the distance datum_below_gap above the top of the boxes area and the graph area is then positioned the distance datum_above_gap above the datum line.

Hence the graph area is distance (datum_below_gap + datum_above_gap) above the top of the boxes area.

datum_above_gap mm // dist from datum line to bottom of the
 // graph area
datum_below_gap mm // dist from datum line to top of the
 // boxes
datum_linestyle linestyle //linestyle for the datum line

The datum_below_gap and datum_above_gap can be zero or positive.

The roundoff for the datum value is specified by the user (default 1.0) and the datum is automatically calculated for each sub-plot, and labelled.

datum_roundoff 1.0 // value to roundoff the datum value to
 // e.g. 0.5, 0.2, 1.0 (default 1.0)
datum_decimals integer // number of decimal places to display
 // the datum value (default 1).
 // If > 0, trailing zeros are removed after
 // the decimal point.
 // If <0, the absolute value is taken as the
 // number of decimal places to report
 // i.e. no trailing zeros are removed

datum_name text // text to write before the datum value
datum_textstyle text // textstyle for datum information
datum_text_size mm // size of datum text and value
datum_colour colour // colour of the datum text
datum_line_colour colour // colour of the datum line
datum_x mm // distance to move the datum text
 // along the datum line
 // called datum_offset

datum_y mm // distance to raise the datum text
 // above the datum line (used to be
 // called datum_offset)

The datum_x and datum_y can be positive, zero or negative.

Labelling the Centreline Chainage

Each x-section sub-plot can be labelled with the centreline chainage of the x-section string.

This CHAINAGE INFO label is made up of the text strings:

"chainage_title" followed by the chainage-value

and is drawn under the boxes area.

The parameters controlling the labelling are:

chainage_label 0/1 // 1 = label sub-plot with centreline
 // chainage, 0 don’t label.
chainage_title text // text before the chainage value
chainage_decimals integer // number of decimals in the chainage
 // value. If <0, the absolute value
 // is taken as the number of decimal
 // places i.e. no trailing zeros are
 // removed for the values in the
The chainage_x_offset is measured from the beginning of the height boxes.

If chainage_x_offset is omitted, the text is centred on heights area.

The chainage_y_offset is measured from the bottom of the box area with positive being down.
44.2.5 Defining Boxes

When boxes is selected for label_type, the primary string (usually the design cross section) and each tin in the x-section sub-plot can be labelled with one or two lines of title, and the height at the offset position for each point in the primary string.

The title for the strings, is drawn in the title area of the boxes area.

The offsets/heights are drawn in the heights area of the boxes area.

Consequently the boxes area is made up of rows of text consisting of:

- string/tin titles followed by the offset/height values across the string/tin.

Each row is surrounded by lines to form a box.

The default order of the boxes from the bottom up is

(a) offset title and values
(b) tin title and heights - natural surface etc. (optional)
(c) primary string title and heights - design x-section (optional)

The title area starts at the relative position (left_sub_plot_gap,bottom_sub_plot_gap).

The size of the title text is given by the title_box_text_size parameter.

The width of the title area is either given by the space_for_titles parameter, or if omitted, the required width is automatically calculated.

- title_box_text_size mm // size of the titles in the boxes
- space_for_titles mm // calculated if omitted

There can be two lines of title text and the title text, textstyle and colour can be set independently for the primary string and each tin.

The x position of the title text is the same for all the lines of title text and can be set to be a fixed distance from the left hand side of the boxes.

- box_titles_x mm // distance to move the title text from the left hand side of the boxes

The heights area starts at the end of the title area.

The height text is written at right angles to the bottom of the boxes. It can be either top or bottom justified with respect to the box (box_text_justification).

The number of decimal places and the size of the heights text can also be specified.

The height of each individual box area is either given by the horizontal_line_spacing parameter, or if omitted, the required height is automatically calculated.

- number_of_decimals integer // number of decimal places in the height boxes. If <0, the absolute value
The total height of the boxes area is simply given by number of boxes drawn multiplied by the height of one box (they all have the same height).

The width of the heights area is determined by the number of chainages to be labelled and whether the values are staggered to prevent over writing.

Hence the total width of the boxes area is the width of the labels area plus the width of the heights area.

Many distance definitions in the plot parameter file are given in terms of distance above the top of the boxes area.

The text in the title area is the same for each cross section plot on the sheet so it is possible to restrict the title area to be only on the first cross section on the sheet or the first column of cross sections.

The drawing of the box line work is user defined. This has been extended from V3.1 although draw_box_mode has been left in for upward compatibility.
For V3.2, the line work for the outside of the title and heights boxes is controlled by the parameters `draw_box_side_n` and `box_side_colour_n`, and the separation lines inside the boxes are controlled by the parameters `box_line_draw_mode` and `box_line_mode_n` where the box numbering, n, starts from the bottom box.

Note: The following parameters are only used if `draw_box_mode` is set to 3.

```
draw_box_side_1 1 // draw the left side of the title area (def)
0 // don’t draw the left side
box_side_colour_1 colour // colour to draw left side of title area
// default box_colour
draw_box_side_2 1 // draw top of the title area (default)
0 // don’t draw the top
box_side_colour_2 colour // colour to draw top of title area
// default box_colour
draw_box_side_4 1 // draw bottom of the title area (default)
0 // don’t draw the bottom
box_side_colour_4 colour // colour to draw bottom of title area
// default box_colour
draw_box_side_5 1 // draw left side of the heights area (def)
0 // don’t draw the left side
box_side_colour_5 colour // colour to draw left side of heights area
// default box_colour
draw_box_side_6 1 // draw top of the heights area (default)
0 // don’t draw the top
box_side_colour_6 colour // colour to draw top of heights area
// default box_colour
draw_box_side_7 1 // draw right side of the heights area def
0 // don’t draw the right side
box_side_colour_7 colour // colour for right side of heights area
// default box_colour
draw_box_side_8 1 // draw bottom of the heights area (def)
0 // don’t draw the bottom
box_side_colour_8 colour // colour for bottom of heights area
// default box_colour
```

The lines at the top of the individual boxes inside the title area and heights area (separation lines) are controlled by the parameters `box_line_draw_mode` and `box_line_mode_n`.

The separation lines can be drawn just in the title area, just in the heights area or in both areas.

The parameter `box_line_draw_mode` can be set to control all the separation lines but there are
additional parameters, `box_line_mode_n`, which override `box_line_draw_mode` for each of the individual boxes where \(n = 1, \ldots, \) number of boxes -1.

The top of the top box is not controlled by `box_line_mode_n` but is controlled by the parameters `draw_box_side_2` and `draw_box_side_6`.

```
box_line_draw_mode 0 // don’t draw any separation lines inside
                    // the title and heights areas
1 // draw the separation lines inside the
    // title and heights areas (default)
2 // draw the separation lines inside the
    // title area only
3 // draw the separation lines inside the
    // heights area only

box_line_mode_n 0 // for the nth box, don’t draw any
                  // line at the top of the box for either
                  // the title or the heights areas
1 // for the nth box, draw the line at the
    // top of the box for both the
    // title and heights areas
2 // for the nth box, draw the line at the
    // top of the box for the title area only
3 // for the nth box, draw the line at the
    // top of the box for the heights area only
```

```
<table>
<thead>
<tr>
<th>title area</th>
<th>heights area</th>
</tr>
</thead>
<tbody>
<tr>
<td>draw this line for <code>box_line_mode_2 = 1</code> or <code>3</code></td>
<td></td>
</tr>
<tr>
<td>draw this line for <code>box_line_mode_1 = 1</code> or <code>3</code></td>
<td></td>
</tr>
</tbody>
</table>

values for `box_line_mode_n`
```

Finally, the right hand end of the boxes can stop at the end of the design x-section or extend to the end of the `right_extension` distance.

```
box_extension_mode 0 // default - stop right end of boxes at the
                     // end of design x-section
1 // extend right end of boxes to the end of
    // the right_extension distance.
```
if box_extension_mode = 1 then the boxes extend to the end of the right extension
Offset Titles and Values

If the label_type is set to boxes, the offsets of the points across the primary string (usually the design cross section) are always labelled.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>offset_title</td>
<td>text</td>
<td>// first line of offset title (def offsets)</td>
</tr>
<tr>
<td>offset_title_2</td>
<td>text</td>
<td>// second line of offset title</td>
</tr>
<tr>
<td>offset_title_textstyle</td>
<td>textstyle</td>
<td>// textstyle for offset title</td>
</tr>
<tr>
<td>offset_title_colour</td>
<td>colour</td>
<td>// offset title text colour</td>
</tr>
<tr>
<td>offset_title_size</td>
<td>mm</td>
<td>// offset title text size</td>
</tr>
<tr>
<td>offset_colour</td>
<td>colour</td>
<td>// colour of offset values</td>
</tr>
<tr>
<td>offset_textstyle</td>
<td>textstyle</td>
<td>// textstyle for offset values</td>
</tr>
<tr>
<td>offset_size</td>
<td>mm</td>
<td>// size for offset values</td>
</tr>
</tbody>
</table>

Example of Offset Titles Parameters

```plaintext
// offset titles and values
offset_title            "Offset"
offset_title_2          "metres"
offset_title_colour     grey
```

Primary String Titles and Heights

Sometimes the primary string (the design cross section) is only required to define the offset positions to label and the section line for the tin sections. In this case, the primary string would not be drawn on the cross section plot.

The drawing or not drawing of the primary string on each cross section plot is controlled by the parameter primary_string.

If the primary string is drawn, by default a row of labelling is included in the boxes area with up to two lines of title information and heights for each point across the cross section.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>primary_string</td>
<td>yes</td>
<td>// draw and label the primary string</td>
</tr>
<tr>
<td>primary_string</td>
<td>no</td>
<td>// don't draw or label the primary string</td>
</tr>
<tr>
<td>primary_title</td>
<td>text</td>
<td>// first line of string title</td>
</tr>
<tr>
<td>primary_title_2</td>
<td>text</td>
<td>// second line of string title</td>
</tr>
<tr>
<td>primary_title_textstyle</td>
<td>textstyle</td>
<td>// textstyle for primary string titles</td>
</tr>
<tr>
<td>primary_title_colour</td>
<td>colour</td>
<td>// colour of the string titles</td>
</tr>
<tr>
<td>primary_title_size</td>
<td>mm</td>
<td>// primary title text size</td>
</tr>
<tr>
<td>primary_textstyle</td>
<td>textstyle</td>
<td>// textstyle for primary string heights</td>
</tr>
<tr>
<td>primary_title_y_pos</td>
<td>mm</td>
<td>// if set, the height in mm above the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// bottom of all the boxes that the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// primary title text is drawn.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// If not set, then the text is placed at a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// height that puts it inside the default</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// box for the primary title.</td>
</tr>
<tr>
<td>primary_colour</td>
<td>colour</td>
<td>// colour of the primary string heights</td>
</tr>
<tr>
<td>primary_size</td>
<td>mm</td>
<td>// primary text size</td>
</tr>
<tr>
<td>primary_y_pos</td>
<td>mm</td>
<td>// if set, the height in mm above the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// bottom of all the boxes that the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// primary height text is drawn.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// If not set, then the text is placed at a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// height that puts it inside the default</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// box for the primary height text.</td>
</tr>
<tr>
<td>primary_decimals</td>
<td>integer</td>
<td>// number of dec places in primary height</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// < 0 to keep all trailing zeros</td>
</tr>
</tbody>
</table>

Example of Labelling Primary String Titles
primary_title "Design"
// primary_title_2 "primary2" // not being used - commented out
primary_colour "purple"
primary_title_colour "red"
Tin Titles, Heights and Depths

A section along the primary string through each tin on the section view is automatically drawn on the cross section plot, but the user can specify whether the tin heights and depths are labelled or not in the boxes area.

Hence although there may be a number of tins drawn on the section plot, not all of them need to be labelled or have their depths labelled.

The default order for labelling the tins and depths is the order that they were added to the view but it is possible to specify which tin is used for labelling each row of tin heights and depths by giving the tin name rather than just using the tin order on the section view.

In fact, it is possible to use any tin in the project to label a row, not just those drawn on the section view.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tin_n_name</td>
<td>text</td>
<td>// n=1, ... no of tins on the section view. Use the tin called text to label the nth row of tin heights.</td>
</tr>
<tr>
<td>tin_n_draw_mode</td>
<td>1</td>
<td>// draw the nth tin (default)</td>
</tr>
<tr>
<td>tin_n_draw_colour</td>
<td>colour</td>
<td>// colour to draw the nth tin</td>
</tr>
<tr>
<td>tin_n_label</td>
<td>1</td>
<td>// label the nth tin (default)</td>
</tr>
<tr>
<td>tin_n_title</td>
<td>text</td>
<td>// first line of nth tin title</td>
</tr>
<tr>
<td>tin_n_title_2</td>
<td>text</td>
<td>// second line of nth tin title</td>
</tr>
<tr>
<td>tin_n_textstyle</td>
<td>textstyle</td>
<td>// textstyle for nth tin titles</td>
</tr>
<tr>
<td>tin_n_colour</td>
<td>colour</td>
<td>// colour for nth tin title</td>
</tr>
<tr>
<td>tin_n_size</td>
<td>mm</td>
<td>// size for nth tin titles</td>
</tr>
<tr>
<td>tin_n_decimals</td>
<td>integer</td>
<td>// number of dec places in tin height</td>
</tr>
<tr>
<td>tin_n_textstyle</td>
<td>textstyle</td>
<td>// textstyle of the tin heights</td>
</tr>
<tr>
<td>tin_n_colour</td>
<td>colour</td>
<td>// colour for heights and depths</td>
</tr>
<tr>
<td>tin_n_size</td>
<td>mm</td>
<td>// default nth tin’s title size</td>
</tr>
<tr>
<td>tin_n_pos</td>
<td>mm</td>
<td>// if set, the height in mm above the bottom of all the boxes that the tin title text is drawn. If not set, then the text is placed at a height that puts it inside the default box for the tin heights.</td>
</tr>
<tr>
<td>tin_n_depth_label</td>
<td>1/0</td>
<td>// 1 to label, 0 don't label depths</td>
</tr>
<tr>
<td>tin_n_depth_title</td>
<td>text</td>
<td>// first line of tin depth title</td>
</tr>
<tr>
<td>tin_n_depth_title_2</td>
<td>text</td>
<td>// second line of tin depth title</td>
</tr>
<tr>
<td>tin_n_depth_textstyle</td>
<td>textstyle</td>
<td>// textstyle of the tin depth titles</td>
</tr>
</tbody>
</table>

If a tin of the name given by tin_n_name does not exist, then the plot is not produced and an error message is given.

For the following parameters, n takes the value 1 to 100 and specifies that the parameter set applies to the nth tin on the section view or if tin_n_name is set, by the tin specified by tin_n_name.
Cross Section Plot Parameter File

Chapter 44 Text Plot Parameters

- **tin_n_depth_title_colour**
 - colour
 - // colour for titles of depths
- **tin_n_depth_title_size**
 - mm
 - // size for title of depths
- **tin_n_depth_title_y_pos**
 - mm
 - // if set, the height in mm above the
 - // bottom of all the boxes that the
 - // tin depth title text is drawn.
 - // If not set, then the text is placed at a
 - // height that puts it inside the default
 - // box for the tin heights.
- **tin_n_depth_decimals**
 - integer
 - // number of dec places in tin height
 - // < 0 to keep all trailing zeros
- **tin_n_depth_textstyle**
 - textstyle
 - // textstyle of the tin depths
- **tin_n_depth_colour**
 - colour
 - // colour for depths
- **tin_n_depth_size**
 - mm
 - // size for depths
- **tin_n_depth_y_pos**
 - mm
 - // if set, the height in mm above the
 - // bottom of all the boxes that the
 - // tin depth text is drawn.
 - // If not set, then the text is placed at a
 - // height that puts it inside the default
 - // box for the tin heights.

Definition of Depth to a Tin or to Offset Strings

The depth from the primary string to a tin, at a particular offset is defined as

\[
\text{depth} = \text{tin height value} - \text{height of the primary string}
\]

That is, the depth that the primary string is below the tin.

Before plotting, the value of depth is multiplied by either the `depth_positive_factor` or `depth_negative_factor`.

- if (depth >= 0) \(\text{plotted_depth_value} = \text{depth} * \text{depth_positive_factor} \)
- if (depth < 0) \(\text{plotted_depth_value} = \text{depth} * \text{depth_negative_factor} \)

Hence the definition of depth can be modified by the parameters:

- `depth_positive_factor` value // multiplier for positive depths
- `depth_negative_factor` value // multiplier for negative depths

For example, if the opposite sign is required for depth, that is,

\[
\text{depth} = \text{height of the primary string} - \text{tin height value}
\]

simply set

- `depth_positive_factor` -1
- `depth_negative_factor` 1

Example of Labelling Tins

// tin label 1 for on
// 0 for off

- `tin_1_label` 1
- `tin_1_title` “Natural”
- `tin_1_colour` grey
- `tin_1_title_colour` red
Labelling the Design Height, X and Y Co-ordinates and Tin Heights at Offset Zero

The values of the height and X and Y co-ordinates of the primary string (usually the design cross section) at the zero offset can be labelled. Note that zero offset is normally where the alignment string cuts the cross section.

The heights of any tins (such as the natural surface) at the zero offset can also be labelled.

The labels are made up of:

\[\text{pre_text} \quad \text{value} \quad \text{post_text} \]

where value is either a height or a co-ordinate.

The label is positioned at either the left, right or middle of the datum line, with an x and y adjustment and a rotation.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>primary_x0_draw_mode</td>
<td>0</td>
<td>/ don’t draw the label -default</td>
</tr>
<tr>
<td>primary_x0_draw_mode</td>
<td>1</td>
<td>/ draw the label</td>
</tr>
<tr>
<td>primary_x0_pre_text</td>
<td>text</td>
<td>// pre-text for label - def " "</td>
</tr>
<tr>
<td>primary_x0_post_text</td>
<td>text</td>
<td>// post-text for label - def " "</td>
</tr>
<tr>
<td>primary_x0_decimals</td>
<td>integer</td>
<td>// number of decimal places to display - def 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// If > 0, trailing zeros are removed after the decimal point</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// the decimal point</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// If < 0, the absolute value is taken as the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// number of decimal places to report</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// i.e. no trailing zeros are removed</td>
</tr>
<tr>
<td>primary_x0_x</td>
<td>mm</td>
<td>// x adjustment to position of label - def 0</td>
</tr>
<tr>
<td>primary_x0_y</td>
<td>mm</td>
<td>// y adjustment to position of label - def 0</td>
</tr>
<tr>
<td>primary_x0_angle</td>
<td>degrees</td>
<td>// angle of the label - def 0</td>
</tr>
<tr>
<td>primary_x0_colour</td>
<td>colour</td>
<td>// colour of the label</td>
</tr>
<tr>
<td>primary_x0_size</td>
<td>mm</td>
<td>// size (in mm) of the label</td>
</tr>
<tr>
<td>primary_x0_textstyle</td>
<td>textstyle</td>
<td>// textstyle of the label</td>
</tr>
<tr>
<td>primary_x0_justify</td>
<td>just</td>
<td>// justification for text</td>
</tr>
</tbody>
</table>

Parameters for Labelling the Y Co-ordinate at Zero Offset:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>primary_y0_draw_mode</td>
<td>0</td>
<td>/ don’t draw the label -default</td>
</tr>
<tr>
<td>primary_y0_draw_mode</td>
<td>1</td>
<td>/ draw the label</td>
</tr>
</tbody>
</table>

Diagram:

- label_x
- label_y
- label_angle
- graph area
- datum_above_gap
- datum_below_gap
- boxes - offset and height area
- DATUM INFO
primary_y0_pre_text text // pre-text for label - def " "
primary_y0_post_text text // post-text for label - def " "
primary_y0_decimals integer // number of decimal places to display - def 1
 // If > 0, trailing zeros are removed after
 // the decimal point
 // If < 0, the absolute value is taken as the
 // number of decimal places to report
 // i.e. no trailing zeros are removed

primary_y0_x mm // x adjustment to position of label - def 0
primary_y0_y mm // y adjustment to position of label - def 0
primary_y0_angle degrees // angle of the label - def 0
primary_y0_colour colour // colour of the label
primary_y0_size mm // size (in mm) of the label
primary_y0_textstyle textstyle // textstyle of the label
primary_y0_justify just // justification for text

Parameters for Labelling the Height of Primary String at Zero Offset:

primary_height_draw_mode 0 // don’t draw the label -default
 1 // draw the label
primary_height_pre_text text // pre-text for label - def " "
primary_height_post_text text // post-text for label - def " "
primary_height_decimals integer // number of decimal places to display - def 1
 // If > 0, trailing zeros are removed after
 // the decimal point
 // If < 0, the absolute value is taken as the
 // number of decimal places to report
 // i.e. no trailing zeros are removed

primary_height_x mm // x adjustment to position of label - def 0
primary_height_y mm // y adjustment to position of label - def 0
primary_height_angle degrees // angle of the label - def 0
primary_height_colour colour // colour of the label
primary_height_size mm // size (in mm) of the label
primary_height_textstyle textstyle // textstyle of the label
primary_height_justify just // justification for text

Parameters for Placing Some Text:

extra_text_draw_mode 0 // don’t draw the label -default
 1 // draw the label
extra_text_pre_text text // pre-text for label - def " "
extra_text_post_text text // post-text for label - def " "
extra_text_decimals integer // number of decimal places to display - def 1
 // If > 0, trailing zeros are removed after
 // the decimal point
 // If < 0, the absolute value is taken as the
 // number of decimal places to report
 // i.e. no trailing zeros are removed

extra_text_x mm // x adjustment to position of label - def 0
extra_text_y mm // y adjustment to position of label - def 0
extra_text_angle degrees // angle of the label - def 0
extra_text_colour colour // colour of the label
extra_text_size mm // size (in mm) of the label
extra_text_textstyle textstyle // textstyle of the label
extra_text_justify just // justification for text
Offset Selection for Uprights and Staggering of Heights

For each sub-plot, the offsets of the points across the x-section string (primary string) are used for positioning uprights (leader lines), and the offset and height labels for the uprights.

By default, there is an upright at each point across the primary string.

However, if the primary string is a 4d string, then the text at the points on the 4d string can be used as a key to suppress the labelling and upright at that point.

The parameters to stop labelling and uprights are:

\[\text{mask_name_n} \quad \text{4d_string_point_text} \quad \text{where} \quad n=1,100 \]

Note - the text \(4d_string_point_text \) can include wild cards (*) and characters (?).

After any name masks have been applied, it is often desirable to weed out offset values that are too close together before doing any labelling.

\[\text{offset_label_tolerance} \quad \text{value} \quad // \text{weed out offset values closer together} \]
\[\quad \text{// (in offset units) than this value} \]

If the real offset position is used for the horizontal position of the offset/height text, text overwriting can easily occur. To prevent overwriting, the text is automatically staggered.

When staggering occurs, the real offset position is then indicated by the offset markers which are drawn at the top of the text boxes from the staggered text position back to the actual offset position of the text.

The size and position of the staggers are given by:

\[\text{stagger_gap_top} \quad \text{mm} \quad // \text{distance from boxes to top of stagger} \]
\[\quad \text{// distance from boxes to bottom of stagger} \]
\[\quad \text{// stagger} \]
\[\text{stagger_gap_bottom} \quad \text{mm} \quad // \text{distance between staggers is} \]
\[\quad \text{// box_text_size \times \text{stagger_gap_factor}} \]

When staggering occurs, it is possible for the heights area to be wider than the graph area.
Uprights

Uprights (leader lines) can be drawn from the top of the staggers to strings drawn on the plot.

The height of the uprights is given by the `uprights_draw_mode`:

- `uprights_draw_mode`: 0 // none
- 1 // to maximum string height at that chainage
- 2 // ticks, to stagger height
- 3 // to `uprights_y` above the boxes
- 100 // to the primary string
- 101-500 // to tin1 or tin2 etc.

- `uprights_y`: `mm` // distance to draw the uprights for mode 3
- `uprights_colour`: `colour` // uprights colour (def boxes colour)

The uprights can go below the top of the boxes.

- `uprights_bottom_mode`: 0 // stop at top of boxes (default)
- 1 // draw to bottom of boxes
- 2 // draw to `uprights_bottom_y` below the top of the boxes
- 3 // draw to `uprights_bottom_y` above the bottom of the boxes
- 4 // ticks at chainage

- `uprights_bottom_y`: `mm` // distance
- `uprights_text_offset_factor`: `value` // move the text by this factor*size

When uprights go below the top of the boxes, the height and offset text is moved to the left so that the upright does not go through the text. The left hand side of the heights boxes also moves to the left to leave room for the height text.
Please continue to the next section 44.2.6 Graph Area.
44.2.6 Graph Area

The graph area for each section sub-plot is the area where the actual plot of the x-section string is drawn.

The width of the graph area is determined by the width of the x-section string being plotted, the left and right extensions and horizontal scale (scale) given by parameters or in the section x plot panel, and the vertical exaggeration given by the section view or a parameter.

- `view_name` text // default is section view in panel.
- `vertical_exaggeration` value // default is vertical exag for view
- `scale` value // 1:value - horizontal scale, default is
 - `scale 1:` in panel.
- `left_extension` world-units // left extension value
- `right_extension` world-units // right extension value

The vertical scale is determined by the horizontal scale and the vertical exaggeration.

The height of the graph area is determined by the vertical scale (given by the horizontal scale and the vertical exaggeration) and the minimum and maximum values of the data being plotted. Hence the graph height is a calculated rather than a given value.

The size of the graph area can also be extended to allow for symbols by the parameters:

- `extra_space_units` 0 // extra space values are world units - default
- `extra_space_left` units // " " " are millimetres on plot page
- `extra_space_right` units // add to right of plot area, default 0
- `extra_space_top` units // add to top of plot area, default 0
- `extra_space_bottom` units // default 0

The types of strings that are drawn in the graph area of a cross section plot are:

(a) primary string the x-section string from the x-section model that is being drawn. Called the primary string and is usually the design x-section.

(b) tins sections of the primary string through any tins either in models on the section view or in corridor models.

(c) services parts of strings (from either models on the section view or in corridor models) that cut the defined corridor.

The colour of the strings in the plot is the actual string colour for cases (a) and (c), and the colour of the tin used for the section in case (b).

Although all the strings are plotted, the plot parameter file can be used to select which ones are...
labelled with heights.

Primary String (Design Cross Section)

The primary string (the design cross section) is used to define
(a) the design cross section
(b) the chainage of the section
(c) the offset positions for labelling heights and drawing uprights
(d) the section line used for sectioning through tins
(e) the section line for defining the corridor for services

Although the primary string is used to set up most of the information for the cross section plot, it doesn't have to be drawn on the cross section.

The drawing or not drawing of the primary string on each cross section plot is controlled by the parameter `primary_string` which was described earlier.

The **colour** of the primary string in the plot is the actual primary string colour.

Tins

A section along the primary string through each tin on the specified section view is automatically drawn on the cross section plot.

The **colour** and **linestyle** of the tin section in the plot is the actual tin colour and tin linestyle.

Whether the tin heights are labelled or not in the boxes area is controlled by parameters and has been described earlier

Corridor and Services

A corridor around the primary string is defined by giving a left and right corridor width and a left and right extension.

Any string in a model added to the section view is checked to see if it appears in the corridor, and if it does, then it is drawn on the cross section plot.

Strings do not have to cross the primary string, but just be in the corridor.

The corridor defining parameters are
left_extension world-units // left extension value
right_extension world-units // right extension value
corridor_width_left world-units // corridor left and right widths
corridor_width_right world-units // defaults are the section view values
corridor_overlap_left world-units // corridor left and right overlaps.
corridor_overlap_right world-units // defaults are the section view values
corridor_chord_arc world-units // chord-arc tolerance used to
 // approximate arcs in the corridor.
 // default is the section view value

The models containing tins for sectioning and strings for services are taken from the section view
or given by the parameters
corridor_model_n model // n = 1, 2 ... 100
 // models containing tins and service
 // strings to be drawn on the view.

If any corridor_model_n parameters are defined, then only the models given by the parameters
are used. If no corridor_model_n parameters are set, then the models added to the given section
view are used.

That is, either the corridor_model_n parameters are used or if none exist, then the models added
to the section view are used for tins and service strings.

The colour and diameter of the service strings drawn in the plot are the actual strings colour
and diameter.

Please continue to the next section 44.2.7 Grade Labelling.
44.2.7 Grade Labelling

The plot of the x-section string is made up of straight lines joining the individual points of the x-section.

The grades of these lines can be labelled:

- `grade_label 0` // don’t label grades (default)
- `grade_label 1` // label grades

Either the individual lines can be used as the segments to be labelled for grade, or adjacent lines of the same grade can be considered to be just one segment and labelled only once.

Hence the segments to be labelled for grade can be the individual lines of the x-section, or the segments defined by changes of grade.

- `grade_change_only 0` // label individual lines
- `grade_change_only 1` // label change of grade segments

It is also possible to ignore segments smaller than a given minimum width on the plot.

- `grade_minimum_width mm` // segments smaller are not labelled

The grade labels are drawn parallel to the segment, centred about the segments end points, and a distance `grade_offset` above the segment. The size, colour and number of decimal places can all be set.

- `grade_decimals integer` // number of decimal places in grade
- `grade_size mm` // size of the grade label
- `grade_textstyle text` // textstyle of the grade label
- `grade_colour colour` // colour of the grade label
- `grade_offset mm` // distance above the segment for label
- `grade_signed yes` // default - grades are signed
- `grade_signed no` // absolute value of grades

The grade can be labelled as percent cross-fall, 1 in slope, m/m or VicRoads x:1.

Also a threshold value can be set and any grades whose absolute value are below the threshold can be labelled in one way, and those above the threshold labelled a different way.

Hence, if the absolute value of the grade is less than or equal to the absolute value of `grade_threshold`, then `grade_mode` is used, otherwise `grade_upper_mode` is used.

- `grade_mode 0` // % grade
- `grade_mode 1` // 1 in
- `grade_mode 2` // m/m
- `grade_mode 3` // VicRoads x:1

- `grade_threshold value` // grade threshold for type of grade labelling

- `grade_threshold_mode 0-3` // type of grade value given in grade_threshold types are the same as `grade_mode`

- `grade_upper_mode 0` // % grade
- `grade_upper_mode 1` // 1 in
- `grade_upper_mode 2` // m/m
- `grade_upper_mode 3` // VicRoads x:1

- `grade_upper_decimals integer` // number dec places in grades above threshold value
Example of Grade Labelling

```plaintext
grade_label                            1 // turn grade labels on
grade_mode                             0 // percent grade
grade_decimals                         1 // one decimal place, no trailing zeros
grade_change_only                     1 // only label when change of grade

// text size for grade annotations
grade_size                                 2
grade_colour                            yellow

// how far the annotation is (perpendicularly)
// from the string itself
grade_offset                               1

// label all annotations separated by more than
// the minimum width in plot units
grade_minimum_width                0

// threshold and threshold mode describe the value
// at which the grade labelling changes
// mode to grade_upper_mode
grade_threshold                          7 // change labelling when over 7%
grade_threshold_mode                0 // units for threshold - %
grade_upper_mode                      1 // label as 1:x
```

Please continue to the next section 44.2.8 Labelling Points of the X-Sections.
44.2.8 Labelling Points of the X-Sections

The points across each x-section can be automatically labelled on the x-section plots.

The **height**, **offset** and **name** of the point can be labelled as well as a **symbol** drawn. The height of tins at the same offset value can also be labelled.

The offset position for the labelling is the offset of the point.

The height position for the labelling can be specified as the

(a) top of the boxes for the x-section
(b) above the maximum height of the strings on the plot
(c) height of the point on the x-section string (primary string)
(d) height of a tin.

The actual position of the label is defined relative to the above point.

Note:

Only case (b) involves the actual height of the point on the cross section string. For all other cases, only the offset of the cut string is used.

Other heights, for example, the height of the tin at that offset can be used as the height (case (d)).

Text justification refers to the actual position and is given by

```
"top-left"  "top-centre"  "top-right"
"middle-left"  "middle-centre"  "middle-right"
"bottom-left"  "bottom-centre"  "bottom-right"
```

A choice of six special symbols and/or any of the 12d symbols can be drawn at the cut point.

The special 12d Model symbols of size one millimetre are drawn in a square box centred on (0,0) with sides of length two millimetres. That is, the box co-ordinates are (-1,-1), (1,1), (1,-1), (-1,-1).

The six special shapes are

```
+  |  |  [  △  ○
```

Up to twenty five (25) separate sets of points can be labelled.
Parameters for Labelling Points of X-Sections

The points of the x-section to be labelled for the nth set of parameters is restricted to all the points whose name satisfying the `points_n_mask`:

```
points_n_mask     point_names         // points to be labelled
```

where `point_names` is a text string containing the name masks, each separated by one or more spaces, to test the point name against. Each mask can include wild cards and wild characters.

For example

```
points_1_mask     "ke**
```

or

```
points_1_mask     "?bank**
```

or, if both masks are required,

```
points_1_mask     "ke*  ?bank**
```

The parameters for drawing a symbol are

```
points_symbol_n_mode  0 // cross
1 // up from centre of box
2 // up and down from centre of box
3 // square
4 // triangle, base at bottom
5 // circle
6 // use a 12d symbol
```

If `points_symbol_n_mode` is 6, then the plot symbol is given by

```
points_symbol_n_style  plotsymbol // name of the 12d symbol to draw at point
```

Important Note

The plot symbol of name `plotsymbol` is defined in the file given by:

(a) the parameter `plot_symbols` in the ppf file

```
plot_symbols     filename
```

or if `plot_symbols is not defined`, then

(b) in the file pointed to by the environment variable `PLOT_SYMBOLS_4D`

```
PLOT_SYMBOLS_4D     filename       // default plotsym.4d
```

or if `PLOT_SYMBOLS_4D is not defined`, then

(c) in the file `plotsym.4d`

which is searched for in the standard set up file sequence

If none of the above files are defined, or if the symbol does not exist in the above files, then it will be searched for in the standard 12d symbols file which is:

(d) either pointed to by the environment variable `SYMBOLS_4D`

```
SYMBOLS_4D     filename       // default symbols.4d
```

or if the environment variable `SYMBOLS_4D` does not exist, in the file, `symbols.4d`
The position of the symbol is given by:

points_symbol_n_position
1 // above point height value
3 // above top of boxes
4 // above top of graph area but not including
 // the extra_space_top
100 // to primary string (same as 1)
101-500 // to tin1 or tin2 etc.

The symbol can be adjusted by the parameters:

points_symbol_n_x mm // offset adjustment to position
points_symbol_n_y mm // height adjustment to position
points_symbol_n_angle degrees // rotation about point
points_symbol_n_colour colour // colour of symbol

and for all values of points_symbol_n_mode other than 6:

points_symbol_n_size mm // size of symbol, 0 don't draw

The value of the offset of the point can be labelled using the parameters:

points_offset_n_position
1 // above point height value
3 // above top of boxes
4 // above top of graph area but not including
 // the extra_space_top
100 // to primary string
101-500 // to tin1 or tin2 etc.

points_offset_n_x mm // offset adjustment to position
points_offset_n_y mm // height adjustment to position
points_offset_n_angle degrees // rotation about point
points_offset_n_size mm // size of text, 0 don't label
points_offset_n_colour colour // colour of text
points_offset_n_textstyle textstyle // textstyle to use for points offset text.
points_offset_n_pre_text text // text before the offset value
points_offset_n_post_text text // text after the offset value
points_offset_n_justification justification // justification of the text
points_offset_n_no_decimals integer // number of decimals in offset

The value of a height at the offset of the point can be calculated and labelled using the parameters:

points_height_n_mode
1 // use height of point itself
3 // use real world height of position
 // above boxes
100 // height of primary string (same as 1)
101-500 // use height of to tin1 or tin2 etc.

points_height_n_position
1 // at points position
3 // above top of boxes
4 // above top of graph area but not including
 // the extra_space_top
100 // to primary string (same as 1)
101-500 // to tin1 or tin2 etc.

points_height_n_x mm // offset adjustment to position
points_height_n_y mm // height adjustment to position
points_height_n_angle degrees // rotation about point
points_height_n_size mm // size of text, 0 don't label
points_height_n_colour colour // colour of text
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>points_height_n_textstyle</td>
<td>textstyle</td>
<td>// textstyle to use for points height text.</td>
</tr>
<tr>
<td>points_height_n_pre_text</td>
<td>text</td>
<td>// text before the height value</td>
</tr>
<tr>
<td>points_height_n_post_text</td>
<td>text</td>
<td>// text after the height value</td>
</tr>
<tr>
<td>points_height_n_justification</td>
<td>justification</td>
<td>// justification of the text</td>
</tr>
<tr>
<td>points_height_n_no_decimals</td>
<td>integer</td>
<td>// number of decimals in height</td>
</tr>
</tbody>
</table>

A label which can include the name of the point is drawn by using the parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>points_label_n_position</td>
<td>1</td>
<td>// at the points position</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>// above top of boxes</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>// above top of graph area but not including the extra_space_top</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>// to primary string (same as 1)</td>
</tr>
<tr>
<td></td>
<td>101-500</td>
<td>// to tin1 or tin2 etc.</td>
</tr>
<tr>
<td>points_label_n_mode</td>
<td>0</td>
<td>// don’t include point name</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>// include point name in label</td>
</tr>
<tr>
<td>points_label_n_x</td>
<td>mm</td>
<td>// offset adjustment to position</td>
</tr>
<tr>
<td>points_label_n_y</td>
<td>mm</td>
<td>// height adjustment to position</td>
</tr>
<tr>
<td>points_label_n_angle</td>
<td>degrees</td>
<td>// rotation about point</td>
</tr>
<tr>
<td>points_label_n_size</td>
<td>mm</td>
<td>// size of text, 0 don’t label</td>
</tr>
<tr>
<td>points_label_n_colour</td>
<td>colour</td>
<td>// colour of text</td>
</tr>
<tr>
<td>points_label_n_textstyle</td>
<td>textstyle</td>
<td>// textstyle to use for points label text.</td>
</tr>
<tr>
<td>points_label_n_pre_text</td>
<td>text</td>
<td>// text before the point name</td>
</tr>
<tr>
<td>points_label_n_post_text</td>
<td>text</td>
<td>// text after the point name</td>
</tr>
<tr>
<td>points_label_n_justification</td>
<td>justification</td>
<td>// justification of the text</td>
</tr>
</tbody>
</table>

Please continue to the next section 44.2.9 Labelling Cuts of X-Sections Through Strings in a Model.
44.2.9 Labelling Cuts of X-Sections Through Strings in a Model

The cuts that each x-section string makes though any strings in user given models can be automatically labelled on the x-section plots.

The height, offset and name of the cut string can be labelled as well as a symbol drawn. The height of tins at the same offset value can also be labelled.

The offset position for the labelling is the offset of the cut string.

The height position for the labelling can be specified as the
(a) top of the boxes on the x-section
(b) above the maximum height of the strings on the plot
(c) height value of the cut string
(d) height of the x-section string (the primary string)
(e) height of a tin.

The actual position of the label is defined relative to the above point.

Note:
Only case (b) involves the actual height of the cut string. For all other cases, only the offset of the cut string is used. Hence for all cases except (b), the string does need to have a sensible height to be used for cuts through strings.

For example, a boundary string may have null heights but only the offset is required and the height of the tin at that offset can be used as the height (case (d)).

Text justification refers to the actual position and is given by
“top-left” “top-centre” “top-right”
“middle-left” “middle-centre” “middle-right”
“bottom-left” “bottom-centre” “bottom-right”

A choice of six special symbols and/or or any 12d symbols can be drawn at the cut point.

The special 12d Model symbols of size one millimetre are drawn in a square box centred on (0,0) with sides of length two millimetres. That is, the box co-ordinates are (-1,-1), (1,1), (1,-1), (-1,-1).

The six special shapes are

Up to twenty five (25) separate models of strings can be cut and labelled.
Parameters for Labelling Cuts of X-Sections Through Strings in a Model

The method for specifying which strings are to be checked for cuts is by first specifying the model which contains the strings, and then a name mask which is used to restrict the strings in the model to only those whose name matches the name mask.

Up to twenty five different sets of models and name masks can be used so that different cut sets can be labelled in different ways.

The parameters for selecting and labelling the nth set (where n can be from 1 to 25) of cuts of the x-sections with the strings in the model are given by:

- `cuts_n_model`
 model_name
 // model of strings to be cut

The selection of the strings from the model `model_name` whose cut points are to be labelled is all the strings whose name satisfies the name mask `cuts_n_mask`:

- `cuts_n_mask`
 name_mask
 // strings to check for cuts
 // and if a cut occurs,
 // parameters show how to
 // label the cut

where `name_mask` is a text string containing the name masks, each separated by one or more spaces, to test the string name against. Each mask can include wild cards and wild characters.

For example

- `cuts_1_mask "ke*"`
- `cuts_1_mask "?bank*"`
- or, if both masks are required,
 - `cuts_1_mask "ke* ?bank*"`

If `cuts_n_mask` is missing, then all strings in the model are used. This is equivalent to `name_mask` being "*".

All strings in the model `cuts_n_model` whose name satisfy the name mask `cuts_n_mask` are then checked for cuts with the x-sections, and if a cut occurs, the cut point will be labelled according to the rest of the parameters in the nth set.

The parameters for drawing a symbol at the cut points are:

- `cuts_symbol_n_mode`
 0
 1
 2
 3
 4
 5
 6
 // cross
 // up from centre of box
 // up and down from centre of box
 // square
 // triangle, base at bottom
 // circle
 // use a 12d symbol

If `cuts_symbol_n_mode` is 6, then the plot symbol is given by

- `cuts_symbol_n_style`
 plotsymbol
 // 12d symbol to draw at cut

Important Note

The plot symbol of name `plotsymbol` is defined in the file given by:

(a) the parameter `plot_symbols` in the ppf file

- `plot_symbols filename`
or if plot_symbols is not defined, then

(b) in the file pointed to by the environment variable PLOT_SYMBOLS_4D
 PLOT_SYMBOLS_4D filename // default plotsym.4d

or if PLOT_SYMBOLS_4D is not defined, then

(c) in the file plotsym.4d
 which is searched for in the standard set up file sequence

If none of the above files are defined, or if the symbol does not exist in the above files, then it
will be searched for in the standard 12d symbols file which is:

(d) either pointed to by the environment variable SYMBOLS_4D
 SYMBOLS_4D filename // default symbols.4d
 or if the environment variable SYMBOLS_4D does not exist, in the file, symbols.4d

The position of the symbol is given by:

- cuts_symbol_n_position
 - 1 // above point height value
 - 3 // above top of boxes
 - 4 // above top of graph area but not including
 // the extra_space_top
 - 100 // to primary string
 - 101-500 // to tin1 or tin2 etc.

The symbol can be adjusted by the parameters:

- cuts_symbol_n_x mm // offset adjustment to position
- cuts_symbol_n_y mm // height adjustment to position
- cuts_symbol_n_angle degrees // rotation about point
- cuts_symbol_n_colour colour // colour of symbol

and for all values of cuts_symbol_n_mode other than 6:

- cuts_symbol_n_size mm // size of symbol, 0 don't draw

The value of the offset of the cut string can be labelled using the parameters:

- cuts_offset_n_position
 - 1 // above cut strings height value
 - 3 // above top of boxes
 - 4 // above top of graph area but not including
 // the extra_space_top
 - 100 // to primary string
 - 101-500 // to tin1 or tin2 etc.

- cuts_offset_n_x mm // offset adjustment to position
- cuts_offset_n_y mm // height adjustment to position
- cuts_offset_n_angle degrees // rotation about point
- cuts_offset_n_size mm // size of text, 0 don't label
- cuts_offset_n_colour colour // colour of text
- cuts_offset_n_textstyle textstyle // textstyle to use for cuts offset text.
- cuts_offset_n_pre_text text // text before the offset value
- cuts_offset_n_post_text text // text after the offset value
- cuts_offset_n_justification justification // justification of the text
- cuts_offset_n_no_decimals integer // number of decimals in offset

The value of a height at the offset of the point can be calculated and labelled using the parameters:

- cuts_height_n_mode
 - 1 // use height of cut point itself
 - 3 // use real world height of position
A label which can include the name of the cut string is drawn by using the parameters:

- **cuts_label_n_position**: The position of the label relative to the cut point.
 - 1: Above the cut strings height value.
 - 3: Above top of boxes.
 - 4: Above top of graph area but not including the extra_space_top.
 - 100: To primary string.
 - 101-500: To tin1 or tin2 etc.

- **cuts_label_n_mode**: The mode for including the cut string name.
 - 0: Don't include cut string name.
 - 1: Include cut string name in label.

- **cuts_label_n_x**, **cuts_label_n_y**, **cuts_label_n_angle**, **cuts_label_n_size**, **cuts_label_n_colour**, **cuts_label_n_textstyle**, **cuts_label_n_pre_text**, **cuts_label_n_post_text**, **cuts_label_n_justification**: Parameters for adjusting the position, angle, size, colour, style, and justification of the label text.

The cut point can be labelled with:
- **offset** of the cut point
- **height** of the cut point
- **height** of the x-section or tins at this offset
- **name** of the string for the cut point

User defined symbols can also be drawn at the cut point.
Please continue to the next section 44.2.10 Hatching Cut and Fill Areas.
44.2.10 Hatching Cut and Fill Areas

This option is used to hatch cut and/or fill areas between sets of tins.

For each set, the name of the two tins, the hatch linestyle, colour and separation and whether cut and/or fill regions are required are all user definable.

Up to twenty (20) separate sets of tins be hatched.

The parameters for labelling cuts and/or fill regions between tins are given by:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hatch_original_tin_n</td>
<td>tin_name for original surface</td>
</tr>
<tr>
<td>hatch_new_tin_n</td>
<td>tin_name for final surface</td>
</tr>
<tr>
<td>hatch_cut_separation_n</td>
<td>mm</td>
</tr>
<tr>
<td>hatch_cut_angle_n</td>
<td>degrees</td>
</tr>
<tr>
<td>hatch_cut_colour_n</td>
<td>colour</td>
</tr>
<tr>
<td>hatch_cut_linestyle_n</td>
<td>linestyle</td>
</tr>
<tr>
<td>hatch_cut_draw_sides_n</td>
<td>1/0</td>
</tr>
<tr>
<td>hatch_cut_draw_original_n</td>
<td>1/0</td>
</tr>
<tr>
<td>hatch_cut_draw_new_n</td>
<td>1/0</td>
</tr>
<tr>
<td>hatch_fill_separation_n</td>
<td>mm</td>
</tr>
<tr>
<td>hatch_fill_angle_n</td>
<td>degrees</td>
</tr>
<tr>
<td>hatch_fill_colour_n</td>
<td>colour</td>
</tr>
<tr>
<td>hatch_fill_linestyle_n</td>
<td>linestyle</td>
</tr>
<tr>
<td>hatch_fill_draw_sides_n</td>
<td>1/0</td>
</tr>
<tr>
<td>hatch_fill_draw_original_n</td>
<td>1/0</td>
</tr>
<tr>
<td>hatch_fill_draw_new_n</td>
<td>1/0</td>
</tr>
</tbody>
</table>

Notes

(a) cut is when the new tin is below the original tin.
 fill is when the new tin is above the original tin.

(b) cut hatching is turned off by setting `hatch_cut_separation_n` to 0.0.
 fill hatching is turned off by setting `hatch_fill_separation_n` to 0.0.
44.2.11 Extra Models of X-Sections

The order and centreline chainages of the x-section subplots for the x-section plot are defined by the sections from the primary model of cross sections.

The sections through any specified triangulations and service models, and offsets for labelling are fully defined by these primary x-sections.

However it is also possible to plot extra x-sections on each of the sub-plots by supplying extra models of x-sections which are at the same plan positions as the primary x-section strings.

Only those x-sections from the extra models that are within a user specified tolerance of a primary x-section are plotted.

The extra models of x-sections and the plan tolerance for checking that the extra cross-sections are the same position as the primary x-sections are

```plaintext
extra_model_tolerance_1 value // tolerance in 12d Model units
extra_model_n model_name // where n=1, ... 100
                  // extra models of x-sections
```

The actual colour of the extra x-sections is used as their plotting colour.

Please continue to the next section 44.2.12 Sorting X-Sections by Chainage.
44.2.12 Sorting X-Sections by Chainage

The chainage on the design string that the x-section is created at is stored with the cross-section. When the x-sections are created by the apply functions, they are created in the order of increasing chainage and added to the model for sections in that order. Hence if the cross sections are plotted, the natural order would be in increasing chainage order. However, it is possible to upset the order in the model by manually adding in extra sections. Hence there is a parameter in both the section x plot panel and the plot parameter file to ensure that the cross sections are sorted in increasing chainage order before they are plotted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sort_sections</td>
<td>1</td>
<td>sort sections by design chainage</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>use order of sections in model</td>
</tr>
</tbody>
</table>

Please continue to the next section 44.2.13 Title Block Information.
44.2.13 Title Block Information

The plot can have a standard 12d Model title block or a user defined title block.

The standard title block consists of a simple border around the plot and two lines of text in a box underneath the plot. For a user defined title block, all the line work and text is defined by the user.

Standard Title Block

For the standard 12d Model title block, there are extra parameters for two lines of text and text size and colour. The standard title block is turned on or off by the parameter plot_border.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>plot_border</td>
<td>yes/no // yes plots a standard title block</td>
</tr>
<tr>
<td></td>
<td>// default yes</td>
</tr>
<tr>
<td>title_1</td>
<td>text</td>
</tr>
<tr>
<td>title_2</td>
<td>text</td>
</tr>
<tr>
<td>title_text_size</td>
<td>value</td>
</tr>
<tr>
<td>title_colour</td>
<td>colour</td>
</tr>
</tbody>
</table>

User Title Block

For the user defined title block, the title block drawing commands are kept in a file whose name is supplied by the user. The title block drawing commands are almost identical to the linestyle drawing commands and is given at the beginning of this chapter.

Hence for a user defined title block, there are just two parameters - one to say a title block file is being used and the other to give the name of the title block file. The plot_border parameter should also be set to no so that the standard title block is not also drawn.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>use_title_file</td>
<td>yes/no // yes draws the title block given in title_file</td>
</tr>
<tr>
<td></td>
<td>// default no</td>
</tr>
<tr>
<td>title_file</td>
<td>filename</td>
</tr>
<tr>
<td>plot_border</td>
<td>no // turn off standard title block</td>
</tr>
</tbody>
</table>

Some special plot parameters are used to pass information down to variables in a user defined title block. For example, inside the title block file it is possible to have runtime user defined text variables. The actual text values for these text variables are passed down to the title block file from the plot parameter file via the parameters user_text_n (n = 1,2,... 1000)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>user_text_n</td>
<td>text</td>
</tr>
</tbody>
</table>

The special plot parameters are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time_format</td>
<td>text // format for $time</td>
</tr>
<tr>
<td>user_text_n</td>
<td>text // where n = 1,2,... 1000</td>
</tr>
<tr>
<td></td>
<td>// passed down to $user_text_n</td>
</tr>
<tr>
<td>title_1</td>
<td>text // passed down to $title_1</td>
</tr>
<tr>
<td>title_2</td>
<td>text // passed down to $title_2</td>
</tr>
<tr>
<td>start_page_number</td>
<td>integer // used as the starting value for</td>
</tr>
<tr>
<td></td>
<td>// $page_number. If missing,</td>
</tr>
<tr>
<td></td>
<td>// $page_number starts at 1.</td>
</tr>
<tr>
<td>start.Drawing_number</td>
<td>integer // added to $drawing_number in title</td>
</tr>
<tr>
<td></td>
<td>// block file. If missing,</td>
</tr>
<tr>
<td></td>
<td>// $drawing_number starts at 1.</td>
</tr>
<tr>
<td>drawing_number_prefix</td>
<td>text // passed down to</td>
</tr>
<tr>
<td></td>
<td>// $drawing_number_prefix</td>
</tr>
<tr>
<td>drawing_number_postfix</td>
<td>text // passed down to</td>
</tr>
<tr>
<td></td>
<td>// $drawing_number_postfix</td>
</tr>
</tbody>
</table>

Please continue to the next section 44.2.14 Parameters that Modify Fields In the Cross Plot Panel.
44.2.14 Parameters that Modify Fields In the Cross Plot Panel

A number of parameters match those in the section x plot panel.

When the plot parameter file is first read, any parameters in the panel will be replaced by the values of any corresponding parameters in the parameter file.

However, if the parameter is subsequently modified in the panel, the panel value will be the value used for any plots.

The plot parameters that also occur in the section x plot panel are:

- view_name: text
- plotter_type: text
- model_to_plot: text
- plot_stem: text
- start_chainage: chainage
- end_chainage: chainage
- sheet_size: text or “width height”
- scale: value
- absolute_extensions: yes/no
- left_extension: world-units
- right_extension: world-units
- line_up_cl: yes/no
- primary_string: yes/no
- label_type: yes/no
- box_colour: colour
- text_size: mm
- sort_sections: yes/no
- use_title_file: yes/no
- title_file: filename
- plot_border: yes/no
- title_1: text
- title_2: text
- title_text_size: value
- title_colour: colour
- global_textstyle: textstyle

Please continue to the next section 44.2.15 Generating Cross Section Plots Without a View.
44.2.15 Generating Cross Section Plots Without a View

The cross section plot parameters are comprehensive enough that it is possible to completely generate a cross section plot without referencing a section view, or even using the section X plot panel.

Such a ppf can be run using the plots=>plot a ppf option or from the 4D Solutions programming language, 4DL.

When generating a cross section plot using the section X plot panel, a plot parameter file containing all the parameters needed to regenerate the plot using plots=>plot a ppf can be written out by simply giving a name for the ppf file in the plot parameters write field of the section X plot panel.

Notes

1. A warning is given if the keyword in a plot parameter file does not exist.
2. A warning is also given if the key word pair is defined more than once in a ppf.

Please continue to the next section 44.2.16 Example of a Cross Section Plot Parameter File.
44.2.16 Example of a Cross Section Plot Parameter File
// ppf file to generate x-section example

section_x_plot "plot 2" {

 // plot margins
 left_margin 0.0
 right_margin 0.0
 top_margin 0.0
 bottom_margin 0.0

 // white space surrounding each cross section
 left_sub_plot_gap 20.0
 right_sub_plot_gap 20.0
 top_sub_plot_gap 20.0
 bottom_sub_plot_gap 20.0

 // these are only used with title boxes
 left_border_gap 10.0
 right_border_gap 10.0
 top_border_gap 10.0
 bottom_border_gap 10.0

 // annotation for boxes area
 height_text "Height"

 // mode for drawing boxes around
 draw_box_mode 1
 box_line_draw_mode 3
 box_colour grey

 // size of title text in title box
 title_box_text_size 5

 // title text box size - automatically calculated if missing
 space_for_titles 30
 horizontal_line_spacing 15

 // number of decimal places for height and offset values
 number_of_decimals 1

 // offset titles and values
 offset_title "Offset"
 offset_title_2 "Offset 2"
 offset_colour brown // also in panel
 offset_title_colour grey

 // primary string titles and heights
 primary_title "primary"
 primary_title_2 "primary2"
 primary_colour "purple"
 primary_title_colour "red"
// tin titles and heights
// tin label 1 for on
// 0 for off
// tin text is the annotation text for that tin
// tin colour is the annotation colour for that tin
// range from tin_1_X to tin_100_X

tin_1_label 1
 tin_1_title "1st tin"
 tin_1_title_2 "1st tin 2"
 tin_1_colour grey
 tin_1_title_colour red

tin_2_label 1
 tin_2_title "2nd tin"
 tin_2_colour grey
 tin_2_title_colour red

// staggars definitions
stagger_gap_factor 1.3
stagger_gap_top 5.0
stagger_gap_bottom 2.0

// uprights definitions
// mode 0 = none
// 1 = full
// 2 = ticks
// 3 = height above boxes
// 100 = primary
// 101 = 1st tin
// 102 = 2nd tin
//...
// 500 = 400th tin

uprights_colour red
uprights_draw_mode 100
uprights_y 100

// datum area
datum_name "Datum"
datum_colour orange
datum_text_size 4
datum_below_gap 10.0

// gap above datum to graph area for box and centre line plots
datum_above_gap 20
datum_above_gap_cl 20

// grade_label of 0 turns the labels off
// 1 turns it on

grade_label 1

// mode 0 for percent grade,
// 1 for one in x,
// 2 for grade in m/m

grade_mode 0
// grade decimal places
grade_decimals 1

// text size for grade annotations
grade_size 2
grade_colour yellow

// how far the annotation is (perpendicularly)
// from the string itself
grade_offset 1

// label all annotations separated by more than
// the minimum width in plot units
grade_minimum_width 0

// threshold and threshold mode describe the value
// at which the grade labelling changes
// mode to grade_upper_mode
grade_threshold 0.2
grade_threshold_mode 2
grade_upper_mode 1
grade_change_only 1

// labelling of sub-plots
// centreline chainage: 1 for on, 0 for off
chainage_label 1

// distance below box to print annotation
chainage_y_offset 12

// distance from start of string to label - default centred
chainage_x_offset 10

// chainage text label parameters
chainage_text "Chainage"
chainage_size 6
chainage_colour cyan
chainage_decimals 2

// ******** panel data ********

view_name "4"
plotter_type "model"
model_to_plot "single xsec"
plot_stem "pp"

sheet_size "1000 800"
scale 1000.0

absolute_extensions "no"
left_extension 5
right_extension 5

line_up_cl "yes"
primary_string "yes"
label_type "boxes"
offset_colour "cyan"
text_size 3.0
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>use_title_file</td>
<td>"no"</td>
</tr>
<tr>
<td>title_file</td>
<td>"titles.tf"</td>
</tr>
<tr>
<td>plot_border</td>
<td>"no"</td>
</tr>
<tr>
<td>title_1</td>
<td>""</td>
</tr>
<tr>
<td>title_2</td>
<td>""</td>
</tr>
<tr>
<td>title_text_size</td>
<td>4.0</td>
</tr>
<tr>
<td>title_colour</td>
<td>magenta</td>
</tr>
</tbody>
</table>

Please continue to the next section 44.3 Long Section Plot Parameter File.
44.3 Long Section Plot Parameter File

The long section plot parameters are placed in a file with ending .ppf. Each parameter consists of a parameter name followed by one or more spaces and then the parameter value. There is only one parameter per line. Anything on a line after a double forward slash // is considered to be a comment.

The set of all parameters for the long section plot is enclosed within a set of curly brackets { } with the header

\[\text{section} _\text{long} _\text{plot} \quad \text{“plot set name”} \]

before the curly brackets.

That is,

\[\text{section} _\text{long} _\text{plot} \quad \text{“plot set name”} \quad \{ \]

\quad \text{plot parameters} \\
\quad \text{one per line} \\
\}

If there is more than one section_long_plot parameter set in the file, only the first set is used. There may also be parameter sets for other plot types such as section_x_plot in the same file. The other sets will be ignored when doing a long section plot.

The plot parameters are documented in following groups:

- Defining chainage range
- Breaking the plot into pages
- Plot Sheet layout
- Boxes area
- Defining chainages and staggering
- Defining uprights
- Datum area
- Graph (drawing)
- Defining bubbles
- Quick HG
- Extensive HG
- Quick VG
- Extensive VG
- Labelling heights
- Labelling with scale
- Title block information
- Panel modifying parameters
- Labelling string name
- Example

Related sections:

- 44.3.1 Possible Chainage Range
- 44.3.2 Pagination
- 44.3.3 Plot Sheet Layout
- 44.3.4 Boxes Area
- 44.3.5 Chainage Selection and Staggering
- 44.3.6 Uprights
- 44.3.7 Datum Area
- 44.3.8 Graph Area
- 44.3.9 Bubbles Definitions
- 44.3.10 Quick Horizontal Geometry Labelling
- 44.3.11 Extensive Horizontal Geometry Labelling
- 44.3.12 Quick Vertical Geometry Labelling
- 44.3.13 Extensive Vertical Geometry Labelling
- 44.3.14 Labelling Chainages and Heights in the Graph Area
- 44.3.15 Labelling With Symbols
- 44.3.16 Hatching Cut and Fill Areas
- 44.3.17 Labelling Cuts of Design Through Strings in a Model
- 44.3.18 Labelling the Primary String Name on the Plot
- 44.3.19 Labelling the Scale on the Plot
- 44.3.20 Title Block Information
- 44.3.21 Parameters that Modify Fields In the Long Plot Panel
- 44.3.23 Example of a Long Section Plot Parameter File
44.3.1 Possible Chainage Range

In the panel, the field **Use HG VG for min, max** determines whether the horizontal geometry (HG) and the vertical geometry (VG) are both used to determine the minimum and maximum chainages for drawing. This allows the vertical geometry to be plotted when it is outside the horizontal geometry (e.g. kerb returns).

The equivalent parameter in the pfp is

```
use_vg_hg_for_min_max 1 // the chainage range available for plotting
// is from the minimum of the horizontal
// geometry (HG) and the vertical geometry
// (VG) to the maximum of the HG and VG
// This is useful for kerb returns

use_vg_hg_for_min_max 0 // the chainage range available for
// plotting is from the minimum of the
// horizontal geometry (HG) to the
// maximum of the HG.
```
44.3.2 Pagination

If the long section plot is too long to fit on one page, it can be broken into a number of pages (sheets).

The parameter, \textit{pagination_length}, controls the amount of new chainage length on each plot page. Each page of the long section plot can also include a set chainage amount from the end of the previous plot.

Hence apart from the first page and possibly the last page, the plot will have a chainage length given by the sum of the \textit{pagination_length} and \textit{pagination_overlap}.

- \texttt{pagination}\hspace{1em} yes/no \hspace{1em} // if yes, then break the plot into pages
- \texttt{pagination_mode}\hspace{1em} chainage \hspace{1em} // length and overlap in chainage units
- \hspace{1em} millimetre \hspace{1em} // length and overlap in millimetres
- \texttt{pagination_length}\hspace{1em} chainage \hspace{1em} // new chainage range on each page
- \hspace{1em} millimetres \hspace{1em} // overlap between pages

\textbf{Note}

The \textit{pagination_length} and \textit{pagination_overlap} are given in chainage units or millimetres. The user must choose values which will fit on the selected sheet size or the end of each plot will be truncated by the sheet.
44.3.3 Plot Sheet Layout

The plot page or sheet is considered to have only positive co-ordinates with the origin (0,0) in the left hand corner. The units for the plot are millimetres.

The overall size of the plot sheet is given by either a defined sheet size, or by the width and height of the plot given in millimetres and separated by one or more spaces.

```
sheet_size text // sheet name, or
"mm mm" // sheet size: width height
```

The sheet size name and width and heights can be specified by the user in a file named sheets.4d which is in the normal set up areas, or is pointed to by the environment variable

```
SHEET_SIZES_4D file // file of plotter sheets sizes
```

The plotting area is restricted to within the plot sheet by giving margins which are:

If a User Defined Title Block is used:

```
left_margin mm
right_margin mm
top_margin mm
bottom_margin mm
```

If the default 12d title block is used, then the size of the bottom of title block depends on the text size. The following parameters are used in the default title block case and the bottom_border_gap is added to the calculated height of the bottom of the title block.

```
left_border_gap mm
right_border_gap mm
top_border_gap mm
bottom_border_gap mm
```

Because the user can easily select from the plotting panel whether a User Defined Title Block or the default 12d title block is used, both sets of margins and gap parameters can exist in the one plot parameter file.
The long plot itself consists of the three regions - boxes, datum and graph areas.

The **boxes area** is where the titles and the chainage values and the heights/depths for the strings drawn on the long plot are labelled.

The **datum area** is the region between the boxes area and the graph area.

The **graph area** is the area where the actual plots of the strings are drawn.

Apart from information labelled in the boxes area, the long section plot can label other information such as:

(a) horizontal geometry
(b) vertical geometry
(c) chainage, heights at special points
(d) symbols at special points
(e) bubbles at special chainages
(f) cuts the design string makes through strings
(g) cut and fill areas
The size of the graph area can also be extended to allow for plot symbols by the parameters:

- `extra_space_units`: 0 // extra space values are world units - default
- `extra_space_left`: units // " " are millimetres on plot page
- `extra_space_right`: units // subtract from left of plot area, def 0
- `extra_space_top`: units // add to right of plot area, default 0
- `extra_space_bottom`: units // add to top of plot area, default 0
- `extra_space_top`: units // subtract from bottom of plot area, // default 0

Please continue to the next section 44.3.4 Boxes Area.
44.3.4 Boxes Area

Each string in the long section plot can be labelled with one or two lines of title, and the chainages/heights/depths at the user specified chainages for the strings.

The title for the strings, is drawn in the title area of the boxes area. The chainages/heights/depths are drawn in the heights area of the boxes area. Consequently the boxes area is made up of rows of text consisting of:

- string/tin titles followed by the chainage/height/depth values along the string.

Each row is surrounded by lines to form a box.

The default order of the boxes from the bottom up is:

- (a) optional super-elevation diagram
- (b) chainage values
- (c) can be primary string heights - user choice
- (d) tin heights and depths
- (e) offset heights and depths
- (f) optional volumes or earth works
- (g) can be primary string heights - user choice
- (h) zero or more blank boxes

The blank boxes are used to place other information in (such as horizontal or vertical geometry) or for other user supplied information.

Placing the primary string label before the bank boxes or just after the chainage box in controlled by the parameter primary_label_mode.

number_of_blank_boxes integer // integer > 0
primary_label_mode 0 //put primary string labels in last box
// before blank boxes
1 // or first box above the chainages

Although the order of the boxes may appear to be fixed, in practice they can be in any order. This is possible because for each box, there is a parameter to set the height in millimetres from the bottom of all the boxes that the text in the box is drawn at (the _y_pos parameters).

The title area starts at the co-ordinate (left_margin,bottom_margin). The size of the title text is given by the title_box_text_size parameter.
The width of the title area is either given by the space_for_titles parameter, or if omitted, the required width is automatically calculated.

- title_box_text_size \text{mm} // size of the title text for boxes
- space_for_titles \text{mm} // calculated if omitted

There can be two lines of title text and the title text, textstyle and colour can be set independently for each box.

The x position of the title text is the same for all the lines of title text and can be set to be a fixed distance from the left hand side of the boxes.

- box_titles_x \text{mm} // distance to move the title text from the left hand side of the boxes

The y position of the title text can be set separately for each type of title. The parameters are given later under each of the title types (e.g. chainages, primary string, tins, depths etc.).

After the title area there can be a user defined gap, followed by the heights area

- box_gap \text{mm} // blank area between the title area and the heights area default 0

The heights area starts at the end of the title area.

The height text is written at right angles to the bottom of the boxes. It can be either top or bottom justified with respect to the box (box_text_justification).

The number of decimal places (number_of_decimals), and the size of the heights text (box_text_size) can be specified globally but there is a parameter for each box which overrides these defaults for each box of heights.

- box_text_justification 0 // bottom of individual boxes
- box_text_justification 1 // top of individual boxes
- number_of_decimals integer // number of decimal places in the height boxes. If <0, the absolute value is taken as the number of decimal places i.e. no trailing zeros are removed for the values in the heights area.
- box_text_size \text{mm} // size of the height text values

A global height for the individual boxes is either given by the horizontal_line_spacing parameter, or if omitted, a height to fit the largest height or depth value is calculated and used as the default box height.

- horizontal_line_spacing \text{mm} // calculated if omitted

However, the height of each box can be individually set by parameters box_size_n where the boxing numbering, n. starts from the bottom box. The value of horizontal_line_spacing is used for any of the box_size_n parameters not specified.

- box_size_n \text{mm} // height of the nth box, numbered from bottom up.

The total height of the boxes area is simply given by the sum of the heights of each box.
The width of the heights area is determined by the number of chainages to be labelled and whether the values are staggered to prevent overwriting.

Hence the total width of the boxes area is the width of the title area plus box_gap, plus the width of the heights area.

Many distance definitions in the plot parameter file are given in terms of distance above the top of the boxes area so that the distances are independent of the number of boxes and box sizes.

The drawing of the box line work, the box colour, the position of the primary string labels and the number of blank boxes are all set by parameters.

First, all the line work for the box itself is user defined. This has been extended from V3.1 although draw_box_mode has been left in for upward compatibility.

\[
\begin{align*}
\text{draw_box_mode} & \quad 0 & \text{// don't draw box lines} \\
& \quad 1 & \text{// draw box lines around heights area} \\
& \quad 2 & \text{// draw box lines around title and heights areas} \\
& \quad 3 & \text{// use draw_box_side_n, box_line_draw_mode and box_line_mode_n}
\end{align*}
\]

\[
\text{box_colour} \quad \text{colour} \quad \text{// colour of the boxes}
\]

For V3.2, the line work for the outside of the title and heights boxes is controlled by the parameters draw_box_side_n and box_side_colour_n, and the separation lines inside the boxes are controlled by the parameters box_line_draw_mode and box_line_mode_n where the box numbering, n, starts from the bottom box.

Note: The following parameters are only used if draw_box_mode is set to 3.

\[
\begin{align*}
\text{draw_box_side_1} & \quad 1 & \text{// draw the left side of the title area (def)} \\
& \quad 0 & \text{// don't draw the left side} \\
\text{box_side_colour_1} & \quad \text{colour} & \text{// colour to draw left side of title area} \\
& \quad \text{default box_colour}
\end{align*}
\]

\[
\begin{align*}
\text{draw_box_side_2} & \quad 1 & \text{// draw top of the title area (default)} \\
& \quad 0 & \text{// don’t draw the top} \\
\text{box_side_colour_2} & \quad \text{colour} & \text{// colour to draw top of title area} \\
& \quad \text{default box_colour}
\end{align*}
\]

\[
\begin{align*}
\text{draw_box_side_3} & \quad 1 & \text{// draw right side of the title area}
\end{align*}
\]
The lines at the top of the individual boxes inside the title area and heights area (separation lines) are controlled by the parameters `box_line_draw_mode` and `box_line_mode_n`.

The separation lines can be drawn in just the title area, just the heights area or in both areas.

The parameter `box_line_draw_mode` can be set to control all the separation lines but there are additional parameters, `box_line_mode_n`, which override `box_line_draw_mode` for each of the individual boxes where n = 1, ... number of boxes -1.

The top of the top box is not controlled by `box_line_mode_n` but is controlled by the parameters `draw_box_side_2` and `draw_box_side_6`.

```plaintext
// (default if box_gap is non-zero)
0 // don’t draw the right side
// (default if box_gap is zero)

box_side_colour_3 colour // colour to draw right side of title area
// default box_colour
draw_box_side_4 1 // draw bottom of the title area (default)
0 // don’t draw the bottom
box_side_colour_4 colour // colour to draw bottom of title area
// default box_colour
draw_box_side_5 1 // draw left side of the heights area (def)
0 // don’t draw the left side
box_side_colour_5 colour // colour to draw left side of heights area
// default box_colour
draw_box_side_6 1 // draw top of the heights area (default)
0 // don’t draw the top
box_side_colour_6 colour // colour to draw top of heights area
// default box_colour
draw_box_side_7 1 // draw right side of the heights area def
0 // don’t draw the right side
box_side_colour_7 colour // colour for right side of heights area
// default box_colour
draw_box_side_8 1 // draw bottom of the heights area (def)
0 // don’t draw the bottom
box_side_colour_8 colour // colour for bottom of heights area
// default box_colour
```

The lines to draw for `draw_box_side_1` to `draw_box_side_8` are controlled by the parameter `box_line_draw_mode` and `box_line_mode_n`.

The separation lines can be drawn in just the title area, just the heights area or in both areas.

The parameter `box_line_draw_mode` can be set to control all the separation lines but there are additional parameters, `box_line_mode_n`, which override `box_line_draw_mode` for each of the individual boxes where n = 1, ... number of boxes -1.

The top of the top box is not controlled by `box_line_mode_n` but is controlled by the parameters `draw_box_side_2` and `draw_box_side_6`.
Chainage Titles and Values

The chainages are always labelled

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainage_title</td>
<td>First line of chainage title</td>
</tr>
<tr>
<td>chainage_title_2</td>
<td>Second line of chainage title</td>
</tr>
<tr>
<td>chainage_title_textstyle</td>
<td>Text style of the chainage title</td>
</tr>
<tr>
<td>chainage_title_colour</td>
<td>Default chainage title colour</td>
</tr>
<tr>
<td>chainage_title_size</td>
<td>Default chainage title size</td>
</tr>
<tr>
<td>chainage_title_y_pos</td>
<td>Height in mm above the bottom of all the boxes that the chainage title text is drawn.</td>
</tr>
<tr>
<td>chainage_decimals</td>
<td>Number of decimal places for chainages</td>
</tr>
<tr>
<td>chainage_textstyle</td>
<td>Text style of the chainage values</td>
</tr>
<tr>
<td>chainage_colour</td>
<td>Colour of chainages, def is box_colour</td>
</tr>
<tr>
<td>chainage_size</td>
<td>Size of chainages, def is box_text_size</td>
</tr>
<tr>
<td>chainage_y_pos</td>
<td>Height in mm above the bottom of all the boxes that the chainage values text is drawn.</td>
</tr>
</tbody>
</table>

Example of Chainage Titles

- chainage_title: “DESIGN”
- chainage_title_2: “CHAINAGE”
chainage_title_colour "yellow"
chainage_colour "grey" // colour of chainage text
chainage_decimals -3 // 3 decimal places - leave trailing zeros
Primary String Title and Heights

Sometimes the primary string is only required to define chainages or the horizontal path for tin sections. In this case, the primary string would not be drawn on the long section plot.

If the primary string is drawn, it is automatically labelled.

Also the drawing of crosses at the vertical intersection points can be controlled from the ppf file.

```plaintext
primary_draw_vips 1 // draw crosses at VIPS (default)
0 // don’t draw VIP crosses

The position of the primary string label box can be either straight after the chainage box, or after the tin and offset boxes but before the blank boxes.

```plaintext
primary_string yes // draw and label the primary string
no // don’t draw or label the primary string
primary_label_mode 0 // last box before blank boxes
1 // first box above the chainages

primary_title text // first line of string title
primary_title_2 text // second line of string title, default is the primary string name.
primary_title_textstyle textstyle // textstyle of the primary string titles
primary_title_colour colour // colour of the string titles
primary_title_size mm // default primary title size
primary_title_y_pos mm // if set, the height in mm above the bottom of all the boxes that the primary string title text is drawn.
// If not set, then the text is placed at a height that puts it inside the default box for the primary string.

primary_decimals integer // number of decimal places
primary_textstyle textstyle // textstyle of the primary string heights
primary_colour colour // colour of the heights
primary_size mm // if set, the height in mm above the bottom of all the boxes that the primary string height text is drawn.
// If not set, then the text is placed at a height that puts it inside the default box for the primary string.
primary_y_pos mm // if set, the height in mm above the bottom of all the boxes that the primary_string_height text is drawn.

primary_ch_tolerance mm // for a given chainage, if no z value exists,
// this distance is added to/subtracted from the chainage to search for a valid z value.
```

Example of Primary String Titles

```plaintext
primary_title "DESIGN"
primary_title_2 "CENTRELINE"
primary_title_colour "yellow"
primary_colour "grey" // colour of height text
primary_decimals -2 // 2 decimal places - leave trailing zeros
```
Tin Titles and Heights

A section along the primary string through each tin on the section view can be automatically drawn on the long plot, and the user can specify whether the tin heights and depths are labelled or not in the boxes area.

Hence although there may be a number of tins drawn on the section plot, not all of them need to be labelled or have their depths labelled.

The default order for labelling the tins and depths is the order that the tins were added to the view however it is possible to specify which tin is used for labelling each row of tin heights and depths by giving the tin name rather than just using the tin order on the section view.

In fact, it is possible to use any tin in the project to label a row, not just those drawn on the section view.

The parameter to define the nth tin by name is \( \text{tin}_n\text{\_name} \):

\[
\text{tin}_n\text{\_name} \quad \text{text} \\
// n=1, \ldots \text{no of tins on the section view.} \\
// \text{use the tin named text to label the nth row of tin heights and depths.}
\]

If a tin of the name \( \text{tin}_n\text{\_name} \) does not exist, then the plot is not produced and an error message is given.

For the following parameters, \( n \) takes the value 1 to 100 and specifies that the parameter set applies to the nth tin on the section view, or if \( \text{tin}_n\text{\_name} \) is set, for the tin specified by \( \text{tin}_n\text{\_name} \).

\[
\begin{align*}
\text{tin}_n\text{\_draw\_mode} & \quad 1 \quad // \text{draw the nth tin (default)} \\
& \quad 0 \quad // \text{don't draw the nth tin} \\
\text{tin}_n\text{\_draw\_colour} & \quad \text{colour} \quad // \text{colour to draw the nth tin.} \\
& \quad // \text{If omitted, then use the tin colour} \\
\text{tin}_n\text{\_label} & \quad 1 \quad // \text{label the tin's heights (default)} \\
& \quad 0 \quad // \text{don't label the tin's heights} \\
\text{tin}_n\text{\_title} & \quad \text{text} \quad // \text{first line of tin title} \\
\text{tin}_n\text{\_title\_2} & \quad \text{text} \quad // \text{second line of tin title} \\
\text{tin}_n\text{\_textstyle} & \quad \text{textstyle} \quad // \text{textstyle of the tin titles} \\
\text{tin}_n\text{\_colour} & \quad \text{colour} \quad // \text{colour for titles of heights} \\
\text{tin}_n\text{\_size} & \quad \text{mm} \quad // \text{default nth tin's title size} \\
\text{tin}_n\text{\_y\_pos} & \quad \text{mm} \quad // \text{if set, the height in mm above the bottom of all the boxes that the tin title text is drawn.} \\
& \quad // \text{If not set, then the text is placed at a height that puts it inside the default box for the tin heights.} \\
\text{tin}_n\text{\_decimals} & \quad \text{integer} \quad // \text{number of dec places in tin height} \\
\text{tin}_n\text{\_textstyle} & \quad \text{textstyle} \quad // \text{textstyle of the tin heights} \\
\text{tin}_n\text{\_colour} & \quad \text{colour} \quad // \text{colour for heights and depths} \\
\text{tin}_n\text{\_size} & \quad \text{mm} \quad // \text{default nth tin's title size} \\
\text{tin}_n\text{\_y\_pos} & \quad \text{mm} \quad // \text{if set, the height in mm above the bottom of all the boxes that the tin height text is drawn.} \\
& \quad // \text{If not set, then the text is placed at a height that puts it inside the default box for the tin heights.} \\
\text{tin}_n\text{\_depth\_label} & \quad 1/0 \quad // 1 to label, 0 don't label depths \\
\text{tin}_n\text{\_depth\_title} & \quad \text{text} \quad // \text{first line of tin depth title} \\
\text{tin}_n\text{\_depth\_title\_2} & \quad \text{text} \quad // \text{second line of tin depth title} \\
\text{tin}_n\text{\_depth\_textstyle} & \quad \text{textstyle} \quad // \text{textstyle of the tin depth titles} \\
\text{tin}_n\text{\_depth\_colour} & \quad \text{colour} \quad // \text{colour for titles of depths}
\end{align*}
\]
### Offset Model Titles and Heights

For **12d Model V3.2**, each string in the offset model given in the *section long plot* panel can be automatically projected onto the primary string and drawn on the long section plot.

For **12d Model V4.0**, the idea of an offset model has been modified to allow strings to be projected onto the primary string to be specified by model and name, rather than just projecting all the strings in a given model. The string can also be labelled with either the string name, its model name or both.

The string is specified by

```plaintext
offset_n_mask "model_name->string_name"
```

For each n, a set of plot parameters determine if the string’s heights and/or depths from the primary string are labelled in the boxes area.

If only the `string_name` is given, then the model given in the Offset model field of the Section Long Plot panel.

If there is **more than one string** with the given model and name, then it will be considered to be one string and at any primary string chainage, the closest of the strings will be the part used for projecting. For example, strings of the same name on either side of a road intersection will be considered to be the one string for projecting.

If any `offset_n_mask` is used, then the Offset option expects all the strings to be specified by an `offset_n_mask`. Then if no mask exists for any value of n, then that parameter set is ignored and no string projected.

If no offset masks are used (that is, no `offset_n_mask`’s are used), then the Offset option works as it did in **12d Model V3.0**. That is, plot parameters determine whether each string in the offset model is drawn, and if the string’s heights and depths from the primary string are labelled in the boxes area. The order that the strings are then plotted and labelled is the same as the order of the strings in the Offset model.

For the following sets of parameters, n takes the value 1 to 100 and specifies that the parameter set applies to the nth string given by `offset_n_mask` or, if no offset masks are given, the nth string in the Offset model.

```plaintext
offset_n_mask "model_name->string_name"
offset_n_draw_mode 1 // draw the nth offset string (default)
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tin_n_depth_title_size</td>
<td>colour</td>
<td>// size for title of depths</td>
</tr>
<tr>
<td>tin_n_depth_title_y_pos</td>
<td>mm</td>
<td>// if set, the height in mm above the bottom of all the boxes that the tin depth title text is drawn.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// If not set, then the text is placed at a height that puts it inside the default box for the tin depths.</td>
</tr>
<tr>
<td>tin_n_depth_decimals</td>
<td>integer</td>
<td>// number of dec places in tin depth</td>
</tr>
<tr>
<td>tin_n_depth_textstyle</td>
<td>textstyle</td>
<td>// textstyle of the tin depths</td>
</tr>
<tr>
<td>tin_n_depth_colour</td>
<td>colour</td>
<td>// colour for depths</td>
</tr>
<tr>
<td>tin_n_depth_size</td>
<td>mm</td>
<td>// size for depths</td>
</tr>
<tr>
<td>tin_n_depth_y_pos</td>
<td>mm</td>
<td>// if set, the height in mm above the bottom of all the boxes that the tin depth text is drawn.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// If not set, then the text is placed at a height that puts it inside the default box for the tin depths.</td>
</tr>
</tbody>
</table>
Chapter 44 Text Plot Parameters

The default title for each set each parameter set, is the string name but this can be changed to just the model name or the model and string name:

offset_title_mode  
0 // label with string name (default)  
1 // label with model name  
2 // label with model->string as name

or, for any set, the offset_title_mode can be replaced by two lines of user defined title:

offset_n_title text // first line of title  
offset_n_title_2 text // second line of title  
offset_n_title_textstyle textstyle // textstyle of the offset titles

The rest of the parameters for the set are:

offset_n_title_colour colour // colour for titles of heights  
offset_n_title_size size // size for heights  
offset_n_title_y_pos mm // height in mm above the
offset n_decimals integer // number of dec places in offset height  
offset_n_textstyle textstyle // textstyle of the offset heights  
offset_n_colour colour // colour for heights  
offset_n_size size // size for heights  
offset_n_y_pos mm // height in mm above the
offset_n_depth_label 1/0 // 1 to label, 0 don't label depths  
offset_n_depth_title text // first line of offset depth title  
offset_n_depth_title_2 text // second line of offset depth title  
offset_n_depth_title_textstyle textstyle // textstyle of the offset depth titles  
offset_n_depth_title_colour colour // colour for titles of depths  
offset_n_depth_title_size mm // size for titles of depths  
offset_n_depth_title_y_pos mm // height in mm above the
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>offset_n_depth_decimals</td>
<td>integer</td>
<td>number of dec places in offset depth</td>
</tr>
<tr>
<td>offset_n_depth_textstyle</td>
<td>textstyle</td>
<td>textstyle of the offset depths</td>
</tr>
<tr>
<td>offset_n_depth_colour</td>
<td>colour</td>
<td>colour for depths</td>
</tr>
<tr>
<td>offset_n_size</td>
<td>size</td>
<td>size for depths</td>
</tr>
<tr>
<td>offset_n_depth_y_pos</td>
<td>mm</td>
<td>if set, the height in mm above the bottom of all the boxes that the offset depth text is drawn.</td>
</tr>
</tbody>
</table>

// height that puts it inside the default box for the offset depths.

// If not set, then the text is placed at a height that puts it inside the default box for the offset depths.
Chainages of Offset Strings - Offset Chainages

For a string other than the primary string, it is possible to label the chainages that are obtained from the other string by going out perpendicular to the primary string at a chainage, cutting the other string and then calculating the chainage from the other string at the cut point.

The other string is known as an offset string and the chainage from the offset string corresponding to a primary chainage is called the offset chainage.

Up to twenty sets of offset chainages can be labelled - each is defined by its own set of parameters:

**Note** no box is automatically created for the offset chainages. An empty box must be defined and the appropriate values set for `chainage_n_title_y_pos` and `chainage_n_y_pos`.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainage_n_offset_mode</td>
<td>tick box // if ticked, use nth offset string for calculations</td>
</tr>
<tr>
<td>chainage_n_offset_string</td>
<td>&quot;model_name-&gt;string_name&quot; // string to calculate offset chainages for</td>
</tr>
<tr>
<td>chainage_n_title</td>
<td>text // first line of offset chainage title</td>
</tr>
<tr>
<td>chainage_n_title_2</td>
<td>text // second line of offset chainage title</td>
</tr>
<tr>
<td>chainage_n_title_textstyle</td>
<td>textstyle // textstyle of the offset chainage titles</td>
</tr>
<tr>
<td>chainage_n_title_colour</td>
<td>colour // offset chainage title colour</td>
</tr>
<tr>
<td>chainage_n_title_size</td>
<td>mm // offset chainage title size</td>
</tr>
<tr>
<td>chainage_n_title_y_pos</td>
<td>mm // the height in mm above the chainage values text is drawn.</td>
</tr>
<tr>
<td>chainage_n_decimals</td>
<td>integer // number of decim places for offset chainages</td>
</tr>
<tr>
<td>chainage_n_textstyle</td>
<td>textstyle // textstyle of the offset chainage values</td>
</tr>
<tr>
<td>chainage_n_colour</td>
<td>colour // colour of offset chainages</td>
</tr>
<tr>
<td>chainage_n_size</td>
<td>mm // size of offset chainages</td>
</tr>
<tr>
<td>chainage_n_y_pos</td>
<td>mm // the height in mm above the chainage values text is drawn.</td>
</tr>
</tbody>
</table>

**Example of Offset Chainage and Titles**

- `chainage_1_offset_string` = “Design->RKERB"
- `chainage_1_title` = “RIGHT KERB”
- `chainage_1_title_2` = “CHAINAGE”
- `chainage_1_title_colour` = “yellow”
- `chainage_1_colour` = “grey” // colour of offset chainage text
- `chainage_1_decimals` = -3 // 3 decimal places - leave trailing zeros
Definition of Depth to a Tin or to Offset Strings

The depth from the primary string to a tin or to a string from the offset model, at a particular chainage is defined as

\[ \text{depth} = \text{tin height value} - \text{height of the primary string} \]

or

\[ \text{depth} = \text{offset string height value} - \text{height of the primary string} \]

That is, the depth that the primary string is below the tin or a string from the offset model.

Before plotting, the value of depth is multiplied by either the `depth_positive_factor` or `depth_negative_factor`.

If \( \text{depth} \geq 0 \)
\[ \text{plotted_depth_value} = \text{depth} \times \text{depth_positive_factor} \]

If \( \text{depth} < 0 \)
\[ \text{plotted_depth_value} = \text{depth} \times \text{depth_negative_factor} \]

Hence the definition of depth can be modified by the parameters:

- `depth_positive_factor` value // multiplier for positive depths
- `depth_negative_factor` value // multiplier for negative depths

For example, if the opposite sign is required for depth, that is,

\[ \text{depth} = \text{height of the primary string} - \text{tin/offset string height value} \]

simply set

`depth_positive_factor` -1
`depth_negative_factor` -1
Super-Elevation Diagram

The optional super-elevation diagram draws the values of the cross-fall (x-fall) between two strings using the primary string as the reference string. The cross-fall at a given chainage on the primary string is calculated by sectioning perpendicular to the reference string at that chainage and cutting the two strings. The cross-fall is defined as the cross-fall between the two cuts points on the strings.

The diagram has levels for the cross fall for a pair of strings on the left of the primary string, and a pair of strings on the right of the primary string. The diagram also has uprights in the super-elevation box with chainage values at the change of super values.

For the left hand side, the cross-fall is calculated at right angles to the primary string between the user given left hinge string and the left edge string.

There are plot parameters to control all aspects of the super diagram.

- `super_draw_mode`: 0 // default, don’t draw a super diagram  
  1 // draw super using `super_sample_interval`  
  2 // sample super using chainages of x-sections  
  3 // sample super using chainages from a string

- `super_sample_interval`: value // if `super_draw_mode = 1`, default 20 // chainage distance to sample x-fall

- `super_sample_name`: model_name // if `super_draw_mode = 2` model_name->string_name // if `super_draw_mode = 3`

- `super_tolerance`: value // If `super_draw_mode` is 1, the change of super is greater than `super_tolerance`, // draw uprights

- `super_title`: text // first line of super title // def Super elevation

- `super_title_textstyle`: textstyle // textstyle of the super titles

- `super_title_colour`: colour // super title colour, def `box_colour`

- `super_title_size`: mm // super title size, def `label_text_size`

- `super_title_y_pos`: mm // if set, the height in mm above the // bottom of all the boxes that the // super title text is drawn. // If not set, then the text is placed at a // height that puts it inside the default // box for the super.

- `super_xfall_textstyle`: textstyle // textstyle of the super x-fall labels

- `super_xfall_colour`: colour // super x-fall colour, def `box_colour`

- `super_xfall_size`: mm // super x-fall size, def `label_text_size`

- `super_xfall_x`: mm // def 0

- `super_xfall_y`: mm // def 0.5

- `super_ch_textstyle`: textstyle // textstyle of the super chainages

- `super_ch_colour`: colour // super chainage colour, def `box_colour`

- `super_ch_size`: mm // super chainage size, def `label_text_size`

- `super_ch_x`: mm // def 0

- `super_ch_y`: mm // def -1

- `super_ch_decimals`: integer // number decimal places in chainage // def `number_of_decimals`

- `super_hinge_name_left`: model_name->string_name // left hinge string

- `super_edge_name_left`: model_name->string_name // left edge string

- `super_left_linestyle`: linestyle // default DASHED

- `super_left_line_colour`: colour // default `box_colour`

- `super_left_decimals`: integer // number decimal places in left x-fall // def 0

- `super_left_pre`: text // text before left x-fall value

- `super_left_post`: text // text after left x-fall value

- `super_hinge_name_right`: model_name->string_name // right hinge string
**Example of Super**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>super_hinge_name_left</td>
<td>&quot;super-&gt;lkerb&quot;</td>
</tr>
<tr>
<td>super_edge_name_left</td>
<td>&quot;super-&gt;lshoulder&quot;</td>
</tr>
<tr>
<td>super_hinge_name_right</td>
<td>&quot;super-&gt;rkerb&quot;</td>
</tr>
<tr>
<td>super_edge_name_right</td>
<td>&quot;super-&gt;rshoulder&quot;</td>
</tr>
<tr>
<td>super_draw_mode</td>
<td>3</td>
</tr>
<tr>
<td>super_sample_interval</td>
<td>10</td>
</tr>
<tr>
<td>super_sample_name</td>
<td>&quot;super-&gt;lkerb&quot;</td>
</tr>
<tr>
<td>super_title_size</td>
<td>5</td>
</tr>
<tr>
<td>super_title_textstyle</td>
<td>ORANGE</td>
</tr>
<tr>
<td>super_title_y_pos</td>
<td>10</td>
</tr>
<tr>
<td>super_title</td>
<td>&quot;Super EL&quot;</td>
</tr>
<tr>
<td>super_xfall_size</td>
<td>1.5</td>
</tr>
<tr>
<td>super_xfall_colour</td>
<td>GREY</td>
</tr>
<tr>
<td>super_xfall_textstyle</td>
<td>HELV</td>
</tr>
</tbody>
</table>

---

**Title area**

- **Super Elevation**
- **Bottom of the boxes**
- **super_xfall_x**
- **super_xfall_y**
- **super_ch_x**
- **super_ch_y**
- **super_xfall_x**
- **super_xfall_y**
- **LHS 5%**
- **RHS 5%**
- **LHS 1%**
- **RHS -5%**
- **LHS and RHS 5%**
- **super cl**
- **super chainage**

---

**Box Title X**

- **super_title_x**
- **super_title_y_pos**
- **box_title_x**
- **box_title_y**

---

**Long Section Plot Parameter File**

---
// super_xfall_y 0.5
// super_xfall_x 2

super_ch_size 3
super_ch_colour YELLOW
super_ch_textstyle ISO
super_ch_y -2
super_ch_x -0.5
super_ch_decimals -2

super_left_linestyle DIVIDE
super_right_linestyle PHANTOM2
super_cl_linestyle PHANTOM
// super_common_linestyle thick

super_left_line_colour RED
super_right_line_colour YELLOW
super_cl_line_colour CYAN
super_common_line_colour MAGENTA
super_upright_colour BLUE

// super_common_pre "Pre 
// super_common_post "% Post"

// super_common_decimals -1
super_right_decimals 1
super_left_decimals 1
Volume Cut and Fill Values

The values of calculated cut and fill volumes (cut and fill earth works) can be read from a file and then interpolated to produce cut and fill volumes for a given interval along the primary string.

There are plot parameters to control all aspects of the volume diagram.

- **volume_draw_mode**: 0 // default, don’t draw a volume diagram
  1 // draw a volume diagram

- **volume_text_centre_mode**: 0 // default, the text of cut and fill are labelled along the uprights
  1 // the text are centred in between the uprights

- **volume_sample_interval**: value // interval to display volumes, default 20

- **volume_file_name**: file_name // the volumes report file

- **volume_y_pos**: mm // if set, the volume box is positioned at this height from the bottom of the first box

- **volume_box_size**: mm // if set, the uprights and volume and titles are plotted in accordance with this heights

- **volume_title**: text // first line of volume title
  // default Earthworks

- **volume_title_textstyle**: textstyle // textstyle of the volume titles

- **volume_title_colour**: colour // volume title colour, def box_colour

- **volume_title_size**: mm // volume title size, def label_text_size

- **volume_title_y_pos**: mm // if set, the height in mm above the bottom of all the boxes that the volume title text is drawn.
  // If not set, then the text is placed at a height that puts it inside the default box for the volumes.

- **volume_cut_title**: text // first line of volume sub title
  // default cut

- **volume_cut_title_textstyle**: textstyle // textstyle of the cut volume titles

- **volume_cut_title_colour**: colour // cut volume title colour, def box_colour

- **volume_cut_title_size**: mm // cut volume title size, def label_text_size

- **volume_cut_title_y**: mm // if set, the height in mm above the default position.
  // If not set, then the text is placed at a height that puts it inside the default box for the cut volumes.

- **volume_fill_title**: text // first line of volume sub title
  // default fill

- **volume_fill_title_textstyle**: textstyle // textstyle of the fill volume titles

- **volume_fill_title_colour**: colour // fill volume title colour, def box_colour

- **volume_fill_title_size**: mm // fill volume title size, def label_text_size

- **volume_fill_title_y**: mm // if set, the height in mm above the default position.
  // If not set, then the text is placed at a height that puts it inside the default box for the fill volumes.

- **volume_cut_textstyle**: textstyle // textstyle of the cut values

- **volume_cut_text_colour**: colour // cut value colour, def box_colour

- **volume_cut_text_size**: mm // cut value size, def label_text_size

- **volume_cut_text_x**: mm // the x distance to move the cut text from the default cut text position, def 0, it is not used if volume_text_centre_mode=1

- **volume_cut_text_y**: mm // the y distance to move the cut text from the default cut text position, def 0

- **volume_cut_decimals**: integer // number decimal places in cut values
  // def number_of_decimals
volume_fill_textstyle    textstyle       // textstyle of the fill values
volume_fill_text_colour  colour        // fill value colour, def box_colour
volume_fill_text_size    mm           // fill value size, def label_text_size
volume_fill_text_x       mm           // the x distance to move the fill text from the
                                   // default fill text position, def 0, it is not used
                                   // if volume_text_centre_mode=1
volume_fill_text_y       mm           // the y distance to move the fill text from the
                                   // default fill text position, def 0
volume_fill_decimals     integer      // number decimal places in fill values
                                   // def number_of_decimals
volume_cl_linestyle      linestyle     // linestyle of horizontal cut/fill dividing line
volume_cl_line_colour    colour       // colour of horizontal cut/fill dividing line
volume_uprights_draw_mode 0            // default, don’t draw cut/fill uprights
                                   // draw cut/fill uprights
volume_uprights_line_colour 1            // colour of uprights
volume_sub_upright_colour    colour     // colour of sub uprights line
volume_sub_uprights_x     mm           // the distance to move from the default
                                   // sub uprights position, def 0
volume_sub_title_x        mm           // the distance to move the sub title text
                                   // from the volume sub uprights

Example of Volumes

volume_draw_mode 1
volume_sample_interval 25
volume_file_name "volume.rpt"
volume_text_centre_mode 0
volume_y_pos 150
volume_box_size 40
volume_title "Volumes"
volume_title_size 5
volume_title_colour grey
// volume_title_textstyle
volume_title_y_pos 165

// volume_cut_title
volume_cut_title "cut"
// volume_cut_title_size
// volume_cut_title_colour
// volume_cut_title_textstyle
volume_cut_title_y 3

// volume_fill_title
volume_fill_title "fill"
// volume_fill_title_text_size
// volume_fill_title_text_colour
// volume_fill_title_textstyle
volume_fill_title_y -3

// volume_cut_text_size
// volume_cut_text_colour
// volume_cut_textstyle
// volume_cut_text_x
volume_cut_text_y 5
volume_cut_decimals 0
// volume_fill_text_size
// volume_fill_text_colour
// volume_fill_textstyle
// volume_fill_text_x
volume_fill_text_y 245
volume_fill_decimals 0

// volume_cl_linestyle
volume_cl_linestyle "PHANTOM"
volume_cl_line_colour red

// volume_uprights_draw_mode
volume_uprights_draw_mode 1
volume_uprights_line_colour "purple"

// volume_sub_upright_colour
volume_sub_upright_colour 23
volume_sub_uprights_x 10

// volume_sub_title_x
volume_sub_title_x 3
X,Y Values

The values of the X and Y coordinate for selected chainages can be labelled as separate boxes. The chainages specified are limited to the base set of chainages already defined in the chainage selection and staggering section, i.e. an upright must exist for the X and Y value to be labelled. Not all of the uprights have to be labelled, just those specified in this section.

There are plot parameters to control all aspects of the X and Y labelling.

Chainages are used for positioning X and Y labels.

The chainages for the long section plot relate to the primary string and are controlled by a set of parameters.

```
xy_order 0 // 0 = X on bottom, Y on top
1 // 1 = Y on bottom, X on top
xy_chord_arc 0 // don't use chord/arc chainages
1 // include chainages for chord/arc
xy_start_chainage value // start chainage of labelling range
xy_end_chainage value // end chainage of labelling range
xy_interval value // regular interval (0 = no regulars)
xy_label_hcp 0/1 // 1 = include tangents, spirals
xy_label_hip 0/1 // 1 = include hip points
xy_label_vip 0/1 // 1 = include vip points
xy_label_vtp 0/1 // 1 = include tangent points
xy_label_crest 0/1 // 1 = include crest points
xy_label_sag 0/1 // 1 = include sag points
xy_label_grade_change 0/1 // 1 = include change of vertical grade
xy_special_n_file filename // n = 1 to 20 - include chainages from the file (one chainage per line)
xy_label_tolerance value // > 0 use as weeding tolerance
// <= 0, don't weed
```

For X parameters:

```
x_label 0/1 // 0 = Don’t label X values/titles
1 // 1 = Label X values/titles
x_title text // first line of X title
// (default "Easting")
x_title_2 text // second line of X title
x_title_textstyle textstyle // textstyle of the X titles
x_title_colour colour // default X title colour
x_title_size mm // default X title size
x_title_y_pos mm // if set, the height in mm above the bottom of all the boxes that the X title text is drawn.
// If not set, then the text is placed at a height that puts it inside the default box for the X.

x_label_decimals integer // number of decim places for X values
x_label_textstyle textstyle // textstyle of the X values
x_label_colour colour // colour of X values, def is box_colour
x_label_size mm // size of X values, def is box_text_size
x_label_y_pos mm // if set, the height in mm above the bottom of all the boxes that the X value text is drawn.
// If not set, then the text is placed at a height that puts it inside the default box for the X value.
```
For Y parameters:

- **y_label**: 0/1
  - 0 = Don’t label Y values/titles
  - 1 = Label Y values/titles

- **y_title**: text
  - first line of Y title
  - (default “Eastings”)

- **y_title_2**: text
  - second line of Y title

- **y_title_textstyle**: textstyle
  - textstyle of the Y titles

- **y_title_colour**: colour
  - default Y title colour

- **y_title_size**: mm
  - default Y title size

- **y_title_y_pos**: mm
  - if set, the height in mm above the bottom of all the boxes that the Y title text is drawn.
  - If not set, then the text is placed at a height that puts it inside the default box for the Y.

- **y_label_decimals**: integer
  - number of decim places for Y values

- **y_label_textstyle**: textstyle
  - textstyle of the Y values

- **y_label_colour**: colour
  - colour of Y values, def is box_colour

- **y_label_size**: mm
  - size of Y values, def is box_text_size

- **y_label_y_pos**: mm
  - if set, the height in mm above the bottom of all the boxes that the Y value text is drawn.
  - If not set, then the text is placed at a height that puts it inside the default box for the Y value.

Please continue to the next section **44.3.5 Chainage Selection and Staggering**.
44.3.5 Chainage Selection and Staggering

Chainages are used for positioning height labels, uprights (leader lines) and bubbles.

The chainages for the long section plot relate to the primary string and are controlled by a set of parameters.

- **chord_arc**
  - Value: 0 // don't use chord/arc chainages
  - Value: 1 // include chainages for chord/arc

- **chainage_interval**
  - Value: // regular interval (0 = no regulars)

- **chainage_label_ends**
  - Value: 0/1 // 1 = include start and end chainages

- **chainage_label_hip**
  - Value: 0/1 // 1 = include hip points

- **chainage_label_vip**
  - Value: 0/1 // 1 = include vip points

- **chainage_label_vtp**
  - Value: 0/1 // 1 = include tangent points

- **chainage_label_crest**
  - Value: 0/1 // 1 = include crest points

- **chainage_label_sag**
  - Value: 0/1 // 1 = include sag points

- **chainage_label_grade_change**
  - Value: 0/1 // 1 = include change of vertical grade

- **chainage_special_n_file**
  - Value: filename // n = 1 to 20 - include chainages from the file (one chainage per line)

- **chainage_label_tolerance**
  - Value: // > 0 use as weeding tolerance
  - Value: <= 0, don't weed

- **chainage_merge_bubbles**
  - Value: 0/1 // 1 = merge in the bubble chainages

- **chainage_merge_tolerance**
  - Value: // > 0, weeding tol after bubble merge
  - Value: <= 0, don't weed after merge

Default values

- **chainage_label_tolerance** = 1.0 exp -4 (world units)
- **chainage_merge_tolerance** = 1.0 exp -8 (world units)

If a tolerance is zero or negative, no weeding is performed.

The format of a chainage special file is simply a list of chainage values, one value per lines. Blank lines in the file are ignored and anything on a line after a // is a comment.

If the real chainage position is used for the horizontal position of the chainage/height/depth text, text over writing can easily occur.

To prevent over writing, the text can be **staggered**.

If the **stagger_mode** parameter is set to 1, the text position is adjusted so that the text does not over write.

The real chainage position is then indicated by the chainage markers which are drawn at the top of the text boxes from the staggered text position back to the actual chainage position of the text.

- **stagger_mode**
  - Value: 0 // no staggering, allow over writing
  - Value: 1 // stagger text to prevent over writing

- **stagger_gap_top**
  - Value: mm // distance from boxes to top of stagger

- **stagger_gap_bottom**
  - Value: mm // distance from boxes to bottom of stagger

- **stagger_gap_factor**
  - Value: // distance between staggers is
  - Value: box_text_size * stagger_gap_factor

When staggering occurs, it is possible for the heights area to be longer than the graph area.
Please continue to the next section 44.3.6 Uprights.
### 44.3.6 Uprights

Uprights, or leader lines, can be drawn from the top of the staggers to the strings drawn on the plot.

The height of the uprights is given by the `uprights_draw_mode`:

<table>
<thead>
<tr>
<th><code>uprights_draw_mode</code></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>1</td>
<td>to maximum string height at that chainage</td>
</tr>
<tr>
<td>2</td>
<td>ticks, to stagger height</td>
</tr>
<tr>
<td>3</td>
<td>to <code>uprights_y</code> above the boxes</td>
</tr>
<tr>
<td>100</td>
<td>to the primary string</td>
</tr>
<tr>
<td>101-500</td>
<td>to <code>tin1</code> or <code>tin2</code> etc.</td>
</tr>
<tr>
<td>501-900</td>
<td>to <code>offset1</code> or <code>offset2</code> etc.</td>
</tr>
</tbody>
</table>

- `uprights_y mm`: distance to draw the uprights for mode 3
- `uprights_colour colour`: uprights colour (default `boxes_colour`

The uprights can go below the top of the boxes.

<table>
<thead>
<tr>
<th><code>uprights_bottom_mode</code></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>stop at top of boxes (default)</td>
</tr>
<tr>
<td>1</td>
<td>draw to bottom of boxes</td>
</tr>
<tr>
<td>2</td>
<td>draw to <code>uprights_bottom_y</code> below the top of the boxes</td>
</tr>
<tr>
<td>3</td>
<td>draw to <code>uprights_bottom_y</code> above the bottom of the boxes</td>
</tr>
<tr>
<td>4</td>
<td>ticks at chainage</td>
</tr>
</tbody>
</table>

- `uprights_bottom_y mm`: distance
- `uprights_text_offset_factor value`: move the text by this factor\*size

When uprights go below the top of the boxes, the height and offset text is moved to the left so that the upright does not go through the text. The left hand side of the heights boxes also moves to the left to leave room for the height text.
Please continue to the next section 44.3.7 Datum Area.
44.3.7 Datum Area

The **datum area** is the region between the boxes area and the graph area. The **datum line** is positioned the distance `datum_below_gap` above the top of the boxes area and the graph area is positioned the distance `datum_above_gap` above the datum line. Hence the graph area is distance `(datum_below_gap + datum_above_gap)` above the top of the boxes area.

- `datum_above_gap` \(\text{mm}\) // distance from datum line to the bottom of the graph area
- `datum_below_gap` \(\text{mm}\) // distance from datum line to the top of the boxes
- `datum_linestyle` \(\text{linestyle}\) // linestyle for datum line (default solid)

The `datum_below_gap` and `datum_above_gap` can be zero or positive. A value for the datum can be specified by the parameter `datum_value` or if the `datum_value` is not set, a datum value is automatically calculated for the long section using a roundoff specified by the user (default 1.0).

- `datum_value` \(\text{value}\) // if set, the value to use for datum. // If not set, the datum is automatically calculated (using `datum_roundoff`)
- `datum_roundoff` \(1.0\) // value to roundoff the datum value to // e.g. 0.5, 0.2, 1.0 (default 1.0)
- `datum_decimals` \(\text{integer}\) // number of decimal places to display // the datum value (default 1). // If > 0, trailing zeros are removed after // the decimal point. // If <0, the absolute value is taken as the // number of decimal places to report // i.e. no trailing zeros are removed

- `datum_name` \(\text{text}\) // text to write before the datum value
- `datum_textstyle` \(\text{textstyle}\) // textstyle for the datum text
- `datum_text_size` \(\text{mm}\) // size of datum text and value
- `datum_colour` \(\text{colour}\) // colour of the datum text and line
- `datum_x` \(\text{mm}\) // distance to move the datum text // along the datum line
- `datum_y` \(\text{mm}\) // distance to raise the datum text // above the datum line (used to be // called `datum_offset`)

Please continue to the next section 44.3.8 Graph Area.
44.3.8 Graph Area

The graph area is the area where the actual plots of the strings are drawn.

The string used to define the horizontal position and chainage of the plot is called the primary string and is either

(a) the string being profiled on the given section view
or
(b) the string given by the parameter

```
string_to_plot "model->string_name" // name of string to profile
```

When the primary string is being written out to a plot parameter file by 12d Model, a string_to_plot parameter and special parameters recording the internal id’s for the string and it’s model are all written out.

```
primary_model_id integer // internal 12d Model parameter
primary_string_id integer // internal 12d Model parameter
```

The length of the graph area is determined by the length of the primary string being plotted (restricted to the specified start and end chainages) and the horizontal scale (scale) given by parameters or in the section long plot panel, and the vertical exaggeration given by the section view or a parameter.

```
view_name text // default is section view in panel.
vertical_exaggeration value // default is vertical exag for the view
scale value // 1:value - horizontal scale, default is // scale 1: in panel
start_chainage value // ““ means use start of primary string
end_chainage value // ““ means use end of primary string
```

The vertical scale is determined by the horizontal scale and the vertical exaggeration.

The height of the graph area is determined by the vertical scale (given by the horizontal scale and the vertical exaggeration) and the minimum and maximum values of the data being plotted. Hence the graph height is a calculated rather than a given value.

The types of strings that can be drawn in the graph area of a long section plot are:

(a) primary string the string being profiled (usually the design string).
(b) tins sections of the primary string through any tins either in models on the section view or in corridor models.
(c) offset strings strings in the offset model that are projected back onto the primary string
(d) services parts of strings (from either models on the section view or in corridor models) that cut the defined corridor.

The colour of the strings in the plot is the actual string colour for cases (a), (c) and (d), and the colour of the tin used for the section in case (b).

Although all the strings are plotted, the plot parameter file can be used to select which ones are labelled with heights and/or depths.

Primary String (Design String)

The primary string (the design string) is used to define

(a) the design long section
(b) the chainage positions for labelling heights and drawing uprights
(c) the section line used for sectioning through tins
(d) the section line for defining the corridor for services

Although the primary string is used to set up most of the information for the long section plot, it
doesn’t have to be drawn on the long section.

The drawing or not drawing of the primary string on each cross section plot is controlled by the parameter `primary_string` which was described earlier.

The colour of the primary string in the plot is the actual primary string colour.

**Tins**

A section along the primary string through each tin on the specified section view is automatically drawn on the cross section plot.

The colour and linestyle of the tin section in the plot is the actual tin colour and tin linestyle.

Whether the tin heights are labelled or not in the boxes area is controlled by parameters and has been described earlier

**Corridor and Services**

A corridor around the primary string is defined by giving a left and right corridor width.

Any string in a model added to the section view is checked to see if it appears in the corridor, and if it does, then it is drawn on the long section plot.

To be drawn, strings do not have to cross the primary string, but just be in the corridor.

```
strings (no diameter)

pipe string

primary string
(design long section)

plan view

corridor_width_left

corridor_width_right

corridor_overlap_left

corridor_overlap_right

corridor_chord_arc

/ world-units

// chord-arc tolerance used to approximate arcs in the corridor.
// default is the section view value

The corridor defining parameters are

corridor_width_left world-units // corridor left and right widths

corridor_width_right world-units // defaults are the section view values

corridor_overlap_left world-units // corridor left and right overlaps.

corridor_overlap_right world-units // defaults are the section view values

corridor_chord_arc world-units // chord-arc tolerance used to approximate arcs in the corridor.
// default is the section view value

The models containing tins for sectioning and strings for services are taken from the section view or given by the parameters

corridor_model_n model // n = 1, 2 ... 100
// models containing tins and service
// strings to be drawn on the view.

If any `corridor_model_n` parameters are defined, then only the models given by the parameters
are used. If no corridor_model_n parameters are set, then the models added to the given section view are used.

That is, either the corridor_model_n parameters are used or if none exist, then the models added to the section view are used for tins and service strings.

The colour and diameter of the service strings drawn in the plot are the actual strings colour and diameter.

The graph area sits on top of the boxes and datum areas, so there may not be enough room left on the sheet for the full plot height. In this case, the plot will be truncated at the top of the allowed graph area.

Please continue to the next section 44.3.9 Bubbles Definitions.
44.3.9 Bubbles Definitions

Circles with the string name and a unique number (bubbles) can be drawn on the long section plot. Bubbles are normally used for lip profiles.

The chainages used for the bubbles are given by a set of parameters similar to the chainage parameters. The resulting set of bubbles are sequentially numbered (starting with one) in chainage order.

Although many bubbles can be defined by the bubble parameters, a bubble is only drawn on the plot if there is a labelled chainage to draw it above.

Hence not all bubbles given by the bubble chainage parameters are drawn but for the ones that are drawn, the bubble number is taken from the full bubble set.

chainage_bubbles 0 // don't drawn bubbles
1 // draw bubbles

bubble_radius mm // radius of the bubbles
bubble_colour // colour for the bubbles

bubble_text_string_name_mode 0 // do not label with string name
1 // label string name
2 // label with model->string name

bubble_pre_text text
bubble_post_text text
bubble_textstyle textstyle
bubble_text_size mm
bubble_text_offset mm

bubble_upright_distance mm // distance bubbles are above boxes/uprights
bubble_mode 0 // bubble_upright_distance is above boxes
1 // bubble_upright_distance is above uprights

bubble_draw_upright 0/1 // 1 = draw extra upright if bubble_mode = 1

bubble_start_chainage value // start chainage for bubbles
bubble_end_chainage value // end chainage for bubbles
bubble_chord_arc 0/1 // 1 = use chord-arc chainages
bubble_interval value // include regular interval
// (0 = no regulars)

bubble_label_ends 0/1 // 1 = include start and end chainages
bubble_label_hcp 0/1 // 1 = include tangents, spirals
bubble_label_hip 0/1 // 1 = include hip points
bubble_label_vip 0/1 // 1 = include hip points
bubble_label_vtp 0/1 // 1 = include tangent points
bubble_label_crest 0/1 // 1 = include crests
bubble_label_sag 0/1 // 1 = include sags
bubble_label_grade_change 0/1 // 1 = include change of grade
bubble_special_n_file filename // n = 1 to 20 include chainages from the file

bubble_label_tolerance value // > 0 use as weeding tolerance
// <= 0, don't weed

Defaults

bubble_label_tolerance = 1.0 exp -4 (world units)

If a tolerance is zero or negative, no weeding is performed.

The format of a bubble special file is simply a list of chainage values, one value per lines. Blank lines in the file are ignored and anything on a line after a // is a comment.
Please continue to the next section 44.3.10 Quick Horizontal Geometry Labelling.
44.3.10 Quick Horizontal Geometry Labelling

The standard horizontal geometry arrows can be drawn at a given distance above the top of the boxes area.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>horizontal.geometry.y'</td>
<td>mm</td>
<td>// dist above boxes</td>
</tr>
<tr>
<td>horizontal.geometry_arrow_text_colour</td>
<td>colour</td>
<td>// 0 = don't draw</td>
</tr>
<tr>
<td>horizontal.geometry_arrow_textstyle</td>
<td>textstyle</td>
<td></td>
</tr>
<tr>
<td>horizontal.geometry_arrow_text_size</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>horizontal.geometry_arrow_colour</td>
<td>colour</td>
<td></td>
</tr>
<tr>
<td>horizontal.geometry_arrow_height</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>horizontal.geometry_label_text</td>
<td>text</td>
<td></td>
</tr>
<tr>
<td>horizontal.geometry_label_textstyle</td>
<td>textstyle</td>
<td></td>
</tr>
<tr>
<td>horizontal.geometry_label_text_colour</td>
<td>colour</td>
<td></td>
</tr>
<tr>
<td>horizontal.geometry_label_text_size</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>horizontal.geometry_label_decimals</td>
<td>number</td>
<td></td>
</tr>
</tbody>
</table>

Please continue to the next section 44.3.11 Extensive Horizontal Geometry Labelling.
44.3.11 Extensive Horizontal Geometry Labelling

For complicated horizontal geometry labelling, there are sets of horizontal geometry labelling parameters which give tight control over the position and types of labels.

It is also possible to label the horizontal geometry of alignment strings other than the primary string. To plot such a string on the same plot, the chainage position of the horizontal geometry for the non-primary alignment strings is projected onto the primary string to give a primary string chainage for plotting. The values of the horizontal geometry (such as radius and spiral length) that are plotted are taken from the other string. Independently graded offset strings (such as a left and right kerbs) are the type of additional alignment strings that may need to be plotted on the same long section plot as the reference string (primary string).

For plotting horizontal geometry, the user can give up to twenty sets of these labels and they can be used to label spirals, curves and tangent information for the primary string and/or additional alignment strings.

Each label set consists of three parts:
(a) a text label on the left hand side of the plot
(b) an arrow
(c) text on the arrows.

For the following parameters, n takes the value 1 to 20 and specifies the nth parameter set.

\[
\begin{align*}
\text{h}_g_n_type & \quad 0 \quad \text{// label spirals} \\
& \quad 1 \quad \text{// label horizontal curves} \\
& \quad 2 \quad \text{// label horizontal tangents} \\
\text{h}_g_n_value_mode & \quad \text{for spiral labelling} \quad 0 \quad \text{// nothing} \\
& \quad 1 \quad \text{// length} \\
& \quad \text{for curve labelling} \quad 0 \quad \text{// nothing} \\
& \quad 1 \quad \text{// length} \\
& \quad 2 \quad \text{// radius} \\
& \quad \text{for tangent labelling} \quad 0 \quad \text{// nothing} \\
& \quad 1 \quad \text{// length} \\
& \quad \text{for spiral labelling} \quad 0 \quad \text{// nothing} \\
& \quad 1 \quad \text{// length} \\
& \quad 2 \quad \text{// radius*length} \\
\text{h}_g_n_label_y & \quad \text{mm} \quad \text{// distance of arrow line above the top of} \\
& \quad \text{// the boxes} \\
\text{h}_g_n_label_x & \quad \text{mm} \quad \text{// distance from the left hand side of the} \\
& \quad \text{// labels area} \\
\text{h}_g_n_label_offset & \quad \text{mm} \quad \text{// distance to raise the label_text above} \\
& \quad \text{// arrow line} \\
\text{h}_g_n_label_text_size & \quad \text{mm} \\
\text{h}_g_n_label_text_colour & \quad \text{colour} \\
\text{h}_g_n_label_text & \quad \text{text} \\
\text{h}_g_n_label_text_style & \quad \text{textstyle} \quad \text{// textstyle used} \\
\text{h}_g_n_draw_mode & \quad 0 \quad \text{// no arrow} \\
& \quad 1 \quad \text{// arrow} \\
& \quad 2 \quad \text{// line} \\
& \quad 3 \quad \text{// line with uprights at ends} \\
& \quad 4 \quad \text{// uprights, no line}
\end{align*}
\]
5 // line with downrights
6 // downrights, no line
7 // line with up and downrights at ends
8 // up and downrights, no line
9 // draw curve
11 // radius*length curve

\begin{tabular}{|c|c|c|}
\hline
0 & 4 & 8 \\
\hline
1 & 5 & 9 \\
\hline
2 & 6 & \\
\hline
3 & 7 & 11 \\
\hline
\end{tabular}

- \texttt{h_g_n_left_gap} \hspace{2mm} \texttt{mm} // size of gap for left side of arrow
- \texttt{h_g_n_right_gap} \hspace{2mm} \texttt{mm} // size of gap for right side of arrow
- \texttt{h_g_n_colour} \hspace{2mm} \texttt{colour} // colour of the arrow
- \texttt{h_g_n_height} \hspace{2mm} \texttt{mm} // height of the arrow
- \texttt{h_g_n_gap} \hspace{2mm} 0 // no gap
 \hspace{2mm} 1 // leave gap in arrow for text

Parameters for text on the arrows:

- \texttt{h_g_n_text_colour} \hspace{2mm} \texttt{colour} // colour of the text
- \texttt{h_g_n_text_size} \hspace{2mm} \texttt{mm} // size of the text
- \texttt{h_g_n_text_offset} \hspace{2mm} \texttt{mm} // distance to raise the text above the arrow line
- \texttt{h_g_n_pre_text} \hspace{2mm} \texttt{text} // text before the arrow text
- \texttt{h_g_n_post_text} \hspace{2mm} \texttt{text} // text after the arrow text
- \texttt{h_g_n_textstyle} \hspace{2mm} \texttt{textstyle} // textstyle used
- \texttt{h_g_n_no_decimals} \hspace{2mm} \texttt{integer} // number of decimal places in arrow text.
 // If > 0, all trailing zeros after the decimal place are removed.
 // If < 0, the absolute value is taken as the number of decimal places and no trailing zeros are removed after the decimal point.
- \texttt{h_g_n_rotate} \hspace{2mm} \texttt{mm} // if ticked, the text on the arrows will be rotated to fit.

If the set of parameters is to apply to the horizontal geometry of an alignment string other than the primary string, then simply add the following parameter to define the other alignment string:

\texttt{h_g_n_offset_string} \hspace{2mm} "model->string_name"

or

\texttt{h_g_n_offset_string} \hspace{2mm} "string_name"

and the model is the Offsets model from the \texttt{Section Long Plot} panel.

If the \texttt{h_g_n_offset_string} parameter does not exist, then the set of horizontal geometry
parameters is applied to the primary string.

Example of Extensive Horizontal Geometry

// Parameter to stop the drawing of the quick horizontal geometry
horizontal_geometry_y 0

// Set 1 - Extensive Horizontal Geometry Labelling - label the horizontal curve radius
h_g_1_type 1 // label horizontal curve
h_g_1_value_mode 2 // if this param is missing then set is ignored
h_g_1_label_y 45
h_g_1_label_x 0
h_g_1_label_offset 2
h_g_1_label_text_size 4
h_g_1_label_textcolour YELLOW
h_g_1_label_text "Horiz Curve Data"

// Parameters for arrow type
h_g_1_draw_mode 1
h_g_1_colour "white"
h_g_1_height 1.5
h_g_1_gap 0

// Parameters for text on the arrows
h_g_1_text_colour GREEN
h_g_1_text_size 3.5
h_g_1_text_offset 2.5
h_g_1_pre_text "R"
h_g_1_post_text "m"
h_g_1_no_decimals 2

Example of Extensive Horizontal Geometry for use with a Non-primary Alignment String

// Set 2 labels the horizontal curves radii of the kerb string projected onto primary string
h_g_2_offset_string "left offsets->kerb" // non-primary string to do VG of

h_g_2_type 1 // label horizontal curve
h_g_2_value_mode 2 // if this param is missing then set is ignored
h_g_2_label_y 55
h_g_2_label_x 0
h_g_2_label_offset 2
h_g_2_label_text_size 4
h_g_2_label_textcolour GREEN
h_g_2_label_text "Left Kerb - Horiz Curve Data"

// Parameters for arrow type
h_g_2_draw_mode 1
h_g_2_colour "white"
h_g_2_height 1.5
h_g_2_gap 0

// Parameters for text on the arrows
h_g_2_text_colour GREEN
h_g_2_text_size 3.5
h_g_2_text_offset 2.5
h_g_2_pre_text "R"

h_g_2_post_text "m"

h_g_2_no_decimals 2

Please continue to the next section 44.3.12 Quick Vertical Geometry Labelling.
44.3.12 Quick Vertical Geometry Labelling

The standard vertical geometry arrows can be drawn at a given distance above the top of the boxes area.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>vertical_geometry_grade_y</td>
<td>mm</td>
<td></td>
<td>// dist above boxes</td>
</tr>
<tr>
<td>vertical_geometry_grade_mode</td>
<td></td>
<td>0</td>
<td>// %</td>
</tr>
<tr>
<td>vertical_geometry_grade_mode</td>
<td></td>
<td>1</td>
<td>// 1 in</td>
</tr>
<tr>
<td>vertical_geometry_label_grade_text</td>
<td>text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vertical_geometry_label_grade_textstyle</td>
<td>textstyle</td>
<td></td>
<td>// textstyle to use</td>
</tr>
<tr>
<td>vertical_geometry_label_grade_text colour</td>
<td>colour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vertical_geometry_label_grade_text size</td>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vertical_geometry_label_grade_decimals</td>
<td>number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vertical_geometry_arrow_mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vertical_geometry_arrow_grade_textstyle</td>
<td>textstyle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vertical_geometry_arrow_grade_text colour</td>
<td>colour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vertical_geometry_arrow_length_textsize</td>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vertical_geometry_arrow_length_textstyle</td>
<td>textstyle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vertical_geometry_arrow_length_text colour</td>
<td>colour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vertical_geometry_arrow_length_textsize</td>
<td>mm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please continue to the next section 44.3.13 Extensive Vertical Geometry Labelling.
44.3.13 Extensive Vertical Geometry Labelling

For complicated vertical geometry labelling of the primary alignment string, there are sets of vertical geometry labelling parameters which give tight control over the position and types of labels.

It is also possible to label the vertical geometry of alignment strings other than the primary string. To plot such a string on the same plot, the chainage position of the vertical geometry for the non-primary alignment strings is projected onto the primary string to give a primary string chainage for plotting. The values of the vertical geometry (such as grade and curve length) that are plotted are taken from the other string. Independently graded offset strings (such as a left and right kerbs) are the type of additional alignment strings that may need to be plotted on the same long section plot as the reference string (primary string).

For plotting vertical geometry, the user can give up to twenty sets of these labels and they can be used to label grades or vertical curve information for the primary string and/or additional alignment strings.

Each label set consists of three parts:
(a) a text label on the left hand side of the plot
(b) an arrow
(c) text on the arrows.

For the following parameters, n takes the value 1 to 20 and specifies the nth parameter set.

v.g.n_type
0 // labelling grades
1 // labelling vg curve information

If v.g.n_type is missing, then the entire nth set is ignored.

The interpretation of the value of the parameter v.g.n_value_mode depends on whether the set is being used for grade labelling or curve labelling:

v.g.n_value_mode
for grade labelling
0 // nothing
1 // % grade
2 // 1 in grade
3 // m/m grade
4 // chainage length between vertical
// curve points
5 // per chord - Queensland Rail

for curve labelling
0 // nothing
1 // length - chainage for parabolic vc's
// arc length for circular vc's
2 // radius
3 // K value
5 // curve constant - Queensland Rail

Vertical curve points to draw the arrows between (for grade labelling only)
v.g.n_between_mode
0 // between chainages at the vip's
1 // between chainages at the vtp's

Position of the Arrow Line
v.g.n_label.y mm
// distance of arrow line above the top of
// the boxes this can be negative
Parameters for the left hand label of the whole line of the vg arrows:

- `v_g_n_label_x mm` // distance from the left hand side of the labels area
- `v_g_n_label_offset mm` // distance to raise the label_text above arrow line
- `v_g_n_label_text text`
- `v_g_n_label_textstyle textstyle`
- `v_g_n_label_text_size mm`
- `v_g_n_label_text_colour colour`

Parameters for arrow type

- `v_g_n_draw_mode` 0 // no arrow
- `v_g_n_draw_mode` 1// arrow
- `v_g_n_draw_mode` 2 // line
- `v_g_n_draw_mode` 3 // line with uprights at ends
- `v_g_n_draw_mode` 4 // uprights, no line
- `v_g_n_draw_mode` 5 // line with downrights
- `v_g_n_draw_mode` 6 // downrights, no line
- `v_g_n_draw_mode` 7 // line with up and downrights at ends
- `v_g_n_draw_mode` 8 // up and down rights, no line
- `v_g_n_draw_mode` 9 // draw curve
- `v_g_n_draw_mode` 10 // draw grade

Parameters for text on the arrows

- `v_g_n_text_colour colour` // colour of the text
- `v_g_n_text_size mm` // size of the text
- `v_g_n_text_offset mm` // distance to raise the text above the arrow line
- `v_g_n_pre_text text` // text before the arrow text
- `v_g_n_post_text text` // text after the arrow text
- `v_g_n_textstyle textstyle` // textstyle used
- `v_g_n_no_decimals integer` // number of decimal places in arrow text.
- `v_g_n_no_decimals integer` // If > 0, all trailing zeros after the decimal place are removed.
- `v_g_n_no_decimals integer` // If < 0, the absolute value is taken as the number of decimal places and no
If the set of parameters is to apply to the vertical geometry of an alignment string other than the primary string, then simply add the following parameter to define the other alignment string

```plaintext
v_g_n_offset_string "model->string_name"
or
v_g_n_offset_string "string_name"
```

and the model is the Offsets model from the Section Long Plot panel.

If the `v_g_n_offset_string` parameter does not exist, then the set of vertical geometry parameters is applied to the primary string.

Example of Extensive Vertical Geometry

// Parameter to not to draw the quick vertical geometry
vertical_geometry_grade_y 0

// Set 1 labels the vertical curves with length
v_g_1_type 1 // curve
v_g_1_value_mode 1 // chainage length
v_g_1_label_y 45
v_g_1_height 4
v_g_1_label_offset -2
v_g_1_label_text "VG Curves"
v_g_1_text_offset 2
v_g_1_label_text_size 6
v_g_1_pre_text ""
v_g_1_post_text " L"
v_g_1_gap 0
v_g_1_draw_mode 8
v_g_1_text_size 4

// Set 2 labels the vertical curves with K value
v_g_2_type 1 // curve
v_g_2_value_mode 3 // K value
v_g_2_label_y 45
v_g_2_height 1.5
v_g_2_label_text ""
v_g_2_text_offset -5
v_g_2_pre_text ""
v_g_2_post_text " K"
v_g_2_gap 0
v_g_2_draw_mode 1
v_g_2_text_size 4

Example of Extensive Vertical Geometry for use with a Non-primary Alignment String
// Set 3 labels the vertical curves with length with the kerb string projected onto primary stings

v_g_3_offset_string "left offsets->kerb" // non-primary string to do VG of
v_g_3_type 1 // curve
v_g_3_value_mode 1 // chainage length
v_g_3_label_y 55
v_g_3_height 4
v_g_3_label_offset -2
v_g_3_label_text "Left kerb - VG Curves"
v_g_3_text_offset 2
v_g_3_label_text_size 6
v_g_3_pre_text "".v_g_3_post_text " L"
v_g_3_gap 0
v_g_3_draw_mode 8
v_g_3_text_size 4

Please continue to the next section 44.3.14 Labelling Chainages and Heights in the Graph Area.
44.3.14 Labelling Chainages and Heights in the Graph Area

The chainage and/or height values for certain points (given by label_n_type) can be labelled. Up to twenty sets of chainage/height labels can be done.

- label_n_type: 0 // chainage of vip, height of vip
- 1 // chainage of vip, height of primary
- 2 // crest
- 3 // sag
- 4 // vtp
- 5 // hcp
- 6 // change of grade
- 7 // mid-ordinate of the vertical curve

If label_n_type is missing, then the set is ignored.

- label_n_y_mode: 0 // height in mm above boxes
- 1 // above height value (default)
- 2 // above primary height
- label_n_y: mm // distance above point
- label_n_angle: degrees // rotation about point
- label_n_x: mm // distance along from point
- label_n_offset: mm // text raise height
- label_n_justification: 0 // left end
- 1 // middle
- 2 // end
- label_n_size: mm
- label_n_colour: size
- label_n_textstyle: textstyle
- label_n_value_mode: 0 // no values labelled
- 1 // val 1 = chainage
- 2 // val 1 = height
- 3 // val 1 = chainage, val 2 = height
- 4 // val 1 = height, val 2 = chainage
- label_n_pre_text: text
- label_n_mid_text: text
- label_n_post_text: text
- label_n_textstyle: textstyle // textstyle to use
- label_n_no_decimals_1: integer // number of decimal places in val 1
- label_n_no_decimals_2: integer // number of decimal places in val 2

If the number of decimal places is greater than zero (> 0), then any trailing zeros after the decimal point are removed.

If the number of decimal places is less than zero (< 0), the absolute value is taken as the number of decimal places and no trailing zeros after the decimal point are removed.

Example of Labelling Chainage and Heights

// label the crests with chainage on one line
// and height (elevation) on the next
label_1_type: 2 // crest
label_1_y_mode: 2 // above string
label_1_y: 10
label_1_angle: 0
label_1_justification: 1 // centre
label_1_size: 4
label_1_colour: red
label_1_value_mode: 1 // chainage
label_1_pre_text “CH “
label_1_no_decimals_1 1

label_2_type 2 // crest
label_2_y_mode 2 // above string
label_2_y 2
label_2_angle 0
label_2_justification 1 // centre
label_2_size 4
label_2_colour red
label_2_value_mode 2 // height
label_2_pre_text “EL “
label_2_no_decimals_1 1

Please continue to the next section 44.3.15 Labelling With Symbols.
44.3.15 Labelling With Symbols

Symbols can be placed at certain points given by symbol_n_type.

The symbol is drawn in a square box centred on (0,0) with sides of length two millimetres. That is, the box co-ordinates are (-1,-1), (1,1), (1,-1), (-1,-1).

Up to twenty sets of symbol labelling can be done.

```
symbol_n_type  0 // chainage of vip, height of vip
               1 // chainage of vip, height of primary
               2 // crest
               3 // sag
               4 // vtp
               5 // hcp
               6 // change of grade
```

If symbol_n_type is missing, then the set is ignored.

```
symbol_n_y_mode  0 // height in mm above boxes
                  1 // above height value (default)
                  2 // above primary height

symbol_n_y  mm // distance above point given by mode
symbol_n_angle  degrees // rotation about point
symbol_n_x  mm // distance along from point
symbol_n_size  mm //
symbol_n_colour  colour // colour of symbol
symbol_n_draw_mode  0 // cross
                      1 // upright from centre of box
                      2 // up and downright from centre of box
                      3 // square
                      4 // triangle, base at bottom
                      5 // circle
```

Example of Labelling with Symbols

```
// draw a triangle symbol at the crest
symbol_1_type  2 // crest
symbol_1_y_mode  2 // above string
symbol_1_y  0
symbol_1_angle  0
symbol_1_size  2
symbol_1_colour  red
symbol_1_draw_mode  4 // triangle
```

Please continue to the next section 44.3.16 Hatching Cut and Fill Areas.
44.3.16 Hatching Cut and Fill Areas

This option is used to hatch cut and/or fill areas between sets of tins.

For each set, the name of the two tins, the hatch linestyle, colour and separation and whether cut and/or fill regions are required are all user definable.

Up to twenty (20) separate sets of tins be hatched.

The parameters for labelling cuts and/or fill regions between tins are given by:

- `hatch_original_tin_n` // tin_name for original surface
- `hatch_new_tin_n` // tin_name for final surface
- `hatch_cut_separation_n` // distance between cut hatch lines
- `hatch_cut_angle_n` // angle in degrees of cut hatching
- `hatch_cut_colour_n` // colour of the cut hatching
- `hatch_cut_linestyle_n` // linestyle for cut hatching
- `hatch_cut_draw_sides_n` // 1 = draw sides of cut regions
- `hatch_cut_draw_original_n` // 1 = draw original tin in cut regions
- `hatch_cut_draw_new_n` // 1 = draw new tin in cut regions
- `hatch_fill_separation_n` // distance between fill hatch line
- `hatch_fill_angle_n` // angle in degrees of fill hatching
- `hatch_fill_colour_n` // colour of the fill hatching
- `hatch_fill_linestyle_n` // linestyle for fill hatching
- `hatch_fill_draw_sides_n` // 1 = draw sides of fill regions
- `hatch_fill_draw_original_n` // 1 = draw original tin in fill regions
- `hatch_fill_draw_new_n` // 1 = draw new tin in fill regions

Notes

(a) cut is when the new tin is below the original tin.
fill is when the new tin is above the original tin.

(b) cut hatching is turned off by setting `hatch_cut_separation_n` to 0.0.
fill hatching is turned off by setting `hatch_fill_separation_n` to 0.0.

Please continue to the next section 44.3.17 Labelling Cuts of Design Through Strings in a Model.
44.3.17 Labelling Cuts of Design Through Strings in a Model

The cuts that the primary string (design line) makes though any strings in user given models can be automatically labelled on the long section plots.

The height, chainage and name of the cut string can be labelled as well as a symbol. The height of tins at the same offset value can also be labelled.

The chainage position for the labelling is the chainage of the cut string.

The height position for the labelling can be specified as the

(a) top of the boxes on the long section
(b) height value of the cut string
(c) height of the primary string
(d) height of a tin.

The actual position of the label is defined relative to the above point.

Note:

Only case (b) involves the actual height of the cut string. For all other cases, only the chainage of the cut string is used. Hence for all cases except (b), the string does need to have a sensible height to be used for cuts through strings.

For example, a boundary string may have null heights but only the chainage is required and the height of the tin at that chainage can be used as the height (case (d)).

Text justification refers to the actual position and is given by

“top-left” “top-centre” “top-right”
“middle-left” “middle-centre” “middle-right”
“bottom-left” “bottom-centre” “bottom-right”

A choice of six special symbols and/or any 12d symbols can be drawn at the cut point.

The special 12d Model symbols of size one millimetre are drawn in a square box centred on (0,0) with sides of length two millimetres. That is, the box co-ordinates are (-1,-1), (1,1), (1,-1), (-1,-1).

The six special shapes are

Up to twenty five (25) separate models of strings can be cut and labelled.
Parameters for Labelling Where the Design Cuts Strings in a Model

The method for specifying which strings are to be checked for cuts is by first specifying the *model* which contains the strings, and then a *name mask* which is used to restrict the strings in the model to only those whose name matches the name mask.

Up to twenty five different sets of models and name masks can be used so that different cut sets can be labelled in different ways.

The parameters for selecting and labelling the nth set (where n can be from 1 to 25) of cuts of the design string with the strings in the model are given by:

```
cuts_n_model  model_name  // model of strings to be cut
```

The selection of the strings from the model *model_name* whose cut points are to be labelled is all the strings whose name satisfies the name mask *cuts_n_mask*:

```
cuts_n_mask  name_mask  // strings to check for cuts
```

where *name_mask* is a text string containing the name masks, each separated by one or more spaces, to test the string name against. Each mask can include wild cards and wild characters.

For example

```
cuts_1_mask  "ke*"
```

or

```
cuts_1_mask  "?bank*"
```

or, if both masks are required,

```
cuts_1_mask  "ke* ?bank*"
```

If *cuts_n_mask* is missing, then all strings in the model are used. This is equivalent to *name_mask* being "***".

All strings in the model *cuts_n_model* whose name satisfy the name mask *cuts_n_mask* are then checked for cuts with the design string, and if a cut occurs, the cut point will be labelled according to the rest of the parameters in the nth set.

The parameters for drawing a *symbol* at the cut points are

```
cuts_symbol_n_mode  0  // cross
1  // up from centre of box
2  // up and down from centre of box
3  // square
4  // triangle, base at bottom
5  // circle
6  // use a 12d symbol
```

![Predefined Symbols](image.png)

If *cuts_symbol_n_mode* is 6, then the 12d symbol is given by

```
cuts_symbol_n_style  plotsymbol  // plot symbol to draw at cut
```

Important Note

The plot symbol of name *plotsymbol* is defined in the file given by:

(a) the parameter *plot_symbols* in the ppf file
plot_symbols filename

or if plot_symbols is not defined, then
(b) in the file pointed to by the environment variable PLOT_SYMBOLS_4D
PLOT_SYMBOLS_4D filename // default plotsym.4d

or if PLOT_SYMBOLS_4D is not defined, then
(c) in the file plotsym.4d

which is searched for in the standard set up file sequence

If none of the above files are defined, or if the symbol does not exist in the above files, then it will be searched for in the standard 12d symbols file which is:
(d) either pointed to by the environment variable SYMBOLS_4D
SYMBOLS_4D filename // default symbols.4d

or if the environment variable SYMBOLS_4D does not exist, in the file, symbols.4d

The position of the symbol is given by:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cuts_symbol_n_position</td>
<td>1</td>
<td>// above point height value</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>// above top of boxes</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>// to primary string</td>
</tr>
<tr>
<td></td>
<td>101-500</td>
<td>// to tin1 or tin2 etc.</td>
</tr>
</tbody>
</table>

The symbol can be adjusted by the parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cuts_symbol_n_x</td>
<td>mm</td>
<td>// offset adjustment to position</td>
</tr>
<tr>
<td>cuts_symbol_n_y</td>
<td>mm</td>
<td>// height adjustment to position</td>
</tr>
<tr>
<td>cuts_symbol_n_angle</td>
<td>degrees</td>
<td>// rotation about point</td>
</tr>
<tr>
<td>cuts_symbol_n_colour</td>
<td>colour</td>
<td>// colour of symbol</td>
</tr>
</tbody>
</table>

and for all values of cuts_symbol_n_mode other than 6:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cuts_symbol_n_size</td>
<td>mm</td>
<td>// size of symbol, 0 don't draw</td>
</tr>
</tbody>
</table>

The value of the chainage of the cut string can be labelled using the parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cuts_chainage_n_position</td>
<td>1</td>
<td>// above cut strings height value</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>// above top of boxes</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>// to primary string</td>
</tr>
<tr>
<td></td>
<td>101-500</td>
<td>// to tin1 or tin2 etc.</td>
</tr>
<tr>
<td>cuts_chainage_n_x</td>
<td>mm</td>
<td>// chainage adjustment to position</td>
</tr>
<tr>
<td>cuts_chainage_n_y</td>
<td>mm</td>
<td>// height adjustment to position</td>
</tr>
<tr>
<td>cuts_chainage_n_angle</td>
<td>degrees</td>
<td>// rotation about point</td>
</tr>
<tr>
<td>cuts_chainage_n_size</td>
<td>mm</td>
<td>// size of text, 0 don't label</td>
</tr>
<tr>
<td>cuts_chainage_n_colour</td>
<td>colour</td>
<td>// colour of text</td>
</tr>
<tr>
<td>cuts_chainage_n_textstyle</td>
<td>text</td>
<td>// textstyle of textchainage</td>
</tr>
<tr>
<td>cuts_chainage_n_pre_text</td>
<td>text</td>
<td>// text before the chainage value</td>
</tr>
<tr>
<td>cuts_chainage_n_post_text</td>
<td>text</td>
<td>// text after the chainage value</td>
</tr>
<tr>
<td>cuts_chainage_n_justification</td>
<td>justification</td>
<td>// justification of the text</td>
</tr>
<tr>
<td>cuts_chainage_n_no_decimals</td>
<td>integer</td>
<td>// number of decimals in chainage</td>
</tr>
</tbody>
</table>
The value of a **height** at the chainage of the point can be calculated and labelled using the parameters:

- `cuts_height_n_mode`
 - 1: use height of cut point itself
 - 3: use real world height of the position of the label above the boxes
 - 100: height of primary string
 - 101-500: use height of to tin1 or tin2 etc.

- `cuts_height_n_position`
 - 1: at points position
 - 3: above top of boxes
 - 100: to primary string
 - 101-500: to tin1 or tin2 etc.

- `cuts_height_n_x`: mm
 - Chainage adjustment to position
- `cuts_height_n_y`: mm
 - Height adjustment to position
- `cuts_height_n_angle`: degrees
 - Rotation about point
- `cuts_height_n_size`: mm
 - Size of text, 0 don't label
- `cuts_height_n_colour`: colour
 - Colour of text
- `cuts_height_n_textstyle`: text
 - Textstyle of text height
- `cuts_height_n_pre_text`: text
 - Text before the height value
- `cuts_height_n_post_text`: text
 - Text after the height value
- `cuts_height_n_justification`: justification
 - Justification of the text
- `cuts_height_n_no_decimals`: integer
 - Number of decimals in height

A **label** which can include the **name** of the cut string is drawn by using the parameters:

- `cuts_label_n_position`
 - 1: above cut strings height value
 - 3: above top of boxes
 - 100: to primary string
 - 101-500: to tin1 or tin2 etc.

- `cuts_label_n_mode`
 - 0: don't include cut string name
 - 1: include cut string name in label

- `cuts_label_n_x`: mm
 - Chainage adjustment to position
- `cuts_label_n_y`: mm
 - Height adjustment to position
- `cuts_label_n_angle`: degrees
 - Rotation about point
- `cuts_label_n_size`: mm
 - Size of text, 0 don't label
- `cuts_label_n_colour`: colour
 - Colour of text
- `cuts_label_n_textstyle`: text
 - Textstyle of text label
- `cuts_label_n_pre_text`: text
 - Text before the string name
- `cuts_label_n_post_text`: text
 - Text after the string name
- `cuts_label_n_justification`: justification
 - Justification of the text
The cut point can be labelled with:

- **chainage** of the cut point
- **height** of the cut point
- **height** of the x-section or tins at this offset
- **name** of the string for the cut point

Please continue to the next section 44.3.18 Labelling the Primary String Name on the Plot.
44.3.18 Labelling the Primary String Name on the Plot

The plot can be labelled with a name under the boxes area. The name is made up of concatenation the text strings:

\[
\begin{array}{ccc}
\text{plot_name_pre_text} & \text{primary-string-name} & \text{plot_name_post_text} \\
\end{array}
\]

The plot name is positioned under the boxes.

\[
\begin{array}{c}
\text{plot_name_string_name} \\
\text{plot_name_pre_text} \\
\text{plot_name_post_text} \\
\text{plot_name_textstyle} \\
\text{plot_name_size} \\
\text{plot_name_colour} \\
\text{plot_name_x_offset} \\
\text{plot_name_y_offset} \\
\end{array}
\]

The \text{plot_name_x_offset} is measured from the beginning of the height boxes.

The default for \text{plot_name_x_offset} is centred on heights area.

The \text{plot_name_y_offset} is measured from the bottom of the box area with positive being \text{down}.

Example of Labelling Primary String Name

\[
\begin{array}{c}
\text{plot_name_pre_text} \quad \text{“Long Section Plot for String”} \\
\text{plot_name_post_text} \quad \text{“”} \\
\text{plot_name_size} \quad 15 \\
\text{plot_name_colour} \quad \text{red} \\
\text{plot_name_string_name} \quad 1 \\
\text{plot_name_y_offset} \quad 30 \\
\end{array}
\]

Please continue to the next section \text{44.3.19 Labelling the Scale on the Plot}.
44.3.19 Labelling the Scale on the Plot

The plot can be labelled with the horizontal and vertical scale under the boxes area.

The scale label is made up of concatenation the text strings:

- `scale_horizontal_pre_text` followed by the horizontal scale value, then followed by `scale_horizontal_post_text`
- `scale_vertical_pre_text` followed by the vertical scale value, then followed by `scale_vertical_post_text`

The horizontal scale value is the value given by the scale parameter.

The vertical scale value is calculated from the horizontal scale and the vertical exaggeration for the section view.

The scales are positioned under the boxes.

- `scale_horizontal_pre_text`
- `scale_horizontal_post_text`
- `scale_horizontal_textstyle`
- `scale_horizontal_size` in mm
- `scale_horizontal_colour`
- `scale_horizontal_x_offset` in mm
- `scale_horizontal_y_offset` in mm
- `scale_horizontal_decimals`

- `scale_vertical_pre_text`
- `scale_vertical_post_text`
- `scale_vertical_textstyle`
- `scale_vertical_size` in mm
- `scale_vertical_colour`
- `scale_vertical_x_offset` in mm
- `scale_vertical_y_offset` in mm
- `scale_vertical_decimals`

The `scale_vertical_x_offset` and `scale_horizontal_x_offset` are measured from the beginning of the heights area.

The default for `scale_vertical_x_offset` and `scale_horizontal_x_offset` are centred on the heights area.

The `scale_vertical_y_offset` and `scale_horizontal_y_offset` are measured from the bottom of the box area with positive being down.

If the number of decimal places is greater than zero (> 0), then any trailing zeros after the decimal point are removed.

If the number of decimal places is less than zero (< 0), the absolute value is taken as the number of decimal places and no trailing zeros after the decimal point are removed.
Example of Labelling Horizontal and Vertical Scales

```
scale_horizontal_pre_text         "Horizontal Scale 1:"
scale_horizontal_post_text             ""
scale_horizontal_size                     15
scale_horizontal_colour             yellow
scale_horizontal_y_offset              60

scale_vertical_pre_text          "Vertical Scale 1:"
scale_vertical_post_text           ""
scale_vertical_size                        15
scale_vertical_colour                green
scale_vertical_y_offset                 90
```

Please continue to the next section 44.3.20 Title Block Information.
44.3.20 Title Block Information

The plot can have a standard 12d Model title block or a user defined title block.

The standard title block consists of a simple border around the plot and two lines of text in a box underneath the plot. For a user defined title block, all the line work and text is defined by the user.

Standard Title Block

For the standard 12d Model title block, there are extra parameters for two lines of text and text size and colour. The standard title block is turned on or off by the parameter `plot_border`.

```
plot_border  yes/no  // yes plots a standard title block
            // default yes

title_1     text

title_2     text

title_text_size value

title_colour  colour
```

User Title Block

For the user defined title block, the title block drawing commands are kept in a file whose name is supplied by the user. The title block drawing commands are almost identical to the linestyle drawing commands and is given at the beginning of this chapter.

Hence for a user defined title block, there are just two parameters - one to say a title block file is being used and the other to give the name of the title block file. The `plot_border` parameter should also be set to `no` so that the standard title block is not also drawn.

```
use_title_file yes/no  // yes draws the title block given in title_file
                 // default no

title_file     filename

plot_border    no  // turn off standard title block
```

Some special plot parameters are used to pass information down to variables in a user defined title block. For example, inside the title block file it is possible to have runtime user defined text variables. The actual text values for these text variables are passed down to the title block file from the plot parameter file via the parameters `user_text_n` (n = 1,2,... 1000)

```
user_text_n    text
```

The special plot parameters are:

```
time_format   text  // format for $time

user_text_n   text  // where n = 1,2,... 1000
               // passed down to $user_text_n

title_1       text  // passed down to $title_1

title_2       text  // passed down to $title_2

start_page_number integer  // used as the starting value for $page_number. If missing,
                           // $page_number starts at 1.

start_drawing_number integer  // added to $drawing_number in title block file. If missing,
                               // $drawing_number starts at 1.

drawing_number_prefix text  // passed down to $drawing_number_prefix

drawing_number_postfix text  // passed down to $drawing_number_postfix
```

Please continue to the next section 44.3.21 Parameters that Modify Fields In the Long Plot Panel.
44.3.21 Parameters that Modify Fields In the Long Plot Panel

A number of parameters match those in the section long plot panel.

When the plot parameter file is first read, any parameters in the panel will be replaced by the values of any corresponding parameters from the parameter file.

However, if the parameter is subsequently modified in the panel, the panel value will be the value used for any plots.

The plot parameters that also occur in the section long plot panel are:

- `scale` value
- `start_chainage` value
- `end_chainage` value
- `chainage_interval` value
- `chord_arc` 0/1
- `plotter_type` text
- `plot_file` text
- `view_name` text
- `offset_model` text
- `plot_border` yes/no
- `label_depths` yes/no
- `primary_string` yes/no
- `datum_value` value
- `sheet_size` text or “width height”
- `box_text_size` mm
- `box_colour` colour
- `use_title_file` yes/no
- `title_file` filename
- `plot_border` yes/no
- `title_1` text
- `title_2` text
- `title_text_size` value
- `title_colour` colour
- `pagination` yes/no
- `pagination_length` value
- `pagination_overlap` value
- `global_textstyle` textstyle

Please continue to the next section 44.3.22 Generating Long Section Plots Without a View.
44.3.22 Generating Long Section Plots Without a View

The long section plot parameters are comprehensive enough that it is possible to completely generate a long section plot without referencing a section view, or even using the section long plot panel.

Such a ppf can be run using the plots=>plot a ppf option or from the 4D Solutions programming language, 4DML.

When a long section plot is being generated entirely from a file, an extra parameter is needed to specify whether the datum value is calculated or the datum_value parameter is used.

```
manual_datum 1 // use the datum_value parameter for the datum
              0 // ignore the datum_value and let 12d Model calculate the datum.
```

When generating a long section plot using the section long plot panel, a plot parameter file containing all the parameters needed to regenerate the plot using plots=>plot a ppf can be written out by simply giving a name for the ppf file in the plot parameters write field of the section long plot panel.

Notes
1. A warning is given if the keyword in a plot parameter file does not exist.
2. A warning is also given if the key word pair is defined more than once in a ppf.

Please continue to the next section 44.3.23 Example of a Long Section Plot Parameter File.
44.3.23 Example of a Long Section Plot Parameter File
// ppf file to generate longsection example

section_long_plot "diag2" {
// plot margins
left_margin 0
right_margin 0
top_margin 0
bottom_margin 30
number_of_decimals 2 // no dec places for heights
title_box_text_size 7
// annotation for title text and heights etc.
// chainages
chainage_title "DESIGN"
chainage_title_2 "CHAINAGE"
chainage_colour "red"
// primary string
primary_title "DESIGN"
primary_title_2 "CENTRELINE"
primary_colour "grey"
primary_title_colour "yellow"
// primary label modes are
// 0 - last box before blank boxes
// 1 - after chainage annotations
primary_label_mode 0
// uprights
uprights_colour "yellow"
/uprights_draw_mode 0 // none
uprights_draw_mode 100 // to primary
uprights_y 200
// gap factor for staggering
stagger_gap_factor 1.3
stagger_gap_top 5.0
stagger_gap_bottom 2.0
stagger_mode 1
// datum parameters
datum_text_size 6
datum_colour brown
datum_name "DATUM"
datum_above_gap 15
datum_below_gap 15
datum_y -2
// 0 for bottom text justification
// 1 for top justification
box_text_justification 1
// draw lines around annotation at bottom of plot
// 0 - don’t draw them
// 1 - do draw
// 2 - draw box around label text as well
// plus many others
draw_box_mode 2
// tin titles and depth labels
// label = 0 for no label, 1 for label

```
tin_1_label 1 // label natural surface
tin_1_title "NATURAL"
tin_1_title_2 "SURFACE"
tin_1_title_colour yellow
tin_1_colour "green"
tin_1_depth_label 0 // don’t label depth to natural surface
tin_1_depth_title "CUT / FILL"

tin_2_label 0 // don’t label sub-surface
tin_2_depth_label 1 // label depth to sub-surface
tin_2_title "SUB"
tin_2_title_2 "SURFACE"
tin_2_title_colour yellow
tin_2_colour "green"
tin_2_depth_title "CUT / FILL"
tin_2_depth_title_2 "TO SUB-SURFACE"
```

// number of blank boxes at the top
// of the plot for user annotations
number_of_blank_boxes 1

// chainages to include for heights labelling
// 0 don’t use, 1 use
// include the chord-arc points?
chord_arc 0

// include the horizontal critical points?
chainage_label_hcp 1

// include horizontal ip’s with no curves?
chainage_label_hip 0

// include the vertical tangent points?
chainage_label_vtp 0

// include the vips?
chainage_label_vip 0

// include the crests?
chainage_label_crest 0

// include the sags?
chainage_label_sag 0

// include change of grade
chainage_label_grade_change 0

// don’t include bubble chainages
chainage_merge_bubbles 0
// Quick geometry - by default the geometry annotation
// are those of the view
// if they are zero no annotations are performed
horizontal_geometry_y 60
horizontal_geometry_arrow_text_size 4
horizontal_geometry_arrow_height 3
horizontal_geometry_arrow_text_size 3
horizontal_geometry_arrow_colour red
horizontal_geometry_label_text “Quick HG”
horizontal_geometry_label_text_colour green
horizontal_geometry_label_text_size 6

vertical_geometry_grade_y 0
vertical_geometry_length_y 0

// Extensive vertical geometry annotations
v_g_1_type 1 // curve
v_g_1_value_mode 1 // chainage length
v_g_1_label_y 45
v_g_1_height 4
v_g_1_label_offset -2
v_g_1_label_text “VG Curves”
v_g_1_text_offset 2
v_g_1_label_text_size 6
v_g_1_pre_text “”
v_g_1_post_text “ L”
v_g_1_gap 0
v_g_1_draw_mode 8
v_g_1_text_size 4

v_g_2_type 1 // curve
v_g_2_value_mode 3 // K value
v_g_2_label_y 45
v_g_2_height 1.5
v_g_2_label_text “”
v_g_2_text_offset -5
v_g_2_pre_text “”
v_g_2_post_text “ K”
v_g_2_gap 0
v_g_2_draw_mode 1
v_g_2_text_size 4

v_g_3_type 0 // grade
v_g_3_value_mode 2 // 1 in grade
v_g_3_between_mode 1 // between vtp’s
v_g_3_label_y 30
v_g_3_height 4
v_g_3_label_offset -2
v_g_3_label_text “VG Grades”
v_g_3_label_text_size 6
v_g_3_text_offset 2
v_g_3_pre_text “1 in “
v_g_3_post_text “”
v_g_3_gap 0
v_g_3_draw_mode 8
v_g_3_text_size 4
v_g_4_type 0 // grade
v_g_4_value_mode 4 // chainage length
v_g_4_between_mode 1 // between vtp’s

v_g_4_label_y 30
v_g_4_height 1.5
v_g_4_label_text ""
v_g_4_text_offset -5
v_g_4_pre_text ""

v_g_4_post_text “L”
v_g_4_gap 0
v_g_4_draw_mode 1

v_g_4_text_size 4
// label the crests with chainage on one line
// and height (elevation) on the next

label_1_type 2 // crest
label_1_y_mode 2 // above string
label_1_y 10
label_1_angle 0
label_1_justification 1 // centre
label_1_size 4
label_1_colour red
label_1_value_mode 1 // chainage

label_1_pre_text “CH “

label_2_type 2 // crest
label_2_y_mode 2 // above string
label_2_y 2

label_2_angle 0

label_2_justification 1 // centre
label_2_size 4
label_2_colour red

label_2_value_mode 2 // height
label_2_pre_text “EL “

label_2_no_decimals_1 1

label_3_type 2 // crest
label_3_y_mode 2 // above string

label_3_y 18

label_3_angle 0

label_3_justification 1 // centre
label_3_size 4

label_3_colour red

label_3_value_mode 0 // no values

label_3_pre_text CREST
// Draw bubbles at the horizontal critical points:
// chainages to include for bubbles numbering
// 0 don’t use, 1 use
chainage_bubbles 1
bubble_label_hcp 1
bubble_label_vip 0
bubble_label_vtp 0
bubble_label_crest 0
bubble_label_sag 0
bubble_label_grade_change 0

bubble_radius 10
bubble_colour cyan
bubble_text_size 5
bubble_text_colour red

bubble_upright_distance 30
bubble_mode 1
bubble_draw_upright 1

plot_name_pre_text “Long Section Plot for String”
plot_name_post_text “”
plot_name_size 15
plot_name_colour red
plot_name_string_name 1
plot_name_y_offset 30

scale_horizontal_pre_text “Horizontal Scale 1:”
scale_horizontal_post_text “”
scale_horizontal_size 15
scale_horizontal_colour yellow
scale_horizontal_y_offset 60

scale_vertical_pre_text “Vertical Scale 1:”
scale_vertical_post_text “”
scale_vertical_size 15
scale_vertical_colour green
scale_vertical_y_offset 90

// ******** panel data ********
view_name 4
plotter_type model
plot_file "diag2"

start_chainage 0
end_chainage 801

chainage_interval 25

sheet_size "1000 800"
scale 1000.0

primary_string yes
label_depths no
box_text_size 5
box_colour green
datum_value 50
offset_model ""
plot_border "no"
title_1 "Title 1"
title_2 "Title 2"
title_text_size 2.5
title_colour "magenta"

Please continue to the next section 44.5 #Include in Plot Parameter Files.
44.4 Pipeline Plot Parameter File

The pipeline plot option is used to make special long section plots for a network of pipeline strings.

Some of the look of the pipeline long section plot can be controlled from the plot pipeline network panel itself, however a wider selection of control parameters is available by using a pipeline long plot, plot parameter file.

The pipeline long section plot parameters are placed in a file with ending .ppf. Each parameter consists of a parameter name followed by one or more spaces and then the parameter value. There is only one parameter per line.

Anything on a line after a double forward slash // is considered to be a comment.

The set of all parameters for the pipeline long section plot is enclosed within a set of curly brackets {} with the header

```
pipeline_long_plot     "plot set name"
```

before the curly brackets.

That is,

```
pipeline_long_plot     "plot set name" {
    plot parameters
    one per line
}
```

If there is more than one pipeline_long_plot parameter set in the file, only the first set is used. There may also be parameter sets for other plot types such as section_x_plot in the same file. The other sets will be ignored when doing a pipeline long section plot.

44.4.0.1 Plot Sheet Layout

The plot sheet is considered to have only positive co-ordinates with the origin (0,0) in the left hand corner. The units for the plot are millimetres.

The overall size of the plot sheet is given by either a defined sheet size, or by the width and height of the plot given in millimetres and separated by one or more spaces.

```
sheet_size       text     // sheet name, or
        "mm     mm"     // sheet size: width     height
```

The sheet size name and width and heights can be specified by the user in a file named sheet_sizes_definitions which is in the normal set up areas, or is pointed to by the environment variable

```
SHEET_SIZES_4D       file     // file of plotter sheets sizes
```

The long plot is then positioned within the plot sheet by giving the margins

```
left_margin       mm
right_margin      mm
top_margin        mm
bottom_margin     mm
```

The (left_margin,bottom_margin) defines the left hand corner position of the long plot on the plot sheet.

The right_margin and top_margin need not be set and if missing, will be calculated from the other plot parameters defining the plot layout.

The pipeline long section plot will break an individual plot up if it doesn't fit across the sheet. There can be one or more rows of plot on the same sheet.
The top row is done first, followed by the second top row, then the third and so on until the bottom row. If there is only one row, it is considered to be the bottom row.

When a sheet is full, a follow on sheet is created.

As soon as one pipeline string is completed, the next pipeline string in the network model is plotted beginning on the same row as the previous pipeline string and with a horizontal gap of size \texttt{horizontal_plot_gap} between the plots. If there is not enough room on the row to start the next plot, it will begin on a new row.

The position of the left hand bottom corner of the first plot in the bottom row is given by the parameters, \texttt{left_margin} and \texttt{bottom_margin}.

If there are two or more rows of plots, the position of the first plot in each row is given by adding multiples of the \texttt{(plot_height+vertical_plot_gap)} to the \texttt{bottom_margin}.

\begin{verbatim}
 network_model text // model of pipeline strings
 left_margin mm // Position of the left hand bottom
 bottom_margin mm // corner of first plot in the bottom row.
 only_one_line 0 // more than one row on a sheet
 1 // only one row of plot on a sheet
 plot_height mm // total height of a plot row. It doesn't
 // includes the vertical_plot_gap.
 horizontal_plot_gap mm // gap between plots on same row
 vertical_plot_gap mm // gap between rows of plots
\end{verbatim}

The pipeline long plot itself consists of seven areas. From the bottom up, they are boxes, below datum, bottom stagger, graph, top stagger, arrow 4 area and top.

The boxes area is where the chainages and various values for the pipeline strings are labelled.

The below datum area is a region between the boxes area and the datum line.
The **bottom stagger area** is where the upright line staggers occur before going up from the boxes area to the graph area.

The **graph area** is the area where the actual plots of the strings are drawn.

The **top stagger area** is where the upright line staggers occur above the graph area.

The **arrow 4 area** is an extension of the uprights above the top stagger area to allow for the drawing of arrows where the arrows go between the staggered uprights above the graph area.

The **top area** is an annotation area above the arrow 4 area (the top of the plot) and is used for pegs and deflection angles.

Apart from information labelled in the boxes and top areas, the pipeline long section plot can place arrows between ips for other information such as

(a) pipe grade
(b) vertical geometry
(c) horizontal geometry

Also the chainages where services cross the pipeline line are automatically labelled.

44.4.0.2 Chainages, Staggering and Uprights

For the pipeline plot, the labelling of pipe invert levels, pipe invert, depth to invert, pipe grade and natural surface level are done at the chainages:

(a) pegs given by the peg_interval
(b) horizontal and vertical deflection points
(c) points in the specials model
(d) crossing services

The points in the specials model are projected onto the pipeline string and the chainages used for labelling. If the point is a 4d string, then the text at the point is used as a text label at the top of the plot.
The peg interval and specials model are given by the parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>peg_interval</td>
<td>world-units // distance between pegs</td>
</tr>
<tr>
<td>specials_model</td>
<td>text // model name</td>
</tr>
</tbody>
</table>

Uprights, or leader lines, are drawn from the values at the bottom of the plot to the top of the plot for cases (a), (b) and (c), or to the crossing service in the graph area for case (d).

If the text values are placed at the real chainage positions at the bottom of the plot, text overwriting can easily occur if the chainages are very close together.

To prevent such overwriting, the text can be staggered.

That is, if the text is going to overwrite a previous text value, the next text value is actually moved along until there is no overwriting.

Since the text is no longer at the correct chainage position, the uprights to the pegs and services start at the text position and then bend back to the correct chainage position on the plot. The region where the bending occurs is called the stagger area.

For the pipeline plot, there is an area below the graph where the uprights bend backwards from the staggered text position to the real chainage position (bottom stagger area).

There is a second area above the graph where the uprights bend forwards from the real chainage position to the staggered text position (top stagger area).

Hence annotation above the top stagger area will line up with the staggered values below the bottom stagger area.

The stagger area below the graph area is defined by

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>stagger_height_1</td>
<td>mm // distance from the top of datum to the</td>
</tr>
<tr>
<td></td>
<td>// start of the staggers</td>
</tr>
<tr>
<td>stagger_height_2</td>
<td>mm // distance over which stagger occurs</td>
</tr>
<tr>
<td>stagger_gap_bottom</td>
<td>mm // distance from end of staggers to the</td>
</tr>
<tr>
<td></td>
<td>// bottom of the graph area</td>
</tr>
</tbody>
</table>

The stagger area above the graph area is defined

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>stagger_gap_top</td>
<td>mm // distance from top of the graph area to</td>
</tr>
<tr>
<td></td>
<td>// the start of the staggers</td>
</tr>
<tr>
<td>stagger_height_3</td>
<td>mm // distance over which stagger occurs</td>
</tr>
<tr>
<td>stagger_height_4</td>
<td>mm // distance from end of staggers to the</td>
</tr>
<tr>
<td></td>
<td>// bottom of above upper staggers area</td>
</tr>
</tbody>
</table>

The distance to be left for text to avoid overwriting is:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>horizontal_text_gap</td>
<td>mm // minimum distance to leave for text</td>
</tr>
<tr>
<td></td>
<td>// after peg values</td>
</tr>
<tr>
<td>services_text_gap</td>
<td>mm // minimum distance to leave for text</td>
</tr>
<tr>
<td></td>
<td>// after service values</td>
</tr>
</tbody>
</table>

When staggering occurs, it is possible for the values area to be longer than the graph area.

For the uprights that are drawn from the text to the pegs, specials and services:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>line_colour</td>
<td>colour // colour of uprights to the pegs and</td>
</tr>
<tr>
<td></td>
<td>// specials</td>
</tr>
<tr>
<td>service_line_colour</td>
<td>colour // colour of upright to the crossing</td>
</tr>
<tr>
<td></td>
<td>// services</td>
</tr>
<tr>
<td>service_text_colour</td>
<td>colour // colour of the name of the service.</td>
</tr>
<tr>
<td>service_text_size</td>
<td>mm // size of the service text.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>service_il_text_size</td>
<td>mm // size of the service invert level text.</td>
</tr>
</tbody>
</table>
service_il_textstyle text // textstyle of the service il text
service_il_text_colour colour // colour of the service il text

Label vertical geometry:
v_g_text_size mm // size of the vertical geometry text
v_g_textstyle text // text style of the vertical geometry text
v_g_text_colour colour // colour of the vertical geometry text

Label horizontal geometry:
h_g_text_size mm // size of the horizontal geometry text
h_g_textstyle text // textstyle of the horizontal geometry text
h_g_text_colour colour // colour of the horizontal geometry text

Label pegs:
peg_text_size mm // size of the peg label
peg_textstyle text // text style of the peg label
peg_text_colour colour // colour of the peg label

Label special chainage:
chainage_special_text_size mm // size of the special chainage text
chainage_special_textstyle text // textstyle of the special chainage text
chainage_special_text_colour colour // colour of the special chainage text

44.4.0.3 Boxes Area

The pipeline string values of chainage, invert level, depth to pipe invert or depth to top of pipe, grade and natural surface level can be labelled in the pipeline long section plot with one line of title, and the actual values given at the chainage of each peg in the pipeline string.

The **titles** for the string values, are drawn in the **titles area** of the **boxes area** and the values are drawn in the **values area** of the **boxes area**.

Consequently the boxes area is made up of rows of text consisting of:

- **title** followed by the **values** along the string.

Each row is surrounded by lines to form a box.

The **titles area** for the left plot in the bottom row starts at the co-ordinate (left_margin, bottom_margin) and each row is begun by adding the distance (plot_height + vertical_plot_gap) to the bottom_margin.

The width of the title box is given by the **plot_title_width** parameter and the height of each box is given by **plot_title_height**.

- **plot_title_width** mm // width of the label boxes.
- **plot_title_height** mm // height of each box
- **box_titles_x** mm // the distance between the left of the
 // title box and the title

The **values area** starts at the end of the label area and the values text is written at right angles to the bottom of the boxes.
The colour of the box line work is given by:

`plot_title_line_colour` colour // colour of the lines in the boxes

A default text size and colour can be specified for the title text, and the size and colour of the values. These can be overridden by parameters (given later in this section).

`plot_title_text_size` mm // size of label text in boxes
`plot_title_text_colour` colour // colour of label text in boxes
`text_size` mm // size of value text
`text_colour` colour // colour of values in boxes

The width of the **values** area is determined by the number of chainages to be labelled and whether the values are staggered to prevent over writing.

The total width of the boxes area is the width of the labels area plus the width of the values area which depends on the amount of staggering that occurs.

The order of drawing and labelling the boxes from the bottom up is

(a) chainage values
(b) natural surface heights
(c) pipe invert levels
(d) depth to invert or depth to top of pipe
(e) grade of pipeline
The text, size, textstyle and colour for the title text and values text for each box can be set by:

(a) pipeline string chainages

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>plot_title_chainage_name</td>
<td>text</td>
<td>label for chainages box</td>
</tr>
<tr>
<td>chainage_title_text_size</td>
<td>mm</td>
<td>size of chainage title text in boxes</td>
</tr>
<tr>
<td>chainage_title_textstyle</td>
<td>text</td>
<td>the textstyle of chainage title text in boxes</td>
</tr>
<tr>
<td>chainage_title_text_colour</td>
<td>colour</td>
<td>colour of chainage title text in boxes</td>
</tr>
<tr>
<td>chainage_text_colour</td>
<td>colour</td>
<td>colour of chainage text in boxes</td>
</tr>
<tr>
<td>chainage_text_size</td>
<td>mm</td>
<td>size of chainage text in boxes</td>
</tr>
<tr>
<td>chainage_textstyle</td>
<td>text</td>
<td>the textstyle of chainage text in boxes</td>
</tr>
<tr>
<td>chainage_decimals</td>
<td>integer</td>
<td>number of decimal places</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// If > 0, trailing zeros are removed after the decimal point.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// If < 0, the absolute value is taken as the number of decimal places to report</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// i.e. no trailing zeros are removed</td>
</tr>
</tbody>
</table>

(b) natural surface values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>plot_title_surface_name</td>
<td>text</td>
<td>label for the pipeline ns value</td>
</tr>
<tr>
<td>ns_title_text_size</td>
<td>mm</td>
<td>size of ns title text in boxes</td>
</tr>
<tr>
<td>ns_title_textstyle</td>
<td>text</td>
<td>the textstyle of ns title text in boxes</td>
</tr>
<tr>
<td>ns_title_text_colour</td>
<td>colour</td>
<td>colour of ns title text in boxes</td>
</tr>
<tr>
<td>ns_text_colour</td>
<td>colour</td>
<td>colour of ns text in boxes</td>
</tr>
<tr>
<td>ns_text_size</td>
<td>mm</td>
<td>size of ns text in boxes</td>
</tr>
<tr>
<td>ns_textstyle</td>
<td>text</td>
<td>the textstyle of ns text in boxes</td>
</tr>
<tr>
<td>ns_decimals</td>
<td>integer</td>
<td>number of decimal places</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// If > 0, trailing zeros are removed after the decimal point.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// If < 0, the absolute value is taken as the number of decimal places to report</td>
</tr>
<tr>
<td></td>
<td></td>
<td>// i.e. no trailing zeros are removed</td>
</tr>
</tbody>
</table>

(c) pipe invert values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>plot_title_invert_name</td>
<td>text</td>
<td>label for the invert level</td>
</tr>
<tr>
<td>il_title_text_size</td>
<td>mm</td>
<td>size of il title text in boxes</td>
</tr>
<tr>
<td>il_title_textstyle</td>
<td>text</td>
<td>the textstyle of il title text in boxes</td>
</tr>
<tr>
<td>il_title_text_colour</td>
<td>colour</td>
<td>colour of il title text in boxes</td>
</tr>
</tbody>
</table>
44.4.0.4 Below Datum Area

The **below datum area** is the region between the boxes area and the arrow_1 area. The datum line is drawn at the top of the below datum area.

The size of the below datum area is
44.4.0.5 Graph Area

The **graph area** is the area where the actual plots of the pipeline strings are drawn.

The length of the graph area is determined by the length of the pipelines string to be plotted (given by the start and end chainages) and the horizontal scale (given by scale) of the plot.

\[
\text{scale} \quad \text{value} \quad // \quad 1:\text{value} - \text{horizontal scale} \\
\text{start_chainage} \quad \text{value} \quad // \quad \"*\" \text{means use start of pipeline strings} \\
\text{end_chainage} \quad \text{value} \quad // \quad \"*\" \text{means use end of pipeline strings}
\]

The vertical exaggeration is taken from the section view specified for the plot by the parameter:

\[
\text{view_name} \quad \text{text}
\]

The tins to be sectioned through by the pipeline strings and any service models and corridor settings for the graph area are also taken from the specified section view.

The height of the graph is calculated by subtracting the height of the first five areas (i.e. don't include the top area) from the plot height.

If the plot will not fit horizontally into a row on the sheet, then the plot will be broken at an appropriate peg and the plot continued on another row.

Datum breaks at pegs are used to try and fit the plot vertically into the graph area but if the plot still cannot fit, then it will be truncated at the bottom.

The types of strings that can be drawn in the graph area of the pipeline long section plot are:

(a) **pipeline string** the strings from the network model
(b) **tins** sections of the pipeline string through any tins on the section view.
(c) **services** parts of strings from any models on the section view that cut the corridor for the section view.

The **colour** of the strings in the plot is the actual string colour for cases (a) and (c), the colour of the tin used for the section in case (b).

44.4.0.6 Arrow 4 Area

This is just an extension of the stagger lines before the top of the plot. It leaves an area that can be used for extra annotation after the plot is produced.
The height of the area is

```
plot_title_top_height    mm    // height of the arrow 4 area
```

44.4.0.7 Top Area

The *top area* is an annotation area at the top of the plot (above the arrow 4d area). It can be used for peg names and horizontal and vertical deflection angles in the pipeline.

The height of the top area is given by

```
vertical_plot_gap    mm    // size of the top area. If it is not large enough, the text will overwrite the plot in the row above.
```

44.4.0.8 Change of Direction At Intersection Points

If there is a horizontal or vertical intersection point without a curve on it, the deflection angle at the intersection point is drawn in the top area.

The text is drawn at the distance *angled_text_offset* above the top of the plot and if there is more than one angle, they are spaced horizontally by the distance *angled_text_gap* to the right.

The size and colour of the deflections is given by *text_size* and *text_colour*.

```
angled_text_offset    mm    // distance of direction text above top of the plot
angled_text_gap       mm    // distance of direction text to the right of previous text.
angled_text_angle     value // angle of direction text
```
44.4.0.9 Hatching Cut and Fill Areas

This option is used to hatch cut and/or fill areas between sets of tins.

For each set, the name of the two tins, the hatch linestyle, colour and separation and whether cut and/or fill regions are required are all user definable.

Up to twenty (20) separate sets of tins be hatched.

The parameters for labelling cuts and/or fill regions between tins are given by:

- `hatch_original_tin_n` for the name of the original surface
- `hatch_new_tin_n` for the name of the final surface
- `hatch_cut_separation_n` for the separation between hatch lines (mm)
- `hatch_cut_angle_n` for the angle of cut hatching (degrees)
- `hatch_cut_colour_n` for the colour of cut hatching
- `hatch_cut_linestyle_n` for the linestyle of cut hatching
- `hatch_cut_draw_sides_n` for drawing sides of cut regions (1 = draw sides, 0 = don't draw)
- `hatch_cut_draw_original_n` for drawing the original tin in cut regions (1 = draw, 0 = don't draw)
- `hatch_cut_draw_new_n` for drawing the new tin in cut regions (1 = draw, 0 = don't draw)
- `hatch_fill_separation_n` for the separation between fill hatch lines (mm)
- `hatch_fill_angle_n` for the angle of fill hatching (degrees)
- `hatch_fill_colour_n` for the colour of fill hatching
- `hatch_fill_linestyle_n` for the linestyle of fill hatching
- `hatch_fill_draw_sides_n` for drawing sides of fill regions (1 = draw sides, 0 = don't draw)
- `hatch_fill_draw_original_n` for drawing the original tin in fill regions (1 = draw, 0 = don't draw)
- `hatch_fill_draw_new_n` for drawing the new tin in fill regions (1 = draw, 0 = don't draw)

Notes

(a) cut is when the new tin is below the original tin.
fill is when the new tin is above the original tin.

(b) cut hatching is turned off by setting `hatch_cut_separation_n` to 0.0.
fill hatching is turned off by setting `hatch_fill_separation_n` to 0.0.
44.4.0.10 Labelling Cuts of Pipeline Through Strings in a Model

The cuts that the pipeline string makes though any strings in user given models can be automatically labelled on the long section plots.

The height, chainage and name of the cut string can be labelled as well as a symbol drawn. The height of tins at the same offset value can also be labelled.

The chainage position for the labelling is the chainage of the cut string.

The height position for the labelling can be specified as the

(a) top of the boxes on the long section
(b) height value of the cut string
(c) height of the primary string
(d) height of a tin.

The actual position of the label is defined relative to the above point.

Note:

Only case (b) involves the actual height of the cut string. For all other cases, only the chainage of the cut string is used. Hence for all cases except (b), the string does need to have a sensible height to be used for cuts through strings.

For example, a boundary string may have null heights but only the chainage is required and the height of the tin at that chainage can be used as the height (case (d)).

Text justification refers to the actual position and is given by

“top-left” “top-centre” “top-right”
“middle-left” “middle-centre” “middle-right”
“bottom-left” “bottom-centre” “bottom-right”

A choice of six special symbols and/or any 12d symbols can be drawn at the cut point.

The special 12d Model symbols of size one millimetre are drawn in a square box centred on (0,0) with sides of length two millimetres. That is, the box co-ordinates are (-1,-1), (1,1), (1,-1), (-1,-1).

The six special shapes are

Up to twenty five (25) separate models of strings can be cut and labelled.
44.4.0.11 Parameters for Labelling Where the Pipeline Cuts Strings in a Model

The method for specifying which strings are to be checked for cuts is by first specifying the
model which contains the strings, and then a name mask which is used to restrict the strings in
the model to only those whose name matches the name mask.

Up to twenty five different sets of models and name masks can be used so that different cut sets
can be labelled in different ways.

The parameters for selecting and labelling the n'th set (where n can be from 1 to 25) of cuts of
the design string with the strings in the model are given by:

```
cuts_n_model  model_name  // model of strings to be cut
```

The selection of the strings from the model model_name whose cut points are to be labelled is all
the strings whose name satisfies the name mask cuts_n_mask:

```
cuts_n_mask  name_mask  // strings to check for cuts
```

where name_mask is a text string containing the name masks, each separated by one or more
spaces, to test the string name against. Each mask can include wild cards and wild characters.

For example
```
cuts_1_mask  "ke*"
```
or
```
cuts_1_mask  "?bank*"
```
or, if both masks are required,
```
cuts_1_mask  "ke*  ?bank*"
```

If cuts_n_mask is missing, then all strings in the model are used. This is equivalent to
name_mask being "**".

All strings in the model cuts_n_model whose name satisfy the name mask cuts_n_mask are then
checked for cuts with the design string, and if a cut occurs, the cut point will be labelled according
to the rest of the parameters in the n'th set.

The parameters for drawing a symbol at the cut points are

```
cuts_symbol_n_mode  0  // cross
1  // up from centre of box
2  // up and down from centre of box
3  // square
4  // triangle, base at bottom
5  // circle
6  // use a 12d symbol
```

```
0 + 1 1 2 3 4 5 6  
|  |  |  |   |   |
predefined symbols for cut_symbol_n_modes 0 to 5
```

If cuts_symbol_n_mode is 6, then the 12d symbol is given by
```
cuts_symbol_n_style  plotsymbol  // 12d symbol to draw at cut
```

Important Note

The plot symbol of name plotsymbol is defined in the file given by:

(a) the parameter plot_symbols in the ppf file
plot_symbols filename

or if plot_symbols is not defined, then

(b) in the file pointed to by the environment variable PLOT_SYMBOLS_4D
PLOT_SYMBOLS_4D filename // default plotsym.4d

or if PLOT_SYMBOLS_4D is not defined, then

(c) in the file plotsym.4d
which is searched for in the standard set up file sequence

If none of the above files are defined, or if the symbol does not exist in the above files, then it will be searched for in the standard 12d symbols file which is:

(d) either pointed to by the environment variable SYMBOLS_4D
SYMBOLS_4D filename // default symbols.4d

or if the environment variable SYMBOLS_4D does not exist, in the file, symbols.4d

The position of the symbol is given by:

cuts_symbol_n_position 1 // above point height value
3 // above top of boxes
100 // to primary string
101-500 // to tin1 or tin2 etc.

The symbol can be adjusted by the parameters:

cuts_symbol_n_x mm // offset adjustment to position
cuts_symbol_n_y mm // height adjustment to position
cuts_symbol_n_angle degrees // rotation about point
cuts_symbol_n_colour colour // colour of symbol

and for all values of cuts_symbol_n_mode other than 6:

cuts_symbol_n_size mm // size of symbol, 0 don't draw

The value of the chainage of the cut string can be labelled using the parameters

cuts_chainage_n_position1 // above cut strings height value
3 // above top of boxes
100 // to primary string
101-500 // to tin1 or tin2 etc.

cuts_chainage_n_x mm // chainage adjustment to position
cuts_chainage_n_y mm // height adjustment to position
cuts_chainage_n_angle degrees // rotation about point
cuts_chainage_n_size mm // size of text, 0 don't label
cuts_chainage_n_colour colour // colour of text
cuts_chainage_n_textstyle text // textstyle of text chainage
cuts_chainage_n_pre_text text // text before the chainage value
cuts_chainage_n_post_text text // text after the chainage value
cuts_chainage_n_justification justification // justification of the text

cuts_chainage_n_no_decimals integer // number of decimals in chainage
The value of a **height** at the chainage of the point can be calculated and labelled using the parameters

```plaintext
cuts_height_n_mode 1 // use height of cut point itself
                    3 // use real world height of position
                    // above boxes
                    100 // height of primary string
                    101-500 // use height of to tin1 or tin2 etc.

cuts_height_n_position 1 // at points position
                         3 // above top of boxes
                         100 // to primary string
                         101-500 // to tin1 or tin2 etc.

cuts_height_n_x     mm // chainage adjustment to position

cuts_height_n_y     mm // height adjustment to position

cuts_height_n_angle degrees // rotation about point

cuts_height_n_size  mm // size of text, 0 don't label

cuts_height_n_colour colour // colour of text

cuts_height_n_textstyle text // textstyle of text height

cuts_height_n_pre_text text // text before the height value

cuts_height_n_post_text text // text after the height value

cuts_height_n_justification justification // justification of the text

cuts_height_n_no_decimals integer // number of decimals in height
```

A **label** which can include the **name** of the cut string is drawn by using the parameters

```plaintext
cuts_label_n_position 1 // above cut strings height value
                    3 // above top of boxes
                    100 // to primary string
                    101-500 // to tin1 or tin2 etc.

cuts_label_n_mode 0 // don't include cut string name
                    1 // include cut string name in label

cuts_label_n_x     mm // chainage adjustment to position

cuts_label_n_y     mm // height adjustment to position

cuts_label_n_angle degrees // rotation about point

cuts_label_n_size  mm // size of text, 0 don't label

cuts_label_n_colour colour // colour of text

cuts_label_n_textstyle text // textstyle of text label

cuts_label_n_pre_text text // text before the string name

cuts_label_n_post_text text // text after the string name

cuts_label_n_justification justification // justification of the text
```
44.4.0.12 Title Block Information

The plot can have a standard 12d Model title block or a user defined title block.

The standard title block consists of a simple border around the plot and two lines of text in a box underneath the plot. For a user defined title block, all the line work and text is defined by the user.

44.4.0.12.1 Standard Title Block

For the standard 12d Model title block, there are extra parameters for two lines of text and text size and colour. The standard title block is turned on or off by the parameter `plot_border`.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>plot_border</td>
<td>yes/no // yes plots a standard title block</td>
</tr>
<tr>
<td>title_1</td>
<td>text</td>
</tr>
<tr>
<td>title_2</td>
<td>text</td>
</tr>
<tr>
<td>title_text_size</td>
<td>value</td>
</tr>
<tr>
<td>title_colour</td>
<td>colour</td>
</tr>
</tbody>
</table>

44.4.0.12.2 User Title Block

For the user defined title block, the title block drawing commands are kept in a file whose name is supplied by the user. The title block drawing commands are almost identical to the linestyle drawing commands and is given at the beginning of 44 Text Plot Parameters.

Hence for a user defined title block, there are just two parameters - one to say a title block file is being used and the other to give the name of the title block file. The `plot_border` parameter should also be set to no so that the standard title block is not also drawn.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>use_title_file</td>
<td>yes/no // yes draws the title block given in title_file</td>
</tr>
<tr>
<td>title_file</td>
<td>filename</td>
</tr>
<tr>
<td>plot_border</td>
<td>no // turn off standard title block</td>
</tr>
</tbody>
</table>

Some special plot parameters are used to pass information down to variables in a user defined title block.

For example, inside the title block file it is possible to have run time user defined text variables. The actual text values for these text variables are passed down to the title block file from the plot parameter file via the parameters `user_text_n` (n = 1,2,... 1000)

```
user_text_n text
```

The special plot parameters are:
time_format text // format for $time
user_text_n text // where n = 1,2,... 1000
// passed down to $user_text_n
title_1 text // passed down to $title_1
title_2 text // passed down to $title_2
start_page_number integer // used as the starting value for
// $page_number. If missing,
// $page_number starts at 1.
start_drawing_number integer // added to $drawing_number in title
// block file. If missing,
// $drawing_number starts at 1.
drawing_number_prefix text // passed down to
// $drawing_number_prefix
drawing_number_postfix text // passed down to
// $drawing_number_postfix

44.4.0.13 Parameters that Modify Fields In the Plot Pipeline Network Panel

A number of parameters match those in the plot pipeline network panel.

When the plot parameter file is first read, any parameters in the panel will be replaced by the values of any corresponding parameters from the parameter file.

However, if the parameter is subsequently modified in the panel, the panel value will be the value used for the parameter.

The plot parameters that also occur in the plot pipeline network panel are:

network_model text
plotter_type text
plot_stem text
view_name text // name of section view for tins, services,
// vertical exaggeration etc.
specials_model text
peg_interval world-units
scale value
sheet_size text or “width height”
plot_height mm
start_chainage world-units
end_chainage world-units
left_margin mm
right_margin mm
top_margin mm
bottom_margin mm
plot_border yes/no

title_1 text
title_2 text

title_text_size value
title_text_colour colour
use_title_file yes/no
title_file filename
44.5 #Include in Plot Parameter Files

The plot parameter file also recognizes the CCCP preprocessor rules including #include which can be used to include other files in the plot parameter file.

The format of the #include command is:

```
#include file_name
```

Hence a block of plot parameters can be set up in a file and included in another file using #include rather than typing them all in again.

Any number of #include's can be placed in the plot parameter file.

To return to the beginning of this appendix, click on 44 Text Plot Parameters.
45 Glossary

Glossary of Common Terms

Arc

Part of the circumference of a circle.

Affine Transformation 2D

A two dimensional transformation where one set of points is fitted to another. The transformation is a six parameter transformation, i.e., x displacement, y displacement, x scale factor, y scale factor, a x-rotation and y-rotation. If more variables exist than degrees of freedom, i.e., more than three control points are used, a least squares solution is calculated.

AGD

Australian Geodetic Datum.

AGD66

Australian Geodetic Datum 1966.

AGD84

Australian Geodetic Datum 1984.

AMG

Australian Map Grid.

Angle, Cartesian Angle, Mathematical Angle

The angle of a point is the counter-clockwise angle from the x-axis (horizontal or East line) to the line joining the point to the origin.

The angle of a line is the counter-clockwise angle measured from the x-axis to the line.

Batter

A steeply sloping surface (usually the wall of an earth bank).

Bearing

The bearing of a point is the clockwise angle from the y-axis (vertical or North line) to the line joining the point to the origin.

The bearing of a line is the clockwise angle measured from the y-axis to the line.

Blend

Use to define how opaque/translucent/transparent the fill of a polygon, face or tin is.
The value of blend is between 0 and 1.
0 means the fill is totally transparent (and hence invisible) and 1 means that the fill is opaque (non-translucent) and can’t be seen through at all.

Breakline

A line on a surface joining a series of points on a common change-of-grade line. For example, the ridge top or spur, top or toe of batter, creek bank. See also *tinable segment*.

Cartesian Angle

See Angle.

Chainage

Chainage is a measure of the plan length along a string. The chainage at a point on a string is the start chainage of the string plus the plan length of the string from the beginning of the string to that point.

Circular Curve

Curves defined as an arc.

Cross Fall

The lateral grade or slope of a surface (particularly of a road pavement); usually expressed as a percentage of the proportion of metres vertically to metres horizontally.

End Chainage

The chainage of the last point of a string.

Eye-Point

For a perspective view, it is the point where the observer of the perspective view looks from.

GDA

Geocentric Datum of Australia.

GDA94

GPS

Global Positioning System.

Grade

The longitudinal slope of a surface (particularly of road pavement). Usually expressed as a cross fall percentage or as a ratio of one unit vertically to a number of units horizontally. For example, 3% or 1:10.
GRS80

Helmert Transformation 2D
A two dimensional transformation where one set of points is fitted to another. The transformation is a four parameter transformation, i.e., x displacement, y displacement, scale factor and rotation. If more variables exist than degrees of freedom, i.e., more than two control points are used, a least squares solution is calculated.

Helmert Transformation 3D
A three dimensional transformation where one set of points is fitted to another. The transformation is a seven parameter transformation, i.e., x displacement, y displacement, z displacement, scale factor and three rotations. If more variables exist than degrees of freedom, i.e., more than two control points are used, a least squares solution is calculated.

Hidden Line
Lines that are hidden between protruding landforms, etc. in perspective views.

Horizontal Alignment
The plan position of an alignment string (centre line) defined by intersection points, spirals and arcs.

Intersection Point (IP)
The point where two lines intersect. Usually horizontal intersection points (HIP) or vertical intersection points (VIP)

Invert
The lower inner surface of a drain or sewer pipe.

ISG
Integrated Survey Grid (NSW Australia).

MGA, MGA94
Map Grid of Australia 1994.

NTv2
National Transform Version 2. Special grid file format used in Australia, NZ and Canada for converting longitude and latitude.

Null Value
In three dimensional data, it is possible that a point can have a valid plan position but an undefined height. In 12d Model, there is a special null value which is used internally when height is undefined (-9.9e29).
Obvert
The upper inner surface of a drain or sewer pipe.

Parabolic Curve
Curves defined as a parabola.

Plot File
A file of plotting instructions in a format to suit a particular plotter. In 12d Model, HPGL is the default format for plot files.

Polygon
A string where the first point and the last point have the same plan co-ordinate. That is, the string closes on itself.

Screen Units
The unit of resolution for the computer screen - usually called pixels.

Shade
For a shade for a perspective view, the colour of all triangle faces are adjusted depending on the angle they make with a specified light source.

Slope
The inclination or grade of a surface or line, usually expressed as a ratio between one unit vertically to a number of units horizontally. For example, 1:10.

Snapping
A process where the element to be selected does not have to be exactly located. A tolerance is specified (the snap tolerance) and if the cursor is placed within the tolerance distance of the element then the cursor is moved directly ("snaps") to the element.

Different snap settings determine what parts of the element are considered for snapping to. For example, points on the string (point snap), drop perpendicular on the lines of an element (line snap) and grid points (grid snap).

Spiral
The special type of curve used for transitioning between straights and arcs in an alignment string (centre line). Also known as a transition curve or transition spiral.

Start Chainage
The chainage of the first point of a string.

String
A string is an ordered series of points.
Apart from the first and last point in a string, each point in a string has a unique next point (successor) and a unique previous point (predecessor). The previous and next points for a point
are called its string neighbours. The lines joining a point with its neighbours are called string links.

A string which has the same first and last point is called a closed string otherwise a string is said to be open.

Strings are very useful in the modelling of terrain and design surfaces. 12d Model uses a number of different types of strings which as defined in the Tools and Concepts.

Sweep Angle

For an arc, the sweep angle is the angle, measured in the clockwise direction, between the line joining the arc start point to the arc centre and the line joining the arc end point to the arc centre.

Tangent Point

A point at which a curve touches a line or another curve such that the tangent vector at that point is the same for the two touching items.

Target-Point

For a perspective view, it is the point that the observer is looking at.

Template

Standardized cross-section which is applied to a string at defined chainage points.

MTF Modifiers

12d Model commands which modify the definition of a template, as well as create and modify strings without them even being in a template. MTF Modifiers are used in preference to defining hundreds of different templates.

TIN

Triangulated Irregular Network. A TIN is a set of triangles which do not non-overlap in plan. Each vertex of a triangle has a z-value so that the TIN represents a surface in three dimensional space made up of triangular faces. When a TIN is created from a data set, the triangles are formed so that all non-null points are vertices of triangles. If breaklines are preserved in the TIN, then triangles are constrained so that any link from a breakline string is a side of a triangle.

Tinable vertex or point

If a vertex or point is tinable, then the vertex/point is included in triangulations. If the vertex/point is not tinable, then the vertex/point is ignored when triangulating.

Tinable segment or line

If a segment or line is tinable (and both the vertices at the ends of the segment/line are tinable and the z-values not null), then the segment/line is used as a side of a triangle during triangulation. This may not be possible if there are crossing tinable segments/lines.

A tinable segment is also known as a breakline.

Note that for a segment/line to be used as a side of a triangle, then its end vertices must be tinable and the z-values not null.
Triangulation
A set triangles, which do not overlap in a plan view, created from a set of data points. See TIN.

UTM
Universal Transverse Mercator.

View
The area in 12d Model used for displaying (drawing) graphical information. In 12d Model there are three types of views - plan, section and perspective.

Vertical Alignment
The long section position of an alignment string (centre line) defined by vertical intersection points (VIP’s) and parabolic or circular curves.

WGS84

World Units
The fundamental units used in 12d Model - usually metres.
Index

- on view 1334, 1337, 1341

Symbols

* on view 1333, 1334, 1337, 1340, 1341
#define 5065
#include 7482
#include 5065, 5066, 7482
+ on view 1333, 1337, 1340
$drawing_number 5955
$drawing_number_postfix 5955
$drawing_number_prefix 5955
$end_chainage 5955
$horizontal_scale 5955
$model_event_type 5956
$model_name 5956
$model_return_period 5956
$page_number 5955
$plot_file 5955
$project 594
$project_detail 5954, 5955
$scale 5955
$start_chainage 5955
$title_1 5955
$title_2 5955
$user_text_n 5955
$vertical_scale 5955

Numerics

12d Archive 6769
12d archive 700
12d archive data 847
12d archive input 700
12d ascii file 6769
12d Field 3039
12d field file 3044, 6907, 6971, 6972
12d Model Menu 693
12d options seach bar 2302
12d Pickup Favourites 3534
12d XML 705, 850, 6823
12d XML input 705
12d XML output 850
12d XML project data 853
12d XML project data output 853
12d XML to 12da file 708
12d XML to 12da file input 708
12d XML to 12da files 707
12d XML to 12da files input 707
12da Library 703
12DPL 6479
2 points 2 distances 2035
2 points profile 1296
2d edit menu 1850
2D Helmert transformation 7485
2d string 183, 1716, 2217, 3175
2d string edit 1862, 2251
2d super string 1716, 2217
2d to 3d 6560
3 2209
3 centre curve 2209
3d edit menu 1850
3D Helmert 6599
3D Helmert transformation 7485
3d Object Timeline 1618
3d string 183, 1719, 2220, 3176
3d string edit 1866, 2257
3d to 2d 6561
3DP Strings 3330
4d edit menu 1850
4d string 183, 1722, 2223, 3176
4d string edit 2259
7 parameters 594

A

about 12d Model 6741
absolute_extensions 5998, 7344
Acad output map file 885
acadmf file 885
ADAC XSD to 12d Pickup Codes 3538
add 3pt curve 1995
add all functions to project 6473
add all models 1316
add all models to project 1686
add all tins to a project 2986
add function to project 6473
add model 1314
add model to project 1686
add model to view 1687
add shared models 1699
add shared tins 3027
add tagged models 1320
add tin to a to model 2986
add tin to project 2985
add to a view 328
Adjust pit locations 5216
advanced templates 4190
Affine 2D 6529, 6530
Affine 2D orthogonal 6533
affine transformation 6523, 6530, 6533, 7483
AGD 7483
AGD 84) 7127
AGD66 7483
agd66/84 gda94 3219
AGD84 7483
aliases 5959
alignment edit 2231
alignment string 184, 2204
amend vertical geometry 3672
amf file 7324
AMG 3219, 7127, 7483
AMG zone 582
ANG to LSF 3209
angle 7483
cartesian 7483, 7484
mathematical 7483
angled_post_text 5272
angled_pre_text 5272
angled_text_angle 5272, 5298, 7474
angled_text_colour 5272, 5298
angled_text_gap 5272, 5298, 7474
angled_text_offset 5272, 5298
angled_text_style 5272
angles 284
annotation
grouping 1289
grade 1291
ANS 581
append 1890, 1895, 2264, 2268
pipeline 5714
append point 1987
apply 3630, 3632, 4190
defaults 3675
many defaults 3675
apply function 3630
apply label map file 1069
apply many 3642, 4190, 4191
specials 4459
apply many templates 3642
apply template 3630
Arc 7483
cartesian 184, 1725, 1726, 6920, 7483
cartesian - centre, start point and sweep angle 1728
cartesian between 3 points 2041
cartesian centres 1205
cart edit 1879
cart fitting end 3163
cart fitting start 3163
cart through last 3 points 3162
cart through next 3 points 3162
cart to chord 2021
Arc View Act/Min/Max/Avg DEM 2996
Arc View DEM 2995
Arc-to-chord correction(T correction) 7137
ArcView shape file 857
ArcView SHP 857
ArcView SHP file 715
Area 1166
area
polygon 6329
string 6329
surface 6495
area colouring 1166
arf 2938
ARNDT Editor 3848
arrow_area_1 5259, 5296
arrow_area_2 5259, 5296
arrow_area_3 5259, 5296
arrow_area_4 5259, 5296
asbuilt string vs. design string 6346
ASCII 174
aspect analysis 2938
aspect analysis 2 2938
aspect colouring 2903
aspect inquire 2958
aspect range file 2938
assigning the ADAC type 1383
assign string numbers 3178
assigning the ADAC Asset type 1383
at point 336
attachment 3161
atter
decision 4850
Attribute map file editor 1027
attributes 195, 1205, 1345, 2123
import export 6681
model 1685
project 684, 1685
string 2095
Ausgeoid98 conversion 3314
Australian conversions 3212
Australian Geodetic datum 7127
Australian Map Grid 582, 7127
Australian National Spheroid 581
AUTHORIZATION_4D 7176
auto recalc 6504
AUTO_DELETE_WALKRIGHTS_4D 7176
AUTO_MODEL_SYNC_4D 7176
AUTO_RESET_DRAG_TOLERANCE_4D 7177
AUTO_RESET_SELECT_4D 7177
AUTO_RESET_TOLERANCE_4D 7177
AUTO_TIN_SYNC_4D 7177
AutoCAD output map file 885
Autocad output map file
create/edit 885
AutoCAD plotting map file 5899
autopan perspective view locked to a section view 1225
autopan plan view 1221, 1223
Autopan section view locked to section view 1224
autopan sectionview 1222, 1224
autosync plan view 1226
avi 1273, 1274, 1276
Azimuth 7139, 7140

B
back distance 1247
background Colour 1212
backsight measurement 3060
backspace 153
base colour 2894
batter 4338, 4838, 4853, 7305, 7483
batter decision 4838, 4850
Batter Setout 3432
batter test 4342
BCC Epson 731
BCC Epson input 731
bearing 7483
 ellipsoid 7134
 grid 7134
Bearing and distance (GDA94/AGD66-84) 3241
bearing/distance 6492
bearing/distance entry 3315, 3317
Bearing/distance label 3249
bearings 284
bearings intersect 2035
between point 1988
big endian 179
billboards
 horizontal 1568
BISECTORS_4D 7177
blend 7483
block controls 5194
block delimiter 6934
Bloss transition 6796, 6808, 7168
bmp 2148
bold contours 2907
bore holes 4176
bottom_border_gap 6000, 6095, 7341, 7399
bottom_margin 5244, 6001, 6096, 7341, 7399, 7465, 7466
bottom_sub_plot_gap 6003, 7342
boundary 2892
Bowditch 3182, 3201, 3267, 3270, 3271, 3277
box
 enter chainage 227
 enter relative vertex number 228
 enter vertex number 227
 enter vip number 227
box_colours 5248, 5288, 5295, 5308, 6019, 6098, 7359, 7404
box_extension_mode 6028, 7360
box_gap 6101, 7403
box_height 5248, 5295
box_line_draw_mode 6026, 6106, 7360, 7405
box_line_mode_n 6026, 6106, 7360, 7406
box_side_colour_1 6024, 6104, 7359, 7404
box_side_colour_2 6024, 6104, 7359, 7404
box_side_colour_3 6104, 7405
box_side_colour_4 6025, 6104, 7359, 7405
box_side_colour_5 6025, 6104, 7359, 7405
box_side_colour_6 6025, 6104, 7359, 7405
box_side_colour_7 6025, 6105, 7359, 7405
box_side_colour_8 6025, 6105, 7359, 7405
box_size_n 6102, 7403
box_text_colours 5248, 5295
box_text_justification 6023, 6102, 7357, 7358, 7403
box_text_left_justify 5249
box_text_side 5249
box_text_size 5248, 5288, 5295, 5308, 6102, 7403
box_titles_x 6022, 6101, 7357, 7403, 7469
box_width 5248, 5295
boxing 3642, 3736, 3749, 4449, 4749, 5069
copy 4759
decision 4809
drop (kerb) 4805
end 4819
goto 4815
intersect 4787
intersect advanced 4792
Left Side Interface 4821
line 4782
Right Side Interface 4824
vertex 4763
vertex advanced 4766
xfall 4770
xfall l 4775
xfall pt 4800
boxing file 4450
boxing file rename 3739
boxing many 3750
boxing many function 3740
breakline 186, 2890, 2891, 7483, 7484
breakline string 187
breakline type 186
Browse 316
browse 324
browse reset 324
bubble_chord_arc 6146, 6148, 7431
bubble_colours 5270, 6146, 7431
bubble_draw_upright 6146, 7431
bubble_end_chainage 6146, 7431
bubble_interval 6146, 7431
bubble_label_crest 6148, 7431
bubble_label_ends 7431
bubble_label_grade_change 6148, 7431
bubble_label_hcp 6148, 7431
bubble_label_hip 6148, 7431
bubble_label_sag 6148, 7431
bubble_label_tension 6148, 7431
bubble_label_vip 6148, 7431
bubble_label_vtp 6148, 7431
bubble_length 5270
bubble_mode 6147, 7431
bubble_post_text 6147, 7431
bubble_pre_text 6147, 7431
bubble_radii 5270, 6146, 7431
bubble_special_n_file 6148, 7431
bubble_start_chainage 6146, 7431
bubble_text_colours 5270, 6147, 7431
bubble_text_offset 6147, 7431
bubble_text_size 5270, 6147, 7431
bubble_text_string_name_mode 6147, 7431
bubble_textstyle 5270, 6147, 7431
buttons 134
 view 1332
by 692
byte order 178
Chainage Timeline

1. Cad Control Bar
2. Chainage
 - Chainage at a point
 - Chainage equalities
 - Chainage free design
 - Chainage query
 - Chainage timeline
 - Chainage box mode
 - Chainage box size
 - Chainage_bubbles
 - Chainage_cl_decimals
 - Chainage_colour
 - Chainage colour eq
 - Chainage_decimals
 - Chainage_decimals eq
 - Chainage equals separator
 - Chainage interval
 - Chainage label
 - Chainage label crest
 - Chainage label ends
 - Chainage label eq
 - Chainage label grade change
 - Chainage label hcp
 - Chainage label hip
 - Chainage label sag
 - Chainage label tolerance
 - Chainage label vip
 - Chainage label vtp
 - Chainage merge bubbles
 - Chainage merge tolerance
 - Chainage mode
 - Chainage n_colour
 - Chainage n_decimals
 - Chainage n_offset_mode
 - Chainage n_offset_string
 - Chainage n_size
 - Chainage n_textstyle
 - Chainage n_title
 - Chainage n_title 2
 - Chainage n_title_colour
 - Chainage n_title_size
change text 6628
character
 British pound 215
copyright 215
cubed 215
degree 215
Japanese yen 215
large diameter 215
middle dot 215
registered 215
small diameter 215
squared 215
check asbuilt string vs design string 6346
check base points 495
check breakline 2866, 2869
check control model 3323
check measurement 3060
check polygon 6550
check/clash 6542
choices 314
chord_arc 6138, 7423
circle 184, 1726, 1738
circle edit 1883
circle feature 3164
circular curve 7484
CivilCad 733
CivilCad input 733
civilcad output 899
c_l_linestyle 6040, 7349
clash detection 6544
clashes 1284
clean model 1706
clear string names 6557
clip string 2001
clipboard
 string 6681
clipping planes 1247
clone view 1328
close string 2003, 3174
closed string 182
Clothoid spiral 6795, 6808, 7168
clouds 1655
code
 operation 6971
cogo (co-ordinate geometry) 2028
color picker 345
colour 186, 187
colour inquire 2959
colour of tin 2894, 2895
colour picker 345
colour tin within polygon 2894, 2896
colour triangles 2894
colours 7160, 7169
COLOURS_4D 7178
colours.4d 5934, 7148, 7160
column header 317, 321
combined long section and plan plot 6187
combined plan plot and long section 6187
combined point scale factor 7138
command delimiter 6934
comment 4217
Comment delimiter 6937
compass 3182, 3201, 3267, 3270, 3271, 3277
compile 6480
Component library 3975
Components 3974
Conform plot tunnel 4134
Conform Tunnel 4132
conformance reports 3290, 3301
connection_il_decimals 5277
connection_il_post_text 5277
connection_il_pre_text 5277
connection_il_text colour 5277
connection_il_text_size 5277
connection_il_textstyle 5277
connection_mid_text 5275
connection_post_text 5275
connection_pre_text 5275
connection_text colour 5275
connection_text_gap 5277
connection_text_size 5275
connection_text_x 5275
connection_text_y 5275
connection_textstyle 5275
continuous mode 7230
tour colour 2920
tour increment 2906
tour reference 2907
tour string 183
touring 2906
tourts 1197, 1250, 2906
 change 2918
 fast 1197
 quick 1197
Control bars 2293
control coordinates 6524
control Easting 6524
cntrol Northing 6524
control point 6524
cntrol station 184, 3322
controls 5194
convergence 7139
cntvert 6558
 2d to 3d 6560
 3d to 2d 6561
 4d to 3d 6562
Convert ascii to binary 6308
cntvert ascii to binary 6308
convert raw 3046
convert string 2053
convert strings 6559, 6566
Convert to 12dmesh 1607
Convert to Drainage Strings 5140
cord hinge modifier 4214
cord modifier 5027
cord to string 4214
copy 4759
copy a chain 6460
copy a pvf 6457
copy boxing file 3752
copy plot frame 5872
copy project 688
copy project model 1688
copy project tin 2988
copy string 2018
copy template 3619
copy tin 2987
copy tin from a project 2988
Copy title data 6309
copy title data 6309
corner splays 2024
corridor 1284, 1293
corridor width 1284
corridor_chord_arc 7373, 7429
corridor_model_n 7373, 7429
corridor_overlap_left 7373, 7429
corridor_overlap_right 7373, 7429
corridor_width_left 7373, 7429
corridor_width_right 7373, 7429
cover 2961
create
 plot frame 5867
 plot frame seed 5880
 plot frames along string 5878
Create (Wizard) 1039
create 2d string 1716, 2217
create 3d string 1719, 2220
create 4d string 1722, 2223
create alignment string 2204
create arc 1725, 1726
create boxing 3737
create boxing file 3754
create circle 1725, 1726, 1738
Create Combined Tunnel 4129
Create Control Stations 3322
Create Culvert 5145, 5146
create data collector definition 668
create DGN output map file 873
Create feature 1033
create feature string 1743
Create from EXIF JPEG Files 1585
Create from pts and lines 5142
Create from strings 5140
Create grids 2056
Create hydrographs from peaks 5150
create label map file 885, 1046
create line 2030
create linestyle 669
create macro 6483
Create Many 1580
create map file 1074
create model 1680
create MTF file 3734
Create Network from Import 5316
Create network from import 5316
create pipe string 1745, 2226
create point 2029
create point between points 2030
create polyline string 1748, 2229
create project 686
create raster 1235
create ridge and valley lines 2954
Create Schema 1032
Create share master files 638
create string 1714, 2203
 same as 1768
create string by Xfall and Grade 3885
create super alignment string 1770
create super string 1751
create symbol 674
create text string 1758
create textstyle 678
create textstyle data favourite 681
create tin faces 2989
create triangulation 2871
Create Tunnel 4127
create/edit 7 parameter details 595
Create/edit a tunnel definition 4121
create/edit N value settings 588
create/edit projection 579
Create/Read template 5148, 5149
crest/sag points report 6316
create macro prototype file 6486
cross fall modifier 5038, 5039
cross fall report 2188
cross section
 name from string 4162
cross section filter 4171
cross section plot 1305
cross section report 6374
Cross sections 5989
cross sections 3022, 4156
 sort 4166
cross sections through tin 3022
cross-fall 7484
cross-fall modifier 5038, 5039
Crossfall Setout 3440
cross-section plot 5905
Crown Setout 3454
CUBED_CHARACTER_4D 7179
Cubic parabola transition 6795, 6808, 7168
cul-de-sac 2207
culdesac 2207
culling 1186, 1243
culvert string 3177
current measurement 6973
current point 6973
current string 6973, 7001
cursor snap 239, 241
curve 2211
CUSTOMER_LIB_4D 7179
CUSTOMER_USER_4D 7179
cut from link 4494
cut height 4491, 5048
cut height from link 4495
cut height modifier 5047, 5048
cut height to 2 strings 4514
cut height to string 4501
cut height to tin 4505
cut modifiers 4411
cut remove 4490
cut slope 4493, 5050
cut slope from link 4495
cut slope modifier 5049, 5050
cut slope to 2 strings 4514
cut slope to string 4501
cut slope to tin 4505
cut template 3611, 3616
cut template link 3607
cut tin height modifier 5051
cut tin slope modifier 5052
cut to 2 heights 4507
cut to 2 string 4512
cut to string 4497
Cut volumes sign 5724
cut width 4491, 5046
cut width from link 4495
cut width modifier 5045, 5046
cut width to 2 strings 4514
cut width to string 4501
cut width to tin 4505
cut/fill
 tick marks 2142
cut/fill marks tadpoles 2140
cuts 6567
cuts_chainage_n_angle 5284, 5304, 7449, 7478
cuts_chainage_n_colour 5284, 5304, 7449, 7478
cuts_chainage_n_justification 5284, 5304, 7449, 7478
cuts_chainage_n_no_decimals 5284, 5304, 7449, 7478
cuts_chainage_n_position 5284, 5304, 7449, 7478
cuts_chainage_n_post_text 5284, 5304, 7449, 7478
cuts_chainage_n_pre_text 5284, 5304, 7449, 7478
cuts_chainage_n_size 5284, 5304, 7449, 7478
cuts_chainage_n_textstyle 5284, 5304, 7449, 7478
cuts_label_n_x 5285, 5305, 7383, 7450, 7479
cuts_label_n_y 5285, 5305, 7383, 7450, 7479
cuts_offset_n_angle 5285, 5305, 7383, 7450, 7479
cuts_offset_n_colour 5285, 5305, 7383, 7450, 7479
cuts_offset_n_justification 5285, 5305, 7383, 7450, 7479
cuts_offset_n_no_decimals 5285, 5305, 7383, 7450, 7479
cuts_offset_n_position 5285, 5305, 7383, 7450, 7479
cuts_offset_n_post_text 5285, 5305, 7383, 7450, 7479
cuts_offset_n_pre_text 5285, 5305, 7383, 7450, 7479
cuts_offset_n_size 5285, 5305, 7383, 7450, 7479
cuts_offset_n_textstyle 5285, 5305, 7383, 7450, 7479
cuts_symbol_n_angle 5284, 5304, 7449, 7478
cuts_symbol_n_colour 5284, 5304, 7449, 7478
cuts_symbol_n_justification 5284, 5304, 7449, 7478
cuts_symbol_n_no_decimals 5284, 5304, 7449, 7478
cuts_symbol_n_position 5284, 5304, 7449, 7478
cuts_symbol_n_post_text 5284, 5304, 7449, 7478
cuts_symbol_n_pre_text 5284, 5304, 7449, 7478
cuts_symbol_n_size 5284, 5304, 7449, 7478
cuts_symbol_n_textstyle 5284, 5304, 7449, 7478
data collector 6907, 6951
 setup 3043
data collector definition 668
data collectors 668
data precision 285
data source 291
data target 312
data tip 246
data tool tip 246
DATA_COLLECTORS_4D 7179
DATA_TIPS_4D 7180
datum
 Geodetic 7136
datum_above_gap 6021, 6142, 7355, 7427
datum_above_gap_cl 6041, 7347
datum_below_gap 6021, 6142, 7355, 7427
datum_colour 5258, 5296, 6007, 6142, 7347, 7355, 7427, 7473
datum_decimals 5258, 6007, 6142, 7347, 7355, 7427
datum_gap 5258, 7473
datum_line_colour 6007, 7347, 7355
datum_linestyle 6007, 6142, 7347, 7355, 7427
datum_name 5258, 5296, 6007, 6142, 7347, 7355, 7427,
7473
datum_roundoff 6007, 6142, 7347, 7355, 7427
datum_side_cl 6041, 7347
datum_text_justification_cl 6041, 7348
datum_text_size 5258, 5296, 6007, 6142, 7347, 7355, 7427, 7473
datum_textstyle 5258, 6007, 6142, 7347, 7355, 7427, 7473
datum_title_text_colour 5258, 7472
datum_title_text_size 5258, 7472
datum_title_textstyle 5258, 7472
datum_title_x 5258
datum_title_y 5258
datum_x 5258, 6021, 6142, 7355, 7427
datum_x_cl 6041, 7348
datum_y 5258, 6021, 6142, 7355, 7427
datum_y_cl 6042, 7348
datum_value 6142, 7427
datum_value_decimals 5258, 7472
datum_value_post_text 5258
datum_value_pre_text 5258
datum_value_textstyle 5258, 7472
datum_x_decimals 5258, 7472
datum_x_post_text 5258
datum_x_pre_text 5258
datum_x_textstyle 5258, 7472
datum_y_decimals 5258, 7472
datum_y_post_text 5258
datum_y_pre_text 5258
datum_y_textstyle 5258, 7472
default values 351
DEFAULT_PLAN_SCALE_4D 7180
DEFAULT_TABLE_WIDTH_4D 7180
DEFAULT_VIEW_COLOUR_4D 7180
defaults 503
apply 3675
name settings 509
system settings 506

datum_side_cl 6007, 6142, 7347, 7355, 7427
datum_text_justification_cl 6041, 7348
datum_text_size 5258, 5296, 6007, 6142, 7347, 7355, 7427, 7473
datum_textstyle 5258, 6007, 6142, 7347, 7355, 7427, 7473
datum_title_text_colour 5258, 7472
datum_title_text_size 5258, 7472
datum_title_textstyle 5258, 7472
datum_title_x 5258
datum_title_y 5258
datum_x 5258, 6021, 6142, 7355, 7427
datum_x_cl 6041, 7348
datum_y 5258, 6021, 6142, 7355, 7427
datum_y_cl 6042, 7348
DEBUG_DONGLE_ACCESS_4D 7180
decision 5043
batter 7305
fixed slope 7305
fixed xfall 7305
go to 7306
label 7305
string offset 7305
tin decision 7305
tin width 7305
decision table 3608
decisional 7305
decisions 5043, 7305
batter 4338, 4853
batter decision 4850
batter test 4342
end 4862, 7306
fixed slope 4842
fixed xfall 4840
go to 4858
label 4857
string offset 4846
tin decision 4848
tin width 4844
undo 4859
decisions template 3611, 3615
default DPI 5898
default file endings 351, 7299
default settings 503, 506, 508, 509
default values 351
DEGREES_CHARACTER_4D 7180
defaults 503
apply 3675
name settings 509
system settings 506

default settings 503, 506, 508, 509
defaults 503
apply 3675
name settings 509
system settings 506
trash settings 508
DEGREES_CHARACTER_4D 7180
defaults 503
apply 3675
name settings 509
system settings 506
trash settings 508
DEGREES_CHARACTER_4D 7180
defaults 503
apply 3675
name settings 509
system settings 506
trash settings 508
DEGREES_CHARACTER_4D 7180
defaults 4d 7146, 7162
define 5065
DEGREES_CHARACTER_4D 7180
del 3 pt curve 1892, 1897, 2266, 2290
delete 153, 1331, 6571
function 6476
view 1561
delete 3pt curve 1996
delete 7 parameter settings 596
Delete All Attributes in a Model 5321
delete all models 1710
delete all tins 3036
Delete Attributes 5321
delete chain 6465
delete function 6476
delete many function 6477
delete model 1707
delete n value setting 591
delete N value settings 591
delete plot frame 5876
delete point 1989
delete projection 584
delete string 2004, 2201
delete template 3628
delete three point curve 1892, 1897, 2266, 2290
delete tin 3034
deleting a menu 143
deleting a panel 161
delimeter 6934
command 6934
comment 6937
offset code 6940
string 6938
DEM 736
Arc View 2995
Arc View Act/Min/Max/Avg 2996
Quantm 2998
Sokkia 3000
depth between strings report 2188
depth between tins 2962
depth from height inquire 2960
depth from string 2961
depth range file 5758, 5787
depth_decimals 5251, 7472
depth_mode 5250, 7472
depth_negative_factor 6031, 6034, 6035, 6114, 6115, 7365, 7414
depth_positive_factor 6031, 6034, 6035, 6114, 6115, 7365, 7414
depth_text_colour 5251, 7472
depth_texture_size 5251, 7472
depth_textstyle 5251, 7472
depth_title_colour 5251
depth_title_text_colour 7472
Index

depth_title_text_size 5251, 7472
depth_title_textstyle 5251, 7472
deref 1797
dererencing 1797
design 3601
design parameters 1829
design parameters table 1829
design standards 1819
design templates 1823
details 498
dgn file 875
DGN format 739
DGN input 739
DGN output map file 873, 877
create/edit 873
DGN plot seed file 5901
DGN V7 binary file 875
DGN V7 input 740
DGN V7 output 875
DGN V8 output 872
dgnmfx file 873
DIAMETER_LARGE_CHARACTER_4D 7181
DIAMETER_SMALL_CHARACTER_4D 7181
dib 2148
differential settlement 4176
digitize
 2d strings 985
 3d strings 986
 4d strings 988
 arc 990
 circle 991
digitize.4d 7148
digitizer 971
 buttons 993
 defaults 979
 register plan 976
 resume plan 978
 steps for digitizing 994
 tolerance 982
digitizer file 972
digitizers definition 995
DIGITIZERS_4D 7181
direction of string 182
direction text 203
directional pick 229
DISABLE_MTF_WARNINGS_4D 7181
display many snap 247
distance_above_pit 5271
divide
 distance between points 2032
 number of points 2032
divide - dist 2032
divide - nos 2032
DONGLE_4D 7181, 7182
DOUBLE_CONFIRM_DELETE_4D 7182
download 3044
drafting 5791
dragging a panel 157
dragging a view 167
Drainage
 FAQ 5313
drainage 5115
 programs
 Win Des 5364
drainage annotations 1287
drainage definitions 5116
Drainage Excavation Quantaties 5228, 5367, 5538
Drainage flooded width 5373
Drainage Inlet Curves to model 5322
drainage junction 5115
drainage network 5115
Drainage option 5111
Drainage plan 6278
drainage plot ppf editor 6189
drainage ppf editor 6189
Drainage quantities 5223, 5541
Drainage quantitative 5223
Drainage string 184, 5111
Drainage to Zip 5387
Drainage Utility String Editor 5207, 5517
DRAINAGE_4D 7183
DRAINAGE_FLOW_DIR_4D 7183
drainage_line_area 5265
drainage_line_arrow_area 5265
drainage_line_arrow_gap 5265
drainage_line_arrow_mode 5265
drainage_line_arrow_post_text 5265
drainage_line_arrow_pre_text 5265
drainage_line_arrow_size 5265
 drainage_line_arrow_text_colour 5265
 drainage_line_arrow_text_offset 5265
 drainage_line_arrow_text_size 5265
 drainage_line_arrow_textstyle 5265
 drainage_line_title 5265
 drainage_line_title_offset 5265
 drainage_line_title_text_colour 5265
 drainage_line_title_text_size 5265
 drainage_line_title_textstyle 5265
 drainage_line_title_x 5265
drainage_long_plot 5243
DRAINAGE_PPF_4D 5240, 7183
drainage.4d 5116
Drainage-Sewer option 5111
drape 2928, 2929
 align 2928
 alignment 2931
 alignment (macro) 2933
 strings 2928
draw tolerance 1286
draw_box_mode 5252, 6019, 6098, 7358, 7404
draw_box_side_1 6024, 6104, 7359, 7404
draw_box_side_2 6024, 6104, 7359, 7404
draw_box_side_3 6104, 7404
draw_box_side_4 6024, 6104, 7359, 7405
end area volumes 5732
end chainage 7484
end of line 5129
end_chainage 5994, 6093, 6271, 7428, 7473
endian 179
endianness 178, 179
Enter Ch Ht box 231, 1861
enter chainage box 227
enter hip number box 227
enter relative vertex number box 228
enter vertex number box 227
enter vip number box 227
Enter X Y Z box 231, 1861
entity-masks 1074
env.4d 466, 514, 7148, 7184, 7211, 7222
environment configuration 546
environment variables 7174
ENVIRONMENT_4D 466, 7183, 7222
EOL 5129
equality query 1809
error logging file 468
Euler spiral 7165
exact volumes 5758
exaggeration 1249, 1280, 1292
Excavation quantaties 5228, 5367, 5538
Exit 694
exit 6751, 6752
explode 6576
explode text 6577
explore 687
Export 3d pdf 855
Export DAE 908
Export OBJ 909
Export share index 635
Export STL 911
exported 194
extend 1288, 1891, 1896, 2265, 2269
extend ht 2265, 2269
extend point 1990
extend point by ht 1991
external sides 2974
external triangles 2974
extra_model_n 5997, 7386
extra_model_tolerance_1 5997, 7386
EXTRA_OPTIONS_4D 7184
extra_space_bottom 6046, 6144, 7371, 7401
extra_space_left 6046, 6144, 7371, 7401
extra_space_right 6046, 6144, 7371, 7401
extra_space_top 6046, 6144, 7371, 7401
extra_space_units 6046, 6144, 7371, 7401
extra_text 6016, 7351
extra_text_angle 6016, 7351, 7367
extra_text_colour 6016, 7351, 7367
extra_text_decimals 7367
extra_text_draw_mode 6016, 7351, 7367
extra_text_justify 6016, 7351, 7367
extra_text_position 7351
extra_text_post_text 7367
extra_text_pre_text 7367
extra_text_size 6016, 7351, 7367
extra_text_textstyle 6016, 7351, 7367
extra_text_x 6016, 7351, 7367
extra_text_y 6016, 7351, 7367
Extract Sewer Property Controls 5221, 6732
EXTRUSIONS_4D 7184
eye 1256
Eye/Target 1253
eye-point 7484
eye-target 1338

F
f_surface_box_size 5249
faces 1187, 1244
Factor 1217
factor 1217, 3215, 6578
fast accept 222, 224, 247
fast contours 1197, 1250
fast pick 222, 223
fast snap 247
FAST_ACCEPT_4D 7184
feature 3164
feature code 6910, 6911
feature string 184, 1743
feature string edit 1886
fence 6512, 6513
multi 6517
multi stem 6519
stem 6515
fence stem 6515, 6519
fences 1658
field codes 6910, 6972
field data
edit 3064, 3065
field file 3048, 3061
field templates 6921
file
screen layout 142, 157, 166
file box 323
file edit 1177
file endings 351, 7299
file format
12d archive 6769
12d XML 6823
colours 7160
colours.4d 7160
defaults.4d 7162
digitize.4d - digitizer definitions 995
drainage definitions 5116
eagle map 7303
groupstyle 7230, 7234
gui colours 7169
gui.def 7169
linestyle 7230, 7234
paperstyle 7230
plotters 7317
plotters.4d 7316
screen colours 7169
set ups 7158
sheets.4d 7164, 7334
symbol 7250
templates 7304
worldstyle 7230, 7234
worldstyle symbol 7250
file panel field 323
file_num_digits 5942
fill 2140
fill from link 4524
fill height 4520, 5048
fill height from link 4524
fill height modifier 5047, 5048
fill height to 2 strings 4545
fill height to string 4532
fill height to tin 4536
fill modifiers 4414
fill remove 4519
fill slope 4522, 5050
fill slope from link 4524
fill slope modifier 5049, 5050
fill slope to 2 strings 4545
fill slope to string 4532
fill slope to tin 4536
fill templates 7304
fill_worldstyle 7230, 7234
fill_worldstyle_symbol 7250
filepanel field 323
file_num_digits 5942
file_from_link 4524
fill_height 4520, 5048
fill_height_from_link 4524
fill_height_modifier 5047, 5048
fill_height_to_2_strings 4545
fill_height_to_string 4532
fill_height_to_tin 4536
fill_modifiers 4414
fill_remove 4519
fill_slope 4522, 5050
fill_slope_from_link 4524
fill_slope_modifier 5049, 5050
fill_slope_to_2_strings 4545
fill_slope_to_string 4532
fill_slope_to_tin 4536
fill_template 3607, 3611, 3616
fill_tin_slope_modifier 5052
fill_to_2_heights 4539
fill_to_2_string 4543
fill_to_string 4528
fill_to_tin 4534
fill_width 4520, 5046
fill_width_from_link 4524
fill_width_modifier 5045, 5046
fill_width_to_2_strings 4545
fill_width_to_string 4532
fill_width_to_tin 4536
fillet 2040, 2213
3_pts 2041
item_item_pt 2041
item_item_radius 2040
fillet (T) 2042
fillet (TJ) 2043
fillet_and_trim 2042
fillet, trim and joint 2043
fills 2105
filter 6580
string 6581
vertices 6584
z 6586
filter_colour 5996
filter_crestsag 5996
filter_end 5996
filter_equalities 5996
filter_function 5996
filter_interval 5996
filter_reference 5996
filter_sections 5996
filter_spcl_file 5996
filter_start 5996
filter_tangent 5996
filter_tangent_vertical 5996
filter_tolerance 5996
final_change_tin 4424
final_cut_slope 5053
final_cut_fill 3607, 3608
final_cut_fill_template 3611, 3618
final_fill_slope 5053
final_link_name 4425
final_modifiers 4417
final_slope 4420
final_width 4418
final_width_modifier 5053
finish 1860
first_level_tag 606
fit 1327, 1334, 1338, 1342
fit_view 1334, 1338, 1341
fixed 4237, 4254, 5085, 5088, 5100
fixed - modify_height_to_RL 5102
fixed - modify_width_to_RL 5102
fixed - xfall_intersect 4248
fixed_height 5037, 5079
fixed_height_from_link 5085
fixed_height_to_2_strings 5107
fixed_height_to_string 5092
fixed_height_to_tin 5097
fixed_modifiers 4236
Fixed_Position_Timeline 1623
fixed_slope 4838, 4842, 7305
fixed_template 3607, 3611, 3613
fixed_template_links 3607
fixed_to_2_heights 4379
fixed_to_2_string 5105
fixed_to_tin 4503, 5095
fixed_width 5034, 5035, 5079
fixed_width_from_link 5085
fixed_width_to_2_points 4379, 4505, 4539
fixed_width_to_2_strings 5107
fixed_width_to_string 5092
fixed_xfall 4838, 4840, 5040, 5081, 7305
fixed_xfall_crc 5083
fixed_xfall_from_link 5085
fixed_xfall_to_2_strings 5107
fixed_xfall_to_string 5092
fixed_xfall_to_tin 5097
Floating_Camera 1617
Floating_Eye 1617
floating_manhole 5187
floating_menus 136, 139
Flooded_widths (for imported flows) 5373
flow_arrows 1200, 1250, 2952
flow_direction 5113, 5115
Flyout 145
focal_distance 1247
font
 non-proportional 210
 proportional 210
fonts 7261
FONTS_4D 7186, 7261
fonts.4d 7148, 7261
forest file 645
format
 genio 746, 750
forward direction 6922, 6923
frame 1234, 5866
front distance 1247
fs_decimals 5251
fs_text_colour 5251
fs_text_size 5251
fs_textstyle 5251
fs_title_colour 5251
fs_title_text_size 5251
fs_title_textstyle 5251
fs_vertical_colour 5255
fs_vertical_decimals 5255
fs_vertical_post_text 5255
fs_vertical_pre_text 5255
fs_vertical_size 5255
fs_vertical_textstyle 5255
fs_vertical_x 5255
fs_vertical_y 5255
function
 delete 6476
 editor 6467
 order 6469
 recalc 6470
 rename 6470
 report 6327
 save 6474
 tin 2878, 2886
function keys 7277
function manger 619
FUNCTION_KEYS_4D 7187
functions 6466
 recalc 6503

G
GDA 7125, 7484
GDA 94 7127
GDA94 7484
genio format 746, 750
genio input 746
ngenio output 888
genio v3.1 output 957
GENIO_WILDCARD_4D 7187
Geocentric Datum of Australia 7127
Geocomp format 754
Geocomp input 752
geocomp output 901
Geodesy 7126
Geodetic Datum 7128
Geodimeter 7108
Geodimeter Roadline 3d 3371
Geodometer 6933
Geoid 7126
gometry annotation 1289
GIF 2148
global_textstyle 5288, 5293, 5308, 5941
goto 4838, 4858, 7306
GPS 7105, 7484
GPS Localisation 3492
Grade 1291
grade 7484
grade annotation 1291
grade_change_only 6049, 7374
grade_colour 6049, 7374
grade_decimals 6049, 7374, 7472
grade_label 6049, 7374
grade_maximum_slope 6049
grade_minimum_slope 6049
grade_minimum_width 6049, 7374
grade_minimum_width_2d 6049
grade_mode 6050, 7374
grade_offset 6049, 7374
grade_signed 7374
grade_size 6049, 7374
grade_text_colour 7472
grade_text_size 7472
grade_textstyle 6049, 7374, 7472
grade_threshold 6050, 7374
grade_threshold_mode 6050, 7374
grade_title_text_colour 7472
grade_title_text_size 7472
grade_title_textstyle 7472
gade_upper_decimals 6050, 7374
grade_upper_mode 6050, 7374
gaph area 5268
greyed panel field 150
Grid 1210
gird 1210
 rotate 250, 252, 267
gird a tin 2990
gir bearing 7134
Grid conversions 2062
gird distance 7135
Grid Setout 3451
gird setout 6588
gird snap 239, 241
Grids 2055
grip
 height 250, 252, 267
grips 249, 250, 252, 267
group 7231, 7251
groupstyle 7242
GRS80 581, 7485
GUI_4D 7187
GUI_COLOURS_4D 7187
gui.4d 7148
gui.def 7169
Guide post creator 3883

H
h_g_n_colour 6153, 7435
h_g_n_draw_mode 6153, 7434
h_g_n_gap 6153, 7435
h_g_n_height 6153, 7435
h_g_n_label_offset 6152, 7434
h_g_n_label_text 6152, 7434
h_g_n_label_text_colour 6152, 7434
h_g_n_label_text_size 6152, 7434
h_g_n_textstyle 6152, 7434
h_g_n_x 6152, 7434
h_g_n_y 6150, 7434
h_g_n_no_decimals 6154, 7435
h_g_n_offset_string 6150, 6151, 7435
h_g_n_post_text 6154, 7435
h_g_n_pre_text 6154, 7435
h_g_n_rotate 6154, 7435
h_g_n_text_colour 6154, 7435
h_g_n_text_offset 6154, 7435
h_g_n_text_size 6154, 7435
h_g_n_textstyle 6154, 7435
h_g_n_type 6150, 7434
h_g_n_value_mode 6150, 7434
h_text_colour 7469
h_text_size 7469
h_textTextStyle 7469
hardware arcs 5896
HARDWARE_ARCS_4D 7187
hatch cut angle n 5281, 5301, 7385, 7446, 7475
hatch cut colour n 5281, 5301, 7385, 7446, 7475
hatch cut draw new n 5281, 5301, 7385, 7446, 7475
hatch cut draw original n 5281, 5301, 7385, 7446, 7475
hatch cut draw sides n 5281, 5301, 7385, 7446, 7475
hatch cut linestyle n 5281, 5301, 7385, 7446, 7475
hatch cut separation n 5281, 5301, 7385, 7446, 7475
hatch fill angle n 5281, 5301, 7385, 7446, 7475
hatch fill colour n 5281, 5301, 7385, 7446, 7475
hatch fill draw new n 5281, 5301, 7385, 7446, 7475
hatch fill draw original n 5281, 5301, 7385, 7446, 7475
hatch fill draw sides n 5281, 5301, 7385, 7446, 7475
hatch fill linestyle n 5281, 5301, 7385, 7446, 7475
hatch fill separation n 5281, 5301, 7385, 7446, 7475
hatch new tin n 5281, 5301, 7385, 7446, 7475
head to tail 6591
head to tail point strings 6593
height 2121, 4210, 4491, 4520, 5079, 6595
 by plan 2239
 by section 2240
height adjustment 3196
height from link 4495, 4524, 5085
height grip 250, 252, 267
height hinge modifier 4210
height inquire 2963
height modifier 5026, 5036, 5037
height range file 5787
height scale factor 7132
height snap 242
height to 2 strings 4514, 4545, 5107
height to RL 5102
height to string 4213, 4501, 4532, 5092
height to string hinge modifier 4213
height to tin 4215, 5097
height to tin hinge modifier 4215
HEIGHT_MAX_DEFAULT_4D 7187
height_mode_cl 6044, 7353
height_text 6044, 7353
helix 6920
Helmert 2D transformation 7485
Helmert 3D transformation 7485
Helmert transformation 3182, 6523, 6596, 6599
HELP_4D 7188
HELP_BUTTONS_4D 7188
hgl_box_size 5249
hgl_colour 5268
hgl_decimals 5251
hgl_text_colour 5251
hgl_text_size 5251
hgl_textstyle 5251
hgl_title_colour 5251
hgl_title_text_size 5251
hgl_title_textstyle 5251
hidden line 7485
hidden perspective view 136
hide 1245
HIMETRIC_4D 7188
hinge 4203
hinge comment 4217
hinge modifier 4203
hinge modifiers 4190
hinge point 3630, 3633, 3643, 4203
hinge string 3630, 4203
HIP 7485
HOME_4D 7188
horizontal alignment 7485
horizontal billboards 1568
horizontal scale 5908, 5913
horizontal geometry arrow colour 6149, 7433
horizontal geometry arrow height 6149, 7433
horizontal geometry arrow text colour 6149, 7433
horizontal geometry arrow text size 6149, 7433
horizontal geometry arrow textstyle 6149, 7433
horizontal geometry label decimals 6149, 7433
horizontal geometry label text 6149, 7433
horizontal geometry label text colour 6149, 7433
horizontal geometry label text size 6149, 7433
horizontal geometry label textstyle 6149, 7433
horizontal geometry y 6149, 7433
horizontal line spacing 6023, 6102, 7358, 7403
horizontal plot gap 5245, 5293, 7466
horizontal text gap 5256, 5294, 7468
Index

house connection 5203
 type A 5133
 type A Special 5133
 type B 5134
 type C 5134
 type OB (oblique) 5135
 type Special Jump Up 5135

house_connection_il_mode 5277
house_connection_mode 5275
house_connection_width 5274, 5299
houses 1659
HP Notation 284
HP plot 836
hrf 5787
http
 //en.wikipedia.org/wiki/Industry_Foundation_Classes 913
 //www.iso.org/iso/catalogue_detail.htm?csnumber=51622 913

I

IFC Output 912
IGDS file 875
il_decimals 5251, 7472
il_text_colour 5251, 7472
il_text_color 5251, 7472
il_text_size 5251, 7472
il_textstyle 5251, 7472
il_title_colour 5251
il_title_text_colour 7471
il_title_text_size 5251, 7471
il_title_textstyle 7471
Import 2d pdf 709
imported 194
include 5065, 7482
index contours 2906
index contours 2907
Info 1858
info 1795, 5717
info snap 239, 245
Information leader 5819
input
 12d archive 700
 12d XML data 705
 12d XML to 12da file 708
 12d XML to 12da files 707
 BCC Epson 731
 CivilCad 733
 DGN 872
 DGN V8 738
 DWG/DXF 742
 DXF 837
 genio 746
 Geocomp 752
 Keays 757
 LandXML 761, 893
 MapInfo 822
 OBJ 826
template 3623
 TOT 829
 TP Setout 831, 833
typed 153
 xyz general 727, 839
 xyzs 720
 xyzs pt_no 723
input box
 Manhole type 5186
input map file 722, 733, 750, 755
input templates 1172
inquire 2067, 6602
 aspect 2958
colour 2959
depth between tins 2962
depth from height to tin 2960
depth from string to tin 2961
slope 2964
tin 2957
tin colour 2959
tin height inquire 2963
ins 3 pt curve 1891, 1897, 2266, 2290
Insert 4248
insert 4238
 plot frame seed 5879
 insert 3pt curve 1995
 insert absolute 4240
 insert cut 4412
 insert cut template 4489
 insert fill 4415
 insert fill template 4517
 insert full template 4246
 insert point 1993
 insert template 4244
 insert three point curve 1891, 1897, 2266, 2290
 inside 6519
 interactive mode 6429
 interface 3670
 interface colours 5897
 interface function 3670
 interface string 185, 3670
 Intergraph seed file 875, 880
 intersect 2034, 4787
 bearings 2035
 offset 2034
 intersect offset 2034
 intersection 2034
 intersection point (IP) 7485
 interval 4428
 interval relative 4430, 4431
 inverse flattening 7126
 invert 7485
 invert_depth_box_size 5249
 invert_height_box_size 5249
 invisible 3164
 invisible next segment 3165
 invisible previous segment 3165
 IP 7485
ISG 3219, 7127, 7485
isopachs 2923

J
join many strings 2008
join string 3174
join strings 2006
joy 1255, 1338
jpeg 2148
JPEG 2000 2148
jpg 2148
junction 5115
Junction Pit 5436
junction_angle_post_text 5273
junction_angle_pre_text 5273
junction_angle_text_colour 5273
junction_angle_text_size 5273
junction_angle_textstyle 5273
junction_name_mode 5273
junction_post_text 5273
junction_pre_text 5273
junction_text_colour 5273
junction_text_size 5273
junction_textstyle 5273
justification point 201, 203, 218

K
Keays input 757
kerb return 3666, 3667
keys 1074
kill 6488
KML 905

L
labe_mapfile file 1046
label 4838, 4857, 7305
label chainages 2135
label contours 2925
label cut 2140
label cut/fill symbols 2142
label cut/fill ticks 2142
label map file 1046
label names 2144
label string 2134
label vertices 2145
label_depths 6102, 6111
label_first_only 6022, 7358
label_heights 6102
label_manhole_type 5298
label_n_angle 6164, 7443
label_n_colour 6165, 7443
label_n_justification 6164, 7443
label_n_mid_text 6166, 7443
label_n_no_decimals_1 6166, 7443
label_n_no_decimals_2 6166, 7443
label_n_offset 6164, 7443
label_n_post_text 6166, 7443
label_n_pre_text 6166, 7443
label_n_size 6165, 7443
label_n_textstyle 6165, 7443
label_n_type 6163, 7443
label_n_value_mode 6166, 7443
label_n_x 6164, 7443
label_n_y 6163, 6164, 7443
label_n_mode 6163, 7443
label_pipe_type 5295
label_type 5994, 6019, 7346, 7357
Lambert Conformal Conic Projection 583
LandXML input 761, 893
LandXML validator 763, 764
Latitude 7128
latitude 3214, 6538
Layout Convert 968
layout input 964
layout input files 965
layout output 967
layout.4d 7148
least square adjustment 3182, 3201, 3267, 3270, 3271, 3277
least square network 3182
least squares 6524
least squares adjustment 3182
Least-square 3041
left side 4455
left_border_gap 6000, 6095, 7341, 7399
left_extension 5999, 7344, 7371, 7373
left_margin 5244, 6001, 6095, 7341, 7399, 7465, 7466
left_sub_plot_gap 6003, 7342
Leica 3328, 6998
Leica 1100 3328
Leica 1200 3332
Leica DBX to ANG 3207
Leica DNA to 12d 3210
Leica GradeSmart 3339
Leica GSI 3328
Leica LandXML 3385
Leica roadplus 16 3372
Leica roadplus 8 3372
length 337, 340, 7227, 7248
string 6329
level network 3191
LIB 4D 7189
library 7299
user 7299
line 4782
line scale factor 7138
line snap 239, 240
line string 187
line strings 186
line style
continuous mode 7230
length 7227, 7248
origin 7227, 7248
Index

vertex mode 7230
line style group 7231, 7251
line style mode 7231
line styles 7224, 7227
lineColour 7468
line_up_cl 5999, 7344
Linear Path Timeline 1621
linear regression 3324
linestyle.4d 7148, 7229
linestyle 1188
LINESTYLES_4D 7189
link clip string 2010
link delete 2010
links 182
list
 Models to Add 1314, 1333, 1337, 1340
 Models to Remove 1334, 1337, 1341
 view 1317
 Tagged Models to Add 1320
 Tagged Models to Remove 1321
 Tin Models to Add 1318
LIST_POPUPS_4D 7189
lists 153
little endian 179
locate 2037
locate chainage 2033
locate deflection 2031
locate offset 2030
lock
 function 6468
LOG_DIR_4D 7190
Long plot manager 5881
long plot ppf editor 6088
long section along a string 3017
Long section plot
 many 5915
long section ppf editor 6088
LONG_SECTION_PPF_4D 7190
Longitude 7128
longitude 3214, 6538
Longitude, latitude from grid coordinates 3243
longsection plot 1305, 5910
 Melbourne Water 5289
LOOK3D_4D 7190
loop removal 2191
lot checks 3277
lot controls 5194
LSF to 12d 3210

M
M snap 247

macro 6479
 compile 6480
 create prototype file 6486
 run 6481, 6485
 version 6487
Macro Event Timeline 1633
MACRO_INPUT_MODE 7190
macros.4d 7146
Main menu 136
Manage Schemas 1030
managers 553, 614
manger
 function 619
 model 617
 project 615
 template 620
 tin 618
 view 621
manhole_angle_text_size 5298
manhole_line_colour 5254, 5294, 5298
manhole_symbol_colour 5298
manhole_symbol_n_angle 5274, 5300
manhole_symbol_n_colour 5274, 5300
manhole_symbol_n_mode 5274, 5300
manhole_symbol_n_position 5274, 5300
manhole_symbol_n_size 5274, 5300
manhole_symbol_n_style 5274, 5300
manhole_symbol_n_type 5274, 5300
manhole_symbol_n_x 5274, 5300
manhole_symbol_n_y 5274, 5300
manhole_symbol_repeats 5298
manhole_symbol_size 5298
manhole_symbol_y_offset 5298
Manhole/Pit Schedule 5230, 5462
Manual Transform Timeline 1624
manual_datum 6142, 7457
many pans 1219, 1220
many pans delta 1219, 1220
many template file 3678
many template variables 5065
many templates file 4221
map 1146
map file 1074
 create/edit 1046, 1074
 DGN 877
 DXF output 887, 954
 Eagle 959
 Eagle binary output 961
 input 722, 733, 750, 755
map file convert 1071, 1148
Map Grid of Australia 583, 7127
MapInfo 822
MapInfo input 822
MapInfo MID/MIF file 896, 897
mapping colours to pens 5893, 5931
mask_name_n 6037, 7368
mathematical angle 7483
maximizing a panel 157
measure 6490
 at point 336
 point to point 337
 string from point 338
 string to point 339
measure point 336
measure point to point 337
measure string from point 338
measure string to point 340
measure value 6496
measures 6496
Melbourne Water 5289
Melbourne Water pfp editor 6256
Menu
 New 1764
menu 140
 12d Field 3039, 3408
 12d Model 144, 692, 693
 2d edit 1850, 2218, 2251
 2d super edit 1717
 3d edit 2221, 2257
 3d super edit 1720, 1723
 4d append 2259
 4d edit 2224, 2259
 4D Solutions 692
 7 Parameter Setting 594
 Add model 1314
 advanced edits 5184
 alignment edit 2206, 2231
 alignment utilities 2245, 5716
 append 2232
 arc edit 1728, 1879
 Billboard 1575
 Boxing 4449, 4450, 4451
 boxing 4449
 CAD 2303
 CAD arcs 2597
 CAD circles 2576
 Cad Delete 2843
 CAD fills 2735
 CAD hole 2731
 Cad Image 2740
 CAD intersect 2541
 CAD lines 2556
 CAD modify 2755
 Cad Multipick 2477
 CAD Points 2495
 CAD polygons 2629
 Cad Regression 2856
 CAD segment edits 2794
 Cad String 2799
 Cad Symbol 2692
 Cad Symbol Commands 2707
 CAD text 2644
 Cad text commands 2661
 Cad Vertex 2774
 Check/Clash 6542
circle edit 1883
cogo edit ops 2028
Connections 5198
Controls 5194
convert ops 6558
convert string to 2053
Create 4203, 4222, 4462, 4757
create 6379
create arcs 1725
create circles 1738
create ops 2029
create reduction 3039, 3047, 3409
create roads 3814, 3824
Create Rule 4836
curves 5715
cut 4411
Cut from Link 4494
Cut to 2 Strings 4512
Cut to String 4497
cut/fill marks 2140
Cuts 6567
delete 143
Delete All Templates 3629
design 3601
Design Functions 3631
DGN Output 737, 871
digitizer buttons 993
digitizer capture 984
digitizer defaults 979
digitizer menu 971
digitizer setups 973
directory *.4dm 6484
directory *.bf 3681, 3738, 3755
Directory *.mtf 3690, 3735
directory *.mtf 3681
divide 6379
drafting 5791
dragging 142
Drainage 5111
Drainage Create 5136
Drainage Defaults 5127
Drainage Edit 5138, 5180
Drainage Network Plots 5238
drainage reports 5222
Drainage Utilities 5205
dumping 142
DWG/DXF/DXB Output 879
Edit nd 1850
Edit Pipe 1746, 1749
edit reduction 3062
edit sdr 3063
edits 5181
end area volumes 5732
errors 2249
estate/lots 3756
exact volumes 5758
Explore 687
Extrusions 1587
Index

feature edit 1744, 1886
fence 6512
file i/o 695
fill 4414
Fill from Link 4524
Fill to 2 Strings 4543
Fill to String 4528
Fill to Tin 4534
fillet 6379
fillet ops 2040
filter 6580
final 4417
Fixed 4236
fixed 4237
fixed decisions 4331
Fixed from Link 5085, 5100
Fixed from String 5088
Fixed Parallel 4325
Fixed to 2 Strings 5105
Fixed to Tin 4503, 5095
floating 139
function adds 6473
function auto 6504
function deletes 6476
function saves 6474
functions 6466
functions report 6327
Grid conversions 2062
grids 2055
height 2239
help 6737
ILSAX editors 5380
Information 2067
information 225, 2067
intersect 6379
intersect ops 2034
Layouts 963, 970
Leica 3328
Leica 1100 / TP Stakeout 3328
Leica 1200 / RoadRunner 3332
Leica GradeSmart 3D 3339
Leica GSI 3328
locate 6379
macros 6479
Main 138
Manhole 5185
Map files 1045, 1073
MapINfo Output 895
Mass haul 3859
measure ops 6490
Measure Point 336
Measure Point to Point 337
Measure String from Point 338
Measure String to Point 340
measures 287, 335, 6496
model adds 1686
model deletes 1707
Model Ops 1312
model removes 1691
model saves 1693
model text 1192
model utilities 1684
models 1671, 1672
models to add 2887
more design 4174, 4179
more drainage 5311
more plot frames 5877
more roads 3959
moving 142
mtf 3678
MTF Edit 3681, 4190, 4449
MTF edit 4474
mtf edit 3679, 4487
MTF Edit More 4454
MTF Edit Settings 4482
Mtf Specials 4459
MTF Template 4408
MTF Templates 4455
null heights ops 6603
old plotting 5902
old utilities 6632
ortho 12d 4179
output 843, 846
Overlay 3799, 4148
Pan Ops 1219
pan ops 1219
Panel System 156
parabolas 5716
Perspective View 164
Pick Ops 231
pick ops 226
Pipe 5190
pipe edit 2227, 2262
pipeline 5709
pipeline defaults 5718
pipeline edit 5710, 5713
pipeline plots 5719
pipeline reports 5720
pipeline utilities 5716
plan string names for plan view 1322
Plan View 164
plot and ppf editors 5848
plot frames 5866
plot ops 5847
Plotting Setups 5888
Point Cloud Input 765
points edit 1986
Polygon 6704
polyline append 2264
polyline edit 1889, 2230, 2264
polyline utilities 1891, 2266
pop-up 153, 314
Products 947
Profiling 1294, 1341
Project Details 496
Project Management 502
Project N values 586
Project Projections 577
Project Workspace 597
Project Workspace Load 599
projects 481, 685
Properties 2072
Rasters 2147
recalc 6470
Recalc Chains 6386
recalcs 6503
Report Utilities 6342
Rivers 5619
roads 3811
run chain 6511
SDR Code Edits 3065
SDR Point Edits 3159
SDR String Edits 3172
SDR String Ordering 3158
SDR Target Edits 3178
Section View 164
Select Symbol Data 220
Select textdata 216
setout 3351
set-out report 6330
shared tins 3024
sharing 1696
snap modes 238
snaps 6377
snaps (vert) 6378
snaps cogo 6379
snaps ops 6376, 6382
sort 1554, 1676, 1678
Special Chainages 4459
String Create Old 2203
string create ops 1714
String Drive 1261
string drive 1261, 1266, 1271
string labelling 2134
String Movie 1271
string reports 6313
string utilities 2186
String Walk 1266
Strings 1711, 4462
strings edit 1999
Super Alignment Edit 1922
Super Append 2268
Super Edit 1756, 1894, 2268
Super Segment 2280
super string utilities 2290
super strings 2097
Super Vertex 2269
survey 3037
survey adjustments 3181
Survey Adjustments Utilities 3207
survey conformance 3289
survey conversions 3211
survey extras 3313
tear away 139
template adds 3621
Template Boxing 3736
Template Deletes 3628
template list 3609, 3610
Template Output 1173
template removes 3624
Template Saves 3626
template utilities 3621
Templates 1171
text and tables 5812
text edit 1759, 1983
texts edit 2045
tin adds 2985
tin analysis 2936
tin aspect 2937
tin colouring 2894
tin contours 2905
tin create 2871
tin deletes 3034
Tin DEMs 2994
tin drape 2928
tin inquire 2957
tin list 2862
tin null 2969
tin removes 3001
tin saves 3006
tin sections 3016
Tin Settings 1197
tin settings 1250
tin slope 2941
tin utilities 2984
Toggle
Plan View 1185
toggle 1334, 1338, 1341, 1342
perspective view 1242
section view 1283
Topcon Outputs 3339
Track 4103
Track Label 4117
Track Plot 4113
Track Turnouts 4105
Traffic Islands 3876
Trarr 3837
traverse spreadsheet 3235, 3267
triangle ops 2861
Trimesh Volumes 5777
User 6639, 6640, 7283
user 7206
utilities 6375
utilities (4d) 2260
utilities A-G 6375
utilities H-Z 6375
vector 2037
View 1180, 1332, 1333, 1336, 1337, 1340
view 1332, 1549
Plan View 1181
section view 1281
View Create 1556, 2198
view ops
 perspective view 1239
View Plotting 1339, 1342
view plotting 1335
 section view 1302
view settings
 perspective view 1240
 Plan View 1182
 section view 1282
View Utilities 1226, 1261, 1306
view utilities 1226, 1261, 1306, 2186
visualisation 1565
Visualise Utilities 1654
volumes 5723
walk-right 140
window 6735
X-Sections 4156
Xtra snaps 6381
XYZ Input 719
XYZ Output 859
Zoom Ops 1214, 1215
zoom ops 1214
menu map 7212
menu option
 Line marking (New) 1661
 Subgrade Intersect Function 3969
menu title area 140
menuview system 165
mesh 1201, 1250, 3018
Mesh Library 1600
Meshes 1600
meta data 195
 alignments 2203
 Super Alignments 1769
mf file 1074
mft
 cut slope to tin 4505
 cut width to tin 4505
 fill slope to tin 4536
 fill width to tin 4536
mft shift 4457
MGA 3219, 7127, 7485
MGA zone 583
MGA94 7485
MID/MIF file 896, 897
MIDDLE_DOT_CHARACTER_4D 7190
minimizing a panel 157
minimizing a view 167
mode 7231
model 186, 188, 1671
 add 1314
 clean 1706
 create 1680
 delete 1707
 global rename 1682
 remove 1317
 rename 1681
 save 1693
 model attributes 1685
 model field 328
 model info 1675
 model info table 1676
 model manger 617
 model order 1322
 model panel field 328
 model sharing 1697
 model snap 244
 model strings 1295
MODEL_FOR_TIN_PREFIX_4D 7191
model_of_frames 6306, 7337
model_to_plot 5994, 6093, 7341
MODEL_VIEW_WALKRIGHTS_4D 7191
models
 add all 1316
 project 1673
 remove all 1318
 removed 1674
models to back 1325
models to front 1324
models transfer 1563
modifier
 cross fall 5038
 cross fall crc 5039
 cut height 5047
 cut height from link 5048
 cut slope from link 5050
 cut tin slope 5052
 cut width 5045
 cut width from link 5046
 fill height 5047
 fill height from link 5048
 fill slope from link 5050
 fill tin height 5051
 fill tin slope 5052
 fill width 5045
 fill width from link 5046
 height 5036
 height from link 5037
 string 4470
 tin cut height 5051
 tin cut slope 5052
 tin fill slope 5052
 tin height 5041, 5051
 tin xfall 5041
 width 5034
 width from link 5035
 xfall 5038
 xfall crc 5039
 xfall from link 5040
modifiers 4190, 4221
modifiers and templates file 3642, 4190
modify
 tin decision 4354
mouse 134
mouse buttons
LB 134
left 134
MB 134
middle 134
RB 134
right 134
move point 1994
move string 2018
movie 1271, 1275
MOVIE_4D 7191
moving a menu 142
moving a panel 157
moving a view 167
MS_SEEDFILES_4D 7191
MTF
fixed - parallel 4325
mtf 3642
Absolute 4301
change decision 4409
comment 4217
cut - insert cut template 4517
cut height 4491
cut height from link 4495
cut height to 2 strings 4514
cut height to string 4501
cut height to tin 4505
cut remove 4490
cut slope 4493
cut slope from link 4495
cut slope to 2 strings 4514
cut slope to string 4501
cut to string 4497
cut width 4491
cut width from link 4495
cut width to 2 strings 4514
cut width to string 4501
fill height 4520
fill height from link 4524
fill height to 2 strings 4545
fill height to string 4532
fill height to tin 4536
fill remove 4519
fill slope 4522
fill slope from link 4524
fill slope to 2 strings 4545
fill slope to string 4532
fill to string 4528
fill width 4520
fill width from link 4524
fill width to 2 strings 4545
fill width to string 4532
final cut slope 4420
final fill slope 4420
final width 4418
fixed - insert full template 4246
fixed - insert template 4244
fixed - mmodify xfall to RL 5102
fixed - modify height to RL 5102
fixed - table drain 4248
Fixed =>by 2 strings 4392
Fixed =>From link 4359
Fixed =>Interface to tin 4397
Fixed =>To RL 4374
Fixed =>To string 4361
Fixed =>To tin 4367
fixed height 5079
fixed height from link 5085
fixed height to 2 strings 5107
fixed height to string 5092
fixed tin height 4505, 4536, 5097, 5102
fixed tin xfall 4505, 4536, 5097
fixed to string 5088
fixed width 5079
fixed width from link 5085
fixed width to 2 points 4379, 4508, 4539
fixed width to 2 strings 5107
fixed width to string 5092
fixed xfall 5081
fixed xfall crc 5083
fixed xfall from link 5085
fixed xfall to 2 strings 5107
fixed xfall to string 5092
hinge coord to string 4214
hinge height 4210
hinge height to string 4213
hinge height to tin 4215
hinge offset 4208
hinge offset to string 4212
insert 4238
insert absolute 4240
insert cut 4412
insert cut template 4489
insert fill 4415
Interval 4428
Interval relative 4430, 4431
Link 4278
no final cur and fill slope 4422
no final cut/fill slope 4422
no final fill slope 4422
no hinge 4216
Only Fixed 4259
Only Fixed Named 4261
Parallel 4326
Parallel link 4328
remove 4255
remove absolute 4257
Rename Link 4299
specials 4459
to 2 heights 4379, 4508, 4539
mtf copy 3732
MTF create 3679
mtf delete 3733
mtf edit 3681
MTF file 3678, 4191
mtf file 4190
MTF modifiers 4221
Index

N
N value. 7129
name 186
name completion 154
name mapping 154, 655
name mapping file 154, 655
name snap 243
NAME_MAPPINGS_4D 7192
named measurement 6973
names 1204, 1345
names report 6317
names.4d 154, 7148
new projec 458
new project 484, 488
new view settings 1227, 1307
NEW_DRAINAGE_MELB_PPF_4D 7193
NEW_DRAINAGE_PLAN_PPF_4D 7193
NEW_DRAINAGE_PPF_4D 7193
NEW_LONG_SECTION_PPF_4D 7193
NEW_PLOT_FRAME_PPF_4D 7194
NEW_X_SECTION_PPF_4D 7194
Nikon 6933
no final cut slope 4422
no final fill slope 4422
no final slope 4422
no hinge 4216
No Option 140
nohinge hinge modifier 4216
nohinge modifier 5027
non tinable 3166
non tinable next segment 3167
non tinable previous segment 3167
Non-projection to projection coordinate conversion 3245
non-proportional font 210
ns_decimals 5251, 7471
ns_text colour 5250, 7471
ns_text size 5250, 7471
ns_textstyle 5251, 7471
ns_title colour 5250
ns_title_text colour 7471
ns_title_text size 5250, 7471
ns_title_textstyle 5250, 7471
NTv2 7485
null 2971, 6603
null exclude 2970
null height range 6605
null heights 6604
null include 2970
null tin by centroids 2978
null tin by picking 2981
null tin by polygons 2982
null tin by strings 2979
null to height 6606
null triangles by angle and length 2974
null triangles by angle and length from seed point 2976
null triangles by length 2973
Null Value 7485
null value 698, 845
nulling 2969
nulling triangles 2969
number_of_blank_boxes 6098, 7402
number_of_decimals 5250, 6023, 6102, 7353, 7357,
7403
NVALUES_4D 7195
NZ 2000 3224
NZ 49 3224
NZ conversions 3217
NZ TSS report 3281
O
object 182
string 182
object based system 181
objects 6385
observed coordinates 6524
observed Easting 6524
observed Northing 6524
obvert 7486
Offset 4208
offset 4208
Offset code delimiter 6940
offset hinge modifier 4208
offset modifier 5025
offset to string 4212
offset to string hinge modifier 4212
offset_colour 6029, 7358, 7362
offset_height_side_cl 6044, 7353
offset_height_text_justification_cl 6044, 7353
offset_insert_zero 6019
offset_label_tolerance 6036, 7368
offset_mode_cl 6044, 7353
offset_model 6116
offset_n colour 6119, 7411
offset_n_decimals 6119, 7411
offset_n_depth colour 6120, 7412
offset_n_depth_decimals 6120, 7412
offset_n_depth_label 6120, 7411
offset_n_depth_textstyle 6120, 7412
offset_n_depth_title 6120, 7411
offset_n_depth_title_2 6120, 7411
offset_n_depth_title_colour 6120, 7411
offset_n_depth_title_size 6120, 7411
offset_n_depth_title_textstyle 6120, 7411
offset_n_depth_title_y_pos 6120, 7411
offset_n_depth_y_pos 6120, 7412
offset_n_draw_colour 6117, 7411
offset_n_draw_mode 6116, 7410
offset_n_label 6117, 7411
offset_n_lw 6116, 7411
offset_n_mask 6116, 7410
offset_n_rw 6116, 7411
offset_n_size 6119, 6120, 7411, 7412
offset_n_textstyle 6119, 7411
offset_n_title 6118, 7411
offset_n_title_2 6118, 7411
offset_n_title_colour 6118, 7411
offset_n_title_size 6118, 7411
offset_n_title_textstyle 6118, 7411
offset_n_title_y_pos 6118, 7411
offset_n_y_pos 6119, 7411
offset_size 6029, 7362
offset_textstyle 6029, 7358, 7362
offset_title 6029, 7353, 7362
offset_title_2 6029, 7362
offset_title_colour 6029, 7362
offset_title_mode 6029, 7411
offset_title_size 6029, 7362
offset_title_textstyle 6029, 7362
offset_value_mode 6029
offset_x_cl 6044, 7354
offset_y_cl 6044, 7354
on grade 3326
only_one_line 5245, 5293, 7466
oom 1214
op code 6971
open project 484, 487
open string 182, 2012
operation code 6971
optional panel field 150
orbit 1257
order 3158
order functions 6469
origin 7227, 7248
output
12d XML data 850
12d XML project data 853
civilcad 899
dgn 875
dgn V7 875
Dwg 880
DXF 880, 952, 955
Eagle 959
Eagle binary 961
genio 888
geocomp 901
template 3623
xyz general 867

xyzch 863
xyzs 860, 861
output map file
DXF 887, 954
output templates 1173
Output Window 136, 169, 171
outside 6519
overlay 4148, 4149
Overlay Timeline 1635

P
pad
dynamic 3802
pagination 6097, 7398
pagination_length 6097, 7398
pagination_mode 6097, 7398
pagination_overlap 6097, 7398
pan 1219, 1220, 1334, 1342
pan delta 1219, 1220
PAN_MODE_4D 7196
pane
write DXF 12-14 file for 952
Panel
Survey Upload 3365
panel
Defaults 285
panel 149, 5140, 5207, 5210, 5215, 5216, 5221, 5223,
5228, 5230, 5315, 5316, 5317, 5319, 5321,
5322, 5367, 5373, 5387, 5462, 5517, 5538,
5541, 6732
12D - Billboard Signs Create 1580
12d - Field Batter Setout 3432
12d construction tables 4158
12d Field - Check Shot 3471
12d Field - Crossfall Setout 3440
12d Field - Crown Setout 3454
12d Field - Grid Setout 3451
12d Field - Helmert Resection 3462
12d Field - Point Setout 3445
12d Field - Single String Setout 3427
12d Field - Store Point Setup 3418
12d Field - TIN Setout 3438
12d Field - TPS Locate Prism 3476
12d Model Information 6741
12d Pickup Codes to Macro 3539
12d Quick timeline create 1650
12d Update Checker 6747
12da Library 703
12dField Setout FLD File To Strings 3495
2d edit info 1850, 2218, 2251
2d String Properties 2255
3 centred curve construction 2209
3d edit info 2221, 2257
3d String Properties 2258
3D Tree Insertion - Faces 1583
4d edit info 2224, 2259
4d String Properties 2260
add all functions to project 6473
add all templates to project 3622
add all tins to project 2986
add breakline 2890
Add Model to a View 1314
add model to a view 1687
add model to the project 1686
Add Models to View by Pick 1333, 1337, 1340, 1344
Add Shared Models to Project 1699
Add Shared Tins to Project 3027
Add Shares By Index File 634
add template to the project 3622
add tin to a model 2986
add tin to the project 2985
Add VIP to SA from file 6529
Add WMS layers 1040
Add/Modify Seven Parameter Details 595
Additional Text for Point 3156
Adjustment of Level Nets 3191
Affine 2d 6530
agd66/84 gda94 3219
alignment edit info 2206, 2231
Alignment String Properties 1882, 2249
Allotment Pad Edit 3807
Amend VG 3672
append point 1987
Apply Boxing 3749
apply kerb return function 3667
Apply Many Boxing 3750
Apply Many Manager - Create / Update 3660
Apply MTF Function 4191
Apply Template Defaults 3675
Apply Template Function 3632
Apply Templates Defaults 3675
Apply Templates Function 3642
Apply User Attributes to ADAC Elements 1421
Aquaplaning Risk Assessment 6727
arc - 3 points on arc 1734
arc - centre, start and end points 1730
arc - centre, start point and sweep angle 1729
arc - radius, centre, start and end points 1731, 1732
arc - start pt, radius, arc length, chord bear 1736
arc - start pt, radius, arc length, start bear 1735
Arc Centres for Plan View 1205
arc edit info 1728, 1879
arc fitting 3085
arc to chords 2021
archive models 6536
ArcView mapping 857
Area Range File 1166
ARNDT 3848
Aspect Analysis 2937
Aspect Analysis 2 2939
Aspect Analysis Colour 2903
Assign Survey_Field_Data_String_Numbers 3178
Attachment 3088
Attribute Data 197
Attribute map file 1027
attributes 3090
Ausgeoid98 *.dat -> xyz 3314
Australian conversions 3212
Authorization Details 566
Authorization Error 569
auto recalc mode for a function 6504
auto recalc mode for all functions 6504
auto super/widening 4477
Autocad Export Map File Create/Edit 885
AutoCAD Plot Map File Create/Edit 5899
AutoCAD plotter drawing template file 5901
Autopan Perspective View from Section View 1225
Autopan Plan View from Plan View 1221
Autopan Plan View from Section View 1223
Autopan Section View from Plan View 1222
Autopan Section View from Section View 1224
Autosync Plan View from Plan View 1226
backsight 3094
backsight reference 3096
balances volumes 5776
Batter 4855
Batter Decision 4852
Batter Slope Conformance Report 3292
Bearing and distance (GDA94/AGD66-84) 3241
Bearing/Distance Entry 3315
Bearing/distance label 3249
Bearing/Distance Traverse/Radiation Entry 3317
between point 1988
Boxing Copy 4759
Boxing Decision 4809
Boxing Drop 4805
Boxing End 4819
Boxing File 4450
Boxing Goto 4815
Boxing Intersect 4787
Boxing Intersect (Adv) 4792
Boxing Label 4814
Boxing LHS Xfall 4821
Boxing Line 4782
Boxing Many 3740
Boxing Rename 3739
Boxing RHS Xfall 4824
Boxing Rules 4752, 4753
Boxing Vertex 4763
Boxing Vertex (Adv) 4766
Boxing Xfall 4770
Boxing Xfall 1 4775
Boxing Xfall Pt 4800
breakline string 3140
buildings 3097
Cad Array 2759
cad insert JPEG plan images 2751
cad insert plan image 2749
CAD Multi Array 2759
CAD Polyline to Alignment Convert 6564
capture 984
cartographic 3215
catenary measurements 3319
Ceate Polygon - Pick Point Inside 2026, 3765
centreline Profile on Section 1298
Chain Conversion 6461
chain parameters editor 6442, 6443
Chainage Alias 4427
chainage at point on string 2187
Chainage Equalities 1957
Chainage Equality Report 6324
Chainage From Equality panel 1810
chainage insert VIP 2246
change contours 2918
Change Final Tin 4424
Change Interval 4428
Change Interval Relative 4430
Change Library Extrude 1594
Change Polygon Drape 1572
Change Radius 5183
change radius 2265
change string 2000
Change String Chainage 6541
change string chainage 6551
change string info 6539
Change Super Alignment style 1807
Change Super String Attributes 2123
Change Super String Billboard 1578
change super string chainage interval 2098
change super string filling 2105
Change Super String Height 2121
Change Super String Pipe/Culvert 2127
Change Super String Segment Colour 2119
Change Super String Symbols 2117
Change Super String Text 2131
Change Super String Vertex Id 2125
change super string visibility 2100, 2103
change text info 6628
change textstyle info 2020
Change timeline multiplier 1646
Change Tin Name in all Functions 6472
Check As Built String vs Design String 6346
Check Breaklines for 2869
Check Breaklines, Duplicate Vertices and Identical Strings for 2866
check control model 3323
check measurement 3060, 3098
check points 495
Check Polygon 6550
Check Strings 6544, 6546, 6550, 6551, 6553, 6557
circle - 3 points on circle 1741
circle - centre point, point on circle 1740
circle - centre point, radius 1738
circle alignment construction 2211
circle edit info 1883
Circle String Properties 1885
classify conduit strings 6555
Clean Model 1706
Clear String Names 6557
clip string 2001
Clipping Planes for View 1247
close string 2003
cogo edit 2028
colour analysis 2956
Colour Contours 2920
colour depth range for tins 2901
Colour Height Range for Tin 2899
Colour Sections by XFall Range 4157
colour triangles by polygons 2896
colours to pens 5934, 7148
Comment 4861
comment 3101
compile a macro 6480
compile/run a macro 6481
Component library 3975
Component viewer 4067
compress super string dimensions 2102
computator kretum & culdesac create 3968
Construct Data From Field Pick Up Shots 1446, 1447, 1449, 1450
contour a tin 2921
contour, smooth and label a tin 2911, 2915
Convert 12d Solutions XML to Archive File 708
Convert 12d Solutions XML to Archive Files 707
Convert 2d to 3d Strings in 6560
Convert 3d to 2d Strings in 6561
Convert 4d to 3d Strings in 6562, 6565
Convert SCS900 CSV File 3350
Convert Share Paths to relative 636
Convert String 2053
Convert String Types 6559
convert text strings to 3d strings 6563
Convert to 12dmesh format 1607
Convert to Super Alignment 6566
Convert TP- Stakeout ANG to LSF 3209
coordinate 3101
Copy a Boxing File 3752
copy a chain 6460
copy a pvf 6457
Copy an MTF 3732
Copy LAS Files by Categories 2176
Copy Point Cloud Files by Categories 2174
copy project 688
Copy Project Models 1688
copy project tin 2988
copy template 3619
Copy Vertical Super Alignment 1805
corner splays 2024, 2026
Create - Group Extrusions 1598
Create 12d Field Codes from ADAC XSD 3538
create 2d string 2217
Index

create 3d string 2220, 2221
create 4d string 2223, 2224
Create ADAC Asset 1383
Create ADAC Header 1382
create alignment string 2205, 2206
Create and Place Billboards 1576
create arc string 1726
Create Billboards from JPEG Files 1585
Create Boundaries for Tin 2892
create boxing file 3737
create boxing file *.bf 3754
Create by Xfall and Grade 3885
Create Combined Tunnel 4129
Create Control Station 3322
Create CSV File Reference Table 2433
Create Cut/Fill Text within Polygon 5789
Create Drainage Spaced Along String 5146
Create Drainage String 5137
create drainage string 7183
Create Drainage Strings 5128
create feature string 1743
Create Forest 1582
Create GIS Feature 1033
Create GIS Schema 1032
Create Grid String 2056
create instrument points upload 3368
create least-square network 3041
Create Leica 1200 Road Files 3335
Create Leica 1200 String Files 3332
Create Leica 1200 String Files (Old) 3334
Create Leica 1200 Triangle Files 3334
Create Leica 1200 Tunnel Files 3337
Create Lot - Pick Point Inside 3765
create macro file *.4dm 6483
Create Macro Prototype File 6486
Create Many Segment Lengths 2366
Create Map File from ADAC Data 1411, 1417
Create Map File from ADAC XSD 1413
Create Model 1680
Create Model from ADAC XSD 1415
Create Model of Unique Points 3365
Create Model Plot Tunnel 4134
Create MTF File 3679, 3680, 4190, 4191
Create MTF File *.mtf 3734
Create NSW ePlan Network 3548, 3550
create pipe string 2226, 2227
create pipeline string 5710
Create Plan Images from JPEG Files 1668, 2158
create plot frame seed 5880
create plot frames along string 5878
create plotter mapping file 5893
create points upload 3381
create polyline string 1756, 2229, 2230
Create Project 686
create raster element 2148
Create Raster from Plan View 1235
Create Rasters from ECW Files 2154
Create Rasters from TAB Files 2156
Create RD3 Road File 3342
Create Road Upload file 3383
Create Roading Upload File 3370
create same as 1768
Create Scalebar 5811
Create Super 2d String 1716
Create Super 3d String 1719
Create Super 4d String 1722
Create super Alignment Reference Table 2430
Create Super Face String panel 1765
Create Super Interface String 1764
Create Super Pipe String 1745
Create Super Polyl ine String 1748
Create Super String 1751
create super tin 2875
Create Table 2428
create text string 1758, 1759
Create Tin Faces 2989
Create Topcon LN3 String Files 3339
Create Topcon PT3 Points Files 3344
Create Topcon TN3 Triangle Files 3341
create traverse spreadsheet 3270
create triangle upload file 3366
Create Trimble Link Points 3346
Create Trimble Link Roads 3348
Create Trimble Link Triangles 3348
Create Trimble TTM Triangles File 3345
Create Tunnel 4127, 4132
Create World Grid 5798
Create Z-Values from String to Tin Differences 3013
Create Z-Values from Tin Differences 3012
Create/Edit Chain 6387, 6432, 6463
Create/Edit N value settings 588
Create/Edit Projection 579
Create/Edit Textstyle 678, 7257
Create/Edit Tunnel File 4121
Create/Edit User Attributes to ADAC 1418
CSV Tag File Writer 950
Culdesac Alignment Creation 2207
culling Perspective View 1243
culling plan view 1186
Culvert 3144
Culvert create-change 5145
Custom Superelevation and Widening 1958
customize toolbars 1551
Cut - Height 4491
Cut - Height from Link 4495
Cut - Height to 2 Strings 4514
Cut - Height to String 4501
Cut - Height to Tin 4505
Cut - Insert 4412
Cut - Slope 4493
Cut - Slope from Link 4495
Cut - Slope to 2 Strings 4514
Index

Edit Grid String 2058
Edit Grid Tin 2060
Edit leader_styles.xml 2411
Edit Line n 321
edit macro file *.4dm 6484
Edit MTF File 3681
Edit MTF File *.mtf 3690, 3691, 3735
Edit MTF/Survey Function Data 3731
edit MTF/survey function data 3065
Edit Plot Sheet File 5852
Edit Project Details 498
eedit raster element 2159
Edit Row n 317
edit string 1849
edit string old 2197
edit super tin 2883
edit survey field data 3065
Edit table_styles.xml 2458
edit traverse spreadsheet 3271
edm measurement ht 3114
edm measurement vd 3116
edm measurement 3112
Ellipse 1761
Enable/ disable timelines 1647
End 4862
end area volume between sections 5749
end area volume between tins 5735
End Area Volume from Sections to a Height 5746
end area volume from tin to a height 5733
End Area Volume from Tin to Sections 5752
end file 3106
Enter Project Details 498, 512
Equality From Chainage panel. 1809
error 3105
error authorizing release version 109
exact volume between heights 5760
Exact Volume Between Tins 5771
Exact Volume From Tin to a Height 5766
Exact Volumes Between Tins 2 5774
Exact Volumes to Height 2 5768
Exit 12d Model 6752
Explode Strings in 6576
Explode Super Alignment Labels 1807
ExplodeTextx in String/Model/View 6577
Export a share index file 635
Export Diary 501
Export to ARNDT 3857
extend point 1990
extend point by ht 1991
Face Flags for View 1244
face flags for view 1187
Factor 6578
Faro Cloud FLS to LAS Files 778
FDO Download Wizard 1016
FDO query builder 1013
feature 3100
feature edit info 1744, 1886
Fence for 6513
Fence Stem 6515
field
 name mapping 154
Field Data Find 3073
Field Data Find/Replace 3074
Field Data Goto 3072
file
 name completion 154
File Browse 1177
Fill - Height 4520
Fill - Height from Link 4524
Fill - Height to 2 Strings 4545
Fill - Height to String 4532
Fill - Height to Tin 4536
Fill - Insert 4415
Fill - Remove 4519
Fill - Slope 4522
Fill - Slope from Link 4524
Fill - Slope to 2 Strings 4545
Fill - Slope to String 4532
Fill - Slope to Tin 4536
Fill - to 2 Heights 4539
Fill - to String 4528
Fill - Width 4520
Fill - Width from Link 4524
Fill - Width to 2 Strings 4545
Fill - Width to String 4532
fillet alignment construction 2213
Filter Adjacent Points in 6586
Filter Adjacent Vertices in 6584
Filter Linestyles/Symbols by Mapfile 3540
Filter Strings in 6582
Final - Cut Slope 4420
Final - Fill Slope 4420
Final - Link Name 4425
Final - No Cut 4422
Final - No Cut/Fill 4422
Final - No Fill 4422
Final Cut/Fill Template 3618
final width 4418
Find GIS Strings 1024
Find Strings with ADAC ObjectTld 1453
Fixed - Analyse Subgrade 4400
Fixed - Copy Layer 4405
Fixed - Insert 4238
Fixed - Insert Absolute 4240
Fixed - Insert Full Template 4246
Fixed - Insert Intersect 4403
Fixed - Insert Xfall Point 4404
Fixed - Interface to tin 4397
Fixed - Intersect Links with String 4432
Fixed - Link Intersect Tin 4268
Fixed - Link to RL 4374
Fixed - Linkto Tin 4367
Fixed - Modify Xfall Circular Reverse Curve 5083
Fixed - Modify Absolute 4301
Fixed - Modify All to 2 Strings 4392
Fixed - Modify All to String 4361
Fixed - Modify All to String
Fixed - Modify fom Link 4359
Fixed - Modify Height 5079
Fixed - Modify Height to RL 5102
Fixed - Modify Height to String 5093
Fixed - Modify Height to Tin 5097
Fixed - Modify Insert at String 4242
Fixed - Modify Link 4278
Fixed - Modify Named Grade 4401
Fixed - Modify Named Grade Triple 4402
Fixed - Modify Width 5079
Fixed - Modify Width from Link 5085
Fixed - Modify Width to RL 5102
Fixed - Modify Width to String 5093
Fixed - Modify Width to String
Fixed - Modify Xfall 5081
Fixed - Modify Xfall from Link 5085
Fixed - Modify Xfall to RL 5102
Fixed - Modify Xfall to String 5093
Fixed - Modify Xfall to String
Fixed - Modify Xfall to Tin 5097
Fixed - Parallel to Link 4328
Fixed - Parallel to String 4326
Fixed - Remove 4255
Fixed - Remove Absolute 4257
Fixed - Rename Link 4299
Fixed - to 2 Heights 4379
Fixed - Trim Sections to String 4272, 4273, 4276
Fixed - Trim Sections to Tin 4271
Fixed - Xfall Intersect 4248
Fixed-Modify Height from Link 5085
Fixed -Modify Height to 2 Strings 5107
Fixed-Modify Height to String 5088
Fixed -Modify Width from Link 5085
Fixed -Modify Width to 2 Strings 5107
Fixed -Modify Xfall to 2 Strings 5107
Fixed Slope 4842
Fixed Template 321, 3613
Fixed Xfall 4840
Fixed/float to IPs 1806
flip triangles 2891
Flip Trimesh Faces 1848
flow arrows 2952
Forest File 645
FS Tin for Drainage 5205
function lock status 6468
Function Manager 619
function recalc order 6469
function rename 6471
function report 6328
General Transformations 3229
Generate Trimesh from 12d Objects 1839, 1845, 1846
Geodetic reporting 3261
GIS Add Strings 1021
GIS Assign Attributes 1026
GIS Delete Strings 1023
GIS download 1007
GIS Schema Viewer 1030
GIS Update Strings 1022
global model rename 1682
Global Set Height 6595
Global Set LAS Categories 2169
Global String Rename 6611
Goto 4858
Grade Insert VIP 1927
generate insert VIP 2247
Grades Intersect VIP 1928
grades intersect VIPs 2247
Grid of Min / Max of Tins 3014
grid on view 1210
Grid Setout 6588
grid volumes 5782, 5787
Guide Post Placement 3883
Head to Tail Strings 6591
Head to Tail Strings in 6593
height adjustment 3196
height or depth 3103
Helmer 2.5D Params 3492
Helmer 2D (Advanced) 6596
Helmer 3D 6599
Hide View 1245
Hinge Comment 4217
Hinge Coord to String 4214
Hinge Height 4210
Hinge Height to String 4213
Hinge Height to Tin 4215
Hinge Modifiers 4203
Hinge Offset 4208
Hinge Offset to String 4212
Hinge Region 4217
Horizontal and Vertical Parts 1945
Horizontal IP Properties 1953
House Connection Edit 5202
House Connections 5200
IFC Writer 945
Import 2d PDF File 709
Import ADAC XML File 1406
Import Design Parameters 1827
Import E57 Files 767, 774
Import LAS Files 783
Import Leica PTS Files 802, 806
Inquire 6602
insert 3pt curve 1995
Insert Cut Template 4489
Insert Fill Template 4517
Insert Fixed Template 4244
insert point 1993
insert target height 3179
Installing a 12d Model 11 Nodes File 571, 576
interface function 3670
Interval String Tangent Points 4431
invisible 3107
job data 3104
join many strings 2008
join strings 2006
Join Super Alignment 1804
Joy View 1255
kerb return function create HG 3668
Kill Macros 6488
Label 4857
label chainages on string 2135
label chainages on string (marks) 2136
label contours 2925
Label Data by Label Map File 1069
Label Map File Convert .lnf to .label_mapfile 1071
Label Map File Create/Edit 1046
label string names 2144
label tadpole marks 2140
label tick marks 2142
label vertices 2145
LandXML Validator 763, 764
LAS Cartographic 2181
LAS file Delete Points by Tin 2180
LAS File Set Categories by Tin 2172
Layers Debug 4444
Leader Create (Information) 5819
Least Squares Horizontal Network Adjustment 3182
Left MTF Modifiers 4221
Left Side Boxing 4451
left side super crossfall strings 4478
left side super widening strings 4479
Left Side Templates 4455
Leica Cloud PTS to LAS Files 810, 814
Leica DBX to ANG 3207
Leica DNA GSI to 12d .LIN 3210
License Expiry Warning 113
linear regression 3324
Linemarking Create (Visualisation) 1661
linestyle create/edit/delete 669
Linestyles for View 1188
link clip string 2010
LMGS - D45 file 3374
long section along a string 3017
Longitude, latitude from grid coordinates 3243
Longsection PPF Manager 5881
loop removal 2191
lot check 3277
Lot NUmbering and Areas 1442, 1444
macro version 6487
Manage Dongles 556
Manhole Road Chainage 5188
Manhole Road Name 5187
Manhole Z Float 5187
map file apply 1146
Map File Convert .lnf to .mapfile 1148
Map File Create/Edit 1074
Mass Haul Analyser 3859
measure angle 6491
measure bearing/distance 6492
measure plan area 6494
Measure Projection Plane bearing and ellipsoid dist 3239
measure value 6496
Melb Water plot drainage network 5289
Menu/Panel Dump 142, 157
menu/panel dump 7307
Mesh Library 1600
mesh over tin 3018
minimize 157
model attributes 1685
Model Information 1675
Model Information Table 1676
Model Manager 617
Model Rename 1681
Models Transfer 1563
Modfy Create Shape 4434
Modfy Create Tin 4440
Modfy Decision End Then 4337
Modfy Decision Goto 4333
Modfy Decision Label 4334
Modfy Decision Link Exists 4349
Modfy Decision Polygon 4357
Modfy Decision String Exists 4344
Modfy Decision Then 4335
Modfy Decision Tin 4354
Modfy Shape 4437
Modfy Decision Above Link Height 4351
Modfy Decision Above String Height 4346
Modfy Decision Batter 4339
Modfy Decision Batter Test 4342
Modfy Region 4448
move 157
Move Horizontal Parts 1932
move point 1994
Move Super Alignment Point Settings 1808
Move Vertical Parts 1933
move VIPs 2245
MTF Edit 3680
MTF Pause Process 4446
MTF Rename 3729
MTF Snippet 4443
Multi Fence Stem String/Model/View 6519
Multi Fence String/Model/View 6517
Multi String Properties 2073
multiple coding 3118
Named Positions Data 1961
Names.4d Create/Edit 656
nd edit info 1862, 1866, 1871, 1887, 1889
New component 3980
New Field Data Command 3072
new instrument 3120
New Island Create (Function) 3880, 4181
new perspective OpenGL view 1558
new perspective view 1558
new plan view 1558
New Plot Drainage Network 7183
new plot drainage network 5240
new plot frame create 5867
new plot frame edit 5869
new plot sewer network 7200
new section view 1558
New View 1557
new view 1556
New Zealand conversions 3217
No Hinge 4216
No Option 140
Non-projection to projection coordinate conversion 3246
North Point Insertion 5809
note 3123
NS Tin for Drainage 5205
Null Height Range of 6605
Null Heights of 6604
Null to Height of 6606
null triangles by centroids of strings 2978
null triangles by length of side 2973
null triangles by points 2981
null triangles by polygons 2982
null triangles by strings 2979
Null Triangles by Triangle Angle and Length 2974
Null Triangles by Triangle Angle and Length from Point 2976
null triangles outside polygon 2971
null triangles reset 2972
NZ traverse spreadsheet report 3281
NZ49 NZ2000 3224
offset measurement 3212
On Grade String 3326
Only Fixed 4259
Only Fixed from Name 4263, 4265
Only Fixed Named 4261
Open a Recent Project 453, 454
open string 2012
Open/Create 484
Options Data 1959
Orbit 1257
Orthogonal Affine 6533
Overlay Design 4149
parallel string 2013
Parallel Strings 6607
Parallel Super Alignment 1799
pattern/regular expression tester 6627
Pavement Conformance Report 3304
Perspective Plot 1278
Perspective View 1253
Perspective View Exaggeration 1249
Perspective View Properties 1329
Pickup Editor 3499
Pickup Favourites 3534
pipe diameter 3146
pipe edit 2262
pipe edit info 2227
Pipe Justification 3126
Pipe String Properties 1887, 1888, 2262
pipeline edit info 5710, 5713
pipeline joint defaults 5718
pipeline joint deflection report 5720
pipeline plot ppf editor 6266
pipeline tin defaults 5718
pixels to millimetres plot factor 5895
Place a component 4063
Place a mesh 1605
Plan Camera 1259
Plan Plot 1230
Plan Plotting Scale 1191
Plan Text 1193
Plan View 1227
Plan View Properties 1329
Plan Viewing Information 1237
Plan Zoom by Model 1215
Plan Zoom by String 1215
Plan Zoom by View 1215
Play a timeline 1643
plot frame change 5871
plot frame copy 5872
plot frame create 5869, 5926, 5929
plot frame edit 5928, 5929
plot frame insert 5879
plot frame ppf editor 6305
plot frame rotate 5874
plot frame seed create 5880
plot frame title 5955
plot frame translate 5875
plot frames plot 5930
plot pipeline network 5917
Plotter Mapping Table 5931
plotting colours for interface string 5897
Point Cloud Clipping 2183
Point Cloud Delete Points by Tin 2179
Point Cloud Pin 2184
Point Cloud Set Categories by Tin 2171
point height 1992
Point scale factor (GDA94/AGD66-84) 3244
point snap tolerance 245
Polygon Discovery 6609
Polygon Hatching 5806
Polygon Report for 6329
polyline edit info 1889, 2230, 2264
Polyline String Properties 1893, 2266
ppf convert ascii to binary 6308
PPF Copy Title Data 6309
Product Place 949
Profile Model on Section 1295
Project Attributes 933, 934
project attributes 684
project description 497
Project Details Editor 512
Project Diary 500
Project Extra Details 934
Project Manager 615
Project Model Utilities 1695
Project N value setting Reset 593
Project Preview 649
Project Projection Reset 585
Project Share Settings 630
project tree 653
Project Units 932
Index

projection bearing/distance entry 3236
Projection bearing/distance label 3255
Projection Coords from plane Br g and ellipsoid dist 3238
Projection to non-projection coordinate conversion 3247
property controls report 5233
Quantities 6339
Quick Sheet Plot 1232
Quick Triangulation Selection 2879
radial report 6335
radiation table drafting 3286
Raster Reset Boundary String 2162
Raster Set Boundary String 2161
Read 12d Solutions Archive Data 700
Read 12d Solutions XML Data 705
read 4D HP plot panel 836
Read ArcView Shape Data 715
Read BCC Epson Data 731
Read Civilcad Data 733
Read DEM 736
Read DGN File 738
Read DGN V7 File 740
Read DWG/DXF Data 742
read dxf data 837
Read Genio Data 7187
read genio data 746
Read Geocomp Data 752
Read Keays Data 757
read Landonline XML file 3287
Read LandXML File 761, 893
Read LAS Files into Strings 794
Read MapInfo Mif/Tab Data 822
Read OBJ File 826
read screen layout 964
Read Screen Layout Files 965
Read SDR Map Data 827
Read SRTM Files 818
Read Templates 1172
Read Textstyles Definitions 1176
Read Title Block File 5891
Read Topcon LN3 String Files 3340
Read Topcon PT3 Points Files 3344
Read Topcon RD3 Road File 3343
Read Topcon TN3 Triangle Files 3342
Read TOT File 829
Read TP Setout Data 831
read TP Stakeout binary strings 833
Read X-Section Data 4164
Read xyzs Data 720
Read xyzs General File 839
Read xyzs General Files 727
read xyzs pt no 723
rebuild project 687
Recalc Chain 6463
recalc function from string 6508
rectangle 3135
rectangle by 2 points 3137
Reference LAS Files 789
Register new tags 612
regular grid of tin 2990
Relative Rotate 6616
removal calculations 5762
remove all models from project 1691
remove all templates from project 3625
remove all tins from project 3002
remove height 3128
Remove loops 4473
Remove Model from a View 1317
remove model from a view 1692
remove model from project 1691
Remove Models from View by Pick 1334, 1337, 1341, 1344
Remove Shared Models from Project 1702
Remove Shared Tins from Project 3030
remove template from project 3624
remove tin from a model 3003
remove tin from the project 3002
Rename a Chain 6462
Rename project 689
report all functions 6328
Report Geodimeter Roadline 3D 3371
Report Leica roadplus 16 3373
Report Leica roadplus 8 3372
Report on Selected Item 6312, 6314
report tin 3005
Report Topcon GT700 Roading 3378
Report topcon MS2000 Roading 3377
Report Trimble Roading 3379
Resection End 3130
Resection Start 3129
reset colour of triangles 2898
reset project id 690
Resolve Super Alignment 1796
Retriangulate Function 2878
retriangulate function 2886
Retriangulate Tin 2881
retriangulate tin 2887
Reverse Calc Parts For Super Alignment 1811
Reverse IP 2242
reverse string 2015
Reverse Strings 6613
Reverse Super Alignment 1798
Right MTF Modifiers 4221
Right Side Boxing 4451
right side super crossfall strings 4480
right side super widening strings 4481
Right Side Templates 4455
Road Design Parameters 1829
Roadside Furniture 1596
Rotate 6614
Rotate Plan View 1189
Rotate Super Alignment 1802
run a macro 6485
save all functions 6474
Save all Linestyles to Binary File 3541
save all models 1693
Save all Symbols to Binary File 3542
Save All Templates 3627
save all tins 3008
save function 6474
save model 1693
Save Project 6752, 6753
save project 652
Save Template 3626
save tin 3007
scale factor 3131
Scale Super Alignment 1802
Screen Dump 1270
Screen Layout Folder Conversion 969
SDR Additional Text 3161
SDR Arc Fitting End 3163
SDR Arc Fitting Start 3163
SDR Arc Last 3 Points 3162
SDR Arc Next 3 Points 3162
SDR Attachment 3161
SDR Change Code/String 3066
SDR Close String 3174
SDR Culvert 3177
SDR Delete Point 3171
SDR End String 3173
sdr export 3325
SDR Feature 3164
SDR Invisible Next Segment 3165
SDR Invisible Point 3164
SDR Invisible Previous Segment 3165
SDR Join String 3174
SDR Non Tinalle Next Segment 3167
SDR Non Tinalle Point 3166
SDR Non Tinalle Previous Segment 3167
SDR Pipe Axial Justification 3168
SDR Pipe Diameter 3177
SDR Pipe Invert Justification 3168
SDR Pipe Obvert Justification 3169
SDR Rectangle 3169
SDR Rectangle by 2 Points 3170
SDR Remove Height 3171
SDR Reverse String 3175
SDR Roading - Alignment Road 3374
SDR Roading - String Road 3376
SDR Start New String 3172
SDR String Type 2d 3175
SDR String Type 3d 3176
SDR String Type 4d 3176
Section Corridor 1284
Section Geometry Annotations 1289
Section Grade Annotations 1291
section long plot 5910, 7190, 7410
section long plot many 5915
section long plot pagination 5910
section long plot ppf editor 6088
section long plot title 5910, 5955
Section Plot 1303
Section Profile Extend 1288
section segment removal 3972
Section View 1307
Section View Exaggeration 1292
Section View Properties 1329
section width 4487
section X plot 7209
section x plot 5905, 7371, 7387, 7389
section x plot ppf editor 5989
section x plot title 5905, 5955
sections from points 4168
sections within a polygon 3020
segment string 2022
Select Super Alignment Profile 1299
Select which string ? 2479
Service Clash 6553
service clash 6544
service clash rules 6546
Service Draw Tolerance 1286
Service Items Report on Section View 1308
Services 6337
Set constant z-value 6622
Set LAS Categories 2167
Set N value settings 587
Set Projection 578
set sections for alignment panel 3378
Set Strings Directions 6623
setout report 6333
Sewer Annotations for Plan View 1190
sewer design checks report 5236
sewer edit 5180
sewer house connections report 5235
sewer network quantities report 5234
sewer plot melbourne water ppf editor 6256
sewer services report 5237
Shade View 1252
Shadow Analysis 4086
shaping 3131
Share Management 624
Share Project Models 1697
Share Project Tins 3025, 3026
Sharing information 641
Sharing Map Files 632
Sharing master file 638
sheet sizes file 682
Shift Chainages 4457
shift range on grid string 2063
shift range on grid tin 2065
Show ADAC Attributed Data 1456
Sight Distance 4092
SLF Conversion 968
Slope Analysis 2942
Slope Analysis - Flag Slopes panel on the screen 2946
Slope Analysis 2 2944
Slope Analysis Colour 2904
Smooth Contours in 2927
smooth strings 6625
Snap Model 244
Snap Name 243
Snap Tin 242
Snap Tolerance 244
solar observations 3262
sort VIPs 2246
Sort X-Sections in a Model 4166
Special Chainage Files 4461
Special Chainage Values 4460
split string 2016
Split Super Alignment 1803
stadia measurement 3117
Standard traverse spreadsheet report 3283
Star observations 3265
Stockpile Calculations 5785
storage calculations 5764
string attributes 2095
String clipboard 6681
string close 3133
string crest/sag points report 5721, 6316
String Drive Fixed Target for View 1264
String Drive for View 1262
string end 3134
string extrude 1592
String Information Table 1678
string inquire 1713, 2067
String Modifiers 4462
String Modifiers Function 3669
String Modify by Xfall Height 4466
String Modify by2 Strings 4468
String Movie Fixed Target for View 1275
String Movie for View 1272
String Names Report for 6317
String Offset 4846
String Properties 2075
String Reverse 3138
String Segment Properties 2077
string start 3139
string type 3142
String Vertex Properties 2076
String Vertex/Segment Properties 2094
String Walk Fixed Target for View 1269
string walk for view 1267
strings delete 2199, 2201
strings from sections 4167
strings join 3109
Stripping Changes 4474
subgrade batter intersection create 3969
Subscribe to Sharing Master Files 637, 640
Sun Exposure 4091
Sun in Driver Eyes 4090
Super Alignment Checker 1979
Super Alignment Info 1795, 1977
Super Alignment Info Styles 1818
Super Alignment Parts Validation 1812
Super Alignment Report 1795, 6318
Super Alignment Style Create/Edit 1813
Super Edit Info 1756, 1894, 2268
Super Segment Annotate 1917, 2286
Super Segment Colour 1909, 1910, 2280
Super Segment Pipe 1913, 2282, 2283
Super Segment Properties 1919, 1920, 2289, 2290
Super Segment Radius 1912, 2283, 2284
Super Segment Radius panel 1892
Super Segment Text 1916, 2285
super segment user attributes 1918, 2287, 2288
Super Segment Visible 1910, 1911, 2287
Super SegmentTinable 1914, 1915, 2281
Super String Properties 1857, 1921, 2290
super tin recalc 2885
Super Vertex Annotate 1903, 1904, 1905, 2274, 2275, 2276
Super Vertex Height 1897, 1898, 2269, 2270
Super Vertex Point Id 1901
Super Vertex Point Number 1901, 2272
Super Vertex Properties 1907, 1908, 2279, 2280
Super Vertex Text 1874, 1875, 1902, 2273, 2274
Super Vertex Tinable 1898, 1899, 2270, 2271
Super Vertex User Attributes 1905, 1906, 2277, 2278
Super Vertex Visible 1900, 2271, 2272, 2273
Surface Area Within a Model of Polygons 2951
surface area within a polygon 2950
Survey Data Convert Raw 3046
Survey Data Download 3044
survey data reduction panel 3048, 3061
data setup 3043
Survey Data Upload 3388
survey reduction report 3180
Survey.4d Create/Edit 668, 3043, 6951
Swap XY String/Model/View 6626
Switch Sides 4332
symbol create/edit/delete 674
Symbol Information 218, 220
Synchronize Shared Models 1704
Synchronize Shared Tins 3032
system defaults 7146
Table Styles 2458
Tag Tree 601
Tag Tree Export 602
Tag Tree Import 601
target height 3147
Teardrop Macro 6725
Template Create/Edit 3611, 4835
template create/edit 3611
Template Manager 620
template rename 3620
Template Views 3640
Templating 3147
text edit 1760, 1983
text edit info 1759
Text String Properties 1984
textstyle data 216
textstyle info 216
Textstyle_names.4d Create/Edit 681
Texture Map Create/Edit/Delete 1574
Timeline Camera 1648
Timeline Editor 1608
tin aspect inquire 2958
Tin Colour 2895
tin colour inquire 2959
tin copy 2987
Tin Decision 4848
Tin Draw Contours for View 1197
Tin Draw Edges for View 1199
Tin Draw Flow Arrows for View 1200
Tin Draw Mesh for View 1201
Tin Draw Solid for View 1202
Tin Drop Point 3d 2965
tin height inquire 2963
Tin Height Render Settings 1570
tin include/exclude boundaries 2970
tin information 2865
tin linestyle 2888
Tin Manager 618
tin rename 3004
tin render settings 1566
tin ridges and valleys 2954
Tin Shade View 1277
tin slope inquire 2964
Tin Tin Drop Point 3d 2966
Tin Tin Intersection 2949
Tin to Height Curve 5770
Tin to Strings 3009
tin translate/copy 3010
Tin Viewshed 4082, 4098
tin weed 3011
Tin Width 4844
tinable 3121
Tins on View Inquire 2967
TP Alignment 3331
TP- Stakeout .LSF to 12d .IN/.LIN 3210
traffic island alignment creation 2215, 3877
Traffic Lighting Placement 1667
translate 6630
Translate Strings 5808
Translate Super Alignment 1801
Trash Bin 647
traverse adjustment 3201
traverse spreadsheet drafting 3285
traverse spreadsheet parameters 3268
traverse spreadsheet utilities 3276
Tree Interval 1584
triangulate a data source 2872
Trimesh from Tunnel Points 4140
Trimesh Volume Report 5778, 5780
Tunnel Filter Data 4142
Tunnel Offset Points 4145
Tunnel Plot Name Mappings 4138, 4139
Tunnel Plot Settings 4137
Tutorial - Group Extrusions 1599
Two Points Profile on Section 1296
Undo Decision 4859, 4860
Update ADAC Data from 12d String Properties 1460
Update ADAC Data from Drainage Data 1464
Update ADAC Data from user attributes 1465
Update ADAC objectID from UID 1467
Update ADAC Separate Assigned and Unassigned Data 1459
Update Z-values from Tin 2935
Variable Cut Template 3616
Variable Fill Template 3616
Vehicle Path 3840
Vertex Editor 1997
Vertical Circle 3157
Vertical IP Properties 1955
VG edit string 1309
View 1333, 1334, 1337, 1340, 1341
View Background Colour 1212
View Drawing Engine 1184
View Drawing Filter 1213
View Dump 166, 1229
view information 1552
View Information Table 1554
View Manager 621
View Rename 1560
view save/restore models 1562
Viewshek Dynamic 4101
Visualisation 3D Buildings 1659
Visualisation Clouds 1655
Visualisation Fence Extrusions 1658
Visualisation Sky Dome 1656
Volume Along a String Between Tins 5742
volume along a string to a height 5738
WMS Wizard 1039
Work Plane 1206
Workspace Setup 598
Write 12d Solutions Archive Data 847
Write 12d Solutions Ascii Data with Place Nodes 948
Write 12d Solutions XML Data 850
Write 12d Solutions XML Project Data 853
Write 3d pdf 855
Write a Template 1174
Write ADAC XML File 1405
Write All Templates 1175
Write Arc View DEM 2995
Write Arc View DEM (Act/Min/Max/Avg) 2996
write ArcView shape files for 857
Write CivilCAD ascii file 899
Write Collada DAE File 908
Write DGN V7 File 875
Write DGN V8 File 872
Write DWG/DXF file for 880
Write DXF file for 955
write Eagle binary file for 961
write Eagle command file for 959
Write Genio File for Model/View 889
write Genio file V31 for 957
write Geocomp ascii file 901
Write KML Data 905
write Landonline XML file 3288
write MapInfo Tab/Mif files for 896, 897
Write Quantm DEM 2998, 3000
write screen layout 967
Write STereoLithography STL 911
Write Table Contents to CSV File 2467
Write TP Stakeout 3DP String 3330
write TP Stakeout binary triangles 903, 904
Write TP Stakeout Binary Triangles (TSC Format) 3329
Write Wavefront OBJ Files 909
write x y z general file for 867
write XYZ file for 860
write XYZS pt_no file for 861
write XYZSCH file for 863
xfall between 2 strings inquire 6499
x-fall report 6341
XML Translate 6344
x-sections along a string 3022
Zoom Plan View 1217
Zoom Section View 1217
panel buttons 152
panel default file 157
panel field 149
model 328
name completion 154
plotter type 7316
pop- up list 153, 314
pop-up menu 153, 314
pop-up menu list 153
string select 330
typed input 153
validation 154
panel grids 150
panel message area 151
panel system menu 156
panel table 321
panel tabs 150
panel title area 149
panel trees 151
panels 136
paper style
continuous mode 7230
paper style 7230, 7246
parabolic curve 7486
parallel 2039, 6607
parallel a string 2013
path name
attribute 196
PATTERNS_4D 7196
patterns.4d 7265, 7266
peg_interval 7468
peg_textback 7469
peg_textcolour 7469
pen colour 7331
pen mapping 5934, 7328, 7329, 7331
percent slope colouring 1154, 1156, 1158, 1160, 1162, 1164
percentage_grade 5261
perpendicular 2032
perpendicular to centreline profile 1294
perpendicular to cl profile 1298
Perspective OpenGL 136
perspective plot 1278, 1280
perspective view 136
pick 225
fast accept 222, 224
fast pick 222, 223
tentative 222
pick ops 226
pick position 229
picking
sense of direction 2040
picking direction 229
picking sense 229
pipe 1745
pipe axial 3168
pipe invert 3168
pipe obvert 3169
pipe string 185, 1745, 2226, 3177
pipe string edit 1887, 2262
pipe_attr_n_arrow_area 5266
pipe_attr_n_arrow_colour 5266
pipe_attr_n_arrow_decimals 5266
pipe_attr_n_arrow_gap 5266
pipe_attr_n_arrow_mode 5266
pipe_attr_n_arrow_post_text 5266
pipe_attr_n_arrow_pre_text 5266
pipe_attr_n_arrow_size 5266
pipe_attr_n_arrow_text_colour 5266
pipe_attr_n_arrow_text_offset 5266
pipe_attr_n_arrow_text_size 5266
pipe_attr_n_arrow_textstyle 5266
pipe_attr_n_n_title 5266
pipe_attr_n_n_title_offset 5266
pipe_attr_n_n_title_text_colour 5266
pipe_attr_n_n_title_text_size 5266
pipe_attr_n_n_title_textstyle 5266
pipe_attr_n_y 5266
pipe_diameter_arrow_area 5262
pipe_diameter_arrow_colour 5262
pipe_diameter_arrow_gap 5262
pipe_diameter_arrow_post_text 5262
pipe_diameter_arrow_pre_text 5262
pipe_diameter_arrow_size 5262
pipe_diameter_arrow_text_colour 5262
pipe_diameter_arrow_text_offset 5262
pipe_diameter_arrow_text_size 5262
pipe_diameter_arrow_textstyle 5262
pipe_diameter_title 5262
pipe_diameter_title_offset 5262
pipe_diameter_title_text_colour 5262
pipe_diameter_title_text_size 5262
pipe_diameter_title_textstyle 5262
pipe_diameter_title_x 5262
pipe_diameter_y 5262
pipe_flow_arrow_area 5264
pipe_flow_arrow_colour 5264
pipe_flow_arrow_decimals 5264
pipe_flow_arrow_gap 5264
pipe_flow_arrow_mode 5264
pipe_flow_arrow_post_text 5264
pipe_flow_arrow_pre_text 5264
pipe_flow_arrow_size 5264
pipe_flow_arrow_text_colour 5264
pipe_flow_arrow_text_offset 5264
pipe_flow_arrow_text_size 5264
pipe_flow_arrow_textstyle 5264
pipe_flow_title 5264
pipe_flow_title_offset 5264
pipe_flow_title_text_colour 5264
pipe_flow_title_text_size 5264
pipe_flow_title_textstyle 5264
pipe_flow_title_x 5264
pipe_flow_y 5264
pipe_grade_arrow_area 5261
pipe_grade_arrow_colour 5261
pipe_grade_arrow_decimals 5261
pipe_grade_arrow_gap 5261
pipe_grade_arrow_mode 5261
pipe_grade_arrow_post_text 5261
pipe_grade_arrow_pre_text 5261
pipe_grade_arrow_size 5261
pipe_grade_arrow_text_colour 5261
pipe_grade_arrow_text_offset 5261
pipe_grade_arrow_text_size 5261
pipe_grade_arrow_textstyle 5261
pipe_grade_title 5261
pipe_grade_title_offset 5261
pipe_grade_title_text_colour 5261
pipe_grade_title_text_size 5261
pipe_grade_title_textstyle 5261
pipe_grade_title_x 5261
pipe_grade_y 5261
pipe_type_mode 5262
pipe_velocity_arrow_area 5263
pipe_velocity_arrow_colour 5263
pipe_velocity_arrow_decimals 5263
pipe_velocity_arrow_gap 5263
pipe_velocity_arrow_mode 5263
pipe_velocity_arrow_post_text 5263
pipe_velocity_arrow_pre_text 5263
pipe_velocity_arrow_size 5263
pipe_velocity_arrow_text_colour 5263
pipe_velocity_arrow_text_offset 5263
pipe_velocity_arrow_text_size 5263
pipe_velocity_arrow_textstyle 5263
pipe_velocity_title 5263
pipe_velocity_title_offset 5263
pipe_velocity_title_text_colour 5263
pipe_velocity_title_text_size 5263
pipe_velocity_title_textstyle 5263
pipe_velocity_title_x 5263
pipe_velocity_y 5263
pipeline 5709
defaults 5718
pipeline_plot_parameters 7465
pipeline_plot_ppf_editor 6266
pipeline_plots 5719
pipeline_string 185
pipeline_utilities 5716
pipeline_long_plot 7465
pit and pipe locks 5319
pit and pipe locks 5319
pit schedule 5230, 5462
pixel to mm 5895
pixels 208, 7335, 7486
Place a mesh 1605
Place component 4063
Place point on string 5317
Place points 5317
plan area 6494
plan view 136
plan_border_colour 6187
plan_bottom_margin 6187
plan_draw_border 6187
plan_end_symbol 6187
plan_left_margin 6187
plan_plotting 6187
plan_right_margin 6187
plan_start_symbol 6187
plan_symbol_colour 6187
plan_symbol_size 6187
PLAN_TABLE_SETTINGS_4D 7196, 7197, 7205
plan_top_margin 6187
plan_view_name 6187
plane 1247
plane bearing 7134
plane distance 7134
plot 1234, 1335, 1339, 1342, 5866
cross section 1305
perspective 1278
quick plan 1230
quick sheet 1232
section 1303
x-section 1305
plot a ppf 5904
plot file 7486
plot frame 1234, 5866, 5868, 5880, 5928, 7337
change 5871
copy 5872
create along string 5878
create new 5867
create old 5926
create seed 5880
delete 5876
editor 5869
editor old 5929
insert seed 5879
plot old 5930
rotate 5874
translate 5875
Plot frame and pff editor 6305
Plot frame pff editor 6305
plot parameter file 5905, 5910, 5955
plot parameters 7396
pipeline 7465
plot_title_surface_name_2 5250
plot_title_text_colour 5295, 7470
plot_title_text_size 5295, 7470
plot_title_top_height 7474
plot_title_width 7469
plots
pipeline 5719
plotter mapping 5931, 7328, 7330
plotter mapping editor 5893
plotter mapping file 5893, 5931, 7330, 7331
plotter type 7316
PLOTTER_4D 7197
PLOTTER_MAPPING_4D 7197
plotter_type 5288, 5308, 5942, 6306
plots 349, 7314, 7321
PLOTTERS_4D 7197
plotters.4d 7148, 7316, 7326
plotting arcs 5896
plotting interface colours 5897
plotting scale 1191
pmf file 7331
pmf.4d 7148, 7330
PNG 2148
point description 6972, 6991
point height 1992
point id 182
point name 6972
point number 6972
point numbers 1203, 1345
point scale factor 7138
Point scale factor (GDA94/AGD66-84) 3244
Point Setout 3445
point snap 239, 240
point snap box 237
point snap tolerance 236, 237, 239, 245
point string 187
point strings 186
point text 6972
points edit 1986
points_height_n_angle 6055, 7378
points_height_n_colour 6055, 7378
points_height_n_justification 6056, 7379
points_height_n_mode 6055, 7378
points_height_n_no_decimals 6056, 7379
points_height_n_position 6055, 7378
points_height_n_post_text 6056, 7379
points_height_n_pre_text 6055, 7379
points_height_n_size 6055, 7378
points_height_n_texts 6055, 7379
points_height_n_x 6055, 7378
points_height_n_y 6055, 7378
points_label_n_angle 6057, 7379
points_label_n_colour 6057, 7379
points_label_n_justification 6057, 7379
points_label_n_mode 6057, 7379
points_label_n_post_text 6057, 7379
points_label_n_pre_text 6057, 7379
polygons from tin depth ranges 2955
polygons report 6329
polyline 1748
append 2264
extend 1891, 1896, 2265
extend ht 2265
radius 1892, 2265
polyline string 185, 1748, 2229
polyline string edit 1889, 2264
POLYPOLYLINES_4D 7198
pop-up list 153, 314
ppf 5903
ppf editor
 drainage plan plot 6278
 drainage plot 6189
 long section plot 6088
 Melbourne Water plot 6256
 pipeline plot 6266
 plot frame 6305
 x section plot 5989
ppf_notes 5943
precision 285
previous 1327, 1334, 1338, 1342
previous view 1334, 1338, 1342
primary string 1280, 1293
primary_ch_tolerance 6110, 7408
primary_colour 6030, 6110, 7353, 7362, 7408
primary_decimals 6030, 6110, 7353, 7362, 7408
primary_draw_vips 6099, 7408
primary_height_angle 6015, 7351, 7367
primary_height_colour 6015, 7351, 7367
primary_height_decimals 6015, 7351, 7367
primary_height_draw_mode 6015, 7351, 7367
primary_height_justify 6015, 7351, 7367
primary_height_position 6017, 7351
primary_height_post_text 6015, 7351, 7367
primary_height_pre_text 6015, 7351, 7367
primary_height_size 6015, 7351, 7367
primary_height_textstyle 6015, 7351, 7367
primary_height_x 6015, 7351, 7367
primary_height_y 6015, 7351, 7367
primary_label_mode 6099, 7402, 7408
primary_mode_cl 6044, 7353
primary_model_id 7428
primary_size 6030, 6110, 7353, 7362, 7408
primary_string 5994, 6099, 7362, 7408
primary_string_id 7428
primary_textstyle 6030, 6110, 7353, 7362, 7408
primary_title 6030, 6110, 7353, 7362, 7408
primary_title_2 6030, 6110, 7362, 7408
primary_title_colour 6030, 6110, 7362, 7408
primary_title_size 6030, 6110, 7362, 7408
primary_title_textstyle 6030, 6110, 7362, 7408
primary_title_y_pos 6030, 6110, 7362, 7408
primary_x0_angle 6013, 7350, 7366
primary_x0_colour 6013, 7350, 7366
primary_x0_decimals 6013, 7350, 7366
primary_x0_draw_mode 6013, 7350, 7366
primary_x0_justify 6013, 7350, 7366
primary_x0_position 6017, 7350
primary_x0_post_text 6013, 7350, 7366
primary_x0_pre_text 6013, 7350, 7366
primary_x0_size 6013, 7350, 7366
primary_x0_textstyle 6013, 7350, 7366
primary_x0_y 6013, 6014, 7350, 7366
primary_y_pos 6030, 6110, 7362, 7408
primary_y0_angle 6014, 7351, 7367
primary_y0_colour 6014, 7351, 7367
primary_y0_decimals 6014, 7351, 7367
primary_y0_draw_mode 6014, 7350, 7366
primary_y0_justify 6014, 7351, 7367
primary_y0_position 6017, 7350
primary_y0_post_text 6014, 7351, 7367
primary_y0_pre_text 6014, 7351, 7367
primary_y0_size 6014, 7351, 7367
primary_y0_textstyle 6014, 7351, 7367
primary_y0_x 7351, 7367
primary_y0_y 7351, 7367
PRINTER_4D 7198
profile 1293, 1341
 model strings 1294, 1295
 perpendicular to centreline 1294
 perpendicular to cl 1298
 two points 1294, 1296
project 194
project area 194, 461
project attributes 684, 1685
Index

project description 497
project details 496, 498, 512
project details editor 512
project diary 500
project management 502
project manager 615
project model utilities 1695
project models 1673
project n values 586
project preview 649
project projections 577
project tins 2863
project tree 653
project utilities 683
project workspace 597
project workspace load 599
project_macros.4d 7146, 7147
PROJECT_NAMES_4D 7198
projection 2033
AMG 582
cartographic 581
delete 584
Lambert Conformal Conic 583
MGA 583
reset 585
Transverse Mercator 582
Universal Transverse Mercator 582
UTM 582
projection bearing 7134
Projection bearing and dist 3239
projection bearing/distance entry 3236
Projection bearing/distance label 3255
Projection to non-projection coordinate conversion 3247
projections
cartographic 3214
PROJECTIONS_4D 7198
projects 194, 481
properties 2072
properties for a view 1329
property controls 5233, 5235
property_control_depth_decimals 5279
property_control_depth_mode 5279
property_control_depth_post_text 5279
property_control_depth_pre_text 5279
property_control_depth_text_angle 5279
property_control_depth_text_colour 5279
property_control_depth_text_justify 5279
property_control_depth_text_position 5279
property_control_depth_text_size 5279
property_control_depth_text_x 5279
property_control_depth_text_y 5279
property_control_diameter 5299
property_control_ds_pit_mode 5279
property_control_ds_pit_post_text 5279
property_control_ds_pit_pre_text 5279
property_control_ds_pit_text_angle 5279
property_control_ds_pit_text_colour 5279
property_control_ds_pit_text_justify 5279
property_control_ds_pit_text_position 5279
property_control_fs_decimals 5280
property_control_fs_mode 5279
property_control_fs_post_text 5279
property_control_fs_pre_text 5279
property_control_fs_text_angle 5280
property_control_fs_text_colour 5279
property_control_fs_text_justify 5280
property_control_fs_text_position 5280
property_control_fs_text_size 5279
property_control_fs_text_x 5279
property_control_fs_text_y 5279
property_control_fs_textstyle 5279
property_control_il_decimals 5280
property_control_il_mode 5280
property_control_il_post_text 5279
property_control_il_pre_text 5279
property_control_il_text_angle 5280
property_control_il_text_colour 5279
property_control_il_text_justify 5280
property_control_il_text_position 5280
property_control_il_text_size 5279
property_control_il_text_x 5279
property_control_il_text_y 5279
property_control_il_textstyle 5280
property_control_mode 5278
property_control_post_text 5278
property_control_pre_text 5278
property_control_symbol 5278
property_control_symbol_n_angle 5278
property_control_symbol_n_colour 5278
property_control_symbol_n_mode 5278
property_control_symbol_n_style 5278
property_control_symbol_n_size 5278
property_control_symbol_n_style 5278
property_control_symbol_n_x 5278
property_control_symbol_n_y 5278
property_control_text_angle 5279
property_control_text_colour 5278
property_control_text_gap 5280
property_control_text_justify 5279
property_control_text_position 5279
property_control_text_size 5278
property_control_text_x 5278
property_control_text_y 5278
property_control_textstyle 5278, 5279
property_control_symbol_n_x 5278
proportional font 210
PURGE_TRASH_DAYS_4D 7199
Q
quantities 6339
Quantm DEM 2998
quick contours 1197

Page 7529
quick plan plot 1230, 1232
quick tin 2879

R
radial report 6335
radiation 2037, 3317
radiation backsight 3273
radiation block 3273
radius 1892, 2129, 2265
Raindrop 6725
Rainfall editor 5210
Rainfall File Editor 5210
range file
 aspect 2938
 depth 5758
 height 5787
 slope 2943
raster 2148
rasters 1208
raw data file 3046, 6910, 6933, 6971
Read share index 634
read title block file 5891
rebuild project 687
re-calc 6466
recalc 6470, 6503, 6508
recalc all 6509
Recalc SuperTin
 edit 2885
recal SuperTin 2885
RECENT_PROJECTS_4D 7199
rectangle by last 2 points 3170
rectangle by last 3 points 3169
redo 1859, 1977
redraw 1327
reduce field file 3048, 3061
reduce with no field file 3061
reference string 3630
regen 1341
regenerate 1301, 1341
regular grid on a tin 2990
remove 4255
remove absolute 4257
remove all models 1318
remove all models from project 1691
remove all tins from project 3002
remove model 1317
remove model from project 1691
remove model from view 1692
remove point 3171
remove shared models 1702
remove shared tins 3030
remove tagged models 1321
remove tin from model 3003
remove tin from project 3002
remove tin models 1319
removed models 1674
rename
boxing file 3739
chain 6462
function 6471
template 3620
tin 3004, 3005, 3620, 3739
view 1560
rename model 1681
global 1682
rename project 689
repicking 226
report 1795
crest/sag points 6316
cross fall 2188
depth between strings 2188
function 6327
NZ TSS 3281
polygons 6329
section view 1308
set-out 6330
string names 6317
survey 3180
tin 3005
x-fall 6341
report for SDR function 3180
REPORT_HEADER_4D 7199
reports 6311
reset N value settings 593
reset n value settings 593
reset null triangles 2972
reset projection 585
reset triangle colours 2898
resizable panel 653
resizing a view 167
restart project 652
restore a panel 157
restore a view 167
restore view models 1562
retriangulate 2887
reverse direction 6922, 6924
reverse string 2015, 3175
reverse strings 6613
reverse super alignment 1798
ridge and valley lines 2954
ridge line 2954
right side 4455
right_border_gap 6000, 6095, 7341, 7399
right_extension 5999, 7344, 7371, 7373
right_margin 5244, 6001, 6095, 7341, 7399, 7465
right_sub_plot_gap 6003, 7342
Rivers 5619
rivers
 12d system search path 5706
 an overview 5619
culverts 5627
 summary table 5630
faq 5707
hec-ras interface
 an overview 5632
export 5633
import 5636
importing HEC2 data 5643
importing interpolated cross sections 5641
how to 5698
isis interface
an overview 5689
manual settings 5699
mapping historical water levels 5702
mike11 interface
an overview 5658
exporting 5658
importing 5666
models 5620
presenting water level results 5669
colour ground surface by height 5683
colour ground surface with flood zones 5678
colour water by depth 5679
defining water surface boundaries 5676
depth contours 5681
sample drawings 5672
trimming the water surface tin 5677
water level boundaries 5670
reservoir strings 5624
river strings 5621
source strings 5623
spill strings 5626
unet interface
an overview 5685
exporting 5686, 5689
importing 5688, 5693
xp swmm interface
an overview 5644
exporting 5644
importing 5655
road chainage 5188
road chainage for manhole 5188
road name 5188
road name for manhole 5187
RoadPak 757
roadside furniture 1596
Rotate 5868, 5869, 5874, 5928, 5929
rotate 1189, 5868, 5869, 5874, 5928, 5929, 6614
rotate grip 250, 252, 267
rotate plot frame 5874
Rotate Relative 6616
rotate super alignment 1802
run 6481, 6485
run a chain 6463
run chain 6511
RUN_MACROS_FILE_4D 7199
RUN_PROJECT_MACROS_FILE_4D 7199

S
same as 1344, 1716, 1719, 1722, 1726, 1743, 1745, 1748, 1751, 1758, 1768, 2204, 2217, 2220, 2223, 2226, 2229
view 1344
Sameas 316
save 6751, 6752
function 6474
save a model 1693
save a tin 3007
save all models 1693
save all tins 3008
save function 6474
save project 652
save view models 1562
scale 5268, 5288, 5297, 5308, 5994, 6093, 6194, 6259, 6271, 7371, 7428, 7473
horizontal 5908, 5913
scale factor 582
scale super alignment 1802
scale_horizontal_colour 6186, 7453
scale_horizontal_decimals 6186, 7453
scale_horizontal_post_text 6186, 7453
scale_horizontal_pre_text 6186, 7453
scale_horizontal_size 6186, 7453
scale_horizontal_textstyle 6186, 7453
scale_horizontal_x_offset 6186, 7453
scale_horizontal_y_offset 6186, 7453
screen dump 1170
screen layout file 142, 157, 166, 964, 965, 7307
screen units 208, 7335, 7486
scrolling panel list 321
scrolling panel table 321
SDR arc fitting end 3163
SDR arc fitting start 3163
SDR arc through last 3 points 3162
SDR arc through next 3 points 3162
SDR attachment 3161
SDR circle feature 3164
SDR close string 3174
SDR culvert string 3177
SDR invisible 3164
SDR invisible next segment 3165
SDR invisible previous segment 3165
SDR join string 3174
SDR Map 827
SDR non tinable 3166
SDR non tinable next segment 3167
SDR non tinable previous segment 3167
SDR pipe axial 3168
SDR pipe invert 3168
SDR pipe obvert 3169
SDR pipe string 3177
SDR point edits 3159
SDR rectangle by last 2 points 3170
SDR rectangle by last 3 points 3169
SDR remove height 3171
SDR remove point 3171
SDR reverse string 3175
SDR string edits 3172
SDR string type 2d 3175
SDR string type 3d 3176
SDR string type 4d 3176
SDRmap 6938, 7058, 7059
search bar 2302
section 3017, 3020
section long plot 7456
section view 136
section width 4487
sections from points 4168
sections within a polygon 3020
seed file 875, 880
segment 1909, 2280
segment attributes 195
segment colour 2119
segment geometry 2130
segment snap 248
segments 182
semi-major axis 7126
sense of direction 2040
service clash 6553
service clash rules 6546
service items 1280
service_ch_text_colour 5254
service_ch_text_size 5254
service_ch_textstyle 5254
service_ch_text_mode 5254
service_il_text_colour 5254, 7469
service_il_text_size 5254, 7468
service_il_textstyle 5254
service_shade 1251, 1252, 1277, 7486
share 641
share info 630
share manage 624
share settings 630
SHARE_CHECK_INTERVAL_4D 7200
SHARE_LOCKS_FOLDER_4D 7200
SHARE_MAP_FILE_4D 7200
SHARED_ELEMENT_COLOUR_4D 7200
Sharing 623
sharing map files 632
sharing of models 1697
sharing of tins 3025
sharing tin 3024
SHARING_ELEMENT_COLOUR_4D 7200
sheet size 7341, 7399
sheet_size 5244, 5288, 5292, 5308, 5942, 7341, 7399, 7465
SHEET_SIZES_4D 5244, 5292, 7201, 7341, 7399, 7465
sheets.4d 7148, 7164, 7334
Shift grid string range 2063
Shift grid tin range 2065
SHOW_PATHS_4D 7201
SHOW_TITLE_VARIABLES_4D 7201, 7202
Shrink 1217
shrink 1334, 1342
side shots 3273
side shots 3273
Side Tool Bar area 136
sides 136
sight distance 4077, 4092
sight line 4074, 4075
single
 z values 1347
Single string 2075
Single String Setout 3427
single_frame 6306
Sky dome 1656
slf file 964, 965
slope 7486
Slope analysis (flag) 2946
slope colouring 2904
slope from link 4495, 4524
slope inquire 2964
slope range file 2943
slope to 2 strings 4514, 4545
slope to string 4501, 4532
slx file 965
smooth 2927, 6625
snap
 data tip 246
 fast accept 247
 fast pick 247
 M 247
 segment 248
snap box 236
snap tolerance 236, 239, 244, 245
 point 237
snapping 7486
snaps 238, 6376
 cursor 239
 grid 239
 height 242
 info 239, 245
 line 239
 model 244
 name 243
 point 239
 point tolerance 245
 tin 239
 tolerance 244
snaps (vert) 6378
snaps cogo 6379
Sokkia 6933, 7057, 7058
Sokkia DEM 3000
Sokkia Roading - alignment road 3374
Sokkia Roading - string road 3376
solar observations 3262
solid 1202
sort cross sections 4166
sort VIPs 2246
sort_sections 5994, 7387
space_for_titles 6022, 6101, 7357, 7403
special chainages 4459
special characters 215
Special File Formats 7173
specials 4459
specials_model 7468
spiral 7486
 clothoid 6795, 6808, 7168
 Westrail cubic 6795, 6808, 7168
spiral curve 7165
splays 2024
split string 2016
square 3182
SQUARED_CHARACTER_4D 7202
srf 2943
stagger_gap_bottom 5256, 5294, 6036, 6139, 7368, 7423, 7468
stagger_gap_factor 6036, 6139, 7368, 7423, 7468
stagger_height_1 5256, 5294, 7468
stagger_height_2 5256, 5294, 7468
stagger_height_3 5256, 5294, 7468
stagger_height_4 5256, 5294, 7468
staggering 6036, 7368
standard field file 6907
standard field file format 6910, 6933
Standard TSS report 3283
star reduction 3265
start arc fitting 3163
start chainage 7486
start_chainage 5994, 6036, 6271, 7428, 7473
start_drawing_number 5287, 5307, 7339, 7388, 7455, 7481
start_page_number 5287, 5307, 7339, 7388, 7455, 7481
Static Text Timeline 1636
station 6972
Station Helmert 3462
Status Bar 136, 168
steering path option 3840
stopping final link 5054
storage calculations 5764
String 1261, 1266, 1271
string 182, 7486
 2d 183, 1716, 2217
 3d 183, 1719, 2220
 4d 183, 1722, 2223
 alignment 184, 2204
 arc 184, 1726
 change 2000
 circle 184, 1726
 clip 2001
 close 2003
 contour 183
 convert 2053
 delete 2004
 drainage 184
 duplicate 2005
 feature 184, 1743
 interface 185
 io clipboard 6681
 join 2006
 label 2134
link clip 2010
object 182
open 2012
parallel 2013
pick 222
pipe 185, 1745, 2226
pipeline 185, 5710
polyline 185, 1748, 2229
primary 1280, 1293
sewer 184, 5113
split 2016
super 183, 1751
super alignment 184, 1770
text 185, 208, 1758, 7335
translate 2018
string attributes 195, 2095
string chainage 187
string convert 2053
string delete 2201
string delimiter 6938
string direction 182
string drape 2928
string drive 1261, 1264
string editor 1849
string filter 6581
string finish 1860
string from point 338
string info table 1678
string information 2067
string inquire 1713, 2067
string links 182
string loop removal 2191
string model 186
string modifier 4470
string modifiers 3669
string movie 1271, 1272, 1275
string name 186
string names 6317
string neighbours 182
string number 6910, 6911
string object 182
string offset 4838, 4846, 7305
string properties 2072
string redo 1859, 1977
string same as 1768
string segments 182
string select field 330
string select panel field 330
String split/join 5215
string text 1195
string typed input 1861
string undo 1859, 1977
string utilities 2186
string walk 1266, 1269
string_length_for_break 6198
string_to_plot 6093, 7428
strings 1711
convert 6559, 6566
join many 2008
strings edit 1999
strings from sections 2192, 4167
stripping 3642, 4474
stripping depths 4474
style
 continuous mode 7230
 vertex mode 7230
style for tin 2888
subgrade 3646, 3647, 3744, 3820, 3828, 4449, 4740
Subscribe to share master files 637, 640
subsidence 4176
sub-tags 606
Sun exposure 4091
sun in driver eyes 4090
super
 append 1890, 1895, 2268
 extend 2269
 extend ht 2269
Super alignment 1299
super alignment design parameters 1829
super alignment design standards 1819
super alignment design templates 1823
super alignment edit 1922
super alignment info 1795, 1818
super alignment report 1795
super alignment string 184, 1770
super alignment style 1813
super objects 6385
super string 183, 1751
 2d 1716, 2217
 attributes 2123
 billboard 1572, 1578
 chainage interval 2098
 compress 2102
 fill 2105
 height 2121
 library extrude 1594
 pipe/culvert 2127
segment
 all information 1919, 2289
 text 1916, 2285
annotate 1917
colour 1909, 2280
diameter 2282
pipe 1913
radius 1911, 2283
text info 2286
tinable 1914, 2281
visible 1910, 2287
segment colour 2119
symbols 2117
text 2131
tinable 2103
vertex
Index

all information 1907, 2279
attributes 1905, 1918, 2277, 2287
height 1897, 2269
symbol info 1904, 2276
text 2273
text info 2274
tinable 1898, 2270
visible 1899, 1901, 2271, 2272
vertex id 2125
visibility 2100
super string edit 1894, 2268
super_ch_colour 6125, 7415
super_ch_decimals 6125, 7415
super_ch_size 6125, 7415
super_ch_textstyle 6125, 7415
super_ch_x 6125, 7415
super_ch_y 6125, 7415
super_cl_line_colour 6127, 7416
super_cl_line_style 6127, 7416
super_common_decimals 6128, 7416
super_common_line_colour 6128, 7416
super_common_line_style 6128, 7416
super_common_post 6128, 7416
super_common_pre 6128, 7416
super_draw_mode 6122, 7415
super_edge_name_left 6126, 7415
super_edge_name_right 6127, 7416
super_hinge_name_left 6126, 7415
super_hinge_name_right 6127, 7415
super_left_decimals 6126, 7415
super_left_line_colour 6126, 7415
super_left_line_style 6126, 7415
super_left_post 6126, 7415
super_left_pre 6126, 7415
super_right_decimals 6127, 7416
super_right_line_colour 6127, 7416
super_right_line_style 6127, 7416
super_right_post 6127, 7416
super_right_pre 6127, 7416
super_sample_interval 6122, 7415
super_sample_name 6122, 7415
SUPER_STRING_4D 7202
super_title 6124, 7415
super_title_colour 6124, 7415
super_title_size 6124, 7415
super_title_textstyle 6124, 7415
super_title_y_pos 6124, 7415
super_tolerance 6122, 7415
super_upright_colour 6128, 7416
super_upright_mode 6128, 7416
super_xfall_colour 6124, 7415
super_xfall_size 6124, 7415
super_xfall_textstyle 6124, 7415
super_xfall_x 6124, 7415
super_xfall_y 6124, 7415
super-elevation diagram 6122, 7415
SuperTin 2875
edit 2883
supertin 2875
suppress_title_box_line_ch 6201
suppress_title_box_line_dp 6207
suppress_title_box_line_fs 6204
suppress_title_box_line_hg 6206
suppress_title_box_line_il 6205
suppress_title_box_line_ns 6203
suppress_title_box_line_rc 6202
suppress_value_box_line_ch 6201
suppress_value_box_line_dp 6207
suppress_value_box_line_fs 6204
suppress_value_box_line_hg 6206
suppress_value_box_line_il 6205
suppress_value_box_line_ns 6203
suppress_value_box_line_rc 6202
suppress_value_box_line_top 6200
suprt string
tinable 2101
surface area 2950, 2951, 6495
surface_box_size 5249
surrounding polygon 2026
survey 6907
12d field file 3044
backsight measurement 3060
current measurement 6973
current point 6973
current string 6973
data collector 6951
named measurement 6973
order 3158
point name 6972
point number 6972
raw data file 3046, 6910, 6933
reduce field file 3048, 3061
standard field file 6910, 6933
text 6972
typed entry into field file 3061
survey data collectors 668
survey reduction 6907
survey.4d 7148
swap XY 3215
swap xy 6626
sweep angle 1728, 7487
symbol 7246
justification point 218
symbol draw commands 7253
symbol justification point 218
symbol_n_angle 6167, 7445
symbol_n_colour 6167, 7445
symbol_n_draw_mode 6167, 7445
symbol_n_size 6167, 7445
symbol_n_type 6167, 7445
symbol_n_x 6167, 7445
symbol_n_y 6167, 7445
symbol_n_y_mode 6167, 7445
symbols 2117
SYMBOLS_4D 7202
symbols.4d 7249
change 6628
direction 203
justification point 201, 203
paper units 208, 7335
quick mode 1192, 1193
screen units 208, 7335
world units 208, 7335
Text Control Bar 2298
text ht 1984
text justification point 201
text paper units 208, 7335
Text Profile String Timeline 1638
text string 185, 208, 1758, 7335
text string edit 1983
Text Variable Timeline 1642
Text Vertex String Timeline 1640
text_colour 7470
text_size 6023, 7358, 7470
Texts edit 2045
textstyl.4d 7149, 7257, 7261
textstyle data favourites 681
textstyle input 1176
TEXTSTYLE_MAPPING_4D 7203
textstyle_names.4d 7149
TEXTSTYLES_4D 7203
TEXTURE_MAP_4D 7203
TGA 2148
three state tick box 514
threetypstyle 7230, 7239
tick box
tick marks 2142
tadpoles 2140
TICK_DRAW_CROSS_4D 7203
ticks
user symbols 2142
tif 2148
TIFF 2148
tiff 2148
time_format 5287, 5307, 5961, 7339, 7388, 7455, 7481
Timelines 1608
TIN 7487
tin 189, 2861
copy 2987
create 2871
edit 2881, 2883
quick 2879
save 3007
tin to strings 3009
translate/copy 3010
tin analysis 2936
tin aspect 2937
tin aspect inquire 2958
tin base colour 2894
tin boundary 2892
tin colour 2895
tin colour inquire 2959
tin colouring 2894
tin copy 2987
tin create 2871
tin cut slope modifier 5052
tin decision 4354, 4838, 4848, 7305
tin delete 3034
tin fill height modifier 5051
tin fill slope modifier 5052
tin function 2878, 2886
tin height colouring 2899
tin height inquire 2963
tin height modifier 5041, 5051
tin height render settings 1570
tin information 2865
tin inquire 2957
tin linestyle 2888
tin manger 618
tin mesh 3018
tin null
 by angle/length 2974
 by angle/length (seed) 2976
 by centroids 2978
 by length 2973
 by points 2981
 by polygons 2982
 by strings 2979
null 2971
reset 2972
in null by angle and length 2974
in null by angle and length starting from seed point 2976
in null by length 2973
in rename 3004
in report 3005
in Setout 3438
in shade 1277
in sharing 3025
in slope 2941
in slope inquire 2964
tin snap 239, 242
tin style 2888
tin to strings 3009
in utilities 2984, 3016
in weed 3011
in width 4838, 4844, 7305
inx fall modifier 5041
in n colour 6033, 6113, 7364, 7409
in n decimals 6033, 6113, 7364, 7409
in n depth colour 6034, 6114, 7365, 7410
in n depth decimals 6034, 6114, 7365, 7410
in n depth label 6034, 6114, 7364, 7409
in n depth size 6034, 6114, 7365, 7410
in n depth textstyle 6034, 6114, 7365, 7410
in n depth title 6034, 6114, 7364, 7409
in n depth title_2 6034, 6114, 7364, 7409
in n depth title colour 6034, 6114, 7365, 7409
in n depth title size 6034, 6114, 7365, 7410
in n depth title textstyle 6034, 6114, 7364, 7409
in n depth title y pos 6034, 6114, 7365, 7410
in n depth y pos 6034, 6114, 7365, 7410
in n draw colour 6031, 6111, 7364, 7409
in n draw mode 6031, 6111, 7364, 7409
in n height angle 6043, 7352
in n height colour 6043, 7352
in n height decimals 6043, 7352
in n height draw mode 6043, 7352
in n height position 6043, 7352
in n height post text 6043, 7352
in n height pre text 6043, 7352
in n height size 6043, 7352
in n height textstyle 6043, 7352
in n height x 6043, 7352
in n height y 6043, 7352
in n label 6031, 6111, 7364, 7409
in n name 6008, 6111, 7352, 7364, 7409
in n size 6033, 6113, 7364, 7409
in n textstyle 6033, 6113, 7364, 7409
in n title 6032, 6112, 7364, 7409
in n title_2 6032, 6112, 7364, 7409
in n title colour 6032, 6112, 7364, 7409
in n title size 6032, 6112, 7364, 7409
in n title textstyle 6032, 6112, 7364, 7409
in n title y pos 6032, 6112, 7364, 7409
in n y pos 6033, 6113, 7364, 7409
TIN_VIEWPORT_CLIP_4D 7203
tinable 186, 2103
line 7487
point 7487
segment 186, 7487
vertex 186, 7487
tins 1197, 1250
tins depths colour 2901
Tins on a view 2967
title block 5945
title block variables 5954, 5955, 5956
title_1 5287, 5288, 5307, 5308, 7339, 7388, 7455, 7480, 7481
title_2 5287, 5288, 5307, 5308, 7339, 7388, 7455, 7480, 7481
title_box_text_colour 5248
title_box_text_size 5248, 6022, 6101, 7357, 7403
title_colour 5287, 5307, 7388, 7455, 7480
title_file 5287, 5288, 5307, 5308, 7388, 7455, 7480, 7481
title_text_colour 5288, 5308, 7481
title_text_size 5287, 5288, 5307, 5308, 7388, 7455, 7480, 7481
to 2 heights 4379, 4507, 4508, 4539
toggle 1182, 1185, 1240, 1242, 1282, 1283
toggle view 1334, 1338, 1342
tolerance 244
Tool bars 2293
toolbar 7294
Add/remove 1889
edit 2d 1862
edit 3d 1866
edit 4d 1871
Measure Edits 356, 432
pipe edit 1887
polyline edit 1889
Road 357
String Edits 429
Super Alignment Tools 430
Tin Utility 434
Traverse Spreadsheet 435
Visualisation 436

TOOLBARS_4D 7203
toolbars.4d 7149, 7294, 7295
top area 5269, 5297
Top Tool Bar area 136
top_area 5269, 5297

TIN Utility 434
Traverse Spreadsheet drafting 3285, 3286, 3287, 3288
top border gap 6000, 6095, 7341, 7399
top_bottom_gap 6000, 6095, 7341, 7399, 7465
top_margin 5244, 6001, 6096, 7341, 7399, 7465
top_sub_plot_gap 6003, 7342
Topcon 3339, 6933, 7120
Topcon GTS-700 Roads 3378
Topcon MS2000 3377

True Azimuth 7140
Traffic islands 3876, 3880
Traffic signals 1667

Transform Reference Timeline 1629
transformation
 affine 7483
 Helmert 2D 7485
 Helmert 3D 7485

Transformation String Timeline 1627
TRANSFORMATIONS_4D 7203
transition 3201, 3267, 3270, 3271, 3277

transformation tools
 Bers 6796, 6808, 7168
cubic parabola 6795, 6808, 7168
transition curve 7165, 7486
transition spiral 7486
Translate 5875
translate 6630
 translate string 2018
 translate plot frame 5875
translate string 2018
 translate super alignment 1801
translate/copy tin 3010

Transverse Mercator 7130
Transverse Mercator Projection 582
trash bin 647
traverse 2038, 3317
traverse adjustment 3201
traverse block 3273
Traverse spreadsheet
 parameters 3268
traverse spreadsheet 3267

create 3270
drafting 3285
edit 3271
 radiation table drafting 3286
utilities 3276

Traverse spreadsheet drafting 3285, 3286, 3287, 3288
top sub_plot_gap 6003, 7342

True Azimuth 7140
tsf file 1176

TSS 3267
create 3270
drafting 3285
edit 3271
 parameters 3268
 radiation table drafting 3286
utilities 3276

tunnel filter data 4142
tunnel offset points 4145
tunnel plot name mappings 4138, 4139
tunnel plot setting 4137
two points profile 1294, 1296
two points two distances 2035
twoptstyle 7230, 7234

Typed Entry 3061
typed input 153, 231, 1861
tentative 233

TYPED_UNITS_MODE_4D 7204

U

UCS 176
undo 1859, 1977, 4859
UNDO_4D 7204
Unicode Transformation Format 176

units
 screen 7486
 world 7488
Universal Characters Set 176
Universal Transverse Mercator Projection 582
upload 3388
uprights_bottom_mode 5253, 6038, 6140, 7369, 7425
uprights_bottom_y 6038, 6140, 7369, 7425
uprights_colour 6038, 6140, 7369, 7425
uprights_draw_mode 6038, 6140, 7369, 7425
uprights_text_offset_factor 6038, 6140, 7369, 7425
uprights_top_mode 5253, 5271
uprights_y 6038, 6140, 7369, 7425
USAGE_LOG_4D 7204
USAGE_LOGS_4D 7204

use density drawing 505
USE_ALL_USERS_PROFILE_4D 7204
use_drawing_numbers_in_filenames 6306
use_hg_vg_for_min_max 6093
use_title_file 5287, 5288, 5307, 5308, 7388, 7455, 7480, 7481
use_vg_hg_for_min_max 7397
user_defined_function_keys 7277
user_defined_plotters 667
user_library 7299
USER_4D 7206
USER_LIB_4D 7206
USER_OPTIONS_4D 7206
user_text_n 5287, 5307, 7339, 7388, 7455, 7480, 7481
user_toolbars.4d 7295
userkeys.4d 7149, 7277
usermenu.4d 7149
UTF 176
utilities 1226, 1261, 6375
section view 1306
string 2186
template 3621
tin 2984, 3016
Utility String Editor 5207, 5517
UTM 582, 7488

V
g_n_between_mode 6158, 7439
g_n_colour 6161, 7440
g_n_draw_mode 6161, 7440
g_n_gap 6161, 7440
g_n_height 6161, 7440
g_n_label_offset 6160, 7440
g_n_label_text 6160, 7440
g_n_label_text_colour 6160, 7440
g_n_label_text_size 6160, 7440
g_n_label_textstyle 6160, 7440
g_n_label_x 6160, 7440
g_n_label_y 6159, 7439
g_n_no_decimals 6162, 7440
g_n_offset_string 6159, 7441
g_n_post_text 6162, 7440
g_n_pre_text 6162, 7440
g_n_rotate 6162
g_n_text_colour 6162, 7440
g_n_text_offset 6162, 7440
g_n_text_size 6162, 7440
g_n_textstyle 6162, 7440
g_n_type 6158, 7439
g_n_value_mode 6158, 7439
g_text_colour 7469
g_text_size 7469
g_textstyle 7469
validate 1812
valley line 2954
value 6496
variable template 3616
variables

many template 5065
vector 2037
Vehicle path 3840
vehicle turning path option 3840
VEHICLE_PATH_4D 7206
version 6487
vertex 1897, 2269, 4763
edit 1997
tinable 186
vertex attributes 195
vertex filter 6584
vertex id 2125
vertex index 182
vertex mode 7230
vertex numbers 1204, 1345
Vertex/Segment UIDs 1345
vertical alignment 7488
vertical exaggeration 1280, 1292, 1341
vertical geometry edit 1309
vertical geometry plot 7438
vertical wall 4751, 5070
vertical_exaggeration 5994, 6093, 6194, 6259, 6271, 7371, 7428
vertical_geometry_arrow_colour 6155, 7438
vertical_geometry_arrow_grade_text_colour 6156, 7438
vertical_geometry_arrow_grade_text_size 6156, 7438
vertical_geometry_arrow_grade_textstyle 6156, 7438
vertical_geometry_arrow_length_text_colour 6157, 7438
vertical_geometry_arrow_length_text_size 6157, 7438
vertical_geometry_arrow_length_textstyle 6157, 7438
vertical_geometry_arrow_mode 6155, 7438
vertical_geometry_arroww_grade_text_size 7438
vertical_geometry_mode 6156, 7438
vertical_geometry_grade_y 6155, 7438
vertical_geometry_label_grade_decimals 6156, 7438
vertical_geometry_label_grade_text 6156, 7438
vertical_geometry_label_grade_textstyle 6156, 7438
vertical_geometry_label_grade_text_size 6156, 7438
vertical_geometry_label_grade_textstyle 6156, 7438
vertical_geometry_label_length_decimals 6157, 7438
vertical_geometry_label_length_text 6157, 7438
vertical_geometry_label_length_text_colour 6157, 7438
vertical_geometry_label_length_text_size 6157, 7438
vertical_geometry_label_length_textstyle 6157, 7438
vertical_geometry_label_length_textstyle 6157, 7438
vertical_geometry_label_length_textstyle 6157, 7438
vertical_geometry_length_mode 6157, 7438
vertical_geometry_length_y 6155, 7438
vertical_plot_gap 5245, 5269, 5293, 5297, 7466, 7474
VG edit 1309
view 1334, 1338, 1342, 1549, 7488
drag 167
dump 166
fit 1334, 1338, 1341
minimize 167
move 167
previous 1334, 1338, 1342
rename 1560, 1561
toggle 1334, 1338, 1342
view buttons 163, 1332
View dump 1559
view dump 1229, 1278
view info 1552
View info table 1554
View information table 1554
view manger 621
view text 1194
view utilities 1226, 1261
VIEW_BITMAP_BUTTONS_4D 7207
VIEW_BUTTONS_4D 7207
view_name 5268, 5288, 5297, 5308, 6306, 7337, 7371, 7428, 7473
views 162, 1179
same as 1344
Views Area 136
viewshed 4082, 4098
viewshed dynamic 4101
view-title area 162
VIP 7485
visible 2100
volume_box_size 6129, 7418
volume_cl_line_colour 6129, 7419
volume_cl_linestyle 6129, 7419
volume_cut_decimals 6132, 7418
volume_cut_text_colour 6132, 7418
volume_cut_text_size 6132, 7418
volume_cut_text_x 6132, 7418
volume_cut_text_y 6132, 7418
volume_cuttextstyle 6132, 7418
volume_cut_title 6131, 7418
volume_cut_title_colour 6131, 7418
volume_cut_title_size 6131, 7418
volume_cut_title_textstyle 6131, 7418
volume_cut_title_y 6131, 7418
volume_draw_mode 6129, 7418
volume_file_name 6129, 7418
volume_fill_decimals 6132, 7419
volume_fill_text_colour 6132, 7419
volume_fill_text_size 6132, 7419
volume_fill_text_x 6132, 7419
volume_fill_text_y 6132, 7419
volume_fill_textxstyle 6132, 7419
volume_fill_title 6131, 7418
volume_fill_title_colour 6131, 7418
volume_fill_title_size 6131, 7418
volume_fill_title_textstyle 6131, 7418
volume_fill_title_y 6131, 7418
volume_sample_interval 6129, 7418
volume_sub_title_x 6133, 7419
volume_sub_upright_colour 6133, 7419
volume_sub_uprights_x 6133, 7419
volume_text_centre_mode 6129, 7418
volume_title 6130, 7418
volume_title_colour 6130, 7418
volume_title_textstyle 6130, 7418
volume_title_y_pos 6130, 7418
volume_uprights_draw_mode 6133, 7419
volume_uprights_line_colour 6133, 7419
volume_y_pos 6129, 7418
volumes
balances volumes 5776
between heights 5760
cut/fill text in poly 5789
dend area 5725, 5727, 5732
exact 5725, 5758
grid cell 5782
material section to section 5755
removal calculations 5762
sections to height 5746
sections to sections 5749
stockpile 5785
storage calcs 5764
string tin to height 5738
string tin to tin 5742
tin to height 5733, 5766, 5768
tin to sections 5752
tin to tin 5735, 5771, 5774
tin to tin by height range 5787
trimesh 5778, 5780
Vpath 3840

W
walk 1266, 1338
walk along string 1338
walk-right menu 140
WARP_CURSOR_HIDE_4D 7207
WEB_SEARCH_4D 7207
weed 3011
weed tin 3011
WEED_TOLERANCE_4D 7207
Westrail cubic 6795, 6808, 7168
WGS84 581, 7488
width 4418, 4491, 4520, 5079
corridor 1284
width from link 4495, 4524, 5085
width modifier 5034, 5035
width to 2 strings 4514, 4545, 5107
width to RL 5102
width to string 4501, 4532, 5092
wildcards
test 6627
WINDOWS_PRINTERS_4D 7208
WINDOWS_VEHICLE_PATH_4D 7208
WINTER_4D 7209
WINTER_DATA_4D 7209
work plane 1206
workspace setup 598
WORKSPACE_FILE_4D 7209
world style
continuous mode 7230
vertex mode 7230
world units 208, 7335, 7488
worldstyle 7230, 7246
Write inlet curves to model 5322
write TTM file 3345
WRITE_ALL_PLOT_PARAMETERS_4D 7209

X
x plot 1305, 5905
x section ppf editor 5989
x sections 4156
x y z general 727, 839
x_label 6136, 7421
x_label_colour 6136, 7421
x_label_decimals 6136, 7421
x_label_size 6136, 7421
x_label_textstyle 6136, 7421
x_label_y_pos 6136, 7421
x_fall 4770, 5081, 5083
x_fall 1 4775
x_fall_from_link 5085
x_fall_intersect 4248
x_fall_modifier 5038, 5039, 5040
x_fall_report 6341
x_fall_to_2_strings 5107
x_fall_to_RL 5102
x_fall_to_string 5092
x_fall_to_tin 5097
x-section
 name from string 4162
x-sections 3022
x-sections - see cross sections 6374
x-sections_filter 4171
x-sections_through_tin 3022
xtramenu.4d 7149
xy_chord_arc 6134, 6135, 7421
xy_end_chainage 6134, 7421
xy_interval 6134, 7421
xy_label_crest 6134, 7421
xy_label_grade_change 6134, 7421
xy_label_hcp 6134, 7421
xy_label_hip 6134, 7421
xy_label_sag 6134, 7421
xy_label_tolerance 6135, 7421
xy_label_vip 6134, 7421
xy_label_vtp 6134, 7421
xy_order 6134, 7421
xy_special_n_file 6135, 7421
xy_start_chainage 6134, 7421
xyz general output 867
XYZ typed input box 231, 1861
xyzch output 863
xyzs
 format 720, 722
xyzs format 720, 722
xyzs input 720
xyzs output 860, 861
xyzspt_no input 723

Y
y_label 6137, 7422
y_label_colour 6137, 7422
y_label_decimals 6137, 7422
y_label_size 6137, 7422
y_label_textstyle 6137, 7422
y_label_y_pos 6137, 7422
y_origin 5245, 5288, 5293, 5295, 5308
X_SECTION_PPF_4D 7209
x_title 6136, 7421
x_title_2 6136, 7421
x_title_colour 6136, 7421
x_title_size 6136, 7421
x_title_textstyle 6136, 7421
x_title_y_pos 6136, 7421
x_fall 4770, 5081, 5083
x_fall 1 4775
x_fall_from_link 5085
x_fall_intersect 4248
x_fall_modifier 5038, 5039, 5040
x_fall_report 6341
x_fall_to_2_strings 5107
x_fall_to_RL 5102
x_fall_to_string 5092
x_fall_to_tin 5097
x-section
 name from string 4162
x-sections 3022
x-sections - see cross sections 6374
x-sections_filter 4171
x-sections_through_tin 3022
xtramenu.4d 7149
xy_chord_arc 6134, 6135, 7421
xy_end_chainage 6134, 7421
xy_interval 6134, 7421
xy_label_crest 6134, 7421
xy_label_grade_change 6134, 7421
xy_label_hcp 6134, 7421
xy_label_hip 6134, 7421
xy_label_sag 6134, 7421
xy_label_tolerance 6135, 7421
xy_label_vip 6134, 7421
xy_label_vtp 6134, 7421
xy_order 6134, 7421
xy_special_n_file 6135, 7421
xy_start_chainage 6134, 7421
xyz general output 867
XYZ typed input box 231, 1861
xyzch output 863
xyzs
 format 720, 722
xyzs format 720, 722
xyzs input 720
xyzs output 860, 861
xyzspt_no input 723

Z
Z diffs from tins 3012, 3013
z filter 6586
z value
 table 1352
z values 1204, 1345
 single 1347
zag 6925
zig 6925
zig-zag 6922, 6925
zone 7136
zone to zone transformation 3212
zoom 1214, 1334, 1342
zoom by Model 1215
zoom by String 1215
zoom by View 1215
zoom factor 1218
ZOOM_ORIGIN_DYNAMIC_4D 7209
ZOOM_PAN_DYNAMIC_4D 7209